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Chapter 1  
Introduction 

 

1.1 Background 

After prediction of Bose-Einstein condensation (BEC) in 1925 [18, 35] it took 
seventy years to achieve its experimental realisation in pioneering experiments at JILA [4], 
MIT [28] and Rice [19, 20]. Experimental and theoretical studies of BEC address many-
body physics. By 1995 there was an extensive literature on macroscopic quantum 
phenomena, such as superfluidity in liquid helium, and the closely related subject of 
superconductivity. BEC in dilute atomic quantum gases enabled the investigation of 
macroscopic quantum phenomena in the weakly interacting limit. With the availability of 
these systems it became possible to apply the broad range of standard tools of atomic 
physics to such investigations.  

The first experiments on BEC revived an enormous interest in macroscopic 
behaviour of dilute atomic gases at low temperature, which resulted in rapid development 
of the research area. 

Most of the theoretical groundwork on the interacting quantum gases has been 
developed in the 50’s and the 60’s in the context of superfluidity of 4He. However, a 
detailed comparison between theory and experiment is extremely difficult in the case of 
liquid helium because its density is rather high and can be varied only within a narrow 
range. In the 70’s the observation of BEC in dilute atomic gases under equilibrium 
conditions was known to be impossible. Therefore, the efforts shifted towards 
investigations of metastable systems.  

The first attempts to reach BEC were done in spin-polarised atomic hydrogen. 
Foundations for many techniques and methods were laid in the course of that work. 
Hydrogen quantum gas was first stabilised in a cryogenic environment by Silvera and 
Walraven [93] and by Cline et al. [23]. Magnetic trapping was first demonstrated in sodium 
[79] and in hydrogen by Hess et al. [50] and van Roijen et al. [87]. Another critically 
important technique, evaporative cooling, was first experimentally demonstrated in 
hydrogen [51] and further developed in [74, 97, 105].  

Bose-Einstein condensation in alkali systems was achieved in magnetic traps 
through the combination of optical cooling methods with the evaporative cooling technique. 
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Introduction 

This led to a dramatic expansion of both experimental and theoretical work in the field of 
ultracold quantum gases. The contribution of this field to the understanding of Nature was 
acknowledged by the Nobel Prize in physics awarded in 2001. Although the macroscopic 
occupation of the ground state is the best known aspect of the phenomenon of Bose-
Einstein condensation, the appearance of phase coherence is equally important. 

The investigation of phase coherence phenomena provides new fundamental insights 
into the nature of macroscopic quantum states and is important for current and future 
applications. Those include, in particular, atom lasers – devices for continuous or pulsed 
generation of coherent matter waves, atom interferometry, improved frequency standards 
and systems of cold atoms for quantum computing. The first phase coherence experiments 
were relying on the interference of two independently prepared condensates [6] and on the 
measurement of single-particle correlations [15, 48, 95]. These experiments showed that 
trapped condensates are phase coherent, in accordance with the common understanding of 
BEC in three-dimensional gases. Recent theoretical [82] and experimental [31] studies 
revealed limitations on the phase coherence of the Bose-condensed state. It was shown that 
in elongated 3D traps the finite-temperature equilibrium state can be a quasicondensate: it 
shows the suppressed density fluctuations of a regular condensate but shows an axially 
fluctuating phase rather than full phase coherence. 

The appearance of coherence in a condensate cannot be separated from the process 
of condensate formation. Theory of condensate formation was first explored by Svistunov 
[98] and Kagan et al. [57], and extensively studied later by Gardiner et al. [29, 38, 39, 70] 
and Bijlsma et al. [11]. Previous experimental investigations of formation kinetics of 
trapped condensates [65, 78] were decoupled from the studies of phase coherence 
mentioned above. Investigation of the evolution of phase coherence properties during the 
formation of a trapped condensate out of a non-equilibrium thermal cloud presents a great 
general physical interest. In particular it should allow a deeper understanding of phase 
coherence phenomena in macroscopic quantum states. One can expect that the evolution of 
phase coherence will be a primary issue for creation of CW atom lasers [22]. The rate at 
which the required phase coherence is formed will place an upper boundary on the feeding 
rate for the laser and, hence, on the generation rate of coherent matter waves.  

1.2 This thesis 

The main part of this Thesis is related to the studies of the condensate formation into 
non-equilibrium states and hydrodynamic behaviour of cold non-degenerate atomic clouds. 
In contrast to the experiments with equilibrium phase-fluctuating quasicondensates we 
investigate creation of a degenerate quantum state outside of equilibrium. This offers an 
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fundamentally different path towards equilibrium as compared to the condensate formed in 
a quasi-static fashion. 

The Thesis is organised in the following way. In Chapter 2 we compile main 
theoretical expressions relevant to the Bose-Einstein condensation. We begin with an 
introduction of the principle of magnetic trapping of spin-polarised gases and a description 
of the Ioffe-Pritchard quadrupole trap. It is followed by a description of trapped Bose gases 
below and above the phase transition temperature. Further we sketch theoretical ideas 
underlying phase coherence and formation of a BEC. We also introduce the bare 
fundamentals of evaporative cooling and derive several results specific to the experiments 
described further in this work. A separate section is dedicated to the scaling description of 
the gas clouds in harmonic traps.  

In Chapter 3 various aspects of the experimental setup are described. Special 
attention is given to the features characteristic to the specific ideas which underlie the 
construction of the apparatus, e.g. creating Bose condensates with the highest density and 
particle number possible. An overview of the vacuum system is followed by the outline of 
the laser setup. A section on the magnetic trap describes the technical aspects of the 
generation and control of the trapping fields. Description of the experimental realisation of 
evaporative cooling in our experiments is presented together with details of the 
measurement methods.  Emphasis is put on the description of imaging of cold atomic 
clouds. We discuss numerous sides of the problem, including the selection of the optical 
elements and details of the absorption detection with limitations of the method. 

Chapter 4 gives a detailed description of the high-power diode laser system, the 
design and building of which was dictated by the needs of this experiment. In the 
experiments with large (rubidium) atom numbers the optical power requirements tend to go 
beyond the power available from the single-mode diode lasers operating at 780 nm. We 
introduce this setup based on a broad-area laser diode as an excellent alternative to the other 
solutions available commercially. 

In Chapter 5 we present the experimental investigation of the hydrodynamic 
properties of dense atomic clouds. The understanding of the crossover to the hydrodynamic 
regime in thermal clouds is important from the experimental point of view. This 
understanding is vital for the correct interpretation of time-of-flight images of such clouds. 
In the collisionless regime the expansion of the gas, after release from a trap, is known to be 
isotropic, whereas in the hydrodynamic limit the gas expands anisotropically. We approach 
investigation of the hydrodynamic properties from three different sides. First, we go in 
detail into density and temperature analysis. Another indicator of hydrodynamic behaviour 
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is obtained by observation of the anisotropic character of the expansion. Finally, we 
measure frequency shifts and damping of shape oscillations.  

In the final part of the Thesis, Chapter 6, we describe the results produced in the 
experiments on formation of condensates far from equilibrium. We compare our work with 
previous experiments on condensate formation and describe how the process of formation 
is triggered in our system. A brief section deals with the growth of the condensate fraction. 
Further, we show how the concepts of local sample temperature and the critical temperature 
arise in elongated clouds with high elastic collision rates. We present a simple model, 
which illustrates how the non-equilibrium character of the condensates leads to the 
quadrupole oscillations. We also discuss non-equilibrium phase fluctuations, which 
manifest themselves in the form of stripes in the time-of-flight absorption images. 
Condensate focusing is introduced as a novel method for investigation of Bose-Einstein 
condensates. The focusing of a condensate in free flight arises from axial contraction of the 
expanding cloud when the gas is released from the trap during the inward phase of a shape 
oscillation. Possible applications of BEC focusing are discussed, with an estimate of the 
coherence length given as an example. The last part of the chapter covers condensation into 
non-equilibrium states with high condensate fractions. The situations of large and small 
condensate fractions are compared. 

 



Chapter 2  
Theoretical background 

 

In this chapter we compile main theoretical expressions relevant to the Bose-
Einstein condensation. We also sketch some theoretical ideas underlying phase coherence 
and formation of a BEC. Further, we introduce the bare fundamentals of evaporative 
cooling and derive several results specific to the experiments described further in this work. 
A separate section is dedicated to the scaling description of the gas clouds in harmonic 
traps. For a complete review on the theory of Bose-Einstein condensation in trapped gases 
one can, for example, refer to [27]. 

2.1 Rubidium 

The diagram of energy levels of 87Rb isotope is shown in Figure 2.1. Cooling and 
trapping is performed with laser light red-detuned with respect to the |5S1/2, F = 2〉 → |5P3/2, 
F = 3〉 transition of the D2 line. This light also induces non-resonant pumping of the atoms 
to the |5P3/2, F = 2〉 state, from where they decay according to the transitions’ strengths to 
F = 1 and F = 2 hyperfine states. To prevent atoms from accumulating in the F = 1 state, 
another laser – the repumper – tuned to a |5S1/2, F = 1〉 → |5P3/2, F = 2〉 transition is used. 
Another laser is employed for optical pumping of the atoms into a |5S1/2, F = 2, mF = 2〉 
Zeeman state.  

2.2 Magnetic trapping 

Trapping of neutral atoms in magnetic fields arises from Zeeman interaction of the 
magnetic moment µ of the atom with the external field B. The energy of the interaction is 
given by  

 ( )E = − ⋅µ B r , (2.1) 

where F F Bm gµ µ= , µB is the Bohr magneton. The Zeeman energy of the different 
magnetic sublevels can be expressed by the Breit-Rabi formula in the approximation of the 
Zeeman splitting s Bg Bµ  being much smaller than the hyperfine splitting hfω   

 ( ) ( ) ( )2
2

,
1 11 4 const.
2 16F

F s B
F m hf F F B F

hf

g B
E m g B m

µ
ω µ

ω

 
 = − + + − +
 
 

 (2.2) 



 

 

 
6 

 
Theoretical background 

 ( ) 11
2 1

F
F sg g

I
= −

+
. (2.3) 

Different Zeeman states can be divided into “low-field seekers” and “high-field seekers”. 
Since the Maxwell equations do not allow for the existence of a local magnetic field 
maximum, only the atoms in the low-field seeking states can be trapped. For rubidium these 
are the |F = 1, mF = –1〉, |F = 2, mF = 1〉 and |F = 2, mF = 2〉 states. All experiments 
described in this thesis were done with the |F = 2, mF = 2〉 state. 

The magnetic field minimum is created by the current coils of the Ioffe trap 
schematically shown in Figure 2.2. Four parallel current bars created by four elongated 
“racetrack” coils produce a quadrupole magnetic field in the x-y plane. Small circular 
dipole coils in the centre (“pinch” coils) create the confining potential along the z-axis. 
Large outer compensation coils are used for reduction of the large offset field created by the 
pinch coils. This setup allows to avoid regions where the magnetic field crosses zero value. 
If an atom were to cross such a point it would experience a spin flip and would be lost from 
the trapping field. Such spin flips are referred to as Majorana losses. 

 

Figure 2.1. Energy level scheme of 87Rb.The data was taken from refs. [7] and [84]. 
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The magnetic field of the Ioffe trap can be written down in the following form [10, 
73] 

 

( ) ( ) ( )

( ) ( )

( ) ( )

0

2 2
0 0

1, , sin 2
2

, , cos 2

1 1, , .
2 4z

B z z z

B z

B z B z z

ρ

φ

ρ φ αρ φ βρ

ρ φ αρ φ

ρ φ β βρ

= − − −

= −

= + − −

 (2.4) 

Here α is the radial field gradient of the quadrupole field and ( )2 20,0,zB z zβ = ∂ ∂  at 
z = z0 – the curvature of the field. Close to the centre of the trap the field can be 
approximated by the harmonic potential 

 ( )
2

2 2
0

0

1 1,
2 2 2

B z B z
B
α β

ρ ρ β
 

= + − + 
 

. (2.5) 

One can further write down the frequencies of the harmonic potential 

 
1/ 2

B F F
z

g m
m

µ
ω β =   

 (2.6) 

 

Figure 2.2. Coils of the magnetic trap in an Ioffe-quadrupole configuration. Arrows 
indicate the directions of the currents. 
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1/ 22

0 2
B F Fg m

m Bρ
µ α β

ω
  

= −  
   

. (2.7) 

Note that for strong confinement in the radial direction the term 2
0Bα  is dominant and the 

radial frequency can thus be adjusted by changing the value of the offset field B0. 

2.3 Bose-Einstein condensation 

In this section we summarize the main theoretical results required for the description 
of trapped Bose gases. Among these are the expressions for the critical temperature (TC) 
and the density distribution above and below the phase transitions. Detailed description and 
reviews can be found in refs. [8, 27, 53, 105].  

The energy spectrum of an individual atom in a harmonic potential ( )U r  is 
characterized by a set of three non-negative integer quantum numbers {n} = {nx, ny, nz} and 
is given by 

 { }
, ,

1
2n i i

i x y z

nε ω
=

 = + 
 

∑ , (2.8) 

where ωi are the trap frequencies. The average number of particles in the state {n} is given 
by the Bose distribution: 

 
1

{ }exp 1n
B

B
N

k T
ε µ

−
 −  

= −  
   

. (2.9) 

The value of the chemical potential is fixed by the condition 

 ( )BN Nλ
λ

ε =∑ , (2.10) 

where N is the total number of particles. For this system the density distribution ( )n r  
above the phase transition can be calculated as 

 ( ) ( )
3 23

1 exp
BT

U
n g z

k T
  

= −   Λ   

r
r , (2.11) 

with fugacity ( )exp Bz k Tµ= , where ( )3/ 2g x  is a polylogarithm function 

 ( )
1

l

l

g x x lα
α

∞

=

≡ ∑ . (2.12) 
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(Note that ( ) ( )1ng nζ= , where ( )nζ  is Riemann zeta-function.) The thermal de Broglie 
wavelength is defined as  

 
1/ 222

T
Bmk T

π 
Λ =  

 
. (2.13) 

Independently of trap geometry, BEC occurs if the so-called degeneracy parameter 
reaches the critical value: 

 ( ) ( )3
3 20 1 2.61Tn gΛ = ≈ , (2.14) 

where n(0) is the peak density in the centre of the trap. In the case of harmonic potential 
one can obtain an expression for the critical temperature: 

 
( )

1/ 3

3 1C
B

NT
k g
ω  

=   
 

, (2.15) 

where 
1/ 32

zρω ω ω =    is the mean trap frequency. 

For a trapped Bose gas in the classical regime, where the chemical potential µ < 0 
and Bk Tµ  one can find that the density distribution has a Gaussian shape  

 ( )
2

3 2
,0,0

exp i

iii
i

rNn
rrπ

  
 = −      

∑∏
r , (2.16) 

where ri,0 is the 1/e radius of the cloud in the i-direction: 

 
1/ 2

,0 2
2 B

i
i

k T
r

mω

 
=   

 
. (2.17) 

Appearance of the condensate in a trapped weakly interacting gas is characterised by 
the macroscopic wavefunction, which is determined by the Gross-Pitaevskii (GP) equation 
[45, 54] 

 ( ) ( ) ( ) ( )
2

2
0 0 02

U U
m

µ
 ∆

− + + Ψ Ψ = Ψ 
 

r r r r , (2.18) 

where 24U a mπ= is the coupling constant, a is s-wave scattering length (a = 5.238(1) 
nm [103]), and the chemical potential µ is determined by the normalisation condition 

 23
0 0N d r= Ψ∫ . (2.19) 



 

 

 
10 

 
Theoretical background 

The density profile of the condensate is given by ( ) 2
0 0n = Ψr . When the maximum level 

spacing is much smaller than the chemical potential the interactions smear out the discrete 
structure of the trap levels. In this case the mean field term 0Un  becomes dominant 
compared to the kinetic term, which can be neglected in what is referred to as the Thomas-
Fermi approximation. In the case of a harmonic trap the density profile of the condensate 
assumes a parabolic shape 

 ( ) ( )0
1max ,0n U
g

µ
 

= −   
 

r r , (2.20) 

and the Thomas-Fermi radius of the condensate Li is given by 

 0
1 2

i
i

L
m
µ

ω
= . (2.21) 

The total number of particles in the condensate can be calculated to be 

 ( )
5/ 2

3
0 0

2
15

hrN d r n
a

µ
ω

 = =  
 ∫ r , (2.22) 

where 1/ 2[ / ]hr mω=  is the harmonic oscillator length. 

2.4 BEC formation and phase coherence 

Phase coherence properties of a BEC are closely related to the formation process of 
a quantum degenerate state. Studies of novel Bose-condensed gases, such as phase-
fluctuating condensates, can provide new fundamental insights into the nature of 
macroscopic quantum states and are important for applications in atom optics. So far, phase 
coherence has been studied for equilibrium trapped Bose-condensed gases [6, 15, 31, 48, 
82, 95], and these studies were decoupled from the experiments on the kinetics of growth of 
BECs [65, 78]. Evolution of the phase coherence properties during formation of a 
condensate is a matter of particular interest.  

It is important to identify regimes of the formation kinetics of a trapped condensate. 
One expects the existence of two regimes, depending on the trap geometry and the mean-
field interatomic interaction near the BEC transition temperature TC. In the first regime, the 
interatomic interaction is much smaller than the spacing between the lowest trap levels. 
Then, by doing evaporative cooling and crossing TC from above one has straightforward 
formation of a true condensate in the trap ground state, which then grows and acquires the 
Thomas-Fermi density profile. This regime requires a comparatively small number of 
particles as in the work at MIT on the growth of a condensate in real time [78] and related 
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theoretical work [38]. In our experiments we expect the second regime, where already 
above TC the discrete structure of the lowest trap levels is smeared out by the interatomic 
interaction, and, similarly to the spatially homogeneous case [57, 58, 61, 62], one expects 
the formation of a condensate with fluctuating phase (quasicondensate). The 
quasicondensate will have the same density profile and local correlation properties as a true 
condensate but will have drastically different phase coherence properties. This regime 
requires either a very large number of particles or a strongly elongated trapping geometry. 
In the latter case, already for a moderate particle number (~105 or 106) the interparticle 
interaction at TC exceeds the spacing between the axial trap levels. Then the axial 
fluctuations of the phase of the appearing Bose-condensed state acquire a 1D character and 
can be large, similar to the case of equilibrium 3D elongated quasicondensates discussed in 
ref. [82]. This regime is likely to be realized in the Munich experiment [65] on the 
formation and growth of a condensate in an elongated trap as well as in the experiments 
described in this thesis.  

A schematic time diagram of the condensate formation based on ref. [57] is 
presented in Figure 2.3. Here the process of formation is triggered by an abrupt truncation 
of the evaporation barrier performed with a system just above the critical temperature. The 
first kinetic stage, where no condensate is yet present, is described by the Boltzmann 
kinetic equation and is characterised by the time 

 ,1
1

kin
Tn

τ
συ

= , (2.23) 

where n is the total density of the gas, σ is the scattering cross-section and υT is the thermal 
velocity. The next, coherent stage, is much shorter than the kinetic stage and has a 
characteristic time 

 

Figure 2.3. Schematic time diagram of BEC formation in a simplified RF-truncation 
experiment. 
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04c

m
n a

τ
π

= , (2.24) 

where a is the scattering length, and n0 is the density of the condensate. In this evolution 
stage the non-equilibrium density fluctuations die out. Finally, the second kinetic stage is 
also characterised by an expression identical to (2.23), with the density n replaced by the 
condensate density n0. During this stage the number of particles in the condensate grows to 
its equilibrium value. Further damping of phase fluctuations leads to formation of an 
equilibrium BEC.  

2.5 Evaporative cooling 

2.5.1 Evaporative cooling 

Evaporative cooling plays a key role in the path towards BEC and has been used in 
all BEC experiments up to date. The basic principles of evaporative cooling are presented 
to the extent required for understanding of the experiments described in Chapter 5 and 
Chapter 6. For an extensive review on evaporative cooling one can refer to [105] and [63]. 

The description of evaporative cooling presented here is based on the model 
introduced in [74] and [105]. Evaporative cooling is a powerful cooling method based on 
the preferential removal of atoms with energy higher than average energy per atom. 
Subsequent thermalization by elastic collisions leads to an energy distribution with a lower 
temperature than the one before removal of the atoms. 

For constant truncation barrier εt (“plain evaporation”) evaporation rate per atom can 
be written as 

 ( )1 0ev ev
ev T

e

N V
n e

N V
ητ υ σ− −= = , (2.25) 

where 28 aσ π=  is the elastic collisional cross section, 

 t

Bk T
ε

η =  (2.26) 

is the truncation parameter, and Vev ≈ Ve is the effective evaporation volume [105]. If the 
truncation barrier is constantly reduced one enters regime of forced evaporative cooling. If 
truncation parameter η is kept constant it can be shown that the temperature behaves as 

 T Nα∝ , (2.27) 
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where efficiency parameter α depends only on η. In the course of evaporative cooling it is 
possible to enter the so-called “runaway” regime, when, despite the particle loss, the 
density of atoms increases. In the runaway regime the increase in density is sufficiently 
strong to compensate the dropping temperature and the elastic collision rate increases 
leading to ever faster evaporation. The efficiency of the evaporative cooling is limited by 
the loss mechanisms from the trap such as collisions with background gas or collisions with 
the products of three-body recombination. The figure of merit in this case is the ratio of 
“good” to “bad” collisions: 

 
-body

1ev ev

i ei

N V
R e

VN
η

λ
−≡ = , (2.28) 

where 1 1
i i colλ τ τ− −≡ , with τi

-1 being the i-body atomic loss rate and ( )1 0col Tnτ υ σ− =  – the 
elastic collision rate.  

2.5.2 Local critical temperature in a cylindrical geometry 

Unlike a familiar result for the critical temperature in quasi-static systems (Section 
2.3), experiments on non-equilibrium formation of a Bose-Einstein condensate described 
further in this thesis require understanding of a local critical temperature related to the local 
density of the sample. This concept becomes important if collisions occur on a length scale 
much shorter than the (axial) size of the cloud. We start calculation of local TC with writing 
down an expression for the density of states in a truncated harmonic trap [105]: 
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Here ( ) 2 2 2U r m rω= , and ε is the truncation energy. By integrating out the radial 
dimensions, we get for an infinitely long cylinder: 
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where 2
0 2r m ρε ω= . 

Further, we can write down the total one-dimensional density  of an ideal Bose gas 
[105] (see also Section 6.4.1), and substitute in Equation (2.30) 
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where ( )5/ 2 1g  is a polylogarithm function. 
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Finally, the local critical temperature is 
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where 1/ 2[ ]r mρ ρω=  is the radial oscillator length. 

2.5.3 Development of temperature gradients  

Investigation of a temperature profile induced in an elongated cloud by an abrupt 
lowering of the RF barrier (what we further refer to as RF truncation) is of particular 
interest with regard to the experiments described in Chapter 6.  

To the zero approximation a gas above TC can be described by a simple model of a 
Boltzmann gas. To calculate the temperature profile in the thermal gas after truncation we 
write down the ratio of one-dimensional truncated density distribution n′1D to the initial, 
non-truncated density distribution n1D: 
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where the density of states ρ1D is defined by Equation (2.30), and ( ) 2 2 2l z m zε ε ω= −  is 
the local trap depth. The same ratio can be written down for the total energies excluding the 
axial component of the potential energy: 
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Combining Equations (2.34), (2.33) and (2.30) we can write down a local temperature of 
the Boltzmann gas as a function of the axial coordinate: 
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is the local truncation parameter, and the incomplete gamma function ( ),P a η  is defined as 

 ( ) 1

0

1,
( )

a tP a dt t e
a

η

η − −≡
Γ ∫ . (2.37) 

Here Γ(a) is the Euler gamma function. 

2.6 Scaling theory of gas evolution 

2.6.1 Evolution of a condensate 

Let us consider a condensate with a fixed number of particles in an anisotropic 
harmonic potential ( ) 2 2 2i i iV m rω= ∑r  with time-dependent frequencies ωi(t). Neglecting 
the thermal cloud, the condensate wave function follows a time-dependent Gross-Pitaevskii 
equation 
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Here 24U a mπ= , with a being the scattering length and m the atom mass. To describe 
the evolution of the Bose gas we follow the method described in ref. [21, 59, 60] and turn in 
Equation (2.38) to new coordinates ( )i i ir b tρ = . Here ( ) 0i i ib L t L≡  are the scaling 
parameters, where L0i is the initial size of the condensate in the trap, as defined by Equation 
(2.21). We then search for a solution in a density-phase representation. When equation of 
motion (2.38) in the new coordinates is reduced to a stationary GP equation (2.18), it sets 
the following condition on the scaling parameters: 
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where ( )0 0i iω ω= . Considering the case of a cylindrical geometry and an abrupt switch-
off of the trap Equations (2.39) can be rewritten in the form 
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with initial conditions ( )0 1ib = , ( )0 0ib = . 
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2.6.2 Evolution of a hydrodynamic thermal cloud 

Evolution of the thermal gas in the hydrodynamic regime is in many aspects similar 
to the evolution of the condensate. The Euler equation of motion for the gas in an 
anisotropic parabolic potential has the form 
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where ( ),n tr  and ( ),P tr  are the density and pressure profiles, and ( ),i tν r  the velocity 
field. Like in Section 2.6.1 using a scaling approach which reduces Equation (2.42) to the 
equations for the scaling parameters: 
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where ( )0 0i iω ω= and ( ) 0i i ib l t l≡ , with li is the 1/e radius of the thermal cloud and 
( ) 2 1/ 2

0 00 [2 ]i i b il l k T mω= =  is the initial size in the trap. Considering the case of a 
cylindrical geometry and an abrupt switch-off of the trap Equations (2.39) can be rewritten 
in the form 
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with initial conditions ( )0 1ib = , ( )0 0ib = . 



Chapter 3  
Experimental setup 

 

3.1 Introduction 

Experiments on Bose-Einstein condensates involve a wide range of techniques and 
methods. They include laser cooling, magnetic trapping, radio-frequency evaporative 
cooling, optical detection, vacuum technology and many others. Making no attempt to be a 
complete reference on the subject, this chapter introduces those aspects of the experimental 
setup, which are relevant to this thesis. A more detailed description of various aspects of the 
setup can be found in [33].  

3.2 Overview 

From the very first steps the design of our experimental setup was optimised for 
creation of samples with large atom numbers and experiments with high-density clouds. In 
Figure 3.1 we show a schematic view of the experimental setup. Two main parts can be 
distinguished here: the two-dimensional magneto-optical trap acting as an atomic beam 
source [32] in the bottom of the apparatus and the upper part, which combines the recapture 
MOT, the magnetic trap and the imaging system. 

The path towards Bose-Einstein condensation begins with loading a magneto-optical 
trap (MOT) from an intense cold atom source [32]. The atom source operates at flux 
numbers of 5 × 109 atoms/s with an average velocity of atoms of 8 m/s. The number of 
particles stored in a density-limited MOT is typically 1.2 × 1010. To maximise the number 
of atoms captured in the MOT, a dedicated high-power laser was designed and built (see 
Chapter 4). Atoms in the MOT are further cooled during an optical molasses stage to a 
temperature of 40 µK. After optical pumping into |F = 2, mF = 2〉 state (with approximately 
60% loss) the atoms are transferred into a weak roughly isotropic magnetic trap with the 
frequencies ω = 2π × 7.5 Hz. This frequency allows to match a 3 mm 1/e radius of the 
MOT cloud to the size of the cloud in the magnetic trap. To achieve a higher elastic 
collision rate and meet the condition for the runaway regime of evaporative cooling the trap 
is adiabatically compressed within 6.615 s. At the end of compression stage the temperature 
rises to 760 µK and the density increases to 7 × 1011 cm-3. After this the evaporation barrier 
is  ramped  down  within  10.6 s  to reach the condensation point.  The critical temperature, 
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Figure 3.1. Schematic outline of the experimental setup. 2D MOT in the lower part of the 
setup acting as a cold atomic beam source. The upper part of the setup is taken by the 
recapture MOT, magnetic trap and the imaging optics. 
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TC = 1.5 µK and the number of particles at the transition point is ~ 107.  

Both the atomic beam source and the recapture MOT are placed inside a cube 
created by six square coils (0.94 m side) which serve to compensate the magnetic field of 
the Earth. An additional function for one pair of these coils aligned with the axis of 
magnetic trap is the active control of the trap bottom. 

In the course of experiments with BECs one has to control more than 300 events 
over the course of one minute. The precision and relative timing of some of these events 
can be as short as 1 µs, which places high demands on the control system. The control of 
the experiment is performed with a real-time automation system developed in-house and 
based on LabVIEW programming environment and the hardware from National 
Instruments and Viewpoint.  Processing of the obtained data can be done in parallel with 
the experimental runs. 

3.3 Vacuum system 

Both trapping atoms in a MOT and their storage in a magnetic trap place stringent 
requirements on a vacuum system, as background gas collisions is a dominant factor in the 
life time of a magnetic trap. The schematic layout of the vacuum setup is presented in 
Figure 3.2. The setup consists of two ultra-high vacuum (UHV) chambers connected 
through a differential pumping hole. The atomic beam source is produced in the lower 
chamber which contains saturated rubidium vapour at room temperature, approximately 4 × 
10-7 mbar [89]. The beam of cold atoms is guided through the hole in the aluminium mirror 
to the upper chamber evacuated to a pressure below 3 × 10-11 mbar. 

The chambers are essentially rectangular quartz cells fused to thick circular quartz 
disks. The wall thickness of the cells is 4 mm. In the cross-section the cells present a square 
of 30 × 30 mm. They are coupled to the opposite sides of a stainless-steel vacuum manifold 
with pairs of concentric viton O-rings. The space between the rings is pumped out to a few 
times 10-3 mbar to avoid limitations due to the permeability of viton. The outside surface of 
the cells is covered with an anti-reflection coating of better than 0.2% at normal incidence 
at 780 nm. This minimises multiple reflections of the laser beams propagating through the 
cells. The pumping of the upper chamber is done by a 40 l/s ion pump and a titanium 
sublimation pump. The vapour cell of the atomic beam source is connected to a 2 l/s ion 
pump. The ion pumps are placed sufficiently far from the trap to avoid the influence of their 
magnetic fields on the captured atoms. The pressure is controlled by the ionisation gauge 
(Varian, model UHV-24 nude). Further, the life time (typically 65 s) of the sample in the 
magnetic trap gives the ultimate indicator of the vacuum quality. 
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Figure 3.2. Vacuum system. The lower part of the differentially pumped chamber 
accommodates the atomic source, while around the upper UHV cell the magneto-optical 
and magnetic traps are built. 



 

 

 
3.4  Laser system 

 
21 

Two mirrors with protected gold coating are installed inside the UHV manifold. 
They permit introduction of the laser beams at an angle close to the vertical axis of the trap, 
e.g. MOT beams, optical pumping etc.  

3.4 Laser system 

Diode lasers are a common source of light used in spectroscopic and laser cooling 
applications at 780 nm. The essential requirements presented to a laser in such experiments 
are narrow linewidth (< 1 MHz), ability to tune the frequency, long- and short-term 
frequency stabilisation, and sufficient optical power. Diode lasers can have all these 
properties in addition to a low price and the ease of operation. 

Figure 3.3 presents a block diagram of the laser system. The basis of the system is 
formed by a grating-stabilised diode laser (GSL1) (Toptica, DL100) [85, 106]. This laser is 
based on a single-mode laser diode (Hitachi, model HL7851G, 50 mW). Frequency 
stabilisation of the laser is realised with Doppler-free saturation spectroscopy together with 
the Dichroic-Atomic-Vapour Laser Lock [26]. The frequency is locked to a crossover 
signal between two hyperfine transition of D2 line: |5S1/2, F = 2〉 → |5P3/2, F = 3〉 and |5S1/2, 
F = 2〉 → |5P3/2, F = 1〉. Light produced by GSL1 is split into four beams, each being 
frequency-shifted by an acousto-optic modulator (AOM). The first beam is used as a seed 
for a broad-area diode laser (BAL) system (see Chapter 4), which provides optical power 
for the MOT as well as for the near-resonance absorption detection of the atomic cloud. 
The second beam is used for injection locking of a single-mode 80-mW diode laser (Sanyo, 
model DL-7140-001), which serving the atomic beam source. Another beam is applied for 
optical pumping of the atoms into a |5S1/2, F = 2, mF = 2〉 state. The last beam is used for 
the fluorescence detection of the atomic beam source and as an optical plug for the source.  

A dedicated repumping laser (GSL2, identical to GSL1) is used in the setup to 
prevent atoms from accumulating in the |5S1/2, F = 1〉 state. This laser is tuned to the |5S1/2, 
F = 2〉 → |5P3/2, F = 1〉 line and is used in the MOT, atomic beam source, probing of the 
atomic beam and optical pumping of the atoms. For frequency stabilisation the repumping 
laser employs Doppler-free saturation spectroscopy with a frequency modulation technique 
[13, 34].  The summary of the frequencies and the powers of all laser beams is presented in 
Table 3.1.  

An additional diode laser not shown in Figure 3.3 was built for the use in detection 
setup. The main distinction of this laser was tunability and frequency stabilisation over a 
range of –3.5 GHz to +3.5 GHz with respect to F = 2 → F = 3 transition. This was 
achieved by locking to the mixed-down beat signal between this laser and the master 
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(GSL1). No data presented in this work were obtained with this laser, and no further 
description is given. For information on a similar system one can refer to ref. [91]. 

3.5 Magnetic trap  

A schematic view of the Ioffe-quadrupole magnetic trap used in our experiments is 
presented in Figure 2.2 (see also Figure 3.1). The functions of all coils were already briefly 
described in Section 2.2. Four parallel current bars made of four elongated “racetrack” coils 
produce quadrupole magnetic field in x-y plane. Small circular dipole coils in the centre 
(“pinch” coils) with currents running in the same direction create confining potential along 
z-axis. The same coils are used for the MOT, when the currents are sent in the opposite 
directions. Large outer compensation coils are used for reduction of the large offset field 

 

Figure 3.3. Block diagram of the laser system. Precise control of the frequencies of various 
laser beams is done with AOM’s. Optical transport and spatial filtering of the beams is 
done in most cases with single-mode optical fibres. 
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created by the pinch coils. This setup allows to avoid regions where magnetic field crosses 
zero value. The four coils of the Ioffe bars allow flexibility of the radial field control. In 
particular, it is important to compensate the magnetic field against the trap minimum shift 
due to gravitation in the transfer phase from the MOT to the magnetic trap. This is achieved 
by reducing the current in the upper coil of the quadrupole. For fine tuning and modulation 
of the trap potential all Ioffe coils and the compensation coils have additional double-
winding coils placed next to them. This coils were for example used to realise a magnetic 
double-well potential by combining a static Ioffe-Pritchard trap with a time-orbiting 
potential (TOP). The atoms in such trap were successfully cooled and condensed to produce 
two spatially separated condensates [99]. 

In the quest for achieving high densities we produce the trap with the field gradient 
353α =  G/cm and the curvature 286β =  G/cm2. This requires driving currents of 

approximately 400 A through the copper wires of square cross-section (4 × 4 mm2 for pinch 
and Ioffe coils, 5 × 5 mm2 for compensation coils). The wires have a central hole of 2 and 
2.5 mm respectively for active cooling of the trap, as the power dissipated by the coils 
reaches 5.4 kW. As a result, the coils are heated by only about 10 K, which results in high 
stability of the trapping field. In order to maximise thermal stability of the trap, a titanium 
holder for the coils is mounted on four quartz bars, with support elements designed to 
reduce the thermal drifts of the coil positions. The most sensitive indicator of the thermal 
effects in the trap is the stability of the offset field B0 = 886(1) mG in the centre of the trap. 
Translated into the units of the evaporation barrier (ν0 = 620 kHz), at full current the short-

Name of the beam Transition 
5S1/2 → 5P3/2 

Detuning  
(MHz) 

Power (mW) 

MOT 
Absorption imaging 
Atomic beam source 
Optical pumping 
Source probe 
Source plug 
Source repumper 
MOT repumper 
OP repumper 
Source probe repumper 

F = 2 → F = 3 
F = 2 → F = 3 
F = 2 → F = 3 
F = 2 → F = 2 
F = 2 → F = 3 
F = 2 → F = 3 
F = 1 → F = 2 
F = 1 → F = 2 
F = 1 → F = 2 
F = 1 → F = 2 

–33 
–70 to +15 
–12 
0 
0 
0 
0 
0 
0 
0 

120 
0 to 120 
47  
1 
1 
0.5 
1.9 
8 
0.4 
0.1 

Table 3.1 Summary of the values for detuning and optical power in various laser beams 
used in the setup. 
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term thermal effects are less than 1 kHz/s. In the long term the trap shows drifts of 
approximately 5 kHz/hr. 

For time-of-flight measurements on the cold atomic clouds the switch-off time of 
trapping field is an important parameter. The current flow through the coils is controlled by 
the programmed values of the power supplies as well as by the switching circuitry based on 
IGBT switches (IXYS, model IXGN200N60A). Fast switching-off behaviour is achieved 
by damping the energy of the coils into large electrolyte capacitors preloaded to 200 V. The 
full current of 400 A is measured to vanish on a time scale of ~ 60 µs, with the inductance 
of the coils being in the range of 30 µH. For high stability of the currents flowing through 
the trap coils all control elements are also water-cooled. 

To minimise the noise on the magnetic field the pinch and compensation coils are 
driven in series. The compensation coils are bypassed by a passive bypass used for fine 
adjustment of the B0 value. The trap is compensated in such a way that the bottom of the 
trap is touching the zero-field value. At this point no modulation of the current through the 
axial coils would affect the bottom of the trap. The actual offset field B0 is then created by 
an additional pair of coils, also used in the Earth magnetic field compensation. This allows 
independent control of the frequencies of the trap. 

Trap frequencies can be calculated using Equations (2.6), (2.7) and measured by 
exciting the centre-of-mass oscillations of the cloud. All experiments described in this 
thesis were performed in a trap with frequencies measured to be ωρ = 2π × 477(2) Hz and 
ωz = 2π × 20.8(1) Hz. These frequencies are given in the absence of evaporation knife 
which leads to trap deformation (see Section 3.6) 

3.6 RF evaporative cooling 

The principle of evaporative cooling outline in Section 2.5.1 is realised in practice 
by transferring the atoms to the untrapped Zeeman states with an oscillating magnetic field. 
For rubidium the frequency of the evaporation field lies in the radio-frequency (RF) range 
of approximately 50 MHz to 500 kHz. The transition occurs in the spatial region where the 
resonance condition is satisfied: 

 ( )F B rfg Bµ ω=r , (3.1) 

where ωrf is the angular frequency of the oscillating field. It is related to the truncation 
energy εt discussed in Section 2.5.1 through the following relation: 

 ( )0t F rfmε ω ω= − , (3.2) 
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where 0 (0)B Fg Bω µ=  is the resonance frequency corresponding to the centre of the 
trap (i.e. the bottom of the potential). The probability of the transition into an untrapped 
state is defined by the amplitude of the evaporation field and the speed at which the atom is 
passing through the resonance region. This problem was solved for a two level atom in 
[112] and is discussed in [90]. Additional studies of the transition probability for the F = 2 
state of 87Rb were done by Valkering [102]. The probability is a function of the Landau-
Zener parameter which is proportional to the square of Rabi frequency ΩR. At a certain 
amplitude of the evaporation field the transition probability approaches unity and this 
defines the minimum amplitude required for evaporation at a given temperature.  

In the course of evaporative cooling the evaporation knife is ramped down in 
frequency from 50 MHz to a few hundred kHz. The total duration of the ramp is 10.6 s. For 
experiments described further in this thesis the  precise timing and high stability of the RF 
signal are of great importance. No commercial device available on the market at the time 
could satisfy the set requirements. This motivated design and construction of the RF 
generator employing direct digital synthesis of the signal (DDS) and based on AD9852 chip 
from Analog Devices. The generator could be programmed from the LabVIEW interface as 
a part of the whole event sequence of the experimental cycle. The waveform produced by 
the synthesiser was typically made of a number of linear frequency ramps combined with 
several intervals of constant frequency generation. 

After passing through a variable 60 dB attenuator the RF signal from the synthesiser 
is amplified by a power amplifier (Amplifier Research, model 25A250A). The level of the 
signal is controlled by a 12-bit analogue output of the computer connected to the variable 
attenuator. The output of the amplifier is coupled to a two-winding circular antenna 31 mm 
in diameter, which is positioned 16 mm from the trap centre. The final amplitude of the RF 
field in the trap varies from 15 × 10-6 T in the beginning of the ramp to 4 × 10-6 T in the 
end. 

It is important to consider the effects of the oscillating magnetic field leading to an 
energy shift of magnetic sublevels in the “dressed” states picture. These shifts distort the 
effective shape of the potential and should also be taken into account in measurement of the 
trap bottom. By diagonalising the time-dependent Hamiltonian of the atom in an oscillating 
magnetic field, one can calculate the following expression for the dressed potential (in the 
presence of gravity): 

 ( ) ( )( )
21/ 222 0

0 22F rf R F B rf
mg

U m g B mg
ρ

ρ ω µ ρ ω ρ
ω

  = − Ω + − + +    
, (3.3) 

where B(ρ) is defined by Equation (2.5) at z = 0, and ΩR is the Rabi frequency 
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 R 2
F B rfg Bµ

Ω = . (3.4) 

Here Brf is the amplitude of rf-field. One can solve Equation (3.3) to produce an expression 
for the effective trap depth and an approximate expression for the new trap frequency ωρ′, 
which will be lower than the “non-dressed” frequency ωρ for values of ωrf near the bottom 
of the trap. A similar analysis can be made for the axial trap frequency. Such systematic 
effects on the frequency have to be taken into account if the RF barrier is switched on and 
is close to the bottom of the trap, e.g. in experiments with cold samples where the RF knife 
is kept at a constant frequency to act as a heat shield. 

Another procedure where this effect plays a role is the measurement of the trap 
bottom B0, which is performed as a matter of daily routine. The evaporation knife is 
lowered until no particles can be detected in the trap. Due to the power broadening 
described above this occurs before the RF-frequency reaches the resonance value 
corresponding to B0. This offset in frequency is measured by comparing the values of the 
evaporation knife with those of an continuous atom laser [14] and is found to be 10(1) kHz. 
A calculation based on Equation (3.3) confirms this result. 

3.7 Imaging of cold atomic clouds 

In this section we consider different aspects of the detection of cold atomic clouds. 
Description and characterisation of the optical system is followed by a discussion of 
absorption detection. Analysis of the data and various limitations of imaging are discussed 
in the next sections. Finally, we present a short discussion of lensing – an important effect 
frequently occurring in imaging dense small clouds. 

3.7.1 Optics 

The detection setup in a BEC experiment must be versatile enough to enable the 
detection of clouds ranging is size from several millimetres to several microns. Features 
like the optical resolution, noise characteristics and dynamic range all contribute to the 
quality of the produced data. The schematic outline of the detection optics is presented in 
Figure 3.4. In the absorption imaging method used throughout this thesis, the shadow in the 
near-resonant laser beam directed at the sample is transformed by the lenses and imaged on 
the CCD array. Detection of cold clouds in the trap as well as of fine structures in expanded 
clouds requires high numerical aperture of the detection optics. However, the position of 
the sample inside the vacuum cell makes the use of standard microscope objectives 
impossible. The relay telescope made out of two confocal achromatic lenses produces an 
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intermediate image of the cloud in a plane far enough from the magnetic trap to allow 
convenient placement of the microscope objective and the CCD camera. The other purpose 
of the relay telescope is to enable phase-contrast imaging of the samples [5]. The system is 
turned into a phase-contrast microscope by insertion of a positive or negative π/2 phase-
shifting plate in the confocal plane of the telescope. The phase-contrast method – a standard 
tool in microscopy – can be successfully used for non-destructive in situ imaging of cold 
clouds, as it is sensitive to the phase, rather than intensity, variations in the sample.  

The task of the relay telescope is to produce the relayed image with minimal 
distortion and loss in resolution. In fact, it is the performance of this telescope that is 
limiting factor in the optical resolution of the setup. The telescope is made out of two high-
quality achromats of 100 mm and 200 mm focal length (Melles Griot 06LAI011 and 
01LAO189). At 780 nm these lenses provide a near-diffraction limited performance. 
Numerical aperture of the first lens (F = 100 mm) is NA = 0.15. The ratio of the focal 
length sets the primary magnification of the telescope and was calibrated with a Ronchi 
ruling to be MT = 2.01(1). Depending on the imaging requirements one can change DIN 
microscope objectives with minimal re-focusing of the system. The main secondary 
microscope magnifications are Mµ = 3.98, Mµ = 2.39. For imaging large clouds (e.g. a MOT 
cloud) we would replace the microscope with a single achromat lens which would give 
magnification of Mµ = 0.25. The data presented in this thesis were measured with 
calibration factor of 1.88(1) µm/pixel in the object space, with ∆p = 15 µm being the size of 
square pixels of the CCD camera. Calibration of the optical system assembled on a single 
rail was done with a Ronchi ruling away from the setup. After the calibration the system 
was placed at a known distance from the magnetic trap. Imperfections in longitudinal 

 

Figure 3.4. Schematic outline of the detection system. Solid lines represent the laser beam 
shining on the cloud. The diffraction orders are indicated by the dashed lines. 
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placement of the rail would result in the magnification error of well below that quoted for 
the primary magnification of the relay telescope. 

The imaging device is a cooled CCD camera (Princeton Instruments, model 
TE/CCD-512EFT). The controller of the camera gives a choice between 12- and 16-bit 
analogue-to-digital conversion. A feature specific to this particular camera is the ability to 
operate in the so-called “kinetic transfer” mode. In this mode only part of the chip is 
exposed to light, while the rest of the chip is used as a storage area. One can thus take a 
burst of images at high speed (limited only by the array shift time) and read them out later 
at a slow speed. This feature can be particularly useful in non-destructive imaging of the 
cloud. 

Resolution of the optical system is one of the crucial parameters. In the literature on 
Bose-Einstein condensation it is sometimes quoted in confusing terms. The diffraction 
performance of our imaging system was analysed both by measurement of a point-spread 
function (by looking at the end of a single-mode optical fibre) and by a standard tool in 
microscopy: a positive 1951 USAF resolution target. In line with the definition of a Raleigh 
criterion, a stripe pattern was defined as resolved if the transmitted intensity was modulated 
at least by 20%. The smallest resolved pattern had a repetition period of 6.9 micron, which 
corresponds to a resolution of R = 3.3 µm (1/e half-width). This measurement includes the 
effect of the aberrations added by the 4-mm thick wall of the quartz cuvette in the optical 
path. This value matches the one measured by imaging the output of a single-mode fibre: 
R = 3.1 µm. Calculation of the resolution for a diffraction-limited lens with a Raleigh 
criterion gives 0.61 3.2µmr NAλ= = . To compare with often quoted FWHM or 1/e2 
resolution figures one should multiply the given numbers by an appropriate pre-factor. 
Resolution effects should be taken into account in the imaging of small objects such as cold 
clouds in situ, stripes due to phase fluctuations etc. While convolution of the 
instrumentation function with a gaussian density profile is a trivial task, additional care 
should be taken in the analysis of clouds with other (e.g. parabolic) density profiles. 

3.7.2 Absorption detection 

The main method of observation of the atomic clouds in our experiments is imaging 
the absorption profile produced by the cloud in a near-resonant laser beam. While most of 
the detection was done on the |5S1/2, F = 2〉 → |5P3/2, F = 3〉 transition, in some 
measurements we could benefit from using the weaker transitions |5S1/2, F = 2〉 → |5P3/2, 
F = 1, 2〉. Such measurements would usually involve dense small clouds where refraction 
effects (described in Section 3.7.4) were especially pronounced. In this case, using a small 
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(or zero) detuning from a weak transition would result in a higher image quality. For 
driving these transitions we used a separate laser briefly described in Section 3.4.  

The intensity distribution in the detection beam after passing through the absorbing 
cloud follows directly from Lambert-Beer’s law: 

 ( ) ( ) ( ),
0, , D y zI y z I y z e−= , (3.5) 

where ( )0 ,I y z  is the initial density profile before the absorption and ( ),D y z  is the 
optical density: 

 ( ) ( ) ( ), , , ,D y z n x y z dx y zπ πσ σ η= =∫ . (3.6) 

Here σπ is the photon absorption cross-section. The detection light is linearly polarised and 
in the zero-approximation the expression for the cross-section can be obtained by averaging 
over all π-transitions (see e.g. ref. [76] for discussion on the transition strengths): 
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where δ is the detuning from the optical transition, Γ is the full natural linewidth, and λ is 
the wavelength of the laser. However, since the detection is not done on a closed transition, 
in the duration of the detection pulse optical pumping results in re-distribution of the atoms 
between different Zeeman sublevels. This changes the 7/15 factor in the expression for the 
cross-section and can lead to systematic errors in determination of the number of atoms. 

The choice of the detection pulse duration is dictated by limitations of the ballistic 
blur caused by scattered photons to the sample [64]. In our experiments it was typically 40 
µs. At the same time short detection times force one to go to higher optical powers of the 
detection beam to maximise the use of the dynamic range of the camera and increase the 
signal-to-noise ratio of the image. This is especially true for the use of high-power 
microscope objectives, when the light collection efficiency goes down. This increase in 
powers presents no problem if the detuning of the detection beam is large enough to stay 
away from saturation of the transition. However, once the sample expands one is forced to 
reduce the detuning to keep the optical density well above the noise floor. In such cases 
varying across the sample saturation effects should be taken into account by solving the 
following differential equation: 
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where Is is the saturation intensity. For the microscope objective Mµ = 3.98 the power of the 
detection beam was 2.5 mW, which corresponded to 0.85Is on resonance. 

A single data shot of the optical density distribution contains in fact three images 
and is normalised according to the following rule: 

 ( ) ( )
( )

( ) ( )
( ) ( )0

, ,,
, ln ln

, , ,
abs bg

ff bg

I y z I y zI y z
D y z

I y z I y z I y z
−

= − = −
−

. (3.9) 

Here ( ),absI y z  is the beam profile with the shadow of the cloud, ( ),ffI y z  is the flat-field 
profile taken in the absence of the cloud, and ( ),bgI y z is the background light illumination 
taken in the absence of the detection beam. 

Ideally, the lower limit on the detuning of the detection laser is set by the noise 
performance of the whole imaging system and by the dynamic range of the analogue-to-
digital converter of the CCD camera. For a 12-bit camera the minimum optical density 
would be D0 = 8. However, in practice the observed maximum optical density is limited to 
D0 = 5. This difference is due to the broad spectral background typical for diode lasers. This 
aspect of the spectral purity of the detection is discussed in Chapter 4. To avoid the 
systematic errors due to this effect the detuning of the detection beam is usually made large 
enough to keep the maximum optical density below 2.5. 

3.7.3 Fitting parameters 

All information about the condensates and cold clouds is extracted from analysis of 
the optical density profile defined by Equation (3.9). The total number of particles can be 
determined directly from the pixel sum of the image: 

 ( )
2
p

,

,i j
i j

N D y z
πσ

∆
= ∑ . (3.10) 

where ∆p is the size of the square pixel. 

More complete information is obtained by fitting a two-dimensional surface to the 
array of data described by Equation (3.9). The thermal cloud profile is fitted by the 
following function: 
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In the limit of collisionless gas the temperature can be obtained from the radial ly or axial lz 
1/e size parameters of the profile [64]: 
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In practice for cigar-shaped clouds the temperature can also be determined directly from the 
axial size at short expansion times 1 zτ ω . If the cloud can no longer be described by a 
collisionless gas model, the temperature determination becomes less trivial. This is 
discussed in detail in Chapter 5. 

The condensed fraction of the cloud has a parabolic density profile, which, after 
integration along the ling of detection, yields the following distribution for the optical 
density: 
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Here the Thomas-Fermi size parameters Ly (or Lρ) and Lz are given by [21]: 

 ( ) ( ) 2 20 1L Lρ ρ ρτ ω τ= + . (3.14) 
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The chemical potential is then given as 
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The number of particles in the condensate is expressed through the chemical potential as 
(see Equation (2.22) 
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and the central density of the condensate is given by ( )0 0n Uµ= . 

3.7.4 Lensing 

In this section we briefly discuss the refractive effects of cold atomic clouds. In the 
description of absorption detection in Section 3.7.2 we only considered the effect of the 
imaginary part of the complex dielectric susceptibility. However, the real part of the 
susceptibility responsible for refraction cannot be neglected in sufficiently dense atomic 
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clouds. Depending on the detuning such clouds can behave as a combination of the GRIN 
lens and a usual spherical lens. Lensing can lead to systematic errors in the determination of 
the cloud size and the number of particles. Thus, it is important to understand regimes in 
which lensing can appear. 

The key limitations become obvious from the analysis of the expression for a 
refractive index of a two-level atom, classical derivation of which follows from e.g. [66]: 

 ( )
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nn iλ δ
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π δ δ

 Γ Γ
= + ≈ + − + 

+ Γ + Γ 
. (3.18) 

Here n is the density of the atoms. For more detailed discussion one can refer to [30], while 
quantum mechanical derivation of susceptibility of rubidium vapour is discussed in [3]. 

 

 

Figure 3.5. Simulation of lensing effect on the condensate density profile (radial direction) 
for blue (a) and red (b) detuning. (Courtesy of Imogen Colton). 
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The optical density can thus be written down as 

 0 2 2
1

1 4
D D

δ
=

+ Γ
, (3.19) 

where D0 is the maximum resonant optical density of the sample. All changes in the phase 
of the propagating light are described by the real part of Equation (3.18): 
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It is clear that for blue detuning the real part of the refractive index is smaller than unity and 
the cloud acts as a diverging lens, while for red detuning it acts as a converging lens. In 
Figure 3.5 we show an example of simulation of the lensing effect on a pure condensate 
with a parabolic density profile [24].  

If the phase shift induced by a cloud is sufficiently large to make the cloud act as a 
lens with the focal length comparable to its own size, lensing severely affects the image and 
this region should be avoided. This effect can be especially pronounced in imaging the 
clouds in the magnetic trap or at short expansion times. In such cases one can benefit from 
using weaker transitions, as described in Section 3.7.2, or go to the extreme of large 
detunings, where absorption is negligible, and use phase-contrast detection. The intensity 
distribution of the phase-contrast image is proportional to the phase shift induced by the 
cloud and is therefore proportional to density. 

It is possible to extract information from images affected by lensing by doing 
sophisticated data processing. Moreover, there is current work on the use of non-
interferometric methods of imaging the dense atomic samples using phase information. [25, 
101]. 





Chapter 4  
Broad-area diode laser system 

 

This chapter is based on the publication: 

Broad-area diode laser system for a rubidium Bose-Einstein condensation 
experiment, I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J.T.M. Walraven, 
Applied Physics B, 71(4): 475 – 480, 2000 

Addenda made in this text are related to the alignment procedure and the lifetime of 
the laser. 

4.1 Abstract. 

We report on master-oscillator power amplification using a broad-area laser diode 
(BAL) emitting at a wavelength of λ = 780 nm. The master oscillator is an injection-locked 
single-mode diode laser delivering a seeding beam of 35 mW, which is amplified in double 
pass through the BAL up to 410 mW. After beam shaping and spatial filtering by a single-
mode fibre we obtain a clean Gaussian beam with a maximum power of 160 mW. There is 
no detectable contribution of the BAL eigenmodes in the spectrum of the output light. This 
laser system is employed for operation of a 87Rb magneto-optical trap (MOT) and for near-
resonant absorption imaging in a Bose-Einstein condensation experiment.  

4.2 Introduction 

Diode-laser based systems have a profound impact on experiments in atomic 
physics. The excellent spectral properties and power stability make diode lasers a highly 
practical tool for laser cooling and trapping experiments as well as for spectroscopic 
applications. The ease of operation, small size and low cost of diode laser systems facilitate 
experiments in which multiple laser sources are used. These properties make diode lasers 
an attractive choice for experiments on Bose-Einstein condensation (BEC) of alkali 
systems, in particular for driving magneto-optical traps (MOTs). In BEC experiments with 
87Rb diode lasers are successfully used for driving the 2S1/2 (F = 2) → 2P3/2 (F' = 3) 
transition at 780 nm [4]. Production of a condensate usually involves a magneto-optical trap 
with a variety of loading schemes ranging from double-MOT systems to Zeeman slowers 
[55]. The drive for realising condensates with large number of particles and fast condensate 
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production schemes has triggered the development of high-flux sources [32, 64, 72] and 
large optically dense MOTs (see for instance [64]). To avoid unbalanced radiation pressure 
in the light field, optically dense MOTs are driven by six laser beams of large diameters. 
The power conserving use of three retroreflected beams is not optimal in this case. Large 
diameter of the beams is also important for recapture from a diverging atomic beam. Thus, 
the optical power required for driving a large MOT tends to go beyond the power available 
from single-mode diode lasers operating at 780 nm (typically not exceeding 50 mW). 
Alternative solutions like Ti-Sapphire lasers or diode tapered-amplifier systems provide 
high power but have their disadvantages aside from being expensive. The amplitude noise 
of an argon-ion laser pumped Ti-Sapphire laser is undesirable for many applications. Diode 
amplifiers with tapered waveguide offer a straightforward solution to the power limitations 
of narrow-bandwidth diode lasers but in practice turn out rather delicate to operate.  

In this paper we report on double-pass master-oscillator power amplification with a 
broad-area laser diode (BAL). The advantageous properties of this system have been 
demonstrated and characterised in the past (see [1, 40, 44] and references therein), also in 
the context of laser cooling [37, 83]. We describe a BAL amplifier optimised for use in a 
87Rb BEC experiment, both for driving a magneto-optical trap and for near-resonant 
absorption imaging. The system operates at a wavelength of 780 nm. Using 35 mW of 
seeding power we obtain 410 mW of locked laser power under conditions close to power 
saturation. After beam shaping and spatial filtering by a single mode fibre we obtain a clean 
Gaussian beam with a maximum power of 160 mW. The insertion loss of intensity 
modulation optics limits the available laser power to typically 135 mW under daily stable 
operation conditions. This allows us to trap 1010 rubidium atoms in a MOT loaded from a 
continuous slow atomic beam source [32].  

4.3 Experimental setup 

The heart of our experimental setup is a 2-watt broad-area laser-diode (High Power 
Devices Inc. HPD1120) used as a double-pass amplifier. As described in the literature, a 
free-running broad-area laser oscillates in multiple transverse modes which are caused by 
filamentation of the gain medium [2, 67]. A free-running BAL has a power spectrum with a 
bandwidth of the order of 2-3 nm on top of an even broader spectral background. This 
spectrum can be narrowed by injecting seeding light from a narrow-bandwidth laser source. 
At high operating currents only part of the light emitted by the BAL can be locked. The 
seeding light is usually injected under a small angle as shown in the inset of Figure 4.1. In 
this way one can suppress amplification in multiple transverse modes. Injecting at an angle 
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also allows for an easy separation of the locked beam from the unlocked light (i.e. 
amplified spontaneous emission - ASE).  

Our BAL-based laser system is shown in Figure 4.1. The seeding laser beam is 
injected into the BAL at an angle of 13.5°. The amplified output beam is shaped into an 
approximately circular form using an anamorphic prism pair. After passing through an 
electro-optic modulator (EOM) it is coupled into a single-mode optical fibre, providing the 
laser light of high modal quality. The confocal 1:1 telescopes with the blade shutters enable 
to completely shut the beam, as the extinction ratio of the EOM does not exceed 1:1000. A 
beam splitter in combination with an imaging lens enables to obtain the approximation of 
the near and far fields of the BAL radiation. The use of a CCD camera allows continuous 
inspection of seeding and amplified beams in the near and far fields.  

The seeding beam is focused on the front facet of the BAL in a spot of 1 µm × 90 
µm. We use a diffraction limited Geltech collimator lens (Thorlabs C230TM) with 0.55 
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Figure 4.1. Schematic diagram of the optical setup. The master beam is derived from a 
grating stabilised laser not shown in the figure. The dotted line indicates the path of the 
injection beam. The solid line is the output of the amplifier. The numbers along the line 
indicate the optical power at the different stages of the beam shaping. The waist of the 
seeding beam, measured in the plane of the drawing, at the positions of the focal planes of 
the lenses is indicated by w1X, w2X and w3X  ( 2X 1Xw F wλ π= , 3X 2Xw f wλ π= ). Final 
beam shaping is done with the anamorphic prism pair (APP). The beam propagation inside 
the BAL is shown schematically in the inset.  
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numerical aperture. The elliptical beam shaping is done with the confocal combination of a 
F = 80 mm cylindrical lens and a f = 4.5 mm collimator in front of the BAL (see Figure 
4.1). For the confocal configuration of two lenses the injection angle θ can be expressed as 

d fθ ≈ , where d is the distance between the optical axis of the collimator and the ‘optical 
plane’ of the cylindrical lens. Translation of the cylindrical lens also causes a shift δ in 
position of the injection spot on the front facet: df Fδ = . 

The locked output beam leaves the BAL at the specular reflection angle (inset in 
Figure 4.1) and is easily separated from the unlocked light by the edge of a 45-degree 
deflection prism (Figure 4.1). The output lobe shown in Figure 4.2(b) is approximately 50 
% wider than the diffraction limit. The ellipticity of the output beam measured behind the 
deflection prism ranges from 3 to 5, depending on the alignment. This ellipticity is 
compensated by the anamorphic prism pair mentioned above. 

The active area of the chip is a stripe of 1 mm length and front facet dimensions of 1 
µm (height) × 200 µm (width). It is rather wide compared to most of the diodes described 
in the literature for similar applications [1, 37, 40, 83], which typically are not broader than 
100 µm.  The front facet is anti-reflection coated (reflectivity ≤ 3 %) while the back of the 
laser is coated for > 99 % reflectivity. To a large extent the choice of the diode was based 
on its availability and high output power. Presently other potentially useful broad-area laser 
diodes are available for operation at 780 nm. 

 

Figure 4.2. Far field radiation pattern of the BAL measured along the x-axis: (a) free 
running; (b) locked. Due to the high current of the amplifier (I = 2.2Ith) unlocked power is 
visible in (b). The intensity scales in (a) and (b) are the same.  
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We employ a single-mode optical fibre for mode cleaning and light transport to the 
MOT. It is further referred to as the “output fibre”. In our experience the locked BAL is far 
less sensitive to optical feedback as compared to a single-mode diode laser or a tapered 
diode amplifier [104]. We found that it is not necessary to use an optical isolator in the 
output beam. An AR-coated angle-cut optical fibre with aspheric coupling lens suffices for 
feedback suppression. 

The far-field (Figure 4.2) and the near-field (Figure 4.3) radiation patterns of the 
BAL are monitored by a CCD camera using the configuration described in reference [1]. 
This is an indispensable tool for alignment and diagnostics of the laser. The quality of the 
far-field pattern is an immediate indicator of successful locking. The aim is to produce a 
strong single lobe with minimal power in ASE. As one varies the injection angle the locked 
pattern changes its shape, the number of lobes, and the intensity. The characteristic feature 
is the transfer of the power from the free running part of the far field to the locked lobe. 
Monitoring of the near field is in particular important in the initial stages of alignment to 
establish the correct size and position of the injection spot. Figure 4.3 clearly shows the size 
and position of injection spot as well as the output beam. The near-field diagnostics is best 
done at zero and sub-threshold laser currents. We point out the limitations of Figure 4.2 for 

 

Figure 4.3. Details of the near field. (a) Reflection of the seeding beam from the front facet 
of the BAL for zero injection current (IBAL = 0 A). (b) Already below the threshold current 
(IBAL = 0.4Ith) the output beam is clearly observed in the emission from the front facet. The 
intensity scales in (a) and (b) are different. Note that two beam spots do not overlap, each 
spot covering approximately half the facet. 
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quantitative use. In the setup depicted in Figure 4.1 the output beam coming out of the 
collimator lens is slightly diverging in z-x plane – coincident with the plane of polarisation. 
The incidence angle at the beam splitter is sufficiently close to Brewster’s angle to 
introduce differences in reflection for different parts of the beam. 

We have tested different injection beam spot sizes. Maximum output is obtained 
when the size of the seeding beam is approximately half the width of the front facet. This is 
in line with the reports of other groups which usually use laser diodes with less wide stripes 
[37, 40, 80]. The other important parameter of the system is the injection angle. This angle 
is controlled by a transverse shift (along x-axis) of the cylindrical lens. Injection angle 
values reported in the literature are typically 3º to 7º. We have analysed the operation of the 
system for different injection angles ranging from 2° to 14°. The divergence angle of the 
free-running laser is 10° FWHM. Thus, one might suggest that it is best to inject the 
seeding beam at an angle close to 5° to match the modal pattern of the BAL. However, we 
found the injection angle of 13.5° to be a much better choice. For our chip geometry this 
angle corresponds to the situation where the seeding beam enters the BAL at one half of the 
front facet, travels through the chip and, after reflection from the back facet, exits on the 
other half of the front facet (inset in Figure 4.1). While the locked power is approximately 
the same as for the small angles, the stability of the locked lobe and sensitivity to alignment 
is far superior for large angles. The Fabry-Perot effects of the BAL cavity, similar to the 
ones described in [37], were pronounced for injection at an angle of 6° but were not 
observed at 13.5°. 

Our alignment procedure is similar to the one described in [37]. The seeding beam is 
first injected perpendicular to the front facet without using the cylindrical lens in the path, 
thus allowing the collimator to focus the beam directly onto the centre of the chip. The 
BAL current at this stage should be just above the threshold value. The coupling efficiency 
is now optimised by minimising the threshold current. Then the cylindrical lens is placed in 
front of the BAL and centred in the beam (d = 0). This is done by making sure that the 
seeding beam (visible in the near field as a much wider feature) still enters the laser in the 
centre of front facet. The BAL current is increased and the lens is slowly moved 
transversely (increasing d) to the beam, while the far field is monitored until a strong single 
side lobe is found (Figure 4.2). At this stage the injection alignment should be fine-tuned 
again. This usually involves adjustment of the vertical position of the injection beam, 
corrections to the collimator position and small rotation of the cylindrical lens around the 
beam axis. Mounting the lens in a way that allows this rotation is not a critical feature of the 
setup but, nevertheless, provides great help in improving the coupling efficiency of the 
seeding beam and the shape of the output beam. Another important practical aspect of the 
BAL operation is the precision of z-translation of the collimator lens. We also found that 
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mounting the cylindrical lens on a z-translation stage can be of great convenience for 
optimising the coupling efficiency of the output beam into a single-mode fibre. Without 
making a significant change to the shape of the seeding beam in the plane of the BAL facet, 
it provides a way for smooth adjustment of the horizontal dimension of the output. 

Given the performance of our BAL we need 35 mW of seeding power to satisfy our 
overall experimental requirements. A typical source of narrow-bandwidth laser light for 
laser cooling of rubidium is a grating-stabilised external-cavity diode laser (see [75] and 
references therein). The output power of such diodes rarely exceeds 50 mW for 780 nm. 
Thus, additional losses in the optical path of the seeding laser (e.g. an acousto-optic 
modulator and optical isolator) easily make it impossible to derive the required power from 
a single-mode laser diode stabilised with an external grating cavity.  

To avoid limitations in seeding power we generate the seeding light in two steps. 
The narrow-bandwidth (δν < 700 kHz) master beam is produced by a grating stabilised 
diode laser (TuiOptics DL100), which is locked to the signal of a Doppler-free saturation 
spectrometer [75]. While the main part of the output of this laser is used for other purposes 
in the experiment, 1 mW of light is split off and sent through a 95-MHz double-pass 
acousto-optic modulator (AOM). It allows us to vary the detuning with respect to the 
rubidium line in a range of 75 MHz. After the frequency shift in the AOM, the beam is 
injected into a single-mode 50 mW diode laser (Hitachi HL7851G) through the side port of 
the optical isolator. This injection-locked laser finally generates the seeding light for the 
broad-area diode.  

A further advantage of this double-stage setup is related to the frequency control of 
the seeding light with an AOM. Even in a well-aligned double-pass AOM setup it is 
difficult to avoid small beam shifts occurring during large changes of the AOM modulation 
frequency. The BAL, which effectively acts as an amplifier, would be strongly affected by 
such shifts in the seeding beam in contrast to the standard injection locking of a single-
mode diode chip. The intermediate laser decouples the master beam steering during the 
frequency change.  

4.4 Characteristics 

We have measured the emission spectrum of the locked broad-area laser behind the 
single-mode optical fibre. This was done with three different methods. The first method 
involved measuring the spectrum of the beat between the output of the locked BAL and the 
master laser. In the second method we measured the beat frequency of the locked BAL 
against an independent frequency-stabilised reference laser. This permitted observation of 
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the spectrum of the BAL with sub-MHz resolution over a spectral range of 200 MHz. To 
study the spectral background of the BAL we used, as a third method, a grating 
spectrometer with 0.5 nm resolution. 

The beat signal was obtained by mixing the output of the BAL behind the single-
mode fibre with the master beam (frequency-shifted by 175 MHz using an AOM) on a 
photodiode (Thorlabs DET200). Figure 4.4 shows the power spectrum of the beat signal 
obtained with the spectrum analyser (Advantest R4131). The width of the spectrum is 
determined by the resolution bandwidth of the spectrum analyser (30 kHz). This 
measurement shows how closely the BAL follows the master laser.  

To judge on the absolute near-resonant spectral properties of the laser system the 
locked output of the BAL was mixed on the photodetector with an independent reference 
laser. This laser was another grating stabilised diode laser identical to the master DL100. It 
was frequency locked at 160 MHz away from the master using Doppler-free saturation 
spectroscopy. The spectrum of the beat signal is shown in Figure 4.5, with it 3-dB 
bandwidth of 1 MHz displayed in detail in Figure 4.4 (dashed line).  

The spectrum measured with the grating spectrometer (Ocean Optics PC2000) is 
shown as the solid curve in Figure 4.6. As well as the beat spectra, this measurement was 
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Figure 4.4. Solid line: power spectrum of the beat signal of the locked output of the BAL 
with the master laser (resolution bandwidth (RBW) is 30 kHz). Dashed line: central feature 
of the power spectrum of the beat signal between the locked BAL and the independent 
reference laser (RBW is 100 kHz). This signal has a 3-dB bandwidth of 1 MHz. 
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done behind the output fibre. The actual 1.5-nm wide laser modes of the free-running BAL 
(dashed line in Figure 4.6) are not observed in the spectrum of the locked light. From this 
we conclude that in our setup the line shape of the output light is determined by the master 
laser. Note that amplification is obtained at an offset of 1 nm from the central wavelength 
of the free-running BAL. According to the literature the amplification bandwidth can be as 
large as 28 nm (FWHM) [40]. 

We are running the BAL amplifier at a current of 1.5 A, which corresponds to 870 
mW of total optical power and 410 mW of locked power. The ASE is spatially separated 
from the locked output beam and is dumped in a beam-stop. Further increase of the 
operating current results in a relatively small increase of the locked power and mostly 
affects the amount of amplified spontaneous emission. This saturation behaviour is plotted 
in Figure 4.7 and can also be seen by comparing the curves in Figure 4.8. The situation is 
not very different with regard to saturation behaviour as a function of the seeding power 
(Figure 4.8). One might be able increase the output power by ~25 % by doubling the 
seeding power. The front facet reflectivity of our BAL is ≤ 3 %. While we find its gain 
characteristics satisfactory, the research performed by other groups indicate that higher 
small-signal gain can be obtained, possibly with the use of the lower reflectivity coating at 
the front facet [40, 42-44, 80].  
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Figure 4.5. Power spectrum of the beat signal between the locked BAL and the independent 
narrow-bandwidth reference laser (RBW 1 MHz). 



 

 

 
Broad-area diode laser system 

 
44 

There is an important consideration to take into account when the BAL is run at 
currents close to maximum or at large seeding powers. When the broad-area laser diode is 
used as a double-pass amplifier, the light intensity in the region where the locked radiation 
is emitted is higher than that of a free-running laser. This lowers the damage threshold 
expressed in terms of total power of the laser output. Thus, one has to closely monitor the 
near-field radiation pattern when increasing the current through the laser or the seeding 
power. A discussion of possible damage areas on the basis of numerical modelling is given 
in [40]. We observed the failure of one laser diode chip by front-facet damage after running 
it at 2.1 A for several weeks (the maximum allowed current for HPD1120 for free-running 
conditions is 2.5 A). 

Once the laser is aligned, it exhibits high stability of the optical power in the locked 
beam. We found the BAL system to be rather robust and tolerant to abuse. The system 
described in this paper has been proved to be reliable in daily use. Its power output is 
comparable to the tapered amplifier systems. It also appears that the spectral properties of 
the amplified light are not influenced by the BAL. 

Using the system for several years allows us to make some remarks with regard to 
the lifetime of the BAL chips. It appears that after operating for several hundred hours the 
far-field radiation pattern of the free-running laser changes its shape and becomes wider by 
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Figure 4.6. Power spectra of the BAL as measured with a grating spectrometer. The 
spectrum of the locked BAL is observed behind the single-mode optical fibre. The spectra of 
the master laser and the free-running BAL are measured directly behind the lasers. 



 

 

 
4.4  Characteristics 

 
45 

~50 %. This occurs without any loss in the total power of the laser. However, this change 
affects the behaviour of the laser under seeded operation. As a result, the locked power is 
gradually reduced. It is possible to maintain the original locked power level for some time 
by realigning the optics. In practice we found that BAL diodes operated on average for 600 
hours before the power would drop down by 30 % and a replacement would be needed. 
With this in mind the BAL system still provides the lowest operational costs and retains its 
advantages, but maintenance effort should be taken into account. To minimise the waste of 
the uptime of the laser and improve the setup we introduced an active heat load on the 
holder of the BAL laser. This heater, producing the same amount of heat as the running 
laser, was kept on only during the periods when the BAL was switched off. This minor 
modification minimized the thermal drifts during the warm-up time and increased the 
stability of the system. 

We note that power requirements of the experiment did not press us to minimise the 
reflection losses in the beam path. When the anamorphic prism pair is used to expand the 
beam by a factor of 5 the reflection losses become quite large. The total losses introduced 
by the prism pair, further beam shaping optics and shutter telescopes are approximately 
40 %. Hence, one can increase the output power by using better AR coatings. (To minimise 
reflection losses one might give preference to the use of an expansion telescope made out of 
two AR-coated cylindrical lenses instead of an anamorphic prism pair. We have tried this 
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Figure 4.7. The saturation behaviour of the locked power of the BAL as a function of the 
injection current measured for a constant seeding power of 35 mW. 
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option with equal success. This solution brings reflections to minimum. However, it is less 
flexible and compact than the anamorphic prism pair.) A loss of ~12 % is introduced by the 
electro-optic modulator used for intensity control. In our present setup the total losses, 
including the coupling efficiency of the fibre (~60 %), amount to approximately 67 %. 

4.5 MOT application 

High optical power and good spectral properties of the light produced by the BAL 
make it an excellent tool for laser cooling and trapping. We use this system to realise a 
large density-limited magneto-optical trap [71]. The MOT is placed in a 10-11 mbar ultra-
high vacuum chamber and is loaded in 10 seconds with up to 1 × 1010 particles from a 
diverging fountain of cold rubidium atoms [32]. Six laser beams with 1/e2 diameter of 16 
mm and a peak saturation parameter of 6 overlap inside the vacuum cell and provide a large 
capture region. The resulting gas cloud has a spherical shape with a diameter of typically 8-
9 mm. Using the same beams the gas is further cooled to 40 µK in optical molasses. For 
this large number of atoms the temperature is mainly limited by the multiple scattering of 
light [100]. The cold cloud is then recaptured in an Ioffe-quadrupole magnetic trap. After 
adiabatic compression and evaporative cooling we reach Bose-Einstein condensation with 
107 particles at the transition point.  
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Figure 4.8. Dependence of the locked power on the seeding power for different currents of 
the amplifier. For lower currents the saturation is reached at lower seeding power. 
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The BAL-system is further used for (near-) resonant absorption imaging of atomic 
clouds to determine temperature, density and the number of atoms. For this application high 
optical power is not an issue. The detection beam is easily derived from the second output 
port of the EOM (see Figure 4.1) and coupled into an additional single-mode fibre. As the 
spectral properties of the locked output of the BAL do not differ noticeably from those of 
the master laser, the use of the BAL does not result in loss of accuracy in imaging 
measurements. The detection light conveniently becomes available whenever the main 
MOT beams are switched off. Thus, this solution eliminates the need for an additional 
detection laser. 

4.6 Summary 

We have developed a robust diode-laser based laser system producing 160 mW of 
narrow-linewidth light in a clean Gaussian mode. The spectral properties of the system are 
limited by those of the master laser which makes it suited for spectroscopic applications. 
The performance characteristics make it a good choice for laser cooling experiments, 
allowing at the same time to avoid drawbacks connected to alternative solutions like a 
tapered waveguide diode amplifier or a Ti-Sapphire laser. The laser system was 
successfully used for running a large MOT, sub-Doppler laser cooling and has been applied 
to absorption imaging of cold atomic clouds stored in magnetic traps.  

 

Acknowledgements. We gratefully acknowledge help of K.A.H. van Leeuwen and 
A.C. Fey-den Boer, as well as very useful discussions with R. Spreeuw and D. Voigt. We 
thank L. Hillis of HPDI for his help at the different stages of this project. We also thank M. 
v.d. Mark and A. Valster of Philips Research for their assistance at the beginning of the 
project.  





Chapter 5  
Hydrodynamic properties of dense atomic clouds 

 

5.1 Introduction 

This chapter deals with dense ultracold clouds just above the Bose-Einstein 
condensation temperature (TC). These clouds represent the starting conditions for the 
experiments described in Chapter 6. However, they are of interest in their own right. 
Collective excitations of gases near and below the TC point were studied by many research 
groups [27, 41, 46, 47, 56, 69, 94]. The dynamical behaviour of a Bose-Einstein condensate 
can be described by hydrodynamic equations [27, 96]. Above TC the dynamical behaviour 
depends strongly on the mean free path. When the mean free path is large compared to the 
size of the cloud, we have free molecular flow (collisionless regime) where the motion of 
the individual atoms can be described by a single-particle Hamiltonian. Reducing the mean 
free path to a value smaller then the dimension of the cloud we obtain a crossover to 
viscous flow (hydrodynamic regime). Both the collisionless and the hydrodynamic regime 
were studied theoretically (see e.g. [46, 47, 60] and references therein). 

From the experimental point of view it is important to understand the crossover to 
hydrodynamic behaviour in thermal clouds. This understanding is vital for the correct 
interpretation of time-of-flight absorption images of dense atomic clouds. In the 
collisionless regime the expansion of the gas, after release from a trap, is known to be 
isotropic, whereas in the hydrodynamic limit the gas expands anisotropically. As pointed 
out by Kagan et al. [60], little difference is to be expected between the aspect ratio of a 
fully expanded condensate and that of a hydrodynamic thermal cloud.  

Previously the crossover regime was probed in experiments at MIT with a dense gas 
of sodium atoms [94] and at ENS using cold metastable triplet helium [69]. Our 
experiments have been done with thermal clouds of the 87Rb quantum gas in the 
|5S1/2, F = 2, mF = 2〉 state. In the previous experiments the samples were investigated by 
measuring the density as well as the frequency and damping of collective excitations. In 
addition to this we also investigated the anisotropic expansion behaviour of the gas. 
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5.2 Density and temperature analysis 

For our experiments with dense thermal clouds we load a magneto-optical trap with 
approximately 1010 atoms from the source described in Chapter 3. After optical pumping to 
the |5S1/2, F = 2, mF = 2〉 state typically 4 × 109 atoms are captured in the Ioffe-Pritchard 
quadrupole magnetic trap described in Section 3.5. Then the gas is compressed and 
evaporatively cooled to a temperature just above TC. The RF evaporation is forced at a final 
rate of 433trv = −  kHz/s down to a value νtr,a = 740 kHz. As 

 
, 0

tr
z

tr a

ν
ω

ν ν−
, (5.1) 

the evaporation proceeds quasi-statically and yields a sample characterised by a single 
uniform temperature and an equilibrium shape. In Equation (5.1) the radio frequency ν0 = 
620 kHz corresponds to a trap minimum B0 = 88.6(1) µT as described in Section 3.6. The 
preparation procedure is completed by 20 ms of plain evaporation at νtr = νtr,a. This leaves 
us with Ni ≈ 5 × 106 atoms at a temperature T0 = 1.3(1) µK in a magnetic trap characterised 
by the frequencies ωρ = 2π × 477(2) Hz and ωz = 2π × 20.8(1) Hz (given for the absence of 
RF dressing).  

From the temperature T0 we can calculate the density of the gas in the trap just 
before the expansion because both the trap frequencies and the number of atoms are known. 
Taking into account the RF truncation [74] we calculate n0 ≈ 4 × 1014 cm-3, which 
corresponds to a mean free path  

 0
0

1 3µm
2n

λ
σ

= ≈ , (5.2) 

where 28 aσ π=  is the elastic scattering cross-section. The collision rate is 

 1 -1
0 5000 scol thnτ υ σ− ≈ ≈ , (5.3) 

with 1/ 2
0[8 ]th Bk T mυ π= the thermal velocity. 

Calculating the ratio of the axial size of the cloud to the mean free path, we find 

0 50zl λ ≈ . Hence in the axial direction we are deeply into the hydrodynamic regime. For 
the radial direction we find 0 2lρ λ ≈ . Here we operate in the middle of the crossover 
between collisionless and hydrodynamic regime. A comparison with some other 
experiments [56, 69, 77, 78] on excitations and condensate formation is given in Figure 5.1. 

In the crossover from collisionless to hydrodynamic behaviour the temperature 
determination is non-trivial. Unlike in a free expansion, as occurs in the collisionless 
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regime, the velocity of the individual atoms is not conserved. In the hydrodynamic limit the 
expansion is isentropic and the gas cools, converting random motion into directed motion, 
just as in the supersonic expansion of an atomic beam [92]. As the entropy in a harmonic 
trap is given by 

 ( )3
04 lnBS Nk n= − Λ , (5.4) 

the degeneracy parameter n0Λ
3 is conserved in this expansion. This implies the following 

relation between the peak density and the temperature 

 ( ) ( ) 2 / 3

0
0

n
T T

n
τ

τ
 

=  
 

. (5.5) 

Obviously, if the gas cools during the expansion, the question arises how to properly 
extract the temperature from a time-of-flight absorption measurement. This question is 
complicated by the fact that we are dealing with neither the collisionless nor the 
hydrodynamic limiting case. In the crossover regime the gas will cool while expanding 
until the density has dropped to a level where no longer any collisions occur. Moreover, as 
our samples are inhomogeneous, the collision rate depends also on the position in the 
sample [108]. The final temperature reached in the expansion is indicated as T∞. In the 
present chapter the expansion is treated as purely hydrodynamic up to the point in time τf, 

 

Figure 5.1. Comparison of the characteristic ratios 0il λ  in our experiment with 
experiments of some other BEC groups. The data points were calculated from refs. [56, 69, 
77, 78] taking into account fugacity corrections. 
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where the temperature dropped to the value T∞, and as purely collisionless beyond this 
point. For 1 zτ ω  the density drops according to  

 
( )

( )2
0

1n
n bρ

τ

τ
≈ , (5.6) 

where ( )bρ τ  is the scaling parameter (see Section 2.6). For fτ τ=  we have 3/ 2
0( )T T∞ =  

( ) ( )2 2
0 1 1 [1 ( ) ]f f fn n bρ ρτ τ ω τ≈ ≈ + , and we obtain the value τf: 

 

Figure 5.2. Temperature measurement from expansion in (a) axial and (b) radial 
directions. Solid lines represent fits to the Equation (5.8). Dotted lines give asymptotic 
behaviour of the expanding cloud. Tz = 0.97(5) µK and Tρ = 1.56(2) µK. Note that due to 
the small initial radial size the difference between the asymptote and the fit for the radial 
expansion is practically not visible. 
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As we shall show later 0 0.62T T∞ ≈ , and, therefore, τf ≈ 0.3 ms. 

In Figure 5.2 we plot the measured axial lz and radial lρ size parameters (1/e  half-

widths of the density profile) as a function of expansion time. From the measurement of the 

axial size we can extract both the temperature at the moment of release T0 and the final 

temperature T∞ reached in the expansion. For τ > τf the expansion is given by  
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Here, ( ) 2 1/ 2
00 [2 / ]i B il k T mω= , ( ) 1z fb τ ≈ , ( ) 3/ 2

0( / )fb T Tρ τ ∞≈ , and Tz and Tρ are the 
effective axial and radial temperatures of the expanding cloud. From the second term within 
the brackets the asymptotic expansion velocity is obtained 

 ( )
1/ 22

lim B i
i i

k T
s l

mτ
τ
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 = =   
. (5.9) 

The solid lines in Figure 5.2 represent fits of the expressions (5.8) to the data. From 
the axial size ( ) 2 1/ 2

00 [2 / ]z B zl k T mω=  measured at small expansion time ( 1 )zτ ω  we 
obtain the initial temperature T0 = 1.3(1) µK, which is identified with the temperature of the 
sample in the trap just before expansion. From the asymptote obtained at large expansion 
times ( 1 )zτ ω  we determine the final temperature Tz = 0.97(5) µK; z zT T Tδ∞= + , 
where zTδ  is associated with the small “kick” in the axial direction in the early stages of 
the expansion ( 1 )f ρτ τ ω≈ < . From the numerical integration of the scaling equations 
(2.44) and (2.45) up to τ = τf we obtain that this kick amounts to a correction of 

0 0.1zT Tδ ≈ . Thus T∞ = 0.84(5) µK and 0 0.62(6)T T∞ = . This implies that the gas cools 
indeed only briefly before the expansion becomes ballistic. With Equation (5.5) we 
establish that this point is reached when the density has dropped to ( ) 0fn nτ ≈ ( )3/ 2

0T T∞  
≈ 0.5. Along with the drop in Tz, Tρ increases from T0 to the value 0T T Tρ ρδ= + . From the 
numerical integration of the scaling equations (2.44) and (2.45) up to fτ τ=  we obtain that 

0 0.1T Tρδ ≈ . During the expansion the density drops according to  
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where Equations (5.8) were used. Notice that since Tρ > T0 the density will initially 
( 1 )zt ω<  drop faster than in the collisionless case. If in addition 1/ 2 3/ 2

0zT T Tρ ≥ , this holds 
for all times. In our case 1/ 2 3/ 2

0zT T Tρ ≈  within the experimental error. 

5.3 Anisotropic expansion of hydrodynamic clouds 

Another strong indicator that our clouds are indeed prepared in the crossover to the 
hydrodynamic regime can be obtained from an analysis of the aspect ratio in time. In Figure 
5.3 we show the change of the aspect ratio as a function of time. Note that the gas expands 
anisotropically.  

Using expression (5.8) the aspect ratio can be written for τ  1/ωρ as 
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. (5.11) 

 

Figure 5.3. Aspect ratio of a hydrodynamically expanding cloud as function of expansion 
time (circles). The change from a cigar- to a pancake-like shape is evident as the data 
points cross the value of zl l = 1ρ . Crosses show expansion data of an isotropically 
expanding cloud. The first data point of anisotropic expansion is off the theoretical curve 
due the unreliable radial fit for small expansion times (See Section 3.7). 
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Note that the asymptotic aspect ratio is given by ( )1/ 2
zT Tρ .  

As follows from the scaling equations, in the hydrodynamic limit z zT Tδ=  and 
( )1/ 2

03 2T Tρ = . Similarly, the scaling equations yield for the asymptotic expansion ratio 
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where Γ(x) is the Euler gamma function, z ρβ ω ω≡ , and sz and sρ are the asymptotic 
slopes of the expansion fits in Figure 5.2. Thus, in the hydrodynamic case 0 0.015zT Tδ = . 
Note that the asymmetry of such an expansion is very similar to that of a 
condensate, 2zs sρ πβ=  [60].  

From a fit of Equation (5.11) to the open circles in Figure 5.3 (solid line) we obtain 
for the ratio of 0 0.72(4)zT T =  and for the asymptotic aspect ratio ξ∞ = 0.78(2). Hence, in 
our case the expansion is still close to isotropic, but definitely, at least during the early 
stage of the expansion, is outside the ballistic regime. From the asymptotic aspect ratio we 
calculate 0.62(2)zT Tρ = . For completeness we verified (crosses in Figure 5.3) that by 
reducing the density by a factor of 30 the expansion becomes isotropic, 1.02(4)zs sρ = , as 
is expected for the collisionless regime. The dashed line corresponds to the Equation (5.11) 
for T0 = Tz = Tρ.  

It is easily verified that the temperature ratios 0 0.72(4)zT T =  and 
0.62(2)zT Tρ = obtained from the fit satisfy the condition of energy conservation 

 0
2 1
3 3 zT T Tρ + =  (5.13) 

well within experimental error.  

In the remaining part of this section we consider aspect of random and directed 
velocities during the expansion of the cloud. Using Equation (5.5) the temperature of an 
expanding gas in a hydrodynamic regime can be expressed as 

 ( )
( ) ( )

0
2 / 32

z

T
T

b bρ

τ
τ τ

=
  

, (5.14) 

with ( )fT T τ∞ = . Note that unlike Equation (5.10) this expression correctly describes 
initial expansion of the gas cloud ( )fτ τ< . We can also write the following expressions for 
the measured velocity components of the expanding gas: 

 2 2 2u wρ ρ ρυ = + , (5.15) 
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 2 2 2
z z zu wυ = + , (5.16) 

where uρ , zu  are the kinetic velocities related to the random motion of the atoms, and wρ , 
zw  are the dynamic velocities due to expansion. At the end of the hydrodynamic stage of 

expansion ( )fτ τ= the random velocity components can be associated with T∞: 

 2 2
z Bm u m u k Tρ ∞= = . (5.17) 

The dynamic velocity in the radial direction can be expressed as 
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The dynamic velocity in the axial direction can be defined analogously. Because in our case 
the gas only cools briefly during the expansion the following inequality holds 

 2 2
z zm w m u . (5.19) 

Thus, we can write for the ratio of kinetic energies in radial and axial directions, 
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The scaling equation (2.44) for pure hydrodynamic expansion readily gives an expression 
for bρ in the limit of expansion times 1

zτ ω− : 
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where Equation (5.14) was substituted. Substituting Equation (5.21) into (5.20) at fτ τ= , 
we arrive at the desired relation between 0T T∞  and zs sρ : 
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This equation holds for times τ t τf, where the expansion is ballistic and the kinetic energy 
is conserved in radial and axial directions independently. The observed ratio of 

0.78(2)zs sρ =  and measured temperature T0 = 1.3(1) µK lead to T∞ = 0.91(7) µK, which 
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matches within experimental error with T∞ measured from the axial expansion (see Section 
5.2).  

5.4 Frequency shifts and damping of shape oscillations 

Another signature of hydrodynamic behaviour in dense thermal clouds is obtained 
by measuring the frequency shift and the damping time of shape oscillations in comparison 
with those of collisionless thermal clouds. For this purpose we excite the low-frequency 
mode of the cylindrically symmetric (m = 0) quadrupole oscillation [27, 46]. In this mode 
the radial and axial sizes oscillate with opposite phase. 

To excite the oscillation the RF evaporation is forced at a final rate of 5.43trν = −  
MHz/s down to the value νtr,a = 740 kHz. As in this case, the relative evaporation rate is 
larger than the axial oscillation time 
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in contrast to the conditions described in Section 5.2 the heat is extracted radially at a time 
scale comparable to the axial oscillation time. For this argument it is, of course, important 
that the particle loss is dominated by evaporation (negligible spilling) as is expected for an 
elastic collision rate 1 5000colτ − =  s-1 in the centre of our trap. The radial heat extraction 

 

Figure 5.4. Damping of the quadrupole shape oscillations of a thermal cloud excited by a 
rapid ramp down of the evaporation knife. An overall decay of the axial size is observed as 
a result of the particle loss from the trap. 
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results in development of a temperature gradient along the axis of the cloud, which in turn 
means that the axial size of the sample lags behind the size defined by the temperature. This 
leads to the inward motion of the cloud in the axial direction and excitation of quadrupole 
oscillations. These oscillations are shown in Figure 5.4. The evaporation barrier is left at the 
final value of νtr,a = 740 kHz for the duration of a plain evaporation period and acts as a 
heat shield for the cold cloud. 

The axial size of the cloud in Figure 5.4 is observed 7.8 ms after release from the 
trap as a function of plain evaporation time. Decay of 20 % in axial size was observed over 
a period of 130 ms. This is related to the particle losses from the trap. The data points are 
fitted with a simple model of an exponentially decaying harmonic oscillation. The 
measured ratio of the quadrupole frequency to the frequency of the trap is 

1.56(5)Q zω ω = . The measurement of the damping rate of the oscillations τQ
-1 gives 

(ωzτQ)-1 = 0.10(3). Calculations of the dispersion law in ref. [47] give 
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where for the cylindrically symmetric cigar-shape trap the frequency of the hydrodynamic 
mode ωHD = (12/5)1/2ωz [60], and the frequency of the collisionless mode ωCL = 2ωz. 

 

Figure 5.5. Plot of relative damping rate versus frequency for the m=0 quadrupole mode. 
The solid line represents theoretical prediction of Equation (5.25). With the relative 
damping rate of 0.1 we are deeply in crossover to the hydrodynamic regime. Experimental 
data points of MIT and ENS experiments are taken from references [94] and [69] 
respectively. 
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Relaxation time τ  for this case is equal to 3τcol  [47]. Writing complex oscillation 
frequency as ω = ωQ + iτQ

-1 we obtain from Equation (5.24) the dependence of the damping 
rate τQ

-1 on the oscillation frequency ωQ: 
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For (ωzτQ)-1 = 0.10(3) this expression predicts 1.57(2)Q zω ω = , which is in excellent 
agreement with the measured value. The summary of data produced in our experiments as 
well as the experiments at ENS with metastable helium [69] and at MIT with sodium [94] is 
presented in Figure 5.5.  

In conclusion, we presented the results of the experiments with hydrodynamic 
thermal clouds that go into the hydrodynamic regime further than any other reported 
experiment on collective excitations of the thermal samples. The hydrodynamic behaviour 
was explored from three different sides: through the measurement of temperature and 
density, through anisotropic expansion of the samples released from the trap, and through 
the measurement of damping rate and frequency of the quadrupole excitation mode. All 
three methods produced results consistent with each other and showed a good agreement 
with the theoretical predictions.  

 

 





Chapter 6  
Condensation into non-equilibrium states and 
focusing of a condensate 

 

6.1 Introduction 

Equilibrium condensates [4, 28] are produced by quasi-static growth, where heat 
extraction limits the formation rate. The condensate nucleates as a small feature in the 
center of the trap and grows as long as heat is extracted from the sample. To observe the 
formation kinetics, the gas has to be brought out of equilibrium, in practice by shock 
cooling. Since the first experiment on condensate growth, by Miesner et al. [78], this is 
done by fast RF removal of the most energetic atoms from the trap. Starting from a thermal 
gas just above the phase transition temperature (TC), the condensate appears as the result of 
thermalization. Miesner et al. [78] observed the growth under adiabatic conditions. Köhl et 
al. [65] continued the extraction of heat and atoms, also during growth. In both 
experiments, the condensate was observed to grow from the center of the trap, like in the 
quasi-static limit.  

Kagan et al. [57] pointed out that qualitatively different stages have to be 
distinguished in the formation of equilibrium condensates with a large number of atoms. 
The early stage (kinetic stage) is governed by Boltzmann kinetic processes and leads to a 
preferential occupation of the lowest energy levels. Once a substantial fraction of the atoms 
gathers within an energy band of the order of the chemical potential of the emerging 
condensate during formation, their density fluctuations are suppressed in a fast interaction-
dominated regime governed by a non-linear equation for the boson field. The appearing 
phase-fluctuating condensate then grows and the condensed fraction approaches its 
equilibrium value. However, the phase fluctuations still persist, giving rise to dynamically 
evolving flow patterns in search for the true equilibrium state. In elongated 3D trapped 
gases the phase fluctuations can be pronounced even under equilibrium conditions as was 
predicted by Petrov et al. [82] and observed experimentally by Dettmer et al. [31]. 

In this chapter we describe the formation of condensates into non-equilibrium states 
and a new path towards equilibrium in elongated traps. In contrast to the previous 
experiments our results were obtained starting from thermal clouds deep in the cross-over 
regime to hydrodynamic behaviour. The condensates are much longer than equilibrium 
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condensates with the same number of atoms. Moreover, they display strong phase 
fluctuations and a dynamical evolution similar to that of a quadrupole shape oscillation 
decaying towards equilibrium. We identify 1 zω  as a characteristic time that should be 
addressed explicitly for elongated cylindrical harmonic traps, i.e. for traps with ωρ  ωz 
where ωρ and ωz are the radial and axial angular frequencies, respectively. We show that 
these exotic condensates emerge as the result of local thermalization when the nucleation 
time is short as compared to 1 zω . The dynamical evolution of the condensate in the trap 
has to be dealt with explicitly to properly interpret time-of-flight absorption images. In this 
context we introduce condensate focusing as an alternative to Bragg scattering [95] for 
measuring the phase-coherence length of phase-fluctuating Bose-Einstein condensates. 

In the previous experiments on condensate formation the phase fluctuations were not 
studied. The results of Miesner et al. [78] were compared to an analytical expression for 
adiabatic growth of a condensate from a thermal cloud, derived by Gardiner et al. [38]. 
Although a qualitative agreement between theory and experiment was readily obtained it 
turned out to be impossible to obtain detailed agreement at the quantitative level [11, 29, 
39, 70]. In the experiment of Köhl et al. [65] quantitative agreement with the quantum 
kinetic approach (see refs. [11, 29, 38, 39, 70] was obtained for strong truncation, whereas 
for weak truncation the observed behavior differed distinctly from theory.  

6.2 Preparation of degenerate samples out of equilibrium 

Evaporative cooling and preparation of cold near-Tc samples was previously 
described in detail in Section 5.2. The starting conditions of experiments on condensate 
formation are represented by a static, purely thermal cloud of Ni ≈ 5 × 106 atoms at a 
temperature T0 = 1.3(1) µK. This cloud is placed in a magnetic trap characterised by the 
frequencies ωρ = 2π × 477(2) Hz and ωz = 2π × 20.8(1) Hz (given in the absence of RF 
dressing). 

As discussed in Chapter 5 these samples are prepared far deeper in the cross-over to 
the hydrodynamic regime, as compared to the previous experiments [78] and [65]. 

 Once the thermal cloud is prepared we distinguish three distinct stages (see Figure 
6.1). First, in the truncation stage, the radio frequency is set to the value νtr,b = 660 kHz. 
This stage has a duration ttr = 1 ms, which is chosen to be long enough ( 1 )trt ρω> to allow 
atoms with radial energy ερ larger than the RF truncation energy εtr to escape from the trap, 
yet is short enough to disallow evaporative cooling. We found that in this stage 50% of the 
atoms are removed. Notice that due to the finite radial escape horizon 0( 0.4)lρλ ≈ the 
ejection is not expected to be complete. Furthermore, the escape efficiency is anisotropic as 
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a result of gravitational sag. The truncation energy εtr covers the range 3 µK – 5 µK 
depending on the position of the truncation edge in the gravity field and is lowered by an 
additional 1 µK due to RF-dressing (Rabi frequency Ωrf ≈ 2π × 14 kHz). At the start of the 
second stage, the thermalization stage, the radio frequency is stepped back up for a time tth 
to the frequency νtr,a to allow the gas to thermalize under formation of a condensate. The 
value νtr,a is chosen to eliminate any appreciable evaporative cooling. The third stage, the 
expansion stage, starts by switching off the trap and covers the time of flight τ after which 
the sample is absorption imaged on the |5S1/2, F = 2〉 → |5P3/2, F = 1,2 or 3〉 transition.  

To follow the evolution of the trapped gas after the truncation we took time-of-flight 
absorption images for a range of evolution times t ≡ ttr + tth and a fixed expansion time τ. 
The images show a bimodal distribution, indicating that the truncation procedure results in 
BEC (see Figure 6.6).  

6.3 Kinetics of the condensate growth 

Without making an attempt to study in detail the actual kinetics of the condensate 
growth we present the growth data for the non-equilibrium condensates. We use a simple 
relaxational model to describe the growth curve 

 ( ) ( )0 0, 1 expth fin th grN t N t t = − −  , (6.1) 

 

Figure 6.1. Schematic representation of the evaporation sequence used for obtaining non-
equilibrium degenerate atomic clouds. 
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where tgr is the characteristic growth time, N0,fin is the final number of particles in the 
condensate. In some datasets it was possible to detect the appearance of the condensate 
already during the 1-ms truncation stage. The condensate fraction at the end of this stage 
typically would not exceed 1%.  

In Figure 6.2 we show the growth of the condensate fraction 0N N  as a function of 
evolution time t. Truncation time tth = 1 ms is visible as an offset of the first data point on 
the horizontal axis. The condensate fraction grows to a final value of 6% with a 
characteristic time of 6 ms. This corresponds to 30 times the elastic collision time, which is 
in accordance with previous experiments [65, 78]. It is appropriate to note here that the 
characteristic growth time is much shorter than the axial oscillation period in the trap of 49 
ms. This already gives a hint to a non-equilibrium nature of the forming condensate which 
is described in the following sections. 

6.4 Formation of a non-equilibrium BEC 

Rather than discussing the details of the growth kinetics we emphasize that our 
condensates nucleate into non-equilibrium states. Let us try to follow carefully the effect of 
a truncation on a thermal near-TC cloud. 

 

Figure 6.2. Growth kinetics of the non-equilibrium condensates following the RF 
truncation. The two data sets present in the figure correspond to the different expansion 
times τ = 5.3 ms and 8.3 ms. The solid line is a fit of a simple relaxational model described 
by Equation (6.1). 
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6.4.1 Local critical temperature 

At first it is important to understand the conditions leading to formation of non-
degeneracy in the samples after the truncation. To do this we compare the critical 
temperature for various parts of the cloud with the developing temperature profile. It is 
instrumental to realize that in such experiments the truncation occurs in a real space, unlike 
the commonly accepted picture of a truncation in an energy space. In our samples with 
highly anisotropic geometry the extraction of the heat is mostly done in the radial direction. 
Since the mean free path is much smaller than the axial size of the cloud, one can separate 
the cloud into the regions of the size of the order of the mean free path, and consider for 
each of these regions the problem of Bose-Einstein condensation in an infinitely long 
cylinder (see Figure 6.3). An expression for local TC in such a system has already been 
derived in Section 2.5.2: 

 ( ) ( ) 2 / 5
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 ≈   , (6.2) 

where 1/ 2[ ]r mρ ρω= is the radial oscillator length and n1D(z) is the atom number per unit 
length at position z. 

6.4.2 Truncation and local temperature 

Following the arguments similar to the one in previous section we can introduce the 
concept of a local temperature. In fact, in Section 2.5.3 we have already derived an 
expression for the temperature profile developed in the sample after an abrupt truncation: 
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where T0 is the temperature before the truncation,  
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is the local truncation parameter, and ( ),P a η  is the incomplete gamma function. 

Following the concept of local formation underlying ref. [57], a simple description 
of formation of a non-equilibrium Bose-Einstein condensate under the truncation of the 
evaporation barrier is demonstrated in Figure 6.4. Starting with a thermal cloud of Ni = 5 × 
106 atoms in an 11.5 mK deep harmonic trap at a temperature T0 = 1.3 µK, we calculate that 
55% of the atoms remain trapped after all atoms with energy 3.4trε ε> =  µK are removed. 
Following with the initial density distribution (a), we can produce the profiles of the local 
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TC and the local temperature Tloc after the truncation (b). It is evident from Figure 6.4(b) 
that after the truncation the temperature is rapidly lowered to the values below critical over 
a large region of the sample. This is in contrast with the quasi-static case, where the 
equilibrium temperature (which would look like a horizontal line in graph (b)) is lowered 
relative to the density-dependent profile of TC. In the latter case the condensate formation 
would start from a region with the highest density and propagate to the outer regions of the 
cloud. In the non-equilibrium case the condensate is formed on a time scale short compared  
to the 1 zω  (as discussed in Section 6.3). Comparing Equations (6.2) and (6.3)we can 
estimate the size of such condensate as well as the condensate fraction (Figure 6.4(c)). We 
find that the local temperature ( )locT z  is lower than the local ( )CT z  over a length of the 
order of lz, the axial size of the cloud, defined as 2 1/ 2

0[2 ]z B zl k T mω= . This clearly shows 
that the condensate formed after the truncation is oversized in the axial direction, compared 
with the equilibrium condensate with the same number of particles and in the same 
potential. This is shown in the plots of the one-dimensional density distributions in Figure 
6.4(d). Evidently, this difference in sizes must lead to oscillations of the non-equilibrium 
condensate in the trap, which is confirmed experimentally. In view of the simplicity of the 
model we consider this as good qualitative agreement with experiment. 

In Figure 6.5 we plot the Thomas-Fermi half-length ( ),zL t τ  obtained with the 
standard fitting procedure of a bimodal distribution to our data (see Section 3.7.3 and ref. 
[64]). For the shortest expansion time, τ = 2.8 ms, the axial size of the condensate image 
equals to good approximation  ( 1 )zτ ω  the axial size of the condensate in the trap.   We 

 

Figure 6.3. Introduction of a local critical temperature as a result of high density and 
elongated geometry of the cloud. For the regions of the condensate with the size of the 
order of the mean free path the condensation problem can be considered as that of an 
infinitely long cylinder.  
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Figure 6.4. Simulation of formation of an oversized Bose-Einstein condensate as a result of 
truncation experiment. All graphs are plotted vs the axial coordinate z. (a) Initial density 
profile. (b) Local temperature (solid line) and TC (dashed line). (c) Condensate fraction. (d) 
Density profiles of the thermal cloud and the condensate after thermalization. 
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see that ( )zL t  is initially oversized by a factor ( ) ( )0 2.2(3)z zL L ∞ =  and rapidly 
decreases to reach its equilibrium size after roughly one strongly damped shape oscillation 
(see open triangles Figure 6.5). Thus, the condensate is clearly not in equilibrium. 

6.5 Oscillation modes 

In Figure 6.5 we also show the oscillation in the axial size of the condensate as 
observed for 15.3 ms (open squares) and 25.3 ms (crosses) of expansion. Longer expansion 
times enhance the contrast of the data and the amplitude of the oscillation is increased as 
compared to the 2.8 ms results. For τ = 25.3 ms the shape oscillation is seen to exceed the 
noise for at least 100 ms. For evolution times t ≥ 20 ms this oscillation can be described by 
a linear response model which is discussed in detail in Section 6.7. We measure a damping 
time of τQ = 50(9) ms and a frequency ratio 1.54(4)Q zω ω = . The latter is slightly lower 
than the frequency expected for a quadrupole shape oscillation of a pure condensate in very 
elongated traps, ( )1/ 25 2 1.58Q zω ω ≈ ≈  [21, 60]. A 5% negative frequency shift was 
observed for the quadrupole mode in Na condensates just below TC [94] and is consistent 

 

Figure 6.5. (b) Condensate length Lz(t, τ) versus evolution time t for three different 
expansion times τ. The dark grey line is a guide to the eye. The light grey line represents a 
fit to a damped quadrupole shape oscillation in the limit of a linear response model. Data 
set corresponding to 25.3 ms expansion time is also shown for the radial direction. (a) The 
oscillations of the radial size do not exceed the noise level. 
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with theory [27]. In radial direction the oscillation amplitude did not exceed the noise for 
the conditions of Figure 6.5. 

The shock-cooling by truncation in the presence of gravitational sag also gives rise 
to a vertical center-of-mass oscillation of the sample in the trap with an amplitude of 0.5 
µm and a damping time of 40 ms. Such short damping time is related to the presence of a 
large thermal cloud. See e.g. refs. [36, 107, 110, 111] for discussion on the damping of low-
energy excitation at finite temperatures. 

6.6 Non-equilibrium phase fluctuations 

Phase coherence properties are among the most interesting aspects of Bose-
condensed gases. Since the discovery of BEC [4, 19, 28], various experiments have proved 
the presence of phase coherence in trapped condensates. The MIT group [6] has found the 
interference of two independently prepared condensates, once they expand and overlap 
after switching off the traps. The MIT [95], NIST [48] and Munich [15] experiments 
provided evidence for the phase coherence of trapped condensates through the 
measurement of the phase coherence length and/or single particle correlations. In 
equilibrium 3D condensates, the fluctuations of density and phase are important only in a 

 

Figure 6.6. Axial cross-section through the density profile of a double-component cloud. 
Interference stripes caused by the phase fluctuation are visible in the condensed part of the 
cloud. The sample was taken at evolution time t = 26 ms, and expansion time τ = 10.3 ms. A 
dashed line represents a gaussian fit to the thermal wings of the cloud. 
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narrow temperature range near TC. Outside this region, the fluctuations are suppressed and 
the condensate is phase coherent.  

A case of special interest exist in very elongated 3D condensates, where the axial 
phase fluctuations are found to manifest themselves even at temperatures far below TC. 
Then, as the density fluctuations are suppressed, the equilibrium state is a condensate with 
fluctuating phase (quasicondensate) similar to that in 1D trapped gases [81]. With 
decreasing the temperature below a sufficiently low value, the 3D quasicondensate 
gradually turns into a true condensate. The equilibrium phase fluctuations in elongated 3D 
traps were predicted by Petrov et al. [82] and first observed by Dettmer et al. [31].  

The process of condensation induced by shock cooling used in our experiments 
presents a picture of the condensate forming simultaneously across a large region of the 
atomic cloud (see Section 6.4). This evidently leads to the absence of phase correlation 
between different parts of the condensate and formation of large phase fluctuations of non-
equilibrium origin. When the trap is switched off, the gradients in phase lead to local 
variations in expansion velocity. After some expansion they give rise to irregular stripes in 
the density profile (see Figure 6.6) similar to the ones observed in Hannover [31]. The 
damping of shape oscillations described in Section 6.4.2 and the phase fluctuations provide 
a fundamentally different path to equilibrium, as compared to the quasi-static formation of 
a condensate. Investigation of the statistical characteristics of the stripes in the density 
profile gives access to a wealth of information on the properties of the phase fluctuations. 
However, experiments described in this thesis were performed in the setup where the 
sample was observed at an angle of 73° to the trap axis. This limits the observation of the 
stripes at long expansion times. The detection setup has recently been modified and the 
physics of non-equilibrium phase fluctuations is currently under investigation in our group. 
The information on the phase coherence length can still be extracted by the use of a novel 
method described in the following section.  

6.7 Focusing of a condensate  

Since the first observation of Bose Einstein condensation (BEC) coherent atom 
optics has developed into an important field [88], providing tools for the investigation of 
macroscopic quantum phenomena in dilute atomic gases below their critical temperature. 
Many properties of quantum gases can be extracted by studying the interference between 
overlapping Bose-Einstein condensates after expansion from magnetic or optical traps [64]. 
With atom interferometry and quantum information processing as long term goals, atom 
waveguides as well as atom chips are being developed [9, 12, 52]. Mirrors, beam splitters 
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and beam shaping optics of various types have been demonstrated [17, 68, 86]. Bloch et al. 
[16] demonstrated the focusing of an atom laser beam by a harmonic potential.  

To further investigate the formation process in our experiments we introduce the 
concept of condensate focusing. In our case one-dimensional focusing results from axial 
contraction of the expanding cloud when the gas is released from the trap during the inward 
phase of a shape oscillation.  

6.7.1 Focusing principle 

To describe the principle of focusing of a condensate in free flight (see Figure 6.1a), 
we consider a cloud of atoms confined in an axially symmetric harmonic trapping potential 
with angular frequencies ωz (axial) and ωρ (radial) and small aspect ratio 1z ρβ ω ω≡ . 
We presume the cloud to dilate periodically in shape with angular frequency ωQ in such a 
way that a linear velocity field ( ) ( )z zz t zυ α= −  is present along the z-axis. At time t = 0 
the gas is released from the trap by the sudden removal of the trapping potential. For t ≤ 0 
the axial size, normalized to its value at release, is given in linear response by 

 ( ) 1 sinz z Qb a tτ ω= − , (6.5) 

where az is the rescaled axial amplitude of the oscillation. For the oscillation shown in 
Figure 6.1b, the axial size at t = 0 is contracting and we look for a focus at some later time 
t > 0. 

Let use first consider a pure Bose-Einstein condensate drive on the low-frequency 
mode of a quadrupole shape oscillation for which 1.58Q zω ω≈  [59, 60]. At t = 0 the axial 
size is given by the equilibrium Thomas-Fermi radius, 2 1/ 2[2 ]zL m ρµ ω= , where µ is the 
chemical potential of the gas and m is the atomic mass. Within the Thomas-Fermi 
approximation the evolution of the axial and radial sizes of the cloud is given by the scaling 
equations (2.40)and (2.41), 
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As 1β  we find to a good approximation for the radial expansion 2 2 1/ 2[1 ]b tρ ρω= + . The 
axial expansion at 1t ρω  is given by  
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 1z zb tζω= − , (6.8) 

where the contraction parameter ζ is defined as ( )2z Q zaζ ω ω βπ= − . The result is 
shown as the solid line in Figure 6.1b. Hence for 0ζ >  the axial size decreases to produce 
a (one-dimensional) focus at time ( )focus 1 zt ζω= . This is the case if the axial contraction 
velocity at release, −azωQ, dominates over the axial expansion velocity 2zβπω  induced 
by the kick during the initial stages ( t d 1 ρω ) of the expansion, i.e. za β> . As the radial 
size remains finite and Lz decreases, around tfocus the chemical potential is restored and the 
focus reaches a minimum size 2

focus( ) 2zb t β= , independent of the value of az. This result is 
obtained by using the approximation bρ ≈ bρ (tfocus) ≈ ωρ tfocus and integrating Equation (6.6) 
for i = z. Matching the resulting slope  

 

Figure 6.7. a) BEC-focusing observed as a contraction of the Thomas-Fermi size as a 
function of time; b) Evolution of the axial size before and after trap release at t = 0 for an 
oscillation amplitude az = 0.4. Solid line: condensate evolution for ζ = 0.41; c) Black 
squares: experimental data points; Grey curve: fit of Equation (6.10) to the black squares, 
corresponding to ζ = 0.37 and κ = 0.20; Dashed line: plot of Equation (6.8) for ζ = 0.37. 
Dotted line: as dashed line by showing the optical resolution limit. 
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with the contraction velocity zb (1/ωρ d t  tfocus) we get the mentioned result. The 
compression can be very light, e.g. 2β 2 ≈ 4 × 10-3 for the conditions in our apparatus. In 
such cases the optical resolution of the imaging system used for detection is likely to limit 
the minimum observable focal size as was reported in ref. [16].  

6.7.2 Focal broadening 

Beyond a certain expansion time the kinetic energy of the original condensate can no 
longer be neglected as it gives rise to spreading of the condensate wavefunction. This effect 
may be accounted for by writing 

 ( ) ( )
1/ 22 2 21z z zb t t tζω κω ≈ − +  , (6.10) 

where κ is a parameter determining the size of the focal waist. Note that for κ = 1, Equation 
(6.10) represents the spreading of a minimum uncertainty wavepacket released under 
conditions of axial contraction. Notice further that in this case no appreciable focusing is 
observed (see dotted line in Figure 6.1b) except for shape oscillations driven far outside 
( 1)ζ >  the linear regime. In general, Equation (6.10) gives rise to substantial focusing only 
if ζ κ>  (at ζ κ=  the condensate is compressed by 30%). The condition ζ κ>  is 
satisfied for elongated Thomas-Fermi condensates at T = 0, because the momentum spread 
is strongly reduced compared to that of the oscillator ground state. This situation is 
described by approximating the waist parameter with the value 2zκ ω µ= . Then, for 

2 2
0 2 zt t mLβ< = , the spreading can be neglected even with respect to the compression 

minimum 22 zLβ . For our conditions we calculate t0 ≈ 7 ms. 

For similar reasons it is virtually impossible to focus a collisionless thermal cloud. 
To illustrate this we consider a simple Boltzmann gas at temperature T with an oscillation 
described for t < 0 by Equation (6.5) and released from the trap at t = 0. If the collisional 
mean free path is much larger than the radial size of the cloud, the expansion proceeds 
ballistically and the momentum of the individual atoms is conserved (free expansion). The 
scaled axial size evolves according to 

 ( ) ( )
1/ 22 2 21z z Q zb t a t tω ω = − +  

, (6.11) 

which represents the convolution of two gaussians: the density profile of equilibrium width 
2 1/ 2[2 ]z B zl k T mω=  and the velocity field ( )z z Qz a zυ ω= − . In the absence of a shape 
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oscillation (az = 0) this expression reduces to the well-known result used in time-of-flight 
analysis of collisionless thermal clouds [64, 109]. Presuming the same value of 

z Q zaζ ω ω=  as for the condensate (i.e. the solid line in Figure 6.1b), the thermal cloud is 
represented by the dotted line in Figure 6.1b. 

Returning to elongated condensates we point out that at temperatures above the 
phase fluctuation temperature, 215( ) 32zT T Nφ ω µ> = , equilibrium phase fluctuations 
will dominate the focal broadening [31, 49, 82]. In this case the waist parameter may be 
approximated by 2 2( ) ( )z z hL L l Lφ φκ ω µ≈ ≈ , where Lφ is the phase coherence length 
and 1/ 2[ ]h zl mω=  the axial harmonic oscillator length. 

6.7.3 Applications of BEC focusing 

The first application concerns the phase fluctuations discussed in Section 6.6 and 
deals with the focus shown in Figure 6.1c. The grey line represents a fit of Equation (6.10) 
to the data and yields 0.37ζ =  and 0.20κ = . In this experiment the focus is strongly 
broadened, ( ) 2

focus 2zb t β  exceeding the optical resolution limit of 3.3 µm – compare to 
the minimum size of 15.2 µm in Figure 6.1c.  Hence, for the conditions of this experiment 
we may write 2( )hl Lφκ ≈  and find a phase coherence length of 0.45 1µmhL lφ ≈ ≈ . 

Condensate focusing offers improved detection of small condensate fraction. Near 
the focus the axial condensate size is compressed by a factor ( )focus1 zb t . In time-of-flight 
absorption imaging the signal-to-noise can be improved accordingly by choosing the time 
of detection equal to tfocus. This is advantageous, particularly close to TC where the 
condensate fraction is small and has to be detected against the background of a large 
thermal cloud.  

Condensate focusing also provides some advantage in detecting small thermal 
clouds as the separation time of the two components is reduced. Therefore, in time-of-flight 
absorption imaging detection can be shifted to shorter expansion times when the drop in 
optical density of the thermal cloud ( 1[ ]th z sepD tρω ω −∝ ) is less and an improvement in the 
signal-to-noise ratio of a factor of two can be obtained.  

6.8 High condensate fractions in non-equilibrium states 

So far we dealt with the data where the condensate fraction was of the order of a few 
percent. We used another method, different from the one described in Section 6.2, to 
produce out-of-equilibrium samples with high condensate fractions. In the first 10 seconds 
of evaporative cooling of these clouds the RF knife is linearly lowered from 50 MHz to 4 
MHz, similar to the way it was described in Section 5.4. From 4 MHz onwards the speed of 
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the linear RF ramp is increased by an order of magnitude to 5.5 MHz/s. At this point it 
satisfies the condition 

 
, 0

tr
z

tr a

d dtν
ω

ν ν−
. (6.12) 

The density is sufficiently high to keep evaporative cooling efficient and to reach 
progressively colder temperatures. However, the local nature of the cooling results in 
formation of non-equilibrium condensates similar to those described earlier in the chapter. 
Due to the continuous extraction of the heat from the system one can reach higher 
condensate fractions to the point where no thermal cloud can any longer be observed.  

The number of particles in the condensate depends on the frequency at which the RF 
ramp is stopped. Once the final frequency is reached, RF knife remains at this frequency for 
the duration of what we refer to as plain evaporation time tpe. The densities at this point 
reach 1015 cm-3 and the heat load due to three-body recombination products is the main 
limiting factor on the lifetime of a condensate. Evaporation knife remaining at the final 
frequency acts as a heat shield and a heat-removal mechanism, which significantly 
increases the lifetime.  

 

Figure 6.8. Giant quadrupole oscillations of sample with 50 – 90 % condensate fraction. A 
characteristic damping time is 141 ms, although a simple exponentially decaying fit 
describes the data rather poorly. The number of particles drop explains the reduction of the 
equilibrium size of the condensate. 
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Quadrupole shape oscillations observed for these condensates (Figure 6.8) have a 
much higher amplitude, with the oscillations also visible in the radial direction. The 
difference in damping time between oscillations shown in Figure 6.8 and Figure 6.5 is 
spectacular. While the oscillations for small condensate fractions are almost critically 
damped, the damping time of the giant oscillations of the pure condensates is as long as 140 
ms, with the small-amplitude oscillations exhibiting even longer damping times.  

        

 

Figure 6.9 (a) Stripes in the density profile of an almost pure condensate caused by the 
non-equilibrium phase fluctuations. (b) Absorption image of the condensate produced 
quasi-statically is shown for comparison. Small thermal fraction is visible in the wings of 
the cloud. (c) & (d) Axial (horizontal) cross-sections through the optical density profile of 
(a) & (b) respectively. Solid line in (d) represents a fit to the condensed fraction, while the 
dashed line is a fit to the thermal cloud. The images are taken after 10.3 ms expansion time. 
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One can also observe strong non-equilibrium phase fluctuations in these 
condensates. Exhibited in the form of interference stripes in the beginning (see Figure 6.9 
(a) & (c)), they are being damped out over the course of a few hundred milliseconds. These 
stripes show a higher contrast as compared to those displayed in Figure 6.6 due to the near 
absence of the thermal cloud in the trap. For comparison in Figure 6.9 (b) & (d) we also 
give an absorption picture and an optical density cross-section for a normal condensate 
produced with quasi-static ramping of the evaporation barrier. The analytical description of 
the condensates produced with such fast RF ramps is much more difficult as compared to 
the truncation method discussed above, and their use is limited to specific cases where a 
detailed analytical picture is not required. 
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Summary 

In this Thesis we describe experimental studies of the condensate formation into 
non-equilibrium states and investigation of the hydrodynamic behaviour of cold non-
degenerate atomic clouds. Non-equilibrium nature of the condensates offers an essentially 
different path towards equilibrium as compared to the condensate formed in a quasi-static 
fashion. Investigation of the crossover between collisionless and hydrodynamic regimes is 
interesting from both experimental and theoretical points of view. 

Bose-Einstein condensation (BEC) was predicted in 1925 [18, 35] and was achieved 
experimentally seventy years later in pioneering experiments at JILA [4], MIT [28] and 
Rice [19, 20]. This led to a dramatic expansion of both experimental and theoretical work in 
the field of ultracold quantum gases. Although the macroscopic occupation of the ground 
state is the best known aspect of the phenomenon of BEC, the appearance of phase 
coherence is equally important. The investigation of phase coherence phenomena provides 
new fundamental insights into the nature of macroscopic quantum states and is important 
for current and future applications. Those include, in particular, atom lasers – devices for 
continuous or pulsed generation of coherent matter waves, atom interferometry, improved 
frequency standards and systems of cold atoms for quantum computing. The appearance of 
coherence in a condensate cannot be separated from the process of condensate formation. 
Previous experimental investigations of formation kinetics of trapped condensates [65, 78] 
were decoupled from the studies of phase coherence [31, 82] Investigation of the evolution 
of phase coherence properties during the formation of a trapped condensate out of a non-
equilibrium thermal cloud presents a great general physical interest. In particular it should 
allow a deeper understanding of phase coherence phenomena in macroscopic quantum 
states. One can expect that the evolution of phase coherence will be a primary issue for 
creation of CW atom lasers [22].  

The Thesis is organised in the following way. In Chapter 2 we compiled main 
theoretical expressions relevant to the Bose-Einstein condensation, including the principle 
of magnetic trapping and the description of trapped Bose gases below and above the phase 
transition point. Further we sketched theoretical ideas underlying phase coherence and 
formation of a BEC. We also introduced the bare fundamentals of evaporative cooling and 
derived several results important for the experiments described in later chapters. A separate 
section was dedicated to the scaling description of the gas clouds in harmonic traps.  
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In Chapter 3 various aspects of the experimental setup were described. Special 
attention was given to the features characteristic to the specific ideas, which motivated the 
construction of the apparatus, e.g. creating Bose condensates with the highest density and 
particle number possible. An insight into evaporative cooling in our experiments was 
presented together with some details of the measurement methods.  A great deal of 
emphasis was put on the description of imaging of cold atomic clouds. 

Chapter 4 was fully dedicated to a detailed description of the high-power diode laser 
system, the design and building of which was dictated by the needs of this experiment.  

In Chapter 5 we presented the experimental investigation of the hydrodynamic 
properties of dense atomic clouds. The understanding of the crossover to the hydrodynamic 
regime in thermal clouds is important from the experimental point of view. This 
understanding is vital for the correct interpretation of time-of-flight images of such clouds. 
In the collisionless regime the expansion of the gas, after release from a trap, is known to be 
isotropic, whereas in the hydrodynamic limit the gas expands anisotropically. We 
approached investigation of the hydrodynamic properties from three different sides. First, 
we go in detail into density and temperature analysis. Another indicator of hydrodynamic 
behaviour is obtained by observation of the anisotropic character of the expansion. Finally, 
we measure frequency shifts and damping of shape oscillations. All three methods proved 
to be consistent with each other and the completeness of our description was verified 

In the final part of the Thesis, Chapter 6, we discussed the results produced in the 
experiments on formation of condensates far from equilibrium. We compared our work 
with the previous experiments on condensate formation. In a brief section some attention 
was given to the growth of the condensate fraction. Further, we showed how the concepts 
of local sample temperature and the critical temperature arise in elongated clouds with high 
elastic collision rates. We presented a simple model, which illustrates how the non-
equilibrium character of the condensates leads to the quadrupole oscillations. This model 
was found to be in good agreement with the experiment. We also presented evidence of 
non-equilibrium phase fluctuations, which manifested themselves in the form of stripes in 
the time-of-flight absorption images. Condensate focusing was introduced as a novel 
method for investigation of Bose-Einstein condensates. The focusing of a condensate in 
free flight arises from axial contraction of the expanding cloud when the gas is released 
from the trap during the inward phase of a shape oscillation. Possible applications of BEC 
focusing were discussed. We applied BEC focusing to calculation of the coherence length 
of non-equilibrium condensate. The last part of the chapter covered condensation into non-
equilibrium states with high condensate fractions. We discussed a method of achieving high 
condensate fractions, while keeping the system far from equilibrium. The phase fluctuations 
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and the excitation modes had the same qualitative character as in the experiments with 
small BEC fractions. However, in some aspects, such the damping rates of the quadrupole 
oscillations, we could observe significant differences. 





 
Samenvatting 

In dit proefschrift worden experimentele studies van het ontstaan van een Bose-
Einstein condensaat in een ultrakoud atomair gas beschreven. In het bijzonder hebben we 
het ontstaan van condensaten in niet-evenwichtstoestanden en hydrodynamisch gedrag van 
koude, maar niet quantum-ontaarde, atomaire wolken bestudeerd. 

Bose-Einstein condensatie (BEC) is een fasenovergang naar een macroscopische 
quantumtoestand, die bijvoorbeeld waar te nemen is in bepaalde ultrakoude gassen bij 
temperaturen rond 0.000001 Kelvin. BEC werd in 1925 voorspeld [18, 35] en zeventig jaar 
later gerealiseerd in experimenten in Boulder [4], Cambridge (USA) [28] en Houston [19, 
20]. Dit was het startsein voor een enorme uitbreiding van zowel experimenteel als 
theoretisch werk in het veld van ultrakoude gassen. Het meest bekende kenmerk van BEC 
is de macroscopische bezetting van de grondtoestand, maar een minstens zo belangrijk 
aspect is het ontstaan van fasencoherentie. Het onderzoeken van coherentiefenomenen geeft 
fundamentele nieuwe inzichten in de eigenschappen van macroscopische 
quantumtoestanden en is belangrijk voor bestaande en nog te ontwikkelen toepassingen. 
Daaronder vallen in het bijzonder atoom-interferometrie, frequentiestandaards gebaseerd op 
ultrakoude atomen, atoomlasers – apparaten die continue of gepulste coherente 
materiegolven produceren – en systemen van koude atomen voor verwerking van quantum-
informatie. Het ontstaan van coherentie in een condensaat is niet los te zien van het 
ontstaansproces van het condensaat zelf. Eerdere experimenten waarin de vorming van 
condensaten bestudeerd werd [65, 78], waren niet gekoppeld aan metingen van 
fasencoherentie [31, 82]. Het ontstaan van coherentie-eigenschappen tijdens de vorming 
van een condensaat uit een thermische wolk atomen die niet in evenwicht is, is een fysisch 
vraagstuk van groot belang. In het bijzonder kan begrip van dit proces in belangrijke mate 
bijdragen aan de ontwikkeling van continue atoomlasers [22].  

Dit proefschrift is als volgt ingedeeld: Hoofdstuk 1 geeft een algemene inleiding. In 
hoofdstuk 2 hebben we de belangrijkste theoretische uitdrukkingen op het gebied van Bose-
Einstein condensatie verzameld. Ook het principe van de magnetische val en de 
beschrijving van magnetisch opgesloten Bose gassen boven en onder de BEC 
fasenovergang worden uitgelegd. Bovendien schetsen we de theoretische ideeën die ten 
grondslag liggen aan de fasencoherentie en het ontstaan van een BEC. We beschrijven ook, 
zij het summier, de verdampingskoeling waardoor de BEC fasenovergang bereikt wordt en 
leiden enkele resulaten af die van belang zijn voor de experimenten die in de andere 
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hoodstukken beschreven worden. Een sectie behandelt de schalingstheorie van gaswolken 
in een harmonische val. 

In hoofdstuk 3 worden verschillende aspecten van de apparatuur beschreven. 
Bijzondere aandacht wordt uitgetrokken voor de eigenschappen die voortvloeien uit de 
specifieke doelen waarvoor de apparatuur gebouwd is, met name het maken van Bose 
condensaten met een zo hoog mogelijke dichtheid en een zo groot mogelijk aantal atomen. 
Een blik op de verdampingskoelmethode en enkele details van de meetmethoden worden 
gegeven, met nadruk op de afbeeldingstechnieken voor koude atoomwolken. 

In hoofdstuk 4 wordt in detail het hoogvermogen diodenlasersysteem beschreven. 
Dit systeem is speciaal ontworpen en gebouwd voor de in dit proefschrift beschreven 
experimenten. 

In hoofdstuk 5 beschrijven we experimentele onderzoekingen van de 
hydrodynamische eigenschappen van atoomwolken met hoge dichtheid. Het begrip van de 
overgang naar het hydrodynamische regime in thermische wolken is belangrijk voor de 
experimenten, in het bijzonder is dit noodzakeleijk voor het juist interpreteren van beelden 
van de vrije expansie van uit de magneetval losgelaten gaswolken. In het botsingsvrije 
regime is de vrije expansie van het gas isotroop, terwijl een gas in het hydrodynamische 
regime anisotroop expandeert. We benaderen het onderzoek van de hydrodynamische 
eigenschappen van drie verschillende kanten. Ten eerste beschouwen we de analyse van 
temperatuur en dichtheid in detail. Ten tweede observeren we de anisotropie van de vrije 
expansie van het gas. Tenslotte meten we de frequentieverschuiving en demping van vorm-
oscillaties. Alle drie methoden blijken consistent met elkaar en tonen daarmee aan dat onze 
beschrijving volledig is. 

In het laatste deel van het proefschrift, hoofdstuk 6, bespreken we experimenten 
waarin we condensaten ver buiten thermisch evenwicht geproduceerd hebben. We 
vergelijken ons werk met eerdere experimenten waarin het ontstaan van condensaten 
bestudeerd is. Enige aandacht wordt besteed aan de groei van de gecondenseerde fractie. 
Bovendien laten we zien hoe het idee van een lokale temperatuur en lokale kritische 
temperatuur van toepassing is op lange atoomwolken met hoge elastische 
botsingsfrekwenties. We presenteren een eenvoudig model, dat illustreert hoe het niet-
evenwichtskarakter van het condensaat leidt tot oscillaties van de vorm van het condensaat 
(quadrupool oscillaties). De resultaten van dit model zijn in goede overeenstemming met de 
experimenten. We laten ook zien dat de fase van het condensaat buiten thermisch 
evenwicht fluctueert, wat zich manifesteert als interferentiestrepen in de afbeeldingen van 
de vrij geëxpandeerde condensaten. Het focusseren van het condensaat wordt 
geïntroduceerd als een nieuwe methode voor het bestuderen van Bose-Einstein 
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condensaten. Het focusseren van een condensaat in vrije vlucht, na het loslaten uit een 
magneetval, is een gevolg van de naar binnen gerichte axiale impuls wanneer het 
condensaat wordt losgelaten tijdens de ingaande fase van een vorm-oscillatie. We 
bespreken mogelijke toepassingen van het focusseren van het condensaat, en passen het toe 
om de coherentielengte van het condensaat buiten evenwicht te bepalen. Het laatste deel 
van het hoofdstuk behandelt condensatie in niet-evenwichtstoestanden waarin de 
gecondenseerde fractie hoog is. We bespreken de methode die we gebruiken om een hoge 
gecondenseerde fractie te bereiken en tegelijk ver buiten thermisch evenwicht te blijven. De 
fluctuaties van de fase en de excitatiemodes hebben in dit geval kwalitatief hetzelfde 
karakter als in de experimenten met kleine gecondenseerde fracties. In sommige 
eigenschappen, zoals de demping van de quadrupooloscillaties, vinden we wel significante 
verschillen. 
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