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We have directly observed short-time stress propagation in viscoelastic fluids using two optically
trapped particles and a fast interferometric particle-tracking technique. We have done this both
by recording correlations in the thermal motion of the particles and by measuring the response
of one particle to the actively oscillated second particle. Both methods detect the vortex-like flow
patterns associated with stress propagation in fluids. This inertial vortex flow propagates diffusively
for simple liquids, while for viscoelastic solutions the pattern spreads super-diffusively, dependent

on the shear modulus of the medium.

PACS numbers: 83.60.Bc,66.20.+d,82.70.-y,83.50.-v

I. INTRODUCTION

Motion in simple liquids at small scales is usually char-
acterized by low Reynolds numbers, in which the re-
sponse of a liquid to a force applied at one point is Stokes-
like—decaying with distance r as 1/r away from the ori-
gin of the disturbance |1, 2, 3]. Here, fluid inertia can
be neglected, and the force is effectively felt instanta-
neously everywhere within the medium. In practice, this
is a good approximation, for instance, in water at the
colloidal scale up to micrometers on times scales larger
than a microsecond. At short times or high frequencies,
however, fluid inertia limits the range of stress propaga-
tion. Any instantaneous disturbance must be confined
to a small region for short times. If the medium is also
incompressible, then this naturally gives rise to vorticity
and backflow. In simple liquids, stress then propagates
through the diffusive spreading of this vortex. Although
this basic physical picture has been known theoretically
for simple liquids since the work of Oseen in 1927 [4]
and has been shown in computer simulations since the
1960s [5], experimental observation of these effects have
been largely indirect, for instance, in the form of short-
time corrections to Brownian motion [6]. Direct exper-
imental observation has only recently been possible be-
cause of the high temporal and spatial resolution required
[7].

The finite time it takes for vorticity to propagate leads
to persistence of fluid motion that manifests itself in al-
gebraic decay of the auto-correlation function of the ve-
locity of either a fluid element or a particle embedded in
the fluid. This decay is slower than the naive expectation
of exponentially-decaying correlations for a massive par-
ticle experiencing viscous drag. Thus, the effect is known

as the long time tail effect 6, 8, 9], which characterizes
the transition from ballistic to Brownian motion of par-
ticles in simple liquids. This effect has been shown to
be present even at the atomic level, e.g., from neutron
scattering experiments on liquid sodium [10].

We have shown that the inter-particle correlations and
response functions of two particles can be used to di-
rectly resolve the flow pattern and dynamics of vortex
propagation [7,[11]. This was done by measuring the cor-
related thermal motion of two optically trapped spheri-
cal particles using an interferometric technique |12, [13]
with high temporal (up to 100 kHz) and spatial (sub-
nanometer) resolution in both viscous and viscoelastic
fluids. We were able to observe, for instance, the anti-
correlation in the inter-particle fluctuations of thermal
motion that is characteristic of the vortex propagation.
The method is related to passive two-particle microrheol-
ogy [14,[15,116,[17, 18, [19] which can be used to measure
shear elastic moduli of viscoelastic materials.

The inter-particle response functions «(w), with real
(o) and imaginary (a’) parts defined by a(w) = o/ (w) +
ia'"(w) are obtained for motion parallel (o) and perpen-
dicular («)) to the centerline connecting the two parti-
cles. In the passive approach, we directly measure the
imaginary part of the response function from the ther-
mal position fluctuations of the two particles via the
fluctuation-dissipation theorem (FDT). The real part of
the response function is then obtained from a Kramers-
Kronig integral [20)].

Here, in order to directly measure both real (in-phase)
and imaginary (out-of-phase) parts of the response func-
tion, we have developed an active method |21, 22], in
which one optical trap drives oscillatory motion of one
particle, while the response of a second particle is mea-
sured at separation r. We present and compare de-
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tailed experimental results of both passive and active
approaches. We also present a theoretical derivation of
the predicted response functions and corresponding alge-
braic decay of the velocity autocorrelation functions for
viscoelastic fluids.

The outline of the paper is as follows. In section II,
we present the theoretical analysis. In section III, we
present the materials and methods of sample prepara-
tion, as well as the experimental techniques for the pas-
sive and active measurements of the response functions.
In section IV we describe our methods of data analysis
used for the results presented in section V. In the results
section V, we first compare the data for simple liquids
with the dynamic Oseen tensor, which demonstrates the
diffusive propagation of the vortex flow. We then present
our results and comparison with theory for viscoelastic
solutions, including the evidence for superdiffusive stress
propagation. Finally, we conclude with a discussion (sec-
tion VI), also mentioning implications of our results for
microrheology in general.

II. THEORY AND BACKGROUND

Newtonian liquids are described by the Navier-Stokes
equation, which is non-linear. The non-linearity, how-
ever, can usually be neglected either for small distances
or for low velocities [L, [2]. This is the so-called low
Reynolds number regime, since the relative importance
of non-linearities is characterized by the Reynolds num-
ber Re = %, where U, L, p, and 7 are, respectively,
the characteristic velocity and length scales, the density,
and the viscosity. For steady flow, this regime can also
be thought of as the non-inertial regime, in which stress
propagates instantaneously and, for instance, the veloc-
ity response at a distance r from a point force varies
as 1/r [, 2, 13]. Such Stokes flow accurately describes
the motion of micron-size objects in water on time scales
longer than a few microseconds.

Even at low Reynolds number, however, there are re-
maining consequences of fluid inertia for non-stationary
flows [3]. This unsteady Stokes approximation is de-
scribed by the linearized Navier-Stokes equation:

pgﬁ:nv%—ﬁzuf, (1)
ot
where ¥ is the velocity field, P is the pressure that en-
forces the incompressibility of the liquid and f is the force
density applied to the fluid. By taking the curl of this
equation we observe that the vorticity 0 = V x 7 satisfies
the diffusion equation with diffusion constant v = n/p.
As noted above, the short-time response of a liquid
to a point force generates a vortex. The propagation of
stress away from the point disturbance is diffusive: after
a time t, this vortex expands away from the point force
to a size of order & ~ y/nt/p. In the wake of this moving
vortex is the usual Stokes flow that corresponds to a 1/r

dependence of the velocity field. For an oscillatory distur-
bance at frequency w, the propagation of vorticity defines
a penetration depth 6 ~ \/n/(wp) [1]. Stress effectively
propagates instantaneously on length scales shorter than
this.

This picture generalizes to the case of homogenous
viscoelastic media characterized by an isotropic, time-
dependent shear modulus G(t) 23], although the prop-
agation of stress generally becomes super-diffusive [11].
We further assume that the medium is incompressible,
which is a particularly good approximation for polymer
solutions such as those considered here, at least at high
frequencies [20, 24, 25]. The deformation of the medium
is characterized by a local displacement field (7, ¢), and
the viscoelastic analogue of the Navier-Stokes equation

@ is:
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where
t
o7 t) = 2/ dt'G(t — ")y (7,t) (3)

is the local stress tensor and
— 1 = _, = _, T
7=3 [Vu + (Vu) ] 4)

is the local deformation tensor. Incompressibility corre-
sponds to the constraint V.-2=0

Equations [23) can be simplified by a decomposition
of the force density and deformation into Fourier com-
ponents. Taking spatio-temporal Fourier Transforms de-
fined as

ii(F,w) = / i / dt @ENG . (5)
and defining the complex modulus

G*(w) =G (w) +iG" (w) = /000 dte™'G(t),  (6)

we can eliminate the pressure by imposing incompress-
ibility in Eqgs. 23). This leads to

ik, w) = (G(j);—kfpw> Sl w), ()

where k = k/|k|. We invert this Fourier transform to
obtain the displacement response function due to a point
force applied at the origin.

A. Response functions

For a point force f at the origin, the linear response
of the medium at 7 is given by a tensor «;;, where



ui(Fyw) = i (7, w) fj(0,w). Here, a;; = o + i) is, in
general, complex. Given our assumptions of rotational
and translational symmetry, there are only two distinct
components of the response. These are (1) a parallel re-
sponse that is given by a displacement field @ parallel
to both f and 7, and (2) a perpendicular response given
by  parallel to f and perpendicular to 7. The parallel
response function «, for instance, is obtained from the
inverse Fourier transform of Eq. (@) [11].

The response functions for general G*(w) are given by

o) (r,w) = of +iof = — Gi( o (V) (8)
and
o1 () = ol + 0 = e (VR) . 0)
where k = pw?/G*(w) is complex and
@)= 50— 1], )
and
X1 (#) = — S 1+ (® —1+iz)e™]. (11)

The magnitude of x defines the inverse (viscoelastic) pen-
etration depth 4.

1. Simple liquids
For a simple liquid, G*(w) = —iwn and k& = ipw/n.
The velocity response of the liquid is then characterized

by

1 pw
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iway (r,w) way —iwa) = 47r17rXH ( 277) , (12)

and
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where
)21' (2) = [(1+4 z)sin Ix; xcosx]e ® 7 (14)
Xil/ (z) = 1—[(1+x) coi;v + x sin 2] e*””, (15)
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Thus, for instance, the in-phase and out-of-phase velocity
response in the parallel direction are given by wa” =
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FIG. 1: Comparison of theoretical and experimentally mea-
sured response functions for a simple liquid. The predictions
of the normalized velocity field from the dynamic Oseen tensor
in Eqs. (I203) are shown as black and gray lines. Normal-
ized complex inter-particle response functions between two
probe particles (silica beads, R = 0.58 um) measured with
the active microrheology method in water: (a) 4mrnwa in
the parallel direction and (b) 87rnwa in the perpendicular
direction, plotted versus the ratio of the separation distance
r (fixed for a given bead pair, r = 11.3 pm for parallel, and
r = 10.3 um for perpendicular) to the frequency-dependent
viscous penetration depth d,. Both real (filled symbols) and
imaginary parts (open symbols) are shown, for both paral-
lel and perpendicular directions. These results are compared
with the theory for = 0.97 mPa s and p = 1000 kg m~®
There is good agreement with no free parameters.

We have written the response functions in Eqgs. (8 @) in
a form in which the noninertial limits (x — 0) are simple:
X|,L — 1. Thus, for a simple liquid in the limit z — 0,
Eqs. (12, O3) reduce to the (time-independent) Oseen
tensor [2, 4]. For finite z, these response functions give
the dynamic Oseen tensor [4, 26], which are shown as the
solid lines in Fig. [T, where for small r/é the parallel and
perpendicular velocity response (i.e., —iway|, | ) approach



47r1m“ and 87r—1m for a unit force at the origin. These then
decay for r 2 §. The region of negative response in the
perpendicular case corresponds to the back-flow of the
vortex.

The response functions above represent the ensemble-
average displacements due to forces acting in the
medium. These response functions also govern the equi-
librium thermal fluctuations and the correlated fluctua-
tions from point to point within the medium. The rela-
tionship between thermal fluctuations and response is de-
scribed by the Fluctuation-Dissipation theorem. Specif-
ically, for points separated by a distance r along the z
direction,

2kpT
B ) 1 (rw), (18)

C||7L(T‘, w) =

w

where

C’H(T,w) = /OO dtei‘“t<uz(0,0)ux(r, t)) (19)

— 0o

and

C(rw)= /jo dtei“’t<uy(0,0)uy(r, t)). (20)

2. Polymer solutions

An experimentally pertinent illustration is given by the
high frequency complex shear modulus of a polymer so-
lution,

G*(w) = —iwn + §(—iw)* = |Gle™™ (21)

which has both solvent and polymer contributions. For
the Rouse model of flexible polymers z = 1/2 [27], while
for semiflexible polymers z = 3/4 |20, 28, [29]. The latter
case is shown as the solid lines in Fig. We see that
the oscillatory or anti-correlated response becomes more
pronounced in viscoelastic materials.

The magnitude of the complex modulus is given by

1G] = \/(30")? + (wn)? + 20" Iygsin (r2/2),  (22)

while its phase is given by

i) = (wn + gw?sin (7z/2)) (23)
G|
and
cos g = gw* c(|)z(|7rz/2) (24)

It is also useful to have the following expressions for the
half-phase-angles

Y1 gw? cos (mz/2)
sing = \/5 <1 — T) (25)

<1+—gw2cc|’SG(|m/ 2)) . (26)

We define the real parameter 8 = rv/pw? /|G| and use the definitions, Eqns. (IQIT) to obtain the following compact
expressions for the response functions (a1, a)) which can be expanded using the compound angle formulae and the
definitions above. The real and imaginary parts of the parallel response are given by

47T|G|T04ﬁ (ryw) = % {eﬁsm% [cos (6 cos %) + Bsin (% + Bcos %)] — 1} (27)

and

ir(Glra](rw) = e P {sin (ﬁcos %) - Beos (% + feos %) } , (28)

while the corresponding expressions for the perpendicular response are given by

Y

87|Glra (r,w) = 2 {1 _ e PAsing {cos (ﬁcos %) + Bsin (% + B cos 5) — 3% cos <w + B cos %)} } (29)

=5
and
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Y Y

87|Gra’] (r,w) = ie’ﬁSi“% {—sin (Bcos 5) + B cos <§ + Bcos 5) + % sin (1/) + B cos %) } . (30)

=5

The imaginary part of the response functions will be used to calculate the correlation functions, Eq. (I8]), used for
analysis of the passive experiments whilst the real part of the response functions will be used for comparison with the

active experiments.



We can simplify the expressions above in the limit that the polymer contribution to the viscoelasticity dominates
the shear modulus. We then obtain the simple scaling form G*(w) ~ g(—iw)*[30] giving |G| = g|w|*,v = 7z/2.
Further simplification of Eq. (I8) using the expressions in Egs. (BA2Y)) and definitions in Eqs. (IAIT) leads, e.g., to

C (r,w) @e

B 2nw|G|r

kT {2 =) (14 sin () ) sin [cos () 8] — cos (3F) Beos [cos (1) 4] ]}, (3)

where 8 = ry/pw?/|G| characterizes the overall decay of stress due to inertia. This decay corresponds to super-
diffusive propagation of stress for viscoelastic media with G ~ w® and z < 1, since the response is limited to a spatial

range that grows with time as ¢t(2=2)/2,

The resulting displacement field, exhibiting the vortex
pattern, is shown in Fig. Bl for a point force at the ori-
gin pointed along the z-axis. This flow pattern exhibits
specific inversion symmetries: v, (vy) is symmetric (anti-
symmetric) for either x — —z or y — —y, as can be seen
by the fact that the (linear) response must everywhere
reverse if the direction of the force is reversed.

B. Velocity autocorrelations and the long time tail

The self-sustaining back-flow represented in Fig. [
gives rise to long-lived correlations that, for instance, af-
fect the crossover from ballistic to diffusive motion of a
particle in a liquid. For a simple liquid, the fluid velocity
(auto)correlations (¥(0,t) - ¥(0,0)) decay proportional to
~ [t|73/2. This is known as the long time tail |3, 16, §].
For a viscoelastic fluid, stress propagation is faster than
diffusive, resulting in a more rapid decay of velocity cor-
relations. The decay is, however, still algebraic.

1. Simple liquids
For a simple liquid, Eq. ([l) means that

(—iwp + nk?) v; = (5ij - 1i€j) fi (32)
for the Fourier transforms. This gives the response in
velocity v; to a force component f; that is (thermody-
namically) conjugate to a displacement u;. We denote
this response function by x.,u;, where

kyw) = (5” _ki]%j) 33
Xviu, (K, w) = m (33)

The fluctuation-dissipation theorem then tells us that

1 d
X'Uiuj (’Fv t) = _ﬁ a <vi (Fa t)Uj (Oa O)>7 (34)
where this is valid only for ¢ > 0 because of causality
in the response. The correlation function is, however,
defined for both positive and negative times.
Due to translation invariance in time, the correlation
function (v;(7,t 4 t')u;(0,¢')) must be independent of ¢'.

Thus,

d — ! !
0 = E(Ui(r,t—i-t)uj(o,t ) (35)

= (0i(7,t + t/)uj (07 tl)> + <’Ui(F7 t+ t/)vj (0, t/)>7
which also means that
kTX’Ui’U«j (Fa t)> = <Ui (Fa t)Uj (07 O))

Again, this is valid only for ¢ > 0 because of causality in
the response. Ultimately, however, we are interested in
the autocorrelation function (7 - ¥) = (v;v;), for r — 0
above. In this case, the correlation function is manifestly
symmetric in ¢. Thus,

(v;(F = 0,)v;(0,0)) = kT Xpu; (T — 0,]¢]). (36)

We first calculate  Xy,u, (/2, t), since the limit
Xoviu; (77— 0,t) can be obtained from this simply by in-
tegrating over all k.

X, (Frt) = (5ij_]%i]%j)/(2l_::eithm
_ (k) [t

—2mip w + ivk?’

where v = n/p. But, the last integral can only depend
on the combination tvk?, since we can replace w by (vk?,
where ( is dimensionless. Specifically,

Y (E t) _ (5” _kikj) /e—iguk% g
Vit AT —2mip C+1
— (5” B ka]) e—l/k2t (37)
P

for t > 0. Otherwise, the result is zero. This integral can
be done by integration along a closed contour containing
the real line in either the upper half-plane for ¢ < 0, or
the lower half plane for ¢t > 0.

Finally, to get the limit

Xviu; (F —0, t) (38)
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FIG. 2: Comparison to Eqgs. (8HII) of both real and imagi-
nary parts of the normalized inter-particle response functions
between two probe particles (silica beads, R = 0.58 ym), mea-
sured with the active microrheology method for two separa-
tion distances r in 1 mg/ml entangled F-actin solutions. (a)
47mr|Gloy (w) and (b) 87r|GlaL (w), plotted versus the ratio
of the separation distance r (r = 11.3 um in parallel and
r = 10.3 pm in perpendicular direction) to the frequency-
dependent viscoelastic penetration depth d,.. Here, the pa-
rameters g and z in Eq. (2I) were varied to obtain simulta-
neous fits of all data sets to Eqs. (27H30), using a single set of
parameters z and g, while accounting for the solvent (water)
viscosity. Both the real (filled symbols) and imaginary (open
symbols) parts of both parallel and perpendicular response
functions are in a good agreement with Eqs. (27H30) with op-
timal parameters g = 0.22 4+ 0.05 Pa s® and z = 0.78 £+ 0.02.
The corresponding theoretical lines are shown for z = 0.75
and g = 0.22.

we simply integrate:

. d3k 5” — ]%JCZ r
me(r — O7t) = / (27T)3 ( p ) k2t
2

; (4mvt) =32 (39)
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FIG. 3: The displacement field displays a clear vortex-like
structure. Here, a force in the & direction is applied at the
origin (as shown by the filled circle and arrow). Distances
are shown in units of the penetration depth § = \/|G|/(pw?).
This example has been calculated for the Rouse model with
z=1/2.

Again, this is only for ¢ > 0. Thus,

2kT a2

(U(7 — 0,t) - ¥(0,0)) = > (4mv|t)) (40)

2. Viscoelastic media

For viscoelastic media, the calculation is similar, ex-
cept that

—

Xviuj- (k,w) _inuiuj- (an)

Xou(E, w) (517- - kkj) . (41)

where .4, = i, and where we have defined
iUj Jo

Xou(k, w) = % (#w*,@/p) (42)

for simplicity. As above, all the singularities in this must
lie in the lower half-plane in order for the response func-
tion to be causal.

Evaluation of the inverse Fourier transform of Eq. ([@2))
to obtain XUU(E, t) can be done by use of the Mittag-
Leffler functions. The Mittag-Leffler functions |31, 132],
E,(z), which are entire functions parameterized by a con-
tinuous parameter o can be defined by the power series

o0 Zk
Ea(z):];)m s oa>0 . (43)



Note F4(z) = exp(z). Straightforward manipulation [31]
of the definition, Eq. (@3) show that their causal Fourier
transforms are given by
/ dte 'O (t) Eo(—at®) = ———————  (44)
oo w? —a(—iw)

where O(t) is the Heaviside step function. Performing
the inverse Fourier transform, we obtain

Xvu(];v t)=FEsy . [_(gkz/p)tz_z} ;

for G* = g(—iw)?*. The asymptotic expansions for the
Mittag-Leffler functions |31, [33] are

t>0 (45)

Eo(—2) = 1_@+O(z)’ 21 »
T o) 1O, 2>

Thus, the velocity correlation function is given by
(0(" = 0,) - 9(0,0)) = (47)

2kT 4Ar [V . .
7wA k2dkE2—z [—(gkz/f))ltlz ]

From the asymptotic properties of E,(t), it is clear that
the integral does not converge at k — 0o necessitating a
finite cut-off (which we choose as the size of the probe
particle). We can express the correlation function as

3/2
-39 2FT <£) 2-2

(@(0, ) - 9(0,0)) P el

g

Ao
I, = / dza’? B, (—z®) (48)
0

and Ao = (tg/pa®)1/°.
We can get an approximation to the value of I, by
splitting the integral into two sections

1 Ao
I, = / drES (—2%) —|—/ dvE> (—z®)
0 1

using the two asymptotic forms for E, ().
We then obtain finally the expression

(T(F — 0,1) - 5(0,0)) = Cuft| >C=2/2 4 Coft| =322

(49)
where
_4kT o\
= (5) 0
50(3 — 2)0(2 — 1) — 30(z — 1) — 150(3 — 2)
15T (3—2)T'(z — 1)
and

_ART [p\ 1
G () O

Here, the dominant first term in Eq. [@3) corresponds to
a faster asymptotic decay of correlations for z < 1 than
for simple liquids. This is a direct consequence of the
super-diffusive propagation of stress in this case. Also,
it is interesting to note that the second term in Eq. (49)
strictly vanishes in the z — 1 limit of simple liquids.

III. MATERIALS AND METHODS

Simple liquids: For our experiments we used two
Newtonian fluids with different viscosities 7 and mass
densities p, namely water (n = 0.969 mPas and p =
1000 kgm=3) and a (1 : 1 v/v) water/glycerol mixture
(n = 6.9 mPas and p = 1150 kgm~?).

Viscoelastic fluids: We performed experiments with
two different viscoelastic fluids, worm-like micelle so-
lutions and solutions of the cytoskeletal biopolymer
F-actin.  Worm-like micelles were prepared by self-
assembly of cetylpyridinium chloride (CPyCl) in brine
(0.5M NaCl) with sodium salicylate (NaSal) as counteri-
ons, with a molar ratio of Sal/CPy = 0.5. Three differ-
ent concentrations of worm-like micelles were used: ¢, =
0.5%,1% and 2%. Worm-like micelles behave essentially
like linear flexible polymers with an average diameter of
about 3 nm, a persistence length of about 10 nm, and
contour lengths of several pm [34]. F-actin was polymer-
ized from monomeric actin (G-actin) isolated from rab-
bit skeletal muscle according to a standard recipe [35].
G-actin was mixed with silica beads in polymerization
buffer 2 mM HEPES, 2 mM MgCly, 50 mM KCl, 1 mM
NapATPa, and 1 mM EGTA, pH 7] and incubated for
1 hour. Entangled actin solutions were used as a model
system for semiflexible polymer solutions. Experiments
were done at concentrations of ¢ = 0.5 and 1 mg/ml.

A. Experimental methods

Details of the experimental set-up can be found in
[13, 121, 136, 137]. Briefly, we have used a custom-built in-
verted microscope that includes a pair of optical traps
formed by two focused laser beams of different wave-
lengths (A = 1064 nm, ND:YVOQy, Compass, Coherent,
Santa Clara, CA, USA) and A = 830 nm (diode laser,
CW, IQ1C140, Laser 2000). The optical traps fulfil two
functions: (i) They confine the particles around two well-
defined positions and at the same time detect particle
displacements with high temporal and spatial resolution
in the passive method. (ii) In the active method one trap
is used to apply a sinusoidally varying force to one par-
ticle, while the response of the other particle is detected
in the second trap. In the passive method, a pair of
silica beads (Van’t Hoff Laboratory, Utrecht University,
Utrecht, Netherlands) of various radii (R = 0.25 pm
+5%, 0.580 pm +5%, 1.28um +5% and 2.5 pum+5%)
were weakly trapped (trap stiffness between 2 uN/m and
5 uN/m, where larger particles required the higher laser



intensities to avoid shot noise. Transmitted laser light
was imaged onto two quadrant photo diodes, such that
particle displacements and in the x and y directions were
detected interferometrically [12]. A specialized silicon
PIN photodiode (YAG444-4A, Perkin Elmer, Vaudreuil,
Canada), operated at a reverse bias of 110 V, was used
in order to extend the frequency range up to 100 kHz for
the 1064 nm laser @] The 830 nm laser was detected
by a standard silicon PIN photodiode operated at a re-
verse bias of 15 V (Spot9-DMI, UDT, Hawthorne, CA).
Amplified outputs were digitized at 195 kHz (A/D inter-
face specs ) and further processed in Labview (National
Instruments, Austin, TX, USA). Output voltages were
converted to actual displacements using Lorentzian fits
to power spectral densities (PSD) as described in [39]. In
the case of water, calibration was done on the beads that
were used in the experiments, while for the viscoelastic
solutions and the more viscous liquid, calibrations were
done in water with beads from the same batch.

In the active method, the 1064 nm laser was used
to oscillate one particle, while the 830 nm laser was
used for detection of the second particle at a sep-
aration distance r. The driving laser was deflected
through an Acousto-Optical Deflector (AOD) (TeOa,
Model DTD 276HB6, IntraAction, Bellwood, Illinois),
using a voltage-controlled oscillator (VCO) (DRF.40, AA
OPTO-ELECTRONIC, Orsay, France). The force ap-
plied to the driven particle was calibrated by measuring
the PSD of the Brownian motion of a particle of the same
size trapped in water with the same laser power [39].
The output signal from the QPD detecting the second
laser was fed into a lock-in amplifier (SR830, Stanford
Research Systems, Sunnyvale, CA, USA) to obtain am-
plitude and phase of particle response. All experiments
were done in sample chambers made from a glass slide
and a cover slip with about 140 pm inner height, with the
particles at at least 25 pm distance from both surfaces.
The lab temperature was stabilized at T = 21.5 °C.

IV. DATA ANALYSIS

In both the active and passive methods we calculate
the linear complex response function « defined by u(w) =
a(w) X F(w), where F(w) is the applied force. Linear re-
sponse applies by definition in the passive method, and in
the active method the particle displacements u(w) were
kept sufficiently small. Again, we consider separately
real, o (w), and imaginary parts, o”(w), of the response.
In all our experiments, as sketched in Fig. [ the coordi-
nate system was chosen in such a way that = is parallel
to the line connecting the centers of the two particles (]|)
and y perpendicular (L)to that. The inter-particle re-
sponse functions along these two directions were used to
determine the flow field.

The displacement ug)(w) of particle 1 in the z di-

)

rection is related to the force Féz acting on particle

2 according to ug)(w) = aj(w) x Féz)(w). Similarly,

FIG. 4: (Color online) Schematic sketch of the experiment.
A pair of silica beads (radius R) is trapped by a pair of laser
traps at a separation distance r. In the passive method, the
position fluctuations of each particle in the z and y directions
are simultaneously detected with quadrant photodiodes and
the displacement cross-correlations are measured parallel and
perpendicular to the line connecting the centers of the two
beads. In the active method, one of the beads is oscillated
by rapidly moving one laser trap either in x or in y direction
and the resulting motion of the other particle is measured in
z and in y direction. Laser intensity was adjusted to result in
the trap stiffness of typically between (2uN/m and 5uN/m)
for passive measurements.

the perpendicular response function was derived from
uz(,l)(w) = aj(w) x Fy(2) (w). The single-particle re-
sponse functions for each z and y directions are de-
fined as uS;(w) = Qauto(w) X Fél)(w). For homoge-
neous, isotropic media, the two functions Q) 1 (w) com-
pletely characterize the linear response at any point in
the medium due to a force at another point. The dis-
placement response functions o | (w) determine both
position and velocity response —iway) | (w).

In the passive approach, the medium fluctuates in
equilibrium, and the only forces on the particles are
thermal/Brownian forces. Therefore the fluctuation-
dissipation theorem (FDT) of statistical mechanics [40]
relates the response of the medium to the displacement
correlation functions. For two particles, these correla-
tion functions are the cross-correlated displacement fluc-
tuations: (ul” (H)ul? (0)) and (WS (#)ul?(0)). We used
Fast Fourier Transforms (FFT) to calculate displacement
cross-correlation functions in frequency space and ob-
tained the imaginary parts of the complex inter-particle
response functions O‘ﬁ, | (w) via the FDT:

w [l ()ul? (0))ewtdt
2kT

afj(w) = (52)



and

w (D u® (o)) eivt
o/i(w): f< Y (t)2kUT(O)> dt7 (53)

where k is the Boltzman constant and T is the controlled
laboratory temperature. The real parts of inter-particle
response functions 041 | | (w) were obtained by a Kramers-

Kronig integral:

, 2 = Caff | (w)
of L (W) = P/O 2oL (54)

T <2_w2

92 ) oo . .
= _/0 cos(tw)/o a1 (Q)sin(tC)dc,

s

where P denotes a principal-value integral [20]. The high
frequency cut-off of the Kramers-Kroning integral lim-
its the frequency range of the calculated a? I 1 (w) [13].
We also used the active method to obtain both real and
imaginary parts of the response functions with 100 kHz
bandwidth, as in Refs. [21, 137]. Here the lock-in am-
plifier provides directly in-phase (real part) and out-of-
phase (imaginary part) response of the second particle.
The measurements were done over a grid of driving fre-
quencies.

V. RESULTS
A. Simple liquids

In the low-frequency limit, where fluid inertia can be
neglected, the inter-particle response functions are in-
versely related to the shear modulus of the medium
[20, 124, 41]. For a simple viscous fluid, the response
functions in this limit are given by:

1

(55)

o) =2a; =

I + 4dmrwn
where r is the separation distance between the two par-
ticles and n is the viscosity. These relations also shows
(via the FDT) a 1/r dependence of the Fourier transform
of the displacement cross-correlation functions:

Si= [P o)t (50
and
S, = / (D (£)ul (0)) =t dt (57)

In Fig. B displacement cross-correlation functions for
particle pairs in water, normalized to compensate for the
distance dependence (47rS) and 87rS) ), are plotted
versus frequency. For comparison a single-particle dis-
placement auto-correlation function, normalized for the
bead size dependence (67 RSauto), is plotted as a solid
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FIG. 5: Normalized displacement cross-correlation functions
(a) 4mrS); and (b) 8775 of two probe particles (silica beads,
R = 0.58 pum) in water versus frequency (f = w/2m), com-
pared for different separation distances r (symbols). In both
(a) and (b), the solid line is the auto-correlation function of
a single particle, normalized by 67 R. The single-particle mo-
tion agrees well with the expected frequency dependence of
a single Brownian particle (slope of -2), as indicated by the
dashed lines.

line, for a particle radius of R = 0.58 pum. The auto-
correlation function agrees well with the power-law slope
of -2 up to nearly 100 kHz. This slope is expected
from the high-frequency limit of the Lorentzian shape of
the power spectral density (= Fourier Transform of the
displacement autocorrelation function) of the displace-
ments of a harmonically confined Brownian particle in
a viscous fluid [39]. The effect of fluid inertia is evi-
dent as a deviation from this power law in the displace-
ment cross-correlation functions. A systematically r de-
pendent decrease of the cross-correlations is apparent at
high frequencies for separations r ranging from 2.2 um
to 11.7 um. The faster decrease of cross-correlations is a
manifestation of the finite velocity at which stress prop-
agates into the medium. For larger r, the data show



that the decrease begins at a lower frequency, because
it takes longer for stress to propagate further. A com-
parison of Figs. Bh and b shows that the decrease of
the cross-correlation is, at the same separation distance,
more pronounced in the perpendicular channel than in
the parallel channel. This is due to the fact that in the
vortex-like flow pattern of Fig. Bl there is a region of fluid
motion in the opposite direction to the applied force. For
r > 5 wm (open squares), the cross-correlations become
negative in the observed frequency window (not shown
in the log-log plot). At still higher frequencies, the dis-
placement cross-correlation functions again become pos-
itive (Fig. Bb), which is visible for the larger separations,
r = 83 um and r = 11.7 um, consistent with the ex-
pected oscillation in the displacement cross-correlation
functions in the frequency domain. This effect becomes
more pronounced in viscoelastic media

The spatial and temporal propagation of the inertial
vortex in a general viscoelastic medium is characterized
by Eqgs. (BHII) [4, [7, [11]. For simple liquids, A = 7 (vis-
cosity) and z = 1. In Figs. Bh and b, we compare the
imaginary parts of the normalized inter-particle response
functions 471'777“(.«)04“((.«)) (Fig. [Bh) and 8mnrwa’| (w) (Fig.
[6b) for water and a (1:1 v/v) water/glycerol mixture. In
order to collapse all data onto a single master curve, as
suggested by Eqs. (B{IT]), we have plotted these normal-
ized response functions versus the probe particle separa-
tion r scaled by the corresponding frequency-dependent
penetration depth &, = y/n/pw. As shown in Fig.[6 data
taken at all of the different separations r ranging from
2.2 pym to 11.7 pwm fall onto a single curve for both, the
parallel (Fig. [Bh) and the perpendicular (Fig. [Bb) inter-
particle response functions. Data for water also collapse
on water/glycerol data, after accounting for the different
viscosities, which are known in both cases. Thus, no free
fit parameters were used. The single curves of collapsed
data are in quantitative agreement with the frequency-
dependent dynamic Oseen tensor in Eqs. (I2[13]) shown
by the solid lines in Figs. [Bh and b, where the region of
negative response in the perpendicular direction corre-
sponds again to the back-flow region of the vortex already
described above.

At separations r large compared to particle size, the
inter-particle response functions become independent of
probe particle size and shape [24], leaving a dependence
only on r and w. In our analysis, we have assumed that
the particles are point-like since the ratio r/R > 4 in all
experiments. In order to directly check the validity of the
approximation, we measured the inter-particle response
functions with particles of different sizes. In Fig. [T and
b the imaginary parts of the normalized response func-
tions in water 47777rwo¢ﬁ (w) and 8mnrwa’| (w) are plotted
versus 7/d,, obtained with probe particles of radius R =
0.58 um, 1.05 um, 1.28 um and 2.5 wm. We find no sys-
tematic bead-size dependence, justifying the point-probe
approximation. Again all normalized and scaled data col-
lapse onto one single curve for each channel, which in turn
agrees well with the dynamic Oseen tensor. The devia-
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FIG. 6: Normalized imaginary parts of inter-particle response
functions between two probe particles (silica beads, R = 0.58
pm) measured with the passive method, (a) 4rrnway| in the
parallel direction and (b) 87rnwa’l in the perpendicular di-
rection, plotted versus the ratio of the separation distance
r (fixed for a given bead pair) to the frequency-dependent
viscous penetration depth J,, in water (open symbols, 7
= 0.969 mPa s) and in water/glycerol (filled symbols, n =
6.9 mPa s). Solid lines are Oseen’s predictions for a simple
liquid with no adjustable parameters. Data is only plotted
for w > 200 rad/s and for w < 2krad/s one in every 5 data
points is shown.

tions observed in the last data points for R = 1.05 um
and 2.5 um are most probably due to the influence of
shot noise at high frequencies. Shot noise becomes a
problem for larger beads because of their smaller fluctu-
ation amplitudes, which will eventually produce signals
that approach the fixed shot noise level. The deviations
observed for these particle sizes are not consistent with
a possible error due to finite particle size, which should
be larger for smaller r/R.

So far, we have considered the passive fluctuations that
directly measure only the imaginary (out-of phase) part
of the inter-particle response functions (o[ | (w)). With
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FIG. 7: (Color online) Normalized imaginary parts of inter-
particle displacement response functions between two probe
particles of various radii measured with the passive method
in water (silica beads, R given in legend),(a) 4mrnwa]| in the
parallel direction and (b) 87rnwa’| in the perpendicular di-
rection, plotted versus the ratio of the separation distance r
(fixed for a given bead pair) to the frequency-dependent vis-
cous penetration depth d,. These response functions also rep-
resent the in-phase velocity response normalized by the corre-
sponding components of the Oseen tensor. Different particle
sizes (R = 0.58, 1.05, 1.28 and 2.5 um) were used at various
separation distances 7.

the active method described in Sec. [ITAl we can deter-
mine both real and imaginary part of the response func-
tions. In Figs. [Th and b, we show the normalized inter-
particle response functions ah)l_(w) and aﬁ)l_(w) mea-
sured by active microrheology (bead radius R= 0.58 pm)
in water for both parallel and perpendicular direction.
In both cases we find good agreement with Eqs. (T213]).
The slightly different separation distances in parallel (r
= 10.3 wm) and perpendicular (r = 11.3 pm) were due
to different settings of the AOD signal in these measure-
ments.

11
B. Viscoelastic solutions

In viscoelastic polymer solutions, the elastic compo-
nent in the response of the medium modifies the propa-
gation of the inertial vortex. We first discuss our results
for worm-like micelle solutions, the viscoelastic proper-
ties of which have been characterized by microrheology
[42,143]. In Fig.[Bwe have plotted the displacement cross-
correlation functions (47rS); and 8775, ) in a 1% worm-
like micelle solution versus frequency for two particles at
various separation distances r between 2 and 8 ym. For
comparison, we have added the scaled auto-correlation
function 67 RS,y for a single particle (R = 0.58 um).
In contrast to the situation in simple liquids, the particles
were here confined by the surrounding polymer network
and do not diffuse freely. Thus, the frequency dependence
is weaker than for Brownian motion (i.e., the slope is less
steep than -2 in the low-frequency, non-inertial regime)
[42, 143]. As before, the displacement cross-correlation
functions of the two probe particles are used to map the
vortex-like flow pattern and its propagation in time. The
r-dependent decrease of the cross-correlation functions
occurs for both parallel (Fig.[Bh) and perpendicular (Fig.
[Bb) directions, although the latter is more apparent.

In order to collapse these data onto a single curve for
each of the two channels (parallel and perpendicular), fol-
lowing Eqs. (8HII]), we plot the normalized inter-particle
response functions 47|G|raj| and 87|G|ra’| versus scaled

7/0ye , Where 0, is the viscoelastic penetration depth.
Unlike for the water and water/glycerol samples, we do
not a priori know the frequency-dependent shear modu-
lus G*(w). Based on theoretical expectations for flexible
polymers [217], as well as on prior high-frequency rheology
of worm-like micelle solutions [42, 43], we assume that
the shear modulus has the functional form given in Eq.
@I). Thus, in order to achieve the collapse of all data
onto the master curves represented by Egs. (BHII]), we
vary the two correlated parameters g and z. We expect
z to be independent of the micelle concentration, while
g should depend linearly on the polymer/micelle concen-
tration. In Fig. @k, we show the resulting collapse of the
normalized inter-particle response functions in parallel
and perpendicular directions for different separations r.
The predictions of Egs. (8HII)) are shown with black and
gray lines |11]. The best overall collapse of the data for
worm-like micelles solutions at all concentrations (0.5, 1
and 2 weight percent) and separations r from 2 um to
16 pm was found for z = 0.68 + 0.05 and g concentration
dependence as seen in Fig. [@b.

In order to further test the inertial effects in viscoelas-
tic media, we also performed experiments on another vis-
coelastic fluid with a somewhat different frequency de-
pendent shear modulus, namely entangled F-actin solu-
tions. At high frequency, semiflexible F-actin filaments
contribute to the viscoelasticity of the medium in a dif-
ferent way from flexible polymers [19, 120, 28, 29]. There-
fore, the spatial structure and the propagation dynamics
of the vortex should be different. Figure shows the
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FIG. 8: Normalized displacement cross-correlation functions
4mrS)| (a) and 87rS1 (b) of two probe particles (silica beads,
R = 0.58 um) in worm-like micelle solutions (¢, = 1 wt%)
versus frequency (f = w/27w) compared for different separa-
tion distances r. The solid lines represent the auto-correlation
function of a single particle normalized by 6w R. The dashed
lines indicate slopes of -2, corresponding to diffusive motion.

collapse of the inter-particle response functions 47|G |ro¢ﬁ

and 87|G|ra’] plotted versus scaled distance r/d,. onto
two master curves for the parallel and the perpendicular
direction. The actin concentration was 1lmg/ml and the
probe radius 0.58 um and we used separation distances
r ranging from 4.2 pm to 16.2 pm. In an F-actin so-
lution of this concentration, the magnitude of the shear
modulus is large, therefore the vortex propagates faster,
making it harder to observe. In particular, it was diffi-
cult to determine the parameters g and z in this case.
We found the best collapse with z = 0.78 £+ 0.1 for data
taken in passive method. We then fixed z to 0.75 known
from the power law dependence behavior reported previ-
ously [19, 120, 128, [29], and found g = 0.18 £+ 0.13Pa s*.
To reduce the large error bars in the passive method, it
would be necessary to repeat our measurements at higher
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FIG. 9: (Color online) (a) Collapse of the imaginary parts of
the normalized inter-particle response functions (47r|G|aj| (w)
and 877|G|a’] (w)) between two probe particles (silica beads,
R = 0.58 um), measured with the passive method for differ-
ent separation distances r in worm-like micelle solutions of
1 wt%, plotted versus the ratio of the separation distance r
(fixed for a given bead pair) to the frequency-dependent vis-
coelastic penetration depth d,.. Here, the viscoelastic pene-
tration depths were determined by varying the parameters g
and z in Eqs. BII2I) to obtain collapse. Optimal param-
eters were z = 0.68 £+ 0.05 and g = 0.0275 £+ 0.008 Pa s*,
where the solvent (water) viscosity has been taken into ac-
count. (b) Dependence of (optimal) parameter g on micelle
concentration for a fixed z.

frequencies and /or larger separation distances. Neverthe-
less, our results are consistent with prior measurements
and predictions of both parameters.

Independently, we have measured both real, 04 I (W),
and imaginary, aﬁ7 | (w), parts of the response functions
directly by actively manipulating one particle and mea-
suring the response of the other. In Figs. Ph and b, the
parallel (Fig. Bh) and perpendicular (Fig. Bb) complex
inter-particle response functions for ¢ = 1 mg/ml F-actin
solutions are shown, probed with beads of 1.28 um ra-
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FIG. 10: (Color online) Collapse of the imaginary parts of
the normalized inter-particle response functions between two
probe particles (silica beads, R = 0.58 pum), measured with
the passive method for different separation distances r in F-
actin solutions of concentration 1 mg/ml, plotted versus the
ratio of the separation distance r (fixed for a given bead pair)
to the frequency-dependent viscoelastic penetration depth
dve. Here, the parameters § and z in Eq. 2II) were varied
to obtain simultaneous collapse of all data sets onto Eqs. (8
[I)), using a single set of parameters z and g, while accounting
for the solvent (water) viscosity. We find z = 0.78 £ 0.1, and
g = 0.18 £ 0.13 as optimal parameters. Data are presented
for parallel (closed symbols) and perpendicular (open sym-
bols) directions. The solid black line represents Eq. (28] and
the gray line represents Eq. (80), both with z = 0.75 and g =
0.2 Pa s®.

dius. Here the inter-particle response functions were fit-
ted with Eqs. 8HIT)) to find parameters g = 0.22+0.05
Pa s* and z= 0.78+£0.01 simultaneously. Data for both
parallel (r = 12.1 pm) and perpendicular (r = 13.5 pum)
channels are compared with z = 0.75 and g = 0.22 Pa s*
in Fig. Bh and b.

The values of z and g found from both methods are
consistent and also agree with results from prior experi-
mental microrhelogy and macrorheology experiments for
both entangled actin solutions |18, 19, 20, 128, [29] and
worm-like-micelle solutions [42, [43]. To obtain these
values it was essential to model the inertial effects in-
cluding both polymer and solvent contributions to the
shear modulus. We observed that, although the high-
frequency rheology of the polymer solution is dominated
by the polymer, the background solvent contributes non-
negligibly to the inertial vortex propagation. To test this,
we excluded the solvent shear modulus (—iwn) in Egs. (8
[[T210), and analyzed our data assuming a high-frequency
shear modulus of the form G = gw?®. For both worm-
like micelle solutions and entangled F-actin solutions, we
found much larger values of z ~ 0.9 and a nonlinear con-
centration dependence of g, contrary to expectations.

13
VI. DISCUSSION

In our experiments we have directly resolved the iner-
tial response/flow of fluids on micrometer and microsec-
ond time scales using optical trapping and interferometric
particle-tracking. Our results demonstrate that vortic-
ity and stress propagate diffusively in simple liquids and
super-diffusively in viscoelastic media. One consequence
of inertial vortex formation is the long-time tail effect ob-
served in light scattering experiments [6]. To connect to
these results, we calculated the velocity auto-correlation
of a single particle from the displacement fluctuations.
Unfortunately, the effect we are looking for is subtle and
is difficult to detect in the presence of other factors. At
the highest frequencies the vortex is still influenced by
the finite probe size, and at intermediate frequencies the
particle motion is already affected by the laser trap po-
tential. The results were thus inconclusive. Similar prob-
lems have been reported in Ref. [9]. The effects of in-
ertia we have described here set a fundamental limit to
the applicability of two-particle microrheology techniques
which are based on the measurement of cross-correlated
position fluctuations of particles [14, 18,119,124, 42]. Iner-
tia limits the range of stress propagation at high frequen-
cies, stronger in soft media such as those studied here
than in media with higher viscoelastic moduli. Inertia
affects measurements at frequencies as low as 1 kHz for
separations of order 10 micrometers, showing an appar-
ent increase of the measured shear moduli below their
actual values |43]. Since the stress propagation is dif-
fusive, or nearly so, even measurements at video rates
can be affected for probe particle separations of order
50 micrometers. As we have shown here, these inertial
effects are more pronounced in the perpendicular inter-
particle response functions than in the parallel ones. This
suggests that one should obtain shear moduli from the
parallel inter-particle response functions if one doesn’t
want to correct for inertia. In a more precise analysis
of two-particle microrheology experiments, the fluid re-
sponse function can not simply be modeled by a general-
ized Stokes-Einstein relationship and has to be corrected
for inertial effects according to the probed frequency as
well as the particles separation. Such corrections, how-
ever, will necessarily be limited, given the exponential
attenuation of stress due to inertia.
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