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1. Introduction

This thesis relates to filaments. The filaments we will be concerned with can be
found in every cell of any living being on this planet which belongs to the class of
eukaryotes. Plants, cats, mosquitoes, whales and yeast are eukaryotes; bacteria do
not belong to the club, they are prokaryotes. Cells are the elementary working units
of the earth living systems. Eukaryotic cells are bigger, more complex, and carry
more complex tasks than prokaryotic ones. In fact, prokaryotes are never bigger
than just one cell.

Filaments are used in cells for a wide variety of purposes. Perhaps the most
known example (which, however, does not concern this thesis) is that both eukary-
otes and prokaryotes use a filamentous structure, the DNA, to process information.
Eukaryotic cells also use filaments to define their changing internal and external
structure and shape, for example when they divide. An example of such process
will be the subject of the first part of this thesis. The filaments performing tasks
related to cell structure are the main part of the so-called cytoskeleton, by anal-
ogy the “skeleton” of the cell. Some specialized cells and unicellular organisms
use cytoskeletal filaments to propel a fluid or to propel themselves in a fluid, as is
the case for a sperm cell. The hydrodynamics of swimming using a microscopic
filamentous appendage will be the subject of the second part.

Since these two topics, although related, are quite different, | divided the thesis
in two separate parts, which can be read independently. Each part has its own
introductory and closing chapter. | will use the rest of this introduction to set a
general framework.

1.1. Microtubules

The first part of the thesis will be concerned specifically with microtubuies [1], a
particular kind of filament used by eukaryotes. Its subject will be the organization
of microtubules before the division of plant cells.

Microtubules (Fig[I]1) are tubular polymers of the protein tubulin. They are
flexible, but at the same time very stiff. In fact, microtubules are the stiffest poly-
mers available to eukaryotic cells, with a persistence length (the length that they
have to reach for a thermal fluctuation to bend them) of about 3 millimefers [2],
two orders of magnitude greater than their typical length.

The length of microtubules is governed by the “dynamic instability” process
[, B, 1], which is responsible for stochastic transitions, driven by the far-from-
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Figure 1.1.: Microtubules and their structure. Left panel: a transmission electron
micrograph of microtubules (Gwen Childs, Univ. of Texas, USA).
Middle panel: sketch of microtubule structure (John Kenney, Birbeck
College, London UK). Right panel: crystallographic structure of tubu-
lin dimer (adapted from ref[[3]).

equilibrium chemical reaction of GTP (Guanosine Tri-Phosphate, a phosphorylated
nucleoside composed of guanine, ribose, and three phosphate groups) hydrolysis,
between states of polymerization and depolymerization. The dynamic instability is
characterized by four parameters, two velocities (growth and shrinkage) and two
transition probabilities, called “catastrophe” and “rescue” frequency. The values
of these parameters, which depend on physical quantities such as temperature and
tubulin concentration, determine whether a steady state exists, or whether the poly-
mers are in a so-called “unbounded growth” state, where their average length in-
creases with time (see F[g]L.2). The steady state length distribution is typically
exponential.

In the cells, microtubules are fundamental for the structural organization and
its dynamical changes, for instance during cell division. They also play a role in
transport processes, for example in the axons of neural cells. How do microtubules
generate the forces necessary for all these processes? Besides being themselves
active, through the process of dynamic instability, microtubules interact with a class
of force generating proteins, called molecular motars [6], which are able to use the
energy released by the hydrolysis of ATP (Adenosine Tri-Phosphate, an analogue
of GTP that supplies energy for many biochemical cellular processes by undergoing
enzymatic hydrolysis). The two main microtubule-interacting classes of molecular
motors are called kinesins and dyneins. Actin microfilaments, the other kind of
active cytoskeletal filaments, also interact with the molecular motor myosin, and
are perhaps more widely known, because the forces they generate are the source of
muscle contraction.

How microtubules and actin filaments organize cooperatively into different struc-
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Figure 1.2.: Dynamic instability of microtubules. The graph shows the typical fluc-
tuating (solid lines) and mean (dashed lines) behavior of a microtubule
length as a function of time, in presence of dynamic instability, in the
regimes of bounded (b) and unbounded (u) growth respectively. Figure
adapted from referencé [5].

tures which generate the morphology of cells is a fundamental question in cell biol-
ogy, which has many physical aspects. | will analyze a particular realization of this
problem, the case of microtubule organization between two cell divisions in plant
cells.

1.2. Flagella and Microorganism Motility

In the second part of the thesis | will analyze the motion of flexible filaments used
for propulsion, focusing on some hydrodynamic aspects of this process. The inspi-
ration for this work comes from the swimming of flagellated cells. Flagé&lla [7] are
long and thin protuberances of the cell membrane, that contain a highly organized
array of microtubules and dynein molecular motors. The forces generated by this
array are able to modify the shape of flagella and make the cell swim in a fluid.
However, swimming is not a trivial issue for a mesoscopic body, because it can-
not rely, as we do, on inertia. To create macroscopically a similar environment we
would have to try to swim in something very viscous, like molasses.

One can separate two different sorts of problems concerning flagella. One is
how the many interacting internal devices cooperate to generate the forces, and
thus the shape. The other is how generically a flexible mesoscopic filament can
swim in absence of inertia, how fast and how efficient it can be. | will consider this
second problem.
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2. Overview of the Problems

The general importance of investigating the organization of cytoskeletal filaments
(and of microtubules in particular) in eukaryotic cells is related to their role in cell
morphogenesids]&] 9]. The cytoskeleton can be seen as an active system of pro-
teins and filamentous protein assemblies through which a cell defines its shape, and
therefore many aspects of its identity. We all know that the shape of animals is
quite distinct from the shape of plants. This is true also at the cell level, although
the set of basic proteins that constitute the cytoskeletal machinery in animals and
higher plants is largely the same, and these proteins are highly conserved between
the kingdoms. In other words, the few existing plant-specific genomic modifica-
tions are sufficient to give rise to a quite distinct morphology on many different
levels of spatial organization J1(,111]. The question is then what the few essential
relevant features at the protein level are that distinguish two morphological cate-
gories within eukaryotes. One patrticularly intriguing realization of this problem
forms the motivation for the work | am presenting in this first part of the thesis:
the formation of the microtubule cortical interphase array [1T2/[13[~14, 15] and the
preprophase band 16,117 14] 18, 19], two patterns with no equivalent in animal

cells (Fig.[ZB).

2.1. Specificity of Plant Cell Morphology Over
the Cell Cycle

Let us first look at some of the key features that single out the morphology of plant
cells, and how they relate with the cytoskeleton. Unlike animal cells, plant cells
are constrained within rigid cell walls and are unable to rapidly change shape or to
migrate. Cellulose microfibrils are synthesized by a particular enzymatic complex,
the cellulose synthase, which is integrated into the plasma membrane[15, 20].
Because plant cells are enclosed in cell walls, their polar growth is an essentially
irreversible process that plays a key role during organ morphogenesis. Polar plant
cell growth is largely controlled by cell wall properties and is therefore based on
completely different mechanisms than the growth of animal cells.

A second main difference with animal cells, is that plant cells generally contain
large vacuoles that take up most of the cell volume [21] (Eid. 2.1) . Vacuoles are
water-containing cavities that perform various functions. They can act as a stor-
age or degradation compartment for nutrients or waste products, as a cost-effective
way of increasing cell size, and as a homeostatic regulator controlling both tur-
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gor pressure and pH of the cytosol. In vacuolated plant cells, the cytoplasm is
restricted to thin layers in the cell cortex and around the nucleus, which are linked
by transvacuolar cytoplasmic strands. For this reason, during interphase, plant mi-
crotubules are found predominantly in the cortical cytoplasm, where they are irreg-
ularly, obliquely, or longitudinally arranged.

Figure 2.1.: Vacuoles and the microtubule cytoskeleton. The figure shows two con-
focal section of alradescantia Virginianaell microinjected with flu-
orescently labeled tubulin purified from pig brain (Jan Vos, University
of Wageningen, NL). The left panel is a mid-plane section. Here, the
dark areas that fill most of the cell volume are the vacuole. Micro-
tubules (white in the picture) are confined in thin regions surrounding
the nucleus and the cortex, and in thread-like volumes called cytoplas-
mic strands. The right panel is a top-plane section, showing cortical
microtubules.

Another fundamental morphological characteristic of plant cells goes back to
specificities in the microtubular cytoskeleton: plant cells have no centrosomes [14].
The typical locations of microtubules in animal cells are asters, spindles and flag-
ella. In these cases, microtubules emanate from centrosomes, microtubule-nucleating
complexes that are centered on a microtubule-derived apparatus known as a centri-
ole. Centrosomes can act interchangeably as spindle poles, anchors for the radial
interphase array or basal bodies for cilia and flagella. In fact, centrosomes are ab-
sent from up to half of known eukaryotic species including most fungi, protists and
vascular plants and from the spindles and interphase arrays of manylalgae [6].

Plant microtubule arrays perform functions that relate to the development of the
plant cell wall and, hence, to plant cell shape and growth polarity (the choice of a
preferred direction of cell expansion). Given the underlying differences we have
discussed, what does the microtubular cytoskeleton look like in plants? Single cell
model systems such as tobacco BY-2 suspension Cetslescantia Virginiana
stamen hair cells, guard cell initials, cultured pollen tubes, root hairs, trichomes,
mesophyll cells and algal cells have been widely exploited to investigate cytoskele-
tal functions in the cellular processes that affect developmenf{2Z 1411323, 24].
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Figure 2.2.: Microtubule arrays during the plant cell cycle. Upper panel, schematic
illustration of the three-dimensional configuration of the filaments
(adapted from ref.014]). Lower panel, two-dimensional confocal mid-
plane sections of tobacco BY-2 cells, stably expressing GFP-MBD, a
microtubule binding domain that originally belongs to the microtubule-
associated protein MAP4. The bright areas represent microtubules (Jan
Vos, University of Wageningen, NL). (a) Preprophase band. (b) Mi-
totic spindle (metaphase). (c) Early phragmoplast (telophase). (d) Late
phragmoplast. (e) Early cortical interphase array. (f) Late cortical in-
terphase array.

During prophase, microtubules form a mitotic spindle as in animal cells. Spin-
dle poles are typically broad, not tightly focused as in centrosome-containingcells [14]
(Fig. [Z2b).

In cytokinesis, the process that results in the separation of two daughter cells
following completion of nuclear division, the presence of the external wall prevents
a plant cell from forming a membrane neck and cleave it, as animal cells do (using
a contractile actin ring, the cleavage furrow). Plants have evolved a unique mode
of cytokinesis. A new cell wall, the cell plate, is built by targeted secretion be-
tween the two daughter nuclei. Cell plate formation is initiated in the cell center
and proceeds centrifugally until the new cell wall fuses with the parental cell wall.
Positioning of the cell plate is of crucial importance for plant morphogenesis and is
under cytoskeletal contral[21]. At the anaphase-telophase transition, microtubules
form the so-called “phragmoplast” (Fig:R.2c and d). Like spindles, phragmoplasts
are bipolar complexes containing microtubules with their plus ends meeting at the
mid-plane. They direct the transport of vesicles from the Golgi apparatus towards
the centrifugally expanding cell plate, which becomes the cross-wall at the interface
of daughter cells[[14].

Dividing cells in young plant organs generally form perpendicular to the organ
surface cell plates. After completing the cell cycle, newly formed cells elongate
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perpendicularly to the cell plate, resulting in the controlled, directed expansion of
developing organs. During embryogenesis and meristem (undifferentiated tissue)
development, cell plates in single dividing cells are parallel to the surface, leading
to the establishment of new cell layers. Together, these processes are responsible
for the organization of cells in files and layers that is typically observed in plant
tissues([21].

Microtubules and actin filaments appear to have essential functions in cell plate
positioning. At an early stage of cell division, cortical microtubules reorganize into
a ring of parallel bundles, the preprophase band (Fig. 2.2a). Actin filaments are
also present in this array and may be required for its final restriction to a narrow
ring. The preprophase band predetermines the site where the maturing cell plate
will fuse with the parental cell wall. It disappears completely when the spindle is
formed, but is thought to leave landmarks in the cell cortex that guide the extending
cell plate to the correct fusion site-{17].

2.2. The Interphase Cortical Microtubule Arrays

In this part of the thesis, we will be concerned with the cortical microtubule struc-
tures formed during the interphase of plant cells. The first structure is the cortical
microtubule array. It consists of the alignment of the filaments and their typically
transverse arrangement with respect to the cell elongation axis. This pattern can
be observed already in the early stages of the interphase. The second structure,
the preprophase band, forms just before cell division (hence the name) and corre-
sponds to the formation of a narrow, ring-like pattern of transverse microtubules
marking the division site of the plant cell. Both patterns ([Fig. 2.3[@nd 2.4), which
have the highly conserved protein tubulin as basic building block, are important
for many morphological tasks performed by the cell (such as elongation, division,
orientation and differentiation). It is therefore useful and natural to ask whether the
mechanisms of organization underlying these patterns are universal within higher
plants.

The plant cell biology literature on the organization of cortical microtubules in
interphase appears somewhat fragmented, often incoherent, and sometimes even
contradictory. There are at least two reasons for this. First, that the different exper-
imental techniques exploited give partial visions which are often hard to reconcile.
The second reason is that the questions biologists ask are usually quite different
from the ones a physicist would ask when confronted with the same problems, in
the sense that the details of the mechanism through which phenomena are linked
often seem to remain uninvestigated or are considered irrelevant. As a matter of
fact, it must be admitted that what seems unsatisfactory to a physicist is in fact
an operationally very efficient way of connecting pieces of evidence without which
progress would be impossible (this is connected with the more general issue that the
whole concept of causality used in biology differs from the one used in physics).

Let us now return to the case of the cortical microtubules assemblies in inter-
phase. While by no means pretending to be exhaustive, | will list a few of the main

10
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Figure 2.3.: Plant cells in interphase with fluorescent GFP-MBD labeled micro-
tubules, imaged with confocal microscopy. (a) Cortical microtubules
in root tissue. (b) Tobacco BY-2 cell line (courtesy Jan Vos, University
of Wageningen, NL).

results achieved by the abundant experimental investigation on these arrays over
the past twenty years as “stylized facts”. Borrowed from economics terminology,
the term stylized fact normally refers to empirical regularities that describe the be-
havior of economic indicators. Stylized facts are usually formulated in terms of
qualitative properties and focus on unifying traits, rather than on exceptions. Thus,
the facts | will list are meant as general observations, some of which might not be
true for all plant systems, or are open questions of the current scientific debate.

1. Cortical microtubules are confined in the thin (20600nm wide) region
between the plasma membrane on one side and the vacuole on the other.

2. In the cortical array, the microtubules are mostly arranged transversely or
obliquely to the cell elongation direction, which often coincides with the cell
long axis. However, they are able to change their orientation in response to
certain stimuli [25]. In non-elongating cells they are never transverse to the

11
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(b)

© (d)

Figure 2.4.: Different stages in the formation of the preprophase band in tobacco

12

BY-2 cells. Microtubules are labeled with the GFP-MBD microtubule
binding domain, and imaged with confocal microscopy (Jan Vos, Uni-
versity of Wageningen, NL).

cell long axis but instead random, oblique, or longitudinal.

. Evidence shows that that (a) microtubules are short compared to the cell
size [26], and (b) form long bundlesj27] 28] 24] by crosslinking.

4. In mid-interphase, microtubules often appear to form long coils, which seem

to wind around the cell cortex as helicésl[29].

. Microtubule organization can be regulated by various mechanisms, including
tubulin tyrosination[30], and the protein MOR1 (Microtubule Organization-
1) [31], and is gravitropicli32].

. The problem of cortical microtubule organization may be connected with that
of cell wall deposition[T4,715,20]. The connection is not clear cut, however,
as in many instances the two phenomena appear to be independent.

. There is evidence that active processes such as treadmiiling [33] and dy-
namic instability [TO["34] occur; the presence of motor proteins, but not their
activity, has been reported in the arrays [35].
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2.3. Scenarios

A complete explanation of the formation of the two arrays and their behavior, in-
cluding the biological and the physical mechanisms involved, is lacking. However,
the goal of providing a complete physical description of such processes is to date
unrealistic. More modestly, my purpose in this thesis is to present self-contained
physical scenarios for the system under investigation, with an eye to increasing
the focus on topics and questions that can be addressed with further biological
research. The scenarios presented here were explored with the tools of theoreti-
cal/computational modeling arid vitro experiments, in which the complex bio-
logical system is partially reconstructed in a controlled way starting from purified
components. The advantage of this approach, which has revealed its usefulness in
other instances$[36,BI7,138], is that the experiment provides an intermediate descrip-
tion of the system, bridging the living system and the necessarily oversimplified
mechanical theory.

The first scenario | will discuss (compatible with stylized facts (1) and (3a)), at-
tempts to explain the alignment of the interphase array as a nematic effect between
short microtubules confined in a quasi two-dimensional region. | will present this in
chapteB, starting from computer simulations of long thin hard spherocylinders in
a narrow planar slit, which show a transition from the isotropic phase to a nematic
phase with quasi-long-range orientational order upon increasing the density. The
simulation results will be compared with data obtained friamitro experiments
where microtubules are confined in a thin slit, as well as from images of cortical
microtubules interphase plant cells.

The second scenario, described in chapter 4, takes as a starting point the so-
called “dynamic spring” hypothesis proposed by C. Lloyd and collaborafors [39,
40] in the early eighties, which combines stylized facts (3),(4) and (7), in order to
explain (2). According to this hypothesis (originally not formulated as a physical
model), microtubules forming long coiling bundles are responsible for the arrange-
ment and the orientation of the cortical interphase array. The length of these bun-
dles is supposed to be regulated by the cell through an unspecified mechanism of
active relative sliding. In other words, the organization of interphase microtubules
is hypothetically caused by a passive coiling mechanism modulated by the active
elongation of the bundles.

The third scenario (chapt@r 5) is dedicated to preprophase band formation. The
underlying hypothesis is that (cf stylized fact (7)) an active drive provided by
molecular motor complexes or other transport mechanisms, together with the geo-
metrical constraints, are sufficient to organize the microtubules in a ring-like pat-
tern. This hypothesis will be investigated mainly by means of theoretical tools, us-
ing a Landau-like mean-field approach for this kind of active, far-from-equilibrium
systems, and then compared with more microscopic modeling and result@from
vivo labeling of nascent preprophase band microtubules.

These scenarios were selected because of their approachability with a combi-
nation of theory andh vitro experiments, together with their appeal from the point
of view of physics, as they are all essentially physical in nature (and have an inter-
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2. Overview of the Problems

est independent from the biological inspiration). Needless to say, there are other
possibilities, alternative or complementary to these scenarios, the main ones be-
longing to the class of pattern formation of chemical oridin [41, 42]. According

to this picture, extrinsic pattern-forming molecules could, using reaction-diffusion,
directly or indirectly regulate dynamic instability, treadmilling, and in general the
polymerization reaction of microtubules. Explanations of this kind should not be
ruled out. Indeed, they have proved successful in simpler analogous systems such
as the E. Coli MinCDE operon, responsible for the formation of a protein (FtsZ)
ring before bacterial divisiori[43,44,145], and in the regulation of the morphology
of microtubules in some patterns used by animal célis [46]. Moreover, reaction-
diffusion mechanisms have been suggested as a means of alignment and gravit-
ropism for microtubules in solution47,148,149]. | will devote more attention to the
discussion of these alternative points of view when drawing some conclusions in
chapterp.
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3. Microtubules Confined in a
Quasi- Two-Dimensional Planar
Geometry.

3.1. Introduction

In this chapter | will consider the working hypothesis that the confinement in a
thin region, together with excluded volume effects, are sufficient to explain the
alignment of microtubules in the cortical array as a Isotropic-Nematic (I-N) tran-
sition. This statement is inspired by stylized facts (1) and (3a) of ICh. 2. Cortical
microtubules are confined in a thin region, whose thickness is 10-20 times a micro-
tubule diameter. Additionally, since the microtubules are short, one can, to a first
rough approximation, neglect the curvature of the region they are confined in. The
consequences of this hypothesis will be tested by an in vitro experiment, where mi-
crotubules are confined in a thin flat region built in a microscope slide, combined
with a computer simulation study of the phase behavior of a system of thin, hard
spherocylinders undergoing a I-N transition confined between two parallel planar
plates separated by small distances. The theoretical treatment contains two further
assumptions: that the microtubules can be represented as rigid rods (and therefore
their elasticity is neglected), and that they interact through a hard core potential
(and therefore any further details in the interaction potential are irrelevant). The
first of these facts is again justifiable with stylized fact (3a): the short length of mi-
crotubules, together with their high rigidity makes them stiff enough to be regarded
as rigid. In a situation which is remotely realistic for a plant cell, this will be true
provided the microtubules do not assemble in long linear bundles, which may be
the case in the early stages of interphase. The second assumption is motivated by
the fact that, due to screening and to absence of attraction forces, the interaction
potential between microtubules can only be short-ranged repulsive.

The problem analyzed here has an interest independently from its original mo-
tivation. In fact, two-dimensional systems behave generically in a qualitatively dis-
tinct way from three-dimensional ones. In experiments, they are often not strictly
confined to a mathematical surface, but also span a small region in the transverse
dimension. A situation where two hard walls very close to each other confine the
system occurs between the two extremes of bulk and two-dimensions, and, for this
reason, is important to analyze. From this point of view, the question becomes to
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3. Microtubules Confined in a Quasi-Two-Dimensional Planar Geometry.

explore this intermediate regime, and whether one can construct with microtubules
a good model system for the quasi-two-dimensional regime of (broadly polydis-
perse) hard rods.

It is known [50,51] that a system of hard needles or high9) aspect ra-
tio disco-rectangles (two-dimensional spherocylinders) in two dimensions exhibits,
similarly to the xy-model, a nematic transition to quasi-long-range order of the
Kosterlitz-Thouless kind[[52]. The role of disclinations in this system has been
investigated for different two-dimensional geometries [53]. In addition, density
functional theory calculations show that the isotropic-nematic transition in two-
dimensional dispersions of self-assembled or polydisperse needles is confinuous[54].
A related problem is that of surface effects in presence of a singlewali 55,156, 57].
Several theoretical and simulation studies were focused on fluids of hard rods in
contact with hard walls. Chen and Cui performed density functional theory cal-
culations for a fluid of hard semiflexible polymers near a hard wall. They show a
weakly first-order uniaxial to biaxial transition (signature of two dimensional or-
dering in the plane defined by the wall) at a bulk density far below that of the bulk
I-N transition [58]. They also observe that the formation of a biaxial nematic film
at the wall-isotropic fluid interface with the director parallel to the wall. The thick-
ness of this film appears to diverge as bulk I-N coexistence is approached [58]. A
surface induced continuous transition from a uniaxial to a biaxial phase prior to
complete wetting was also predicted by density-functional theory of the Zwanzig
model [57,[59/60], in which the orientations of the particles are restricted to three
orthogonal directions, and confirmed by simulations for freely rotating spherocylin-
ders [57[61]. Returning to the case of a fluid confined by two parallel hard walls,
it was found by simulations of freely rotating spherocylindérs [61] and by density
functional theory calculations of the Zwanzig modeli [59] that the surface-induced
uniaxial to biaxial transition is prior to a first-order capillary nematization transi-
tion at larger bulk densities, which terminates in a capillary critical point when the
wall separation is about twice the length of the rods.

This chapter is organized as follows. In section 3.2 | present the theoretical and
experimental model, and introduce the quantities that are measured, namely, the
nematic order parameter in both experiment and simulation, and the orientational
correlation function in the simulation only. In sectipn]3.3, | present the theoretical
results and discuss the vitro experimental system and its connections with the
simulation of broadly polydisperse rods on one side, and with the data on plant cell
interphase cortical arrays on the other.

The main result from the simulation is that similarly to the strictly two-dimensional
system, there is no true transition to long range order in the thermodynamic limit.
A thickness-dependent transition to quasi-long range orientational order of the
Kosterlitz and Thouless kind is present instead. This is in qualitative agreement
with what is observed experimentally in a system of microtubules. On the other
hand, the comparison with the vivo system leads us to think that excluded vol-
ume effects may not be the most relevant feature for the ordering of interphase
microtubules, although they shouldn’t be disregarded, because microtubule density
is certainly close to the onset of the nematic transition.
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3.2. Methods
3.2. Methods

3.2.1. Simulation of a Fluid of Hard Spherocylinders
Confined in a Quasi- Two-Dimensional Planar Slit

The model consists of a Monte-Carlo simulation for a fluid of hard spherocylinders
with a (mean) length-to-diameter rafigD = 320, corresponding to microtubules

of 8 umin length and 251min diameter, confined between two planar hard walls
with an area ot x Ly in thex—y plane at distanck = H/D (measured in diam-
eters) in thez direction (see Fig[3.1). Periodic boundary conditions are employed
in the x— andy—direction. The simulations were performed in the canonical en-
semble, i.e. with fixed number of particlés total volumeV = LyLyH, and tem-
peratureT. The slit widthh varies from 1 to 120. | consider both a system of
monodisperse rods and a system of polydisperse rods with an exponential length
distribution, which resembles closely the experiment with microtubules (see Sec-
tion[3.:3.8). The typical simulation time is about1®® Monte Carlo sweeps, where
one sweep equals one attempted move per particle. More tifaNdfte Carlo
sweeps were allowed for equilibration. The number of partiblés a simulation

is up to 5000, although typically lower than 2000.

WALL
PBC

H I 7

Figure 3.1.: A schematic picture of the system, which consists of a slit of thick-
nessh=H/D, enclosed by two planar hard walls in tke plane with
dimensiond. x Ly. A particle (spherocylinder) is described by a cylin-
der of lengthL and diameteb capped by two hemispheres of the same
diameter. Periodic boundary conditions are applied laterally.

Different simulations were run, with varying density of the rods. For the monodis-
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3. Microtubules Confined in a Quasi-Two-Dimensional Planar Geometry.

perse spherocylinders | considered the dimensionless density

N
C=—(L+D)°D
V( + ) )

whereN is the number of particle¥, = LyLyH is the total volume. For each value

of the density, | measured the eigenvalues of the standar@ Bematic order-

parameter tensor
Q 1 s 3|i Ii ap
! < N iZ (2 B 2 ’

wherea, B = x,y,z ul, is the o component of the unit vector defining the orien-
tation of particlei, andJ 4 is Kronecker's delta. Diagonalizin@aﬁ gives the
orientational order parameters. As the typical cylindrical symmetry of the nematic
state is broken a priori by the geometric constraints on the system, the most suitable
order parameteh is proportional to the difference between the two highest eigen-
values of the average nematic tensor, normalized with a factor of 2/3 to make it lie
in the interval[0, 1]. It is easy to realize that whém= 1 this quantity reduces to the
two-dimensional nematic order parameter [50] and for laigiecan be identified

with the biaxial order parameterj57]. In fact, foe= 1, one of the three eigenvalues

of Q will be —1/2 due to the geometric confinement, so that the submatrix defined
by the other two eigenvalues will coincide with the exception of a constant factor
with the two-dimensional nematic order parameter2tensor, and

1 N
A~S= <NiZcos(26i)> :

whereg, is the planar smallest angle formed by i particle with the nematic
director, and S is the 2-dimensional orientational order parameter. Furthermore, it
is possible to examine the density and orientational order parathptefiles along

the axis orthogonal to the walls. These are measured using bins with a typical width
of aboutD, accumulated over the sweeps in the simulation [57]. Lastly, | measured
the orientational correlation function

g,(r) = ((cog6(0) — 6(r))),

which describes the decay of the long wavelength fluctuations in the orientation.

3.2.2. In Vitro Confinement of Stabilized Microtubules in
a Quasi-Two-Dimensional Planar Geometry

Tubulin and Microtubules

Tubulin was purified from pig brains as describedin [37] and resuspended in MRB80
buffer (80 mM K-Pipes, 1 mM EGTA, 4 mM MgGJ pH 6.8). The protein concen-
tration was measured by UV absorption. Rhodamine-labeled tubulin was purchased
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3.2. Methods

lyophilized from Cytoskeleton (Denver, USA) and resuspended in MRB80. Micro-
tubules were polymerized from free tubulin at 10 mg/ml, 1-3% rhodamine-labeled,
with 5 mM GTP, incubating for 5 minutes at 8D. They were then stabilized with

5 mM Taxol in MRB80.

Sample Preparation

Microscope coverslips were cleaned with cromosulfuric acid, sonicated in water,
and rinsed in ethanol. Photoresist S1813 (purchased from Microresist, Germany)
was spun on the samples to form a layer i thick. The samples were then
illuminated with UV light through a quartz mask containing a chromium pattern

of 100 um thick parallel lines spaced 5 mm from each other. The patterns were
developed, rinsed, and baked aP@dor 1 hour. The samples were built by seal-

ing a patterned coverslip with an agarose (1%) coated slide, and pushing with a
standard weight for 10 minutes, so that the patterned lines acted as spacers to keep
the wall separation at aboutidm. Sample thickness was checked with confocal
microscopy in a few cases. All the surfaces were coated by flowing a 2.5 mg/ml
solution of casein dissolved in MRB80 to avoid aspecific binding of tubulin to the
surfaces. After this step, taxol stabilized microtubules where flown in, at a concen-
tration of 2-5 mg/ml, together with an oxygen scavenging system (75 mM glucose,
0.6 mg/ml glucose oxidase, 0.3 mg/ml catalase, 7mM dithiothreitol). The sample
was pushed for 10 minutes after each flowing step and left under the weight for at
least one hour afterwards before observation, to allow for relaxation of the micro-
tubules. Such a sample can be observed for about 36 hours, before microtubules
start to depolymerize.

Fluorescence Microscopy and Image Analysis

The samples were imaged with a Leica DM-IRB microscope, equipped with a
100W mercury lamp and a 100x oil immersion objective (N.A. 1.4). Conventional
fluorescence images were taken using a KAPPA ccd device, connected to a com-
puter and a S-VHS VCR. For quantitative measurement of local density and order
parameter, we analyzed fluorescence images, tracking manually the profiles of in-
dividual microtubules using Bezier curves. With this procedure, it is possible to
measure the local density of polymerized tubulin simply through the total length of
microtubules in one field of view. Moreover, the order parameter tensor, or rather
the entire orientational distribution function can be measured, knowing the equa-
tions of the interpolating Bezier lines, as describes in Appepdik 3.A. As it is not
possible to distinguish individual microtubule profiles at high density, | used an ex-
periment where rhodamine-labeled and unlabeled microtubules were differentially
mixed in such a way that only 1 filament out of 300 on average were fluorescently
labeled.
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3. Microtubules Confined in a Quasi-Two-Dimensional Planar Geometry.

3.3. Results

3.3.1. Simulation of Monodisperse Rods
Order Parameter and Size Effects

Fixing the lateral sizé, = Ly = Ly of the system, and measuring the order pa-
rameterA as a function ofC, | find a transition to an ordered state for a density
which depends slightly oh. Figure[3:R shows a few typical snapshots of the fluid
of spherocylinders for different densities of rods and a lateral view of the simula-
tion box to illustrate its thickness. A transition from a uniaxial phase (in which the
rods are randomly oriented in tixg plane) to a biaxial phase (where the rods have
a preferred orientation in they plane) is apparent from visual analysis of these
pictures.

|
Cc=3 Thickness

Figure 3.2.: Snapshots of the configuration of the system projected oy hene
for different values of the dimensionless dengity= N/V (L 4 D)?D.
Hereh = 20, Lyy = 140, N varies from 600 to 1150 and the equili-
bration time is 16 sweeps. The diameters of the rods are not drawn to
scale.

The order parameter and its profile along #hexis as a function of density are
plotted for a few examples in figufe B.3. | define arbitrarily the apparent transition
densityCi;5ns@s the density at the intersection of the tangents constructed on the
low density part and the linearly increasing part\€) at fixed density (see figure
B3).

The apparent phase transition from a uniaxial to biaxial phase, however, de-
pends in all instances on the lateral size of the system. In fact, the order param-
eter drops with increasing size at fix€] in a way that the apparent transition
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Figure 3.3.: (@) and (b). Order paramefeas a function of non-dimensional den-
sity for Lyy = 140(D. (a) h = 20 (b)h = 40. The transition density
ranscan be defined through the intersection of the tangents (dashed
lines in (a) and (b)) constructed on the low density part and the linearly
increasing part of the graphs. (zprofile of the order parameter for
h =40, Lxy = 140 and increasing density.

density increases. | measured this effect consistently for different transverse sizes
(h=5,20,40,60). Figure 3} reports an example foe 20.

This fact gives a hint that, as in the strictly two-dimensional system, there could
be no true phase transition in the thermodynamic limit, but a transition to quasi-
long-range order. To establish this, it is necessary to test whether the orientational
correlation function shows an algebraic decay (see below).

For comparison with real finite size systems it is interesting to look at the appar-
ent transition densitZy,, 5 at fixed lateral sizéyy, varying the small transverse
sizeh. Two examples of the resulting phase diagrams are reported in figuire 3.5.
The transition density is roughly constant for thicknesses lower tharl5 (see
Fig. B-bb) and increases almost linearly for thicker boxes (sedFlg. 3.53a).
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h=20
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Figure 3.4.: Finite size effects in the measurement of the order parafmeidre
graph shows the decay Affor three dimensionless densities as a func-
tion of the lateral sizé.,y when the vertical sizé = 20 is kept fixed.

The numbers to the right of the curves are the exponent from power
law fits. The decay of the order parameter for increasing size causes a
shift in the apparent transition.

3.3.2. Correlation Function

As argued in the previous section, because of the finite size effects (decrease of
with increasing size), little can be concluded about the nature of the phase transi-
tion, or even its existence based on the measurements of the order parameter. These
finite size effects, together with the presence of a phase transition to quasi-long-
range order in the strictly two-dimensional system, make it sensible to investigate
the decay of long wavelength orientational fluctuations. This is a delicate matter
due to the very long relaxation times of these soft modes. | investigated the tran-
sition for integer values dfi up toh = 10, with a simulation box having a lateral
sizeLyy = 400(. Above this thickness, the number of particles was too high to
achieve relaxation in reasonable times. In all these aggesshowed a transition
from exponential to power law decay with increasing density. One example, for
h =6, is plotted in figurg_3]6. This transition does not depend on the size of the
system, which just needs to be large enough so that the correlation of the modes is
not affected by the periodic lateral boundary conditions.

From the above data, one can conclude that we are in presence of the same
phase transition as in the two dimensional system of needles, described by the
Frank elastic free energy,

F— %K/(De(r))zdr.

Therefore, the transition densiBf3 scan be set when the exponentiggfcrosses
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Figure 3.5.: Phase diagrams for the apparent nematic transition at fixed lateral size
Lxy- The reduced uniaxial-biaxial transition de”@i}’ansfor different
values ofh. (a) Lateral sizey, = 200, thickness fronh = 20 up to
h = 120; the number of particleN for these runs is up to 7000. (b)
Lateral sizelyy = 360D, thickness up td = 20, N up to 6000. The
two critical lines in (a) and (b) do not connect continuously at 20
because of the finite size effects.

1/4 [B0]. Going to the limiting cask= 1, one can recover the fully two-dimensional
system and compare the transition density with the one giveniin [50]. | measure a
CtKrgms(h = 1) = 6.5 which seems in good agreement with the 7.5 to 8 of Frenkel
and Eppenga, considering the longer relaxation times we allowOSsweeps for

up to 2600 particles). This value can also be compared with Bébnd in [51]

for disco-rectangles with/D = 15. The most interesting question, though, is how
the transition density changes as a small lateral dimension is added. By a naive ar-
gument comparing the three-dimensional denSityith the two dimensional one

Coyy = %LV(L+ D)? one would expect to see a transition density which goes like

1/h so that the “effective” two-dimensional density is kept fixed. However, accord-
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Figure 3.6.: Log-log plot of the orientational correlation functigytr) for differ-
ent values of the density, in the case- 6. For low density this quan-
tity has exponential decay, which becomes algebraic with increasing
C. The numbers next to the curves indicate the decay exponents from
power-law fits. By convention, the transition is defined to be where the
exponent of the correlation function crosses 1/4, in this instance around
c=24.

ing to the data, shown in Fi[_8.7, this decay is slower than this power law. We
can try to understand this by a qualitative argument based on the fact that this two
dimensional transition is mediated by defects. Adding a small transverse dimen-
sion, the liberty of effective overlaps given by the third degree of freedom makes
it harder to form a disclination, so that a higher density thanhjusnes the two-
dimensional one is required to achieve the transition. This fact is illustrated in
Fig. B8, which shows two typical xy-projections of the nematic state$ ferl

andh = 3. The configurations are qualitatively similar, but in the dase3 many
effective overlaps are noticeable.

3.3.3. Experiment, Polydisperse Rods, and Comparisons

In the experiment, taxol stabilized microtubules are confined in a region with a
thickness that is very small compared to their (mean) length and very large com-
pared to their diameter. The sample consists of a microscope coverslip patterned
with 1.2um thick photoresist patterns used to maintain a constant separation with
the microscope slide. The filaments are broadly polydisperse, typically showing an
exponential distribution in length with an average aspect ratio of a few hundreds
(figure[3®). Their lengths do not vary in time due to stabilization with taxol [1].
To predict the experimental behavior of this system, | performed similar simu-
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Transition density C, ¢

Thickness h

Figure 3.7.: Phase diagram for the nematic transition in quasi two dimensional ge-
ometry. The Kosterlitz-Thouless transition densi{3 < is plotted
as a function of the system thickndss Its decay is slower than the
naively expected h indicated by the dotted line.

lations for a set of polydisperse rods with an exponential length distribution. In the
simulation of the polydisperse case, the apparent transition at fixed size is broader

Figure 3.8.: Typical snapshots of configurations of two dimensional nematic-like
phases. The pictures are projections of the configurations on the xy-
plane. (a) 3074 particles in a slit with= 1, Ly, = 600(D. The defects
are noticeable in the picture. (b) 1150 particles in a slit viith 3,

Lxy = 400M. Along with the defects, overlaps between projections of
particles due to the transverse degrees of freedom are visible.
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Figure 3.9.: Measured length distribution histogram for microtubule lengths in one
experiment. The data are obtained from a set of fluorescence snapshots
of the same experiment. The average length of the polymeis5
corresponding to an aspect ratio of about 200.

than the one observed for the monodisperse system (figure 3.10) and its onset is
at lower densities, due to the effect of long rods. Nevertheless, the qualitative be-
havior of the system is the same, with size effects and power-law decay in the
correlation function. By measuring the total length of the rods in one box, knowing
that the length of a tubulin dimer is 8 nm and that each polymer is composed of 13
protofilaments, one can predict the concentration of polymerized tubulin needed to
have the ordering transition at a fixed size. The size of the system can be set as the
field of view of the microscope, which is effectively the scale at which the experi-
mental system is observed. With this identification, the apparent transition density,
expressed in terms of tubulin concentration, falls in the experimentally accessible
region of 2 to 5 mg/ml of (polymerized) tubulin.

To substantiate these observations, | measured order parameter and density by
analyzing fluorescence images from the experiment (seg Fig. 3.12). Quantitative
work on the experimental system involves a few complications. First, the density
of polymerized tubulin cannot be implied directly from the amount flown in the
sample, due to density variations in different locations of the sample, which are
due to compartmentalization caused by non-uniform coating, and to uncertainties
in the ratio of polymerized to unpolymerized protein. Second, at high densities
the order parameter cannot be immediately measured from image analysis because
the individual rods cannot be distinguished from each other. This last problem can
be bypassed using a partial labeling experiment, where rhodamine-labeled and un-
labeled (stabilized) microtubules prepared in the same way are mixed in unequal
proportions. Despite of these problems, the simulation results are qualitatively con-
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Figure 3.10.: Apparent transition predicted by the simulation in the exponentially
polydisperse case for a fixed sizg, = 120D compared to the (sim-
ulated) monodisperse system with the same mean aspect ratio (320).
The order parameter is computed in the usual way. The simulated
system sizé ,y, = 120 corresponds to a window of observation of
30x30 um, which is comparable with that of a field of view of the
microscope. The x-axis contains the calculated (polymerized) tubulin
density computed from the total length of the rods in the simulation
box, using the fact thatidm of polymer contains circa 1625 tubulin
dimers, which in turn have a mass of about 100 kDa.

sistent with the experimental observations (see fiffure 3.11 as an illustration), as the
ordering transition can be observed for increasing microtubule densities within the
range predicted by the simulation. Furthermore, in the experiment, microtubules
are observed to order in “patches” of tens of microns in size, which is consis-
tent with the absence of true long range order predicted by the simulation. These
patches have all possible orientations, indicating that the alignment is not purely
due to the flow applied to the microtubule solution while inserting it in the sample,
and that the system, despite the artificial density variations, is - at least locally, on
a scale of a few hundredm - relaxed.

To obtain the configuration of microtubules from a snapshot, | tracked the fil-
aments manually, using Bezier interpolating curves. From this information it is
immediate to compute tubulin density from the total polymer length, as done with
the simulation. The procedure we adopt to measure the order parameter is out-
lined in Appendix[3-A (the reader can refer to the thesis of Catalin Tanase [62]
for more details). The measurement of microtubule density and order parameter
across single fields of view should compare directly with the results obtained from
the simulations on a box of the same scale. A comparison of this kind is shown
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Increasing density

Figure 3.11.: Snapshots from the experiment. The microtubules, confinedrin 1
thick microscope slides, are imaged with fluorescence microscopy,
the pictures show one field of view, sized 40x36, corresponding to
a magnification of 100x. The concentration range of polymerized pro-
tein is estimated to be 2-4 mg/ml. The rods are observed to align for
increasing densities on scales from 30 to 106. On larger scales,
patches of aligned rods with different orientation are noticeable. The
local density of tubulin cannot be measured directly, but can be esti-
mated comparatively from the average pixel intensity in the images
after subtracting the background, provided that the settings of the ccd
camera are fixed. In the above figure, starting from the left, the sec-
ond snapshot is approximately 1.5 times denser than the first, while
the third is twice as dense as the second.

in Fig. [3-IB. Looking at this graph, the correlation between density and order pa-
rameter seems to be present in the experiment, with a transition density which lies
roughly in the range indicated by simulations. The high density points in the graph
correspond to two partial labeling experiments, where fluorescently labeled poly-
mers are mixed with unlabeled ones and used as tracers, in a way that only 1/300 in
length of the microtubules are visible. Since the number of traced microtubules in
one snapshot remains roughly constant, for these high density points the absolute
error on the estimated density is about two orders of magnitude greater than for the
low density set. Other sources of experimental error are resolution of fluorescence,
manual tracking, small number of filaments for the averaging. Different images
may have slightly different densities (because they come from different areas of the
sample). Therefore this comparison has to be regarded as a qualitative one, which
anyway gives confirmation of what is predicted by the simulation.

The same tracking procedure can be carried out using images of microtubules
in the interphase cortical arrays of plant cells. Thus, we can compare directly the
in vitro data with information extracted in the same way from fluorescence images
of GFP labeled cortical microtubules in Tobacco BY-2 cell lines. This was done in

28



3.3. Results

///J/
/7 “7\ (]

Angular Distribution

KG000
600 —————————————

oleannle | I .-Illlllll‘l“‘ |“||I|I||ll
0 20 40 60 80 100 120 140 160 180
angle®

Figure 3.12.: Example of data analysis from a partial labeling experiment. Upper
left: original fluorescence image, where only 1/300 (in length) micro-
tubules are labeled. Upper right: Manual tracking of microtubules,
the nematic director is plotted on the left, and the scalebar in the up-
per left corner corresponds to 10m. Lower panel: orientational
distribution function histogram. The order paramete8is 0.77.

number of counts
n w
28

3

29



3. Microtubules Confined in a Quasi-Two-Dimensional Planar Geometry.

In Vitro vs Simulation
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Figure 3.13.: Experimental data, compared with data from the simulation of poly-

disperse rods. In the experiment the observation scale is 55x45 or
40x30um. In the simulation the rods have an exponential length dis-
tribution with an average length of fom and the box dimensions are
h=40,L,y = 140, corresponding to the geometry and observation
scale in the experiment.
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Figure 3.14.: Graph of order parameter vs density. Comparison of plant data (BY?2
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cell line) with simulations. To compute the density, a thickness of
200nmwas assumed. The original images (Jan Vos) have a scale of
about 20x2Qum. The length distribution of cortical microtubules is
not known. In the simulation | used an exponential length distribution
for the rods with average length oftbm and the box dimensions are

h =10, Lxy = 140(M. The data on plant cells were provided by Jan
Vos, Wageningen University.



3.4. Discussion and Conclusions

a few cases and the results are shown in Fig] 3.14. The measurement error on the
data points shown should be smaller than that from the in vitro experiment because
the number of tracked filaments is higher. These data are subject to an uncertainty
in the density because the thickness of the layer where the plant microtubules are
confined is not known exactly. | assumed a value of 800 With this thickness,

the density appears to be in the range of the onset of the apparent isotropic-nematic
transition on this scale. On the other hand, because of the lack of data, it is not
possible to establish a clear correlation, or a lack thereof, between density and order
parameter. However, it appears that in the few instances analyzed the ordering in
the in vivo system at a fixed density roughly corresponds to that expected from the
apparent nematic transition. Varying the thickness from 200 torsf@oes not

affect this observation.

3.4. Discussion and Conclusions

I will divide the conclusions in general ones for a system of confined rods, and
more specific ones for the problem of microtubule organization in interphase plant
cells.

Focusing on the generic aspects of the nematic transition in a quasi- two-dimensional
system, the main result is that a transition to long-range-order is absent in the ther-
modynamic limit. Instead, a Kosterlitz-Thouless-like transition is present, revealed
by the algebraic decay of the orientational correlation function. This has some in-
teresting general consequences. First of all, it indicates that a system with some
small transverse third dimension will maintain the same qualitative behavior as a
true two-dimensional one. Secondly, the slower decrease of the Kosterlitz-Thouless
transition with increasing plate separations for the 2D-like isotropic-nematic tran-
sition indicates that there is an important role played by the transverse degree of
freedom in the elimination of disclinations. Possible future work in this direc-
tion includes investigating in more detail the crossover between two- and three-
dimensional behavior, exploring slit thicknesses that are comparable with the length
of the rods. This kind of work would require using spherocylinders with a lower
aspect ratio, to keep the number of particles, and therefore the computational cost,
reasonably low. One possibility is that the Kosterlitz-Thouless transition in the
strictly two-dimensional and quasi-two-dimensional system ends in the previously
observed wall-induced uniaxial to biaxial transitiani[57] at larger plate separation.
If this would be true, this transition would not be connected to capillary nematiza-
tion (a transition from a biaxial to a condensed nematic phase), which terminates
in a critical point at a fixed plate separatiani[59].

Turning our attention to microtubules, the simulation appears to be in qualita-
tive agreement with what is observed in thevitro, broadly polydisperse system,
for which | could estimate quantitatively density and ordering through image anal-
ysis. This indicates that, at least for our scopes, the model of a microtubule as a
hard-rod is sufficiently good to grasp the basic features oifrthéro system.

Comparing these results with the same analysis carried out for plant cells should
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3. Microtubules Confined in a Quasi-Two-Dimensional Planar Geometry.

in principle lead to considerations of some biological relevance. However, one
should be fairly cautious on this point, for two basic reasons. First, the experi-
mental and the theoretical model, compared to the plant system, make rather crude
approximations that have to be considered. In the experiment, the curvature of the
confining surface is absent; in the model, both this curvature and microtubule elas-
ticity are disregarded. Second, the data in our possession are hardly sufficient for
clear-cut conclusions. Assuming that the microtubules do not arrange themselves
into long coils by crosslinking, which may be true in the early stages of inter-
phase, it remains a doubt on the polymers average length and length distribution
in a plant cell, which are not known. The only study that investigates them sys-
tematically [26] is rather old and indicates an average length of abau.3The
importance of curvature and microtubule elasticity strictly depends on how long
microtubules are. However, on the basis of energy minimization, one would expect
that, because of these features, any alignment would be favored along the elonga-
tion axis of the cell, which has lower curvature, rather than transversely or oblique,
as observed in a plant cell.

What we can say here is that, under our assumptions, the density of cortical
microtubules in plant cells appears to be close to the onset of an apparent nematic
transition on the scale of observation, so that excluded volume effects may play
some role. The available data points from the analysis of the orientation of fluo-
rescently labeled cortical microtubules indicate alignment for plant microtubules
where expected from the simulated nematic transition. However, the data are too
scarce to correlate density with ordering, so this correspondence could be merely
coincidental. It appears then plausible that excluded volume is not the most relevant
feature of the system, and other processes play a more important role than volume
exclusion. In other words, although the results are not sufficient to completely dis-
card the working hypothesis of a nematic transition for cortical microtubules in
plant cells, which could be tested with more stringentivo experiments, they put
under discussion whether the model considered in this chapter is the most appro-
priate to describe the system and includes all the necessary features.

3.A. Computing Orientational Order for a
Collection of Bezier Curves

In this appendix | will describe the procedure adopted to compute the order pa-
rameter by interpolating with Bezier curves the configurations of microtubules in

a fluorescence snapshot. Let us consider a collection of these Bezier curves. The
goal is to determine an orientational order parameter or rather a full orientational
distribution function for this collection. Consider first a single filament of letgth

The orientational distribution function for this filament is given by

()= [(as3(p—o0(5). @)
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3.A. Computing Orientational Order for a Collection of Bezier Curves

wheres is the arclength parameter of the curve ap(k) is the local angle it
forms with an arbitrary oriented axis in the plane. If we denote the curve by
{r(s)|s€ [0,L]} and the unit vector along the reference axiskithe angle is de-
fined by cosp (s) = (s) - X where the dot denotes the derivat%with respect to

the arclength. Note that because of the arclength parametriaign= 1. The
arclength along an arbitrarily parametrized curve is given by

s(t) = /O dt | (1) (3.2)
Furthermore,
o, dr dt(s) |dr “Lar
P8 = g (19 5o = | 0] 5 () - (3.3)
This allows to write EqQ.[(3]1) as
Jodt|dr|s ((parcco %;T)
f(p)= = (3.4)

14 (d

Jodt| G
The information in the orientational distribution function is more readily extracted
from the moments

2
6, = (coske) = /0 depcosko f (). (3.5)

Since the filaments do not possess intrinsic orientation we are at liberty to assign ei-
ther end as origin. The reparametrization L —sleads tap (s) — (¢ (s) + ) mod,,.
Invariance under this transformation implieg, , = 0 for allk. The explicit form
of the moments is
-1 dr %%'f(
Jodt| 5| cos(karcco ] >
C =

(3.6)
Jo dt| &

Reduction of the integrand through trigonometric multiple angle formulas leads to
the consideration of the integrals

1 dr %%';( "
fO dt dat |Hr |
. a

dn= I (3.7)
d
Jo dt|
A Bezier curve has the standard parametrization
r(t) =ro+rt+rt2+rgtd, (3.8)
wheret € [0, 1]. The following "special” points are associated with it
fa = To=r(0)
1
e = Tot3lit3l
o = Totfi+r+rz=r(l),
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or equivalently

g = Ia
rp = 3(rg—ra)
r, = 3(rg—2rg+r,) (3.10)
r3 = rp—=3(c—rg)—Ta
We have therefore d
d% S 20t 3rgt?, (3.11)
so that
dr|? 2 3 4_
with
o = Iy-My
0 = 4(r;ry
O, = 6(ry-rg) +4(ryery) (3.13)
43 = 12(r,-ry)
A = 9(rz-r3).
If we define q
TR 2 (1 Q)3 (1 R =P(), (3.14)

the integralgl, are concisely written as

1 P(t)
dt——5—~
fO Q(t)2 -1

0a = ErNCIOR

These integrals are either evaluated numerically or using reduction to standard El-
liptic integrals. In Postscript file formats the Bezier curves are represented by the
construct

(3.15)

xA yA m(oveto)
xB yB xC yC xD yD c(urveto) ,

where the labeling is the same as in EQ:(3.9).
Dealing with an ensemble ®f filaments, the proper choice for the distribution

function is

dr. .

HS [ o— arccos?

N 1 dr
Yic Jodt| g
dt

f(p)= (3.16)

1 dr,
SR Jodt| G
This form correctly weighs each filament with its length, so that each stretch of
filament contributes equally to the total order.
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4. Coiling of Microtubules
Confined in Box-like chambers

4.1. Introduction

This chapter focuses on the scenario for the cortical array which takes as a start-
ing point the “dynamic spring” hypothesis proposed by C. Lloyd and collabora-
tors [39,[40] in the early eighties. According to this hypothesis, microtubules
forming long coiling bundles, whose length is regulated by the cell through an
unspecified mechanism of active relative sliding, are responsible for the transverse
arrangement and the reorientation of the cortical interphase array. Although this
hypothesis is not originally formulated as a physical model, from our point of view
we can say it combines stylized facts (3),(4) and (7) of chapter 2, to explain stylized
fact (2). In other words, the apparent orientation of interphase microtubules is sup-
posed to be caused by a passive coiling mechanism in combination with the active
elongation of the bundles. Formulated in this way, the dynamic spring hypothesis
can be investigated using physical methods.

The approach | will take to test the implications of the hypothesis combines a
simple analytical treatment, where one bundle is modeled as a flexible inextensible
filament confined on a two dimensional surface, with experiments, where micro-
tubules are growm vitro from nucleation seeds in microfabricated chambers. The
chambers have similar sizes and aspect ratios as a typical plant cell. In other words,
the model system for an elongating bundle of microtubules in a plant cell is a micro-
tubule polymerizing from a nucleation seed in a microfabricated chamber, which,
in turn, is described theoretically as an unstretchable filament with bending elastic-
ity confined on a two-dimensional surface. The elongation of a filament caused by
polymerization replaces the hypothetical active sliding mechanism between micro-
tubules which causes the elongation of bunditegivo according to the dynamic
spring hypothesis. The nucleation seeds play the role of microtubule nucleation
agents present in the cell. This physical model is bound to a number of assump-
tions and simplifications on the nature of the coiling bundle, its physical properties
and elongation mechanism. The implications of these choices will be discussed
along with the results (sectign #.3) and in the conclusions (seltipn 4.4). The chap-
ter starts with an introduction of the methods (secfioh 4.2), after which | present the
results (sectiof4.3). The theoretical predictions are presented first, with the aim of
establishing the correct conceptual framework for the experiment. The conclusions
are contained in sectidn4.4.
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4. Coiling of Microtubules Confined in Box-like chambers

Figure 4.1.: Example of apparent coiling microtubule bundles. Parenchyma cells
in the elongating part of a flax stem showing arrays of cortical mi-
crotubules labeled with Mouse monoclonal aattubulin and Goat
anti Mouse Alexa/488, after enzymatic digestion of cell walls with
Macerozyme and cellulase Onozuka R-10. Courtesy Andn Lam-
meren, Henk Kieft, Beata Petrovska (Plant cell Biology, Wageningen
University and Research Center).

4.2. Materials and Methods

4.2.1. Theory
Model

The representation of a microtubule, or a bundle, is a filament having léngth
whose shape is described by a curys), assigning a point in space for any value
of the arclength parametsr A given shape corresponds to a single configuration.
In the model, the functional

E[r(s)] = %k /0 "C(9)%ds 4.1)

specifies the value of the bending energy. HE(s) = (g—i_g) is the local curvature

andk the bending rigidity of a (bundle of) microtubule(s). In the model the value
of kis considered as a fixed parameter. Furthermore, | impose the condition that a
microtubule is, to a first approximation, unstretchable.

Energy Estimate for Longitudinal vs Transverse Helical Coiling

A first question relevant for the plant system and ithgitro experiment is which
way is energetically favored for the filament to wrap around the confining surface
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4.2. Materials and Methods

(cf. Fig. @&®b). To estimate which orientation is favored in a plant-cell geometry, |
compare the energy of two families of configurations, which can be called “trans-
verse” and “longitudinal”. In doing this | impose both the shape of the filament
and that of the confining surface, and then calculate the corresponding energies and
compare them.

This is done in a first instance neglecting the caps. For the transverse helix, |
use a cylinder with a larger height than its base diameter. For the longitudinal helix
| consider a generalized cylinder with elliptical, or rectangular with rounded edges,
base.

This last case (Fig4.2) is particularly simple to tackle analytically, as the helix
on the cylinder has constant curvature, and the curve on the generalized cylinder is
(univocally) constructed by piecewise connection of straight (zero curvature) lines
on the sides and a helix on the edges.

In figure[Z:R the size of the confining surface B:22R x 2D, whereD > R (the
box is elongated), and, callingthe filament lengthl,. > 2D (necessary geometrical
condition for the filament to be able to form a helix). The result for the ratifgf,
the energy of a longitudinal coil, tB;,, the energy of a transverse one, can be
easily computed as

EIong o R (L2—2R2>2
Erans R"‘%(D_R) L2—2D2)

which leads to the plot in figufg4.6. This calculation can be repeated numerically

and considering closed surfaces (i.e. adding the caps). For example, a cylinder

with semi-spherical caps, a parallelepiped with rounded edges, and an ellipsoid,
yield very slight variations in the result.

2R 2R

2D

Figure 4.2.: Example of geometry used for the energy estimate, using a cylin-
der (right panel) and a generalized cylinder with rectangular base and
round edges (left panel). To compare the two geometries, both their
dimensions, R and D, and the filament length L have to be equal.

‘/ZR
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4. Coiling of Microtubules Confined in Box-like chambers

Minimum Energy Configuration for a Filament in a Confined Cylinder

A further step in the model is to determine whether a helix is indeed the minimum
elastic energy configuration to be expected for a coil. To find the minimum energy
configuration for a fixed shape of the confining surface, one must evaluate the func-
tional @-1 over the set of all possible configurations of the filament. The favored
configuration is the one that minimizes elastic energy, i.e. for which

0E=0.

For a filament on a cylinder without caps (such as the one in the right panel of
figure[Z-2, this leads to the Euler-Lagrange equation

¥(s) +2cos y(s) siny(s) =0,

wherey(s) is the angle between the tangent vecterdr /dsof the filament and the
horizontal axis, defined by the unit vectéy associated to the angular cylindrical
coordinatep (cf. the thesis of Catalin Tanase[62] for an explicit derivation of this
equation). This equation is formally very similar to that of a pendulum, and yields
the confined solutions shown in figurel4.7b. Only by applying an external force
can a helix be obtained as a solution. For further details on these calculations the
reader is referred to the thesis of Catalin Tanase [62]. Knowing the solution for the
cylinder without caps also allows to compute the minimum energy configuration
of an elastic filament confined on a spherocylinder, by patching the solution on the
sphere (which has constant curvature) and that of the cylinder (s€geig. 4.8).

4.2.2. Experiment
Microfabricated Chambers

Microscope coverslips were kept for one day in cromosulfuric acid mixture, then
rinsed in water and in a 2M solution of KOH in ETOH. After being rinsed again in
water, they were sonicated three times for 10 min in water, rinsed in ethanol, and
dried in an oven at 10C. Photoresist SU-8 (purchased from Microresist, Ger-
many) was spun on the samples in layers of 25 o4 which, after a pre-
exposure bake (on a hot plate. 4 minutes &t&BAL6 minutes at 9C) were il-
luminated with UV light at 175mW/cn? through a quartz mask with chromium
patterns, consisting of arrays of rectangles and ellipsoids, 25x35 or 40x36

size. The patterns were developed for five minutes in Microresist SU-8 developer,
rinsed and hard baked (in the oven, for 30 minutes atCR0T he size of the cham-

bers was chosen according to a prior determination of the size of barrel shaped,
non-tip, Tradescantia Virginiana stamen hair cells made by Jan Vos (Wageningen
University). These data were not divided according to the cell cycle state (cells just
before division are larger than ones that have just finished division). For the cell di-
ameter he found a mean value of 2fm (standard deviation 1m) ranging from

a minimum value of 22.umto a maximum of 30.5um. For the cell length the
mean value was 358m (standard deviation 6.4m), with minimal value 18.4tm
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and maximal value 48.am. The surfaces to seal the microfabricated chambers
were made from silicon rubber PDMS (polydimethylsiloxane). The silicone elas-
tomer precursor and a curing agent (Dow Corning Sylgard 184) were mixed in a
10/1 weight ratio, and brought under a low atmospheric pressure with a small vac-
uum pump (Laboport) for 15 minutes in order to remove air bubbles. A uniform
layer about 2 mm thick was obtained by pouring the mix of on top of plastic (flexi-
ble) sheets, which were then baked atX0@or one hour for crosslinking to occur.

The resulting rubber-like sheet was cut in circular discs. Patterned coverslips and
PDMS discs were cleaned by sonicating subsequently in ethanol, in water with
soap 5%, and water, each step lasting one minute.

Microtubule Nucleation Seeds

Nucleation seeds were grown from free tubulin (purified as described in section
B2) at 5 mg/ml in MRB80 with 2 mM GMPCPP, incubating for 45 minutes at
35°C. The batch of GMPCPP was generously provided by Tim Mitchison (Harvard
Medical School, USA). The seeds were extended with 20%-rhodamine labeled 0.4
mg/ml tubulin tips polymerized with 0.5 mM GTP, for ease of localization, and
then immediately flash-frozen in liquid nitrogen to keep the extensions stable.

Sample Preparation

All the surfaces were coated through incubation with a 2.5 mg/ml solution of ca-
sein dissolved in MRB80 to avoid aspecific binding of tubulin to the box walls,
then dried with nitrogen. After this step, (a) the nucleation seeds in MRB80 and
(b) a solution of 1 mg/ml tubulin (10% rhodamine labeled) with 2,5 mM GTP, an
oxygen scavenging system (75 mM glucose, 0.6 mg/ml glucose oxidase, 0.3 mg/ml
catalase, 7mM dithiothreitol) were introduced in the sample in two separate steps
on a cold block, with intermediate incubations in a low-vacuum chamber to avoid
the trapping of air bubbles in the chambers. After each incubation, the excess fluid
on top of the sample was removed by pipette suction, to avoid as much as possible
tubulin dilution.

The chambers were sealed with PDMS discs, which were built in a slide with
a circular hole as illustrated in figufg #.3. By using a solution of core-shell flu-
orescent (FITC) silica beads{in diameter) in water, it was possible to test that
the chambers were filled and sealed. The beads were imaged with fluorescence
microscopy.

Fluorescence and Confocal Microscopy. Image reconstruction.

The samples were imaged from the side of the patterned coverslip, using a Le-
ica TCS-SP2 confocal microscope and a Leica DM-IRB microscope with a 100W
mercury lamp. Oil immersion objectives (N.A. 1.4, 63x magnification for confocal,
100x for conventional fluorescence) were employed.

To reconstruct the shape of the polymerized microtubules, | acquired z-stacks
of images and analyzed them. Due to the scattering from the walls there was a
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SLIDE

PDMS
SLIDE
—————

T PATTERNED  SCOTCH TAPE
COVERSLIP

Figure 4.3.: Sketch of slide assembly.

large contrast decrease from top to bottom of the chambers. This is inherent to the
imaging method, as it was verified by imaging a solution containing simply a flu-
orophore (figuré4]4). Image reconstruction using isosurfaces was carried out after

z direction

Figure 4.4.: Contrast anisotropy in the z direction. The image represents a yz sec-
tion of a chamber containing a solution of water and fluorescein 0.05
mg/ml. The bottom (lowz) part of the sample is the imaging side.

applying a linear gradient contrast mask in the z direction with the program Im-
ageJ63]. Isosurfaces were visualized using the VTK (Visualization TodiKiit [64])
routines, through the freely available front-end program MayaVi. Manual particle
tracking was carried out using ImageJ, and the coordinate files were analyzed with
the freeware program Xmakemaoi[65].

Due to the flexibility of PDMS, sometimes the caps of the chambers were
slightly bend inwards. This problem was enhanced by thermal expansion if | incu-
bated the samples at 35 to increase microtubule polymerization. In all the cases
used for the analysis, deformation was checked with the confocal microscope and
was less than 5% of the box height.

4.3. Results

To recapitulate, the model system | use for an elongating bundle of microtubules in
a plant cell is a microtubule polymerizing from a nucleation seed in a microfabri-
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cated chamber, in turn described in mathematical terms as an unstretchable filament
with bending elasticity confined on a two-dimensional (cylindrical) surface. The
elongation of a filament caused by polymerization represents in the experiment the
elongation of bundle vivo according to the dynamic spring hypothesis. The nu-
cleation seeds play the role of microtubule nucleation agents. Clearly, in setting up
this physical model one is forced to make a number of assumptions. Mainly that (i)
the passive behavior of a bundle of microtubufesgivois qualitatively the same as

that of a single microtubule, (ii) the elongation mechanism does not matter, so that
polymerization can represent relative sliding, and, for the theory, (iii) that bending
elasticity is the only important feature. Although the in vitro experiment is the core
of this chapter, | will start presenting the theoretical model, and then proceed with
the experimental model system.

4.3.1. Theory

In our minimal model of microtubule cortical arrangement, the cell is depicted as
a two dimensional closed surface to which the filaments are confined, typically a
cylinder with caps. Microtubules (or bundles) are represented by elastic inexten-
sible line-like objects. The bending elasticity of the filaments is the only feature
responsible for their shape. In particular, there is no intrinsic chirality (a filament,
at rest, does not have any structural signature that make it prefer a helical shape),
and no torsional elasticity (response to twist). This is justified by experimental
observations of the mechanical properties of microtubules polymeiizgiro.

Thus, the organization at the cortex is determined only by the interplay between
the length of the elastic filament and the constraint forces that confine it in a two di-
mensional surface. Biologically, the two dimensional confinement can be thought
of as imposed by the presence of crosslinkers that connect microtubule bundles to
the plasma membrane, or by the buckling of the microtubules, as im thigro

model system. The model is complete once the geometry and dimensions of the
box and the filaments’ stiffness are specified. Comparing withrthétro model
system, none of these quantities can be regarded as free parameters, as the bending
stiffness of a microtubule is known experimentaliyl[66]. For ithgivo system the
stiffness of a microtubule bundle affilaments can be estimated mtimes that of

a single microtubule.

According to the dynamic spring hypothesis, the configuration a filament as-
sumes in the cylindrical box is a helix (Fig—}.5), whose pitch is determined by the
length of the filament. Such a dynamic spring can determine its pitch by adjusting
its length, as predicted by Lloyd and collaborators. Short filaments will want to be
straight, and therefore align with the long axis of the cell. The longer the filament,
the lower the helix pitch, so that microtubules look more and more transverse. We
can call this configuration a “transverse coil”, because the grooves will be trans-
verse to the long axis of the cell in the limit of long filament length. However,
another configuration is possible, which I will call “longitudinal coil”, in which the
polymer is wrapped around the long axis of the cell.

To establish which way of coiling is energetically favorable, one can assume
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4. Coiling of Microtubules Confined in Box-like chambers

Figure 4.5.: lllustration of the dynamic spring hypothesis. The bundle wraps
around the cylinder and has a helical shape. The longer the filament,
the lower the helix pitch (microtubules look more and more transverse).
I choose to call this configuration “transverse”.

the two classes of configurations and compare the bending energies, for a box of
a given size. This comparison is of course dependent on the details of the geome-
try: whether the cell is cylindrical or has the shape of a parallelepiped will matter.
However, we are interested in the detail-independent qualitative features. Biologi-
cally, this is motivated by the fact that elongated cells with different shape details
show the same organization of interphase microtubules. In practice, | approached
the problem by doing the calculations for a few different box shape details, and
verifying that the results are consistent (see se¢tion|4.2.1).

As a first step we can consider only the lateral sides as accessible area. This is
equivalent to imposing two walls at the extremities of the cylindrical surface that
prevent the filament from spanning the cylinder caps. | model a longitudinal coll
in the same way, by considering an elliptical cylinder with confining walls, or any
generalized cylinder whose base has an aspect ratio (length to width) greater than
one and contains the long axis of the cell. The main point is that there is a trade-off
in energy cost for the filament between doing a smaller number of high-curvature
turns (longitudinal coil), or a higher number of low-curvature ones (transverse coil).

According to these estimates, for aspect ratios and sizes comparable to the ex-
perimental (and biological) ones, transverse helices always have higher energy than
longitudinal ones for sufficiently large filament lengths, so that, in the limit of large
length, a dynamic spring that minimizes bending elastic energy would always be
a longitudinal coil. For small filament lengths, transverse helices can have lower
energy than longitudinal ones. The crossover length depends only slightly on the
shape in the geometries | checked, but, more importantly, it depends on the aspect
ratio, decreasing as the box becomes more elongated. This is described in figure
(E8), which contains a plot of the relative ratio of bending energy of a longitudinal
and transverse coil for a box with longitudinal size ofi@% as a function of lateral
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Figure 4.6.: Relative ratio of the bending energy of a longitudinal (E1) and a trans-
verse coil (E2), as a function of filament length and lateral size for a
box with longitudinal size (2D, comparing with figure14.2) of gi.
When this quantity is higher than zero, a transverse coil is favored. The
intersection with the zero plane yields a line which gives the length be-
low which transverse coiling is favorable as a function of the lateral
size (2R in figurd4]2). For the experimental value of a lateral size of
25 um, this critical value for the filament length L is 8m. This esti-
mate refers to a cylindrical box for the transverse coil compared with a
rectangular one with rounded caps for the longitudinal coil (fifiuie 4.2).

size and filament length inm. This quantity is positive when the transverse coll

is favored, negative when the longitudinal coil has lower energy, and zero when the
two configurations are equivalent. The graph shows that a transverse coil is favored
for shorter filaments, while for longer ones the dominant shape is a longitudinal
one. For the values of the parameters used in the in vitro experiment, we can ex-
pect a threshold filament length (above which longitudinal coiling is energetically
favored) around 8@m.

Although these qualitative estimates can be useful to get a grasp on the system,
one has to determine whether the actual minimum energy configuration is a helix.
Let us consider again a cylinder where the filament is confined between two walls.
Following the dynamic spring hypothesis, we may expect a helix as a minimum
energy configuration. In fact, the solution given by minimization of the energy
functional is not this one, but an oscillating configuration where the filament criss-
crosses back and forth from one wall to the other (Figy 4.7Db, cf. seCiipn 4.2 and the
thesis of Catalin Tanasé162]). The resulting pattern of interwoven oblique lines
is resemblant of what can sometimes be observed in plants, particularly in non-
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elongating cells (Fid-4.7c). Comparing this configuration with a helix of equivalent
length, it is easy to understand why coiling back should be favored, as the hoops
of a long helix become close to transverse circles, whose curvature is the highest
on the surface of a cylinder, while the oblique grooves maintain their curvature
minimal, regardless of the filament length.

(b)

X X X

Figure 4.7.: (a) Helical configuration for an elastic filament confined in a cylinder,
between two walls. (b) Solution of the Euler-Lagrange minimum en-
ergy equation for a filament of the same length. Comparing (a) and
(b), it is apparent how the helix becomes more unfavorable as the fil-
ament length increases, because each groove becomes more similar to
the maximum curvature trajectory, which is a transverse circle around
the cylinder perimeter. (c) Non-elongating parenchima flax stem cell.
Courtesy of Ande van Lammeren, Henk Kieft, Beata Petrovska (Plant
cell Biology, Wageningen University).

Adding the caps, the filament is free to explore more configurations, including
longitudinal and transverse coils as particular cases. The question is then whether
a longitudinal or a transverse caoil is favored when the length becomes greater than
the long axis of the cell. The procedure to find minimum energy solutions can
easily be extended to a cylinder with spherical caps [62]. The solutions in this case
always wrap longitudinally (FigC4.8). In other words, it is not easy for a dynamic
spring based on bending elasticity neither to be transverse, nor to regulate its pitch
by adjusting its length. To obtain a helical configuration from the minimum energy
equation for a cylinder with walls, one has to apply an external constant force in
the longitudinal direction (see ref-]62]).

Summing up, from the simple picture provided by these theoretical considera-
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Figure 4.8.: Solution of the Euler-Lagrange equation for a spherocylinder. The fila-
ment starts from an imposed transverse orientation, but quickly reverts
to longitudinal coiling.

tions we expect that

1) Assuming that the configurations are helices, longitudinal coils are energeti-
cally favored for longer filaments.

2) Transverse coils may be favored for shorter filaments.

3) The minimization of the energy functional shows solutions thahatéde-
lical, nor completely transverse configurations even in the limiting case of a
cylinder without caps.

4) A helix can be obtained by applying a further external force on the fila-
ment [62].

4.3.2. In Vitro Experiment

In the experiment microtubules are polymerized from nucleation seeds in micro-
fabricated chambers with the typical size and aspect ratios of plant cells. In these
samples, the confinement is not strictly two dimensional. However, the confine-
ment on the wall is granted by buckling, provided the filaments are long enough.

The chambers are built in microscope coverslips using lithographic techniques.
They have the shape of cylinders with elliptical or rectangular base. | used cham-
bers of two sizes, namely 35x25x28n and 80x40x4Qum (figure[Zp). Conven-
tionally, | will call “top” of chamber the coverslip side, i.e. the observation face
under a microscope. The chambers were filled with microtubule nucleation seeds,
free tubulin and GTP and then sealed with rubber like material (PDMS). Micro-
tubules polymerize at room temperature from the nucleation seeds in the sealed
chambers, reaching lengths greater than the long axis of the box. Each chamber
contains roughly a few tens of microtubules. The length of the individual polymers
is not under control, as, because of the dynamic instability process, microtubules
polymerizing from seeds have a wide steady-state length distribuifion [67].

The free tubulin is labeled with the fluorescent dye rhodamine, so that the grow-
ing microtubules can be imaged with conventional fluorescence and confocal tech-
nigues. This involves a few technical delicacies, because of both the limited free
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4. Coiling of Microtubules Confined in Box-like chambers

Figure 4.9.: SEM images of the chambers, which consist of rectangular boxes or
cylinders with elliptical shape. A sample consists of an array of thou-
sands of chambers on a microscope coverslip. a) Array of 35x25x25
um boxes. b) Tilted view of an array of boxes sized 40x40x810
(detail).

20 microns

Figure 4.10.: A montage of confocal xy sections showing microtubules (white) in a
chamber, from top to bottom in lexicographic order. Microtubules can
be followed through the sections to form a coil. The distance between
two subsequent sections is about 215
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tubulin pool in the confined chambers, which prevents microtubule reassembly af-
ter photobleaching, and the scattering from the side walls, that affects the imag-
ing (see discussion in sectipn 4]2.2). In the bigger (40x4Qu8) chambers, the
microtubules where too short to form coils, and the longest ones where observed
buckling after having positioned themselves along the longest available diagonal
in the boxes, but not collapsing on the side walls. Thereby | estimate a maximal
microtubule length of about 100-120m. In the smaller chambers (35x25x25)

the polymers were long enough to collapse on the side walls and coil.

Confocal imaging of the chambers allows to reconstruct the full shape of the
buckled microtubules in an individual box. However, it was not possible for us
to image single filaments (visible in conventional fluorescence), due to thermal
vibrations and scattering from the chambers’ walls. After one hour of incubation,
when most of the free tubulin in the chamber is polymerized from the nucleation
seeds, the configurations were more stationary, and confocal microscopy could be
used. The dominant configurations appear as half-pitched helices that coil around
the long axis of the cell, therefore showing a longitudinal coil arrangement (figures
A-I0 and4.11).

Conventional fluorescence is useful to image the configurations of microtubules
in many chambers of the array, to have a quantitative feeling of the statistical
occurrence of the different coiling configurations. With this technique, only the
microtubules close to the top of the chambers can be seen clearly. Nevertheless,
transverse coils can be distinguished from longitudinal ones (figurg 4.12). As the
integration time is smaller than with the confocal, individual microtubules can be
seen right after they get stuck in the long axis of the boxes.

In the later stages (after 30 min - 1 h incubation at room temperature) more
microtubules polymerize, and imaging is easier. In this case it is possible to collect
data in a significant number of chambers (typically a few hundreds per sample).
After counting the configurations for 148 chamber over three experiments, | found
71% of the chambers showing only longitudinal coils. About 16% show mostly
longitudinal coils and some transverse, while less than 1% contains only filaments
coiled transversely. The rest show random, or non-definable orientations. Most
of the longitudinal coils observed, wind around the direction of observation (top
to bottom) of the chambers, as in Fig-4.10. In other words, rotating the boxes 90
degrees about their long axis, | find fewer longitudinal coils, which are nevertheless
present, as it can be seen from the middle right panel of[Fig] 4.12.

In the early stages of polymerization, after 10 minutes of incubation at room
temperature, individual microtubules are already long enough to coil, and their
configurations can be observed. However, the statistics is poor because only in a
few of the many chambers the polymers are long enough to be observable. Fur-
thermore, the classification of coiling configurations in longitudinal and transverse
is somehow more subjective due to imaging problems. Nevertheless, it appears
to that there is more balance between the number of longitudinal and transverse
coils. Of 54 buckled individual microtubules observed, 36 were judged longitudi-
nal and 18 transverse. This greater frequency of transverse coils is consistent with
the theoretical prediction that such coils are favored for shorter filaments.
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@)

(b) (©

Figure 4.11.: (a) and (b) 3D image reconstructions of a configuration from a con-
focal z-stack using intensity iso-surfaces. The red/purple iso-surfaces
show the bundle of microtubules. The light blue iso-surface shows
the shape of the chamber. (c) 3D image reconstruction of a coil using
position tracking methods. The spheres indicate points which where
manually tracked from confocal xy stacks. The image was then re-
constructed using the freeware program Xmakemol.
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—
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Figure 4.12.: Images from conventional fluorescence. Rhodamine labeled micro-
tubules are imaged in the focal plane at the top of the microchambers.
TOP. Early stages of polymerization and buckling (after 10 minute in-
cubation at room temperature). Left: individual microtubules coiling
longitudinally are visible. Right: a group of filaments is coiling longi-
tudinally; an individual filament coiling transversely is visible. MID-
DLE and BOTTOM. Images of coiled microtubules after one hour of
incubation at room temperature. In most of the cases (71%) all the
coiling filaments are longitudinal (middle-left). Although the domi-
nant coil is always longitudinal, transverse coils are sometimes (16%)
visible (bottom left). Middle-right panel: a chamber with marked lon-
gitudinal coiling which is not strictly top to bottom.
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4.4. Discussion and Conclusion

A first fact that emerges from this investigation is that confinement and bending
elasticity together are sufficient to organize the microtubules in coiling configura-
tions that are similar to those observed in plant cells. This fact may be considered
trivial, but it is a necessary preliminary to give physical grounds to the dynamic
spring hypothesis, which is not a physical model in its original formulation.

The experiment and the theoretical considerations consistently indicate that, for
aspect ratios and sizes that are relevant to the plant cell, the favored configuration
of a dynamic spring in an elongated box is a longitudinal coil, differently from the
transverse microtubule coils observed in elongating plant cells. The dynamic spring
is modeled theoretically as a filament with bending elasticity and without compli-
ance for stretch or compression, and experimentally as a microtubule growing in a
confined geometry. A simple estimate predicts that, supposing that the configura-
tions are helices whose pitch is dependent on filament length, longitudinal coiling is
always energetically favored provided the filament is long enough. The experimen-
tal observations seem to be consistent with these simple theoretical predictions, as
| find more balance between longitudinal and transverse coiling in the early stages
of polymerization, together with a decided preference for longitudinal coils in later
stages, when microtubules are longer, with a maximum length of the order of 100
um. For the experimental box size of 35x25x@25, the theoretical threshold fila-
ment length above which longitudinal coiling is energetically favored is around 80
um.

It should be noted that most of the longitudinal coils observed wrapped around
the top to bottom direction. This preference could be due to the fact that the surface
of the chambers is not exactly symmetric for rotations around its long axis, and
that geometric details play a slight role, such as a slight concaveness of the PDMS
cap, or the difference in material of the box faces. Other problems could come
from the anisotropic imaging with the confocal due to scattering from the side
walls (see discussion in sectipn 4]2.2). These problems could potentially bias the
observations, affecting also the number of observed transverse coils. On the other
hand, | consider consistency with theory, together with the fact that the theoretical
predictions are robust with respect to changes in the geometry, an indication of the
significance, at least from the qualitative point of view, of the experimental results.

To conclude, this work suggests that transverse and longitudinal coiling config-
urations of microtubules, similar to those observable in interphase plant cells can
be created in vitro using a purified system of microtubules polymerizing in an elon-
gated box. In doing this, the only two relevant features are bending elasticity and
confinement. However, considering the aspect ratio of typical plant cells, these el-
ements are not sufficient to account for the transverse arrangement of microtubules
in the cortex of interphase plant cells. Additional factors, such as kinetic constraints
or active forces generated by the cell, are necessary. The simplest possible mecha-
nism would be that the caps of the box are not accessible, for some reason, to the
microtubules forming the interphase cortical array, and the polymers are pinned at
both ends, to prevent them from coiling back, so that they are forced to organize in
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a transverse (helical) coil. If on the other hand the caps are accessible, by kinetic
constraints | mean the following. Transverse coils are formed in the beginning of
interphase, compatibly with the finding that for shorter filaments transverse coils
are favored, but when the microtubules grow something prevents them from trans-
forming their configuration into the minimum bending energy one (a longitudinal
coil) and they get trapped into a metastable state. The molecular mechanism for
this metastability could have a variety of microscopic origins, ranging from steric
hindrance to the presence of crosslinking molecules connecting the bundles to the
plasma membrane (such as the kinesin MAPI20D([24, 68], or PLIO {24, 69]).

As for the active forces beyond simple microtubule polymerization, such as
treadmilling [38] or molecular motors, the last option is particularly appealing, be-
cause simple assemblies of molecular motor complexes and microtubules have been
shown to be capable of exhibiting a remarkable number of organizafions36, 70].
For example, besides possibly being responsible for the elongation of the dynamic
spring, motors could also generate forces regulating the shape of these bundles,
like torsional forces that are not inherent of the single microtubules. However, to
my knowledge nothing has been reported yet about the activity of motors localized
in the microtubule cortical array during interphase [23]. On the other hand, it is
known that such motors are involved in cell shape generafion[71, 72] and cellu-
lose deposition{73]. Based on these observations, | can advance the hypothesis
that whatever the missing additional factors to have a transverse arrangement of
long cortical microtubule bundles could be, they may be present only in elongating
cells, consistently with the higher frequency of transverse cortical arrays in such
cells.

Finally, an important question is how the basic physical behavior discussed
here relates, or may relate, to biological regulation. A general point that can be
made is that, for the case of cytoskeletal organization, any regulation process has
to deal at one stage or the other with physical mechanisms of force generation,
aggregation, organization. In this view, for example, my observations are in gen-
eral consistent with the observed reversible disorganization caused by microtubule
(bundles) temperature-dependent disruption in cells with mutations in the MOR-
1 gene [31] (see sectidn R.2). However, the gap must be bridged with additional
hypotheses, the simplest one being that the breakdown of long microtubule bun-
dles in short fragments prevents the organization mechanism described here. In a
similar way, hypotheses can be made regarding the physical changes underlying
post-translational modifications of tubulin, such as cleavage of c-terminal tyrosine,
causing re-arrangements in the cortical arfay [30].
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5. Mean Field Approach to
Pre-prophase Band Formation.

5.1. Introduction

In the previous two chapters, | have addressed two possible mechanisms for the
formation of the cortical microtubule array. Both mechanisms, excluded volume
and bundle coiling, were essentially passive in nature, and based on equilibrium
properties of the system (although the second contained bundle elongation as an
active ingredient, its crucial properties were determined by the passive bending
elasticity). This chapter will be dedicated to the formation of the pre-prophase
band under the working hypothesis (corresponding to stylized fact (7) in clippter 2)
that it is caused by a drive which can be associated to the activity of molecular
motors. The line of action will be mainly theoretical, and only in the last section
(5-3) I will discuss the role of experimental tegtsvivo andin vitro.

The fact that motor complexes (constructs where two or more molecular mo-
tors are joined through their tail region, thus being able to generate sliding motion
between different microtubules) are able to interact with microtubules in the bulk
or in confined geometries to create a number of patterns, such as bundles, asters
and vortices, has been first established fiarmitro experiments36,-70]. These
results were confirmed by molecular dynamics simulations([74, 75], and, to a cer-
tain extent, by theoretical mean field descriptions where a particular “move”, or
mechanism of motor-microtubule action is postulated, and used to derive evolu-
tion equations in the macroscopic limit 76, 77]. For this reason. | will refer to
these models as “microscopic”. However, it must be said that in all these models,
the microscopic move is not based entirely on mechanical modeling, but relies on
symmetry arguments. Similar one-dimensional theoretical models were developed
to mimic the mechanics of stress fibers, actin bundles, or the actin cleavage furrow
have been able to predict the ability of bundles and rings to contract, the response
of bundles to external forces, and the insurgence of solitary waves78, 79]. The
simplicity of the one dimensional geometry allowed explicit treatment of the non-
local effects of motor action. On the other hand, to date there are no results on
the formation of ring-like structures, and on the interdependence of these structures
with the cell finite geometry. This is the problem under investigation in this chapter.

Here, rather than making an initial choice of a microscopic “move” for the mo-
tors, | will follow a completely macroscopic approach, which builds up from a work
of Kruse and collaborator§80] and is related in spirit to a similar approach by Lee
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and Kardar [[81]782]. This approach allows to explore the phase diagram of sys-
tems of filaments and active components in general, without prior commitment to
a particular microscopic picture. The starting point will be a generic macroscopic
model to describe the mean-field behavior of systems of actively driven filaments.
Since the symmetries of the system are the basis to introduce the physical descrip-
tion, we can say this approach has the same spirit as a Landau mean field theory
[B3]. However, the equations of motion are more general than what can be derived
from a free energy, and allow for a broad range of far from equilibrium drives. For
the case of microtubules, these may include treadmilling, dynamic instability and
molecular motors. The presentation of the method and the equations will be the
subject of sectiof §.2.

As it will become clear during the exposition, the most general formulation of
the model is too complex to be handled. It contains a jungle of parameters to ex-
plore, most of which are not easily interpretable. For this reason, we will make
a number of restricting hypotheses, of three different types. A first kind is purely
geometric, and involves reproducing features such as the correct dimensionality,
topology and shape of a plant cell cortical region. A second kind of hypotheses
concerns the adaptation of the model to more or less established experimental ob-
servations, namely the facts that the pre-prophase band is rotationally symmetric
and, more importantly, that the microtubules that constitute it are aligned with ran-
domly directed plus ends. Finally, the third kind of restriction will be an attempt,
based on symmetry reasoning, to select for the possible driving terms caused by
the activity of molecular motors with respect to treadmilling and polymerization.
These hypotheses will be sufficient to characterize a smaller parameter space, many
traits of which are interpretable with knowledge drawn from the theory of equilib-
rium suspension of rod&{84].

In other words, | will adopt a top-down method, where the first objective is
to find a minimal realization of the mean field theory that reproduces ring-like in-
homogeneous steady states, within the physical and geometric restrictions. The
second goal is to identify the role of the different parameters. This will be the core
of sectiond5]3 an §.4. The advantage of this methodology is that, in absence of
detailed experimental information, one is not committed to any particular micro-
scopic picture of the activity of motor complexes, and the model remains open to
the results of new investigations. The subsequent step in the method is a micro-
scopic identification of the active terms that are recognized as important within the
top-down, macroscopic approach. This is a separate task, which can be accom-
plished using more detailed models of motor activity [[78, 75, 74["27-76, 62], and
looking at the equations of motion they generate in a mean-field limit. Once this
is known, direct experimental tests for the activity of the drive can be proposed. |
will dedicate some discussion to an attempt of this kind in se¢fion 5.5, based on the
hypothesis that motor complexes act as illustrated in fiflufe 5.1. (more details can
be found in the thesis of Catalin Tanase [62]).
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Figure 5.1.: One possible mechanism of action for molecular motors in a self-
organization experiment. Motors are associated in complexes and can
act on more than one microtubule, thereby generating forces between
them. In a self-organization asseyl[36], the motors are normally ki-
nesins with an engineered biotin tail, connected by streptavidin links.

5.2. Derivation of the Equations

5.2.1. General Approach

Before | outline the derivation of the equations for the particular case of interest
(thatis, applying the restricting hypotheses listed above), it is worth spending a few
words on the general aspects of the mettiod [80]. The goal is to define a mean field
theory for active systems of filaments, possibly in interaction with other molecules,
using a Landau-like macroscopic formulation, where the equations of motion are
written purely from symmetry considerations. The theory is based on a set of fields,
functions of space and time (in general tensors), which are supposed to be coarse
grained. That is, the small scale features of the system under exam have been
averaged out, and there is a cutoff length sealeinder which nothing can be
resolved.

The first step is a choice of the relevant fields, or the quantities that one is in-
terested to include in the description. The first one, obviously, will be the filament
density, followed by order parameters like filament vector orientation and nematic
order (the list of tensor order parameters becomes infinite if one wants to take into
account all the possible ones). Itis possible to have more than one filament species,
for example actin and microtubules. The density of free monomers (tubulin, actin)
should be considered in case one wants to take into account the process of poly-
merization of the filaments. Other fields that may be considered relevant are the
densities of all the other molecules that interact in some way with the filaments,
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for example, molecular motors or crosslinking agents. In summary, the fields are
specified as a set of densiti€S;} and a set of tensor order paramet{z@#m} of
rankR;.

The second step is to write the equations of motion for the relevant fields. It is
not possible to derive these equations from a free energy functional, because this
would rule out many terms related to nonequilibrium drives. One can rely on a few
less restrictive hypotheses:

e The evolution equations are first order in time. In other words, the dynamics
of the fields is overdamped. For example, the evolution of a generic order pa-
rameter will be given by, 0" =w®R)(C .C,,... Lo, .., wherew ")
is a tensor expression of the same rank and symme@%)s containing all
the fields and their derivatives.

e Conservation of mass. The total densitgshave to obey continuity equa-
tions of the kindd,C, + O - J; = 0. In the case of polymerization processes
one has to take into account the appropriate source terms for filament and
monomer density.

e The currents are generated by a generic stress tensor, which contains the
active drives:nJ; = 0-¢(? (Cl,C27...,O(11>,...), where the expression for
the stress tensor can contain all the fields and their derivatives.

In the spirit of Landau mean field theories, the expressionwlﬁ'r)(q,oi) and

Gi(2> (G, 0;) are written as Taylor expansions in the fields, discarding all the terms
that are not allowed by symmetry. These expressions can be truncated to a certain
order in the fields and in the derivatives, making approximations on the strength of
the nonlinearities and on the wavelengths that the system can assume respectively.
Itis easy to realize that, if one wants to take everything into account at the same
time, the formulation becomes bulky and cumbersome. On the other hand, one
can use the formal elements of the mean field theory as building blocks to generate
minimal models. This is the procedure | will follow in the remainder of this chapter.

5.2.2. Definition of the Model

Let us start by choosing the relevant fields. One first restriction one can make, re-
lated to the geometry of a plant cell cortex, is to consider a two-dimensional system.
The filaments, microtubules, have an intrinsic orientation, defined, for example, by
the direction of the plus end. We can associate to each of them a unit vector
which is dependent on the filament positiore. n(i) = n(x;), wherex; = (x,¥;)

is the position vector (which has two components in 2D), iaiscthe filament in-

dex. | assume here that the fields describing relevant quantities correspond to local
averages of the “moments” aof (i.e. the tensor products that can be constructed
with it), of which we consider up to the second. The first field, which is the zeroth
moment ofn, describes the local densityx,t) of microtubules.
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The first moment of is the average orientatign(x,t) = (n),, where(-) de-
notes an average over all filaments within a region of aiz&hich is large com-
pared to a single filament and small on a “macroscopic” scale, which in the system
we consider will be defined by the size of the system (a plant cell). Each region
is labeled by the continuous coordinates (Xx,y), at timet. | choose to disregard
the order parametgrin this description, justified by the experimental observation
that microtubules in plant cells align regardless of their orientafion [85[-86, 19].
This is a radical assumption, considering that it implies that the active terms gener-
ated by motor activity do not break the microtubule left-right symmetry, while we
know that a single motor is able to break this symmetry. | will discuss further the
implications of this choice in sectign b.5.

The nematic order parameter ten§? describes local alignment regardless
of orientation. It is symmetric and traceless. Its compon@@%} =0, are given

by the local average

1
an:<nanﬁf§6aﬁ>. (5.1)
From the tensor
Q@ = ( Qi1 Yi2 )7 5.2
0, —Ona (52)

we can derive two parameters:

S 20 =2/, + &, 5.3)

_ Aoy

tang = O,
Sis the two-dimensional nematic order parameter that we already encountered in
chaptefB. Being zero for fully disordered systems and one for fully ordered sys-
tems, it measures the degree of alignment. The afdgethe orientation angle of
the nematic director. Its value is zero for alignment alongtheaxis, andr /2 if
the alignment is along thg— axis. For both horizontal and transverse alignment,
we haveq,, = 0, and one can show that the the signgef indicates a specific
alignment direction. Indeed, if we expand EqJ 5.3 to second ordgg,in

\/ f; + 0%, — Oy

tang =
U11
2
|94 (1+ %%) —Up
- I (5.4)
dio
G i
{ o, 20 (5.5)
Baal 12 i ’ ’
2 4, T 20y +oo if gy <0

Furthermore, | choose to disregard the fields associated to motor and tubulin
density. The first quantity can be considered effectively constant assuming that
each filament always interacts in the same way with the others. This corresponds to
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a picture in which the motors co-localize with microtubules, but their accumulation

is low enough not to affect their average activity on the filaments. Disregarding
tubulin density implies assuming fast diffusion. Under these assumptions, we are
left with the two fieldsc = c(x,t); Q@ = Q@ (x,1); (Q)Efl)3 = 0,5, We can now

write the dynamic equations following the criteria listed above: conservation of
total filament density, currents can be derived from a generic stress tensor, and the
equations are first order in time.

2) _ 2 2 .
aQZ) =W2(c,.Q?),

Wherejﬁ = n*l&xcaﬁ (sums on repeated indices are implied) is the current gen-

erated by the stress tensof?. We can neglect the source terms in the continuity
equation forc, on the basis of the experimental observation that the density of poly-
merized microtubules is roughly constant during pre-prophase band formation.
The expressions fal @ andc () are written as Taylor expansions in the fields,
keeping only the terms allowed by symmetry. For example, a terrrﬁ%e can-

not be present in the equation f&f(?, which is traceless. In the same way, no
antisymmetric term can be present in the equatiorsfét. Thus, we write

—N710,5 = 8,5(84C+aAC) +83049,C
+8,8,5C% + 8596 CIC+ 858, 5CIuIpC+ ... h- (5.7)
+b1qaﬁ + 5043 bzayaaqy‘S + b36aﬁqy5qy3 +...

3
Wop = Gilg + 0,5+ 05220 +d, QU2
+f, 8a8ﬁc—%5aﬁAc) (5.8)
+5 (9ucdge— 38,4 (Dc)z) +fy (c&aaﬁc— 3048 cAc) +...

It is possible to make a further simplification considering the spatial symmetry
of the pre-prophase band. As we have seen, the geometry of a typical plant cell
is a capped elongated cylinder, where microtubules are confined in the cortical
region, close to the surface. The pre-prophase band is symmetric with respect to
rotations of this cylinder, so it makes sense to search for solutions with this property.
This is done by averaging out the fields that depend on the angular cylindrical
coordinate y, or equivalently by projecting them on sdirection. This operation
generates an effectively one-dimensional model where the quantities depend only
on the longitudinal coordinate(Fig. 5:2).

ac= 9 ac+ (a,+ag)d2C+a,c% +ag(kC)? + agCoZc+ ...
b0y, + b28>§q11+ 2b,(0%; +GZy)} + ..
OOy = OOy +0,050, +d3diay; + ... (5.9)

+3f,02c+ 1 ,(0kc)? + 3 facdZC+ ...
0012 = OhOyp+dy050,+d30¢gy,+ ..
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In what follows | will truncate these expressions trying to keep as few terms as
possible. We will see that remarkable behavior emerges already by stopping this
expansion at the second order in the power of the fields and in the derivatives. For
consistency reasons that will become clear later, | will need to allow for fourth
order derivative terms with “small” coefficients.

PROJECTION

FIXED BOUNDARIES PERIODIC BOUNDARIES

Figure 5.2.: Projection and boundary conditions.

The above equations specify the model, and have to be solved with the appro-
priate boundary conditions. The lateral boundaries should realistically impose zero
current at the sides of the cylinder, but we will consider mainly the more easily
treatable case of periodic boundaries, which topologically speaking correspond to
a donut shaped cell (Fig—5.2).

I will show that this model is minimal, in the sense that it is simple enough
to be manageable, it depends on few relevant parameters, and at the same time is
not trivial, showing complex behavior that includes the desired ring-like (or stripe-
like, in the one-dimensional effective model) inhomogeneous steady states. | will
proceed in two steps. First, | will characterize through linear stability analysis the
regions of parameter space where different instabilities of a homogeneous steady
state may occur. Next, | will pinpoint the region that is most worthy of examination
in connection with stripe-like states, and | will analyze numerically and analytically
the role of nonlinear terms in the stabilization of stripe-like instabilities.

5.3. Stability Analysis and Phase Diagram

Linear stability analysis is a standard technique in the investigation of pattern for-
mation [42]. It consists in performing a functional expansion about a known steady
state solution of the evolution equations, obtaining linearized equations with a re-
duced set of (rescaled) parameters, and looking for the unstable modes as a function
of these parameters. In our case, the nonlinear equations are writfen in (5.9). Itis
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easy to check that the homogeneous isotropic stafe= c,; g (x) = 0 is a solu-
tion. The functional expansion then reads

C(X) = ¢y + 6¢(x);
g (x) =0+ 64;(x) ,

The linearized equations féic(x), 6q;;(x) derived with this ansatz are

8¢ DdZ —edy F 02 0 8¢
& day |=| F02 E+GIZ-—ed} 0 50y,
50, 0 0 E+GoZ — edy 8,
(5.10

The parameters that appear in Hg- (p.10) have been conveniently redefined for
ease of interpretation. We can try to infer their meaning looking at their role in the
equations and using some knowledge from equilibrium dilutions of riads [84].

e D = a, +2cya, plays the role of a diffusion-like term. However, even if one
setsa; > 0 to make it a well behaved diffusion constant in the full equations,
D can change sign and become negative in the linearized equations, because
of the coefficient 2ya,, coming from the quadratic term @

e F, =D, andF, = }f; are linear coupling terms between the second deriva-
tives ofc andq,; which enter in a symmetric way. Linear coupling terms of
this kind betweer andgq, , are forbidden by the hypothesis of constant fields
in they direction.

e E =d; Can be identified with a rotational diffusion term for the rods, when
E < 0. In equilibrium systemd; crossing zero is a signature of a nematic-
like transition.

e G =d, can be seen as an “elastic constant” term, comparing with an evolu-
tion equation of the order parameter of an equilibrium liquid crystal [84].

e £ > 0is a(small) stabilizing term that we include in order to have stability at
small wavelengths. This term is necessary for consistency with the coarse-
grained description we adopt here, because any instability below the cutoff
length scale would be nonphysical. We will see that no physical features of
the system depend an

The current caused by the perturbing fields we have applied reads
— j = Dokdc+F 0480, — €d35¢C . (5.11)

In case one wants to perturb around a state with nonzero (constant) order, the
equations have to change in order to allow for this steady state solution. For exam-
ple, to obtain a steady state solution with nonzero alignment of the kind

@_( -9 O
QO _< O %)’
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5.3. Stability Analysis and Phase Diagram

it is sufficient to add terms proportional thgs in the equations fog,; andq;,

that appear in[(59). In this case,qf = 1/2, there is perfect order along the y
direction; for lower values, the ordering decreases gradually. However, it is easy to
check that perturbing around this steady stgté € gs+ g% g2 =0+ 8qtY),

the linearized dynamic equations remain unchanged, because all the contributions
of the pre-ordering cancel out.

5.3.1. Periodic Boundaries

If we impose periodic boundaries, the problem can be solved using a Fourier series
ansatz, which guarantees automatically that periodicity is fulfilled. This, applied to

Eq. (5ID), gives

sc —Dk? — ek? —Fk? 0 sc
&l oy | = —F,k2  E—GK —¢k? 0 5ay; |,
5a;, 0 0 E - GK —ek? 50,,
(5.12)

with k = Z"T”, n € Z. For every value ok, the solution in Fourier space is

oc(k,t) éc(k,0)
( oa,(kt) ) ~ M ( 80,(k,0) ) .
8,(k,t) 80,,(k,0)

Substituting this expression in Eq-{5.12), we can read it as an eigenvalue prob-
lem, where the sign of the real and imaginary part of the eigenvalldedetermine
the time evolution of the mode labeled kyA positive Rél corresponds to expo-
nential growth, a negative Reto exponential damping of the mode. An instability
occurs when, for a small change of parameters, the eigenvalue with highest real part
crosses zero. An eigenvalue with nonzero imaginary part determines an oscillating
solution for the particular mode it refers to. An instability of this kind is called a
Hopf bifurcation [42].

The dynamics foq, , is not coupled to the other fields. Its corresponding eigen-
value iSE — GKk% — ek*. The upper 2 2 block matrix can be analyzed indepen-
dently. Its eigenvalues are

App— % (B~ (D+GK — 26K+ [E2 1 2E(D ~ G)R2 + (4F,F, + (D~ G)2)K)
(5.13)

Forlarge k, solutions have to be stable for consistency with the coarse-graining

hypothesis. This is guaranteed by the fourth order derivative ternas>iD. In

thek = 0 limit, one of the two eigenvalues is always equaEtgmore precisely,

the highest eigenvalue is always n@)E) . This means that thke= 0 (constant)

mode is unstable ifE > 0. This kind of global instability is uninteresting for us,

because it cannot be directly related to pattern formation. Furthermore, this kind

of solution for the perturbing fieldc is not compatible with conservation of mass

(for the order parameter, it is similar to a nematic transition). Thus, for the further
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5. Mean Field Approach to Pre-prophase Band Formation.

analysis | will always assume th&t < 0, which corresponds to a passive term,
interpretable as rotational diffusion.

Since the characteristic equation is a second order polynomialtime eigen-
values are either both real or complex conjugates. On the other hand, the same
eigenvalue equation is a fourth order polynomiakfninvolving all the other pa-
rameters. For this reason, although it is in principle possible to obtain everything
analytically, this may be rather involved. The fastest way to derive the complete
map of instabilities is to study the sign af +A,, 4,4, and of the argument of
the square-root part of the eigenvaldgg), as a function ok and the parameters.
These quantities have particularly simple expressions:

A+ A, =E — (D + G)k? — 2¢k?
A, = K21 (k?)
A= ((D—G)?+4FF,)k* + 2E(D — G)k? + E?,

wheref® is a third-order polynomial ik?2.
@ (u) = e2u® + ¢(G + D)u? + (DG — F;F, — ¢E)u— DE.

Before we go on with the discussion, it is necessary to spend a few words classify-
ing the possible instabilities that we can expect given these expressions. Now, the
eigenvalues approadh= 0 as

A, = —DK?
A, = E —GK.

Let us assume they are real. As we know that they have to become negative for
large Kk, the possibilities are: fdd > 0 (1a) they always stay negative, and the
homogeneous state is stable, or (1b) the largest becomes positive for a certain value
of k and then crosses zero again (Fig] 5.3c);Bot 0 (2a) The largest eigenvalue,
which starts with a positive slope, crosses zero three times[(Fig. 5.3b) or (2b) only
once (Fig.[5]3a). This last possibility is the one | will concentrate on, for two
reasons. First, the lowest mode to become unstable is always the first, so that a
stripe-like mode is always involved in the instability. Second, this instability can
never be a Hopf bifurcation, because, supposing the eigenvalues become complex,
their real par(4, + 4,)/2 is always negative for smak, because we choge< 0.
If the eigenvalues can become complex, the situation is in principle more intricate,
because, the real pafk, + 1,)/2 can cross zero twice D + G < 0. However,
we will see that the only kind of instability that can occur is the one sketched in
Fig.b-3a.

To localize the boundaries between the different kinds of instability, we can
distinguish two cases.

e If D+G >0, 4, + A, is always negative, thus the instabilities are simply
located by imposingl;A, = 0. One solutions of this is always= 0, the

others are given by the real and positive root§ 6f. It can be easily checked
that, in the limit of smalle, f® can have 2 or none positive rootsf> 0,
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Figure 5.3.: Instabilities that can occur with periodic boundary conditions. The
largest real part of the eigenvalues is plotted as a functiok af)
1 real root of {3 corresponds to instabilities that start frdm= 0,
so that the lowest mode to become unstable is always the first. For
this instability the eigenvalue can never be complex. This is the most
interesting kind of instability for us, because the stripe-like mogel
is always unstable. (b) Three real roots fdf), with A > 0 at both
instabilities. The smalk instabilities compete with other ones with
smaller wavelengths. (c) Two real roots 6f), with A > 0 at the
instability. The system becomes unstable at small wavelengths. (d)
No real roots off (3. The eigenvalues (solid line) become complex
(A < 0), but their real part (dashed line) crosses zero at fln({tdopf
bifurcation).
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5. Mean Field Approach to Pre-prophase Band Formation.

and 1 or 3 positive roots I < 0. The possible instabilities that can result
are (a), (b), (c) in Fig[5}3. Furthermore, if the eigenvalues are complex
conjugatesi, + 4, = 2Rel,, < 0, so that there cannot be Hopf bifurcations
(instabilities with complex eigenvalues).

e If D+G < 0,4, +4, can become positive, and one has to be more careful. To
characterize the instabilities, it is necessary to study the sign offy®tand
A. The roots off @ are discussed in the same way as in the previous case.
In addition, whemA < 0 at the instability, there will be a Hopf bifurcation. It
turns out that this is possible only for>0,D+G < 0,FF, <0,G>D -
\/—4F;F,, and the corresponding instability is the one sketched in. 5.3d.

From all these considerations, one can derive the stability diagram df Hig. 5.4

Looking at Fig.[5H4, it is striking how even such a simple model can exhibit
extremely diverse behavior. Once again, the question is what to focus on using
physical arguments. | have already argued that the relevant instability for the prob-
lem we are concerned with is the one depicted on[Fig 5.3a. In addition, one can
make the further physical restriction that the relevant instabilities are those that are
accessible from the homogeneous state upon continuous variation of one control
parameter. This corresponds to a picture where the plant cell cannot alter suddenly
the parameters associated to motor activity (for example the density of motors), but
it has to do it slowly, starting from an initial isotropic state after cell division. Ac-
cepting this fact, we can restrict ourselves to the transition marked by an arrow in
the lower panel of Fig-5.4. Admittedly, the realism of this hypothesis can be dis-
cussed, and in principle other regions of parameter space should be explored. On
the other hand, to do this, one should be guided by the feedback from experiment
and microscopic modeling. Given the present knowledge, | consider it sufficient to
explore the implications of this gradual parameter variation hypothesis, and con-
centrate on one transition. This choice, of course, will have to be confronted with
experimental results.

Let us now look at the unstable modes. The eigenvalues given in equatign (5.13)
correspond to the following eigenvectors (up to an overall normalization factor):

(Vi \_[ E+(D-GKR—eki+\/(E+(D-G)k2)*+4FFkt |
(é) ( \2/F2k2 v

We can focus o', which always has the largest real part. From the above ex-
pression, it is easy to see thgt- v, can be positive or negative. In fact, replacing
F, — —F, andF, — —F, changes the sign of but leaves the corresponding eigen-
value unchanged. As a consequence, there are two equivalent possibilities for the
unstable modes,

4¢,(x) = v cogkx)

895,(x) = vy cogkx),

that, fork = 2z/L correspond to a longitudinal or a transverse nascent ring. This
is illustrated in Fig[5]5. The stripes of Fig-p.5 are always the lowest unstable
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Figure 5.4.: Instability phase diagram for periodic boundaries. The different insta-
bilities are plotted as a function of the paramet€r®,F,F,, in the
limit of small €. In the figures hatching corresponds to stability of the
homogeneous state, cross-hatching to instabilities at kiiiey. [5-3¢),
large hexagons to smak instabilities (Fig.[513a), small hexagons
to competition between finitk and smallk instabilities (Fig.[513b),
checkerboard tiling to oscillatory instabilities (F[g-]5.3d). kglr, > 0
(b) FF, <O.
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5. Mean Field Approach to Pre-prophase Band Formation.

5¢(X),50:(x)

5¢(x),80(x)

Figure 5.5.: Unstable stripe-like modes for periodic boundaidesx) (solid line)
anddq,,(x) (dashed line) are plotted as a functionxoffwo equivalent
possibilities exist, for both of whickig,, = 0. In the first case (higher
panel), higher density correlates with longitudinal ordering, giving rise
to a longitudinal stripe, while in the second case (lower panel) higher
density is associated with transverse ordering, as in the pre-prophase
band.

mode in the transition we are focusing on. Furthermore, there will be always be a
particular sizeL of the system, for which the first mode is also the fastest growing
one. The fact that ordering of the unstable modes can only be transversexto the
direction (the “long axis” of the plant cell) comes formally from the requirement of
rotationally symmetric patterns, which uncouptgs from the densityc at linear
order.

To summarize, from this analysis it emerges that, for first mode (stripe-like)
instabilities, the change of sign &f from positive to negative, and therefore the
quadratic term in the density field in Eq. (5.9)), is fundamental. In addition,
the productF, F, has to be negative, corresponding to negative feedback between
ordering and growth, an@ has to be positive. Finally, for periodic boundaries,
there is a symmetry between longitudinal and transverse stripes that start emerging.

5.3.2. Zero Flux Boundary Conditions
The stability analysis with periodic boundaries | have presented in the previous

section has the advantage to be analytically treatable. More realistically, thinking
about the plant cell problem, one should impose the condition of no flux, or zero
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current at the boundaries, instead. For example, the boundary conditions

j(0)=j(L)=0
604(0) = 8qy,(L) =0 (5.14)
00;,(0) = 80y,(L) =0,

where one sets in addition fixed boundariesdqy;, satisfy this requirement. Un-
fortunately, so far | was not able to find the solution of this fixed boundary problem
analytically. For this reason the structure of the stability diagram was explored
numerically or relying on approximations.

Using these techniques to analyze the transition that emerges from the periodic
boundary case, | find that

e Again, 6q,,, is decoupled from the other perturbing fields, so it is straight-
forward to find the solution

_ ¥ §5e0.e(E-CU? e(B) )t gipy (FNX
Se(x.) = 3 S sin(“-).

which has the same stability features as the previous case.

¢ In the limit of largek (small wavelengths), there are periodically spaced dis-
crete modes with the same relatid(k,) as for the periodic boundary case,
so that, for sufficiently larg& the largek instabilities are located in the same
regions of parameter space as in the case of periodic boundary conditions.

¢ The critical surfacé = 0 found forF;F, < 0 appears to be still present. In
this case as well the lowest mode to become unstable is the first, although
its functional form will be changed due to the different boundary conditions.
It is possible that the symmetry between longitudinal and transverse nascent
stripes will be broken in these circumstances.

Although the problem of linear stability analysis with zero flux boundary conditions
is still open and subject to current work, these results are sufficient to indicate that
the instability we are concentrating on is still present.

5.4. Solutions of the Nonlinear Mean Field
Equations

Linear stability analysis helped us locating the regions of parameter space where
inhomogeneous nonequilibrium states form. The critical [he- 0, for F;F, <

0,G > 0 was chosen as the most important to be analyzed, as it is the only boundary
between the homogeneous state and first mode instabilities. However, in order to
find the final state and characterize it, the full nonlinear equations [Eg. (5.9)) are
needed. Stated another way, the question is to find the appropriate nonlinear terms
that stabilize into stationary stripe-like patterns the stripe-like instabilities we have
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5. Mean Field Approach to Pre-prophase Band Formation.

characterized. For this reason, | will start with all the terms written in Eq]. (5.9),
and | will try to reduce the equations to a minimal set of terms, able to generate
the wanted solution. | will look for inhomogeneous steady states both analytically,
using a slaving approximation for the fields, and with the use of numerical tools.

5.4.1. Slaving Approximation

It is possible to reduce the set of steady-state equations[[EQ. (5.9)) to a nonlinear
equation that is analytically solvable. In order to do this, one has to start from the
hypothesis that the componemﬁ(x) of the order parameter follow adiabatically

the density fieldc(x) in the dynamics. That is, the relaxation of the orientational
degrees of freedom is much faster than the characteristic time of variation of the
density.

In this hypothesis, we can linearize the equations of motion for the order pa-
rameter, and keep only the nonlinear terms contained in the evolution equation for
the density. Once again, the equationdgy is decoupled from the others and can
be ignored, so that the steady state equationg,fbandc become

by 01 +b,950 5 +2b5(0f; + ) } (5.15)

{ 0= d?{a,c+ (a,+az)d2c+a,c? + ag(dyc)? + abcoe+
0= d;qy;+d,020,, +dydfa, + 5 f,02c.

Whend, = E andd, = G are nonzero, the linear differential equation gy
can be solved implicitly with the method of the Fourier transform getting

_ 1 flk2 k(X' —x) .__
qll_—g/dk/dx’mc(x’)e' ._—/dx’G(x—x’)c(x’), (5.16)

whereG(x) can be computed directly using the residue theorem:
e_x\/ |EE§| .

This convolution term has to be inserted in the steady state equationifbich has

the form 0= odxj = n*laxzoll,. Assuming that the currerjtis zero, and therefore
—n*loll =T, a constant, our steady state equation for the density is equivalent
to

Gx)=m ‘g

1My +a,c+ 8,2+ ag(ke)2— by / dX G(x—X)c(X) =0, (5.17)

where | have neglectda}, which, taken into account, would add to this equation the
solution of the equation far, , as an inhomogeneous term. This integro-differential
equation has a compact, straightforward form, but is is still too complex to be
solved analytically.

Making the further assumption thit= d, = 0, i.e. the “rotational diffusion”
is switched off, it is immediate to check that EQ. ($.17) reduces to
(b +2bg) f; . ag

—a,(C® + 22(x0)?)) + agcazc.

Fo=(a,~ 2G ) a,
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C(X),0(X)

Figure 5.6.: Example of stripe-like inhomogeneous steady-state solution obtained
analytically for periodic boundary conditions. The density) (solid
line) and the first component of the order parameggr(dotted line)
are plotted as a function of Both exhibit a singularity in the middle.
The plotted solution corresponds to a transverse stripe (cf[Flg. 5.5).

This equation has stripe-like solutiongtif := —a > 0 andag > 0. These solutions
can be found provided, + a; is set to zero. We can distinguish two cases:

1) a; = 0. The equation can be solved analytically. The inhomogeneous steady
state solution is of the kind

{ c(x)=  a+pcosh$)

Ga(¥) = o —pcost(z),

where the coefficients can be computed imposing the periodic boundary con-
ditions and the normalization condition for This solution (formally identi-

cal to the one found in[79]) is always a transverse stripe with a singularity
at the peak (see Fifj. 5.6), such th@fc)? is continuous in this point.

2) ag > 0. The equation of motion can be solved numerically finding nonequi-
librium inhomogeneous steady states similar to the one shown iffHig. 5.6, but
with a smoothed peak (because in this case @go has to be continuous).

These considerations indicate that the most important nonlinear terms to obtain
our stripe-like solutions are?, which drives the instability, an(bxc)?, which sta-
bilizes the pattern. Furthermor?c, removes the singularity from the peak of the
stripe.

5.4.2. Numerical Solutions

The numerical solutions are obtained by discretization of the fields and the nonlin-
ear differential operators in space and time, on a fixed mesh. For example, a field
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5. Mean Field Approach to Pre-prophase Band Formation.

¢(x,t) becomes the discrete fielg ., and the solution of the equation of motion
looks like '

Girinr =% +JVq)|,rAT )

where ./ is the discrete equivalent of the operator acting ¢orffor example,
oxp(x.t) becomes g, . — ¢, ;)/2A%, ¢(x,t)? corresponds te?, etc.).

, T

C(X),0(x)

_—— e ——— S ————

Figure 5.7.: Stripe-like pattern obtained with a numerical solution of the full nonlin-
ear equations. The densityx) (solid line) and the first component of
the order parametey, ; (dashed line) are plotted as a functiorxofrhe
values of the parameters of the linearized equations that correspond to
this solution areD = —1.5,G = 1.5,FF, = —1,E = —1,& = 0.005,
whereas the coefficients of the nonlinear terms aye- —3,a; =
l,a;=—-0.1,d, = —1. The plotted solution corresponds to a longi-
tudinal stripe (cf. Fig[5]5).

The solutions obtained with this technique do not rely on any approximation
on the relaxation time scales of the fields, and, once again, show the formation
of stripe-like stationary states in the region of interest. One example is shown in
Fig. 6.7. The numerical solutions seem to indicate that, together with the terms
that already emerged from the analytical treatment, a third-order term in the order
parameter may be important to stabilize the emerging patterns. Finally, as the ex-
pression for the entire stress tensor is known from equ@fion 5.7, one can use it to
calculate the tension profile of the forming ring, or of the inhomogeneous steady
state, once this solution is available. In other words, the model is built to output the
contractile forces generated by a ring, once this is formed.

5.5. The State of Microscopic Modeling and
Experiments

Having identified a minimal set of terms (essentiatff,and (dxc)?) necessary to
drive the system far from the equilibrium (homogeneous and isotropic) state, and
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to stabilize emergent stripe-like patterns, the problem that remains open is the con-
nection of these terms with the action of molecular motors, or possibly other kinds
of active drives. This is, it must be said, quite a delicate point. Throughout this
chapter, justified by the fact that microtubules within the pre-prophase band do not
possess vector-like orientation, | have chosen to look at states where the left-right
symmetry of the filaments is not broken. However, the activity of a single motor
does break this symmetry, and this has been the basic ingredient of all the micro-
scopic models so far. As a consequence, the pattern-forming instabilities in these
microscopic models break this symmetry as well. To date, all the available theoreti-
cal microscopic models{77.176], except for the one-dimensional treatment of Kruse
and collaboratord[79], have the limitation of relying on some non-mechanical hy-
potheses, such as symmetry arguments, for the implementation of motor activity.
For this reason, an entirely mechanical (i.e. based only on force balance equa-
tions) two- and three-dimensional microscopic model was developed within the
same project by Catalin Tanasel[62]. In this model, motors with the same direc-
tionality (plus- or minus-ended) are supposed to be associated in dimers, and to
slide on microtubules generating a constant force (seg Fig. 5.1). The resulting mo-
tion is dictated by the overdamped force-balance equation. This dynamics is then
implemented in the Smoluchowski equation formalism, as’in [77], which is then
used to derive macroscopic evolution equations for the relevant fields comparable
to the ones | discussed in this chapter. Once more, the results indicate that the
instability-driving terms come from the vector fighgx,t) associated to the orien-
tation of microtubules. Given these facts, two main options remain open

e The microscopic drive of the motors is such that, on average, left-right sym-
metry is respected. For example, motor proteins may act in heterocomplexes
containing motors with different directionalities, or the effects of plus- and
minus-ended complexes may somehow balance each other.

e The real instabilities are driven by the vector-like orientation field, and ori-
entational disorder is established at a later stage of pre-prophase band forma-
tion, with a mechanism that needs to be elucidated.

On thein vivo experimental aspect, besides the data on localization already
mentioned [[Z3], nothing is known on the details of the activity of molecular mo-
tors localized in the microtubule cortical arrays, except an indirect association with
morphogenetic phenotypic shape modificatidns [72]. Most of the recent attention
seems to be concentrated on other active traits of microtubules, dynamic instability
and treadmilling [[34[719;-33,-85]. On the other hand, some data is available on
the dynamics of pre-prophase band formation (Eig. 5.8), which could be compared
to the dynamics of pattern formation in the model when more insight is gained.
Finally, concerningn vitro experiments, the most straightforward approach is to
combine the confinement in a box-like chamber of Ch. 4 with a self-organization
assay experimeni]36] where motor protein tetramers are formed by linking bio-
logically engineered kinesin with a biotin tail with streptavidin (see Eig. 5.1). Ex-
periments of this kind are currently in progress, and some preliminary results are
shown in Fig[519.
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Figure 5.8.: Dynamics of pre-prophase band formation (Jan Vos, EMBL, Heidel-
berg). (a) Kymograph of the plant cell cortex. (b) Graph of the pixel
intensity distribution as a function of time. The width of the intensity

distribution shrinks linearly with time.
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Figure 5.9.: Preliminary results of self-organization assays in bulk and box-like
confining geometries. (a) Asters in bulk. The size of the picture is
approximately 150x20@m. (b) Bundle in bulk, approximately 60m
long, formed by dynamic aggregation of microtubules and motors. (c)
Asters in 35x25x25um sized box. (d) Ring-like pattern in 35x25x25
um sized box. The experiments are performed with BioK401 biotini-

lated kinesin complexes (purified as in reference [87]) formed with
streptavidin. In all the above pictures the concentration of motors is 50
ug/ml. In (a),(b) microtubules are taxol-stabilized. In (c),(d) micro-
tubules grow from nucleation seeds as in the experiments described in

chapter}.
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5.6. Conclusions

I have presented a generic framework to provide a coarse-grained description of
active systems of filaments and motors. Within this framework, | adopted a top-
down approach to describe the formation of ring-like patterns in a system with the
geometric features of a plant cell, with the objective of demonstrating the feasibil-
ity of the role of motor activity in the context of pre-prophase band formation, as
prescribed by stylized fact (7) in C[. 2. The first advantage of this method is that
it is generic. That is, one is not committed to a particular microscopic interpreta-
tion of the active process that drives pattern formation, which is useful, given the
scarcity of experimental evidence. Rather, the model allows to look for the general
circumstances, allowed by symmetry considerations, under which the formation of
a ring-like pattern is possible, and leaves the interpretation to a subsequent step.
Furthermore, the geometric and symmetry constraints imposed by considerations
on the patterns formed by cortical microtubules allowed to simplify greatly the gen-
eral problem, and to reduce the space of relevant parameters to a manageable one.
Thanks to this, | could map all the possible instabilities of the homogeneous state
for periodic boundaries, isolate one region where the transition to a stripe-like, or
ring-like, state is possible, and find analytical and numerical solutions for steady
states of this kind.

Interestingly, because of the requirement of lack of vector-like orientation in
the pattern, the instability isolated here is driven by a term which does not break
the left-right symmetry of the filaments, and, it seems, cannot be derived by micro-
scopic models that are based on this featlire [76[ 77, 62]. If this is true, two possi-
bilities remain open: either there are microscopic mechanisms of action which (on
average) do not break the microtubule left-right symmetry, or the real instability is
correlated to vector-like order in the filaments, which is then lost in a later stage
of pattern formation. Both possibilities, together with the mere question whether
motor proteins play a role in pre-prophase band formation, are within the reach of
a test within vivo experiments, looking at the localization, activation, and binding
properties of the molecular motors that co-localize with the microtubule interphase
arrays of plants, and at the orientation of the filaments themselves. On the other
hand, from then vitro side, a combination of the experiment presented in[Ch. 4
with the “self-organization assay” of &telec and others’[36] is currently being
tested.

In brief, although there are promising and intriguing indications, they merely
form the basis for more work to come. Needless to say, the most effective way to
proceed is that of mutual feedback between the different theoretical and experimen-
tal approaches. One question that could be asked now is: what are the alternatives
to the mechanism described here? | will try to address this question in the next
chapter, which attempts a more comprehensive discussion of the results of the last
three.
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6. Discussion and Open Problems

The scope of this chapter is to draw some collective conclusions regarding the first
part of the thesis, focusing on the possible relevance and implications of the results
from the point of view of the biological system under examination, the microtubular
cytoskeleton of interphase plant cells. In the past three chapters, | have discussed
three examples of model systems inspired by three different hypothetical scenar-
ios for plant cell microtubules, and approached with a mixture of theoretical and
experimental tools. Although the results of the three models may have an interest
independently from the biological inspiration, | would like to focus on how they
can be used to contribute in a useful way to the biological scientific debate, and
on the questions that this investigation opens on the system, which might stimulate
furtherin vivo study. All the works presented share a common approach, whose
spirit is to deal with a system as simplified as possible, in order to isolate a concept
from the many interconnected ones one has to face when dealing experimentally
with a real plant cell. The validity of these concepts and their relevance can to a
certain extent be discussed in the light of the outcomes. This is attempted in section
B-1. Sectiorf6]2, on the other hand, compares some alternative scenarios that can
be put forward to explain the formation of the cortical microtubule array and the
preprophase band in plant cells.

6.1. Considerations on the Scenarios

The main issue that emerges from the first scenario [[ICh. 3) is that the data in our
possession seem to indicate that the density of microtubules in a cortical array is
close to the onset of an apparent nematic transition, where the filaments align purely
on the basis of their excluded volume. On the other hand, the avaitabido data

is too scarce to determine correlation between density and alignment. Although it
is possible that these conclusions will be changed by a more extensive analysis of
in vivo cortical microtubules, they do not allow to rule out the fact that excluded
volume plays a role in the alignment of microtubules within the cortical array. In
this picture it is assumed that the microtubules are sufficiently short so that the
curvature of the plant cortical region and their elasticity are not relevant. This hy-
pothesis would also require further experimental testing, as the only quantitative
measure of cortical microtubule length dates back to 1977 [26]. In addition, the
description of the interaction as a simple hard core potential is rather crude, and
could be improved with the addition of a short ranged soft repulsive potential (no
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attraction is observed from microtubules polymerized in vitro from purified tubu-
lin). This modification would unlikely change the qualitative conclusions, while
possibly affecting the quantitative outcomes, and therefore the comparison with the
in vivo system. Lastly, as more and more evidence supports the formation of long,
crosslinked microtubule bundles]10], it must be said that the possible role of ex-
cluded volume is restricted to the early stages of interphase. In conclusion, while
a mechanism of alignment based on excluded volume doesn’t seem the best can-
didate to describe the alignment of cortical microtubules, the fact remains that the
density of microtubules is such that they should feel this kind of interaction, which
therefore may play some role.

Let us turn now to the second scenario, a model system for the dynamic spring
hypothesis. The simple purified ingredients of the experimental model seem suffi-
cient to reproduce coiling configurations similar to those observed in cells. The pic-
ture is consistent with the reversible disorganization observed in plant cells caused
by the temperature-dependent disruption of microtubules or microtubule bundles
induced by mutations in the MOR-1 gerel[31], granted the assumption that the
breakdown of long microtubule bundles in short fragments prevents the organiza-
tion mechanism we described. On the other hand the experimental model does not
account for the transverse arrangement of microtubules in the cortex of interphase
plant cells. A theoretical approach that includes bending elasticity and confine-
ment supports this evidence. Thus, it appears then that, on physical grounds, the
implicit assumption in the dynamic spring hypothesis that a filament would form
a transverse coil hides a mechanism that goes beyond the pure passive mechanical
properties of the microtubules. There are numerous ways the cell could use to by-
pass this problem, mainly falling into two categories: either some configurations
are rendered inaccessible, or active cell components make the transverse coil sta-
ble. This opens a new set of biological questions, that can be answered by means
of in vivo andin vitro experiments.

Finally, the third scenario is the most interesting one. Its major result is that
ring-like patterns can arise within a system with the geometric features of a plant
cell, where cortical microtubules are confined in a thin layer between plasma mem-
brane and vacuole. These patterns have the basic feature that the emerging align-
ment breaks nematic, but not vector symmetry, or, in more biological words, the
filaments’ plus ends are randomly placed, consistently with experimental observa-
tions on interphase cortical microtubul&s [BS, 86]. This raises an important question
about the symmetry of the microscopic components that drive preprophase band
formation. Microscopic modeling that uses a simple picture of molecular motor
activity [62,77] is not able to reproduce an instability that does not also break vec-
tor symmetry. Only direct investigation on the living system can establish whether
the nascent (and therefore supposably close to the instability) preprophase bands
or cortical arrays break this symmetry. If cortical microtubules would turn out as it
seems to always retain random vector order during interphase, the mean-field de-
scription given in this thesis would be correct, but the microscopic drive should be
identified. It could be due to more complex activity of motor proteins (e.g. hetero-
complexes) or to other active forces. If on the other hand the instability would turn
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out to depend on the vector order parameter, the mean-field description should be
extended to include this last quantity, but the microscopic move would be directly
comparable with the action of molecular motor activity through microscopic mod-
eling. Furthermore, the mean-field approach introduced here provides a general
framework for macroscopic descriptions of systems of filaments and active compo-
nents, compatible with basic laws of physics. This can be used in many different
contexts to generate different models, and classes of models, which describe the ac-
tive organization of cytoskeletal filaments as a far-from-equilibrium process. These
models can always be combined with a microscopic approach.

6.2. Other Scenarios for the Interphase Patterns

I will briefly review now some other scenarios that can be considered for the orga-
nization of microtubules in interphase, and discuss how they relate to the ones that
| have presented.

Microtubule Alignment as a Reaction-Diffusion Process. A series of ex-
periments by Tabony and collaboratofsi[47, 48] has shown that purified micro-
tubules polymerized in bulk at high (10 mg/ml) tubulin concentration align after
a few hours. This ordering does not seem to occur if the sample is exposed to
microgravity in the first minutes of the polymerization process. The argued ex-
planation, substantiated by theoretical modeling [49], is based on a pattern forma-
tion mechanism that depends purely on the reaction-diffusion processes related to
polymerization kinetics, whereby microtubules interact through the density fluc-
tuations (“tubulin trails”) induced in the unpolymerized tubulin pool by their own
subsequent (de)polymerizations, dictated in turn by dynamic instability. One might
hypothesize that a similar mechanism, transported in a quasi-two dimensional ge-
ometry is operative for interphase cortical microtubules.

It is known [5,[88], that the effects of tubulin depletion can be relevant, espe-
cially in the so-called regime of unbounded growth of dynamic instability, which
might be the case in the experiments of Tabony, where the concentration of tubulin
is very high. It can also be argued that the depletion of the tubulin pool around
a growing microtubule tip causes an enhancement in the catastrophe probability
when two growing tips meet that can result in an effective suppression of growth
for unparallel polymers. On the other hand, as free tubulin diffuses quite fast, these
fluctuations can be very small. For example the sphere of 1% density depletion in
the tubulin pool for a typical growing microtubule tip in a cell extract has a radius
between 0.1 andidm [4]. For this reason, it can be easily argued that, although
at very high density the interaction of nascent microtubule seeds through the free
tubulin pool may play a role, the function of excluded volume once the filaments
have polymerized should predominate for the alignment.

Furthermore, for the case of interest here, according to the parameters of dy-
namic instability measured on cortical interphase microtubuiés [34], the relevant
regime is that of bounded growth, where the effects of tubulin depletion are neg-
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ligible. | have estimated using Brownian Dynamics simulations the role of the
depletion between the growing tips for the same parameter range (system size, mi-
crotubule density, etc.) used for the model of rods in a quasi two-dimensional
geometry presented in chapfer 3, and with the dynamic instability parameters mea-
sured in [34]. The model used for dynamic instability in these simulations is that of
referencel]5]. Under the extreme assumption that each interaction between the 1%
depletion spheres causdsterministicallya catastrophe, this effect is always much
smaller than excluded volume.
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Figure 6.1.: (a) Estimate for microtubule steady-state average length as a func-
tion of preprophase band width. Both quantities are plotted in mi-
crons. The graph refers to a system of 200 parallel microtubules ar-
ranged randomly in a (topological) ring gnin length having varying
width. The parameters of dynamic instability are those measured by
Vos and collaborators34]. For this estimate, | assumed a five-fold in-
creased catastrophe frequency for every interaction, defined as overlap
the spheres constructed on two growing tips of estimated 1% density
depletion in the tubulin pool. (b) Snapshot of a typical configuration

What is not under discussion is that microtubules, when packed at high densi-
ties, do interact through depletion of the tubulin pool. In particular, this must be true
when they accumulate at short distances into the pre-prophase band. This may ex-
plain the observed increased catastrophe frequency observed in microtubules within
the preprophase band]19]. The average length of microtubules would then decrease
with the preprophase band width. | estimated this decrease by running simulations
of randomly positioned parallel microtubules with dynamic instability, and peri-
odic boundaries to mimic a ring (Fig-$.1) . These runs were performed with fixed
microtubule number, and different widths of the ring, to determine the average
microtubule length for different widths of the ring. The dynamic instability param-
eters were again taken from reference [34]. Interactions between the 1% depletion
spheres around growing tips was assumed to cause a 5-fold increase in the catastro-
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phe frequency. As expected, microtubule average length in a steady state decreases
linearly with the width of the ring. On the other hand, the increassduefre-

quency observed in nascent preprophase bands cannot be explained by the same
argument. It could be a way cells employ to stabilizes these patterns through reg-
ulated microtubule-interacting molecules. The sudden disruption of preprophase
bands after nuclear envelope breakdown might be a sign that this stabilizing signal
has ceased.

Reaction-Diffusion and Preprophase Band Formation. Reaction-diffusion
nonequilibrium mechanisms could also be used to build alternative explanations for
the formation of the preprophase band. One successful example that bears many
analogies with the plant system is the case of placement of the Z-ring in Escherichia
Coli [B9, @0]. This ring, which consists of a protein homologue of tubulin called
FtsZ, is involved in determination of the division site, and therefore is an essential
part of bacterial cell division. The placement of the division site does not depend
on the Z-ring itself, but on the proteins MinC, MinD, and MinE, which suppress
FtsZ polymerization at noncentral membrane sites. The Min proteins undergo a
highly dynamic localization cycle that depends on the kinetics of chemical reac-
tions among themselves, during which they oscillate between the membrane of
both cell halves. Theoretical modelsi[43, 45, 44] have confirmed the feasibility and
robustness of this scenario. In this framework, for example, it is easy to design a
minimal set of reactions able to place the mid-point of a confining cell with suffi-
cient precision, which would in our case explain how the preprophase band forms
(in most cases) in the middle of the plant cell. Similar patterning mechanisms have
been observed also in eukariotic cells, and in connection with the microtubule cy-
toskeleton (46 91]. By adopting this point of view, the focus for the cytoskeletal
organization is diverted from the forces and the mechanics of the cytoskeleton itself
to the reaction dynamics of cytoskeleton-related regulatory molecules. Whether
one of these two, or a combination of both, complementary descriptions is the most
apt to describe preprophase band formation is still an open question.

Search and Capture Mechanisms for Preprophase Band. Recently pro-
posed by Vos and collaborators]34], this mechanism is inspired by a model of
chromosome-spindle interaction behavior. It is based on the observation that during
preprophase band formation, the dynamic instability of the cortical microtubules
outside the preprophase band increases significantly, but the microtubules do not
become shorter. The basic idea is that because this regulation of dynamic insta-
bility causes the cortical microtubules to modulate their lengths with higher fre-
quency, they can “search” more effectively for the preprophase band, which pro-
vides a “sticky target” because of its internal microtubule cross-linking activity.
This explains why microtubules gradually disappear from the surrounding cortex
and aggregate to the forming preprophase band, and the vector disorder of the in-
corporated polymers. However, it does not seem to provide an explanation for
the instability that drives to preprophase band formation, the narrowing of the ring
with time (intuition would suggest that according to this model the width of a pre-
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prophase band should increase with time), and its positioning in the middle of the
cells. In any case, to allow a thorough exploration of its consequences, this pro-
posed mechanism should be substantiated by more detailed estimated or proper
modeling. The implication of microtubule stable crosslinking gives rise to a new
set of questions that can be investigatedryivo andin vitro experiments, regard-

ing for example why this crosslinking does not directly involve all the microtubules

in a cell, how the activity of the crosslinkers is able to avoid the formation of a gel-
like randomly connected network, and the kinetics of bundle formation.

80



Part II.

Hydrodynamics of Flexible
Rod Based Microorganism
Motility. A Simulation
Study.

81






7. Overview of the Problems

As pointed out by Purcell in his Lecture “Life at low Reynolds numbefs? [92],
microorganisms experience an environment quite different from our own. In par-
ticular, because of their small size (of the order of microns), inertia is, to them,
essentially irrelevant. We are all familiar with the concept of inertia. It is the ten-
dency of things in motion to remain in motion. If, for example, you tore this page
from the thesis (hopefully having read it first), screwed it up into a ball and threw
it, you would expect it to advance for a few meters. Inertia keeps it moving until
the friction exerted by the air (or the floor once it has landed) brings it to a halt.
Let us now keep our physical size fixed at a couple of meters and see what would
happen if we experienced the same environment as a microorganism. As long ago
as the 19 century, Reynolds showed that, as far as the dynamics of a fluid are con-
cerned, scaling down a problem (decreasing the characteristic length scale) is, in
dimensionless terms, equivalent to increasing the viscosity. That is, if we wanted
to repeat our paper throwing experiment in a world parametrically equivalent to
that of the micro-organism we would have to immerse ourselves in a fluid a million
times more viscous than air. If we also take into account that we (and this thesis)
are much denser than air, whereas a micro-organism is typically equivalent in den-
sity to its surroundings, we find the following. Transforming the microscopic world
to our macroscopic dimensions and repeating the experiment, we could propel our
projectile about 10°m. That is, we could throw the screwed up paper (or the whole
book) a few atomic distances. In an inertialess world it is hard to shake off your
environment.

The fact that inertia is irrelevant for micro-organisms makes it difficult for them
to move. Many propulsive mechanisms that are perfectly viable on our scale will
not work on a mesoscopic scale. This is because of some particular facts that
characterize these systems. When describing a macroscopic body in a fluid, the
equations of motion governing the body (coming from Newton’s law) are time-
reversible, while those governing the surrounding fluid are irreversible. For a
mesoscopic body at low Reynolds number, it is just the opposite: the (approxi-
mate) equation of motions for the body are irreversible, while those governing the
motion of the surrounding fluid become time reversible. This last fact bears the
consequence that any reciprocal motion produces no net propulsion. A popular ex-
ample is that of the stiff one-armed swimmer, a chimerical rod-like organism that
tries to move by waving its body back and forth. However, in the absence of inertia
any net force generated by one half of the stroke will be equal and opposite to the
force generated during the remainder. The total will be zero and the stiff one armed
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swimmer, in the absence of inertia, goes nowhere. There are two obvious strate-
gies for avoiding this problem. One is to introduce flexibility. If the one-armed
swimmer has a flexible arm the shape need not be reciprocal during a cycle. Net
propulsion can be generated. Another solution is to have an appendage execute
some non-reciprocal motion. That is, to generate motion with some “handedness”.
The classic example of this, and the one used by most bacteria, is to rotate a chiral
tail [93]. Rotation of a chiral tail again breaks the symmetry of one cycle and has
the potential to generate net motion.

In this second part of the thesis | will focus on problems related to the hydrody-
namics of elastic mesoscopic filaments. The underlying motivation of these studies
is the active motion of flagella and cilia (Fig—]7.1). Cilia and flagella are 10-50
um long, 100 nm thick protrusions of the eukaryotic cell membrane that are able
to generate motion][7]. The function of flagella is to thrust the cell body in the
fluid environment. Cilia are used by the cells or tissues for self-propulsion or to
stir the surrounding fluid. A cilium has the same internal structure (the axoneme)
as a eukaryotic flagellum, containing an arrangement of nine microtubule doublets
attached to a basal body anchored to the cell membrane. A complex, symmet-
ric frame of protein bridges and links among the doublets gives elastic properties
to the whole structure. Molecular motor activity provides the energy source for
the internal engine which produces the active bending [94] that characterizes these
motile assemblies.

Because of their size and typical velocities, the motion of these filaments is
nearly always in the low Reynolds number regime. Cytoskeletal filaments are in-
volved in cellular and microorganism motility. Perhaps the most widely known
example is that of the flagellum of a sperm cell, that enables it to swim along the
ovaric tubes. The internal drive of a flagellum, however, is rather complicafed [94].
In spite of this, the problem of modeling theoretically eukaryotic flagellar and cil-
iary motility starting from the internal degrees of freedom has received much at-
tention during the past fifty years. Early attempts date back to the fifties and sixties
of the past century, with the works of Gray and Hancack [95] and Mac¢hiri{96, 97],
and were followed by abundant work in the seventies [93,[99, T00, 101], eight-
ies [102,[T0O3[104,T05], and in the past fourteen years [[106,[T07 [T08,-1T09, 110,
T1T1]. Unfortunately, this wealth of different models and theoretical results hasn't
yet evolved into a unified picture of the problems, possibly because many aspects
of the system remain unclear from the experimental point of view.

On the other hand, modern micromanipulation techniques, such as optical and
magnetic trapping, open up the possibility of perturbing otherwise passive filaments
with a simplified and controlled drive (cf. Fig¥.2). This provides potentially useful
model systems for which one may study the hydrodynamic fundamentals of motil-
ity, separating them from the equally complex problem of the generation of the
internal drive.

I will analyze simplified systems of this kind, with the main purpose of eluci-
dating some facts concerning the hydrodynamics of swimming. As we will see,
bending elasticity plays an important role in this analysis. For many biologically
important filamentous assemblies, elasticity is crucial. Their typical lengths (mi-
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Figure 7.1.: Cilia and flagella. (a) Video microscopy snapshots of a swim-
ming sperm cell, showing the beating movement of the flagellum
(C.J. Brokaw, California Institute of Technology). (b) SEM image of
cilia in the mammalian lung, the size of the picture is about 2585
(C. Daghlian, Darmouth College, USA). (c) TEM image of the cross
section of a 100 nm ciliary axoneme. The nine microtubule doublets
and the protein bridges are visible (L. Howard, Darmouth College,
USA).
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Strongly focused laser

Elastic filament
Trapped

silica bead , Q/\/

Figure 7.2.: Schematic of a micromanipulation experiment that allows one to apply
a controlled drive to an inert filamerif{112].

crons) are comparable with the scale on which rigidity prevents them from collaps-
ing. The cytoskeletal filaments actin and microtubules fall in this category, as do
cilia and flagella, the latter being motile assemblies of microtubules and other pro-
teins. The question is then what the conditions are under which these elastic linear
bodies can generate swimming motion under simple drives.

In chapteriB | describe a method, based on techniques used in molecular dy-
namics, for simulating the inertialess dynamics of an elastic filament immersed in a
fluid. The model is used to study the “one-armed swimmer”. That is, a flexible ap-
pendage externally perturbed at one extremity. Simple active driving mechanisms
could be an oscillating constraint on the end position, an oscillatory torque applied
at one extremity, or a rotating constraint. | will consider all three. This system can
be regarded as the simplest example of what has been edédlsthydrodynamics
as it involves the balance of viscous and elastic forces. The case of driving torque
is a more plausible biological mechanism as it involves no net external force. For
small amplitude motion the simulations will confirm theoretical predictions that,
for a filament of given length and stiffness, there is a driving frequency that is op-
timal for both speed and efficienciz1113]. However, | will show that to calculate
absolute values of the swimming speed one needs to slightly modify existing the-
oretical approaches. For the more relevant case of large amplitude motion, while
the basic picture remains the same, the dependence of the swimming speed on both
frequency and amplitude is substantially modified. For large amplitudes we will
see that the one armed swimmer is comparatively neither inefficient nor slow. This
begs the question of why there are little or none one-armed swimmers in nature.

In chapter[P | present a simple way to refine the description of the elastohy-
drodynamic problem for a filament by incorporating hydrodynamic interactions,
which can make an important difference, particularly if one wishes to describe
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many-filament systems. This extended model is first implemented on the problem
of sedimentation, showing both validating agreement with established results and
new, interesting behavior. Hydrodynamic interactions are able to excite elastic in-
stabilities in a uniformly driven filament, and to interact with the hydrodynamic
degrees of freedom causing the body to place itself transverse to the driving field.
In a second step, | apply the extended model to a one-armed swimmer. However,
this does not lead to any new insight, showing good agreement with the results of
the simpler model. This can be seen as a further validation of the method which
includes hydrodynamic interactions, whose real potential lies in the possibility of
investigating cooperative effects in many-body problems.
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8. Dynamics of a Driven
Semiflexible Polymer at Low
Reynolds Number

8.1. Introduction

The model | will present in this chapter solves numerically the equations of mo-
tion of a discretized elastic filament immersed in a low Reynolds number fluid.
Any form of internal and external forcing can be imposed but | will restrict the
discussion here to an active force, acting on one extremity, that is periodic in time.
Namely, an oscillating force, an oscillating torque, a rotating torque. All the driving
forces that | will consider can be realized experimentally on inert mesoscopic semi-
flexible (bio-)filaments by means of micro-manipulation techniques such as optical
or magnetic trapping. These simple drives, compared to the biological ones of cilia
and flagella have the advantage of being free from more or less complex feedback
mechanisms, which couple the driving field to the elastic and hydrodynamic de-
grees of freedom. It is therefore possible to separate the hydrodynamic problem of
swimming from that of the generation of the internal drive.

For these relatively simple model systems, the filament dynamics is determined
by the interplay of elastic and hydrodynamic forces. There has fairly recently
been theoretical progress in solving analytically the “hyperdiffusion” equation that,
in the limit of small amplitude motion, describes the movement of such a fila-
ment [TT3]. The simulation introduced here is designed to be minimal, but at the
same time to overcome the main limitation of the analytical theory, which is valid
only for nearly straight filaments. In contrast with the theory, the simulation re-
tains all the nonlinearities of the body equation of motion, and works for arbitrary
filament shapes, in two and three dimensions. For most of the problems we are
concerned with here, the planar driving forces produce planar motions. However,
as | will show, the model applies equally well this not being the case.

As in the analytical theory, | will keep throughout this chapter the hydrodynam-
ics to its minimal level of description, that is, the approximation of slender body
flow [IT4], where the local velocity-force relation is reduced to a simple expres-
sion in terms of friction coefficients that are shape and position independent. They
do nonetheless reflect the difference between friction transverse and longitudinal
to the filament. A more sophisticated treatment of hydrodynamic forces will be
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introduced in the next chapter. Section 8.2 covers the model adopted and the im-
plementation of the simulation. Sectipn]8.3 contains the results for planar active
forces and their implications, while sectipn]8.4 briefly outlines the results for a
simple three-dimensional drive, inspired by the motion of bacterial flagella.

8.2. Model and Simulation

Considering a continuous description of the filament in space and time, one can
specify this at any given instahby a curver (s;t), giving a point in space for any
value of the arclength parametefrig. [8-1).

y

X

Figure 8.1.: Curve describing the shape of the filameris t) andt(s;t) are the
local normal and tangent unit vector respectival(s,t) is the angle
formed with the x axis.

To describe the dynamics one needs the local forces acting on the filament. The
latter are related to the energy of the model system. Specifically, they are

i. A bending elasticity, described by the Hamiltonian

L
H = %k/o C(s)2ds, 8.1)

2
whereC(s) = (3—2) is the local curvature arkithe stiffness.

ii. A constraint of inextensibility, which can be expressed in terms of the tangent

vector as

ar

—|=1,

as
and imposes the condition that the filament is, to a first approximation, inex-
tensible.
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iii. An over-damped (negligible mass) equation of motion, which can be written
as
1..\ 6H

ar(st) =— <§iff+ Enn> 519 (8.2)

Here, following slender-body theory, the effect of the surrounding fluid is
taken as a drag force that is proportional and opposite to the local velocity.
This is anisotropic due to the elongated shape of the filament. | therefore
require a longitudinal friction coefficier@| associated with the projecttr
along the tangent vectar and a transverse coefficiegt acting along the
normal vectom.

Accordingly, one obtains two equations of motion, one for the evolution of
the filament shape, and the other for the tension fa(sg ), that enforces locally
the inextensibility constraint. Expressing the curve shape as the gntglg that
its local tangent forms with a fixek direction, one can write these equations as
(see [108]):

1 1
oy = P (—kody + T2y + dsydsT) + 5—851;/ (kd2ydsy +dsT) ,  (8.3)
L l

and : :
BT (@) T = —KOyaly) + Zow(—ky) . (B4
1 1
The two nonlinear equations above have then to be solved subject to appropriate
boundary conditions. For example, no external forces and torques for a free tail. For
the wiggling problems | examine here, the non-equilibrium drive (oscillating end
position or torque) is, in these terms, simply a time-dependent boundary condition.
Through a functional expansion about the obvious solution for zero ggigt) =
0, 75(st) =0,
v o=ey ey, + ... 85)
T =ET +ETy+ ... '

it is straightforward to obtain, to second ordekithe (decoupled) equations
k
dyy =— —3;11//1
&

for v, and

3
8527«'2 = —as(kasllflaszllfl) - 5_” (kas‘lflasg‘lfl)
1

for the tension. Furthermore, expressing the shape of the filament in terms of the
transverse and longitudinal “absolute” displacemerfist) and h(s,t) from the
directionx of the filament'’s resting position, one gets to the equation

& dh=—kA%h (8.6)
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for the time evolution oh to second order ia. This “hyperdiffusion” equation has
to be solved subject to appropriate boundary conditions, which may correspond to
different forms of external driving.

In the simulations | use a particle model to solve EfS] (8.3) gny (8.4) numeri-
cally using an approach similar to molecular dynamics. Time is discretized and the
filament is described as a setropoint particles rigidly connected by— 1 “links”.

The interaction between the particles is constructed so as to reproduce the appro-
priate collective behavior. For convenience in implementing the algorithm, | do not
simulate the over-damped motion, given by H@:](8.2) directly. This would corre-
spond to the zero mass case. Rather, | solve the damped Newton equation for an
object with “small” total massn. By making the mass small enough one can repro-
duce the required inertialess mass independent behavior [115]. In all cases it was
nonetheless checked, by varying the mass, that the results were indeed independent
of mass.

Figure 8.2.: Discretization of the filament.

The bending forces acting on the individual particles are defined as follows.
Considering three consecutive discretization points, their positions will lie on one
unique circle of radiusi,

= (5) = Za-cosa.

whereAl = L/(n—1) is the link length and, the angle between two links at the
position of bead. One can introduce a bending potentiabf the form

U, = A(1-cog8)) ,

so that the total bending energy will be

H = Eui AZ(lcOS(Bi)) :
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which can be compared with a discretization of the integral in EG. (8.1)

H= gAI TEZ (c?) .

This leads to the identificatiolh= g. A more sophisticated approac¢hl16], where
the problem is mapped onto the worm-like chain model of Kratky and Parod [117],

leads to a slightly different expressiofA,= ”_I_l/zk ,. Which is equivalent to the
former in the infiniten limit, but leads to faster convergence in the results as the
number of discretization point particles is increased. | therefore chose to adopt it.

The inextensibility constraint is implemented by introducing equal and opposite
forces along the links between particles. The magnitude of the forces is computed
by imposing a fixed distana® between consecutive beads at each time step. This
is a straightforward matter from the computational point of view, as it involves only
the inversion of a tridiagonal matrix]T18,71.19]. However, it must be noted that this
simple implementation is valid as long as thermal fluctuations are neglected. In
fact, the equilibrium statistical properties of a filament with rigid inextensibility
constraints are not the same as those of a system with extensible constraints in the
limit where the extensibility goes to zero. In a fluctuating thermodynamic system a
correction has to be made for thisT120,1121].

The viscous drag forces acting on the particles of the model filament are taken
ask; = —§; (éHferéLﬁﬁ)v, wheret andf are respectively unit vectors tangent
and normal to the fiIamenEHanoléL are the longitudinal and transverse friction
coefficients, and/ is the local velocity. This means that hydrodynamics is ap-
proximated as a local effect on the filament such that the hydrodynamic interaction
between different points along the curve does not vary. The global shape of the
curve enters only through the anisotropy of the viscous drag coefficients acting on
individual points. The ratio of the two coefficients depends on the geometric de-
tails of the filament analyzed. For cilia, flagella, or cytoskeletal filaments, its value
is typically taken between.4 and 2 [T22]. | chose to adopt a valué In most
of the simulations, while also examining the cases where the two drags are equal
or their ratio is less than unity. The time evolution is evaluated in a molecular
dynamics-like fashion, with the only slight subtlety that the Verlet algorithm has
to be modified to allow for the velocity dependent anisotropic viscous farce [115].
Finally, the active drive at the head is simply implemented as a constraint on the
first (for oscillating constraint) or first two (for periodic torque) particles. For ex-
ample, this is/; = hycog wt) for the oscillating constraint, and the periodic torque,

Tx = Bsin(wt) is realized as a couple of forces applied to the first two beads. Here
o is the driving frequency.

8.3. Wiggling Motion

Let us consider now the flexible one-armed swimmer. That is, an elastic filament
that is wiggled at one end. If the filament were rigid, the reversible motion of
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8. Dynamics of a Driven Semiflexible Polymer at Low Reynolds Number

the surrounding fluid would ensure that this mechanism generates no propulsion
(the “scallop theorem” as Purcell termed it). However, the flexibility of the arm
breaks the time reversal symmetry for the motion of the assemblage. This makes
propulsion, in principle, possible. For any microscopic filament the factors that
determine its dynamic behavior are the same. Namely, the equations of motion
will be essentially inertialess. The motion itself will be determined by a balance
between forces driving the filament, friction forces exerted as the surrounding fluid
opposes any motion, and bending forces that try to restore the (straight) equilib-
rium state. For relatively simple model systems, there has recently been theoretical
progress in solving analytically the “hyperdiffusion” equation that, in the limit of
small amplitude motion, describes the movement of such a filament. Wiggins and
Goldstein [1T13] considered the motion of a single filament driven at one end by an
external perturbation. Their analysis emphasized that there are two very different
regimes; one where bending forces dominate and the filament behaves like a rigid
rod, and a second where the viscous damping of the fluid has the effect of suppress-
ing the propagation of elastic waves. For the one armed swimmer, this leads to an
optimal set of parameters that maximize either the swimming speed or swimming
efficiency. The same analysis gives predictions for the shape of such a wiggled
filament that can be compared with the response observed in a micro-manipulation
experiment[T12]. By comparing experimental results with theory, they were able

-

to calculate the persistence length of the filament.

To summarize the predictions of the theory, for a given amplitude of driving the
remaining parameters can be grouped together to define a dimensionless “sperm

number”,
1
|4 4
sp-(“) (5.7)

wherel is the length of the filament arm the wiggling frequency.

This characterizes the relative magnitudes of the viscous and bending forces. A
low value implies that bending forces dominate, a high value viscous forces. As a
function of the Sperm number, the theory predicts

- both the swimming speed and efficiency (defined as the amount of energy
consumed, relative to the amount of energy required to simply drag a passive
filament through the fluid at the same velocity), go to zero as Sp goes to zero.
This is the stiff limit where the motion is reversible and the scallop theorem
applies

- at a sperm number 8p4 there is a maximum in the both the swimming
speed and efficiency (although not at exactly the same value of the sperm
number)

- at high sperm numbers a plateau region where the speed and efficiency be-
come independent of Sp, albeit at values lower than the peak.
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8.3. Wiggling Motion

8.3.1. Small Amplitude Motion

Wave Patterns

Using the "sperm number” Sp defined in sectjorj 8.3, we can characterize the rel-
ative magnitude of the viscous and bending forces. To recapitulate, a low value of
Sp indicates that bending forces dominate, whereas for low values the dominant
forces are viscous. One reason for defining this number comes from the solution of
Eq. (8:6) [T1B[T15]. Sp can be interpreted as a rescaled filament length, where the

. . - 1/4
rescaling factor is a characteristic lendth= (%) that can be used to non-

dimensionalize the equation. This rescaled Ieﬁgth was first defined in the context
of semiflexible polymer fluctuations, by Farge and Madasi[123, 124]. In the simu-
lation, the sperm number was varied in most cases by varying the bending modulus
so that the Reynolds number was fixed at a low value. Both for the oscillating
constraint and oscillating torque | recover the fact that the dynamic response, for a
fixed driving amplitude, is solely dependent on Sp.

In Fig.[8-3 | have plotted the wave patterns for the filament at different values of
Sp. These results were obtained using the oscillating constraint. That is, the trans-
verse position at the wiggled end is forced to be sinusoidal in time. The amplitude
of the motion is small, the maximum displacement being 1% of the filament length.
The pictures can be interpreted as “stroboscopic snapshots” of the filament’s mo-
tion. For small Sp, bending forces dominate and the stiff filament pivots around
a fixed point. This motion is virtually symmetric with respect to time inversions
(“reciprocal”). As Sp increases a (damped) wave travels along the filament and
time reciprocity is broken. For increasing values of Sp, viscous forces overcome
elastic forces and the characteristic length scale of damping of the traveling wave
becomes smaller. This requires that the spacing between the beads in the discrete
model must also be reduced to give a fixed degree of accuracy. The number of
beads in the model (or equivalently the inverse bead spacing) were thus increased
with increasing Sp to ensure that the results are within a percent of the true, con-
tinuum, values. The oscillating torque gives qualitatively similar results. All these
results are in agreement with the analytical findings of Wiggins and Goldsfein [113]
in the small amplitude approximation. The agreement is also quantitative.

Swimming

From the simulation it is also possible to compute the velocity and efficiency of the
swimming as a function of Sp. | define swimming of the immersed object as the
generation of motion, through modifications of shape, in the direction along which
no externalforce acts. Both the speed and efficiency, as Wiggins and Goldstein
predict, display an optimum value at intermediate (but different) values of Sp. Sub-
sequently they reach a plateau as viscous forces begin to dominate (Sp increases).

According to the “scallop theorem” of low Reynolds number hydrodynamics,
reciprocal (time reversion invariant) motion generates no swimmirig [92]. This is a
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Figure 8.3.: Waveforms of the filament oscillations for different values of Sp. (a)
Low Sperm number (Sp 2.46). The motion consists of pivoting oscil-
lations about a fixed point. (b) Intermediate Sperm numbe=(&@9).

A damped wave propagates along the filament making the movement
non-reciprocal in time. (c) High Sperm Number €S2.61). The
propagating wave is damped within a length that becomes smaller with
increasing Sp.
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Figure 8.4.: Propulsive velocity as a function of Sperm number for small amplitude
oscillation f; = 0.01l) of the constraint at the "head” end of the fila-
ment. The function goes as the fourth power of Sp for small values of
this number, reaches an optimum, then relaxes to a plateau.

consequence of the time-reversibility of Stokes flow and sets an important condition
for the ability of microorganisms to swim. In our case, this implies that we should
expect no swimming as Sp approaches zero and the motion approaches reciprocity.
This is confirmed by the result in Fif-8.4. The optimum of the velocity is thus
the result of a trade-off between non-reciprocity of the motion and damping of the
traveling wave.

At this point we should also be able to compare the results quantitatively with
those obtained analytically using the approximation of small deviations. However,
in this respect the theoretical analysis is somewhat incomplete. Computing the time
average of the force, as in125,7113], yields the expression

h2¢ o

02

where Y(Sp) is a scaling function that can be computed exactly (Eig. 8.5). This
expression depends only on the transverse friction coefficient and does not reduce
tozerowherf | = 5”. As such, itisimpossible to relate this to the swimming speed.
This follows from the fact that if the conditiof) = éH is satisfied there can be no
swimming. It is easy to show this must be the case, as a consequence of Newton’s
third law. The main reason is that, if one considers one particle (i.e. a short piece
of filament), the effective viscous drag that it experiences at any moment in time is
decoupled from the local configuration of the filament if there is no anisotropy in
the friction coefficients. Averaged over one cycle, this always leads, effectively, to

F= Y(Sp),
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Figure 8.5.: The function Y(Sp) from Wiggiret al..

reciprocal motion. All the forces sum to zero so there can be no displacement. This
is shown more formally in the Appendix. Furthermore, the simulations do indeed
yield no average velocity if the two friction coefficients are equal (I use this to
check that there is no “numerical” swimming, due to the accumulated errors in the
simulation). To correct for this anomaly | used the theory and computed, following
the procedure outlined in[T08], the time average of the swimming velocity given
the analytical solution for the shapgeT125]. This yields (see the Appendix)

e 5 @
vho< 5“ > 4\/§LY(Sp)’ (8.8)

where Y(Sp) is again the scaling function specified by Wiggins and Goldstein in
computing the average force (F[d:]8.5). Note that this expression {Eq. 8.8) predicts
no swimming when

e Sp= 0 and the motion is reciprocal in time (see fig. 2)
e When the two drag coefficients andéH are equal.

consistently with both the scallop theorem and Newton'’s third Law. It also predicts
a change in the swimming direction if the friction coefficients are interchanged.
Curiously, this reversal of direction has a biological analogue in the organism
Ochromonasvhich has a flagellum decorated by lateral projections (mastigonemes)
and swims in the same direction as that of the propagating wave. The body follows
the flagellum, instead of preceding it as in sperm cells (see Re&f. [94], p.11).
Comparing the modified analytical expression for the swimming speed with the
simulations, the essential features predicted are obviously present. Both approach
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zero as Sp for small Sperm numbers, but display a maximum with increasing
sperm number. In fact, a careful analysis shows that the agreement, in the small
amplitude limit, is exact. The presence of a plateau at high Spis hard to interpret, in
the sense that it predicts velocities for even the “infinitely floppy” filament, where
the wave pattern is completely damped in an infinitely small region close to the
driven extremity. However, in the simulations the velocity drops only when the
size of this damping region is comparable to the distance between two subsequent
discretization points, so | have to confirm the analytical result and explain this
oddity, as we will see, as a feature of the small deviation approximation.

8.3.2. Large Angular Deviations

The model previously shown contains the full nonlinear model for the dynamics of
the filament, its only limitation being the discretization of space and time. There-
fore, it is interesting to use it to investigate the limitations of the analytical model
when the motion involves shapes that deviate significantly from straight. This is
also closer to a real experimental (or biological) situation. The shapes often can-
not be described by a function, as the displacement from the horizontal axis is not
single-valued. This can be observed in Fg.] 8.6, where | show an example of wave
pattern for the case of oscillating large amplitude constraint. In this case, the maxi-
mum transverse displacement is 60% of the tail length. Looking at this figure, it is
obvious that the behavior predicted by Hg:](8.6) will be substantially modified.

T i T T T T T

0.2 0.4

Figure 8.6.: Wave patterns for the case of an oscillating constraint with amplitude
hy=0.61 at Sp=4.

The first notable area of disagreement is at high values of the Sperm number
(Sp>> 1) where I no longer find a plateau but a slow and steady drop in both speed
and efficiency (Fig.[8]7). This effect is clearly a consequence of the non-negligible
amplitude of the motion because for smaller amplitudes a plateau is indeed reached.
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8. Dynamics of a Driven Semiflexible Polymer at Low Reynolds Number

This is a limitation of the theory, as large amplitude motions differ from the small
amplitude limit. Further the results for a dimensionless amplitude28 @isplay

a transient plateau that subsequently decays to zero. This implies that for any finite
amplitude the dimensionless swimming speed always goes to zero for large enough
Sp. The smaller the amplitude the longer the plateau persists, but only for negligible
amplitude is the asymptotic behavior reached. It should be noted thafFigs. 8.4 and
B-1 should be interpreted with care. The swimming velocity is plotted in units of
the fraction of the length per cycle. To obtain absolute swimming speeds, for a
tail of given length and stiffness, we would need to multiply this dimensionless
swimming speed by the frequency. The frequency itself is proportionalts&a
plateau in these plots still implies a swimming speed increasing proportionally with
. The drop from the plateau means that the actual swimming speed will increase
with frequency, but a slower rate. Thus, in practice the one armed swimmer can go
as fast as it likes by wiggling fast enough.

15 T T T T T T T T T T

G—© amplitude= 0.6
0- -3 amplitude = 0.25| |
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Figure 8.7.: Velocity versus sperm number for different values of the amplitgide
in the case of oscillating constraint. The velocities have been rescaled
to show the drop of the plateau.

Secondly, | find that the dependence of the optimum swimming speed, which
Eqg. (88) predicts as the square of the amplitude of the oscillating constraint, be-
comes linear for higher amplitude oscillations (Kig] 8.8). Thus far, | have not been
able to show why this is the case, but | believe it is related to the following. For
small amplitude motion the elastic wave simply propagates along an essentially
straight filament. As the amplitude increases, this is no longer true because the
filament itself is significantly bent and, so far as the damping is concerned, it is the
distance along the filament that is relevant. This quantity can be significantly dif-
ferent from the absolute distance, seemingly leading to an increase in the effective
length of the filament.
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Amplitude Dependency of Swimming Speed

T T T T T T T T T T -

velocity of swimming (lengths/ cycle)

0 0.1 0.2 0.3 0.4 0.5
amplitudeh_0/1

Figure 8.8.: Velocity versus amplitude for the case of an oscillating constraint close
to the optimum for the speed (Sp = 4).

From these results it is clear that the amplitude of the drive for which the small
deviation approximation breaks down depends on the value of Sp, being greater for
smaller Sperm Numbers. At the optimal value for the speed, &phe approxima-
tion holds for maximum transverse displacements of up to 20% of the tail length,
which is well beyond the point one would expect the assumptions to be valid. How-
ever, for values of Sp much higher than 4 the value for the threshold is much lower.
As an example, for an actin filament of M, driven at 1 cycle/second at an am-
plitude of 25% of its length, | estimated a speed of about in/secwith the small
deviation model, whereas the simulation predicts a reduction of this value by a fac-
tor 1/4. 1 should point out that a length of i@ is long for an actin filament but
typical of a flagellum.

In the case of external driving in the form of a torque applied at one end, | have
only considered large amplitude motion. Specifically, the pre-f&teas adjusted
to produce a maximum angle at the driven end df.6This clearly violates the
small angle approximation of Wiggins and Goldstein[113] but is more consistent
with the head deflections found in practice for swimming organisms. In[Fig. 8.9 |
plot the efficiency and the mean velocity as functions of Sp. Once again, the two
curves agree qualitatively with those found analytically by Wiggins and Goldstein
in that there is a peak speed and efficiency. The locations of the peaks are at slightly
different values of Sp and, because the small angle approximation is violated, not
guantitatively predicted by Eq(8.8).

| should add here a few comments. Notably, the peak efficiency of less than
1% seems very low. However, this depends strongly on the amplitude of the mo-
tion. Going above the 6dimit that was imposed so far for the torque, or to driving

101



8. Dynamics of a Driven Semiflexible Polymer at Low Reynolds Number
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Figure 8.9.: Velocity / efficiency versus Sp for the case of driving torque.

amplitudes of greater than half the length of the filament, it is possible to reach
values of 2% before the motion becomes unstable (in the sense that the steady state
oscillatory motion is replaced by a tumbling motion during which the swimmer per-
forms repeated complete rotations). This is similar to the efficiency typical for both
the helical screw mechanism used by bacteria and sperm mafidn [115]. Thus, the
one-armed swimmer operating at peak efficiency is a plausible and not especially
inefficient entity. Note also that the efficiency (which is dimensionless), as well
as the swimming speed, decays to zero rather than reaching a plateau value. This
means that in absolute terms the one-armed swimmer can carry on with increas-
ing speed by increasing its wiggling frequency but only at the price of decreasing
efficiency.

8.4. Rotating Constraint

Up to now | have presented applications of the model to motions that, by physical
means, were planar. However, there is no extra conceptual, nor computational cost
in applying the model to a fully three dimensional motion. As a demonstration
of this, | will describe in this section the results for a third kind of active drive
realized through a constraint which makes the tangent vector precess along the axis
of the filament (for us thé direction) with angular velocityo at a certain fixed
angle. Thatisgit = @ x t, where® = %, and the parametex =t - X is fixed

to constrain the amplitude of the rotation. With these definitions it is possible to
define the sperm number as in the previous sections. This active drive resembles
the one that operates for the bacterial flagellar mafar [94/-93, 126], where a rigid
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Figure 8.10.: Waveforms of the filament configurations for different values of Sp
under a rotating constraint. The three dimensional configurations are
plotted for five equally spaced time points during one cycle of rota-
tion. (a) Sp=1.27. The filament precessess as a rigid rod (b} p
A small chirality begins to form, which breaks the symmetry of the
motion. (c) Sp= 5. The filament looks like a helical propeller.
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tited component (the “hook”) acts as a universal joint. However, it must be noted
that a bacterial flagellar filament is an intrinsically chiral object, as opposed to our
semiflexible appendage.

On the other hand, the first fact that emerges from the simulation, is that the
rotating one armed swimmer will, for certain values of the parameters, assume a
chiral configuration due to the hydrodynamic forces. At fixed amplitadthis
fact is again purely dependent on the value of the sperm number, as illustrated in
Fig.B-ID. For small sperm numbers, the filament will rotate as a rigid rod, while for
intermediate ones it will assume a helical shape, with the same handedness as the
direction of rotation. Along with the breaking of chiral symmetry, comes breaking
of time reversal symmetry. In these conditions the scallop theorem is again not
applicable and the filament swims[92]. Interestingly, since the configuration is
always right-handed for clockwise rotations and left-handed for counterclockwise
ones, the direction of swimming is unchanged by the direction of turning, and the
filament always swims towards its tail end, in a “backwards” fashion. For forward
propulsion (the one relevant for bacteria), a filamentous propeller with handedness
opposite to the direction of rotation is needed.

As in the previous cases, it is possible to measure speed and efficiency of the
rotating one armed swimmer as a function of sperm number[(Fig. 8.11. The rotating
drive appears to be comparatively less efficient than the wiggling in generating
motion, although it remains within the same range.

Rotating Constraint
Velocity and Efficiency
05 T T I T I T I

04—

o
w
T

% Efficiency

Velocity (lengths/cycle)
o
N
I

0.1

Sperm Number

Figure 8.11.: Velocity (solid line) and efficiency (dotted line) versus Sp for a drive
generated by a rotating constraint.
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8.5. Conclusions

| have described a fully three dimensional simulation method that can be used to
study the motion of driven elastic filaments in a low Reynolds number flow. Here,
the hydrodynamic friction is treated quite simply, consistent with comparing with
analytically tractable theories. | showed that, within this approximation, the picture
suggested by Wiggins and Goldstein for the linear regime of small angular devia-
tions from the straight position is essentially correct. The simulation results for
the motion of the filament, show good agreement with their analytical calculations.
There is an optimal balance between bending forces and viscous forces that leads
to a maximum propulsive speed and efficiency. However, with respect to the swim-
ming speed the results suggest that their analysis is incomplete. Instead, | could
use their model to compute an expression for the average swimming velocity that
is physically more plausible and agrees with the simulation results.

For large amplitude motion, | showed that the dependence of the swimming
speed on both sperm number and amplitude was significantly modified relative to
the small amplitude case. Further, | suggested that this is due to the fact that in a
highly distorted filament the wave travels along a notably different path than it does
for small amplitude motion. However, a quantitative understanding of this effect
is still lacking. Nonetheless, the general picture derived from the linear theory, of
an optimal compromise between the bending required to break time reversibility
and excessive damping suppressing motion along the filament, remains valid. The
most significant consequence is that there is a point beyond which increasing the
wiggling frequency leads to a drop in efficiency. The small amplitude theory, on
the other hand, predicts that the efficiency remains constant (which | also found to
be the case in this limit).

For large amplitudes of oscillation, one-armed swimming is, speed and efficiency-
wise, a plausible strategy a microorganism might use to get around. It is also a sight
simpler than the helical screw mechanism used by most bacteria. This requires a
rotary joint [94]. Nonetheless, while standing open to correction, | have not been
able to identify a single organism that actually adopts this strategy. Perhaps the
most interesting question surrounding the one armed swimmer is thus: why doesn’t
it exist? Based on the results, | can suggest two hypotheses. First, localized bend-
ing of the tail requires implausibly high energy densities. Second, the existence
of an evolutionary barrier. It is useless trying to swim with a short, or slow mov-
ing, tail (in evolutionary terms one would expect that a primitive appendage would
have both these properties). Note that at small Sp (that is, low frequency and/or a
short appendage) there is nothing to be gained in terms of motility. For example,
this is not the case for the traveling wave mechanism, used by spermatozoa, which
gives amaximumswimming speed and efficiency at low sperm numbers. The he-
lical screw mechanism, commonly used by bacteria, is not directly comparable to
these results, because it is based on an intrinsically chiral appendage. Moreover,
being approximately rigid, the helical screw operates at constant efficiency within
a range of viscosities, and the swimming speed depends mainly on its geometrical
featuresi[127].
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On the other hand, this last propulsion method can be compared with our toy
model having a rotating torque applied to a semiflexible filament. Besides confirm-
ing that the simulation operates on a fully three dimensional problem, the results
can be used for some simple considerations of biological relevance. As a mat-
ter of fact, the simulation confirms the basic statement, established by the scallop
theorem, that to invert the direction of motion, a hypothetical bacterium could in
principle reverse the chirality of its flagellum, instead of the rotation direction of
the flagellar motor. Doing both would have no effect, as the results of inversion
of handedness and rotation cancel each other. This is exactly what happens to the
helical semiflexible filament, which has to adapt its chiral configuration to the di-
rection of rotation of the drive. An imaginary bacterium with such a semi-flexible
flagellum would only be allowed to swim backwards.

Regarding experimental studies of in vitro motility using imposed wiggling,
one main problem so far is that the force involved has been too small to be de-
tectable with an optical trapping experimenf]125]. This limitation could be re-
solved simply by time, as it is reasonable to expect that the resolution of experi-
ments will improve. On the other hand, by means of the model one could try to
find the region of the parameter space where this force is expected to be the high-
est, and try to design an “optimal experiment” where the motility could actually be
quantified.

Finally, more complete calculation of the hydrodynamic effects would without
any doubt be instructive. In particular, the friction coefficients are not, as assumed
so far, independent of distance along the filament. As we will see in the next chap-
ter, at the expense of a little more computational complexity, such effects can be
incorporated into the model in a straightforward manner.

8.A. Unequal Friction Coefficients as a
Condition for Motility

Itis possible to show that there can be no movement if the viscous drag coefficients
are equal. Most conveniently, we work with the the discrete model. Since the

discrete model produces the continuum result in the limit that the number of beads
N goes to infinity, there is no loss of generality (so long as the answer does not
depend oN). The equation of motion for the center of mass is

v X

TRPAT (8.9)
wherev = % 5N v, is the center of mass velocity is the total mass. The total
forcef; on each bead consists of a bending fditge tension forcé,; an hydrody-

namic forcef;,, and an “external” forcé,y which accounts for the external drive.
We know that by definition
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8.B. Analytical Computation of the Swimming Velocity

Now, the external periodic force is applied only at one extremity, sotfiatf,, =
f,(t) , and Eq. [8]9) can be written as

dv N
Mot = _ZlfiH +H(t)
i=

Integrating on a cycle we get

N
MAV, o, = / dat 'y fy, .
v cycle i; iH

The hydrodynamic force on beads written in the formfy, = & v, — & v;;

(with &, = &, /N). Thus, the effective drag on one particle depends on the local
configuration of the filament shape.
If the two friction coefficients are the sarﬁﬁ &, =¢ then

rT’A\7cycle = é dt \77 (8 10)

cycle

which necessarily leads to zero (or decaying to zero) global velocity. On the other
hand, if the two drags are different, the right hand side integral in[EQ] (8.10) can be

written as
JRCOR
cycle

whereé, is an effective drag which depends on time through the configuration of
the filament. This integral in general gives a number once, in the spirit of resis-
tive force theory, the configuration is plugged in, and swimming is not, therefore,
precluded.

8.B. Analytical Computation of the Mean
Swimming Velocity in the the Small
Angular Deviation Approximation

Here | outline the procedure adopted to calculate analytically the average of the
swimming speed using the small deviation approximation. This calculation largely
follows the methodology used in[108] on a different model.

We can define the time average of the swimming speed (projected along its only
nonzero component along tRalirection) as

_tl|m / dtor-

The expression fo#,r can be obtained from Ed.(8.2) in terms of the local angle
as

or = ?n( kaSy + 1dsy) + g—t(kﬁzwﬁsl//vLas’c).
1 I
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Fixing a reference frame one can consider the “comoving” frame with respect to
the filament, and expang andz, together with the absolute displacemem&nd

u, and the swimming spee@) as in Eq. [815). Following this reasoning we can
rewrite in vector notation the formula above ¢ 0 as

(£(vy) +£%(v),0) + J (£uy (0) + £2U,(0), £y (0) +£%h,(0)) =

=4 £2kl,l/18531,l/1 +4 (k£28521//1851/11 + 828512) X+ [—l (—k88531;/l) ¥,
gL éu 0 éL 0
(8.11)

where we stop the expansion to second ordet. in
Expressing the equality for the different powersaine getsv;) = 0 and

1
§

wherer,(0) can be obtained integrating E@. (§.11). Finally,taking into account the
boundary conditions fdn, u andt one gets to the expression

g ¢
(va) + A 0) =~

For any cyclic motion, the terms which involve time derivatives (the second term
on the left and the second term on the right) integrate to zero resulting in the ex-
pression of Camalet and Julicher. Using the analytical solution of[Eg. (8.6) then

gives Eq. [B18).

(V) +0U,(0) = —y;(0)dthy (0) + (kasllfl(o)aszll/10+ ds7,(0)),

L 1 (L S 1 2
/0 dsodhyahy + = /O ds /O 4’53 (96,
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9. A Method to Include
Oseen-level Hydrodynamic
Interaction

9.1. Introduction

The purpose of this chapter is to extend the slender body model of a filament, pre-
sented in chaptdj 8, to include a simple and computationally economical descrip-
tion of the hydrodynamic interactions induced by the presence of a low Reynolds
number fluid. The first question to ask is whether it is necessary to describe a fila-
ment with hydrodynamic interactions in the context of filament motility. The work
described so far neglects them. Nevertheless, we have seen that such a simple de-
scription is consistent with tractable theoretical models, and captures the essential
behavior observed in experiments. Considering this, we can anticipate, for the case
of the one-armed swimmer, a mere validation of the results of the previous model,
and therefore that a refined description of hydrodynamics is inessential. | will show
that this is indeed the case. In fact, this point of view can be revolved, and the re-
sults for the one-armed swimmer can be used to validate the simulation technique
that includes the hydrodynamic interactions.

On the other hand, we will see that unusual behavior, resulting from the non-
uniformity of the drags along the filament, emerges in a much simpler nonequilib-
rium problem, that of sedimentation, or driving from a constant force field. | will
show that, besides reproducing the correct behavior in the limit of stiff filaments,
the extended model shows instabilities that are completely missed by the slender
body model, as they depend on the interplay between the non-local action of the
fluid velocity field and the elastic degrees of freedom of the body. These results are
possibly testable experimentally.

Furthermore, there are interesting problems connected to the biology of swim-
ming micro-organisms that cannot be treated without hydrodynamic interactions.
These problems concern the dynamics of many filaments and are related to many
body swimming. As a matter of fact, if the previous chapter was inspired by the
hydrodynamics of swimming of a single microorganism with a semiflexible tail,
we can say the present one establishes the basis to approach the problem of the co-
operation and coordination of many of these hypothetical organisms or tails. This
is very relevant in a biological context, for example in ciliary movement. Cilia
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move in a cyclic beat composed of two phases:pgbeer stroke- which actively
propels the fluid — and thecovery strokewhich is passive. A ciliated cell gener-

ally has a field of hundreds of cilia which beat in a coordinated manner, setting up
wave-like time dependent patterns. This phenomenon is referredne@shro-

nism To describe the hydrodynamics of the highly correlated movements of many
cilia, observed in the phenomenon of metachronism, hydrodynamic interactions are
necessary [128 122].

The viscous forces are in general complex to implement. They are dependent
on the instantaneous shape of the filament and are also time dependent [129]. They
can in principle be incorporated keeping the time dependence, using numerical
solutions of the Navier-Stokes equations of different kirids1[130], or mesoscopic
models such as the lattice Boltzmann techniqiiesl [131]. A cheaper alternative is
to incorporate only the “steady state” level, for example using Stokesian dynam-
ics [132]. | will make this choice in what follows, introducing a model inspired
by Stokesian dynamics, adapted to the description of a semiflexible, inextensible
filament. Sectiof 912 contains a description of the algorithm and how hydrody-
namic interactions are represented in it. The sedimentation of a filament is treated
in sectiond 913 anf9.4. Finally, in sectipn]9.5, | will discuss the problem of the
one-armed swimmer.

9.2. Description of the Method

As in the previous model, | discretize the time evolution equation and the filament
itself. Each discretization point can be regarded as a small sphere, a “bead”, from
the hydrodynamic point of view, interacting with all the others through the velocity
field propagated by the fluid.

The discrete evolution equations for théh discretization point are obtained
using the velocity Verlet algorithni:{133]. They are

rt+Aa) = ri(t)+vi(t)At+A—t2Fi(t)
2m
vi(t+4t) = vi(t)+2A—n:(Fi(t)+Fi(t+At)). (9.1)

The previous expression contains the three familiar contributions for the forces.
Namely, the bending force§;g, the constraint forceb;. and the friction forces

F;. The bending forcek,; are computed as described in q]p 8 (p@e 92). The
constraint forces can be decomposed in passive (the inextensibility constraint) and
active (the drive)Fc = Fic +Fic,. Finally, the last contributiork;, has to in-

clude the hydrodynamic interactions, and will contain all the changes of this model
with respect to the previous one.

To describe hydrodynamic interactions, we need to know the force exerted by
the fluid on the bead. This last quantity can in principle be computed knowing the
the velocities of the beads, and solving Stokes equation with the boundary condi-
tions imposed by this configuration. This would require using a numerical solver
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for Stokes equation on all space, and having to represent explicit solid-fluid inter-
faces, thereby increasing the computational cost.

To avoid this complication, one can use a mobility matrix, or the fundamental
solution of Stokes equatidn[134], as is done in Stokesian dynamics [132]. Let us
assume thaFjB +Fic: for j £, are the forces exerted on the fluid by all the other
beads, then the fluid velocity created at positigft), which we can call the “hy-
drodynamic velocity“,viH (t), of beadi, is computed in the Oseen approximation,
through the expression{84,1.32]

43 1+175; (OF; (1)
ViH(t)yol4Z{J;rijj(t)/bj}'{FjB(t)+FjC(t) ) (9.2)

wherey, = 677, a is the hydrodynamic radius of a bead amdhe distance of
two subsequent beads. Better approximations, such as the Rotne-Prager mobility
matrix [135], can be used instead of the Oseen tensor without affecting the model.

In this model | assume the hydrodynamic force to be a dissipative force due
to the difference between the velocity of beaat a given time and its hydrody-
namic velocity. In other words, the friction force on the discretization poiat
implemented as

Fip = =%V, —Vv7) . (9.3)

This can be seen as a sort of dissipative constraint that will impose self-consistency
between the solution of the equation of motion of the body (defined by the set of
beads) and the solution of Stokes equation for the fluid (in the Oseen approxima-
tion). It can be easily checked that the friction coefficient multiplyitigin this
expression cancel out with its inverse entering Eq] (9.2). This indicates that the
value ofy, is only relevant for the ternyv; of Eq.[9.3. This term corresponds to
the dissipative force which sets the relaxation time scale (the scale on which the
inertia of the body is important, see below).

We can rewrite the evolution equation for the velocity spelling out the velocity
dependence of the friction force,

At

vi(t+4At) = vi(t)+ m [Fe(t) +Fc(t) + Fg(t+At) + Fic (t+At)]

+ YOZA_nt\ [V (t) + v (t+At) — ()]

At
Yoﬁvi (t+At). (9.4)

From a practical point of view, it is worth decomposing the velocity update in two
steps, before and after the forces and velocities of the subsequent iteration (time
t + At) are computed. Starting from the explicit expression

v(t+at) = ﬁ{vi(tﬂ—2A—nt1i(FiB(t)+Fic(t)+FiB(t+At)+FiC(t+At)
02m,
- yo[vi'*(t)+v:*(t+m)—vi(t)])}, (9.5)
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we can separate in the right hand side the contributions relative td fime those
relative to timet 4 At.

The velocity update is carried by calling in two instances the Verlet subrou-
tine. In the first sub-step the positions are updated, and the velocities are modified
according to the contributions relative to time

V80 = e (W + e (Fial®)+ Fil) +36 ()~ (1)
02m,
WD) = R0+ 08 e o0+ Felt)~ oy~ WO)]. ©5)

In the second sub-step, after the positions and the forces have been updated, the
velocities of a complete time step are computed by adding the missing contribution
to the force, relative to the new configuration (tilmeAt)

vitrat =vi o)+ 2 L A £ Rt At gy ()]
Zm 1+ ’YOE
(9.7)

One can see that the mass of the beads enters these equations in two forms. On
the one hand it appears as part of the rgjitm . Dimensionally, this is an inverse
time, corresponding to the frequency at which the particle loses its acceleration. To
reproduce the correct behavior of a low Reynolds number fluid, this relaxation time
should be very small, which suggests choosing a large friction coefficient and/or
a small mass. On the other hand, the mass also enters dividing the conservative
forces, as it usually happens in any molecular dynamics model. Suppose for ex-
amplevt =0 andy, = 0. In this case the ratio between the typical magnitude of
the force and the mass sets a characteristic time in which the velocity changes. The
mass will then determine the magnitude of the time steps. However, | have to note
that within the framework of the method it is not sensible to look at inertial effects
because the inertia of the fluid is neglected by postulating Stokes equation in the
first place. All that is relevant for us is that the mass is sufficiently small to make
the dynamics independent from it.

To summarize and clarify, | would like to spell out how the algorithm is actually
implemented.

1. Compute {VH}.
. Verlet update (timet).

. Constrain positions.

. Compute bending forces.

2
3
4. Compute active forces.
5
6. Compute tension.

7

. Compute {VH}.

112



9.3. Measurement of the Friction Coefficients and Sedimentation

8. Verlet update (time t+ At).

Steps 3,4 and 5 are identical to the slender body hydrodynamics model of chapter
8. The other steps have been discussed in this section, with the exception of the
tension calculation (step 6), which is carried out in an identical way as the other
two constraintsT19]. This tension did not need to be computed explicitly in the
previous model, but becomes necessary now, as it enters the expression for the hy-
drodynamic velocity. | was not concerned with the performance of this implemen-
tation of the constraints with respect to other possibilities, rather | used the minimal
extension of the previous model that would function in the new framework. For a
thorough discussion on different techniques of implementing constraints in similar
simulations the interested reader can lookat1[136].

9.3. Measurement of the Friction Coefficients
and Sedimentation

In order to make a connection with the model without hydrodynamic interaction
and to validate the technique on known analytical results, it is useful to compute
the longitudinal and transverse friction coefficients of the filament. These quantities
are not external parameters as previously, but have to be computed dynamically.
Moreover, the force exerted by the fluid on the object is not spatially constant, but
can vary along the filament's length, and, acting on the elastic degrees of freedom,
modify the shape of the object.

To measure the parallel and perpendicular drag coefficients, one can simply ap-
ply a uniform force field longitudinally or transversely to the filament, and evaluate
the resulting velocity of the body, as it would be done in an experiment. For suf-
ficiently stiff filaments, we can compare the results with a discretized calculation
on the “shish kebab” model (see reference [84], p. 292) of a rigid rod based on the
Oseen tensor. In this model the rod is represented as a adiaxds with hydro-
dynamic radius equal to one-half their distanbe=(2a). This kind of calculation
gives, in the infiniten limit the approximation

_ 2mnL
&) = Bgb)
5.=2%

for the values of the drag coefficients (whose exact expression is not known, but can
be obtained with better precision comparing with the solution of Stokes equation for
a high aspect ratio ellipsoid in a force field[134]). If the number of discretization
pointsn for the shish kebab rod and the model filament are the same, this calculation
is in agreement with the simulated results to the last significant digit. This test
proves that the hydrodynamic description of the model has the same qualitative
validity of the “shish kebab” description of a rigid rod. Quantitatively, it contains
the same degree of approximation.

Let us consider now a transverse force field. Having in mind the shish kebab
picture of the filament makes it easy to realize that the hydrodynamic velocity is

113



9. A Method to Include Oseen-level Hydrodynamic Interaction

Equilibrium Shape Under Transverse Force
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Figure 9.1.: Equilibrium shape of a filament dragged transversely towards negative
yin a constant force field for a valugL/k = 7.2- 1073,

not constant along the contour of the body. In particular, the beads closer to the
edges will feel a higher resistance, because they have a lower number of neigh-
bors to cooperate with. This non-constant force exerted by the fluid, coupled with
the filament’s bending elasticity, will result in a non flat steady-state shape during
sedimentation, which in turn may affect the value of the transverse drag. The con-
figuration cannot violate the left-right mirror symmetry of the problemy,lfand
therefore the viscosity of the fluid) is fixed, the correct nondimensional parame-
ter, which we can call the “sedimentation number”, or Sed, to associate with this
deflection effect is

Sed =bFL/K

whereF is the magnitude of the external force field. As can be expected[{Hg. 9.1),
the typical shape of a filament has the shape of a U, with the ends pointing away
from the force field. For smabbFL/k, the U shape corresponds to excitations of
the first elastic mode.

For Sed~ 90 a more surprising transition occurs, in which a long-standing
metastable mode higher than the first is excited (Fig. 9.2). The shape of this con-
figuration is still mirror symmetric as expected, but assumes the profile of a double
well, or aW. The W shaped configuration is stable for very long times, but becomes
unstable when one of the two wells is lower and left-right symmetry is broken. Af-
ter this destabilization event, the filament absorbs one of the minima and assumes
again a U shape with inward extremities. If the filament starts from an (even very
slightly) tilted configuration with respect to the direction orthogonal to the driving
field, the symmetry between the two minima of the W is broken from the beginning,
and an asymmetric W shape rapidly decays into a U.

The transitions between different regimes are associated with changes in the
values of the measured transverse drag. [Fi@. 9.3 shows the ratio of the drags as a
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Figure 9.2.: Steady-state shapes of a filament sedimenting in a transverse field. (a)
U shape for Sed- 10~2; on the scale of observation the filament ap-
pears flat, but its shape can be rescaled to overlap exactly with the one
shown in (b). (b) U shape for Sed 1. (c) U shape for Sed 10. (d)
Metastable W shape, Sed100.

function of bFL/k. For small values of this number the filament is rigid, and the
model reproduces the value of the shish-kebab rod model with the same discretiza-
tion. As the value of Sed increases, the U shape becomes more and more circular,
minimizing the transverse drag up to the point that it becomes almost equal to
the longitudinal one. On the other hand, the long-lived metastable state found is
characterized by a much higher drag than the U, and a sudden jump is visible as a
function of Sed. When this W state becomes unstable and transforms into a U, its
transverse drag drops radically once more.

Finally, one can analyze the variations in the amplitude of the shape at the
steady-state, defined as the vertical distance of the filament extremities from the
center of mass (Fig[—9.4). This quantity increases linearly with Sed in the small
drive regime. For larger drives, the U shape assumes vertical or converging tangents
at the extremities, and the amplitude saturates, because of the constraints imposed
by the inextensibility condition. Lastly, the transition to a long-lived metastable W
shaped state generates a decrease in the amplitude because of the larger number of
folds.
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Drag Ratio
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Figure 9.3.: Ratio of the drags as a function of the sedimentation number. The
graphs next to the curve indicate the typical shape of the filament in that
regime. For small drives, or large stiffness, the ratio of the drags agrees
with that predicted by the shish-kebab model with the same number of
beads. For Sed 90, it starts dropping dramatically, as the filament is
more free to modify its shape in order to minimize the fluid resistance.
In presence of the long-standing metastable state, another branch ap-
pears, with a higher ratio for the drags.

9.4. Sedimentation of an Oblique Filament

As | have shown, the main difference between the model including hydrodynamic
interactions and the previous one is whether or not the fluid is able to excite the
elastic degrees of freedom of the uniformly driven object. In particular, in the
slender-body picture with fixed drags, a filament falling in a constant force field
will not bend. This is not true in presence of hydrodynamic interactions. One
interesting problem concerns a filament in a straight configuration under a driving
field at a fixed anglex with the filament orientation, or, in other words, a filament
sedimenting under an angle with the gravitational field. Perhaps surprisingly, | find
that, due to the elastic instability triggered by the inhomogeneous viscous force, the
filament always reorients itself in a direction orthogonal to the driving field. This is
illustrated in Fig[915. It is not trivial to understand how a torque can be generated
by the combined action of these inhomogeneous forces and the deformation of the
filament. | will give an argument on how this is possible. Let us consider the
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Figure 9.4.: Amplitude of the steady-state configuration as a function of Sed. The
amplitude is defined as the maximal distance between two points of
the filament along the vertical direction. It scales linearly with Sed
in the low drive regime, then it saturates for higher drives, when the
inextensibility constraint starts playing a role. Finally, it drops for the
W configuration, because of the higher number of folds.
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Figure 9.5.: Sedimentation of tilted filaments. The configurations are plotted using
the center-of-mass as the origin. (a) Comparison of the results in the
models with and without hydrodynamic interactions, for a filament,
both with 5” =0.3L&, =0.18, and Sed 2, starting from an angle
of 25° from the direction of the field (the negatiyedirection in the
graph). Reorientation is absent without hydrodynamic interactions (
Even for relatively rigid filaments such as this one, the bending insta-
bility is sufficient to generate a torque on sufficiently large time scales.
The initial configuration [J) evolves in one exactly perpendicular to
the field ¢). (b) Reorientation of a filament with Se® starting from
an initial angle of 8 from the field direction. The elastic instability is
visible in this case.

filament as an array of beads, neglecting bending and constraint forces. These
beads are equally spaced on a line, and each one is subject to an externél force
under an angler with this line. The transverse velocity felt by the i-th bead of this

linear array is
. 1 1
v;-f = fsin(a) (7—/+C —) )

= Tij

whereC = %%yo‘l. Due to the sum term in the above expression, this velocity is not
homogeneous, but dependsipbeing lower at the extremities, where the number

of neighbors is lower. However, it is mirror symmetric with respect to the center of
mass, so it will not cause any rotation. On the other hand, if the beads are not on a
line transverse to the driving field, this left-right symmetry in the configuration can
be broken, causing an imbalance in the velocities as well, and thereby making it
possible to generate rotations of the whole body. Although | find this reorientation
for any filament stiffness, the rotation time increases for stiffer filaments, so that
the process requires longer and longer simulation times to be observable.
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To analyze the scaling of the relaxation time with the parameters, let us consider
a filament starting from a fixed angle and driven in the negatidéection. The
reorientation process can be quantified by the value 6f> (t), where8 is the
angle formed by the filament with the horizontal direction, and > is the spatial
average along the filament. This quantity decays as an exponential in time, as can
be seen in Fig—9.6(a).

@ (b)
Angle Relaxation Orientation Time

=
Q
o

100

=
o

O [T T

[N

Al ol 3o

I3
e

<6> (1)

0.001

0.0001

1e-05

Characteristic Orientation Time
=
o

1t Ll Lot
10

1e-06

i
S
N
=]
W
=]
8
o
[

Figure 9.6.: (a) Exponential time decay of the average aadle> (t) with respect
to the driving field in a few instances, for different values of Sed (linear-
log scale). (b) Characteristic orientation time as a function of Sed,
plotted in a log-log scale.

The characteristic time scale of the reorientation extracted from these expo-
nentials can be plotted as a function of Sed, yielding a power law with exponent
—1 (Fig.[@:6b). Once again, as it can be anticipated, changing the stiffness or the
strength of the driving field has an equivalent effect. For larger drives (or smaller
stiffness) the relaxation time decreases because the elastic modes are more easily
excited.

One may wonder whether this unexpected behavior in uniform driving fields
would be observable experimentally, in particular with mesoscopic bio-filaments. If
we estimate the value of Sed for a microtubule of, for example,8@alling under
gravity, we get the discouraging order of magnitude of®tfor which neither
bending nor reorientation in reasonable time-scales are visible. To see any effect,
one would need to put the polymer in an ultra-centrifuge, where Sed can increase to
the order of 1. In this case, the predicted deflection is about 1% and according to the
model the filament would reorient itself transverse to the field on a length scale of
thirty times its own length, approximately 1 mm. In these considerations, the main
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restriction on the value of Sed is imposed by the microtubule’s extremely small
mass. This is valid for all the other biofilaments. On the other hand, the magnitude
of the total force needed to get a value of Sed in the rang#&Q.is not exceedingly
high, in the region of 1 pN. This can be easily obtained, for example, with an
optical trap, which, however, exerts a point force. Forces of the same range can
be generated by exerting on the microtubule (in its usual pH 6.8 buffer) a uniform
electric field of strength 10 V/cni[1837]. In this case there would be an interesting
competition between the hydrodynamic rotation towards the transverse direction
and the small (on the order &T for these field strengths) longitudinal aligning
potential energy due to the permanent electric dipole moment of the filarents [138,
T3 /]_

9.5. One-Armed Swimmer with Hydrodynamic
Interaction

A second test of the new model is assessing whether it is able to reproduce the data
of the one-armed swimmer. It is. This is not trivial because the longitudinal and
transverse drags are not external parameters anymore, but are determined by the
dynamics, and so is the sperm number. This is illustrated in figurgs 9.7, for the
example of the swimming speed. Once again, the entire dynamics of the filament is
specified, at fixed driving amplitude, by the sperm number, which this time has to
be computed using thmeeasuredransverse drag, evaluated as described in section
o3.

o—e 30 beads
55 100 beads

1.00—
100

Y(Sp)

0.25—

4 6 8 10 ‘ 12 0.00 2 3 4 5 . 5 . 7

Sperm Number Sperm Number

Figure 9.7.: Velocity of the wiggled one-armed swimmer as a function of sperm
number in presence of hydrodynamic interactions. (a) Comparison of
different amplitudes of the drive (b) Comparison of different discretiza-
tions.
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Wave Pattern of a Swimming Filament
Hydrodinamic Interaction. Amplitude 23%
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Figure 9.8.: Wave patterns of a wiggled filament at=Sp, plotted over 5 subse-
quent cycles. The swimming motion is visible.

On the other hand, | have not been able to identify any qualitative behavior that
is not already described by the slender body model with fixed drags. This is an-
other confirmation of the strength of this simple model, which, already in the small
amplitude limit that is treatable analytically, is able to make many correct predic-
tions. From the quantitative point of view, this agreement is essentially confirmed.
However, the one-armed swimmer with hydrodynamic interactions appears to be a
few percent slower, and less efficient than the non-interacting one.

9.6. Conclusions

| have discussed a method to include hydrodynamic interactions in the model for a
semiflexible filament in a low Reynolds number fluid described in[Ch. 8. This is a
new method, designed to be computationally cheap and to avoid the complication of
having to deal with explicit representations of the body-fluid surface. The method
was validated by measuring the drag coefficients and comparing with known results
both for discrete models and in the continuum limit. A second confirmation of
its validity comes from the application to the problem of the wiggled one-armed
swimmer.

More interestingly, | have shown that novel nontrivial behavior emerges in ap-
plying the model to the problem of filament sedimentation. A first effect is the
presence of elastic instabilities, translated in changes of the value of the transverse
drag for a filament in a transverse driving field. Surprisingly, modes higher than
the first can be excited in the limit of large drives. The second notable result is the
prediction that, because of the interplay between elastic instabilities and hydrody-
namic interactions, a sedimenting filament tends to rotate place itself orthogonal to
the driving field. Some of these results can possibly be tested experimentally on
biological polymers such as microtubules, by using fast centrifugation or electric
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field as a drive.

However, this chapter is merely a prelude to what the model can be used for.
The main advantage of the simulation method described here is its small com-
putational cost, that allows to explore larger time scales and problems involving
many filaments. In fact, there is an astonishing number of open problems that can
be tackled with the method. This is valid both in soft condensed matter (collective
sedimentation, behavior under shear, interplay of thermal fluctuations and hydrody-
namic interactions) and, more interestingly for the author, in biology (coordination
and cooperativity of ciliary and flagellar movement in eukaryotes).
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The scope of this chapter is to draw some comprehensive conclusion on this second
part of the thesis. Once again, | will try to focus more on the issues where a physical
point of view helps formulating statements with some biological relevance. In this
view, the first fact worth mentioning is undoubtedly the reason for the nonexistence
of one-armed swimmers in the biological world. For large amplitude motion (the
only one biologically relevant), | have shown that this swimming strategy does
not have major disadvantages with respect to the competition. However, it seems
that no known microorganism on this planet adopts it. A possible explanation of
this is the necessity of exceedingly high forces localized at the junction of the tail.
Another possibility is based on the functional dependence of speed and efficiency
on filament length, stiffness and driving frequency. The model shows that trying to
swim with a short, or slow moving tail is never advantageous. On the other hand,
we can imagine that a primitive appendage would be short, and would not have any
reason to be particularly fast moving. This hypothetical barrier would be absent
for both the traveling wave mechanism used by spermatozoa, and the helical screw
mechanism used by most bacteria.

Experimental realizations of the one-armed swimiinevitro, applying wig-
gling forces or periodic torque (or even rotary drive) using optical tweezers are def-
initely within reach. The main complication is that spurious fluid flow in the sample
must be absent. To date, the only experimental attempt [125] using a wiggled actin
microfilament, failed to measure the propulsive force, because of limits in the res-
olution, and was used as a measure of the stiffness of the filament (for which more
reliable methods are available [66]). Being able to measure force and efficiency in
such a setup would allow a direct comparison with the theoretical model. Further-
more the model | presented could help finding “optimal” parameters in designing
an experiment of this kind.

Another issue with some biological implications is the dynamics of a semiflex-
ible filament jointed with a rotary drive. The results show that because the filament
has to change the handedness of its configuration with the direction of rotation of
the drive, it can never invert the direction of propulsion. An imaginary bacterium
with such a semi-flexible flagellum would suffer of this intrinsic limitation in its
steering capabilities. These facts are perfectly compatible with the scallop theo-
rem.

Let us now discuss the role of the hydrodynamic description of the swimming
filament. It appears that for the single filament one-armed swimmer a simple local
description of the hydrodynamics is sufficient to capture the behavior of the object.
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Introducing hydrodynamic interactions leads only to minor quantitative changes.
In fact, the main limitation of the analytical treatment of Wiggins and Goldstein
lies in the hypothesis of small amplitude deviations in the shape, necessary to lin-
earize the equation of motion. On the other hand, the simple but computationally
efficient nonlocal model of hydrodynamics introduced in chafter 9 can be useful
for different problems in the context of biologically inspired motility. For example,
the single filament experiments mentioned above are always performed in presence
of walls, which can only be taken into account using a nonlocal description of hy-
drodynamics. More importantly, cooperativity is widely exploited by swimming,

or flow-generating cell<[94,1T39].

A final point regards the possibility of extending the model using more com-
plex, biologically realistic drives. In this thesis, by studying simplified drives such
as the one-armed swimmer, | have treated motility as a separate problem from in-
ternal force generation in flagella. The main reason for this is that the last problem,
despite of the wealth of investigation over the past thirty years is still somewhat
open. One of the problems is to generate models that describe both the generation
of the wave-patterns and the feedback mechanisms necessary for synchronization.
In my opinion, the most effective attempt in doing this is the relatively recent work
of Camalet and Julicher1108,140], which is based on the small deviation approx-
imation for the passive dynamics of the filament, combined with a model for the
activity of internal microtubules and motors in a simplified geometry. The model
predicts that motion can be generated by a Hopf-bifurcation mechanisms that drives
the system to an oscillatory state, which can also give rise to a feedback to exter-
nal perturbations. Such a description could be implemented in the simulation and
explored in conditions of large amplitude motion, and presence of hydrodynamic
interactions for a single or many filaments.
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Samenvatting

Dit proefschrift beschrijft het onderzoek van mij (en anderen) aan twee verschil-
lende biologische onderwerpen, benaderd vanuit een natuurkundig standpunt. Dit
houdt in dat ik probeer biologische processen tot hun essentie te reduceren en
het functioneren ervan op basis van natuurkundige principes te verklaren. Om
de geldigheid van het theoretisch werk te vérdin heb ik waar mogelijk gebruik
gemaakt vaiin vitro experimenten.

Het onderwerp van mijn onderzoek zijn zogenaamde cytoskelet-filamenten.
Deze filamenten komen voor in elke levende cel die behoort tot de klasse ean de
karyoten Hieronder vallen uiteenlopende soorten zoals mensen, muggen, walvis-
sen, gisten alle planten. Een uitzondering vormen de baéterzij behoren tot
de prokaryoten In vergelijking met de eukaryoten zijn de cellen bij prokaryoten
vaak kleiner en minder complex, zowel in hun organisatie als in de taken die ze
uitvoeren. Het is precies de complexiteit van eukaryotische cellen die hen geschikt
maakt om meercellige organismen te vormen.

De cytoskelet-filamenten in eukaryotische cellen zijn stevige uit eiwitten opge-
bouwde structuren die vele toepassingen hebben binnen de cel. Zo worden ze ge-
bruikt als ‘rails’ waarlangs materialen in de cel worden getransporteerd en bepalen
ze de structuur van de cel. De filamenten binnen de cel die bepalend zijn voor de
structuur van de cel vormen tezamen de basis van het cytoskelet, zo genoemd naar
analogie met het skelet in volledige organismen.

1. Het eerste deel van dit proefschrift beschrijft onderzoek aan celdeling dat is
uitgevoerd als een onderdeel van een gezamenlijk project van de groepen ‘bio-
assembly and organisation’ en ‘theorie van biomoleculaire materie’ op AMOLF,
de plantencelbiologiegroep van de Universiteit Wageningen, de groep ‘biologische
fysica’ van het MPI-PKS in Dresden en Marjolein Dijkstra, van de Universiteit
Utrecht. Het begrip van dit celdelingsproces is een belangrijk onderwerp in de bi-
ologie, met vele fysische aspecten. Mijn onderzoek betreft het ontstaan van orde in
de organisatie vamicrotubuli de stevigste van alle filamenten in eukaryoten, in de
tijd tussen celdelingen in plantencellen. Experimenten laten zien dat voorafgaand
aan de celdeling deze microtubuli zich eerst ordenen in een laag van evenwijdige
filamenten vlak onder het celmembraan, die zich vervolgens samentrekt tot een
dunne band, dpre-profaseband

De natuurkundige aanpak van dit probleem begint met radicale simplificaties
van het systeem. Op theoretisch gebied houdt dit de constructie van simpele mod-
ellen in. Op experimenteel gebied betekent dit de constructie van een systeem dat
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slechts bestaat uit een minimaal aantal componenten, los van de complexe biolo-
gische afhankelijkheden die een rol spelen in een levende cel - en dus in biologis-
che experimenten. Zo hebben we microtubuli laten groeien in ‘micro-kamers’ met
dezelfde afmetingen als een plantencel en met behulp van een microscoop gekeken
naar de configuratie van de filamenten in de kamers.

Binnen dit project hebben we drie eenvoudige scenario’s voor de configuratie
van microtubuli in plantencellen onderzocht: groei in een quasi-tweedimensionale
ruimte, groei in een ‘micro-kamer’ die lijkt op een plantencel en groei in dezelfde
situatie met toegevoegde interactie van de microtubuli met moleculen die de mi-
crotubuli actief kunnen verplaatsen. Deze drie situaties worden besproken in de
hoofdstukkern]3]4 ef 5 van dit proefschrift.

De belangrijkste conclusie is dat hoewel passieve mechanismen zoals elas-
ticiteit van microtubuli en onderlinge hindering een belangrijke rol kunnen spelen
in het ontstaan van de waargenomen patronen, actieve mechanismen net zo belan-
grijk zijn. Maar er blijven nog vele vragen onbeantwoord, met name over de iden-
tificatie van de actieve mechanismen. Dit opent de weg naar nieuw biologisch en
natuurkundig onderzoek dat de komende jaren kan worden uitgevoerd op AMOLF
en in Wageningen. Van biologische zijde is de grootste uitdaging om verder onder-
zoek te doen naar de rol van moleculaire motoren, moleculen die krachten uitoe-
fenen op microtubuli. Van natuurkundige zijde kan de rol van deze motoren en
andere actieve processen worden onderzocht zowel door middéh wétno ex-
perimenten, zoals die in dit proefschrift beschreven zijn, als door middel van meer
gedetailleerde modellen, volgens de richtlijnen uit hoofdgtuk 5.

2. Het tweede deel van dit proefschrift beschrijft onderzoek dat is uitgevoerd in
samenwerking met F. Capuani (AMOLF), C. P. Lowe (Universiteit van Amster-
dam) en |. Pagonabarraga (Universiteit van Barcelona). Het gaat over een andere
belangrijke toepassing van cytoskelet-filamenten. Sommige gespecialiseerde cellen
gebruiken deze om een vloeistof voort te stuwen ofaichzelfvoort te stuwen in

een vloeistof, zoals het geval is bij een spermaiteoDe staart hiervan heet een
flagellum Flagella zijn lange, dunne uitsteeksels van het celmembraan die een
complexe bundel van microtubuli en actieve eiwitten bevatten. Deze eiwitten ge-
bruiken chemische energie om de flagella te vervormen op een zodanige wijze dat
de cel zich kan voortbewegen in een vloeistof.

Zwemmen is geen eenvoudige opgave voor een klein object zoals een cel, om-
dat het niet kan vertrouwen op zijn eigen traagheid, zoals wij dat doen. Als je bij-
voorbeeld deze pagina zou verscheuren (na deze hopelijk eerst gelezen te hebben),
zou verfrommelen en weg zou gooien, weet je dat de vliegende prop een paar me-
ter af zal leggen. De traagheid zorgt ervoor dat hij blijft bewegen totdat deze tot
stilstand wordt gebracht door wrijving met de lucht (of contact met de grond). Als
we de microscopische wereld van de cel zouden opblazen tot onze macroscopische
dimensies en hetzelfde experiment zouden herhalen zou hetzelfde projectiel slechts
een nanometer (een duizend-miljoenste meter) afleggen voordat deze tot stilstand
zou komen! In een wereld zonder traagheid is het erg lastig je los te maken van je
omgeving.
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In plaats het probleem van de flagella in alle volledigheid aan te pakken heb ik
gekeken naar een simpeler model: de ‘een-armige zwemmer’. Dat wil zeggen een
flexibele staaf die wordt aangedreven @@n uiteinde. In hoofdstul 8 beschrijf
ik een numerieke studie naar de wijze waarop een dergelijke staaf kan zwemmen
in afwezigheid van traagheid en hoe snel en éffitidit kan zijn. In hoofdstuk
8 presenteer ik vervolgens een simulatiemethode die gebruikt kan worden om ook
hydrodynamische interacties tussen filamenten épematieve effecten in rekening
te brengen, zoals het zwemmen door middel van vele filamenten.

De resultaten uit beide hoofdstukken geven aan dat zwemmen met behulp van
€én arm een goede methode is voor een micro-organisme om zich voort te bewegen,
zowel vanuit het oogpunt van snelheid als effitie. De vraag die zich aandient
is dus: waarom bestaat @n-armige zwemmer niet in de natuur? Een mogelijk
antwoord op deze vraag is het bestaan van een evolutionairéreartnderdaad
laten de resultaten zien dat het voor &n-armige zwemmer niet effectief is om
gebruik te maken van een korte of langzaam bewegende arm, terwijl een primitieve
arm deze beide eigenschappen waarschijnlijk zou hebben.

De meest veelbelovende richting voor vervolgonderzoek is gerelateerd aan de
hydrodynamische methode uit hoofdsfuk 9. Deze methode is tot nu toe slechts
toegepast op deén-armige zwemmer en het probleem van sedimentatie, maar kan
eenvoudig worden worden gebruikt voor simulaties met interacties tussen vele fil-
amenten. Hiermee kan bijvoorbeeld de vraag worden beantwoord of twee sperma-
tozaiden samen sneller zwemmen dan alleen.
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