
Lattice-Boltzmann simulations of
driven transport in colloidal systems





Lattice-Boltzmann simulations of
driven transport in colloidal systems

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit
van Amsterdam op gezag van de Rector Magnificus
prof. mr. P. F. van der Heijden ten overstaan van een
door het college voor promoties ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit

op vrijdag 26 november 2004, te 14:00 uur.

door

Fabrizio Capuani

geboren te Rome, Italië
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1 Introduction

Scientists have an effect upon society by finding out the details of how systems of
practical interest work. The aim is either to obtain new knowledge, or learn how to
use nature to our benefit. For this we need the basic rules of the systems, the governing
equations, and we must know how to solve them for interesting conditions.

At the beginning of the twentieth century, scientists felt that, for macroscopic
systems, all the relevant equations had been derived. Actually solving these equations
for most practical problems is, however, a daunting task. Even though in the course of
a few centuries, hundreds of talented scientists, including dozens of geniuses, worked on
the solution of these equations, there are still many interesting practical situations and
intriguing subtle interactions that lack a thorough understanding. It is not uncommon
that areas of research that seemed exhausted suddenly regain the center of the scene.
Perhaps a deeper understanding is needed to complement new experimental methods
or for technological applications, or simply because new methods allow the solution of
equations that previously seemed hopelessly intractable.

This thesis focuses mainly on electro-hydrodynamics. That is, systems where hy-
drodynamic (flow-induced) and electrostatic (charge-induced) interactions are of the
same order of magnitude and are thus in competition. For applied purposes, a revival
interest in this field has been driven by the practical needs of microfluidics and bio-
physics. On the theoretical side, electro-hydrodynamics is still challenging due to the
inherent non-linearity of the relevant equations.

In microfluidics it was soon realized that the most efficient way to displace fluids in
micro (or nano) capillaries is through electroosmosis. However, technological problems
still remain unsolved. For example, the mixing of fluids at the extremely low Reynolds
numbers that characterize very small scale flows remains an outstanding problem. In
the context of biophysics, there is an additional question: living cells contain large
numbers of charged (macro) molecules and large electric fields are maintained, in
particular across membranes. Yet, little is known about the role of electrokinetic
phenomena for molecular transport in cells.

The problem is, of course, that electrokinetic phenomena in all but the simples
geometries cannot be treated analytically. One can imagine a protein in an electrolyte
as a large charged particle surrounded by microions (of both signs) which rattle around
while interacting with each other and with the protein, both electrostatically and
hydrodynamically. The protein itself feels the environment and other proteins by
means of forces, which can again being mediated by the solvent. However, all this
complexity can actually help. Because the small particles move much faster than the
large ones, they have time to explore so many configurations of phase space that they
are, effectively, at equilibrium. To show this, let us estimate whether a microion is
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1 Introduction

able to follow the a colloidal particle in its most abrupt movement, a Brownian jump.
We estimate the time of a Brownian jump of length l for a particle of mass m with
friction coefficient ξ to be τj = m/ξ . On the other hand, the time it takes an ion α
of the electric double layer to relax to its equilibrium position in the layer is of the
order τα = l2/Dα, where Dα is the diffusion coefficient of the ion. The electric double
layer can be treated as approximately remaining in its equilibrium configuration if
τα � τj . Estimating the length of a jump as l ≈ uτj and the particle velocity u as
the root mean square value of one component of the thermal velocity u =

√
kBT/m

then, using the Stokes-Einstein relation Dξ = kBT , we find τj/τα ∼ ξj/ξα. Using
Stokes law, ξ = 6πηa, for the friction coefficient of a sphere of radius a in a fluid with
viscosity η, we see that this corresponds to aion � aparticle. This condition is satisfied
for colloidal particles.

Because retardation effects from the relaxation of the electric double layer are
negligible, we can treat it “adiabatically”. In this context, an important role is played
by new types of computer simulations usually referred to as “Mesoscopic simulations”.
With this class of computer simulations one attempts a coarse graining procedure,
recasting the microscopic description of a system, which would require solving the
equations of motion for all the molecules, into a mesoscopic description where it is
sufficient to follow the time evolution of the global properties of the system (mass
and momentum density for example). There are several approaches to doing this,
each with its own strategies, but the general procedure is to integrate out the fast
degrees of freedom, reducing the actual simulation to only the slow ones. Among
the mesoscopic simulations, the lattice-Boltzmann method (LB) (which I introduce
in Chapter 2) has proved to have some very desirable properties for the study of the
hydrodynamic interaction, especially from a computational point of view.

The first application in this thesis, and the only one unrelated to charged colloids,
uses the LB method to study flow in random porous media. In Chapter 4 I show
how velocity fluctuations decay in a simple model porous medium and how the use
of approximate expressions, based on the pre-averaged properties of the flow, lead to
large errors. This is contrary to the assumption underlying the existing theories for
hydrodynamic dispersion. In an attempt to study flow in porous media, we introduce
a highly simplified lattice-Boltzmann model for porous media. This model has the
desirable property of possessing no excluded volume while allowing for friction on
the fluid with a low density of obstacles. In my opinion, this model is ideally suited
for studying the statistical properties of well behaved—in the sense that the spacial
correlation functions decay exponentially—porous media. In the same chapter I show
a simple way to obtain the largest possible Peclet numbers (in lattice simulations
spurious diffusion always limits the Peclet number to small values).

Although the LB method is well established for the solution of flows in complex
geometries, only recently has the study of the electrokinetic equations (Chapter 3),
which couple electrostatics and hydrodynamics, been undertaken. In Chapter 5 I de-
scribe a novel method developed in the course of my PhD project that allows us to
treat the electrokinetic equations and study previously unexplored flow conditions.
Following the vogue, I should call the method a “hybrid” method because it couples
a lattice-Boltzmann model of the neutral solvent with a discretization of the Smolu-
chowski description for the solutes. This combination of different methods is justified
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by our choice of the level of description to use for the various components of the sys-
tem (possible because of the scale separation between large colloidal particle and small
ions). An important characteristic of the new method is that it strictly conserves mass
and momentum at the level of the single node, thus rules out, from the very beginning,
spurious mechanisms of transport. It is also very easy to implement and it is fully
parallelizable. To illustrate the advantages of this pragmatic approach, in Appendix A
I present two technical problems which originated from a different lattice-Boltzmann
model. Small imbalances generated spurious mass currents at the boundary with a
macroscopic object, that proved capable of obscuring the subtle interactions we were
trying to study. In summary, although the method can be improved, I believe that it
is already very flexible and well suited for studying colloidal suspensions of charged
particles and microfluidics. Although in this thesis I have not extensively applied the
method to the latter, in my opinion, that is the field were one might exploit fully its
potential.

The remainder of the thesis concerns exploratory studies of the electrokinetic prop-
erties of charged colloids in electrolytes by means of the lattice-Boltzmann model pre-
sented in Chapter 5. In selecting this system to study, we were motivated by questions
such as: how do the shape and charge distribution of a particle affect its mobility?

In Chapter 6, I describe computer simulations of the sedimentation velocity of
highly charged spheres. I show that the sedimentation velocity can be discussed in
terms of the equilibrium properties of the electric double layer. Moreover, at high
charge, the surface-charge dependence of the sedimentation velocity is affected by the
accumulation of charge on the surface of the sphere, and the sedimentation velocity
resembles that of a sphere in an electrolyte with no-added salt, where coions cease to
affect the sedimentation velocity of the spheres and only the dynamics of the counte-
rions is relevant.

Another important aspect of the electrohydrodynamic interaction, which, once
again, proves the flexibility of the method, is the study of the effect of the shape on
electrokinetics. In Chapter 7 I study the role of shape, volume fraction, charge, and
ionic strength on the sedimentation velocity of disks with non-zero thickness. They are
relevant both practically and theoretically because they are a prototype for studying
the effect of the shape and model real clay particles. I find that disk particles become
hydrodynamically symmetric due to non-trivial interactions between the flow field near
the particle and the electric double layer.

The last application I discuss concerns the electrophoretic mobility of a “patched”
particle. In Chapter 8 I show how the electrophoretic mobility of such a sphere depends
on the electric quadrupole moment and on the Debye screening length. I also show
that if the particle undergoing electrophoresis is not exactly spherical (as occurs when
representing a sphere on a lattice), one should consider also even electric multipole
moments higher than the quadrupolar.
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2 Hydrodynamics and the
lattice-Boltzmann method

2.1 Introduction

Scientists associate a variety of meanings with the term “hydrodynamics”. When I
started as a novice in the field, I struggled for some time before realizing that there
are at least two meanings of the word hydrodynamics, and two corresponding cate-
gories of scientists who claim the word and use it in a different way. On the one hand,
we have scientists who study fluids as continuous media and are interested in their
time evolution and interactions with obstacles and suspended particles. These scien-
tists use the term hydrodynamic with its literal meaning: dynamics of fluids (liquid
water—“hydros”—was, for ancient scientists, “the” fluid). On the other hand, for sci-
entists concerned with collective properties of many microscopic molecules, the term
“hydrodynamics” has a completely different meaning. It accounts for the dynamics of
“dynamic variables” whose relaxation time is so slow as to be practically unaffected
by the erratic motion of the microscopic constituents of the system. The latter de-
grees of freedom are so “fast” that they can be considered always in their equilibrium
state. The realization that the “slow” variables follow the laws of the dynamics of
fluids termed them “hydrodynamic variables”. Even though this unification was one
of the greatest results of statistical mechanics, the two concepts remain distinct and
people who work on different fields refer to different levels of description when they
talk about “hydrodynamics”.

Throughout this thesis by “hydrodynamics” I will denote dynamics of the fluid.
However, the simulation method which I used—the lattice Boltzmann method—heavily
draws the ideas of statistical mechanics.

2.2 Phenomenological hydrodynamics equations

The phenomenological equations of hydrodynamics can be found in many text books
(See, for example, [1, 2, 3, 4]), but because it is instructive to show their derivation I
recapitulate here. Specifically, I will show the derivation of the macroscopic equations
governing the motion of an isothermal, incompressible fluid in an adiabatic transfor-
mation (i.e. when heat exchange among different part of the fluid is negligibly small).

The state of a moving fluid is fully described if at each time t we can define the
distribution of the fluid velocity v(r, t), and of two of the thermodynamic quantities
of the fluid as, for example, the pressure p(r, t) and the density ρ(r, t) for every point
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2 Hydrodynamics and the lattice-Boltzmann method

of space r ≡ (x, y, z). The evolution of a macroscopic state follows a path dictated by
the basic conservation laws—i.e. the conservation of mass and of momentum—and
the so-called constitutive equations, which are phenomenological laws.

Let us begin by considering the law of mass conservation. The mass of fluid in
a volume element V0 is

∫
V0
ρdV . The mass of fluid flowing in a unit time through a

surface element ds bounding V0 is ρv · ds. Therefore, in absence of a sink or a source
of mass, mass conservation implies that

∂

∂t

∫
V0

ρdV = −
∮
ρv · ds, (2.1)

where we follow the convention that the surface element ds is directed along the
outward normal to the surface, hence the minus sign. By making use of Green’s formula∮
ρv · ds =

∫
V0
∇ · (ρv)dV , Eq. (2.1) can be written as

∫
V0

[∂ρ/∂t +∇ · (ρv)]dV = 0.
Because the volume element is arbitrary, the integrand in the equation has to vanish,
i.e.

∂ρ

∂t
+∇ · (ρv) = 0. (2.2)

Equation (2.2) expresses the law of mass conservation in the usual local form. More-
over, most real fluids are approximately incompressible, and the relation dρ/dt = 0
holds. Then, expressing the substantial derivative in terms of partial derivatives
d/dt = ∂/∂t+ v · ∇, we obtain

dρ
dt
≡ ∂ρ

∂t
+ (v · ∇) ρ =

∂ρ

∂t
+∇ · (ρv)− ρ∇ · v, (2.3)

The conservation of mass [Eq. (2.2)] then implies that for incompressible fluids

∇ · v = 0. (2.4)

Equation (2.4) is the conservation of mass for an incompressible fluid.

2.2.1 Equation of motion of a fluid element

Let us next consider the conservation law for the momentum density ρv. The mo-
mentum of a fluid element of volume V0, i.e.

∫
V0

(ρv)dV , is changed by the total force
acting on it. This force, in the absence of external forces, is equal to the integral of the
pressure over its surface −

∮
pds. Again, applying Green’s formula, we can transform

the surface integral into a volume integral
∮
pds =

∫
V0
∇pdV , and write the conser-

vation of momentum in its integral form as (d/dt)[
∫
V0

(ρv)dV ] = −
∫
V0
∇pdV. The

conservation of momentum in the local form becomes

d (ρv)
dt

= −∇p. (2.5)

Because in this procedure we computed the change in momentum of a volume element
by means of Newton’s second law, the time derivative in Eq. (2.5) should be interpreted
as the substantial derivative because it denotes the rate of change of momentum of a
moving fluid particle. For convenience, let us rewrite the conservation of momentum
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2.2 Phenomenological hydrodynamics equations

in the Eulerian coordinate system: the system which is fixed in space. In this frane
of reference, the rate of change of momentum density is ∂(ρv)/∂t. Let us begin by
expanding the substantial time derivative of the momentum density

d
dt

(ρv) =
∂ (ρv)
∂t

+ (v · ∇) (ρv) . (2.6)

Then, using the law of mass conservation for an incompressible fluid (∇ · v = 0), we
can transform the second term on the right hand side as

(v · ∇) (ρv) = (v · ∇) (ρv) + (ρv) (∇ · v) = ∇ · (ρvv) (2.7)

and obtain the following expression equivalent to Eq. (2.6)

d
dt

(ρv) =
∂ (ρv)
∂t

+∇ · (ρvv) . (2.8)

By using Eq. (2.8), we can now write the law of momentum conservation Eq. (2.5) in
the Eulerian coordinate system as

∂ (ρv)
∂t

= −∇ ·Π, (2.9)

where we defined
Π = ρvv + pI, (2.10)

or in Cartesian components
Πik = ρvivk + δikp. (2.11)

By analogy with the mass flux, it is easy to recognize that Π·ds represents the mo-
mentum flowing in a unit time through the surface element ds. The tensor Π is called
the momentum flux tensor.

2.2.2 Viscous flows

Equation (2.11) represents a completely reversible transfer of momentum and is valid
only for ideal fluids: fluids which do not dissipate momentum. However, real fluids
do dissipate momentum. At a phenomenological level, this effect can be regarded
as transport of momentum due to an irreversible mechanism. Therefore, we add an
irreversible term into the momentum flux tensor, which we indicate as σiik

Πik = ρvivk + δikp− σiik. (2.12)

In order to explicitly write σiik, we have to use phenomenological laws. One example
of such a law is Newton’s law of irreversible transfer of momentum among the fluid
constituents,

σiik = η

(
∂vi
∂xk

+
∂vk
∂xi

)
(2.13)

(where η is the shear viscosity), which postulates an irreversible transfer of momentum
from particles with higher speed to particles with a lower one . The last two term in
Eq. (2.12) are usually combined in the stress tensor σik = −δikp+ η

(
∂vi
∂xk

+ ∂vk
∂xi

)
.
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2 Hydrodynamics and the lattice-Boltzmann method

By substituting the irreversible momentum flux tensor in Eq. (2.12) and adding
an external force (per unit volume) Fext as another source of momentum change, we
obtain the equation of motion for an incompressible Newtonian fluid

∂ (ρvi)
∂t

= − ∂

∂xk

[
ρvivk + δikp− η

(
∂vi
∂xk

+
∂vk
∂xi

)]
+ F ext

i . (2.14)

By performing some basic algebra, we can rewrite this equation in the more familiar
form

∂ (ρv)
∂t

+∇ · (ρvv) = −∇p+ η∇2v + Fext, (2.15)

or equivalently as

ρ

[
∂v
∂t

+ (v · ∇) v
]

= −∇p+ η∇2v + Fext. (2.16)

This equation is the Navier-Stokes equation for an incompressible Newtonian fluid and,
together with the equation ∇ · v = 0 is a compact way to write the conservation laws
of mass and momentum, the incompressibility condition, and the phenomenological
Newton’s law for dissipative fluids.

2.2.3 Similarity laws of hydrodynamic phenomena

If two physical systems of different size obey the same equations, the systems are said
to be “similar”. In similarity theories one expresses a physical law only in terms of
dimensionless variables and pure numbers. Then, in mathematical terms, two physical
systems are considered similar when all the pure numbers are equal. In hydrodynamics,
the most frequently used pure number is the Reynolds number, which is obtained by
making the Navier–Stokes equation dimensionless.

Let us consider a viscous flow in a system whose units of length is l and express the
steady state velocity through the unit of velocity U. We can then write the steady-state
Navier-Stokes equation

ρ (v · ∇) v = −∇p+ η∇2v + Fext (2.17)

in terms of the dimensionless quantity V = v/U, and R = r/l as

ρ
U2

l
V · ∇V = −1

l
∇p+ η

U

l2
∇2v + Fext. (2.18)

The ratio of the term in the left hand side (the inertial term), to the second term in
the right hand side (the viscous term) is of the order of (ρUl)/η which is the Reynolds
number

Re = Ulρ/η = Ul/ν, (2.19)

where ν = η/ρ is the kinematic viscosity of the fluid.
The Reynolds number is a measure of the relative importance of the inertia with

respect to the viscosity and it determines the flow regime. When inertia dominates,
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2.3 The Boltzmann equation

i.e. when the Reynolds number is large, we observe turbulence phenomena, which are
outside the scope of this thesis. On the other hand, when the viscous terms dominates,
and inertia is negligible, we are in the creeping flow regime. In this regime, the equation
of motion becomes linear in the velocity and the hydrodynamic interaction becomes
very strong. For colloids, the typical length scales (l ∼ 10−6m), velocities (U ∼
10−3ms−1) and viscosities (ν ∼ 10−6m2 s−1) are such that the Reynolds number is
extremely low (Re ∼ 10−3), especially if one considers that the threshold for turbulence
is a Reynolds number of O(102–103).

Because this thesis regards largely colloidal systems, I only consider low Reynolds
number flows where the term in the left hand side of Eq. (2.17) is negligible, and the
steady-state Navier-Stokes equation simplifies to the Stokes equation

−∇p+ η∇2v + Fext = 0, (2.20)

plus the usual incompressibility condition ∇ · v = 0.

2.3 The Boltzmann equation

In the course of my education, I have been taught about the “dogma” of the atomistic
theories in a way that led me to believe that this has never been under discussion,
more or less since Democritus (excluding the weird and obscure era called the middle
ages...). I was therefore much surprised to learn that most of Boltzmann’s work was
fiercely opposed by his contemporaries (just over one century ago!), even though people
who studied Boltzmann’s life acknowledge that his opponents were also a great source
of motivation [5]. In devising his theory, Boltzmann wanted to clarify some important
aspects of the second law of thermodynamics. Specifically he was concerned about the
contradiction between the irreversibility implied by the second law of thermodynamics
and the reversibility of the microscopic equation of motion of the small particles. While
the authors of energetics solved this paradox by abandoning altogether the idea of
atoms, Boltzmann developed a new statistical theory which showed that the second
law of thermodynamics is valid only in a statistical sense. In order to achieve his goal,
he donated to posterity his two masterpieces: the Boltzmann equation and the H-
theorem. Far from hoping to give a rigorous or exhaustive description of Boltzmann’s
work, in this section I will pinpoint some aspects of the Boltzmann kinetic theory which
have recently been exploited by the scientists who developed the lattice-Boltzmann
method.

2.3.1 Basics of kinetic theories

Kinetic theories study the collective motion of a gas composed of a large number of
molecules. Microscopically, each of them follows the classical equations of motion

dxi
dt = pi

m
dpi
dt = Fi

, (2.21)
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2 Hydrodynamics and the lattice-Boltzmann method

(where i indexes the ith molecule and m is the mass of the molecules). Because it
is hopeless to solve Eqs. (2.21) for a number of molecules anywhere near to a real-
istic system, in kinetic theories this microscopic description is abandoned in favor of
a statistical description of the system, and the main observable becomes the proba-
bility density f(x,p, t) of finding a molecule around position x, at time t, and with
momentum p. The equilibrium state is defined by the probability density fe which is,
by definition, unchanged by the collisions among the molecules, i.e.(

dfe

dt

)
coll

= 0. (2.22)

By means of an elegant reasoning, Maxwell was able to show that the distribution
function

fe =
ρ

m

(
m

2πkBT

) 3
2

exp
(
− mv2

2kBT

)
(2.23)

is a collisional invariant [in Eq. (2.23) v is the molecules speed, ρ is the fluid density,
and kB the Boltzmann constant]. However, Maxwell did not say how the distribution
function f approaches the equilibrium condition. Boltzmann accomplished this mis-
sion by establishing the equation that bears his name. The molecules considered by
Boltzmann are point sized and stream freely for most of the time, while occasionally
undergoing instantaneous, binary collisions that drive them toward an equilibrium
state. This mechanism is expressed concisely by the Boltzmann equation[

∂

∂t
+ v · ∇

]
f(x,v, t) =

(
df
dt

)
coll

. (2.24)

With the assumption that the distribution functions of two molecules undergoing
a collision are independent from each other, Boltzmann was able to show that the
Maxwell–Boltzmann distribution, Eq. (2.23), is a steady solution of his equation. Fur-
thermore, with his famous H-theorem

H(t) = −
∫

f ln f dvdx (2.25)

dH
dt
≥ 0, (2.26)

he proved that any initial distribution decays to the Maxwell–Boltzmann form.
The link of this kinetic theory to fluid dynamics is readily obtained. The hydrody-

namic fields as density, momentum, and momentum flux are simply moments of the
distribution function

ρ (x, t) =
∫
mf(x,v, t)dv

j (x, t) ≡ ρ (x, t) v (x, t) =
∫

(mv) f(x,v, t)dv (2.27)

Π (x, t) =
∫

(mvv) f(x,v, t)dv.
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2.4 Lattice Boltzmann equation

Because mass, and momentum are collisionally invariant, by making use of Eq. (2.24),
we can show that the equilibrium hydrodynamic fields follow the equations

∂ρe

∂t
+∇ · (ρeve) = 0 (2.28)

∂ (ρeve)
∂t

+∇ ·Πe = 0

The equilibrium part of the momentum flux tensor is, by using Eq. (2.23)

Πe =
ρkBT

m
I + ρvv, (2.29)

which, for an ideal gas where p = ρkBT/m, is equivalent to the Eulerian form of the
momentum-flux tensor. Therefore, Eqs. (2.28) are the Euler equation of hydrodynam-
ics for an ideal, incompressible, isothermal fluid as we showed in Section 2.2.

The non-equilibrium part of the momentum flux

Πneq = −ρkBTτ
m

[
∇v +∇v

t
]
, (2.30)

corresponds to the irreversible loss of momentum given by the Newton law [Eq. (2.13)]
with the shear viscosity given by η = (ρkBTτ)/m [in Eq. (2.9) the bars indicates that
the operators are made traceless and the “t” the transpose matrix].

2.4 Lattice Boltzmann equation

After having sketched the basics of the kinetic theory of Boltzmann, I will show how
a similar approach has been developed for a lattice system. Initially, the reason for
developing a lattice kinetic theory was that, because the continuum distribution func-
tion contains much more information than “only” hydrodynamics, it was hoped that
the lattice counterpart of the Boltzmann equation would suffice to keep the hydrody-
namic properties at a macroscopic level, while being much cheaper to solve numeri-
cally. While this ambitious program has mostly been abandoned, the lattice Boltz-
mann equation proved to be extremely relevant for the study of low-Reynolds-number
hydrodynamics in complex geometries.

In the lattice Boltzmann equation [6, 7, 8], the distribution function f(x,v, t)
is substituted by a discrete version f(r, ci, t), usually written in the compact form
fi(r, t), which is the probability density of finding a particle at position r, at time
t, and with velocity ci. Here r, ci, and t are discrete, while fi(r, t) is continuous.
The time evolution of the distribution function fi is given by the lattice Boltzmann
equation, which is written in analogy with Eq. (2.24) as

fi(r + ci, t+ 1) = fi(r, t) + ∆i(n) (2.31)

where ∆i is the change in fi due to the instantaneous collisions.
Following the analogy with the continuum kinetic theories, one needs to specify

the form of the collision operator ∆i, which will in turn specify the equilibrium dis-
tribution function fe(r, t). By definition, the equilibrium distribution function is the
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2 Hydrodynamics and the lattice-Boltzmann method

distribution which is left unchanged by the collision operator, i.e. ∆i(fe) = 0. With
his equation, Boltzmann showed that the equilibrium distribution is also the most
probable one. Unfortunately, for the discrete Boltzmann equation, the most probable
distribution function does not obey the Euler equation for hydrodynamics [9], mainly
because it does not satisfy all the symmetry requirements. Hence, in order to recover
hydrodynamic behavior at long times and large length scales, a completely different
procedure is necessary.

Because we cannot use the most probable distribution density, we are forced to
construct an approximate equilibrium distribution function. In the lattice Boltzmann
method, such an approximate equilibrium distribution is expressed as a series expan-
sion in powers of the flow velocity u

fei = ρ
[
ai0 + ai1u · ci + ai2uu : cici + ai3u2

]
, (2.32)

where uu = [uu−(1/3)u2I] is the traceless part of uu. Then, the coefficients are fixed
by imposing that the hydrodynamic fields mass, momentum, and the equilibrium part
of the stress tensor are moments of the equilibrium distribution function:

ρ (r, t) =
∑
i

fei (r, t)

j (r, t) =
∑
i

fei (r, t)ci (2.33)

Πe (r, t) ≡ pI + ρuu =
∑
i

fei (r, t)cici.

These constraints may seem superfluous, because by definition the hydrodynamic fields
are collisionally invariant, hence they should automatically be only functions of the
equilibrium distribution function. However, the reader should not forget that our
equilibrium distribution is obtained as a series expansion and is therefore an approx-
imate one. In reality, by determining the coefficients of the expansion by imposing
Eqs. (2.33), we make sure that the first moments of the equilibrium distribution density
satisfy the Euler equations for an inviscid fluid.

Having fixed the functional form of the equilibrium distribution fei , we need to
define the collision operator ∆i. In the following, I will refer to the enhanced collision
operator first defined by Higuera et. al. [10, 7, 11] and later modified by Ladd [8].
Higuera et al. noted that if one is only interested in the Navier–Stokes equation at the
hydrodynamic scale, the collision operator could be made very simple. Specifically,
the collision operator can be constructed by linearizing about the local equilibrium

∆i(f) = ∆i(fe) +
∑
i

Lij
(
fj − fej

)
. (2.34)

Because, by definition, ∆i(fe) = 0, we need to determine only the linear operator
Lij . It is remarkable that on a lattice this task can be performed analytically based
solely on general symmetry considerations [7]. One way to obtain Lij is via the
spectral decomposition, i.e. by decomposing it as Lij =

∑
k λkPkij , where Pkij are

the projector operators along the eigenvectors Eki , and λk are their corresponding
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2.4 Lattice Boltzmann equation

eigenvalues. Another, equivalent, way of determining Lij is by directly imposing the
conservation laws. The linear collision operator has to conserve the collision invariant
quantities, i.e. it should satisfy ∆i(ρ) = 0, and ∆i(ρu) = 0; in addition the stress
tensor has to decay isotropically. These conditions translates directly into the following
eigenvalues equations ∑

i

Lij = 0∑
i

ciLij = 0∑
i

ciciLij = λcjcj (2.35)∑
i

c2iLij = λBc
2
j .

These equations, while making sure that the linear collision operator satisfy all the con-
servation relations required for hydrodynamic behavior of the systems, fix 10 eigenval-
ues. The remaining 8 eigenvalues, because they do not relate to physical observables,
correspond to artificial conservation laws. Therefore, to ensure the fastest possible
decay of these spurious modes, these eigenvalues are set to −1.

In summary, to solve the lattice Boltzmann equation Eq. (2.31), which we rewrite
here

fi(r + ci, t+ 1)− fi(r, t) = ∆i(n), (2.36)

we perform a two step procedure. The first one is the collisionless streaming

fi(r + ci, t+ 1)− fi(r, t) = 0, (2.37)

which corresponds to the Liouville operator in the continuum limit. In practice,
Eq. (2.37) is a simple propagation step where each density distribution fi is moved to
the site correspondent with the discrete velocity ci. The second step is the collision
step that relaxes the non-equilibrium part of the distribution density (the equilibrium
distribution function is collisionally invariant). After the collision has taken place,
we obtain the after collision distributions f ′i = fi + ∆i(f). In principle, the post-
collision distribution functions f ′i are computed by applying the collision operator Lij
as prescribed by Eq. (2.34). However, because we know the exact form of the collision
operator (through its spectral decomposition), the simulation algorithm can be writ-
ten directly in terms of the moments of the density distribution, ρ, j, Πe, and the full
Π.

The post collision momentum flux tensor Π
′

can be computed according to [8]

Π
′

αβ = Πeq
αβ + (1 + λ)

(
Παβ −Π

eq

αβ

)
+

1
3

(1 + λB)
(
Πγγ −Πeq

γγ

)
δαβ , (2.38)

and the post collision distribution functions are

fi + ∆i(f) = ρ
[
ai0 + ai1uα · ciα + ai2Π

′

αβ : ciαciβ + ai3u2
(

Π
′

αα − 3ρc2s
)]
. (2.39)
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2 Hydrodynamics and the lattice-Boltzmann method

By performing a multi-time-scale analysis [9], the shear viscosity of the fluid can be
expressed in terms of the eigenvalue λ

η = −1
6
ρ

(
2
λ

+ 1
)
. (2.40)

By tuning the eigenvalue λ, we can change the shear viscosity of the fluid (within
limits set by convergence). The eigenvalue λB is irrelevant for an incompressible fluid
and can be safely set to −1[8].

2.4.1 Simplification for low Reynolds number

For low-Reynolds flows, the steady state Navier-Stokes equation (2.15) simplifies to
the Stokes equation [Eq. (2.20), and ∇ ·v = 0]. One way of solving these steady-state
equations, is by computing the steady state of the linearized Navier-Stokes equations

∂tρ = −∇ · (ρu) ,
∂t (ρu) = −∇p+ η∇2u + Fext. (2.41)

Ladd [8] shows that in order to fulfill the conservation laws implicit in Eqs. (2.41), it
is sufficient to use a simpler form for the equilibrium distribution function

fei = ρ
[
ai0 + ai1u · ci

]
. (2.42)

Moreover, by fixing λ = −1, corresponding to a shear viscosity η = ρ/6 [cf. Eq. (2.40)],
the simulation algorithm is greatly simplified and the post collision distribution density
is simply

fi + ∆i(f) = ρ
[
ai0 + ai1uα · ciα

]
. (2.43)

2.4.2 Bounce-back rule for a suspension of colloids

To have interesting flows at low Reynolds number, macroscopic objects must interact
with the fluid. These macroscopic objects will act on the fluid as a boundary condition
which will exchange momentum with the fluid, thus creating non-trivial flow patterns.
At contact with the macroscopic objects, the appropriate boundary conditions have to
be imposed, typically the non-slip boundary condition, where the fluid has the same
velocity of the macroscopic particle.

In the lattice Boltzmann method, the first issue that needs to be addressed is how to
map a continuum object (a wall or a colloid for example) on a lattice. Ladd [8] showed
that placing these boundary nodes in the middle of the links connecting the interior
of the object with the exterior region provides a useful recipe that obeys momentum
conservation and best lattice resolution of the macroscopic object; without introducing
involved and expensive more precise second- or higher-order schemes. Figure 2.1 shows
a cartoon of the mapping procedure of an arbitrarily shaped object placed on a two
dimensional lattice. At the boundary nodes the so-called bounce-back procedure is
applied [8]. This procedure prescribes that, during the propagation step (at half a
time step), the incoming distributions fi are reflected back. Specifically, if i and i′
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2.4 Lattice Boltzmann equation

Figure 2.1: Mapping procedure. First, one draw on top of the lattice nodes (light gray spheres)
the actual shape of the macro particle (continuum black line). Then one should identify all
the links connecting an internal node with an external one (dashed light gray line). The lattice
representation of the macroscopic particle will be given by the collection of the midpoints of
the identified links (black squares).

t

t+1

Figure 2.2: Bounce back rule.

refer to oppositely directed velocities, and, at site r, the link along the velocity ci is a
boundary link, the following rules apply [See Fig. (2.2)]

fi′(r, t+ 1) = fi(r, t),
fi(r + ci, t+ 1) = fi′(r + ci, t). (2.44)

This procedure is correct if the macroscopic obstacle is at rest and acts as a momentum
sink as, for example, a wall or a porous medium.

If, on the other hand, the obstacle is in motion, one has first to compute the velocity
of the solid body located at the link ul, which is given by the well known formula for

15



2 Hydrodynamics and the lattice-Boltzmann method

the velocity of a point of a rigid body

ul = U + Ω×
(

r +
1
2
ci −R

)
, (2.45)

where R is the center of mass of the solid body and U and Ω are the solid-body
velocity and angular velocity, respectively. In this case, Eqs. (2.44) must include the
momentum exchange with the particle

fi′(r, t+ 1) = fi(r, t)− 2ai1ρub · ci,
fi(r + ci, t+ 1) = fi′(r + ci, t) + 2ai1ρub · ci. (2.46)

The sum of all the moment exchanged with the fluid should be applied back to the
suspended particle, to ensure overall momentum conservation.

Note that Eqs. (2.46) imply that the lattice nodes inside the particle have the same
property as the external region. In particular the fluid should be placed also inside the
colloid. Moreover, the bounce-back rule allows for a leakage of mass density in and
out of the macroscopic particle. Although these may seem weird conditions, for simple
fluids the transport coefficients of the suspended colloids are correct, provided that one
takes care of the few spurious correlations in, for example, the velocity autocorrelation
function induced by the internal fluid [12, 13].

However, this behavior is not acceptable when there is a difference in the composi-
tion of the interior of the particle and its environment. An example of most relevance
for this thesis is a charged colloid, which attracts a cloud of oppositely charged ions.
Eqs. (2.46), would lead to an unphysical change in the charge of the colloid driven by
momentum exchanges. If one wants to deal with such systems, one should eliminate
this spurious effect. In this thesis, we exploited as much as possible the Galilean in-
variance of the systems. This allowed us to use a reference system fixed on the colloid,
and keep the charged object at rest, thus avoiding this complication.

2.4.3 Lattice Boltzmann method in a nutshell

After this brief introduction of the theoretical basis of the lattice Boltzmann method,
I will show how the computer simulation is implemented.

First of all, one must choose the underlying lattice, which must fulfill symme-
try constraints. Useful lists of lattices are given by Qian [14] and Frisch et al. [9].
Throughout this thesis I used the so-called D3Q18 lattice [15, 8], where the “3” refers
to the dimensionality and the “18” to the number of links per site, and which is defined
by the following set of discrete 18 velocities {ci},

c1,2 = (±1, 0, 0), c3,4 = (0,±1, 0), c5,6 = (0, 0,±1),
c7,...,10 = (±1,±1, 0), c11,...,14 = (±1, 0,±1), c15,.,18 = (0,±1,±1). (2.47)

In Equations (2.47) 6 velocities have speed ci ≡ |ci| = 1, and 12 have speed ci =√
2. The six velocities of speed 1 are counted twice; an inheritance from the four

dimensional face-centered hyper-cubic lattice (FCHC), from which, by a projection
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2.4 Lattice Boltzmann equation

onto 3D, the D3Q18 is generated [15]. Another widely used lattice in three dimensions
is the D3Q19 which adds an extra distribution density fi with speed 0 and velocity
c19 = (0, 0, 0). Depending upon the specific system under study, there are also other
useful lattices with different sets of velocities.

Next, one should specify the form of the equilibrium distribution and of the collision
operator and compute the coefficients of its expansion in the flow velocity u. Because
I exclusively considered low Reynolds number flows, I could use the simplified form
[Eq. (2.42)]. For the D3Q18 lattice, the coefficients of the expansion are

ai0 = 1
12 , ai1 = 1

6 , i = 1, .., 6
ai0 = 1

24 , ai1 = 1
12 , i = 7, .., 18 (2.48)

Equations (2.48) implies a sound speed c2s = 1/2, which is a suitable value to ensure
stability of the simulation.

We are left with the last step in the preparation of the computer simulation, namely
the mapping of the colloid(s) onto the lattice, by identifying all the links which connect
the interior of the colloids with the exterior. Along these links, during the propagation
step the bounce-back rule will be applied (see Figs. 2.1 and 2.2).

Now, everything is ready to start the time evolution of the lattice-Boltzmann sim-
ulation which will lead to the steady state of Eq. (2.41). The algorithm of a lattice
Boltzmann simulation is divided in three steps: computation of the post-collision dis-
tribution densities f ′i s [for low Re by means of Eq. (2.43)], their propagation with
the application of the bounce back rule, and the re-computation of the hydrodynamic
fields (at low Re and shear viscosity 1/6 only ρ and u are needed).

After all this work, one should have a basic (hopefully) working lattice Boltzmann
method.
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3 Introduction to electrokinetics

3.1 The Poisson–Boltzmann equation and the electric
double layer

Consider an electrolyte composed of k species of positive and negative ions dissolved
in a neutral fluid. The ions create an electric field E(r) = −∇Φ(r), where Φ(r) is the
electrostatic potential which, if we denote by q(r) the charge density due to the ions,
can be computed using the Poisson equation

∇2Φ(r) = −4πq(r)
ε

, (3.1)

where ε is the dielectric constant of the (overall) neutral medium. If the electrostatic
potential is not constant, the ions of species k are subject to the electrostatic force
F = zkeE, where zk is their valency (with charge sign) and e is the elementary charge.
The effect of this electric force is counteracted by the thermal motion of the ions.
A convenient way [16, 17, 18, 19, 20], [21, 22] to take the thermal equilibrium into
account is to write the equilibrium distribution density of the ions as a Boltzmann
equilibrium (which implies point sized ions)

nk(r) = n0 exp(−zkeΦ(r)/kBT ). (3.2)

For specificity, let us consider a two species system. The charge density is then ex-
pressed in terms of the probability distributions of the two species

q(r) = e (z+n+(r) + z−n−(r)) . (3.3)

In order to obtain a closed expression for the electrostatic potential, we can substitute
Eq. (3.3) into Eq. (3.1) to get

∇2Φ(r) = −4πe
ε

(z+n+(r) + z−n−(r)) . (3.4)

Finally, let us substitute Eq. (3.2) into Eq. (3.4) to obtain the so-called Poisson Boltz-
mann equation (PB) which, for a symmetric electrolyte (i.e. z+ = −z− = z), reads

∇2Φ(r) =
8πezn0

ε
sinh (ezΦ(r)/kBT ) . (3.5)

Unfortunately, solutions for this non-linear equation are only available for very simple
geometries. However, if the electric potential is small, in other words if eΦ(r)/kBT �
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3 Introduction to electrokinetics

1, the approximation exp(±zeΦ(r)/kBT ) ' 1 ± zeΦ(r)/kBT holds, and Eq. (3.5) is
simplified by the linearized Poisson-Boltzmann equation (LPB)

∇2Φ(r) =
8πe2z2n0

εkBT
Φ(r) = κ2Φ(r), (3.6)

which can be solved analytically for many interesting geometries. In Equation (3.6),
note that κ =

√
8πe2z2n0/εkBT has the dimension of an inverse length.

Let us now introduce a charged macroscopic particle in the electrolyte. The equi-
librium density of microions in solution will still be given by Eq. (3.5), where now the
macroscopic particle enters via a boundary condition for the electrostatic potential
Φ(r). This equation, again, cannot be solved in general. Hence, to make it tractable,
one must restrict the study to the case of small surface potentials (in other words, to
weakly charged particles), in which the linearized Poisson-Boltzmann equation (3.6)
provides a reasonable approximation. For simplicity, let us consider the case of a
spherical macroscopic particle.

Intuitively, the like-charged microions (in the remainder coions) will be repelled,
while the oppositely charged microions (counterions) will be attracted toward the
sphere. While the electrostatic interaction favors an infinitesimally thin layer of coun-
terions, which will immediately screen the charge of the sphere, entropy will prevent
the counterions from condensing on the sphere. As a balance of the two forces, one
could expect a cloud of counterions surrounding the sphere until the charge of the
sphere is fully screened. Far beyond this length, called the Debye screening length,
the sphere appears neutral. The layer of microions is usually referred to as the electric
double layer (EDL). It is the presence of inhomogeneity and EDL that causes the dis-
tinctive electrostatic and hydrodynamic effects called electrokinetic phenomena, which
I will briefly introduce below. For a rigorous description of the equilibrium distribution
of the microions in terms of their free energy, I refer the reader to the book of Verwey
and Overbeek [21].

Quantitative predictions for the co- and counterion equilibrium-density-distributions
are given by the Debye-Hückel theory [19, 20]. In their theory, Debye and Hückel as-
sume that the electrostatic potential is much smaller than kBT . Hence, instead of
the full Poisson-Boltzmann equation, they use the approximate linearized Poisson-
Boltzmann equation (3.6) for computing the electrostatic potential and, via Eq. (3.2),
the co- and counterions equilibrium distributions.

For a sphere of radius a, Eq. (3.6) can be easily solved to give the Yukawa potential

Φ(r) = Φ0
a

r
e−κ(r−a), (3.7)

where r originates at the sphere center and Φo = Φ(0) is the electrostatic potential
at contact with the sphere. By substituting the Yukawa potential into the linearized
version of Eq. (3.2), the concentrations of co- and counterions are, respectively,

n+(r) = n0

(
1− ezΦ0

kBT
a
r e
−κ(r−a)

)
n−(r) = n0

(
1 + ezΦ0

kBT
a
r e
−κ(r−a)

)
.

(3.8)
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The counterion cloud in the vicinity of the charged sphere decays faster than expo-
nentially over a distance of the order of λD = κ−1, the Debye screening length. The
coions, on the other hand, are expelled from the vicinity of the sphere and reach the
bulk value with the same functional dependence. The symmetry of co- and counterions
with respect to the bulk concentration [showed by Eq. (3.8)] is a typical signature of
the validity of the Debye-Hückel approximation. The electrostatic potential at contact
Φ0 is usually named the zeta potential ζ. In electrokinetic phenomena, the relevant
parameter is the relative size of the macroscopic particle to the extension of the EDL.
Therefore, the Debye screening length λD is the appropriate unit of length, and the
electrokinetic phenomena are conveniently described in terms of the dimensionless
length κa.

In this description of the diffuse layer, I disregarded the so-called Stern layer [23,
24]. However, because this layer is thought to be inside the non-slip region of the
fluid [23, 24], it is believed that it does not influence the hydrodynamic interactions
with the fluid. It is possible to consider this layer as part of the sphere and model the
system simply as an effective sphere plus an electric diffuse layer. Throughout this
thesis I shall not consider the effect of a dynamic Stern layer, i.e. a Stern layer whose
counterions are not glued on the particle surface but are free to move.

3.2 Electrokinetic phenomena

The term “Electrokinetic phenomena” refers to all phenomena in which the EDL is dis-
torted from its equilibrium position via an external force, of electrical or other origin.
Because of this distortion, the EDL reacts and consequently induces a relative motion
between the suspended particles and the fluid. Many electrokinetic phenomena have
been reported in the literature, but they can be grouped into two categories depending
upon the nature of the perturbing force. On the one hand we have electrophoresis,
where the macroscopic charged particle and its EDL are displaced by means of an
electric field—here the specific particle velocity is due to the balance between the di-
rect electrostatic interaction and the hydrodynamic friction, plus the counter-reaction
of the EDL, which has the opposite charge. On the other hand, in a sedimenting
sample, the driving force is gravitational and, because of the relative motion between
the particles and the electrolyte, a local electric field is generated. The so-called sed-
imentation potential is the experimentally measured electrostatic potential difference
between the top and the bottom of a sedimenting sample.

In both cases, the macroparticles move. If, instead, the macroscopic objects are
fixed, as, for example walls, slits, or a fixed obstacles, there are two equivalent elec-
trokinetic phenomena. If an electric field is applied to, for example, a charged slit
containing an electrolyte, the fluid will start moving generating a quasi plug flow. Al-
though this phenomenon is called electro-osmosis, the physics is essentially the same
as in electrophoresis due to Galilean invariance. If, instead, we displace the electrolyte
in a charged porous medium by means of (for example) a pressure gradient, we will
measure an electrostatic potential difference between the two sides, called the “stream-
ing potential”. Again, a second of thought will show the equivalence of this potential
with the sedimentation potential.
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For more details I refer the reader to the vast literature present; for a general
introduction see, for example, [3, 25, 2], for a mascript focused on colloidal suspensions
see [23, 26], and for a nice recent review of the recent achievements see [24].

3.2.1 Onsager relation

In the previous section, I divided the electrokinetic phenomena into two categories.
As the careful reader already suspects, there is a close relation also among the two
basic electrokinetic phenomena. In one case, we displace the (overall neutral) fluid
by means of an electric field; in the other, we generate an electrostatic potential by
displacing particles (which together with the EDL are, again, neutral). This symmetry
finds its formalization in an Onsager relation. For charged particles, the mass current
JM is generated by two mechanisms: a force G which acts onto the particles because
they have a mass, and the electrostatic forces E that displace mass because particles
posses charge. Conversely, the electric current Je is generated by the action of a
direct, electrostatic, force plus a non electrostatic force that, by displacing the charged
particles, also contributes to the electric current. More formally

JM = AG+LgeE
Je = BE + LegG, (3.9)

where A, B, and Lge and Leg are the relevant transport coefficients. The symmetry
of the electrokinetic phenomena is formalized by the equality Leg = Lge.

3.2.2 Sedimentation velocity

Below, I briefly review the classical theories for sedimentation and electrophoresis.
In a sedimentation experiment, charged colloids sediment under the influence of the
gravitational force. The sedimentation velocity of a charged sphere (for example) is
slightly less than that of a neutral one of the same size and weight because, while sed-
imenting, a charged sphere has to drag the (distorted) electrical double layer along.
The amount of friction exerted by the EDL depends upon its spatial extension (mea-
sured by the dimensionless length κa, where a is the radius of the spheres) and upon
the total charge of the sphere. In the two limits κa→ 0, and κa→∞ the EDL exerts
no extra friction. In the first case, the EDL is extremely diffuse and, because in this
limit the Yukawa potential reduces to a constant, the electrostatic potential exerts no
force. In the second case, the layer is so thin and so close to the colloid that the no-slip
boundary condition prevents any force generation. For intermediate values of κa the
EDL, distorted by the flow field near the particle, will try to restore its equilibrium
shape. In doing so, the EDL exerts a force on the fluid which opposes the perturbing,
gravity, force; hence it will reduce the sedimentation velocity.

Booth [27] and later Ohshima [28] gave analytical formulae for the reduction of
the sedimentation velocity U(Z)/U0 in the limit of a single weakly-charged spherical
colloid. In this limit, they predict that the sedimentation velocity, U0(Z) can be
expressed as

U0(Z)
U0

= 1− c2Z2, (3.10)
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where U0 is the sedimentation velocity of a neutral sphere, and c2 is a constant that
can be computed analytically in the Debye-Hückel limit. For monovalent co- and
counterions, i.e. when z+ = −z− = 1, which also have the same diffusivity, D+ =
D− = D, the expression for c2 is

c2 =
kBT lB

72πa2ηD
f(κa), (3.11)

where f(κa) is the following function

f(κa) =
1

1 + (κa)2

[
e2κa (3E4(κa)− 5E6(κa))2 + 8eκa (E3(κa)− E5(κa))

−e2κa (4E3(2κa) + 3E4(2κa)− 7E8(2κa))
]

(3.12)

of the integral functions

En(x) = xn−1

∫ ∞
x

dt t−n exp(−t). (3.13)

In the remainder of this thesis we repeatedly refer to this theory.

3.2.3 Electrophoresis

When charged spheres are immersed in an electrolytic solution in the presence of
an external electric field, they begin to move under the effect of the electrostatic
force. For a quantitative prediction of the translational velocity, one needs to explicitly
consider the combined effect of the electric double layer and of hydrodynamics. Again,
analytical formulae were obtained in the two limiting scenarios κa→ 0, and κa→∞.
As we already observed in the sedimentation case, for κa→ 0 the EDL does not couple
with the external electric field and the electrophoretic mobility is given by the ratio
of the electrostatic force QE (acting directly onto the particle) to the Stokes drag
ξ = 6πηa and to the driving electric field E. The electrophoretic mobility is then
simply

µe =
Q

6πηa
, (3.14)

which, in terms of the the zeta potential ζ (i.e. the electrostatic potential at contact)
reads:

µe =
2
3
ε

η
ζ. (3.15)

This result was first derived by Hückel in 1924 [29]. In 1903, von Smoluchowski
[30] showed that in the opposite limit, i.e. when κa→∞, the electrophoretic mobility
is increased by a factor 3/2

µe =
ε

η
ζ. (3.16)

Remarkably, the Smoluchowski result is valid regardless of the shape of the macroscopic
particle and it is used daily in hundreds of laboratories in the world for separating
many biologically relevant particles. Phenomenological descriptions of these results
can be found in text books and reviews [25, 31, 32].
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3.3 Electrokinetic equations

In order to provide the general framework for the description of electrolyte dynamics, I
first briefly review the dynamics of dilute mixtures—of which electrokinetic phenomena
are a sub set—on hydrodynamic length and time scales. As in all hydrodynamic
descriptions, the starting point of this discussion lies in the laws of conservation of
mass and momentum.

3.3.1 Mass conservation

Every species of the fluid mixture satisfies the usual mass conservation law:

∂ρk
∂t

+∇ · ρkvk = 0, (3.17)

where vk is the velocity and ρk the density distribution of the species labeled by k.
The total density, ρ =

∑
k ρk, is also conserved, and satisfies an equation analogous

to Eq. (3.17) with respect to the barycentric velocity ρv =
∑
k ρkvk, which describes

the evolution of a fluid element. If we refer the motion of all species to this common
velocity, then Eq. (3.17) can be expressed as

∂ρk
∂t

+∇ · ρkv = −∇ · jk, (3.18)

where I have introduced the relative current of species k, jk = ρk(vk − v), which
accounts for all dynamical effects arising from the mismatch in velocities between the
different species. For mixtures composed of molecular constituents at low Reynolds
number (as is usually the case in electrolytes), the inertial time scale is extremely
small; hence the relative current can be assumed proportional to a thermodynamic
driving force, which is proportional to the gradient of the chemical potential. As a
result, the relative current of species i becomes diffusive and can be expressed as [33]

jk = −
∑
k

Dikρk∇βµk, (3.19)

where β is 1/kBT , with kB the Boltzmann constant and T the temperature. βµk =
log ρk+βµexk is the chemical potential decomposed into an ideal and excess part, while
Dik corresponds to the diffusion coefficient that determines the flux of species i induced
by spatial variations in the chemical potential of species k. For the sake of simplicity,
I focus on the case where cross diffusion is neglected, and hence Dik = Diδik. By
substituting the chemical potential in Eq. (3.19), I express mass conservation in the
form of a set of convection-diffusion equations, expressing the two mechanisms that
control density evolution for each species,

∂ρk
∂t

+∇ · ρkv = ∇ ·Dk [∇ρk + ρk∇βµexk ] . (3.20)
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3.3 Electrokinetic equations

3.3.2 Momentum conservation

Next, let us consider momentum conservation. On the same length and time scales,
as I have already shown in Section 2.2.1, momentum conservation implies that the
barycentric velocity, for low Reynolds number flows, follows the linearized Navier-
Stokes equation,

∂

∂t
(ρv) = η∇2v−∇p+ Fext, (3.21)

where η is the shear fluid viscosity, while Fext is an external force density acting on
a fluid element. The effect of the interactions among the different species enters as a
net force acting on the fluid expressed as the gradient of the local pressure p. In the
presence of spatial gradients, the pressure has in general a tensorial character, and
can be derived from the free energy of the system. However, for ideal electrolytes, the
local pressure can always be expressed as a scalar. Hence, for the sake of simplicity,
we will consider this situation in what follows.

In general, the pressure gradient can be computed from the chemical potential as

β∇p =
∑
k

ρkβ∇µk =
∑
k

(∇ρk + ρkβ∇µexk ) (3.22)

and acts as a force. The first term of the pressure corresponds to the ideal-gas contribu-
tion, βpid =

∑
k ρk while the other two contain all the information of the interactions

among the fluid species. If there is one majority neutral component, which only con-
tributes to the ideal part of the pressure, then the excess component of the pressure
can be identified as the osmotic pressure of the mixture.

Using Eq. (3.22) for the pressure gradient, the Navier-Stokes equation reads

∂

∂t
(ρv) = η∇2v−∇pid −

∑
k

ρk∇µexk + Fext. (3.23)

3.3.3 Electrokinetic equations

The electrostatic equations can be computed as a special case of Eqs. (3.20) and (3.23)
by replacing µexk = zkeΦ, where zk is the valency of the charged species k, and Φ is
the electrostatic potential. The Smoluchowski equation (3.20) becomes

∂ρk
∂t

+∇ · ρkv = ∇ ·Dk [∇ρk + eβzkρk∇Φ] , (3.24)

while the Navier–Stokes equation (3.23) is

∂

∂t
(ρv) = η∇2v−∇pid −

∑
k

ezkρk∇Φ + Fext. (3.25)

We still need an additional equation that prescribes how the electrostatic potential is
related to the local charge density. Since transport processes associated to mass and
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3 Introduction to electrokinetics

momentum transfer in fluid mixtures are much slower than the propagation of elec-
tromagnetic waves, the electric field is completely determined by the Poisson equation

∇2Φ = −4πe
ε

[∑
k=±

zkρk + ρs

]
, (3.26)

where ρs is for the charge density of the solid surfaces and accounts for possible
confining walls or moving suspended particles in the electrolyte.
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4 Velocity fluctuations and dispersion
in a simple porous medium

Abstract

We model a fluid-filled disordered porous medium by a lattice-Boltzmann system with
randomly broken links. The broken links exert a friction on the fluid without excluding
volume. Such a model closely mimics the idealized picture of a porous medium, which
is often used in the theoretical analysis of hydrodynamic dispersion. We find that
the Brinkman equation describes both the mean flow characteristics and the spatial
decay of velocity fluctuations in the system. However, the temporal decay of the
velocity correlations (that a particle experiences as it moves with the fluid), cannot
be simply related to the spatial decay. It is this temporal decay that determines the
dispersivity. Thus, hydrodynamic dispersion is generally greater than theories based
on spatial correlations would imply. This is particularly true at high densities, where
such theories considerably underestimate both the magnitude and transient time scale
for dispersion. Nonetheless, temporal velocity correlations are still ultimately screened
and the hydrodynamic dispersion coefficient converges exponentially. The long-lived
transients reported for more realistic systems must therefore be due explicitly to the
presence of excluded volume.

4.1 Introduction

When a tracer particle is introduced into a stationary fluid, it will be dispersed by
Brownian motion. The dispersion can be characterized by the mean of the squared dis-
placement in a given direction, ∆x2. From the Einstein definition of the self-diffusion
coefficient D0, this increases linearly with time, the constant of proportionality being
twice D0, 〈

∆x2(t)
〉

= 2D0t (4.1)

For a stationary fluid filling the voids in a (nonadsorbing) porous medium, the motion
of the tracer particles is hindered by the medium and the diffusion coefficient of the
tracer particles is reduced relative to D0. If, on the other hand, the fluid flows through
the porous medium with a mean velocity V , then the dispersion of tracer particles (now
defined by the variance in their displacements) increases and can become very large
compared to 2D0t at a given time. The origin of this “hydrodynamic” dispersion lies
in the fact that, even in the absence of Brownian motion, different particles experi-
ence different local flow velocities and are, therefore, transported by convection over
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4 Velocity fluctuations and dispersion in a simple porous medium

different distances in a given time t. Quantitatively, the dispersion coefficient D is
related to the time integral of the time correlation function of the velocity fluctuations
experienced by tracer particles:

D =
∫ ∞

0

〈
[
vi(0)− V

] [
vi(t)− V

]
〉dt (4.2)

where vi(t) is the instantaneous velocity of a particle along the flow direction as it
moves through the fluid. Note that we follow convention here and refer to the diffusion
coefficient for the equilibrium case (where there is no flow), and to the dispersion
coefficient for the non equilibrium case (where the fluid flows). The relative importance
of this convective dispersion, relative to simple diffusion, can be characterized by the
Peclet number Pe. It is defined as Pe = U∗l∗/D0, where U∗ is a characteristic
velocity and l∗ is a characteristic length. The obvious choice for the characteristic
velocity U∗ is the mean velocity of the fluid V . At high Peclet numbers, tracer
transport over distances larger than l∗ is dominated by convection, and dispersion
is therefore dominated by the spatial fluctuations in fluid velocity. Conversely, at low
Peclet numbers, the convective contribution is small and simple diffusion dominates

In order to understand hydrodynamic dispersion, we need an idea of how fluid
flows in porous media. If the fluid is Newtonian, then the steady-state velocity fields
v will be solutions of the time-independent Navier-Stokes equations

−∇p+ η∇2v + F = 0 (4.3)
∇ · v = 0.

that satisfy stick boundary conditions at the solid/fluid interface. Here p is pressure, F
is any external forces acting on the fluid, and η is the viscosity. We have also assumed
that inertia is negligible (the flow is at low Reynolds number). The relation between
the steady-state flow velocity and the applied pressure gradient is then given by the
Darcy’s law,

V = −κ
η
∇p, (4.4)

where κ is a constant (the permeability) that depends only on the properties of the
porous medium, not on those of the fluid. Equation (4.4) is a first-order equation while
Eqs. (4.3) are second-order equations. It is therefore impossible to formulate rational
boundary conditions between the two. In 1947 Brinkman proposed an equation to
describe the locally averaged flow in a porous media that is, the flow on a scale large
compared to any local inhomogeneity in the medium [34]. The Brinkman equation
considers the balance of forces acting on a volume element of fluid, i.e., the pressure
gradient, the divergence of the viscous stress tensor, and the friction force exerted by
the porous medium:

η∇2v −∇p− η

κ
v = 0. (4.5)

The crucial assumption is that the external force in the Navier-Stokes equation
[Eq. (4.3)] can be replaced by the force term in Darcy’s law [Eq. (4.4)]. This sub-
stitution is only justified if the porous medium occupies a vanishingly small fraction of
space. In that case one may consider the porous medium as a continuum that exerts a
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4.1 Introduction

friction on the fluid at every point. In spite of the approximate nature of the Brinkman
equation, it has proved to be an extremely useful tool for modeling flow in spatially
inhomogeneous porous media [35, 36].

Of most relevance to us here is the use of the Brinkman equation to describe not
average flow velocities, but the spatial decay of fluctuations in the flow velocity. It
is clear from Eq. (4.2) that it is these fluctuations that play the crucial role in deter-
mining the dispersion coefficient. Indeed, if Brownian motion can be neglected, the
particle velocity vi(t) appearing in Eq. (4.2) is simply the instantaneous velocity of a
particle as it convects along a streamline. This we refer to as the Lagrangian velocity
correlation function Cv(t). This concept was utilized by Koch and Brady [37] in their
theoretical analysis of dispersion in random media composed of randomly distributed
fixed particles. Notably, they made use of the fact that a velocity fluctuation gener-
ated by one of the fixed points making up the porous medium will, according to the
Brinkman theory, decay in space on a length scale set by the Brinkman length λ .
The Brinkman length is the square root of the permeability. If the particles making
up the medium have no spatial extension (they are simply points in the fluid exerting
friction), the decay is exponential. If they do have a spatial extension, in the sense
that stick boundary conditions apply on the surface, the decay is slower, going with
distance r as 1/r3 [38]. On the other hand, if the presence of the porous medium
is neglected, the Brinkman equation reduces to the usual Navier-Stokes equation for
which a velocity perturbation decays as 1/r. This leads to an unbounded integral
for the dispersion coefficient, implying that the dispersion coefficient diverges; that is,
it would always depend on the system size. The hydrodynamic screening predicted
by the Brinkman equation thus plays a crucial role in determining the dispersion co-
efficient. A similar effect occurs in sedimentation, where velocity fluctuations in an
unbounded system diverge [39]. In this case, it is the presence of container walls that
is crucial in providing the necessary screening [40].

The question we want to address here is how well this picture, central to the theory
of Koch and Brady [37], describes hydrodynamic dispersion. One reason for doing so
is that numerical simulations of dispersion in packed beds of spheres, reported in
Ref. [41], suggested that the dispersion coefficient was still increasing on time scales
where the theory suggested it should have already converged. This raised the question:
Is this the asymptotic behavior? For realistic packed beds of spheres Koch et al. [42]
showed that the screening picture describes the decay of the velocity fluctuations
reasonably well. Dorlosfky and Brady [43] arrived at the same conclusion. There are
nonetheless two complications with this “realistic” system. First, as noted above, the
Brinkman screening is less dramatic (going from a 1/r decay to 1/r3) for spatially
extended particles than is the case for points (from 1/r, to exponential). Second, the
presence of an explicit solid/fluid interface, where the flow velocity goes to zero, means
that there is a region close to the surface that the tracer particles must always enter and
leave by diffusion. Koch and Brady suggest that the presence of this diffusive boundary
layer means that the dispersion coefficient reaches its asymptotic value on time scales
much longer than would otherwise be expected. This could also be responsible for
the behavior observed in Ref. [41]. In this chapter we, therefore, consider a simple
model system where both these complications are absent; that is, following in the
spirit of the theory, we consider a porous medium composed of fixed points that exert
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4 Velocity fluctuations and dispersion in a simple porous medium

friction but have no spatial extension. Indeed, the analysis of such a system gives one
contribution to the overall dispersion coefficient in the expression derived for a packed
bed [37]. It is regarded as the contribution to the dispersion coefficient due to the
velocity perturbation at distances far from the fixed particle. Specifically, this purely
convective term, Dc, makes a contribution to the total dispersion coefficient

Dc =
V

8πρλ2
, (4.6)

where ρ is the number density of the fixed points. For the work we describe here, we will
ignore Brownian motion and concentrate solely on the decay of velocity fluctuations
due to convection. In that case, we have D = Dc. While the model may seem of
somewhat academic interest, there are important examples of hydrodynamic dispersion
in dilute systems for which the model could be reasonably applied. Dispersion in flow
through polymer networks would be an example.

4.2 Description of the model

To simulate fluid flow in our model porous media, we employed the D3Q18 lattice-
Boltzmann (LB) method, introduced in Chapter 2. Here we recapitulate only the
basics. The quantity we calculate in the LB method is the discretized one-particle
velocity distribution function fi(r, t), which is the probability that a particle at lattice
site r at time t has a velocity ci. For the calculation that we performed, we needed
the density ρ(r) and momentum density j(r), which are moments of this distribution
function

ρ(r, t) =
∑
i

fi(r, t), (4.7)

j(r, t) =
∑
i

cifi(r, t), (4.8)

where i sums over all possible velocities ci. The time evolution of the distribution
function is described by the discretized analog of the Boltzmann equation [8]:

fi(r + ci, t+ 1) = fi(r, t) + ∆i(r, t), (4.9)

where, ∆i is the change in fi due to “collisions” at the lattice sites. The post collision
distribution fi + ∆i is propagated in the direction of the velocity vector ci. The
overall procedure involves two steps: a propagation step and a collision step. In
the propagation step each distribution function moves to the neighboring site with
velocity ci. In the collision step the distributions at each site “collide,” in the sense
that they are modified by the collision operator. In Chapter 2 we have already shown
that following this procedure, the evolution of the hydrodynamic fields satisfy the
Navier-Stokes equations.

We now need a method to model the porous medium. Within the lattice-Boltzmann
framework there is a straightforward procedure for imposing stick boundary conditions
at an explicit solid/fluid interface. A simple bounce-back rule performed on boundary
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Figure 4.1: Two dimensional schematic representation of the model porous medium we em-
ployed. The dashed lines represent the allowed links between lattice sites. The thick bars on
a link show broken links where the bounce back procedure will be implemented.

links enforces the stick boundary condition to second order, while not perturbing the
stress [8]. Boundary links are defined as links connecting lattice sites inside and outside
the solid object, and obviously these come in pairs. Adopting a convention of labeling
the link that goes from inside to outside as ib and its partner −ib the bounce back
equations reads as

f−ib(rb, t+ ∆) = fib(r, t)
fib(rb + cib, t+ ∆) = f−ib(rb + cib, t). (4.10)

Here we do not want an explicit solid-fluid interface, in the sense of a solid phase that
excludes volume from the fluid. Instead, with a given probability, we break links [that
is, define a set of links for which the propagation equation is modified according to
Eq. (4.10)]. These broken links exclude no volume (so long as the fraction of broken
links stays well below the percolation threshold) but will exert a friction on the fluid
proportional to the local flow velocity. They are effectively point scatterers.

4.3 Results

To generate our model porous medium we generated a set of point sources for friction
according to a binomial distribution. We first fixed the probability Φ that a link would
be broken. This number was varied between 0.01 and 0.3. For every link, we then
generated a random number between 0 and 1. If this random number was less than
Φ, the link was broken, otherwise it was left intact. In this way, we generated one
particular realization of the porous medium for a given value of Φ. All our results
were obtained by performing simulations for at least 25 independent configurations
for every value of Φ. Note that, for every configuration, the fraction of broken links
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4 Velocity fluctuations and dispersion in a simple porous medium

is not exactly equal to Φ. Only the average value is imposed. We cannot predict a
priori how the Brinkman length depends on the fraction Φ of broken links, because
this, even for point scatters, involves the many-particle hydrodynamic interactions.
We therefore determine λ numerically. This can be done in two ways. One is to
measure the average flow velocity in the presence of an applied external force and
calculate the permeability. The second is to compute the flow profile in a simple
confined geometry. For instance, the Brinkman Eq. (4.5) can easily be solved for a
three-dimensional porous medium confined in a slit bounded by two hard walls. On
the walls, stick boundary conditions apply. If we apply a body force parallel to the
plates, the solution for the steady velocity profile, as function of the distance from the
center z, is given by

vx(z) =
λ2F

η

[
1−

cosh
(
z
λ

)
cosh

(
L
2λ

)] , (4.11)

where the two plates are located at z = −L/2 and z = +L/2, x is the direction of
the force, and F is a force per unit of volume. Note that the Brinkman length λ
enters this equation twice: first through the (Darcy) prefactor, and second through
the “screening” length that determines the shape of the flow profile. The constraint
that a single value of λ should fit both the shape and the prefactor provides a good
consistency check on our determination of λ.

The simulation box had a length of 320 lattice spacings in the direction of the flow,
and 40 lattice spacings in the other two directions. Periodic boundary conditions were
used in the unbounded directions. Even for the lowest density system (Φ = 0.01),
the Brinkman length was found to be no larger than 3.41 lattice units. This is more
than an order of magnitude less than the smallest system dimension. At larger values
of Φ, the Brinkman length is even smaller. Hence, we expect finite-size effects to be
negligible at all the values of Φ that we studied. To study the flow, we let the system
evolve under the applied body force F. After some transient time, the flow fields reach
a steady state. All correlation functions that we report have been computed for this
steady state. To compute the average flow profile, we averaged the steady-state flow
profiles of all 25 different configurations. It is to this averaged flow profile that we
fitted the Brinkman flow profile given by Eq. (4.11). A result of this fitting procedure
is shown in Figure 4.2. It is worth remembering that the Brinkman length is the
only parameter in this fit. The figure shows that the computed flow profile fits the
Brinkman expression. This result is not a priori obvious and provides a useful check
that we do indeed have a system with a well-defined Brinkman length whose spatially
averaged behavior is a solution to the Brinkman equation. By repeating this fitting
procedure for other values of Φ, we obtained the dependence of λ on Φ. We found
that the low density result λ ∝ 1/

√
Φ holds to a good approximation over the whole

range of Φ we consider here.
As Figure 4.2 shows, the Brinkman length describes the distance over which a flow

profile in a porous medium is perturbed by an “obstacle” (in this case the hard wall).
In the spirit (if not the letter) of Onsager’s regression hypothesis, we might expect that
“spontaneous” spatial velocity fluctuations should decay on the same length scale. To
verify this, we computed the spatial velocity correlation function (SVCF) defined as

Cs(r) = 〈
[
v(0)− V

] [
v(r)− V

]
〉 (4.12)
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Figure 4.2: Velocity profile for a fluid flowing through the model porous medium confined
between two plates. Flow velocity v normalized by the maximum flow velocity v0 is plotted as
a function of dimensionless distance from the center. The dashed line is the solution of the
Brinkman equation; the circles are the numerical data.

where v(r) is the component of fluid velocity along the flow direction at a distance
r. To compute the SVCF (and all remaining correlation functions), we considered a
purely periodic system without walls. In such a system, the average flow velocity is
the same everywhere. In any specific realization of the disorder, however, there will be
local deviations from the average value. The SVCF shows how these disorder-induced
fluctuations decay, spatially, to zero.

In Figure 4.3 (open symbols) we show Cs(r)/Cs(0) computed for a range of values of
Φ. In this figure, we have expressed all distances in units of the Brinkman length λ. If,
as we assume, the Brinkman length is the only relevant length scale in the system, then
all the functions should superimpose. This is precisely what we observe. Moreover, the
SVCF decays exponentially, with a characteristic decay distance of a Brinkman length.
It seems, therefore, that the average flow profiles and the averaged spatial decay of
perturbations in the flow profile satisfy Brinkman scaling. It would seem logical to
assume that, as the spatial decay of velocity fluctuations satisfies Brinkman scaling,
so should the temporal decay. If this were true, then Brinkman scaling should apply
to dispersion of tracer particles. In fact, it has been argued that the nature of the
equations, in particular, that the Brinkman equation has no explicit time dependence,
has as a consequence that the Lagrangian velocity correlation function (LVCF) should
decay in the same way as the SVCF, i.e., exponentially, with a characteristic time
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Figure 4.3: The normalized spatial velocity correlation function Cs(r)/C(0) (open symbols),
and Eulerian velocity correlation function Ce(r)/C(0)) (filled symbols), as a function of di-
mensionless distance r/λ. The broken link fractions are Φ = 0.01 (plus), 0.08 (circles), 0.1
(squares), 0.2 (diamonds), and 0.3 (triangles). Error bars are smaller than symbols. The
dashed line is the result of fitting an exponential to Cs(r)/C(0) for r/λ > 0.5

equal to λ/V [37]. The LVCF is, within this approximation, simply

Cv(t) ≈ 〈
[
v(0)− V

] [
v(r = V t)− V

]
〉 = Ce(r = V t) (4.13)

We call this approximation to the LVCF the Eulerian time velocity correlation func-
tion (EVCF), Ce(V t). In Figure 4.3 (filled symbols) we show the normalized EVCF
computed for a range of values of Φ, together with the SVCF. We observe that, to a
good degree of approximation, all EVCF’s superimpose. The typical length of decay
is a little bit larger than that for the SVCF, because we are now considering correla-
tions along the flow direction only. Otherwise, there is little difference. Based on this
approximation, one would expect that the natural unit of time for the Lagrangian ve-
locity correlation functions is the Brinkman time defined as τ = λ/V , i.e., the average
time it takes a tracer particle to travel over a distance equal to one Brinkman length.
In order to calculate the Lagrangian velocity correlation function, we need to follow
the trajectory along which a particle travels; that is, we have to calculate velocity
correlations for a streamline. In Appendix 4.B we describe our procedure for doing
so. Figure 4.4 shows the LVCF for a system with Φ = 0.3. In the same figure, we
show the theoretical prediction for the shape of the LVCF corresponding to the EVCF
and assuming that the velocity time correlation function can be obtained directly by
replacing the displacement in the latter by tV . The figure shows clearly that there
exists no such simple relation between the spatial and temporal decays of velocity
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Figure 4.4: Comparison of the scaled, normalized, Eulerian (triangles), and Lagrangian (di-
amonds) velocity correlation functions. ξ is in dimensionless unit equal to r/λ for Ce(r) and
to t/τ for Cv(t). Time τ is the average time to convect a Brinkman length (τ = λ/V ). The
dotted lines are guides to the eye.

fluctuations. In the first place, there is a marked difference in the behavior at short
times. The initial rate of decay of the Lagrangian function is zero, so it cannot be
approximated by an exponential. It is straightforward to show, from the incompress-
ibility condition, that this must be the case (see Appendix 4.A). More importantly, if
we plot the LVCF for different values of Φ (i.e., different Brinkman lengths), we can-
not make the different LVCF’s collapse onto the same master curve (see Figure 4.5).
This is surprising, because it suggests that the Brinkman time is not the only relevant
time scale in the system. In fact, Koch and coworkers [37, 42] have suggested that
anomalous (“non-Brinkman”) decay of velocity time correlation functions should be
intimately linked to similar anomalies in the SVCF. Yet, our simulations appear to
show “normal” behavior in the EVCF and “anomalous” behavior in the LVCF. As
the LVCF decays much more slowly than one would expect on basis of the Brinkman-
scaling assumption, the dispersion coefficient [calculated from Eq. (4.2)] is larger than
would be predicted by simple use of the Brinkman equation. The slow decay of the
LVCF indicates that the velocity of tracer particles remains strongly correlated in the
time that it takes the fluid on average to move over one Brinkman length. Hence,
the hydrodynamic screening picture that works so well for average flow profiles, seems
to be quantitatively (though not qualitatively) incorrect when we consider temporal
correlations.

In what follows, we shall consider hydrodynamic dispersion in the limit of high
Peclet number. In this limit, and in the absence of any explicit solid/fluid interface, the
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Figure 4.5: The normalized Lagrangian velocity correlation function as a function of di-
mensionless time. The different points correspond to different broken link fractions. The
corresponding dimensionless densities are 2.4 (circles), 1.7 (squares), and 0.27 (triangles).
Note that the curves do not superimpose but decay more slowly with decreasing dimensionless
density (increasing absolute density). The lines are guide to the eye.

Brownian motion of the tracer particles can be ignored. It then follows from Eq. (4.2),
that the dispersion coefficient is related to the time integral of the Lagrangian velocity
correlation function. We now compare the computed dispersion coefficients with values
predicted by the theory of Koch and Brady. Before proceeding, we need to briefly
recapitulate their model. They model the porous medium by a continuum of points,
every point exerting a friction on the fluid. This might seem an abstract concept of
porous media, but it represents a simplified model of a dilute packed bed of spheres
in the limit of many scatterers per Brinkman length cubed. Using such a model, they
were able to compute the fluid velocity perturbation at large distances generated by
particles making up the porous medium. From this they derive an expression for the
dispersion coefficient. In order to perform the calculation they approximate the LVCF
with the EVCF. The resulting theoretical expression for the dispersion coefficient at
high Peclet number Dth is

Dth

D0
=

3
4
Pe, (4.14)

where the Peclet number is Pe = U∗l∗/D0; U∗ being naturally identified with the mean
velocity of fluid V and D0 being the diffusion coefficient [here superfluous because it
cancels the D0 on the left hand side of Eq. (4.14)]. Some discussion is needed about
the choice of l∗. In general, l∗ is a typical length of the system. The theory takes as
a characteristic length the “effective” radius of spherical particles that leads to a low
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density random medium with the same Brinkman length; that is, particles that exert a
friction equal to 6πηa, where a is a “hydrodynamic radius”. This gives the expression
Dth = 3

4V a. In actual fact, the radius a is a somewhat fictitious parameter obtained
by implying a dilute bed of spheres to model the porous medium. The following
procedure is needed to obtain a as function of the Brinkman length λ. A dilute bed of
spheres, with number density of scatterers ρ, exerts a total drag equal to ρ times the
Stokes drag of a single sphere. Darcy’s law gives a value for the same drag in terms
of the Brinkman length [Eq. (4.4)]. Equating the two, one gets

λ =
√

1
6πρa

. (4.15)

Using Eq. (4.15), the dispersion coefficient becomes

Dth =
< u >

8πρλ2
(4.16)

We need, at this point, an expression for ρ in terms of the broken links model. We
should point out that, at this level of detail, it is difficult to map our model directly to
the theory because we have, in effect, points with a directionally dependent friction.
The theory, on the other hand, considers points that exert an isotropic friction. To
match (approximately) the two we proceed as follows. In the D3Q18 lattice there are
18 links, six of which have weight 2 [8]; in our case only two such links are oriented along
the flow direction. There are also eight singly occupied links with a component in the
flow direction, oriented at 45 degrees to the flow. We therefore take these to contribute
1/2. The remaining links are oriented perpendicular to the flow direction, so they
contribute nothing. Allowing for the fact that each link belongs to two lattice sites,
the effective density of links, in lattice units, we therefore take to be ρ = 4Φ . From
the simulation data the dispersion coefficient can be computed from the Lagrangian
velocity correlation function

D =
∫ ∞

0

Cv(t)dt = C(0)
∫ ∞

0

Cv(t)/C(0)dt. (4.17)

The initial value of the function, C(0), is simply the covariance of the velocity field.
This is, in fact, true for all the correlation functions we have defined. Equation (4.17)
defines D. If, instead, we approximate LVCF with EVCF, we can define

DEul = C(0)
∫ ∞

0

Ce(t)/C(0)dt = C(0)τ ′. (4.18)

As we have already shown that the normalized function Ce(t)/C(0) scales onto a single
curve; τ ′ defined by Eq. (4.18) and representing a characteristic time, is the same for
all values of the Brinkman length. The two integrals will, in general, be different, in
that while Cv(t) is related to the velocity of the particle at time t, Ce(t) refers to the
velocity of a particle at a position r = V t. The two quantities are only necessarily
equal in the absence of velocity fluctuations.
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4 Velocity fluctuations and dispersion in a simple porous medium

In units where length, time and velocity are, respectively, λ, τ , and V , the disper-
sion coefficients are thus

D∗th =
1

8πρλ3
,

D∗Eul =
C(0)

V
2

τ ′

τ
, (4.19)

D∗ =
1

V
2

∫ ∞
0

Cv(t)dt.

In the following we will plot the dispersion coefficients as a function of the dimen-
sionless friction point density ρ∗ = ρλ3. This is the number of scatterers per cu-
bic Brinkman length and sets the intrinsic scale of the system. The scaling of the
Brinkman length [λ ∼ ρ−1/2, see Eq. (4.15)] means that dense porous media in “real
word” units are actually dilute in the intrinsic scale set by the Brinkman length. In
fact, when ρ → ∞, ρ∗ → 0; that is, high dimensionless number densities correspond
to the approximations made in the theory, because in the (spatially) dilute limit there
are many scatterers per Brinkman length cubed. This assumption is needed to treat
the porous medium as a continuum. We are thus able to disentangle the effect of the
dilute limit approximation and use the EVCF instead of the LVCF to compute the
dispersion coefficient. In Figure 4.6 we plot D∗th and D∗Eul as functions of 1/ρ∗ for
high values of ρ∗. The theoretical value of the dispersion coefficient D∗th is a linear
function of 1/ρ∗ [Eqs. (4.19)]. We observe that in the dilute limit D∗Eul also has a
linear behavior. A linear fit of D∗Eul for high ρ∗ has an intercept at zero, as the theory
predicts. In the figure we plotted also D∗, which has the same behavior. At a given
number density the difference between D∗th and D∗Eul quantifies the effect of the dilute
limit approximation, whereas the difference between D∗Eul and D∗ quantifies the error
made by approximating the LVCF with the EVCF. The difference between D∗th and
D∗ is a measure of the accumulated effect of the two approximations. We can conclude
that the theoretical expression works very well in the dilute limit. In this regime the
absolute agreement between the theory and simulations, given the approximate nature
of the mapping, is clearly very good. This confirms the prediction of Koch and Brady
theory that the dispersivity is independent of volume fraction for dilute beds.

In Figure 4.7 we show the whole range of densities covered by our simulations, and
we repeat the analysis carried out for Figure 4.6. Again on the abscissa is the inverse
dimensionless density 1/ρ∗. For decreasing values of the dimensionless density the two
lines diverge. The difference between the two represents the factor needed to correct
for the dilute limit assumption. We observe that the computed dispersion coefficients
no longer have a linear dependence on 1/ρ∗. We also see that there is an appreciable
difference between the exact dispersion coefficient D∗ and both the approximations
D∗Eul and D∗th. This difference increases with decreasing ρ∗. This means that, for
what would correspond to an increasingly packed bed, the dispersion coefficient be-
comes much larger than the theory predicts. Both the dilute limit assumption and
approximating the Lagrangian velocity correlation function with the Eulerian con-
tribute to the error. At low and moderate densities it is the former, rather than the
latter, that limits the validity of the theory.
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Figure 4.6: The dimensionless dispersion coefficient D∗ (diamonds) as a function of inverse
dimensionless density ρ∗. Also plotted are the theoretical values of the dimensionless dis-
persion coefficient D∗th (circles) and the dispersion coefficient obtained by approximating the
Lagrangian velocity correlation function with the scaled Eulerian function, D∗Eul (plus). Note
that high values of ρ∗ correspond to low point densities so this data covers the spatially dilute
regime. The lines are linear fits of the corresponding data points.

4.4 Conclusions

In this paper we described numerical simulations of flow through a simple model
porous medium. The porous medium was modeled by simply breaking randomly, with
probability Φ, the links used in the lattice-Boltzmann equation. From the point of
view of comparing with theory, this broken link model has two advantages. First,
it has no excluded volume. Second, it exerts a relatively high local friction. The
latter allows one to calculate correlation functions over several Brinkman lengths.
We showed, by two different calculations, that this model does indeed behave as the
Brinkman equation predicts. Specifically, for the velocity profile of a flow through a
porous medium sandwiched between two plates and the spatial decay of fluctuations
in the local flow velocity about the mean (SVCF). The latter is an assumption in
the Koch and Brady theory of dispersion in random media and it is a good one. We
found that there is a universal behavior of spatial correlations if we measure lengths
in units of the Brinkman length, confirming that this is the only relevant length in the
system. We also confirmed that, spatially, this results in an exponential screening of
the fluctuations. Again, this is central to the Koch and Brady theory. It guarantees
convergence of the dispersion coefficient, which would otherwise diverge. We can
conclude that the broken link model is well described by the Brinkman equation.
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Figure 4.7: The dimensionless dispersion coefficient D∗ (diamonds) as a function of inverse
dimensionless density ρ∗. Also plotted are the theoretical values of the dimensionless dis-
persion coefficient D∗th (circles) and the dispersion coefficient obtained by approximating the
Lagrangian velocity correlation function with the scaled Eulerian function D∗Eul (plus). Note
that low values of ρ∗ correspond to high point densities so this data extends to the spatially
dense regime. The curves are drawn as a guide to the eye.

Conversely, the Brinkman equation describes successfully the spatial decay of velocity
fluctuations in our model porous medium.

From the point of view of hydrodynamic dispersion, it is the temporal rather than
spatial decay of fluctuations that is relevant. For the Lagrangian velocity correlation
function (the temporal decay of the velocity a particle experiences as it traverses the
fluid) things were more complex. This “time” velocity correlation function behaved
quite differently. Its decay is not a simple exponential and, if we attempt to relate
time to an average displacement, there is no universal behavior in the scaled decay.
The decay of this function cannot be predicted by a simple mapping to the Brinkman
equation alone. It is not possible to say that Lagrangian fluctuations are uniquely
related to the Eulerian fluctuations for all densities of scatterers. This is an approx-
imation invoked in the Koch and Brady theory and one, the simulations show, that
is only strictly justified for low densities (Koch and Brady themselves acknowledge
that it is a low density approximation). We should stress, however, that the decay
of the Lagrangian correlation function with time is still asymptotically exponential.
Thus, the qualitative picture that the screening of the velocity fluctuations by the
porous medium itself leads to a convergent dispersion coefficient remains true. The
results reported in Ref. [41] cannot be attributed to a breakdown of the screening
picture, the slow decay must in some way be related to the more complex nature of
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4.A Initial rate of decay of the LVCF

the porous medium, notably, the presence of excluded volume and diffusive bound-
ary layers. Nonetheless, the conclusion that Lagrangian correlations can decay on
much longer temporal (and, by implication, spatial) scales is consistent with Ref. [41].
Here, the correlation functions were decaying on timescales that greatly exceeded the
Brinkman time.

Given the simplicity of our model and its similarity to the system Koch and Brady
used to develop part of their theory of dispersion in packed beds, a direct comparison
seemed appropriate. We thus computed the dispersion coefficient (in the limit where
molecular diffusion can be neglected) as a function of broken link density. In the limit
where the theory should be most valid (low volume fraction, a broken link “volume”
interpreted as the volume of a sphere that exerts the same friction), we found rea-
sonable agreement. At higher volume fractions, the agreement breaks down and the
theory grossly underestimates the dispersion coefficient. In this regime, the decay
of the Lagrangian velocity correlation functions differs dramatically from the scaled
spatial decay used to approximate it in the theory. The fact that the theory gives
dispersivities that actually agree quite well with experimental results for dense packed
beds, must be due to the fact that it more accurately accounts for the boundary layer
dispersion that we do not consider here.

4.A Initial rate of decay of the LVCF

In this section we give a simple argument as to why the initial gradient of the La-
grangian velocity correlation function, computed along the direction of the flow, should
be zero. We define the x direction as the tangent to the trajectory x̂ ≡ t̂. The ŷ and
ẑ directions would be any pair of orthogonal vectors in the plane orthogonal to the
trajectory. The LVCF is defined as Cx(t) = 〈ux(0)ux(t)〉 and its time derivative is

∂Cx(t)
∂t

=
〈
ux(0)

∂ux(t)
∂t

∣∣∣∣
t=0

〉
. (4.20)

On the other hand, the time derivative of the fluid velocity experienced by a tracer
particle can be written as

∂ux(t)
∂t

∣∣∣∣
t=0

=
∂x(t)
∂t

∣∣∣∣
t=0

∂ux(t)
∂x

∣∣∣∣
t=0

= ux(0)
∂ux(t)
∂x

∣∣∣∣
t=0

. (4.21)

We can now use the incompressibility condition ∇ · u = 0, this can also be written as

∂ux
∂x

+
[
∂ux
∂y

+
∂ux
∂z

]
= 0. (4.22)

The term within the square brackets is zero by definition because of the choice of the
axes. As a consequence ∂ux/∂x = 0, so it follows that ∂Cx(t)/∂t = 0. Thus the initial
slope of the LVCF along a stream line is zero. It follows that along the direction of
the mean fluid flow the slope is also zero, because the average of the vector tangent
to a trajectory is parallel to the vector defining the direction of the flow.
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4 Velocity fluctuations and dispersion in a simple porous medium

4.B Computing Streamlines

A streamline is the trajectory followed by a tracer particle when the system is station-
ary and the particles have no diffusion. In this section we describe how we computed
the stream lines. The problem that has to be solved is simple: given a velocity
field V(xi) on a lattice xi, construct a flux line x(t), where x is a continuous vari-
able. A straightforward procedure to perform this calculation is the Euler method:
x(t+1) = x(t)+dt V(x(t)). This method is only accurate to first order. We employed
the Runge-Kutta method in the midpoint approximation [44], which is accurate to sec-
ond order in the time-step. Higher order methods were not necessary. The value of
V(x(t)) has to be interpolated. In order to compute the off lattice values of the veloc-
ity field, we used a very simple trilinear interpolation, which is the three dimensional
generalization of the linear interpolation V (xi + dx) = V (xi) + dx (V (xi+1)− V (xi)).

Although very simple, the approach described above proved to be very robust. We
checked that the time step chosen was small enough to ensure a consistent stream line
calculation up to the distance used in our simulations. Any possible improvement in
the stream line calculation results in a small enhancement of the effect we have pointed
out in this chapter.
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5 Discrete solution of the
electrokinetic equations

Abstract

We present a robust scheme for solving the electrokinetic equations. This goal is
achieved by combining the lattice-Boltzmann method (LB) with a discrete solution
of the convection-diffusion equation for the different charged and neutral species that
compose the fluid. The method is based on identifying the elementary fluxes between
nodes, which ensures the absence of spurious fluxes in equilibrium. We show how
the model is suitable to study electro-osmotic flows. As an illustration, we show
that, by introducing appropriate dynamic rules in the presence of solid interfaces, we
can compute the sedimentation velocity (and hence the sedimentation potential) of a
charged sphere. Our approach does not assume linearization of the Poisson–Boltzmann
equation and allows us for a wide variation of the Peclet number.

5.1 Introduction

The study of the dynamics of suspensions of charged particles is interesting both be-
cause of the subtle physics underlying many electrokinetic phenomena and because
of the practical relevance of such phenomena for the behavior of many synthetic and
biological complex fluids [45, 46]. In particular, electrokinetic effects can be used to
control the transport of charged and uncharged molecules and colloids, using elec-
trophoresis, electro-osmosis, and related phenomena [3]. As micro-fluidic devices be-
come ever more prevalent, there are an increasing number of applications of electro-
viscous phenomena that can be exploited to selectively transport material in devices
with mesoscopic dimensions [47].

In virtually all cases of practical interest, electroviscous phenomena occur in con-
fined systems of a rather complex geometry. This makes it virtually hopeless to apply
purely analytical modeling techniques. But also from a molecular-simulation point of
view electroviscous effects present a formidable challenge. First of all, the systems un-
der consideration always contain at least three components; namely a solvent plus two
(oppositely charged) species. Then, there is the problem that the physical properties
of the systems of interest are determined by a number of potentially different length
scales (the ionic radius, the Bjerrum length, the Debye–Hückel screening length and
the characteristic size of the channels in which transport takes place). As a result,
fully atomistic modeling techniques become prohibitively expensive for all but the
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simplest problems. Conversely, standard discretizations of the macroscopic transport
equations are ill suited to deal with the statistical mechanics of charge distributions
in ionic liquids, even apart from the fact that such techniques are often ill-equipped
to deal with complex boundary conditions.

In this context, the application of mesoscopic (”coarse-grained”) models to the
study of electrokinetic phenomena in complex fluids seem to offer a powerful alterna-
tive approach. Such models can be formulated either by introducing effective forces
with dissipative and random components, as in the case of dissipative particle dynam-
ics (DPD) [48], or by starting from simplified kinetic equations, as is the case with the
lattice-Boltzmann method (LB).

The problem with the DPD approach is that it necessarily introduces an addi-
tional length scale (the effective size of the charged particles). This size should be
much smaller than the Debye screening length, because otherwise real charge-ordering
effects are obscured by spurious structural correlations; hence, a proper separation of
length scales may be difficult to achieve. A lattice-Boltzmann model for electrovis-
cous effect was proposed by Warren [49]. In this model, the densities of the (charged)
solutes are treated as passive scalar fields. Forces on fluid elements are mediated by
these scalar fields. A different approach was followed in Ref. [50], where solvent and
solutes are treated on the same footing (namely as separate species). This method
was then extended to couple the dynamics of charged colloids to that of the electrolyte
solution. As we shall discuss below, both approaches have practical drawbacks that
relate to the mixing of discrete and continuum descriptions.

The LB model that we introduce below appears at first sight rather similar to
the model proposed by Warren. However, the underlying philosophy is rather differ-
ent. We propose to consider the fluxes between connected nodes as the basic physical
quantities that determine the evolution of local densities. Such a formulation ensures
local mass conservation, does not rely on fluxes or gradients computed at the lattice
nodes (which constitutes a source of error in other models due to the need to ap-
proximate them on a lattice), and by choosing a symmetric formulation for the link
fluxes in terms of the nodes that are affected, we can recover the proper equilibrium
without spurious fluxes. Our model relies on a LB formulation for mixtures. Hence,
the improvements of the formulation based on link fluxes will overcome some of the
limitation of previous LB models for mixtures based on gradient expansions of a free
energy [51, 52].

The method described is very flexible, and, in particular, general boundary con-
ditions are easily implemented. This feature also makes the proposed formulation
attractive, since it avoids problems related to mass and charge conservation at fluid–
solid interfaces, an artifact that has plagued previous LB implementations. It is then
possible to model the dynamics of colloidal particles and polyelectrolytes in solution.
The electrostatic interaction between them is derived from the charge distribution in
the fluid. Hence, we do not need to assume any specific form for the interaction be-
tween charged colloids, or between monomers in a polyelectrolyte. Electro-osmosis,
the sedimentation potential, electrophoresis, or other electrokinetic phenomena can be
easily treated within the model. In this paper we consider the first two to illustrate
the capabilities of the method.

The electrolyte is treated at the Poisson–Boltzmann level. We are not restricted
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to the linearized Debye–Hückel regime and can study the electrokinetic effects at high
charge densities, being only limited by ionic condensation (as occurs, for example, in
cylinders). The model we introduce neglect effects due to charge correlations.

5.2 Numerical lattice method

In developing the method which I will present in this chapter, we were motivated by
the necessity to solve the electrokinetic equations which I have already presented in
Section 3.3.3. However, because these are a special case of the more general class of
mixtures, I present the more general model. As I have shown in Section 3.3 the usual
laws of conservation of mass and momentum reads, for a mixtures, as

∂ρk
∂t

+∇ · ρkv = ∇ ·Dk [∇ρk + ρk∇βµexk ] , (5.1)

and
∂

∂t
ρv = η∇2v −∇pid −

∑
k

ρk∇µex + Fext. (5.2)

To solve these two equations, we propose a model that combines a description
of momentum dynamics based on lattice Boltzmann, with a numerical description of
the convection–diffusion equation. Quantities are defined on the nodes of a lattice,
r, and time evolves in discrete time steps. The lattice is prescribed by specifying its
connectivity. The connections of each node are determined by specifying the set of
allowed velocities, ci, where the subindex i runs over all the allowed velocities. Then,
each node r is connected to the nodes r + ci.

5.2.1 Diffusion model

For convenience, let us rewrite the convection-diffusion equation, Eq. (5.1), in the form

∂

∂t
ρk +∇ · ρkv = −∇ · jk, (5.3)

where the diffusive flux is

jk = −Dk (∇ρk + ρk∇βµexk ) . (5.4)

For the sake of clarity, we discuss separately the change in density of the species k due
to diffusion and to advection. The total change in time of the density is simply the
sum of the two contributions.

Diffusion

Let us assume for the time being that the mixture diffuses in a fluid at rest. Equation
(5.3) then becomes

∂

∂t
ρk = −∇ · jk. (5.5)
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Integrating both sides of this equation over a volume V0 and using the Green’s formula∫
V0
∇ · jdV =

∮
A0

j · n̂dA, we obtain

∂

∂t

∫
V0

ρkdV = −
∮
A0

jk · n̂dA, (5.6)

where n̂ is the outward unity vector normal to the surface, A0, enclosing the volume
V0.

As we have pointed out previously, we will consider densities defined on nodes of
a lattice and the time evolution evolves at constant time steps. In this case, we can
identify the volume V0 with the volume associated to that node, and A0 is related to
the connectivity of the lattice nodes. Then, Eq. (5.6) states that the change of the
total number of particles enclosed in the volume corresponding to node r equals the
sum of the outward fluxes. Such fluxes can only take place by mass transport to the
neighboring nodes that are connected to the central node, according to the structure
of the predetermined lattice connectivity. Hence,

nk (r, t+ 1)− nk (r, t) = −A0

∑
i

jki (r) , (5.7)

where nk(r) is the number of particles of species k at node r, while jki(r) accounts for
the fraction of particles of species k going to node r + ci. If we consider the velocity
moving opposite to i, i.e., ci′ = −ci, we have jki(r) = −jki′(r + ci) because these
fluxes are always defined considering that the particles move away from the reference
node. This unambiguously show that the fluxes are related to the links joining the
connected nodes, rather than being quantities defined on the nodes.

It is worth noting that in the previous balance equation the relevant quantity is
the number of particles of species k at node r, nk(r), rather than its number density,
ρk(r). If we take the volume of a cell as our unit of volume, then ρk(r) = nk(r).
However, in the presence of solid boundaries this distinction may become relevant.
The prefactor A0 in Eq. (5.7) is related to the geometrical structure of the lattice.
Rather than connecting it directly with the area of the Wigner–Seitz cell that can be
associated to node r, we derive its magnitude by computing how density diffuses to the
neighboring nodes. In Sec. 5.5.1 we will compute explicitly this geometric prefactor
for a particular lattice. In the following, when referring to link mobility, we will use
the symbol dk = DkA0.

Using link fluxes to compute the variation of the densities of the different species
avoids approximating the divergence on a lattice, a source of lattice artifacts, and
the related potential spurious fluxes that may appear. Moreover, the use of these
link fluxes also imposes locally mass conservation to machine accuracy, avoiding the
errors caused by the discretization of the spatial gradient operator. We must still
provide a prescription to implement the diffusive fluxes. These are, in principle, given
by Eq. (5.4) and involve spatial gradients between two neighboring lattice nodes. In
equilibrium, neqk ∼ exp[−βµex] and, as a consequence, Eq. (5.4) predicts that all
diffusive fluxes vanish. However, the direct implementation of Eq. (5.4) on a lattice
will suffer from discretization errors that will result in small but noticeable spurious
fluxes. To eliminate this effect, it is convenient to write the expression for the flux on
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a link as
jk(r, t) = −Dke

−βµexk (r,t)∇
[
ρk(r, t)eβµ

ex
k (r,t)

]
, (5.8)

because, in this expression, the gradient becomes identically zero when the density
distribution corresponds to its equilibrium form. This also holds for the discretized
form to be discussed below. Consistent with the idea that the flux can be expressed in
terms of link mass fluxes, we propose a symmetrized implementation of jki involving
magnitudes defined in the two connected nodes, r and r + ci. In particular, we write
the flux of species k along the link ci as

jki(r) = −dk
e−βµ

ex
k (r) + e−βµ

ex
k (r+ci)

2

[
nk(r + ci)eβµ

ex
k (r+ci) − nk(r)eβµ

ex
k (r)

∆i

]
, (5.9)

where ∆i = |ci| = |ci′ | is the distance between the two neighboring nodes. This
symmetrized formulation ensures that, to machine accuracy, jki(r) = −jki′(r + ci),
and mass is conserved for the model elementary dynamic processes. Note that, based
on the mass conservation expression, Eq. (5.7), the global mass change of node r
is the sum of the link fluxes, jki. Mass evolution in the diffusive limit is described
only on the basis of mass flux divergence, as we have described. In general, the
procedure developed based on link fluxes provides a consistent framework to obtain
other gradients if needed.

Advection.

Local density can also be altered due to advection if there is a local velocity of the
fluid. If, for the time being, we disregard diffusion, the advection mechanisms can be
written in the form

∂

∂t
ρk = −∇ · (ρkv), (5.10)

where v is the barycentric fluid velocity. In principle, the change in the number of
particles could be computed on the basis of the advection along each link, in a way
similar to Eq. (5.7). However, as we will describe in the next section, the model we will
introduce provides the velocity at each node, rather than the link velocity. In order to
avoid numerical artifacts and spurious diffusion due to the interpolation to get such a
link velocity, we propose an alternative implementation of the advection process. We
still consider that nk(r) give us the number of particles in a volume element centered
around node r. Since we know the velocity of that node, v(r), in one step the node
will virtually displace to r + v(r) . As a result, the volume associated to node r will
intersect some neighboring cells of the real lattice (see Fig. 5.1). We then distribute the
amount of particles nk into the intersected volumes proportionally to the intersected
region. In Fig. 5.1, we depict in shadow the volumes that correspond to the fraction
of the density that is transported in the new cells. The advantage of this approach is
that it greatly reduces the spurious diffusion that usually results during advection in
lattice models. To be more precise, even with the present method, advection will cause
some spurious diffusion (proportional to the flow velocity). However, in Sec. 5.5.1 we
show that, in practice, this effect is negligible.
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Figure 5.1: Density redistribution due to advection. To advect the charge of a given node
(in this case, node number 5) in one time unit, we shift the whole cell with the local velocity
vector of that node (vx, vy). Next, we displace a fraction of density equal to the area of the
cell that is now in the corresponding site. In the graph a fraction of the density equal to the
shadowed rectangle area (vxvy) goes from cell 5 to cell 3, a fraction (1− vx)vy goes to cell 2,
(1 − vy)vx goes to cell 6, and (1 − vx)(1 − vy) stays at node 5. For the sake of clarity, the
figure shows a two-dimensional flow. In practice, the analogous procedure is carried out in
3D.

5.2.2 Lattice Boltzmann method.

In order to simulate the hydrodynamic flow of the fluid, we make use of the lattice-
Boltzmann approach which I introduced in Section 2.4. To ease the reading of this
manuscript, I will repeat once again the basics of the method.

The lattice-Boltzmann method describes the dynamics of a fluid in terms of the
densities of particles that “live” on the nodes of a cubic lattice and have discrete
velocities {ci}, where i labels the links between a lattice point r and its neighbors.
The values of the velocities are chosen such that, in one time step, a particle moves
along a link from one lattice node to its neighbor. In the Lattice-Boltzmann model,
the unit of length is equal to the lattice spacing and the unit of time is equal to
the time step. In addition, the unit of mass (or, equivalently, energy) is fixed by
the requirement that, in the continuum limit, the transport equations for the lattice
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model approach the Navier–Stokes equation. This imposes a relation between the
temperature and the speed of sound [see below Eq. (5.14)]. The central dynamic
quantity in the lattice-Boltzmann approach is the one-particle distribution function,
fi(r, t), which describes the probability of having a particle at site r at time t with
velocity ci. The hydrodynamic variables are obtained as moments of this distribution
function over the lattice velocities, ci; e.g., density and momentum can be obtained
as

ρ(r, t) =
∑
i

fi(r, t), (5.11)

j(r, t) ≡ ρ(r, t)v(r, t) =
∑
i

cifi(r, t), (5.12)

respectively.
In the presence of external forces F, for a particular choice of the shear viscosity,

η = 1/6 in lattice units [8], the general dynamic rule simplifies to [See Section 2.4.1]

fi(r, t+ 1) = ai
[
ρ(r, t) +

1
c2s

ci · (j(r, t) + F)
]
. (5.13)

For the sake of convenience, we implement the model with this simplified updating
rule. However, it is straightforward to implement the more general form that allows
us to impose other values of the viscosity.

By means of a Chapman–Enskog expansion, it can be shown [53] that in the hy-
drodynamic limit one recovers the Navier–Stokes equation,

∂

∂t
(ρv) = η∇2ρv − c2s∇ρ+ F. (5.14)

Since the second term on the rhs is the pressure gradient for an ideal gas, if we fix the
temperature such that kBT = c2s, we then recover Eq. (5.2) for an ideal mixture. For
non ideal mixtures, we will introduce the missing contribution to the pressure gradients
as a local external force, F. Because the solutes act onto the solvent exclusively by
means of this effective force F, the hydrodynamic limit of the non-ideal-mixture model
is obtained by following the same procedure as the one needed for the standard lattice-
Boltzmann method for one phase flows [53].

Introducing the mixture non ideality as a local effective force implies that the fluid
reacts with the appropriate susceptibility to applied external fields, although in the
absence of spatial gradients the equilibrium distribution corresponds to that of an ideal
gas. Since we are not concerned with local structure, the model can be regarded as
an effective kinetic model, similar in structure to a linearized Vlasov equation. Hence,
this approach differs from previous proposals that try to derive the hydrodynamics of
non ideal mixtures from kinetic models of mixtures [54] or from a modification of the
equilibrium distribution to recover the equilibrium pressure [51, 52].

The peculiarities of the non ideality of the mixture enters through the forcing
term (F) in Eq. (5.13). This forcing term can be decomposed into an external field
and interaction contributions, F = Fext + Fsol. This interaction force, as previously
described in Section (3.3), has the form Fsol =

∑
k ρk∇µexk . Using the same approach
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5 Discrete solution of the electrokinetic equations

that we have used to model the convection-diffusion equation, we can determine the
force acting on each link, Fi. Moreover, for the particular case where the diffusion
matrix is diagonal,

Fi(r) = kBT
∑
k

[
jki
Dk
− nk(r + ci)− nk(r)

∆i

]
. (5.15)

The advantage of using the force exerted on the links is that, again, we keep a sym-
metric dependence on the neighboring nodes, and, moreover, Fi(r) = −Fi′(r + ci).
Yet, in the lattice-Boltzmann update rule, we need the force acting on the node. This
force can be obtained averaging the link forces,

F solα (r) =
∑
i

aiciαFi(r), α = x, y, z. (5.16)

Let us now introduce an alternative way of treating the same systems. There
are situations, as is the case in electrolytes, where one of the components of the
mixture is dominant, and plays the role of the solvent. In this case, we can single
out this component, ρs, and treat it separately from the rest. In particular, since
ρs � ρk, we can approximate the overall density by the solvent density (ρ ' ρs ),
and the overall momentum by the solvent momentum (ρv =

∑
k ρkvk ' ρsvs). If we

then relate the moments of the distribution function fi to the solvent density, i.e.,∑
i fi = ρs and

∑
i cifi = ρsvs instead of Eqs. (5.11), we impose a constant solvent

density in the incompressible regime. Hence, the rest of the components will need
to compensate their densities to avoid any net local density variation. Although this
incompressibility constraint is not exact, it may be a convenient approximation. From
the point of view of the link force, Eq. (5.15), it has the computational advantage that
one gets Fi =

∑
k jki/Dk and it reduces to the link diffusive flux previously computed,

Eq. (5.9). In this case the Navier–Stokes equation becomes

∂

∂t
ρsvs = η∇2vs − c2s∇ρs − kBT

∑
k

[∇ρk + ρk∇βµexk ] + Fext, (5.17)

and by taking kBT = c2s, we recover an appropriate behavior when ρs � ρk.
The advantage of this approach is that densities of different species are dealt with

on different footing, which may prove advantageous in certain applications, especially
when dealing with boundary conditions that act differently on the solvent and solute,
as it is the case if dealing with semipermeable membranes. Numerically, in this case
there is a net force only when the density distribution deviates from its local equi-
librium value, in contrast with the original method, where the density coming from
the advection contribution balances the local force. This ensures an additional way to
avoid spurious artifacts from the underlying lattice.

5.3 Boundary conditions

If the fluid mixture is confined between walls, or if colloids are added to the mixture,
we need to specify how the densities and distribution function will interact with solid
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interfaces. To account fully for such an interaction, we need to describe in turn how the
distribution function behaves, how the particle number evolves, and how we estimate
the interacting force at the surface.

At a solid surface we expect hydrodynamic “stick” boundary conditions to apply.
One way to impose these is to apply the so-called “bounce-back rule” on the links.
However, the standard version of this procedure (see, for example, Ladd [53]) allows the
fluid to leak into the solid. Although this leakage is usually innocuous, there are cases
(a typical example being when electrostatics is part of the excess chemical potential)
where this leakage may change the density of the solvent inside the solid, leading to
a corresponding error in the pressure gradient. There exist alternative bounce-back
rules that do not allow for any fluid leakage [55].

The formulation of our model in terms of link fluxes simplifies the implementation
of boundary conditions for the fluxes of the different species densities, ρk. Since the
convection-diffusion equation involves only mass conservation, it is enough to impose
that there is no net flux on any link that joins a fluid node and a solid node. We
accomplish this by imposing that the diffusive flux jki = 0 on such a link, and that
the flux due to advection also vanishes. This second requirement is achieved by a kind
of partial bounce-back move: the number of particles that would have been assigned
to a solid node after advection is reflected back to its node of origin.

The updating rule, both for the number densities of the convection-diffusion equa-
tions and for the lattice-Boltzmann distribution function, requires the evaluation of
gradients of chemical potentials. To this end, we need to specify the values of the
excess chemical potentials on neighboring nodes, and those may involve the values of
the fluid densities in contact with the solid wall. We consider that the relevant value
of the density is that in contact with the wall, which is somewhere in between the
fluid and the solid node. Such value can be obtained by requiring that it is consistent
with the no-flux condition for the link flux of that species. The no flux condition is
satisfied requiring [see Eq. (5.9)]

nk(r + ci) = nk(r)eβ[µexk (r+ci)−µexk (r)], (5.18)

which should be understood as the extrapolation of the fluid density to ensure the
absence of flux diffusion, and, in general, it is an implicit equation to obtain an es-
timate of the extrapolated number of particles, nk(r + ci). Note that this fictitious
extrapolated density is a property of the link, not of the node.

As we have mentioned in Sec. 5.2, the formulation based on the fluxes is based on
the evolution of the number of particles contained in a given volume element. For the
fluid nodes in the absence of solid interfaces the particle number is proportional to
the number density. This is no longer the case close to a solid wall. This difference
is pertinent because the excess chemical potential and the pressure are functions of
the number density, ρk. While for a wall at rest, one can still consider that the wall
is equidistant from the nodes and nk and ρk coincide, for a moving solid surface, the
position of the solid boundary will change as it moves. In this case, a coefficient α that
establishes how close the solid boundary is to the fluid node should be introduced. In
the limiting case that the solid boundary is reaching the neighboring fluid node, the
corresponding cell has a volume that is approximately half the volume of a usual cell,
hence α = 1/2; in the opposite case when the solid surface reaches the solid node one
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5 Discrete solution of the electrokinetic equations

gets accordingly α = 3/2. This coefficient then allows us to relate nk = αρk. Although
there exist different ways in which this coefficient may be computed, any smooth
function that accounts for the volume change will be enough to avoid abrupt changes
in the density when a fluid nodes is absorbed or created by the moving boundary.

5.4 Electrokinetic equations.

In the previous sections we have developed a model to simulate general non ideal
fluid mixtures. We will now analyze the special case in which the fluid mixture is an
electrolyte. The simplest electrolyte model corresponds to a three-species mixture, two
of them being the ionic species, ρ+ and ρ− with charges z+e and z−e, and the third one
being the neutral solvent ρs. e is the elementary charge, and z+ and z− are the valences
of the ions. The local charge can then be expressed as q(r) = e[z+ρ+(r) + z−ρ−(r)].

The hydrodynamic evolution equations for this model electrolyte become, again,

∂

∂t
ρk +∇ · ρkv = Dk∇ · [∇ρk + zkρk∇βΦ] , (5.19)

∂

∂t
ρv = η∇2ρv − c2s∇ρ+ kBT

∑
k

zkρk∇Φ, (5.20)

and the Poisson equation,

∇2Φ = −4πlB

[∑
k=±

zkρk + ρs

]
, (5.21)

which has been expressed in terms of a dimensionless potential, Φ = eβΦ̂, while
lB = βe2/(4πε) is the Bjerrum length (the distance at which the electrostatic and the
thermal energies are equal), with ε the dielectric constant of the fluid. In the previous
equation, ρs stands for the charge density of the solid surfaces, if there are confining
walls or moving suspended particles in the electrolyte. Obviously, ρs will be non zero
only on those solid surfaces. The Equations (5.19), (5.20), and (5.21) are commonly
referred to as the Electrokinetic equations.

The electrostatic potential Φ can be computed using standard techniques. Specifi-
cally, we have implemented a successive over-relaxation scheme (SOR) [44], where the
Poisson equation is solved as the stationary solution of a diffusion equation (relax-
ation scheme). To speed up the convergence to the stationary state, one introduces
an over-relaxation parameter ω and iterate

Φh+1(r, t) = ω

[∑
i

(
ai1Φh(r− ci, t) + 4πlB

c2s
2

∑
α=+,−

zαρα(r, t)

)]
+(1− ω)Φh(r, t). (5.22)

The iterative electrostatic potential Φh will converges to the Φ solution of the Poisson
equation. The gradient of Φ is

∇Φ(r) = −
∑
i

ai1Φ(r− ci)ci. (5.23)
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The advantage of this model is that it does not presume a specific type of bound-
ary condition, and can be easily generalized to deal with media of different dielectric
constants. Although not as fast as other methods for solving the Poisson equation,
it is adequate for our purposes because, once the local equilibrium charge profiles
are achieved, the calculation of the disturbed electrostatic potential due to external
forces is much less time consuming than the iteration part related to lattice Boltz-
mann and convection–diffusion; alternative, more sophisticated, variants to solve the
Poisson equation numerically can be implemented wherever the standard SOR routine
proposed here becomes impractical.

5.5 Validation tests

In order to validate the model that we introduced in the previous section, we compare
its predictions against known results. In particular, we verify that the equilibrium
charge distribution is properly recovered on the lattice, and that out of equilibrium
the different coupling mechanisms between fluid flow and charge inhomogeneities are
properly accounted for.

5.5.1 Effective diffusion

As was pointed out below Eq. (5.7), the diffusion coefficient characterizing the discrete
version of the diffusion equation is not the same as the link diffusion coefficient dk but is
related to it through a simple geometrical factor A0 that depends on the type lattice
used. A0 can be evaluated as follows. Consider a situation where the transport of
species k is purely diffusive. A density perturbation ρ0, initially localized at node r0,
will spread in one time step to the connected neighboring nodes. If the process is purely
diffusive, we know the amplitude of the second moment of the density variation during
this time step and

∑
i ∆2

i ρ(r0 + ci, t0 + 1) = 6Dkρ0 = 6A0dkρ0 in a three-dimensional
cubic lattice. Let us consider for concreteness the D3Q18 lattice [13], which is the
lattice we used in our LB simulation. Since the link fluxes ji = dkρ0/∆i, after one
time step the density in each of the six nearest neighbors is dkρ0, while the density in
each of the other 12 connected nodes is dkρ0/

√
2. As a result,

∑
i ∆2

i ρ(r0 +ci, t0 +1) =
dk(6+12

√
2)ρ0, which implies that A0 = 1+2

√
2 [or Dk = dk(1+2

√
2]. Depending on

the value of dk, it might happen that the total density transferred to the neighbors is
larger than the initial density. For D3Q18 this gives us an upper bound for the input
diffusion coefficient that ensures absolute stability, dk ≤ 1/(6(1 + 2

√
2)) = 0.044.

In practice, we find that for all cases that we have analyzed, numerical instabilities
related to diffusion become relevant for values of the input diffusion coefficient dk ≥
0.05. In order to perform simulations at higher diffusivities, we need to modify the
numerical scheme to simulate the diffusion equation. This instability can be overcome
by introducing a multiple-time step technique. To this end, we introduce a smaller
diffusion coefficient dit = dk/Nit and iterate Nit times the discrete diffusion equation,
Eq. (5.7), to advance the densities one time step.

When applying this multiple time step method to solve the lattice diffusion equa-
tion, one must compute carefully the force that should be applied to the distribution
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5 Discrete solution of the electrokinetic equations

function fi at the end of the time step. In fact, Fsol should be computed at all the
intermediate steps. All these contributions should then be added to obtain the total
force at the end of the iteration. With this technique, we can vary the diffusion co-
efficient over several orders of magnitude. For example, in our simulations we could
vary Dk from Dk = 10−3 to Dk = 6 (all in lattice units).

On top of the lattice effects on diffusion itself, advection can also induce spurious
diffusion, because the lattice velocities do not coincide, in general, with the local
velocity. As a consequence, a concentrated set of particles will spread over the lattice
nodes, even if subject to a pure translational motion. Hence, only when the velocity is
commensurate with the lattice spacing, both in direction and magnitude, will spurious
diffusion be exactly zero. We must then quantify the amount of spurious diffusion.
To this end, we consider an ideal binary mixture composed of a solvent with initial
uniform density, ρs, and a solute with initial density ρt. The mixture is contained
between two parallel walls that are permeable to the solvent but impermeable to the
solute. The fluid is moving with a uniform velocity v perpendicular to the walls. As
a result of the impermeability of the walls to the solute, a steady state is reached,
determined by the solvent density profile, ρt(x), which satisfies

ρt(x) = ρ0 exp
[
− v

D∗
(x− x0)

]
, (5.24)

where v is the fluid velocity, D∗ the effective diffusion coefficient, and ρ0 the solvent
distribution at contact with the wall located at x0. In Fig. 5.2 we show the effective
diffusion coefficient measured by using Eq. (5.24) as a function of the fluid velocity
for a range of values of the diffusion coefficient. We plot D∗/D0 (where D0 is the
diffusion coefficient for a quiescent fluid). In order to show that there exists an intrin-
sic advection-induced spurious diffusion, we plot in the inset of the same figure the
difference between the effective and the input diffusion coefficient for many values of
the input diffusion coefficient as a function of the fluid velocity. Because all curves
collapse, this graph shows that the diffusion coefficient induced by the advection de-
pends only on the fluid velocity. We observe that the dependence on the (absolute
value of) flow velocity is linear with slope 1/2. Following the procedure that we used
above to compute the factor A0, we can derive an expression for the advection-induced
diffusion coefficient. In one dimension, a fraction v∆t of the density ρ(x) is displaced
to the next node, while a fraction (1− v)∆t remains at the original node. The center
of mass of the density is displaced by a factor v∆t. Simple algebra then shows that the
second moment of the density variation during a time step is < ∆2

i >= v(1− v). The
flow-induced diffusion coefficient in one dimension is therefore D∗ = (1/2)v− (1/2)v2.
In three dimensions this expression is readily generalized to yield

D∗ =
1
2

[vx(1− vx) + vy(1− vy) + vz(1− vz)] . (5.25)

By choosing a sufficiently low value of the flow velocity, and a sufficiently large value
of D0, we can largely suppress the effect of this advective diffusion.

If, on the other hand, one is interested in large values of the Peclet number (Pe =
vl/D, where v and l are, respectively, a typical velocity and length of the system and
D the diffusion coefficient of the solutes), Eq. (5.25) sets an upper limit. The smallest
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Figure 5.2: In the lattice-Boltzmann model, advection causes some spurious diffusion. The
figure shows the computed effective diffusion D∗/D0 as a function of the fluid velocity for the
steady state described in Sec. 5.2.1. The curves are drawn for different diffusion coefficients
at zero velocity: D0 = 0.38 (circles), D0 = 0.57 (squares), D0 = 0.76 (diamonds), and
D0 = 1.34 (triangles). In the inset we show that the amount of diffusion induced by the
flow does not depend on the equilibrium coefficient and has, for small velocities, a linear
velocity dependence. Symbols are the simulation results and the dashed line corresponds to
the theoretical expression described in the text.

diffusion coefficient achievable is given by the spurious diffusion (we put the proper
diffusion coefficient to zero). Then, by substituting the expression for the spurious
diffusion into the definition of the Peclet number, we obtain

Pe =
vl

D
' vl

1
2v −

1
2v

2
=

2l
1− v

. (5.26)

For reasons of flow stability, the quantity 1-v will always be of order 1. Therefore the
maximum Peclet number achievable will be Pe ' 2l. In other words, a tracer will be
able to travel a distance twice the obstacle size without feeling any diffusion.

5.5.2 Electrolyte in a slit

Next, we consider a fluid confined between two parallel solid walls at rest, with a
constant surface charge. The slit has a width L and the surface density charge is fixed
to ρ(−L/2) = ρ(L/2) = σ/2.

The space between the two slits is occupied by a solvent and counterions. In order
to achieve global neutrality, the counterion density is initially set to be uniformly
distributed, ρ(x) = −σ/L, x ∈ {−L/2, L/2}.
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The actual position of the hydrodynamic and electrostatic solid boundary cannot
be resolved within a lattice spacing. In the neutral case, for the viscosity and geometry
considered the wall can be assumed to be halfway between two consecutive lattice
nodes, as dictated by the bounce-back rule[8]. We will use this position as a reasonable
approximation. In fact, the results we describe for a planar slit indicate that for a
planar wall the electrostatic position of the wall can be taken as being midway between
the boundary nodes. For a non planar interface a separate calibration will be required.

Equilibrium distribution of the counterion density

In equilibrium, a uniform charge density on a flat wall will induce an inhomogeneous
equilibrium density profile of the counterions. For this simple geometry, the charge-
density profile of the counterions is known analytically known (at least, at the Poisson–
Boltzmann level) [22, 49] for an arbitrary surface charge density:

ρ(x) =
ρ0

cos2(Kx)
, (5.27)

where ρ0 = K2/2πlB , K is the solution of the transcendental equation,

KL

2
tan

(
KL

2

)
= πlBLσ, (5.28)

which involves the wall charge density. Since we have an exact solution for the full
Poisson–Boltzmann equation for arbitrary values of the wall charge, this geometry
is a good case to analyze the limitations of the model dealing with large charges,
i.e., beyond the linear Poisson–Boltzmann limit. For low surface charge densities, the
linear regime is recovered by linearizing Eq.( 5.28), and the parameter K becomes
KlinL =

√
4πlBσ.

In the opposite limit of high surface-charge density, K saturates at KsatL = π.
We can then quantify the deviation of the fluid from the linearized regime, where the
electrostatic interactions are small, by analyzing the departure of KL from KlinL.

In Fig. 5.3.A we show the equilibrium counterions distributions in both limits. In
our simulations we fixed the Bjerrum length to be 0.4, the channel width to 20 lattice
nodes, and we have varied the surface-charge density. In the plot we show the profiles
for K/Klin = 1.01, 1.13, and 2.01, which correspond to σ = 0.003125, 0.03125 and
0.3125 in dimensionless lattice units, respectively. The highest value of K is not far
from the saturation value. The figure shows that, with the present method, we can
indeed reproduce the correct counterion distribution, both in the linear and in the non
linear regime. In Fig. 5.3.B we compare the density profiles close to the wall in the
non linear regime for two different slit widths. The larger the surface charge the more
localized the charge profile will be. The figure shows that increasing the resolution of
the lattice does result in a small but significant improvement in the calculation of the
charge distribution. Of course, the discrepancy would be greater for a more localized
charge profile. In practice, only the computer resources (memory) will set an upper
limit for the surface charge density that can be modeled reliably with the present
scheme.
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Figure 5.3: Equilibrium distribution of the charge density of counterions (no added salt) in
the slit between two charged walls at a distance L. The abscissa measures the distance from
the wall in units of L. The local density is expressed in units of the average charge density in
the bulk: ρ0 = σ/L. A) charge distributions for three values of the dimensionless parameter
KL (see the text): KL = 0.553 (circles), KL = 1.57 (squares), and KL = 2.77 (diamonds).
In the same figure, we have indicated the corresponding analytical results [Eq.( 5.27)] (dashed
curves) for a slit of width L = 20 lattice spacings. Circles and squares correspond to the linear
regime (K/Klin = 1.01 and 1.13, respectively), while diamonds are close to the saturation
limit (K/Klin = 2.01). B) The accuracy of the numerical solution for the charge profile
can be improved by increasing the spatial resolution of the lattice, in this case from L=20
(diamonds) to L=40 (circles). Again, the analytical result is shown as a dashed curve. The
curves in B correspond to the result for a highly charged surface, KL = 2.77 (K/Klin = 2.01).

Electro-osmotic flow

Having verified that the model correctly reproduces the equilibrium behavior, we next
turn to the calculation of flow caused by an external electric field. We apply a constant
external electric field that is parallel to the slit, E||. This field causes hydrodynamic
flow as it exerts a force on those fluid elements that carry a net charge. If we take y
as the component along the walls and refer to x as the coordinate perpendicular to
the walls, then, at the Poisson–Boltzmann level, the exact solution for the fluid flow
in the steady state can be written as [49]:

vy(x) =
eE||ρ0

ηK2
log

[
cos(Kx)
cos
(
KL
2

)] , (5.29)
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Figure 5.4: Electro-osmotic flow profile in a slit of width L = 20 lattice spacings. The surface
charge density, σ = 0.003125 (K/Klin = 1.01), corresponds to the linear regime. The fluid in
between the slit contains only counterions. The electric field is along the y direction. It has
a strength of 0.1 in units kBT/(∆le), where ∆l is the lattice spacing and e is the elementary
charge. The simulation results are compared to the theoretical prediction, Eq. (5.29), shown
as a dashed curve.

where η is the shear viscosity of the fluid. In our simulations, we model the constant
electric field by taking into account the potential difference that it causes between
neighboring lattice nodes [i.e. ∆Φ̂ext(y) = E||∆y]. Figure 5.4 shows the computed
electro-osmotic flow profile in a slit confined by hard walls with a charge density
σ = 0.003125 (in units of the elementary charge per square lattice unit). In the same
figure, we also show the analytical solution [Eq. (5.29), with K/Klin = 1.01] that is
exact in the Debye–Hückel limit. Again, there is good agreement between theory and
simulation. This suggests that the effect of electrostatic forces on the hydrodynamic
flow is correctly taken into account in the simulations.

5.5.3 Sedimentation velocity

In the previous sections we have seen that the appropriate equilibrium charge distribu-
tion is reproduced both in the linear and non linear regimes of the Poisson–Boltzmann
equation, and that also a charge distribution induces the correct fluid profiles. We
must still show that the opposite coupling works correctly, i.e., we must compute the
hydrodynamic drag on a charged object, in the absence of external electrical fields.

To this end, we compute the sedimentation velocity of an array of charged spheres
immersed in an electrolyte solution. In this case, the velocity of the colloidal particle
induces a fluid flow that determines the steady charge distribution around the sphere.
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This charge distribution, in turn, affects the sedimentation velocity of the particle.
Hence, all the different couplings between charge, electrostatic potential, and fluid
flow are present. Such a scenario has been analyzed previously with a different model
[50] and analytically at infinite dilution [27]. As a consequence, we can again check
our simulations against known results.

The system that we consider consists of a charged sphere of radius a in a three-
dimensional box of size L. Because of periodic boundary conditions, this corresponds
to a periodic array of spheres with volume fraction ϕ = (4πa3/L3). In the simulation,
we first allow the electrolyte to equilibrate with the particle at rest in the absence
of external forces; hence the system develops its equilibrium double layer. Then, we
apply the gravity as an external body force applied to the fluid, i.e., we move in the
system of reference of the colloid. In this way we avoid the problem of updating the
particle’s position due to its motion [13]. By forcing the colloid to be at rest, we will
not conserve momentum, but by computing the mean fluid velocity in the steady state
(which is reached on a time scale of order L2ρ/η), we can obtain the sedimentation
velocity.

We have fixed the Bjerrum length to lB = 0.4 and the radius of the sphere to a = 4.5
in lattice units. We performed calculations for two different values of the solvent fluid
density, ρs = 1, and ρs = 20, while the density of the added salt ρk was varied between
1.8 × 10−2 and 4 × 10−4. As we vary the salt concentration, we also change the
Debye length from 3.3 to 21. In order to be sure that the equilibrium properties were
correct, we have computed the co- and counterions equilibrium-densities-distributions
and found very good agreement with the ones predicted by the Debye-Hückel theory for
all the Debye lengths considered. In particular, spheres with radius 4.5 lattice units
are well described by their approximate lattice representation. Since ρs � ρk, we
have performed most calculations using the second version of our simulation scheme,
as described at the end of Sec. 5.2.2. However, we also performed some simulations
using the original model (taking the solvent density as the overall density). The only
difference that we observe between the two implementations is a small variation in
the numerical value of the sedimentation velocity. However, this difference already
shows up for sedimentation of a neutral sphere. It is due to a small change in the
fluid viscosity that is caused by a small difference in the overall fluid density in the
two implementations. The valency of the macro ion was chosen to be Z = 10, which
corresponds to the small charge limit. Although our computational scheme should also
work outside the Debye–Hückel limit, we restrict ourselves to this regime, because it
is only in this limit that we can compare with existing analytical results. Specifically,
Booth predicted that the sedimentation velocity, U0(Z), of a weakly charged sphere
of valency Z in the dilute limit can be expressed as [27]

U0(Z)
U0

= 1− c2Z2, (5.30)

where U0 is the sedimentation velocity of a neutral sphere, and c2 is a constant that
can be computed analytically in the Debye–Hückel limit. For the simplified situation
of monovalent co- and counterions, z+ = −z− = 1, which have the same diffusivity,
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Figure 5.5: Reduced sedimentation velocity of a periodic array of colloids of valency Z = 10
in an electrolyte as a function of κa. The figure shows the results for two different values
of the ionic diffusion coefficients. The curve for D

(1)
0 = 0.95 (circles) has been rescaled to

the curve for D0 = 0.19 (x) according to Eq. (5.31), i.e., U(D) = U(D
(1)
0 ) × (D

(1)
0 /D0).

The superposition of the two curves shows that the scaling is obeyed. In the inset we also
show the results for a colloid of valency Z = 100. However, in this high-charge regime the
sedimentation velocity does not scale with the diffusion coefficient in the way predicted by the
linearized theory. The dotted lines are a guide to the eye.

D+ = D− = D, the expression for c2 simplifies to

c2 =
kBT lB

72πa2ηD
f(κa), (5.31)

where f(κa) is a linear combination of exponential integral functions [50] and is a func-
tion of the inverse Debye length, κ = λ−1

D =
√

4πlB
∑
k z

2
kρk. We have checked that

the sedimentation velocity scales as predicted with the viscosity. We have also verified
that we are indeed in the linear regime where the sedimentation velocity is propor-
tional to the applied gravitational field. In particular, for the two values of the density
considered, ρs, the linear regime was obtained for forces per unit of volume such that
the flow velocity never exceeded 0.1 in lattice units. Figure 5.5 shows the sedimenta-
tion velocity of a weakly charged sphere (Z = 10) as a function of the inverse Debye
screening length. As can be seen from the figure, the sedimentation velocities scales
with the ionic diffusivity in the way predicted by Eq.( 5.31). The inset in the same
figure shows that this scaling breaks down at higher colloidal charges ( Z = 100), i.e.,
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Figure 5.6: Sedimentation velocity of a periodic array of spheres of valency Z = 10 and
hydrodynamic radius a = 4.3. The Bjerrum length lB = 0.4 (in lattice units). The diffusion
coefficient of both positive and negative ions is set to D = 0.19. We compare simulation results
for finite volume fractions, namely 0.0416 (squares), 0.0123 (diamonds), 0.00521 (triangles),
and 0.00267 (circles) against the Booth theory, which is valid at infinite dilution (dashed
curve). For κa = 0.5 we also show the estimated value of the sedimentation velocity at infinite
dilution (see the text). The point corresponds to the extrapolation of the law, Eq. (5.33).
Within the estimated error, the extrapolated simulation results agree with the predictions of
Ref. [27]. The dotted lines are a guide to the eye.

outside the range of validity of the linearized Poisson–Boltzmann description. Figure
5.6 shows the reduced sedimentation velocity [Uϕ(Z)/Uϕ(Z = 0)] as a function of κa
for a range of volume fractions. As the volume fraction decreases, the curves approach
Booth’s infinite-dilution result, while the minimum sedimentation velocity moves to-
ward the minimum value predicted by theory. In order to compare quantitatively the
simulation results with Booth’s theory, Eq. (5.30), we must extrapolate the computed
values for Uϕ(Z)/Uϕ(Z = 0) from the finite ϕ values of the simulations to the infinite-
dilution limit, U0(Z)/U0(Z = 0). For neutral spheres Hashimoto has shown that that
the sedimentation velocity converges very slowly to its infinite-dilution value, namely,
as [56]

Uϕ(Z = 0)
U0(Z = 0)

= 1− 1.7601ϕ1/3 + ϕ+O(ϕ2). (5.32)

Ladd has numerically verified this dependence [57]. For charged spheres, due to the
electrostatic screening, we still expect that the dominant ϕ dependence comes from
excluded volume; previous results indicate that this is indeed the case [50]. When
performing the dilute limit expansion, we therefore decided to single out the major
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5 Discrete solution of the electrokinetic equations

volume fraction dependence by normalizing the simulation results with the Stokes
drag coefficient, i.e., computing the low-density limit of Uϕ(Z)/U0(0). As a result,
it is reasonable to obtain the same functional dependence on ϕ as Hashimoto with a
slightly different amplitude. Specifically, we expect

Uϕ(Z)
U0(0)

= 1− (1.7601 + ε)ϕ1/3 +O(ϕ2/3), (5.33)

where ε is much less than one. Eventually, the dilute limit is obtained by extrapolating
Eq.( 5.33) to ϕ = 0.

In Fig. 5.6 we show the extrapolated sedimentation velocities for a particular value
of κa. The estimated error in the limiting sedimentation velocity is rather large. It
could have been reduced by computing more values of the sedimentation velocity at
low volume fractions. In addition, there is some uncertainty in the value of the effective
sphere radius. In light of these uncertainties, the agreement with the Booth limit in
Fig. 5.6 is gratifying.

5.5.4 Absence of spurious fluxes

We pointed out in Sec. 5.2 that one of the incentives for developing the present model
was to eliminate any mixing of continuous-space gradients and discretized gradient
operators. The reason is that the inevitable approximations associated with the dis-
cretization of gradient operators usually lead to the appearance of spurious mass and
momentum fluxes, even in equilibrium. Such spurious fluxes are present, in particular,
whenever there exist spatial inhomogeneities related, for example, to the presence of
liquid interfaces. In the present approach, we only use lattice-gradient operators that
have been constructed such that, in equilibrium, no flow can result. To demonstrate
the effect that this has, we compare the present method with an existing “mixed”
method. In particular, we consider a spherical colloid of radius a = 4.5, at rest in an
electrolyte in a cubic box of diameter L = 20. The valency of the sphere is Z = 10
and the system as a whole is electrically neutral. In Fig. 5.7 we show the projection of
the momentum flux in the equatorial plane of the sphere and compare these residual
fluxes both for the model introduced in this paper and the model of Ref. [50]. Figure
5.7a shows that spurious currents, although small, are certainly not negligible in this
case. Moreover, their magnitude is clearly correlated with the distance to the col-
loidal particle: the largest currents appear in the region where the spatial gradients
are largest. For highly charged spheres (i.e. outside the linear Debye-Hückel regime)
these spurious fluxes will become larger. In contrast, in Fig. 5.7b (the present model),
the spurious fluxes are at the level of machine precision. In fact, to make them visible
at all, we had to multiply the momentum fluxes by a factor 1013 relative to the old
model. In other words, the residual fluxes are controlled by machine accuracy. Even
at this level one cannot detect a correlation between the fluxes and the position of
the sphere. We can conclude that the proposed model eliminates the appearance of
spurious equilibrium fluxes.

62



5.5 Validation tests

(a)

(b)

Figure 5.7: An Illustration of suppression of spurious boundary currents in the present LB
model. In the figure we compare the apparent currents in equilibrium for two models: figure
(a) gives the results for the model described in Ref. [50]; (b) shows the results for the present
model. In both cases we consider a colloidal sphere of radius 2.5 in a system with a diameter
L = 20 lattice spacings. As there are no external forces acting on the system and the colloid
is not moving, the fluid is supposed to be at rest. The figure shows the measured projection
of the momentum flux in the equatorial plane of the colloid. In (a), spurious currents are
apparent close to the particle surface. The spurious currents in case (b) are much smaller
than in case (a). In fact, to make them visible at all, they have been scaled up by a factor
1013 with respect to case (a). This is an indication that the spurious currents in case (b) have
been suppressed down to machine accuracy.
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5 Discrete solution of the electrokinetic equations

Conclusions and discussion

We have introduced a new model to simulate the collective dynamics of non ideal fluid
mixtures, with a special emphasis on its use to study electrokinetic phenomena. The
method relies on a lattice-Boltzmann model, where the interactions are introduced as
effective forces. In this respect, our model resembles a Vlasov kinetic model, as opposed
to previous kinetic lattice models. In our approach the fluxes between neighboring
lattice nodes are the fundamental dynamical objects that couple external fields to
both electrical conduction and hydrodynamic flow.

As a result of the symmetric formulation of the flux between neighboring nodes
we can impose strict local mass conservation. As a consequence, the present model
is free of spurious boundary fluxes that plague all other lattice-Boltzmann models of
fluid mixtures. Moreover, a link-based description has the additional advantage that
boundary conditions are easily implemented.

Second, by using a multistep approach, we can vary ionic mobilities over many
orders of magnitude. This feature of our model allows us to explore electroviscous
effects over a wide range of Peclet numbers. We have shown that flow causes spurious
advection–diffusion. However, this effect is well understood and can be made negligible
in most practical cases.

We have checked the performance of the model by studying equilibrium diffuse
layers, showing that it is possible to recover both low- and high-charge density regimes.
In the latter, the only limitation is related to computational resources, because a finer
grid is required to resolve the narrower charge profiles that develop nearly highly
charged walls. To test the coupling of electrostatics and fluid flow, we have computed
the sedimentation velocity of a charged sphere. These simulations indicate that the
existing theoretical predictions are reproduced in the low-charge, low-density limit.
As the charge of the colloid is increased, the simulation results start to deviate from
the theoretical predictions that apply in the linearized Poisson–Boltzmann regime.

Even though in the present paper we have focused on electrostatic interactions
and, in particular, we have not discussed molecular interactions that favor demixing,
such interactions could also be incorporated in the present model.
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6 Sedimentation velocity of highly
charged spheres

Abstract

In this Chapter, I discuss the sedimentation velocity of a highly charged spherical
colloid in an electrolyte. First, I briefly discuss “charge localization” for highly charged
colloids. Second, I show the consequences of this localization on the co- and counterions
equilibrium charge distributions. I then discuss the reduction in sedimentation velocity
of a highly charged sphere. As the surface charge σ is increased, we observe a cross-
over from a region where the variation in sedimentation velocity is quadratic in σ,
as predicted in the Debye-Hückel limit, to a region where the dependence upon the
surface charge is either linear or logarithmic. We argue that this switch to a quasi
linear reduction in the sedimentation velocity is related with the increasing localization
of the charge distributions. We find that the use of the effective surface charge in the
interpretation of the sedimentation velocity of highly charged spheres, improves only
marginally the range of applicability of the non-equilibrium theories based on the
Debye-Hückel limit.

6.1 Introduction

In this chapter, I exploit the method introduced in Chapter 5 to study the effect of the
charge on the sedimentation velocity of a highly charged macroparticle, immersed in
an electrolyte. For electrolytic solutions, I already presented the governing equations
in Section 3.3. In principle, one could use these equations to compute the distribution
of microions near a macroscopic particle. Although solutions are only available in the
Debye-Hückel regime, which is valid if the electrostatic potential Φ is everywhere small
(i.e. eΦ � kBT ). However, even for highly charged particles, there will always be a
region where the Debye-Hückel theory is accurate because the electrolyte screens the
charge. This region has been used by several authors [58, 59, 60] to extrapolate to the
value of the electrostatic potential at contact. For highly charged spheres (see, e.g.
[61, 62]) there is an effective accumulation of the counterions near the charged particle.
This effect is distinct to Manning condensation [63, 64] which is the phenomenon of
charge condensation near charged cylinders. Yet, some of the consequences are similar.

This localized layer is also distinct from the Stern layer. The latter has spatial
extension of the order of the radii of the microions and cannot therefore be described
in terms of a Boltzmann equilibrium, where the particles are taken to be point like.
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6 Sedimentation velocity of highly charged spheres

The localization mechanism, which we discuss here, is entirely described in terms of
the Poisson-Boltzmann formalism.

6.2 Charge localization for non rod-like particles

Let us recall the relevant equations. To simplify the notation we use the dimension-
less electrostatic potential U = (e/kBT )Φ, and the Bjerrum length lB = e/4πεkBT,
where ε is the dielectric constant of the medium. The equilibrium concentration for
monovalent co- and counterions in the presence of an electric field is approximated by
the Boltzmann equilibrium [cf. Eq. (3)]

n±(r)
n0

= e∓U(r), (6.1)

while the electrostatic potential is computed by solving the complete Poisson-Boltz-
mann equation (PB)

∇2U(r) = 4πlBn0

[
eU(r) − e−U(r)

]
. (6.2)

In the Debye-Hückel theory, the electrostatic potential is supposed small (U � 1),
and the exponential in Eq. (6.2) can be approximated as

e±U(r) ' 1± U, (6.3)

which leads to the linearized Poisson-Boltzmann equation (LPB)

∇2U(r) = 8πlBn0U(r). (6.4)

Equation (6.4) has the solution for a the potential near a flat, charged surface
U(z) = U0 exp(−

√
8πlBn0z). For a sphere U(r) = U0(a/a + r) exp(−

√
8πlBn0r)/r

(where U0 is the electrostatic potential at contact and r is measured from the sphere
surface). The approximation (6.3) has the consequence that the co- and counterions
density distributions, are not given by the full PB solutions

nPB
± (r)
n0

= e∓U(r), (6.5)

but by
nLPB
± (r)
n0

= 1∓ U(r). (6.6)

For small U(r) the two equations are equivalent, but in the presence of an highly
charged macroscopic object, the two expressions predict drastically different equilib-
rium distributions when |U | > 1. Nonetheless, due to the screening of the charge, it
is still true that, at large enough distances (in practice when, again, |U | � 1), the
linearized Poisson-Boltzmann equation is a good approximation, and the two solutions
(6.5) and (6.6) are indistinguishable. Thus, we can define a distance r0 such that for
any r ≥ r0, nLPB

± ' nPB
± . The region of charge accumulation is naturally defined as
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Figure 6.1: Computed nPB(r)/n0 (symbols) and approximate nLPB
± (r)/n0 = 1 ∓ UPB (con-

tinuum lines) for a surface charge 0.005 (circles), 0.015 (squares), and 0.025 (diamonds).
Distance are measured from the surface of the sphere.

the region r ≤ r0. If, on the other hand, r0 = 0 —in other words, if the LPB gives
accurate results in the whole space—there are no localized counterions.

Although the equilibrium distributions of co- and counterions have been known for
centuries, we show the result of a computer simulation for an array of spheres with a
twofold purpose. On the one hand, we use them to illustrate the difference between
the full and the linearized Poisson-Boltzmann equations. On the other hand, we will
use these equilibrium properties as an explanation for the non equilibrium dependence
of the sedimentation velocity upon the surface charge. The details of the simulation
method are presented in Chapter 5. The array is made of spheres of radius a = 4 at
the volume fraction 1.2× 10−3, with Bjerrum length lB = 0.4, κa = 1, and (for future
reference) the diffusivity of the ions making the 1-1 electrolyte is D = 0.038.

We directly computed the nPB, while we the nLPB are obtain from Eq. (6.6). Be-
cause for the potential U(r) we substituted the numerical solution of the non-linear
PB, in fact, our nLPB

± is only an approximate solution of the LPB. Strictly speaking the
electrostatic potential should be consistently computed from the LPB. However, this
does not constitutes a serious approximation in that, although nLPB and nPB are very
different, because of the exponential present in Eq. (6.5), the electrostatic potential
ΦLPB, solution of the LPB, will not differ too much from the ΦPB, solution of the full
PB. In Figure 6.1 we show the co- and counterions equilibrium distribution functions
for a weakly charged spheres with increasing surface charge (the symbols represents
the nPB, while the continuous lines the nLPB). For the smallest value of the surface
charge (σ = 0.05), the two curves are indistinguishable, which shows that the LPB
gives, in this limit, a very accurate representation of the full PB. When the surface
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Figure 6.2: nPB
± (r)/n0 for a moderately charged sphere of surface charge 0.12 (spheres), 0.25

(squares), and 0.37 (diamonds). The dotted lines are a guide to the eye.

charge is small, a minor modifications of the uniformly distributed distribution density
is sufficient to screen the colloid charge and both co- and counterions participate, with
a comparable quantitative role, in the screening. It is important to remember that
the equilibrium distribution function of the counterions (coions) is given by the com-
petition between the electrostatic attraction (repulsion) and the entropy, the latter of
which favors an homogeneous distribution of the densities (see also Chapter 3).

When the surface charge increases, the combined effect of electrostatics and entropy
becomes visible through an asymmetric equilibrium distributions of the microions. On
average, the counterions, being closer to the sphere, will feel a higher electric field.
This effect starts to manifest itself at the larger value of surface charge in Figure 6.1
and it is definitely visible in Figure 6.2. In this figure, we can see the asymmetric
distribution of the co- and counterions due to the competition between entropy and
Coulomb interaction. Such an asymmetric distribution, will never be present in the
linearized Poisson-Boltzmann equation because of Eq. (6.6).

If we keep increasing the surface charge (Figure 6.3), we can observe (see also the
inset) that the coion density hardly changes with increasing surface charge, because
most of the extra charge is already screened by the counterions near the sphere. The
concentrations of counterions, on the contrary, keeps increasing with increasing sur-
face charge, but only near the surface. It is as if all the extra counterions, needed to
maintain charge neutrality, are localized near the surface.

In this last scenario, it is apparent that the result for nLPB and nPB are drasti-
cally different. This is shown in Figure 6.4a, where the continuous curve represents
1±UPB(r). Near the surface, the LPB even predict an (unphysical) negative number
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Figure 6.3: nPB
± (r)/n0 for a highly charged sphere of surface charge 0.48 (spheres), 0.75

(squares), and 0.99 (diamonds). In the inset we show the coion density near the surface of
the sphere. The dotted lines are a guide to the eye.
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Figure 6.4: Computed nPB(r)/n0 (symbols with dotted lines as a guide to the eye) and ap-
proximate nLPB

± (r)/n0 = 1 ∓ UPB (continuum lines) for a charged sphere of surface charge
0.48 (circles), 0.75 (squares), and 0.99 (diamonds). We show in detail the region where the
approximate and exact equilibrium distribution densities disagree (a) and the one where they
agree (b). Distances are measured from the surface of the sphere.
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6 Sedimentation velocity of highly charged spheres

density of coions. Nevertheless, even in this limiting scenario, there exists a distance
beyond which the LPB approximation gives a good estimate for the charge distribu-
tions (Fig. 6.4b).

6.3 Sedimentation velocity

In the present section we consider how the sedimentation velocity depends on the
surface charge σ; with special attention to high surface charges. Let us begin by
recalling the sedimentation theory given in Chapter 3. Booth [27] predicts that the
sedimentation velocity V (Z) of a weakly charged sphere of valency Z can be expressed
as

V (Z)
V (0)

= 1− c2(κa)Z2, (6.7)

c2(κa) =
kBT lB

72πa2ηD
f(κa), (6.8)

where V (0) is the sedimentation velocity of a neutral sphere, c2 is computed in the
Debye-Hückel limit for the simplified situation of a symmetric 1-1 electrolyte, and
f(κa) was explicitly given in Section 3.2.2. κ is the inverse Debye length, κ = λ−1

D =√
4πlB

∑
k z

2
knk and we make use of the dimensionless length κa. We fix κa = 1 (the

value around which the effects of electrohydrodynamics is the largest) and study the
surface charge dependence of

Υ(σ) ≡ 1− V (Z)
V (0)

= Aσ2. (6.9)

In Equation (6.9) A = c2(1)(4πa2)2, while σ = Z/(4πa2) is the surface-charge den-
sity of the sphere. In Figure 6.5 we show the computed σ−dependence of Υ(σ).
For weakly charged colloid, the prediction of the Booth theory [Eq. (6.9)] is qualita-
tively confirmed, as shown in the inset of the graph. However, a completely different
surface-charge dependence is present for highly charged spheres. Specifically, we ob-
serve a cross-over region (from values of the surface charge ranging from σ ' 0.1 to
σ ' 0.4) followed by a region where the increase in Υ is approximately linear with σ.
Although, to our knowledge, this behavior is not well understood in general, Ohshima
et al. [65] give an analytic formula valid in the limit κa → ∞ where they predict a
constant value for an infinitely charged sphere.

For surface charges of the order of 0.1 there is no symmetry between the co- and
counterions densities. It seems likely that the observed behavior of Υ(σ) reflects the
behavior of the microion densities.

We can make a 1-1 correspondence with the three regimes already identified. In
the low charge limit, where the theory predicts the observed σ2 dependence, both equi-
librium co- and counterions distributions are equally modified by the Coulomb force
due to the charged sphere. In the cross-over region (between σ ' 0.1 and σ ' 0.4),
the equilibrium charge distributions corresponding to the one of Figure 6.2, where
the coion equilibrium distributions changes only slightly upon increasing the surface
charge. Finally, upon further increasing the surface charge, we enter the region of
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Figure 6.5: Υ(σ) (symbols) as function of the surface charge σ, for κa = 1. The dotted line
is a guide to the eye. In the inset we show Υ(σ) for low value of σ versus σ2; the inset show
that the quadratic dependence, predicted by the Booth theory, is obtained. In the inset the
dashed line is a linear fit of the simulation results for σ2 < 0.001. The region between σ ' 0.1
and σ ' 0.4 is a cross-over region between the quadratic dependence of Υ with σ and a more
linear one.

charge “localization”, where the coion equilibrium distributions hardly change upon
incrementing the surface charge (see the inset of Figure 6.3). This suggest that, for
large σ, only the counterion contributes to a further slowing down of the sedimentation
velocity.

To test this idea, we repeated the simulation for a system with no-added salt. In
Figure 6.6 we compare Υ(σ) for a system with and without added salt. The figure
shows, that for surface charge larger than σ ≥ 0.5 both curves have an approximately
linear profile, although with a slightly different slope: ' 0.2 for the added salt curve
and ' 0.25 for the no-salt curve. We should not expect quantitative agreement be-
cause, in the added salt case, the flow is, of course, also influenced by the coions.

Although, for the salt and the no-salt systems, we observed a similar dependence
of Υ(σ) on σ for high surface charge, at small σ this is no longer true as shown in
Fig. 6.7. In the inset, we show the exponent α, defined as the derivative of the log-log
plot of Υ(σ), of the region close to σ ' 0. The inset shows that while the added-salt
system has a quadratic dependence upon the surface charge, the no-salt one appears
to have a dependence that is close to cubic.

Another strong indication that only the counterions are responsible for the reduc-
tion in the sedimentation velocity in the high surface regime comes from an experi-
mental paper by Schumacher and Van de Ven [66]. These authors performed a series
of sedimentation experiments for different types of salt, and showed that, for highly
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Figure 6.6: Υ(σ) as function of the surface charge σ, for κa = 1 for a system with added salt
(circles) and for a no-added salt one (squares). The dotted lines are guide to the eye.
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Figure 6.7: Comparison of the low-surface-charge dependence of Υ(σ) for a added- (sphere)
and a non-added salt (squares) system. for κa = 1. Lines are guide to the eye. The two
system shows a different low-surface-charge dependence. In the inset we show the exponent of
a supposed algebraic decay; the added salt system (sphere) shows the σ2 dependence upon the
surface charge predicted by the Booth theory, while the no-salt system shows a σ dependence
closer to cubic.
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charged colloidal spheres, the reduction in the sedimentation velocity does not depend
on the properties (the diffusivity) of the coions.

6.4 Effective surface charge

In the previous section, I discussed the surface charge dependence of the sedimentation
velocity of a sphere. However, sedimentation experiments are usually interpreted in
terms of the Booth theory. Often, however, the surface charge of the experimental
colloids is too high for the Booth/Ohshima theory to hold. In the absence of alterna-
tives, the linear theory is still used. To fit experiments, one must assign an effective
charge to the colloids. However many papers are skeptical about the usefulness of the
concept of effective surface charge [24]. The standard procedure to define an effective
surface charge is to use the relation between surface charge and electrostatic potential
at contact U0 (often referred to as the ζ potential) which is valid in the Debye-Hückel
theory [31], i.e.

eΨ0

kBT
=
eσ̃λD
εkBT

(6.10)

where Ψ0 and σ̃ are the dimensional electrostatic potential at contact and surface
charge, respectively. Equation (6.10) is conveniently expressed by means of dimen-
sionless quantities as

U0 ≡ ζ = 4πlBλDσ. (6.11)
In the high charge regime, however, this relation does not hold. Due to the presence of
the condensed region of counterions, in fact, the ζ potential is smaller than the value
given by the Eq. (6.11) [67]. One can the define an effective surface charge σ∗ such
that

σ∗ ≡ ζ

4πlBλD
. (6.12)

To obtain the ζ potential, from the region where the LPB is a good approximation
of the full PB, one extrapolates the electrostatic potential at contact, assuming that
it retains the functional dependence predicted by the LPB (for spheres, the Yukawa
potential). This would be meaningful if the sedimentation velocity would retain the
charge dependence predicted by Booth and Ohshima [Eq. (6.7)] with respect to this
effective surface charge. If a saturation value for the surface charge is reached, then
the same would hold for the sedimentation velocity. In the following, we show that
this expectation is, in fact, not supported by our numerical solution of the non-linear
equations.

Figures 6.8, 6.9, and 6.10, show U(r)/4πlBλD—which for r = 0 is the surface
charge of the sphere [see Eq.(6.11)]—for increasing values of σ in the low, medium
and high charge regimes, respectively. We observe that as Eq. (6.11) holds for weakly
charged colloids, but this is no longer true for medium and highly charged colloids.
In the same figures, we show the extrapolated values of the electrostatic potential,
assuming that the Yukawa potential is valid everywhere. In other words, we fit the
exact electrostatic potential where Φ� 1 extrapolating to r = 0 with

U(r) = U0
a

a+ r
e−κr, (6.13)
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Figure 6.8: Effective surface charge for a weakly charged colloid. We plot U(r)/4πlBλD
(such that U(0)/4πlBλD ≡ ζ/4πlBλD = σ∗) for nominal surface charges equals to σ =
0.005 (spheres), σ = 0.015 (squares), and σ = 0.025 (diamonds). The symbols represent
the computed electrostatic potential, while the continuous lines represents the extrapolation
to contact of LPB (for this particular values of σ LPB holds everywhere). The plus symbols
show the actual value of the surface charges.

where, again, the distance is measured from the surface of the sphere. The only ad-
justable parameter in this extrapolation procedure is U0. It is, at first sight, very
surprising that this approximate expression for the electrostatic potential is accurate
even in the vicinity of the spheres, as one can see by comparing the continuous lines
with the points. On the other hand, the fact that the expression relating ζ and σ
is not accurate should not surprise the reader, because Eq. (6.11) assumes a weakly
charged colloid, with little or no influence of the microions.

To test whether this renormalization of the surface charge leads to good agree-
ment between the computed sedimentation velocities and the theory of Booth, we plot
V (Z)/V (0) versus σ∗. In Figure 6.11 we show the Booth prediction versus the surface
charge. The three different curves represent three different ways of computing the
surface charge. The spheres symbols is a repetition of the curve in Figure 6.5, where
in the abscissa we plot the actual surface charge. Then, there are two ways of defining
an effective surface charge by means of Eq. (6.12). The first, by using the computed
electrostatic potential given by the full PB (filled diamonds symbols in the figure);
the second, by using the approximate electrostatic potential given by the extrapo-
lation from the solution of the LPB (open square symbols in the figure). Although
the curves with the effective surface charge are somewhat closer to the Booth theory
prediction, they still do not show a σ2 dependence. Because we can compute all the
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Figure 6.9: Same as Fig. 6.8 for surface charges σ = 0.12 (spheres), σ = 0.25 (squares), and
σ = 0.37 (diamonds).
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Figure 6.10: Same as Fig. 6.8 for high surface charge: σ = 0.48 (spheres), σ = 0.75 (squares),
and σ = 0.99 (diamonds).
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Figure 6.11: Υ(σ) versus σ as predicted by Booth (dashed curve), and the computed Υ(σ)
versus (1) the imposed surface charge (circles), and versus the surface potential computed by
means of Eq. (6.12) where the ζ potential is (2) computed from the non-linear PB (diamonds)
or (3) extrapolated by assuming a Yukawa-like form (squares). We observe that although the
surface charge renormalization improves the agreement of the Booth theory with the computed
sedimentation velocity, the disagreement is still substantial. The lines joining the simulation
points are guide to the eye.

relevant quantities, we can pinpoint the origin of this mismatch. While the electro-
static potential approximation is quite accurate, the approximated expression for the
microion distributions, which is implicit in the use of the linear Poisson-Boltzmann
equation, breaks down.

Although not self consistent, a better estimate for the sedimentation velocity could
be obtained by making use of the approximate electrostatic potential of the Debye-
Hückel theory, while using the full Poisson-Boltzmann distributions to compute the
microion distributions. In more formal terms, instead of using

nLPB
± (r) = n0

[
1−∓ULPB(r)

]
(6.14)

as an approximation for
nPB
± (r) = n0e

∓UPB(r) , (6.15)

We propose to use
n±(r) = e∓U

LPB(r). (6.16)

As we argued that the the co- and counterions cloud at the equilibrium determine the
sedimentation velocity of the macroparticle, we define a phenomenological procedure to
compute an effective charge compatible with this idea. From our computer simulations,
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Figure 6.12: Υ(σ) versus σ as predicted by Booth (dashed curve), and the computed Υ(σ) ver-
sus σ computed by means of the phenomenological procedure described in the text (triangles).
It is also redrawn Υ(σ) corresponding to the type (3) in Fig. 6.11 (squares).

we obtain the values for nPB
± and of UPB. Then we compute the linearized microion

distributions by means of Eq. (6.6) (nLPB
± (r) = n0 [1∓ U(r)]). We can now re-compute

the electrostatic potential by substituting nLPB with nPB. In other words, we compute
∓U∗(r) = ln[nLPB

± (r)/n0]. Note that U∗(r) is just a convenient (yet arbitrary) way of
defining an effective electrostatic potential. Finally, we define ζ ≡ U∗(0) and obtain a
renormalized surface charge using Eq. (6.12). We show the result for the sedimentation
velocity in Figure 6.12. Clearly this method, although it gives a better estimate of the
sedimentation velocity has no solid foundation. A proper analysis would require the
repetition of the original Booth (or Ohshima) treatment by using the substitutions
which we are proposing.

77



6 Sedimentation velocity of highly charged spheres

78



7 Sedimentation velocity of charged
disks

Abstract

In this chapter, I present simulation results for the sedimentation velocity of charged
disks. We explicitly took into account the hydrodynamic and electrostatic interactions
and the deviation from the equilibrium position of the double layer.

In order to analyze the effect of the shape of the disk, the results are compared with
those for a sphere with equal surface and charge. The results show that the reduction
in the sedimentation velocity for disk-like macro particles has a different dependence
on κa than spheres. An analysis of the behavior of highly charged disks (beyond the
scope of the linearized Poisson Boltzmann equation) shows that the charge dependence
of the sedimentation velocity of disks is similar to that of spheres. Our results suggest
that the disks become hydrodynamically more symmetric at high charge.

7.1 Introduction

In this chapter I present calculations on the electrokinetics of charged disks. Such sys-
tems are of both theoretical and experimental interest. Because disks are not spheri-
cally symmetric, they provide an ideal model system to study the effect of the shape
on the coupling between electrostatic and hydrodynamic response of a macroscopic
particle. In fact, several theoretical studies suggest that there may be non-trivial cou-
pling effects due to shape asymmetries [68, 69].

From a practical viewpoint, there are several charged disk-like and rod-like mo-
lecules that are biologically relevant. The most important of these is DNA. In the
literature (see, for example, [70]), the hydrodynamic properties of hard rods and hard
disks are claimed to be relevant for unerstanding the electrophoretic mobility of, for
example, DNA. However, Ref. [70] concerns with purely neutral particles, and hence
does not take the coupling between hydrodynamics and electrostatics into account.
Since DNA is highly charged under physiological conditions, a systematic study of
the electrohydrodynamic properties of highly charged particles is relevant for a better
understanding of the motion of charged polyelectrolytes.

Many natural and synthetic clays (e.g. laponite) constitute another class of real
systems that can be modeled as charged disks.

With our simulation method, we were able to study the dynamics of charged par-
ticles with arbitrary shapes in electrolytes at the Poisson-Boltzmann level, thus ne-
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glecting charge correlation effects. For many systems this is not a serious limitation,
in particular if the electrolyte contains no polyvalent ions.

7.2 Electrokinetic model

We will analyze a simple geometry in which one disk-like colloidal particle of radius
a and height h sediments due to the action of a uniform external field. The disk has
an overall charge Q = Ze, where Z is its valency and e is the elementary unit of
charge, a radius a and aspect ratio p = 2a/h . The disk is assumed to be suspended
in a symmetric electrolyte. For the sake of simplicity, we assumed that both co- and
counterions have the same mobility and valency. The fluid mixture is characterized
locally by density of the solvent ρs and by the densities of the electrolyte microions
ρ±. The latter determine also the local fluid charge, q(r) = ze[ρ+(r)− ρ−(r)]. We will
restrict ourselves to monovalent electrolytes, where z = 1.

The dynamics of the overall system is governed by the electrokinetic equations,
which specify how fluid momentum is accelerated due to local charge accumulation,
while local fluid velocity in turn affects the convection of electrolyte densities. We
rewrite these equations from Section 3.3 as

∂

∂t
ρk = −∇ · jk k = +,− (7.1)

∂

∂t
(ρv) = η∇2 (ρv)−∇p+

kBT

e
q∇Φ. (7.2)

jk = −ρkv +Dk [∇ρk + zkρk∇Φ] (7.3)

where Dk stands for the diffusivity of each electrolyte. In the case of symmetric
electrolytes all Dk are the same. Φ ≡ Φ̂/(eβ) stands for a dimensionless electrostatic
potential. Φ satisfies the Poisson equation

∇2Φ = −4πlB

[∑
k=±

zkρk + ρw

]
, (7.4)

where lB = βe2/(4πε) is the Bjerrum length (with ε = ε0εr denoting the medium di-
electric constant), while ρw refers to the charge density due to embedded solid objects,
either colloids of solid walls.

Equation (7.1) is simply a conservation law and (7.3) is the constitutive equation.
Together with the incompressibility condition ∇ · v = 0, Eq. (7.2) corresponds to
the Navier-Stokes equations for an incompressible, isothermal electrolyte at vanishing
Reynolds number. η is the shear viscosity. In the presence of a gravitational field,
the corresponding force must be added to the right-hand side of Eq. (7.1).

7.2.1 Simulation method

As a simulation method, we employed the lattice-Boltzmann method described in
Chapter 5.

We took the lattice spacing as the unit of length, and the time step as the unit of
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time. We fixed the kinematic viscosity to ν = 1/6 to render the simulation algorithm
simpler [8]. The solvent density is taken as unity, ρs = 1, the (gravitational) body force
was fixed to be 10−6 (in the usual lattice units), which is well inside the linear response
regime and generates fluid velocities of the order of 10−8. The electrolyte diffusivity is
set to D = 0.19. Spurious diffusion due to advection is negligible (see Chapter 5). The
values of the diffusivity and of the flow velocity result in Péclet numbers smaller than
10−1. For these low Péclet numbers we do not expect to observe a large distortion of
the electric diffuse layer. In the simulations described in subsequent sections we vary
the salt density in the range between 7 × 10−4 and 5 × 10−3 as a way to control the
diffuse layer width.

7.3 Sedimentation of neutral disks

Before assessing the role of electrostatics on the sedimentation of non-spherical par-
ticles, we need to analyze the sedimentation of hard disks within lattice Boltzmann
since, contrary to the case of spheres, there are no analytic expressions for the sedi-
mentation velocity of an isolated hard disk with finite aspect ratio. In order to validate
our computer simulations, we then used analytical theories available for the sedimen-
tation velocity of infinitesimally thin disks [71, 72].

We simulated disks with two different nominal aspect ratios p = 10 and p = 5,
corresponding to disks of lateral dimension h = 2, and radii a = 10 and 5, respec-
tively. However, because the solid particle is identified as the midpoint between the
links joining fluid and solid nodes, the hydrodynamic shape of the object may differ
slightly from the nominal one. We need, hence, to calibrate the shapes of the disks to
avoid spurious lattice artifacts entering the subsequent numerical analysis. An unam-
biguous way to determine these effective sizes (the hydrodynamic radius and height),
is to measure the friction coefficients of the particles and then use known formulae
that relate the friction coefficients to the particles’ sizes. In addition, a second com-
plication arises in computer simulations. Since we use periodic boundary conditions,
we measure in practice the friction coefficient of a regular array of particles at volume
fraction ϕ = πa2h/L3, where L is the simulation box lateral size. Hence, one needs
to generate a series of simulations with increasing box size in order to extrapolate the
infinitely diluted friction coefficients for a neutral disk. An analogous procedure will
be needed to study the sedimentation velocity of a charged disk in the dilute limit.

7.3.1 Friction coefficients

To compute the sedimentation velocity of the disk, we placed it on the lattice and
performed the simulations in the frame of reference centered on the disk. We then
applied a body force to the fluid equal and opposite to the gravitational force acting
onto the disk and measured the total fluid velocity at the steady state vF . Because this
velocity is equal and opposite to the sedimentation velocity of the particle Ud = −vF ,
we can relate the sedimentation velocity to the friction coefficient via the formula Ud =
Fg/ξ, where Ud is the sedimentation velocity of the disk, ξ is the friction coefficient,
and Fg is the gravitational force. As the disk is not spherically symmetric, we studied
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Figure 7.1: Edgeside (circles) and broadside (squares) friction coefficients for a sedimenting
neutral disk of aspect ratio p = 5 as function of the array’s volume fraction. The friction
coefficients are normalized by the friction coefficient of a sphere with radius R = a of the
cylinder, i.e. ξ0 = 6πηR. The dashed lines are linear fits.

the friction coefficients along the two principal axes, respectively the edgewise and
broadside friction coefficients.

Hashimoto [56] has shown that the friction coefficient of an array of hard spheres
scales as (ξ/ξ0)−1 = 1−1.76ϕ1/3+ϕ+O(ϕ2), indicating that, to lowest order in volume
fraction, the decrease in velocity is controlled by the number density of the particle
array. Hence, we expect the same functional dependence to hold for neutral disks.
As can be seen from Fig. 7.1, the simulations do indeed suggest a ϕ1/3 dependence
of the friction coefficient. Then we used this functional dependence to extrapolate
to infinite dilution. In Figure 7.1 we show the edgeside and broadside friction
coefficients for the neutral disk with p = 5 at various volume fractions, normalized
by the Stokes friction coefficient of a sphere with the same area, i.e. by ξA ≡ 6πηR,
R =

√
a(a+ h)/2. From this plot we derived the friction coefficients ξedge and ξbroad

for an isolated disk. It is known that the friction coefficient of an infinitely thin
disk, which corresponds to the limit p → ∞, becomes identical to that of an oblate
spheroid with the same aspect ratio between its main axis [72]. There exists numerical
evidence indicating that for a (finite) not too small value of p, the friction coefficient
of a disk does not deviate much from that of an oblate ellipsoid at intermediate and
large aspect ratios, and numerical simulations results have been published for the
analogous problem of disk diffusion [70]. Hence, we can use those estimates to assess
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ξA = 6πηR p=5 p=10
Simulation Oblate spheroid Simulation Oblate spheroid

ξedge/ξA 0.91 0.9 0.93 0.85
ξbroad/ξA 1.1 1.06 1.19 1.11
ξedge/ξbroad 0.83 0.84 0.78 0.77

Table 7.1: Friction coefficients of an isolated disk in edgeside and in broadside motion nor-
malized by the Stokes friction coefficient ξA = 6πηR of a sphere with equal surface area, i.e.
with radius R =

√
a(a+ h)/2 (a it the radius of the cylinder). We compare the computed

value of the friction coefficients with approximate theoretical values for an oblate spheroid
with the two axis equal to the disk radius and to the disk height. We studied two disks with
aspect ratios p = 5 and p = 10, respectively.

the hydrodynamic shape of the neutral disks.
We summarize the results for the normalized friction coefficients for disks of two

aspect ratios in Table 7.1. For the disk with p = 5, we conclude that, to a good
approximation, the hydrodynamic radius and height correspond to the nominal ones.
The numerical values obtained for the larger disk (p = 10) are less satisfactory than for
the shorter one. This may seem surprising, since for a larger object the disagreement
between the nominal and hydrodynamic size is expected to decrease. However, the
ratio between the perpendicular and parallel frictions ξedge/ξbroad do agree with the
value estimated on the basis of the nominal size, suggesting that the deviations come
mostly from uncertainties related to finite volume fraction. Hence, we conclude that,
also for this shape, the disagreement between the two sizes is negligible, and ascribe
the deviations to interactions with the periodic images. Such interactions are larger
for the more asymmetric disk (especially for broadside sedimentation), taking into
account that for the two disks the simulations have been run at equal volume, rather
than at comparable volume fractions.

7.4 Sedimentation velocities of charged disks: effect of
charge

Before discussing the computed sedimentation velocities of charged disks, I briefly
recall the sedimentation velocity theory for weakly charged spheres presented in Sec-
tion 3.2.2. Booth [27](and Ohshima et al. [28]) predict that the sedimentation velocity
of an isolated sphere Us(Z) is a quadratic function of the sphere charge which can be
expressed as

Us(Z)
Us(0)

= 1− c2(κR)Z2, (7.5)

where Us(0) is the sedimentation velocity of a hard sphere in the dilute limit, and the
pre-factor c2, for a symmetric 1-1 electrolyte is, in the Debye-Hückel theory,

c2(κR) =
kBT lB

72πR2ηD
f(κR), (7.6)
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R is the radius of the sphere and κ =
√

4πlB
∑
k z

2
kρk is the inverse Debye length which

characterizes the size of the electrical double layer. The function f(κR) is presented
in Section 3.2.2.

We expect that the dependence on colloidal charge given by Eq. (7.5) will also
hold in the Debye-Hückel limit for disks since they differ from the spheres only in
the hydrodynamic properties, which in turn only enter in the factor c2(κR). To test
this hypothesis, we computed 1 − Ud(Z)/Ud(0) for disks. If the behavior of disks is
similar to that of spheres, this function should be linear in Z2. The inset of Fig. 7.2
shows 1 − Ud(Z)/Ud(0) as function of Z2 for two disks with aspect ratios p = 5 and
p = 10. We fixed the Debye screening length so that κa = 1. Moreover, because
the dilute-limit expansion procedure is computationally expensive, we performed the
simulations at constant volume fraction, ϕ = 7.2× 10−4 for the disk with p = 5, and
ϕ = 2.9 × 10−3 for p = 10. Hence, we assume that Eq. (7.5) is generalized to finite
volume fraction, with the sedimentation velocity normalized by the sedimentation
velocity of hard disks at the corresponding volume fraction. The inset of the figure
clearly displays the expected dependence on disk charge both for edge and broadside
sedimentation.

7.4.1 High charge regime

In many cases of practical interest, colloidal particles are highly charged (for disks par-
ticles see [73]). In this regime the theoretical framework put forward by Booth breaks
down. To analyze the behavior of the sedimentation in this regime, we performed sim-
ulations for the sedimentation of charged disks at constant volume fraction, where we
varied the disk charge over a wider range. In Figure 7.2 we plot again 1−Ud(Z)/Ud(0)
as function of the surface charge σ = eZ/ [2πa(a+ h)]. One can identify the quadratic
dependence discussed above, a crossover region from surface charge densities between
0.1 and 0.4, and, eventually, a more linear regime. This behavior is consistent with
the numerical results on the sedimentation velocity of charged colloidal spheres (see
Chapter 6) which also showed a deviation from Booth’s predictions for surface charge
densities around 0.1. The crossover takes place in the same range for both parallel and
perpendicular sedimentation.

If one compares the deviation of the sedimentation velocity for edge- and broadside
motion, as displayed in Fig. 7.2, we can see that the sedimentation velocity decreases
faster for edgeside motion regardless of the aspect ratio, which indicates that the elec-
trokinetic coupling is stronger for this orientation. In the same figure, we also show
the decrease in sedimentation velocity for a sphere of radius R = 4.2, which shows
the same dependence on surface charge as that of the disks. If one now compares
the sedimentation velocity of disks for two aspect ratios, one observes that, at high
charges, 1− Ud(Z)/Ud(0) for both disks approach each other.
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Figure 7.2: Surface charge dependence of 1− Ud(Z)/Ud(0) for a disk with aspect ratio p = 5
(squares) and p = 10 (triangles) in edgeside (dotted lines) and broadside (continuum lines)
motion. For comparison, we also show the behavior for a sphere with radius R = 4.2 (circles).
In the inset, we show the surface charge dependence for weakly charged disks; the lower scale
refer to the disk with p = 5, while the upper one to the disk with p = 10. For disks the
quadratic dependence upon the charge is confirmed. In the inset the lines are linear fits, while
in the figure are a guide to the eye.

7.5 Sedimentation velocities of charged disks: volume
fraction dependence

We have already shown that for an ordered array of hard spheres the initial volume
fraction dependence enters through the number density, and hence should scale as ϕ1/3.
In Chapter 5, we have verified that this functional dependence also holds for charged
spheres, provided that the system is diluted enough such that there is no significant
overlap of the double layers. For disks we expect the ϕ1/3 dependence to hold under
the same circumstances. In order to test whether there is a detectable effect of the
overlap of electric double layers of different disks, we have computed the normalized
friction coefficients for disks of aspect ratio p = 5 as a function of the volume fraction,
for volume fractions up to 10%, for different widths of the diffuse layer.

In Figure 7.3 we show the results for a weakly charged disk, both for edgeside and
broadside motion. Note that, in the dilute limit, the friction coefficients will depend
on κa due to the electrohydrodynamic interaction. For edgeside motion the conver-
gence to the dilute limit is slower, indicating a stronger coupling between disks; we
attribute this to the fact that the distance of closest approach coincides with the exter-
nal field direction. Although for κa = 1/2 and high volume fractions the diffuse layers
overlap, the effect of the diffuse layer is minimal with respect to the volume fraction
dependence, as evidenced by the larger differences between edgeside and broadside
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sedimentation. Hence, at small volume fractions the dependence is, in all cases, ϕ1/3,
and a subsequent decay at intermediate volume fractions is strongly influenced by ex-
cluded volume effects. Despite this general trend, there is a remaining dependence on
κ superimposed and hence, the amplitudes in the volume fraction dependence of the
friction coefficients will depend on the details of the electro-hydrodynamic coupling.

The dependence upon κ becomes more visible in Fig. 7.4, where we display the fric-
tion coefficients of highly charged disks. Although here the dependence on κ becomes
more relevant, as the volume fraction increases its relevance diminishes, suggesting
that at intermediate and large volume fractions the effect of the overlap of diffuse
layers is less important than the interplay between electrolyte structure and hydrody-
namic friction. On the other hand, at small enough volume fractions, the dependence
is always consistent with ϕ1/3, although deviations from such a behavior set in earlier.

This fact indicates that the dilute limit is harder to reach at higher charges. More-
over, since in the limit of an infinitesimally narrow double layer the sedimentation
friction coefficient should coincide with that of a hard disk at infinite dilution, the
smaller values observed for narrower double layers already at high dilution indicate
that at small volume fractions there is a strong electrokinetic coupling. It is impor-
tant to keep in mind that the values of κ are computed on the basis of the electrolyte
densities in the bulk. This means that, if the counterions density added to the salt
to ensure charge neutrality—i.e. ρ− = −Z/Vf, where Z is the valency of the sphere
and Vf the volume occupied by the electrolyte—is much larger than the amount of
salt, the system behaves as if the electrolyte were made of counterions only. Hence,
κ−1 does not describe the typical screening length any longer. For our simulations
this phenomenon only becomes important for the highest volume fractions (typically
ϕ > 0.08). This means that our dilute-limit expansions (performed at much lower
volume fractions) is not affected by this complication.

7.6 Sedimentation velocity of charged disks: effect of
the diffuse layer

After having analyzed the role of charge and volume fraction, we want to address
the effect of the relevance of the width of the double layer on the sedimentation ve-
locity of disks. We will use the analysis of the previous section to extrapolate the
infinite dilution limit Ud(Z) from a series of sedimentation velocities Ud(Z,ϕ); in this
way, we can compare simultaneously the role of diffuse layer width and volume frac-
tion. We scale the sedimentation velocities by the sedimentation velocities of isolated
charged-neutral disks Ud(0), values that we have obtained in Section 7.3.1. The ratio
Ud(Z)/Ud(0) measures the reduction is the sedimentation velocity of one charged disk
due to its electrokinetic interaction with the electrolyte. The reduction in sedimenta-
tion velocity in the dilute limit is interesting theoretically (because we can compare
with analytic results for weakly charged spheres). However, in experiments the re-
duced sedimentation velocity Ud(Z,ϕ)/Ud(0, ϕ) at finite ϕ is the relevant one. For
simplicity, in the remaining part of this section, we will be writing Ud(Z) instead of
Ud(Z,ϕ) but, unless explicitly stated, the volume fraction dependence is always as-
sumed.
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Figure 7.3: Volume-fraction-dependent normalized friction coefficients for a disk with radius
a = 5, aspect ratio p = 5, and valency Z = 10 for κa equal to 0.5 (spheres), 0.8 (pluses),
and 2.1(filled diamonds). The upper curves are for the edgeside friction coefficient, while the
lower curves are for a broadside friction coefficient. The curves are normalized by the friction
coefficient of a sphere with equal surface area ξA = 6πη

√
a(a+ h)/2 (see Table 7.1 for the

correspondent neutral values). Lines are drawn as a guide to the eye.

In Figure 7.5(a), we show the normalized sedimentation velocity as a function of
the double layer width for a disk with aspect ratio p = 5 in edgewise motion, for
different volume fractions. For infinitely thin and infinitely broad diffuse layers, the
sedimentation velocity should coincide with that of a charged-neutral disk, and hence
the curve should approach one for both small and large κa, as indeed observed. The
decrease at intermediate values of κa enters as a result of the interplay between hy-
drodynamic dissipation and electrolyte diffusion. The largest effect is observed when
the size of the double layer is of the order of the largest dimension of the disk, i.e.
κa ∼ 1. The effect increase with decreasing volume fraction, consistent with the dis-
cussion in the previous section. Already at volume fractions around 1% , the changes
in normalized sedimentation are negligible. The minimum velocity also depends on
volume fraction, an effect which is consistent with previous findings for spheres [74]. A
similar behavior is observed in Fig. 7.5(b), where broadside sedimentation for a weakly
charged disk is depicted. It is interesting to note that the decrease in sedimentation
velocity is slightly smaller. We can ascribe this effect to the fact that the distorted
double layer contributes a bit less to the hydrodynamic friction because the wider side
of the disk is exposed to a region where the velocity gradients are smaller.

In Figures 7.6(a) and 7.6(b), we show the sedimentation velocity for a weakly
charged disk with a higher aspect ratio p = 10. The trends are the same as for the
smaller disk, although the minimum velocity seems to depend on aspect ratio, and is
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Figure 7.4: Volume-fraction-dependent normalized friction coefficients for a disk with radius
a = 5 and aspect ratio p = 5 and valency Z = 100 or κa equal to 0.5 (spheres), 0.8 (pluses),
and 2.1(filled diamonds). a) Edgeside friction coefficient; b) Broadside friction coefficient.
In all cases, curves normalized by the friction coefficient of a sphere with equal surface area
ξA = 6πη

√
a(a+ h)/2 (see Table 7.1 for the correspondent neutral values). Lines are drawn

as a guide to the eye.

achieved now for slightly narrower double layers. The reduction in absolute terms is
now smaller, but this is simply due to the lower surface charge density as compared
with the smaller disk. It is worth mentioning that, while for the disk with p = 5 we
reached the limiting diluted value for Ud(Z)/Ud(0), for the disk with p = 10 we had
to perform the dilute-limit extrapolation. This different volume fraction dependence
confirms that a large asymmetry among the various sizes of a macroscopic particle
makes the dilute limit harder to obtain.

In Figure 7.7 we show the sedimentation velocity for a highly charged disk, nor-
malized by the sedimentation velocity of uncharged disks at the same volume fraction.
Although, again, the relevance of the electrokinetic coupling in the sedimentation ve-
locity diminishes upon increasing volume fraction, the coupling between electric fric-
tion and velocity dissipation becomes much more dominant now. The sedimentation
velocities decrease by almost 50% its value, and the range of κa′swhere appreciable
deviations from the behavior of the uncharged disk is observed is wider than in the case
of weakly charged disks. As mentioned earlier, because for ϕ > 0.08 the counterion
density is much larger than the coion density, κ−1 no longer relates to the space de-
cay of the charge-density distributions. In Figure 7.8 we also show the sedimentation
velocity for an highly charged disk with p = 10 which confirms the same observation.

In all the previous figures, we have observed that the reduction in sedimentation
velocity for edgewise motion is larger than for broadside motion, with differences up
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Figure 7.5: Normalized sedimentation velocity of a charged disk with aspect ratio p = 5,
radius a = 5, and valency Z = 10. The different simulation points correspond to ϕ =
3.8×10−2 (circles), 4.8×10−3 (squares), 7.3×10−4 (pluses), 4.6×10−4 (stars), and 3.1×10−4

(diamonds). (a) Edgeside motion; (b) Broadside motion. Lines are drawn as a guide to the
eye.
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Figure 7.6: Normalized sedimentation velocity of a charged disk with aspect ratio p = 10,
radius a = 10, and valency Z = 10. Different curves: ϕ = 1.9×10−2 (circles), ϕ = 6.5×10−3

(squares), ϕ = 2.9× 10−3 (diamonds), and ϕ = 1.8× 10−3 (triangles), and the correspondent
dilute limit extrapolation (stars). Left: Edge side motion; right: Broad side motion. Lines
are drawn as a guide to the eye.

to around 20% for wide double layers. This effect can be intuitively understood in
terms of the different forces felt by the electric double layer in the two configurations.
For edgeside sedimentations, most of the diffuse layer is exposed to the flow induced
by the sedimenting array of disks. In confront, for broadside motion, most of the
electric double layer is located in a region where the fluid velocity is small and is not
subject to large gradients. One would then naively expect that this difference will
be enhanced by an increase of the surface charge. However, the relative difference,
in fact, decreases with disk charge. Hence, we there must be non-trivial couplings of
the electrostatic restoring force to the flow field surrounding the disks. This is quali-
tatively illustrated in Figs. 7.9 and 7.10, where we show the velocity fields generated
by a sedimenting disk for edge and broadside motion. It is clear that in the latter
most of the diffuse layer is in a region of smoothly varying velocity, while the former
it is exposed to larger velocity gradients. More interestingly, by comparing the flow
fields past the weakly and the highly charged disk, we observe that the hydrodynamic
shape of the particle become more isotropic. In order to fully understand this mecha-
nism, more detailed simulations of the flow patterns are necessary; in fact, intuitively,
one would expect that, due to charge accumulation near the particle (induced by the
highly charged disk), the region where the fluid is affected by the charge of the disk
becomes narrower.
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Figure 7.7: Normalized sedimentation velocity of a charged disk with aspect ratio p = 5, radius
a = 5, and valency Z = 100. ϕ = 3.8×10−2 (circles), 4.8×10−3 (squares), 7.3×10−4 (pluses),
4.6 × 10−4 (stars), and 3.1 × 10−4 (diamonds).(a) Edgeside sedimentation; (b) broadside
sedimentation. Lines are drawn as a guide to the eye.
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Figure 7.8: Volume-fraction-dependent reduction in the sedimentation velocity of a charged
disk with aspect ratio p = 10, radius a = 10, and valency Z = 100. The plot on the left
refers to a disk sedimenting along its edge side, while the right part along its broad side. The
different curves correspond to volume fractions ϕ = 1.9×10−2 (circles), 6.5×10−3 (squares),
2.9×10−3 (diamonds), 1.8×10−3 (triangles), and the corresponding dilute limit extrapolation
(dashed line with star symbols). Lines are drawn as a guide to the eye.

7.7 Sedimentation velocity of charged disks: shape
effects.

When attempting to quantify the importance of the shape in disk sedimentation, we
face the problem that one cannot change the shape of a disk without changing either
the surface charge density or the overall particle charge. Then, because the electro-
static field next to a particle is proportional to the surface charge σ, a change in the
surface area will change the electric field surrounding the particle, making impossible
to isolate the effect of shape change. On the other hand, keeping σ constant by varying
the overall particle charge is not a solution either since the reduction in sedimentation
velocity does depend also on Z [see Eq. (7.5)]. As a result, we will have to modify
both valency and volume (to keep the surface area constant) to disentangle charge
effects from effects arising from shape changes. However, even if we take care of this
problem, we can only compare each disk with the corresponding sphere, because the
two disks we study have different areas.

In order to compare equals with equals, we computed the scaled sedimentation ve-
locity Ud(Z)/Ud(0), where Ud(Z) is the sedimentation velocity of an isolated particle
with valency Z, and Ud(0) is the velocity of the same object in the absence of charge.
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Figure 7.9: 3D flow fields near a charged disk sedimenting along its edge side projected on
the plane perpendicular to the disk passing through the center of the disk. The magnitude of
the velocities has been conveniently scaled to render them visible.
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Figure 7.10: 3D flow fields near a charged disk sedimenting along its broad side the projected
on the plane perpendicular to the disk passing through the center of the disk. The magnitude
of the velocities has been conveniently scaled to render them visible.
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7.7 Sedimentation velocity of charged disks: shape effects.

We then compared Ud(Z)/U0(0) with the corresponding normalized sedimentation ve-
locity of a sphere with valency Z and the same surface area Us(Z)/Us(0). In this way
we eliminate the effect of size on the settling velocity, disentangling shape from size
effects.

For weakly charged particles, we can make use of Booth’s prediction to analyze the
results. To this end, rather than studying the scaled velocity directly, we have found
fruitful to consider [1− Ud(Z)/Ud(0)]/Z2, which is the coefficient c2 [see Eq. (7.6)] in
the case of a sphere. It is a direct measure of the electrokinetic reaction induced by the
electric double layer. Since we have argued in Section 7.4 that the charge dependence
of disks is the same as the one observed for spheres in the Debye-Hückel limit, the
previous ratio is a quantitative way of assessing the role of shape on the sedimentation
velocity.

In Figs. 7.11(a) and 7.11(b), we show [1−Ud(Z)/Ud(0)]/Z2 ≡ cd2 for disks with two
aspect ratios and small charge, Z = 10 both for edge and broadside sedimentation.
cds is expressed in units of As2 ≡ kBT lB/

(
72πDηa2

)
, in such a way that it simplifies

to the universal function f(κa) predicted by Booth. For weakly charged disks and
thin double layers, the decrease in velocity does not depend strongly on size. This is
consistent with Smoluchowski’s theory for electrophoresis 3.2.3, which predicts that
the electrophoretic velocity of particles with the same zeta potential (the electrostatic
potential at contact) is independent of the particle shape if κa → ∞. However, the
deviation from the Smoluchowski limit appears at narrower double layers for broad-
side motion. Hence, shape affects significantly the sedimentation velocity of suspended
particles. Moreover, in the case of asymmetric objects, the orientation of the particle
also affects the velocity. For both broadside and edgeside sedimentation, the electroki-
netic coupling of a disk is always smaller than the decrease for an equivalent sphere.
One can clearly see that the decrease in velocity for broadside motion is smaller than
for edge motion.

In the high charge regime we use the same quantity, cd2 , to assess the role of shape,
although we know that the Booth theory fails in this case. In Figures 7.12(a) and
7.12(b) we show cd2, again for two aspect ratios. In the thin diffuse layer limit, our
data are consistent with Smoluchowski theory, and we observe again a departure from
the results for a sphere upon increasing the width of the electric double layer. The
maximum effect is observed for electric-double-layer widths of the order of the longest
object length, and, again, the decrease for broadside motion is smaller than for edge-
wise motion. This is consistent with the description given above, that the disk become
more isotropic.

By comparing Figs. 7.12(a) and 7.12(b), the reader might conclude that the re-
duction in sedimentation velocity is higher for the disk with a smaller aspect ratio.
However, one should not overlook the fact that two disks have the same valency and
therefore very different surface charges σp=5 ' 3.4 × σp=10. To show how much the
surface charge affects c2, we show c2 for the disk with p = 10 also at Z = 300. Even
though the surface charge of this disk is still lower than the surface charge for the
other disk, the electrokinetic effect is already more pronounced.

In Fig. 7.13 we show the effective Stokes radius [Reff ≡ F/ (6πηU)], where F is
the magnitude of the external force acting on the disk. For small charges, the effec-
tive radius depends weakly on the double layer width, and is larger for the edgeside
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Figure 7.11: Dilute limit of the normalized reduction in the sedimentation velocity of a disk
in edgeside motion (spheres) and broadside motion (triangles) compared with the analytic
theories valid for a sedimenting sphere of equal surface area (dashed curve) as function of the
reduced electric double layer thickness. Disks and spheres have valency Z = 10. Subfigure (a)
refers to a disk with aspect ratio p=5, and Subfigure (b) to p=10. Lines joining the simulation
points are drawn as guide to the eye.
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Figure 7.12: Dilute limit of the normalized reduction in the sedimentation velocity of a charged
disk in edgeside motion (diamonds) and broadside motion (squares) compared with the analytic
theories valid for a weakly charged sedimenting sphere of equal surface area (dashed curve)
as function of the reduced electric double layer thickness. Subfigure (a) refers to a disk with
aspect ratio p=5, and Subfigure (b) to p=10. Disks have and spheres have valency Z = 100,
which correspond to a surface charge σ = 0.45 for the disk with p = 5 and to σ = 0.13 for the
disk with p = 10. In Subfigure (b) we also show the same simulation for a disk surface charge
σ = 0.40 for the disk with p = 10 in edgeside (+) and broadside (x) sedimentation. Lines
joining the simulation points are drawn as a guide to the eye.
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Figure 7.13: Effective hydrodynamic radius of a disk divided by the radius R of a sphere with
equivalent surface as a function of the inverse Debye length in units of the disk radius. Disk
with p = 5 in edgeside (square) and broadside (triangle) motion; sphere with same surface
(circle). Uncharged objects (drawn line), Z = 10 (dashed curve) and Z = 100 (dotted line).
The lines are drawn as a guide to the eye.

motion, as can be expected. At high charges the behavior is qualitatively different.
The effective radius depends on the width of the double layer for λD/a < 2. For
larger λD/a it tends to level off. As the diffuse layer broadens, the effective size that
characterizes the sphere and the disk in broadside motion tend to converge, leading
to a same effective shape for wide layers.

The physical origin of this effect is already implicit in Figs. 7.9 and 7.10. These
figures show the velocity fields around the disk for both orientations. Different flow
fields develop around the sedimenting disk for low and high surface charge.The flow
profiles look more isotropic for high Z, therefore one might expect that for high Z, the
friction coefficients of a disk approach that of a sphere with the same Z .

Discussion

In this chapter I analyzed lattice-Boltzmann simulations of the sedimentation of an
array of charged disks. We treated the electrolyte at the Poisson–Boltzmann level,
while we incorporated the relevant hydrodynamic coupling between the solvent and
the dissolved electrolyte. Using the lattice-Boltzmann method, our approach allows us
to model highly charged particles, and arbitrary κa values, which enlarges the regime
of parameters that can be analyzed.

To our knowledge, no exact analytical expressions exist for the sedimentation ve-
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7.7 Sedimentation velocity of charged disks: shape effects.

locity of isolated neutral disks and finite thickness; hence, we validated the numerical
accuracy of our approach with approximate expressions (exact for infinitesimally thin
disks).

We studied the role of shape, volume fraction, charge, and ionic strength on the
sedimentation velocity. We find that in the linearized Debye-Hückel regime, the sedi-
mentation velocity has the same functional dependence on volume fraction and surface
charge as that for spheres. At fixed κa, we studied the surface charge dependence of the
disk sedimentation velocity, from which we observed that in the high-charge regime,
the accumulation of charge near the disk surface layer decreases the effect of electroki-
netic coupling on the sedimentation velocity, and also shows that such accumulation
becomes more relevant as the disk becomes more anisotropic .

We have shown that the geometrical anisotropies of neutral disks are reduced by
the presence of the electric double layer, especially for highly charged disks. In fact,
we have seen that when the double layer is exposed to larger velocities, the reduction
in sedimentation velocity is larger. Hence, this mechanism tends to generate a more
symmetric disk response.
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8 Electrophoretic mobility of
charged-neutral model proteins

Abstract

At the isoelectric point the electrophoretic mobility of a molecule vanishes. This is
usually seen as an indicator that the molecule is then uncharged. But, as is well known,
neutral molecules may move under the influence of an electric field. The reason is that
their electric multipole moments are usually nonzero.

In this case, the interaction of the electric diffuse layer with an external electric field
can give rise to a non-zero electrophoretic mobility even for neutral macro-particles.
There is experimental evidence that this is indeed the case and theories exist that ac-
count for the phenomenon in certain limits. However, the complexity of the equation
governing electrophoretic mobility rules out analytical solutions for the general case.

We have computed the electrophoretic mobility of spherical colloids with zero elec-
tric monopole but non-zero higher-order electric multipole moments in an electrolyte.
Hydrodynamic interactions are explicitly taken into account. First, we discuss the
dependence of the electrophoretic mobility upon the Debye screening length and on
the magnitude of the electric quadrupole. Next, we present calculations of the elec-
trophoretic mobility of a neutral sphere with vanishing quadrupole electric moments.

8.1 Introduction

Electrophoresis is among the more important tools utilized to separate proteins, DNA,
polyelectrolytes, and in general macroscopic charged particles [75, 76]. The basic phys-
ical mechanism that makes it work is simple. If we place a charged particle in an
electric field, it will move because of the direct electrostatic interaction. In an elec-
trophoretic device, proteins will stop at their isoelectric points (the pH concentration
where the charge of the proteins is zero), and one can discriminates proteins with a
different isoelectric point. However, one faces the problem that many proteins have
the same isoelectric point and separating them becomes difficult. There are attempts
to circumvent this problem adding polyelectrolytes to the proteins, thus changing their
bare charge [77]. On the other hand, because it is known that the proteins have non
uniform charge distributions and irregular shapes, it is believed that unpredicted re-
sponse to electric fields could arise due to a subtle interplay of the hydrodynamic
interaction and the electric double layer (EDL) of the proteins. Unfortunately, be-
cause the governing equations are complex, exact analytical formulae are in general
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8 Electrophoretic mobility of charged-neutral model proteins

unavailable. Classic theories, in fact, describe only uniformly charged spheres, where
(after the pioneering works of Hückel and Smoluchowski) Henry formulas can be used
([24] and references therein). Moreover, it is difficult to find papers regarding the elec-
trokinetic properties of non-uniformly charged spheres or of non spherical particles;
especially when these non uniformities are of comparable size of the Debye screening
length. A notable exception is provided by the work of Anderson [78], who studied
the electrophoretic response of a charged sphere due to its quadrupole moment, and,
in the context of microfluidics, one finds works were the effect of shape on the electro-
hydrodynamic properties of particles is studied [69, 68].

In order to treat these intriguing and experimentally relevant interactions, which
are especially important for colloids of asymmetric shapes and asymmetric charge
distributions, we developed the lattice-Boltzmann method that I presented in Chap-
ter 5. Using that technique, in this chapter, I can regard a study of the electrophoretic
response of a sphere with non uniform charge distributions.

8.2 Model system

The system we study is composed of a neutral sphere with charged patches immersed in
an electrolyte made of two ionic species and a neutral species. Because of the patches,
the surface charge of the sphere, and the electrostatic potential at contact (usually
referred to as the ζ potential), are not constant and vary with position. Therefore,
the microions in solutions feel a local electrostatic potential that will attract or repel
them. Important length scales in the system are the radius of the sphere and the
thickness of the EDL (the Debye screening length), determined by the ionic strength
of the electrolyte.

For the case of non-uniformly charged particles there is another relevant length
scale, which determines whether or not the system will react to an external electric
field. This length scale is the average size of the patches. When the screening length
is much larger than the average patch width, we expect little electrophoretic response,
because most microions feel the field due to many patches, and these fields tend to
cancel. If, instead, the screening length is smaller than the average patch size, the
diffuse layer will be able to follow the charge variation on the particle and can react
to an external electric field.

8.2.1 Electric multipole moments

In this work, we study simple charge configurations with specific low order electric
multipole moments. We took a sphere of radius R and cut it by a number of parallel
planes perpendicular to the sphere radius. In a Cartesian coordinate system with
origin in the center of the sphere, the equations of these planes are x = xi, with
−R < xi < R and i = 1, ...,N, where N is the number of planes. With this procedure,
we identified N + 1 sphere’s slices and we attributed to each of them a uniform charge
density ρ(r) = eρj , with r ∈ jth slice, where e is the elementary charge and ρj is a
number density.
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8.3 Electrophoretic mobility of a sphere with an electric dipole.

In terms of the charge density ρ(r),

q =
∫
ρ(r)dr (8.1)

is the electric monopole moment,

p =
∫

rρ(r)dr (8.2)

is the dipole moment,

Qij =
∫ (

3rirj − r2δij
)
ρ(r)dr (8.3)

is the quadrupole moment in components and, as the charge distribution is cylindri-
cally symmetrical ∫

rnρ(r)Pn(cosθ)d3r (8.4)

is the generic multipole of order n, where Pn(cosθ) is the Legendre polynomial of order
n (see, for example, [79, 80]). From its definition [Eq. (8.3)], it follows that the electric
quadrupole moment is symmetric (Qij = Qji), and traceless (

∑
iQii = 0).

Fixing the electric monopole corresponds to one constraint to the charge distri-
butions ρj . Fixing the dipole, and fixing the quadrupole adds two more constraints.
When we fix these electrical moments of the sphere, we must ensure to have enough
degrees of freedom (in our model the degrees of freedom are the xi’s and the ρj ’s) to
satisfy the constraints. We always imposed charge neutrality, i.e. q = 0.

8.3 Electrophoretic mobility of a sphere with an
electric dipole.

We begin by computing the electrophoretic mobility of a neutral sphere consisting of
two oppositely charged hemispheres with charge q = ±eZ. Because of the symmetry
of this charge distribution, the monopole and the quadrupole moments are both zero.
By construction, the sphere has non zero odd multipole moments.

For symmetry reasons, the electrophoretic mobility of such a sphere should vanish.
As a test to our method, we verify that this is true for any value of the Debye length.
In Figure 8.2 the filled circles represent the electrophoretic mobility of this sphere and
observe that it, indeed, does have a zero electrophoretic mobility.

8.4 Electrophoretic mobility of a quadrupole

Anderson [78] has shown that for a sphere with κa � 1 the electrophoretic mobility
depends only the monopole and quadrupole moments of the zeta potential

U =
ε

η

[
〈ζ〉 I− 1

2
P
]
·E∞, (8.5)
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8 Electrophoretic mobility of charged-neutral model proteins

but not upon higher order moments.
In our simulation, we studied the electrophoretic mobility parallel to the symmetry

axis of the patched sphere. In other words, we apply an electric field E∞ = îE∞ and
the x component of the electrophoretic mobility will be µx = vx/E∞. Equation (8.5)
it then reads

µx =
ε

η

(
ζ − 1

2
Pxx

)
. (8.6)

In Ref. [78] the moments are computed as integral over the surface of the sphere.
Because we work at low surface charged spheres, we can use the linearized Poisson-
Boltzmann equation such that the relation between zeta potential and surface charge
becomes linear (ζ = σλD/ε). Hence we can rephrase the result of Anderson in terms
of the charge multipole moments. To verify this dependence and to compute the
electrophoretic mobility for an arbitrary EDL thickness, we performed a series of
simulations where the quadrupole moment was non zero. We used three types of
charge distributions.

The first one [see Fig. 8.1(a)] is analogous to the one described in the previous
section, but the sphere is now divided into two non equal parts by a plane with
equation x = ξ, where 0 < ξ < R. Because of this asymmetry, the sphere has a
non zero quadrupole moment Qxx. We varied Qxx by varying ξ. The total charge
of the two parts is q1 = −eZ, and q2 = −eZ, however, because the volumes of the
two parts is different, the charge densities of the two sides is different, in other words:
ρ(r) = eZ/V1 for x < ξ, while ρ(r) = eZ/V2 for x > ξ, where r is inside the sphere,
and V1 and V2 are the volumes of the two parts. For the second charge distribution
[see Fig. 8.1(b)] we have used two parallel planes of equations x = −ξ and x = ξ, with
0 < ξ < R. We assigned a positive charge to the two symmetric external slices and a
negative charge for the internal slice, i.e we set ρ(r) = eZ/2V1 for x < −ξ or x > ξ,
and ρ(r) = −eZ/V2 for −ξ < x < ξ. Again V1 denotes the volumes of the external
slices and V2 is the volume of the internal slice. With the third and last configuration
[see Fig. 8.1(c)] we broke also the cylindrical symmetry by cutting the sphere in two
parts with one other plane perpendicular to the planes x = ±ξ. We assigned a positive
charge to the region defined by x < −ξ, y > 0 and x > ξ, y < 0 , and a negative charge
to the rest of the sphere. Again we assigned the charges uniformly in the two regions
such to ensure charge neutrality.

In Figure 8.2, we show the electrophoretic mobility as determined in our computer
simulation as function of the dimensionless parameter κa. For all these three charge
distributions we varied ξ. We observe that in the limit κa → 0, the electrophoretic
mobility tends to zero. This result is consistent with the Hückel [29] result for a
uniformly charged sphere. In this limit, the EDL is so diffuse that it does not affect
the motion of the particle; the electrophoretic mobility is, in fact, completely due to the
direct Coulomb interaction between the charged particle and the external electric field.
Hence, for κa → 0, the electrophoretic mobility of the patched sphere is essentially
that of a neutral sphere and it vanishes.

In the opposite limit, i.e. when κa→∞, we expect Eq. (8.6) to hold. In Figure 8.2,
the curves seems to tend toward a plateau value. Because of the discrete nature
of the lattice-Boltzmann model, we cannot study the limit κa → ∞ directly as we
should expect discretization errors when κ−1 (in lattice units) < 1. Only by going to
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8.4 Electrophoretic mobility of a quadrupole

(a) Charge configuration 1 (b) Charge configuration 2

(c) Charge configuration 3 (d) Charge configuration with
quadrupole zero

Figure 8.1: Cartoon representation of the charge configurations. The configurations cor-
responding to the cartoons (a), (b), and (c) have a vanishing charge but non-zero electric
quadrupole moment, while the charge configuration corresponding to (d) have also a van-
ishing quadrupole moment (see text for a detailed description of the charge configurations).
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Figure 8.2: Electrophoretic mobility of a patched, neutral sphere. The filled circles, represent
the electrophoretic mobility of a sphere with non-zero dipole moment, but all the even electric
moments null; as expected µx = 0 for all values of κa. The other curves correspond to the
three charge distributions defined in the text for various values of Qxx . We plot the curves
for Charge Configuration 1 with Qxx 5.96 (squares), 14.6 (diamonds), and 23.2 (triangles
up; for Charge Configuration 2 with Qxx 11.7 (triangles left), 18.0 (triangles down), and
24.6(triangles rigth); Charge Configuration 3 with Qxx 5.96 (plus), 14.7 (exes), and 23.2
(stars). Dotted curves are a guide to the eye.

106



8.5 Electrophoretic mobility of a colloid with zero quadrupole

higher resolutions (larger sphere radii) we can study larger κa values. But this rapidly
becomes prohibitively expensive. There is another reason to expect a discrepancy with
the theoretical values of Eq. (8.6): the periodic boundary condition of a computer
simulation. Because of the boundary condition, the actual system we simulates is
a periodic cubic array of spheres at the volume fraction ϕ = Vsph/L3, where Vsph

is the volume of the sphere and L the simulation box size. One should do a size
analysis by increasing the box size L until the sphere electrophoretic velocity reaches
an asymptotic value. This procedure could in principle be performed but it also
requires large computer resources because the velocity of an array of spheres decays
as slow as ϕ1/3 to the velocity of a single sphere. A detailed analysis of the volume
fraction dependence of the electrostatic mobility is outside the scope of this chapter.

In Figure 8.3 we show that the electrophoretic mobility depends linearly on the
quadrupole for all values of κa studied, consistent with Eq. (8.6). The slopes of the
curves converge to an asymptotic value for increasinf values of κa, as predicted by
Eq. (8.6).

If the linear dependence is valid, we can collapse all the curves onto a master curve
by dividing them by the electric quadrupole moment Qxx of the sphere. We show in
Fig. 8.4 the outcome for this procedure. The curves mostly superimpose but there are
still discrepancies left. If the only electric moments responsible for the electrophoretic
mobility were to be the monopole and the quadrupole, the curves should exactly
superimpose, especially for high values of κa. In the remainder of this chapter, we
argue that these differences are due to the effect of higher order electric moment.

8.5 Electrophoretic mobility of a colloid with zero
quadrupole

In this section, we show that in our simulations, even a neutral sphere with zero elec-
tric quadrupole moment has a finite electrophoretic mobility. If Eq. (8.5) were valid,
such a charge distribution should not generate any electrophoretic mobility. Hence,
the observed mobility is either due to the fact that we work at finite κa or it is due to
discretization errors.

To create the charge distribution, we began by attributing a uniform charge den-
sity q(r) = −eZ1 to all the lattice nodes belonging to the sphere. Then, we placed on
all the nodes inside the sphere with x = −x1 or x = x2 a positive charge q(r) = eZ2.
Z1 and Z2 are fixed by the constraint of charge neutrality. Upon varying the values of
x1and x2 we can generate several charge distributions with various electric quadrupole
moments. To create a charge distribution with zero electric quadrupole moment, we
linearly added two of these charge distributions. Specifically, for a sphere of radius
a = 4.2, we made the first charge distribution by fixing x1 = −3, x2 = 2 and number
charge Z1 = Z. The second distribution satisfied x

′

1 = −3, x
′

2 = 1, and charge density
Z
′

1 = 0.3 × Z (Z2 is constrained by the condition of charge neutrality of each of the
configurations separately). The hexadecapole electric moment H is then proportional
to Z. In Figure 8.1(d) we show a cartoon of the charge configuration obtained with
such a procedure.

In Fig. 8.5 we show the electrophoretic mobility of such a sphere with a hexade-
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Figure 8.3: Linear dependence of the electrophoretic mobility on the electric quadrupole mo-
ment. The symbols correspond to the simulation results showed in Fig. 8.2 for κa equals to
0.001 (circles), 0.1 (squares), 0.2 (diamonds), 0.3 (triandgels up), 0.5 (triangles left), 0.8
(triangles down), 1 (triangles right), 2 (plus), 3 (x’s), 4 (stars). The dashed lines are linear
fits.
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Figure 8.4: Electrophoretic mobility normalized by the electric quadrupole moment corre-
sponding to the charge distributions of Fig. 8.2. The curves mostly superimpose with only a
small discrepancy left at the higher values of κa. Dotted curves are a guide to the eye.
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8 Electrophoretic mobility of charged-neutral model proteins

capolar charge distribution. The figure shows that even a sphere with vanishingly
quadrupole moment appears to have a non-zero electrophoretic mobility. The figure
suggests that the electrophoretic mobility levels off at higher values of κa than for
quadrupoles.

This slow saturation may be due to the fact that the size of the charged patches in
our hexadecapolar particles are quite small [O(1) lattice spacings]. We expect asymp-
totic behavior only if κa � 1 and κδ � 1, where δ is the smallest dimension of the
patch.

We are now faced with a problem. In the limit κa→∞, the Anderson calculations
predict a vanishing electrophoretic mobility. If we assume this to be the case, we are
faced with the question why our data do not seem to approach this limit. One pos-
sible answer is that at much larger κa values than we can probe, the electrophoretic
mobility goes down again. Another possibility is that, precisely at large κa values,
our result are sensitive to the lattice discretization. We stress that Anderson’s result
applies to a sphere. To reproduce it we would have to consider the limit δ/c � 1,
κa� 1 where δ/c is the patch size in lattice units.

In order to obtain an indication on this limit, we performed one more simulation
doubling the sphere radius while leaving the box sized unchanged to save computer
time. The new computer simulation will then suffer a large volume fraction depen-
dence (for neutral sphere, the decay to the dilute limit is of order ϕ1/3). Because
the discretization of the sphere is now slightly different, we have to change the charge
distributions as well. In this larger sphere, the stripes contains two lattice nodes, thus
we have x1 = −6, −5, x2 = 3, 4, and Z1 = Z, while x

′

1 = −6, −5, x
′

2 = 1, 2, and
Z
′

1 = 0.4256× Z.
In Figure 8.6 we compare the electrophoretic mobility of the two spheres. We

observe that the electrophoretic mobility is smaller in the case of a better lattice res-
olution. Thus it seems that the electrophoretic mobility decreases with increasing
sphere resolution. This observation suggests that the electrophoretic mobility, which
we measure for a neutral sphere with vanishing quadrupole electric moment, is due to
the approximate representation of a sphere on a lattice.

To show the effect of the sphere with hexadecapolar charge distribution on the
electrolyte, in Figures 8.7 and 8.8 we show the flow pattern surrounding this sphere
in an electric field for two width of the electric double layer. In Figure 8.7, the Debye
screening length is λD ' 10 lattice units (κa ' 1), for which the charge distribution
densities will not follow the abrupt variation of the surface charge. Hence, upon ap-
plying an electric field, only a small flow is generated.

In Figure 8.8, instead λD ' 1 (κa ' 8) such that the microion charge distribu-
tion density will follow the surface charge variation up to around one lattice spacings.
Hence, upon applying an electric field, oppositely charged microions will feel an elec-
trostatic force oppositely directed. The end result is the formation of vortices near
the sphere. In the limit of an infinitesimally thin double layer, because the Anderson’s
theory predicts a vanishing electrophoretic mobility, all these vortices must cancel out.
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Figure 8.5: Electrophoretic mobility of a charged neutral sphere with zero electric quadrupole
moment. The electrophoretic mobility is entirely due to the electric even multipoles of order
higher than the quadrupole. The dotted curve is a guide to the eye.
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Figure 8.6: Effect of the increase in the lattice resolution on the electrophoretic mobility of a
charged neutral sphere with zero electric quadrupole moment. We compare a sphere of radius
a = 4.2 l.u. (circles) with a sphere of radius a = 8.4 l.u. (squares). The electrophoretic
mobility levels off while increasing the lattice resolution. With the second sphere, at for an
equal value of the Debye screening length we obtain a dimensionless κa twice as large. Dotted
curves are a guide to the eye.
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Figure 8.7: Flow profile surrounding a neutral sphere with a non vanishing hexadecapole
electric moment and vanishing lower order electric moment. The sphere has radius a = 8.4
and κa = 0.8. The width of the double layer is too large to follow the charge distribution on
the sphere and we observe an almost symmetric flow pattern. The vortices are due to the
hydrodynamic interaction of the sphere with its periodic images. The magnitude of the flow
velocity is in arbitrary units.

Conclusions

In this chapter, I showed how the electrophoretic mobility (EM) of a neutral sphere,
at finite volume fraction, depends on the electric multiple moments and on the Debye
screening length. First, I presented the EM of a neutral sphere with different electric
quadrupole moments. I then showed that at every value of κa the EM depends linearly
on the electric quadrupole moment. I then showed the results for the EM of a neutral
sphere with a vanishing quadrupole moment. We observed a non vanishing EM at
intermediate values of κa. Because this results seemed in contrast with Anderson’s
analytical result, we increased the size of the particle for studying the dependence of
the EM of spheres with hexadecapolar charge distribution on the particle size and for
being able to reach a higher values of κa. The result for the larger sphere indicates
that the measured EM mobility may depend on the non perfect lattice representation
of spheres. Nonetheless, we showwed that the Anderson result is strictly valid only for
perfect spheres, which are rarely present in biology. Hence, in order to fully understand
electrophoresis experiments on biologically relevant particles, one need to analyze in
detail the coupling of non-uniform surface charges with the hydrodynamic interaction
of non spherical particles. However, for time reasons, we did not have the opportunity
to tackle these interesting and relevant systems.
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Figure 8.8: Flow profile surrounding a neutral sphere with vanishing electric quadrupole mo-
ment but a non vanishing hexadecapole electric moment. The sphere has radius a = 8.4 and
the electric double layer with is given by κa = 8. The width of the double layer is thin and
it follow the charge distribution on the sphere. We observe the formation of vortices in cor-
respondence with the charge distribution variation. The flow pattern develop a non trivial
pattern. The magnitude of the flow velocity is in arbitrary units (the multiplying factor is the
same as in Fig. 8.7).
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A Problems with a multi-component
lattice-Boltzmann description of an
electrolyte

Abstract

This chapter describes some technical problems that arise when constructing a lattice-Boltz-
mann method to solve the electrokinetic equations. We start with an analysis of Ref. [50]
that derived the lattice-Boltzmann equations by means of a Chapman-Enskog multi-scale
analysis. As shown in Ref. [50] the Smoluchowski and the Navier-Stokes equations come
out naturally as a long time limit of the microscopic rule. However, in this chapter I point
out how a modification of the algorithm is necessary in order to achieve a truly tunable
diffusivity. Secondly, I show how the algorithm fails to achieve a perfect balance at boundary
nodes giving rise to small spurious currents. Although these spurious currents are shared by
all the lattice Boltzmann implementations of multi-phase flows they have, to my knowledge,
not yet received proper treatment. Although corrections of the spurious flows is possible, the
implementations of such corrections remains impractical.

A.1 Lattice Boltzmann method for solving the
electrokinetic equations

There are several ways to derive lattice-Boltzmann schemes. In Chapter 5, we considered a
“bottom up” scheme—i.e. a scheme where one imposes all the required conservation laws
locally, at the microscopic level of the single nodes. However, other schemes that are closely
linked to the macroscopic equations, are often used (see for example [81, 51, 52, 54, 82]). In
particular, Ref. [50] describe a “top-down” approach—i.e. an approach where the microscopic
rules are defined taking care to recover the proper macroscopic behavior on the large length
scale and long time scale—approach to lattice-Boltzmann simulation of the electrokinetic
equations. Below, I briefly discuss this approach.

The model system under study is the one presented in Chapter 3. Let us briefly review
it. The electrolyte is made of two oppositely charged (micro) ionic species ρ+ and ρ−, and a
neutral solvent neutral species ρs. The governing equations are the electrokinetic equations
(see Section 3.3)

∂

∂t
ρα = −∇ · jα α = +,− (A.1)

∂

∂t
(ρv) = η∇2 (ρv)−∇p− kBT

∑
α

zαρα∇Φ. (A.2)
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jα = −ραv +Dα [∇ρα + zαρα∇Φ] (A.3)

where Dα and zα stand for the diffusivity and valency of each ionic species, respectively.
The total density ρ is defined by ρ =

∑
α ρα,while the total fluid velocity v is given by

v = (
∑
ραjα)/

∑
α ρα . Φ ≡ Φ̂/(eβ) is the dimensionless electrostatic potential, which satisfies

the Poisson equation

∇2Φ = −4πlB

[∑
α=±

zαρα + ρw

]
, (A.4)

where lB is the Bjerrum length, ε the medium dielectric constant, and ρw the charge density
due to solid objects suspended in the electrolyte. For a more detailed description of the model
we refer the reader to Chapter 3.

In Reference [50] all three species are represented in a lattice-Boltzmann model (LB).
To this end, one must define three single-particle distribution densities nαi , α = +,−, s and
their evolution equations. The computer memory required for such a simulation (which, for
big systems, constitutes one of the bottlenecks of a LB) is hence three times the one required
by a standard one-phase LB. On the other hand, there would an advantage: the macroscopic
transport coefficients of the microions (for instance their diffusivity) will naturally emerge
as a continuum limit of the microscopic evolution rules by means of a Chapman–Enskog
procedure.

The post-collision distributions nα?i = nαi + ∆(n) are not the one of the standard lattice-
Boltzmann method [cf. Eq. (2.42)] but are:

nα?i (r, t?) = ai0ρα(r, t)

(
1 +

1

c2sρ
′(r, t)

j(r, t) · ci
)
. (A.5)

The factor ai0 is the usual weighting factor which, for the D3Q18 lattice is equal to 1/12 for
the ci of speed 1 and equal to 1/24 for the velocity with speed

√
2. The propagation step is

simply

nαi (r + ci, t+ 1) = nα?i (r, t?), (A.6)

and at the boundary nodes the bounce-back rule has to be used.

In this modified lattice-Boltzmann equation, also the densities ρα and total fluid mo-
mentum j = ρv have a modified expression, which takes into account the coupling of the
electrostatic potential with the ionic species ρ+ and ρ−:

ρα(r, t+ 1) =

18∑
i=0

[
nαi (r, t+ 1)− zα

2
ai0ρα(r− ci, t)∇Φ(r− ci, t) · ci

]
(A.7)

and

j(r, t+ 1) =

3∑
α=1

[
18∑
i=1

nαi (r, t+ 1)ci − c2szαρα(r, t+ 1)∇Φ(r, t+ 1)

]
, (A.8)

where zs = 0. Equations (A.7) and (A.8) are only justified in retrospect by a showing that,
in the continuum limit, the electrokinetic equations are recovered.

In Reference [50], also a rest probability density was considered, with weight γs. This
weight could (in principle) be varied to tune the diffusivity. However, the method turned out
to be strictly valid only for the special case γs=1 [83]; therefore I have written the equations
accordingly.

116



A.1 Lattice Boltzmann method for solving the electrokinetic equations

A.1.1 Continuum limit

On a lattice, the Taylor expansion [84] of a function f(r− ci, t− 1) takes the form:

f (r− ci, t− 1) = f (r, t)−(∂t + wici · ∇) f (r, t)+
1

2
(∂t + wici · ∇)2 f (r, t)+o

(
∂3) , (A.9)

where the w′is are weights determined by the following summation rules:

N∑
i=1

ai0wi = 1 (A.10)

N∑
i=1

ai0wici = 0 (A.11)

N∑
i=1

ai0wic
2
i = c2s, (A.12)

where N is the connectivity of the lattice.
In order to perform the Chapman–Enskog expansion, let us substitute the equations for

the one-particle distribution functions in the equations defining the hydrodynamic fields ρα
and j. The equation for the density becomes

ρα(r, t) =

N∑
i

ai0

[
ρα(r− ci, t− 1) +

jα(r− ci, t− 1) · ci
c2s

+ (A.13)

+
zα
2
ρα(r− ci, t− 1)∇Φ(r− ci, t− 1) · ci

]
,

while the one for the partial currents jα = ραj/
∑
α ρα is

jα (r, t) =

N∑
i=1

ai0

[
ρ (r− ci, t− 1) ci +

jα (r− ci, t− 1)

c2sv
· cici

]
−c2szαρ (r, t)∇φ (r, t) . (A.14)

Next, we should Taylor expand the previous equations and compute the macroscopic fields.
I list the expansion of the single terms present in the previous expressions:

N∑
i=1

ai0f (r− ci, t− 1) =

N∑
i=1

ai0

[
f − ∂tf − wici · ∇f +

1

2
(∂t + wici · ∇)2 f + ...

]

=

N∑
i=1

ai0

[
f − ∂tf +

1

2
∂2
t f +

1

2
wic

2
i∇2f + ...

]
(A.15)

= f − ∂tf +
1

2
∂2
t f +

c2s
2
∇2f ;

N∑
i=1

ai0f (r− ci, t− 1) ci =

N∑
i=1

ai0

[
f − ∂tf − wici · ∇f +

1

2
(∂t + wici · ∇)2 f + ...

]
ci
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=

N∑
i=1

ai0 [−wici · ∇f + wi∂tci · ∇f ] ci (A.16)

= (−∇f + ∂t∇f)

N∑
i=1

ai0wic
2
i

= (−∇f + ∂t∇f) c2sv;

N∑
i=1

ai0j (r− ci, t− 1) · cici =

N∑
i=1

ai0

[
j− ∂tj− wici · ~∇j− 1

2

(
∂t + wici · ~∇

)2

j + ...

]
· cici

=

N∑
i=1

ai0

[
j− ∂tj +

1

2
∂2
t j +

1

2
w2
i

(
ci · ~∇

)2

j

]
· cici (A.17)

=

(
j− ∂tj +

1

2
∂2
t j

) N∑
i=1

ai0cici +∇2j

N∑
i=1

ai0w
2
i
c2
i cici

2

=

(
j− ∂tj +

1

2
∂2
t j +

∇2j

6

)
c2s.

If we substitute Eqs. (A.15), (A.16), and (A.17) into Eqs. (A.13) and (A.14), we obtain the
following macroscopic equations for the hydrodynamic fieldsρα and jα:

∂tρα =
1

2
∂2
t ρα −∇ · jα + ∂t∇ · jα +

c2s
2

(
∇2ρα + zα∇ · ρα∇Φ

)
, (A.18)

∂tjα = −c2α∇ρα + c2s∂t∇ρα +
1

2
∂2
t jα +

1

6
∇2jα − c2szαρα∇Φ. (A.19)

A.1.2 Chapman Enskog procedure

The Chapman-Enskog procedure allows to separate the time scales at which the different
mechanisms of mass and momentum transfer occurs. Specifically, we expect the following
phenomena [9]

1. relaxation to local equilibrium on time scales O(ε0)

2. density perturbation propagating as sound waves on time scales O(ε1)

3. diffusive and advective effects on time scales O(ε2)

Thus, the time and space derivatives are expressed as

∇ = ε∇1 (A.20)

∂t = ε∂t1 + ε2∂t2 . (A.21)

If we substitute Eqs. (A.20) and (A.21) into Eq. (A.18), we obtain

(
ε∂t1 + ε2∂t2

)
ρα =

1

2

(
ε∂t1 + ε2∂t2

) (
ε∂t1 + ε2∂t2

)
ρα −

−ε∇1 · jα +
(
ε∂t1 + ε2∂t2

)
ε∇1 · jα + (A.22)

c2s
2

[(ε∇1) (ε∇1) ρα + zαε∇1 · (ραε∇1Φ)] .
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Keeping only terms up to second order in ε, Eq. (A.22) simplifies to[
ε∂t1 + ε2∂t2

]
ρα = −ε∇1 · jα + ε2

[
1

2
∂2
t1ρα + ∂t1∇1 · jα

]
+ ε2

c2s
2

(
∇2

1ρα + zα∇1 · ρα∇1Φ
)
, (A.23)

while Eq. (A.19) becomes[
ε∂t1 + ε2∂t2

]
jα = −εc2s [∇1ρα + zαρα∇1Φ] +

+ ε2
[
c2s∂t1∇1ρα +

1

2
∂2
t1 jα +

1

6
∇2

1jα

]
. (A.24)

Let us now identify the different mechanisms of mass and momentum transfer. At the ε scale
we obtain

∂t1ρα = −∇1 · jα, (A.25)

∂t1 jα = −c2s (∇1ρα + zαρα∇1Φ) . (A.26)

Eq. (A.25) is the continuity equation for mass conservation. By taking the sum over s on
both sides of Eq. (A.26) one obtains the ”fast” part of the linearized Navier–Stokes equation
for the total mass current j:

∂t1 j = −c2s
∑
α

∇1ρα − c2s
∑
α

zαρα∇1Φ. (A.27)

On the ε2 scale we have

∂t2ρα =
1

2
∂2
t1ρα + ∂t1∇1 · jα +

c2s
2

(
∇2

1ρα + zα∇1 · ρα∇1Φ̂
)
, (A.28)

∂t2 jα = c2s∂t1∇1ρα +
1

2
∂2
t1 jα +

1

6
∇2

1jα. (A.29)

In Equation (A.28) I collect ∇1 and obtain

∂t2ρα =
1

2
∂2
t1ρα + ∂t1∇1 · jα +

c2s
2
∇1 ·

(
∇1ρα + zαρα∇1Φ̂

)
=

1

2
∂2
t1ρα + ∂t1∇1 · jα −

1

2
∇1 · (∂t1 jα) (A.30)

=
1

2
∂2
t1ρα +

1

2
∂t1∇1 · jα,

which by means of Eq. (A.25) gives

∂t2ρα = 0. (A.31)

This equation expresses the fact that the diffusion has already relaxed on the faster time
scale t1. This, however, is not the relevant time scale at which a diffusion process has to take
place. Moreover, the diffusion coefficients will be linked to the fast degrees of freedom and it
will not be possible to vary them. Let us go back to the microscopic evolution equation and
add an extra term to obtain, on the t2 time scale, a diffusive term. The correction amounts
to the addition of the term

Dα

N∑
i

ai0

[
−∇ρα(r− ci, t− 1)

c2s
− zα

2
ρα(r− ci, t− 1)∇Φ(r− ci, t− 1)

]
· ci (A.32)
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to the Eq. (A.13) defining the microscopic dynamics of the density. By repeating the
Chapman-Enskog procedure, on the slow t2 time scale, we obtain

∂t2ρα = Dα
[
∇2ρα + zα∇ · (ρα∇Φ)

]
, (A.33)

which is the diffusive behavior described by the Smoluchowski equation (A.1). Because the
factor Dα of Eq. (A.32) is freely adjustable, one can in principle impose the desired diffusivity.
To make sure that this is possible in practice, one should nonetheless perform a proper test
which falls outside the scope of this chapter. The remaining part of the Chapman-Enskog
procedure will be a mere repetition of that of Ref. [50], to which I refer the reader for details.

A.2 Boundary nodes and origin of the spurious currents

The second problem of this lattice-Boltzmann implementation concerns the formation of
spurious currents at boundary nodes due to a slight imbalance of the microscopic equations.

For the sake of simplicity, I illustrate this phenomenon in the simplest case of the dis-
cretization of the gradient of a scalar field ρ, defined at every lattice node. The function

f (r) =

N∑
i=1

ai0
c2s
ρ (r + ci) ci (A.34)

is the lattice counterpart of the gradient, provided that the summation rules

N∑
i=1

ai0ci = 1, (A.35)

and
N∑
i=1

ai0wic
2
i = c2s, (A.36)

[which is Eq. (A.12)] are satisfied. By using them and the Taylor expansion Eq. (A.9), it is
easy to prove that f(r) is, indeed, the gradient of ρ:

f (r) =

N∑
i=1

ai0
c2s
ρ (r + ci) ci =

1

c2s

N∑
i=1

ai0ρ(r)ci +

N∑
i=1

ai0wi [(ci · ∇) ρ(r)] ci

=
ρ(r)

c2s

[
N∑
i=1

ai0ci

]
+
∇ρ
c2s

[
N∑
i=1

ai0wic
2
i

]
(A.37)

= ∇ρ.

Equations (A.35) and (A.36) are valid only when the summation is performed over all the
N velocities allowed by the connectivity of the lattice. Then, it is immediately clear what
happens on a boundary node, where we have to employ the the bounce-back rule for all
the boundary links. For specificity, if the links i = 1, ..., N ′ connect fluid nodes, while the
remaining links i = N ′, ..., N are the boundary links, the function f(r) defined by Eq. (A.34)
becomes (I substitute ai1 = ai0/c

2
s)

f (r) =

N′∑
i=1

ai1ρ (r + ci) ci +

N∑
i=N′

ai1ρ (r) ci, (A.38)
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where the second term represents the populations that have been reflected back.

In order to explicitly compute the correction terms, let us Taylor expand the first part of
Eq. (A.38)

f (r) =

N′∑
i=1

ai1ρ(r)ci +

N′∑
i=1

ai1wi [(ci · ∇) ρ(r)] ci +

N∑
i=N′

ai1ρ (r) ci

=

N∑
i=1

ai1ci +∇ρ

 N′∑
i=1

wia
i
1c

2
i

 (A.39)

= ∇ρ

 N′∑
i=1

wia
i
1c

2
i

 .
Equations (A.39) tell us that on a boundary node the function f(r) is not exactly equal to the
gradient. Therefore, by repeating the Chapman-Enskog procedure on a boundary node, one
no longer recovers the macroscopic equations. Hence, there will always be spurious currents
arising from this (small) mismatch.

One can cure these spurious boundary currents by explicitly putting the correction sug-
gested by Eqs. (A.39), and compute the gradient with the expression

∇ρ =
f(r)∑N′

i=1 wia
i
1c

2
i

. (A.40)

The readers may now expect similar corrections for all the expression which take part in
the evolution equations [as Eqs. (A.15), (A.16), and (A.17)]. Although they can indeed be
obtained, these corrections become increasingly involved and computationally expensive. To
give an idea, I will explicitly show what happens to the expression given by Eq. (A.15), which
I rewrite here:

18∑
i=1

ai0ρ (r− cit− 1) = ρ− ∂tρ+
1

2
∂2
t ρ+

c2s
2
∇2ρ. (A.41)

At a boundary node, instead of Eq. (A.41), we have:

18∑
i=1

ai0ρ (r− cit− 1) =

N′∑
i=1

ai0ρ (r− ci, t− 1) +

N∑
i=N′

ai0ρ (r, t− 1)

=

N′∑
i=1

ai0

[
ρ− ∂tρ− wici · ∇ρ+

1

2
(∂t + wici · ∇)2 ρ+ ...

]
+

+

N∑
i=N′

ai0

[
ρ− ∂tρ+

1

2
∂2
t ρ+ ...

]

=

N∑
i=1

ai0

[
ρ− ∂tρ+

1

2
∂2
t ρ+ ...

]
+ (A.42)

+

N′∑
i=1

ai0 [−wici · ∇ρ+ wi∂tci · ∇ρ]
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In summary,

18∑
i=1

ai0ρ (r− cit− 1) = ρ− ∂tρ+
1

2
∂2
t ρ+

c2s
2
∇2ρ+ (A.43)

+

N′∑
i=1

ai0 [−wici · ∇ρ+ wi∂tci · ∇ρ] .

In Equation (A.43), the term in the square brackets is a spurious term which, if we want to
correct the boundary lattice artifact, we should subtract to the left hand side. One should
also not forget to put, in place of the density gradient, its corrected expression in terms of
lattice quantities [Eq. (A.40)].

With Equation (A.43), I have shown that it is, in principle, possible to compute all the
terms that will balance the macroscopic equations even in the presence of a boundary. At the
same time, the reader might now be persuaded that these corrections become impractical.

In Chapter 5 Figure 5.7a, I show that all the imbalances at boundary nodes add up to
give rise to spurious currents even in the absence of flow.
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In dit proefschrift ligt de nadruk op elektrohydrodynamica. De elektrohydrodynamica
beschrijft systemen waarin hydrodynamische (door stroming veroorzaakte) en elek-
trostatische (door lading veroorzaakte) interacties van vergelijkbare sterkte zijn en
daardoor met elkaar concurreren. Op toegepast gebied is er hernieuwde interesse in
dit vakgebied vanwege het praktisch nut voor microfluidics en voor de biofysica. Op
theoretisch gebied is elektrohydrodynamica nog steeds uitdagend vanwege de inherente
niet-lineariteit van de bijbehorende vergelijkingen.

Het eerste onderwerp in dit proefschrift - en tevens het enige dat niet gerelateerd is
aan geladen collöıden - is het bestuderen van stroming in poreuze media door middel
van de rooster-Boltzmannmethode. In hoofdstuk 4 heb ik laten zien hoe snelheidsfluc-
tuaties gedempt worden in een eenvoudig model van een poreus medium. Tevens heb
ik laten zien hoe het gebruik van benaderingen in vergelijkingen die op hun beurt weer
gebaseerd zijn op de vooraf gemiddelde eigenschappen van de stroming tot grote fouten
kan leiden. Dit strookt niet met de aanname die ten grondslag ligt aan bestaande the-
orieën voor hydrodynamische dispersie. In een poging om stroming in poreuze media
te bestuderen, heb ik een zeer vereenvoudigd rooster-Boltzmannmodel voor poreuze
media gëıntroduceerd. Dit model heeft de prettige eigenschap dat het geen uitgesloten
volume heeft, maar dat er toch wrijving van de vloeistof met obstakels mogelijk is.
In hetzelfde hoofdstuk heb ik een eenvoudige methode gepresenteerd om het grootst
mogelijke Pecletnummer te verkrijgen. (in roostersimulaties wordt het Pecletnummer
altijd beperkt tot lage waarden door kunstmatige diffusie, veroorzaakt door simulatie-
artefacten).

In hoofdstuk 3 heb ik een korte introductie gegeven van de elektrokinetische vergeli-
jkingen. In hoofdstuk 5 heb ik een nieuwe, tijdens mijn promotietijd ontwikkelde,
methode beschreven die het mogelijk maakt om deze elektrokinetische vergelijkingen
te behandelen en om voorheen nog niet verkende stromingscondities te bestuderen.
Deze hybride methode koppelt een rooster-Boltzmannmodel voor het neutrale oplos-
middel aan een discretisatie van de Smoluchowskibeschrijving voor de opgeloste deelt-
jes. Deze combinatie van verschillende methodes is gerechtvaardigd door de keuze
van het beschrijvingsniveau van de verschillende componenten in het systeem: de
grote collöıdale deeltjes en kleine ionen zijn zeer verschillend van grootte. Een be-
langrijke eigenschap van de nieuwe methode is dat deze zich strikt houdt aan massa-
en impulsbehoud op het niveau van een enkel roosterpunt, waardoor onnatuurlijke
transportmechanismen zijn uitgesloten. De methode is bovendien zeer eenvoudig te
implementeren en kan volledig parallel worden uitgevoerd. Om de voordelen van deze
pragmatische aanpak te tonen, laat ik in appendix A twee technische problemen zien
die uit een ander rooster-Boltzmannmodel voortkomen. Kleine discrepanties leiden
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daar tot onnatuurlijke massastromen aan het oppervlak van een macroscopisch object,
die de subtiele interacties waarin we gëınteresseerd zijn overstemmen. Concluderend
meen ik dat de methode, hoewel deze nog verbeterd kan worden, reeds erg flexibel
is en zeer geschikt om microfluidics en collöıdale suspensies van geladen deeltjes te
bestuderen. Hoewel de methode in dit proefschrift nog niet uitgebreid is toegepast op
microfluidics, meen ik dat dát het vakgebied is waarin het potentieel ervan volledig
benut kan worden.

Het resterende deel van dit proefschrift beschrijft verkennende studies naar de
elektrokinetische eigenschappen van geladen collöıden in elektrolyten, gebruik makend
van het in hoofdstuk 5 gëıntroduceerde rooster-Boltzmannmodel. De keuze voor een
systeem van geladen collöıden in elektrolyten komt voort uit vragen als: hoe hangt de
mobiliteit van een deeltje af van zijn vorm en ladingsverdeling?

In hoofdstuk 6 heb ik computersimulaties beschreven van de sedimentatiesnelheid
van sterk geladen bollen. Ik heb laten zien dat deze sedimentatiesnelheid kan worden
uitgedrukt in de evenwichtseigenschappen van de elektrische dubbellaag. Bovendien
wordt deze afhankelijkheid bij sterke lading bëınvloed door de accumulatie van lading
op het oppervlak van de bol. De sedimentatiesnelheid lijkt dan op die van een bol in
een elektrolyt zonder toegevoegd zout, waarbij co-ionen geen invloed meer hebben op
sedimentatiesnelheid en alleen de dynamica van de contra-ionen is relevant is.

Een ander belangrijk aspect van de elektrohydrodynamische interactie dat nog-
maals de flexibiliteit van de methode aantoont, is de studie naar het effect van de
vorm van collöıden op de elektrokinetica. Hoofdstuk 7 beschrijft een studie naar de
rol van vorm, dichtheid, volumefractie, lading en ionenconcentratie op de sedimen-
tatiesnelheid van schijfjes met een eindige dikte. Deze zijn zowel theoretisch relevant
omdat ze een prototype zijn voor het bestuderen van algemene effecten van de vorm
op de sedimentatiesnelheid, als praktisch relevant omdat ze een goed model vormen
voor echte kleideeltjes. Mijn bevinding is dat schijfvormige deeltjes hydrodynamisch
symmetrisch worden door niet-triviale interacties tussen het stromingsveld rond het
deeltje en de elektrische dubbellaag.

De laatste toepassing die ik heb beschreven is de elektroforetische mobiliteit van
een bol met geladen ‘vlekken’. In hoofdstuk 8 heb ik laten zien hoe de elektrofore-
tische mobiliteit van zon bol afhangt van het elektrische quadrupoolmoment en de
Debyelengte. Ik heb ook laten zien dat als het door elektroforese voortbewogen deeltje
niet exact bolvormig is (wat het geval is voor een bol in een roostermodel), er ook
elektrische multipoolmomenten moeten worden beschouwd van een hogere orde dan
het quadrupoolmoment.
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