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Abstract

The Bloch nature of surface plasmon polaritons in a one dimensional plasmonic crystal is directly

observed using ultrafast and phase-sensitive near-field microscopy. Individual Bloch harmonics

within one Bloch mode are separated and visualized. Different harmonics within the same Bloch

mode turn out to have a different lateral amplitude distribution. The coupling between the different

Bloch harmonics and a near-field probe is studied by comparing the measured energy distribution

over the different harmonics to the theoretically expected distribution. It is found that higher order

harmonics couple more efficiently to the probe than lower order harmonics.

PACS numbers: 71.38.-k, 42.70.Qs, 68.37.Uv
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INTRODUCTION

When a wave propagates through an infinite periodic medium its shape has to conform

to the periodicity of the medium: Bloch’s theorem has to be obeyed [1]. As a result, Bloch

modes will form, each consisting of multiple plane waves, called Bloch harmonics. These

Bloch harmonics each have their own wavevector and all these wavevectors are separated

by an integer number times 2π/a (with a the period of the medium) and one harmonic will

appear in each Brillouin zone of the dispersion diagram. The different harmonics form a

discrete group of coherent waves, without any redistribution of energy [2]. An individual

Bloch harmonic will in general not satisfy Maxwell’s equations for the periodic medium and

therefore can not exist on its own.

The influence of a periodic potential on waves is ubiquitous in many aspects of physics and

examples range from electrons [3] and phonons [4, 5] in atomic lattices, photons in photonic

crystals [6], or optically induced lattices [7] to, recently, surface plasmon polaritons (SPPs)in

plasmonic crystals [8]. Studying Bloch modes will provide insight in the dispersion of the

periodic crystal structures for electromagnetic waves, and reveals, e.g., group and phase

velocities. Also the ratio between the amplitude of the different harmonics provides an

elegant way of determining extremely small variations in the refractive index due to the

periodic potential of the crystal [9]. A way to investigate Bloch modes in optical systems is

by looking at scattered photons in the far-field, e.g., with a ’conventional’ optical microscope

[10]. However, this method relies on imperfections in the structure to scatter the photons

from their bound mode to radiative modes that can be detected in the far field. In addition,

a microscope in the far field is governed by diffraction which limits the spatial resolution.

For photons inside a photonic crystal waveguide a photon scanning tunneling microscope
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(PSTM) has been used to resolve the different photonic Bloch modes and separate the Bloch

harmonics comprising each Bloch mode [6, 11, 12]. The individual Bloch harmonics in the

photonic crystal waveguide turned out to have different lateral mode profiles [6]. A similar

in depth investigation of plasmonic Bloch modes is lacking.

In this paper we investigate surface plasmon polaritons in a plasmonic crystal to study

their Bloch nature. With a phase-sensitive near-field microscope we visualize the different

Bloch harmonics that build up one plasmonic Bloch mode. We show that if any dynamic

interplay of the harmonics belonging to a single Bloch mode occurs, it does so on a time

scale smaller than 20 fs. By comparing the experimental results to the analytically calculated

energy distribution over the different harmonics, we were able to extract the relative coupling

efficiency of the different harmonics to the near-field probe. Since higher order harmonics

have a wavevector that is larger in magnitude, the effective wavelength of the harmonic will

be smaller than the near-field probe aperture, causing significant changes in the coupling

efficiency between the Bloch harmonic and the near-field probe.

EXPERIMENTAL ASPECTS

An SPP crystal [13], was used in this study as a model structure. SPPs are the solution

of Maxwell’s equations at the interface between a dielectric and a metal. An SPP is a

bound and propagating surface wave [14–16]. SPPs are excited on an Au-air interface with

light from a Ti:Sapphire laser pumped optical parametric oscillator (pulse duration 120 fs,

repetition rate 80 MHz, wavelength tunable between 1400 nm and 1600 nm, bandwidth

30 nm). Figure 1(a) shows an optical microscopy picture of the SPP crystal. It consists

of a 55 nm thick Au film on BK7-glass and is prepared by e-beam lithography and lift

off. At the left of the figure a launch pad is visible on which the SPPs are excited using
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FIG. 1: (Color) (a): Optical microscope picture of the SPP grating under investigation. SPPs are

excited at the launch pad at the left of the figure. They propagate via an entrance guide to a

55 µm long Bragg grating. The Bragg grating consists of periodic indentations of 1 µm (period

750 nm) leaving a 1 µm Au strip at the center. (b): Typical experimentally measured snapshot

of the amplitude of the SPP field as obtained with the time-sensitive and phase-resolved PSTM.

SPPs were excited with 120 fs pulses with a central wavelength in air of 1500 nm.

a Kretschmann-Raether configuration [17]. Via a tapered entrance, SPPs are guided by a

3 µm wide entrance guide of 30 µm long, to a 55 µm long Bragg grating which is created

along the straight guide. The Bragg grating consists of an arrangement of 1 µm indentations

with a period of 750± 15 nm, thus leaving a 1 µm Au strip remaining at the center. After

the Bragg grating, 6 µm of unperturbed straight waveguide is continued.

We used a home-built PSTM working with shear-force height feedback, incorporated in a

Mach-Zehnder type interferometer to study the SPP Bloch behavior [18]. Acoustic-optical

modulators in one of the branches of the interferometer combined with a lock-in detector

enable phase-sensitive measurements [19]. Raster scanning the near-field probe over the

SPP grating yields information on the amplitude distribution of the E-field distribution

along the grating. In addition, the signal yields the local phase evolution of the SPP E-field.

An optical delay line is added in the so-called reference branch of the interferometer. In

this study 120 fs pulses are used to excite the SPPs. Interference between the wavepackets
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inside the two interferometer branches will only be detected when there is temporal overlap

between the wavepackets at the detector. In effect the near-field microscope will measure the

cross correlation between the SPP wavepacket and the wavepacket in the reference branch.

By varying the delay line in the reference branch, interference will occur for different probe

positions along the structure. For every delay line position, a different cross correlation,

which resembles a snapshot of the SPP wavepacket in time, is obtained. This way the

dynamics of the SPPs can be studied. More detail on this instrument can be found in [18].

FOURIER ANALYSIS

The structure under investigation is periodic in the propagation direction (x-direction)

and acts as a waveguide in the direction perpendicular to this (y-direction). The general

expression for a single infinitely extending Bloch mode at time t and position (x, y) is

therefore given by [3]:

E(x, y, t) =
∑
m

Cm(kx, y)exp

[
i

({
kx +

2πm

a

}
· r − ωt

)]
. (1)

Here m is an integer labeling the harmonic, ω is the angular frequency, kx is the funda-

mental wavevector in the x-direction, a is the grating period and Cm(kx, y) is the complex

amplitude of each Bloch harmonic. The lateral mode profile, i.e., the amplitude profile in

the y-direction, can be different for each Bloch harmonic, which is reflected in the explicit

dependence of Cm on y. We use a two-dimensional fast Fourier transform (FFT) to obtain

the different in-plane spatial frequencies present in the SPP field [4, 5]:

F (k, ω) =
1

(2π)2

∫ ∫ +∞

−∞
E(r, t)exp[i(−k · r)]d2r, (2)

The various peaks in the spectrum along the x-direction will identify all the Bloch har-

monics present. The spatial frequencies along the y-direction for each of these peaks yields
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insight into the lateral mode profiles of each Bloch harmonic. Please note that a series of

one-dimensional Fourier transforms of lines parallel to the propagation direction would, in

principle, yield the same information. The two-dimensional Fourier transform was chosen

for reasons of simplicity only.

Because the E-field is detected by a near-field probe we have to consider that the detec-

tion efficiency for each Bloch harmonic may depend both on m and on kx, which together

determine the magnitude of the wavevector of the Bloch harmonic. For photonic systems dif-

ferences in the magnitude of the wavevector can cause a change in coupling to the probe for

different harmonics [20] and must therefore be taken into account. We define the detection

efficiency Am(kx) for each Bloch harmonic as follows:

Fm(kx) = Am(kx)Cm(kx), (3)

where Cm(kx) =
∫ +∞
−∞ Cm(kx, y)dy and Fm(kx) is the Fourier amplitude at k = kx + 2mπ/a

integrated for all ky. It turns out that in the experiments that will follow, we only excite

one Bloch mode at a time. This Bloch mode is composed of several Bloch harmonics.

EXPERIMENTAL RESULTS

For the measurements we raster scan the near-field probe over the Bragg grating while

keeping the delay time, as determined by the length of the reference branch, fixed. This

method results in a typical snapshot of the propagating SPP as is shown in figure 1(b). In

the figure we only depict the amplitude information of the SPP-field. The phase information

which is obtained simultaneously, is not shown. Already it is visible that the optical field

above the grating has a periodic modulation, parallel to the propagation direction (from left

to right). The observed periodicity is 750 nm, which is equal to the grating period. We
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FIG. 2: Amplitude of the sum of the 2D spatial FFT of the entrance guide in the direction

perpendicular to the grating, normalized to the maximum amplitude value. Around 4.2·10−3 nm−1

the SPPs propagating from left to right in figure 1(b) appear. The SPPs reflected at the interface

between the entrance guide and grating have a negative group and phase velocity and appear at

−4.2 · 10−3 nm−1, indicated by the arrow.

therefore observe that the SPP field conforms to the grating period and forms a Bloch wave.

In the entrance guide a standing wave pattern is visible, due to reflections at the transition

between the entrance guide and the grating.

Separating reflected SPPs and Bloch harmonics

By carrying out the Fourier transformation only on a selected part of the real space data,

we obtain the spatial frequencies of the selected scan area only. Figure 2 shows the result

of a 2D FFT of the entrance guide, for a central excitation wavelength of 1500 nm. The 2D

amplitude and phase data are summed after the FFT in the direction perpendicular to the
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propagation direction. The peak around 4.2·10−3 nm−1 corresponds to the SPPs propagating

in the entrance waveguide towards the grating. The peak around −4.2·10−3 nm−1 (indicated

by an arrow) corresponds to the SPPs that have been reflected at the transition of the

entrance guide and the grating. These SPPs have a negative phase velocity, since their

wavevector is negative. The measured magnitude of the wavevector of the SPPs is a factor

1.02 higher than that of photons with a wavelength of 1500 nm in air. This does mean

that the SPPs in the waveguide have a strong photon-like character. However, they are

still bound since the magnitude of their wavevector is larger than that of photons in air at

the same frequency (their dispersion curve lies below the so-called lightline). The sign of

the group velocity of the SPPs at −4.2 · 10−3 nm−1 turns out to be negative if we follow

the propagation direction of the mode in time. Since these SPPs propagate in the opposite

direction with respect to the initially excited SPP, we know that they have to be reflected.

Interference between the two opposite propagating SPP wavepackets causes the standing

wave pattern visible in the entrance guide in figure 1(b). The ratio between the peak at

4.2 · 10−3 nm−1 and −4.2 · 10−3 nm−1 gives the amplitude reflection coefficient, which is

7± 2%.

Next we select only the fields detected along the uncorrugated central part of the Bragg

structure. In first instance we do not consider the measured SPP field above the grating to

avoid topographical artifacts [21]. The absolute value of the 2D FFT of the SPP amplitude

at this section is shown in figure 3, again for an excitation wavelength of 1500 nm in air and

summed after the FFT in the direction perpendicular to the propagation direction. Multiple

peaks appear, representing individual Bloch harmonics, separated by 2π/a: −3π/a + ε

(indicated by an arrow), −π/a + ε, π/a + ε and 3π/a + ε, with ε = 0.015 nm−1 for this

frequency. Repeating this experiment for different frequencies results in the complete band
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FIG. 3: Absolute value of the 2D spatial FFT of the amplitude of the SPP E-field guide in between

the grating, normalized to the amplitude at π/a. Close to π/a the fundamental mode is visible

and close to −3π/a (indicated by the arrow), −π/a and 3π/a the Bloch harmonics appear.

structure of the grating (not shown in this paper), like the band structure for photons in a

photonic crystal waveguide [6]. The sign of the group velocity of the different harmonics,

∂ω/∂k, can be determined by following their propagation in time. All harmonics turn out

to have a positive group velocity, and are thus part of the same Bloch mode.

The observation that the SPP wavevector is very close to the wavevector of photons in

air at the same frequency, combined with the finite length of the grating (55 µm), which

results in a finite resolution of the FFT analysis of 1.1 · 10−4 nm−1, has implications for

the analysis of the results. The m = −1 Bloch harmonic and reflection of the m = 0

harmonic at the end of the grating, will both end up at the same position in the 2D FFT,

i.e., at roughly −π/a = −4.2 ·10−3 nm−1. Easy separation is only possible at frequencies for

which |kx| 6= π/a± 1.1 · 10−4 nm−1. At such frequencies our phase-sensitive microscope will

yield two distinguishable peaks. Figure 4 shows that for an excitation wavelength in air of
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FIG. 4: FTT amplitude around −π/a, normalized to the maximum of the spectrum. At an excita-

tion wavelength of 1600 nm the m = −1 Bloch harmonic and the reflected SPPs are distinguishable.

The peak at the left is the Bloch harmonic and the peak on the right is the reflection.

1600 nm this is indeed the case. The peak at the left is the m = 1 Bloch harmonic and the

peak on the right is SPPs reflected at the end of the grating. We are able to discriminate

the two by looking at their group velocity.

Since in this study we focus on the behavior of the Bloch harmonic and not on the reflected

SPPs, the amplitude of the Fourier peaks around kx = −π/a should be corrected for the

reflected SPPs to arrive at the detected signal of the m = −1 Bloch harmonic. Averaging

over multiple measurements, all with different delay line positions, gives a ratio F−1/r = 5.5,

with r being the amplitude of the reflected SPPs. F−1 and r are determined by taking the

peak value of the two individual peaks. This procedure turns out to give the same results as

fitting two Gaussians to the graphs like the one presented in fig. 4. If we assume this ratio

to be independent of frequency, at all frequencies: F−1 = =(kx)/(1 + 1
5.5

) = =(kx)/1.18,

with =(kx) the total FFT amplitude found at −π/a. Once the Bloch harmonic and the
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reflection are separated, it is possible to determine the amplitude reflection coefficient of the

end of the grating. This reflection coefficient is 4 ± 1%. When we assume that all Bloch

harmonics will experience the same reflection, the amplitude of the reflection of the m = +1

harmonic would be one order of magnitude smaller than the amplitude of the Fourier peak

at the position of the m = −2 harmonic, that will have roughly the same wavevector as the

reflection of the m = +1 harmonic. Since the reflection of the m = +1 harmonic is also

not visible in figure 4, we can and will neglect the reflections of the Bloch harmonics with

m 6= 0.

Fm(kx) is determined for different reference times, i.e., for different positions of the SPP

wavepacket along the guide. The result is depicted in figure 5. The figure contains the

relative values of Fm(kx), normalized to F0(kx). No clear trend in time is observed for any

of the Bloch harmonics. The observed fluctuations of Fm(kx) in time are comparable to

the experimental uncertainty (see fig. 8) and can be attributed to small temperature drifts

and/or mechanical vibrations. The absence of a trend in figure 5 means that as the Bloch

mode is excited, all energy within the mode is distributed over the different harmonics on

a timescale below 20 fs. This observation is in agreement with predictions by Russell [2],

who stated that Bloch harmonics propagate as a unity without any redistribution of energy.

We can therefore take Fm(kx), Cm(kx) and Am(kx) to be constant in time in the rest of this

investigation. All values of Fm(kx), Cm(kx) and Am(kx) in the remainder of this paper will

be the average of values obtained at different time steps to enhance statistics.

Mode profile of different harmonics

By Fourier analysis and filtering of the optical information, details of the spatial distri-

bution of the individual Bloch harmonics has been obtained. Hereto, the full 2D Fourier
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FIG. 5: Values of Fm(kx), normalized with respect to F0(kx), for different time steps of the delay

line. No clear trend is observable for any Fm. On the timescales in the experiment, Bloch harmonics

do not exhibit dynamic interplay.

transform is multiplied with a window function (width of 0.2 π/a) containing only one har-

monic. Transforming the result back to real space reveals the spatial distribution of that

single Bloch harmonic in 2D. This way it is possible to study differences in mode profile of

the different harmonics, which has previously been shown for photonic Bloch harmonics [6].

However, by including the available time information we can investigate the evolution of

the different harmonics in time. Selecting only the harmonic close to +π/a, or m = 0,

and Fourier transforming this back to real space reveals the evolution of the fundamental

harmonic as shown in figure 6. For the chosen frequency and considering the low interaction

strength of the grating, the wavevector of the SPP mode in the entrance guide turns out to

be equal to the wavevector of the m = 0 harmonic of the Bloch mode in the grating. For

the measurements an excitation wavelength of 1500 nm is used and the time between two

frames is 17 fs. Colors are normalized to the maximum in each frame. In the top panel the
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FIG. 6: (Color) In the top panel the topography of the sample is shown. In the frames below the

evolution of the m = 0 Bloch harmonic and the SPPs in the entrance guide in real space. Time

between two frames is 17 fs, time progresses in the sequence of frames from top to bottom. The

excitation wavelength of the SPP wavepacket is 1500 nm. Colors are normalized to the maximum

value in each frame. Above the entrance guide already signal is observable which is the fundamental

SPP wavepacket having the same wavevector as the Bloch harmonic. Along the grating the m = 0

Bloch harmonic has a maximum above the guide in between the corrugations and it moves in time

along the grating from left to right.

topography of the grating is depicted. Comparing the different measurement frames in this

figure to the frame shown in figure 1(b), the first thing to notice is the absence of fringes,

which would have been indicative of interference effects. The standing wave pattern in the

entrance guide is no longer visible because the reflected SPPs are filtered out, this way, only

the SPPs with a positive phase velocity are left. Also the amplitude modulation with a
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FIG. 7: (Color) In the top panel the topography of the sample is shown. In the frames below

the evolution of the m = +1 Bloch harmonic and the SPPs in the entrance guide in real space.

Time between two frames is 17 fs, time progresses in the sequence of frames from top to bottom.

The first frame corresponds to the same time as the first frame in figure 6, same for all successive

frames. The excitation wavelength of the SPP wavepacket is 1500 nm. Colors are normalized

to the maximum value in each frame. This harmonic has its maximum in amplitude above the

corrugations and propagates from left to right as part of the Bloch mode propagating in that

direction.

periodicity equal to the grating period in the section containing the grating have vanished

as the periodic amplitude modulation requires the coherent superposition of two or more

Bloch harmonics.

As a comparison, figure 7 shows the evolution of the m = +1 Bloch harmonic in time as

obtained from the same measurement that yielded figure 6. The time between two successive
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frames is 17 fs and the excitation wavelength is 1500 nm. Because the data in figure 7 are

obtained in the same measurement as the data shown in figure 6, all frames from top to

bottom in figs. 6 and 7 are measured for the same settings of the delay line. It appears as if

the m = 1 harmonic in the first time frames has propagated further into the structure as the

m = 0 harmonic. However, the apparent lead of the m = +1 harmonic is a consequence of

the normalization to the maximum intensity within each measurement frame. The m = +1

harmonic is only present above the grating, and the guide in the middle of the grating, but

is absent above the entrance guide. Its lateral mode profile does not change in time and

has maxima above the grating. This is in contrast to the m = 0 harmonic which has its

maximum above the guide. Also the mode seems to be slightly asymmetric in the direction

perpendicular to the propagation direction. We observe a slightly higher amplitude in the

upper half of each frame, than in the lower half. This small symmetry breaking may be

explained by a small tilt of the near-field probe with respect to the sample surface.

F (kx) for the different harmonics

Repeating the experiments described above for different excitation wavelengths yields

Fm(kx) for different wavevectors. For every excitation wavelength measurements are per-

formed for multiple time steps. As is visible in figure 5, the relative strength of the different

harmonics does not vary in time and therefore collecting information from multiple time

frames can be used to enhance the signal to noise ratio. Figure 8 shows Fm(kx) for different

excitation wavelengths of the Bloch mode, normalized to F0(kx). The excitation wavelength

is converted to kx. Error bars are based on the experimental signal-to-noise and take into

account an averaging over up to 5 frames. The values of F (kx = −4.2 · 10−3) are corrected

for reflections of the fundamental Bloch harmonic as has been explained in section , which
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FIG. 8: (Color) Fm(kx) of the different Bloch harmonics normalized to harmonic n = 0, for different

excitation wavelengths (expressed as the wavevector of the fundamental Bloch harmonic). Error

bars are the standard deviation coming from averaging over multiple time frames (typically 4) .

yields F−1(kx). From symmetry arguments it is expected that m = −1 and m = +1 are

equal, which is not the case in the measurements, as can be seen in figure 8. Apparently,

our tip is more sensitive to harmonic m = −1, likely because of a small tilt of the probe.

Also the m = −2 and m = +2 are not symmetric, as m = −2 is measurable, and m = +2

is not. The m = −2 peak is one order of magnitude smaller than the m = −1 and m = +1

harmonic. It is important to realize here that the absolute value of the m = −1 and m = +1

harmonic is different.

THEORETICAL VALUES OF HARMONIC STRENGTH

Given the measured Fm(kx), it is possible to extract Am(kx) once calculated values of

Cm(kx) are known. To calculate Cm(kx) we use a model proposed by Russell for photonic
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crystals [2]. For this coupled-wave model we assume an effective dielectric constant of the

periodic medium:

ε = ε0[1 + Mcos((2π/a) · x)], (4)

where ε0 is the effective, average value of the dielectric constant of the waveguide mode and

M the modulation depth. Since we know from the experiments that losses do not prevent

the Bloch mode to form along the entire grating, loss is disregarded. Note that if M goes to

zero, i.e., we are left with an unperturbed waveguide, only the fundamental, m = 0, spatial

harmonic will remain and we are left with an ordinary plane wave in the waveguide. We know

from experiments presented elsewhere [22] that M = 30 mm−1 for our SPP grating. The

simplest self-sufficient electromagnetic wave that can exist in such a medium is the Bloch

wave as was given in eq. 1. From the coupled-wave model it follows that the modulation

strength M and optical frequency, contained in kx, determine Cm(kx).

Substituting eq. 1 and eq. 4 into the one-dimensional scalar wave equation [23] gives:

(k2 − (kx + 2mπ/a)2)Cm(kx) + (M/2)k2{Cm−1(kx) + Cm+1(kx)} = 0. (5)

in which k = ω/vφ, where vφ is the average phase velocity of light in the grating . In the

experiment values larger than −3π/a < kx + 2mπ/a < 3π/a are not observed. We therefore

limit calculations to −2 ≤ m ≤ +1. The resulting system of linear equations can be solved

with respect to an arbitrary C−2(kx). Solving the equations and normalizing to the m = 0

harmonic yields the normalized values for Cm(kx).

DIFFERENT COUPLING EFFICIENCIES FOR DIFFERENT HARMONICS

Since we only know relative values for Fm(kx) and calculate only the relative values for

Cm(kx), it is impossible to set absolute values to Am(kx). Therefore we determine the value
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FIG. 9: (Color) Am(kx) for the Bloch harmonics m = 1, m = −1 and m = −2, normalized to

harmonic m = 0.

of Am(kx)/A0(kx), which reflects the relative coupling efficiency for the different harmonics.

Figure 9 depicts the relative coupling efficiency for different excitation wavelengths. It is

clear that Am(kx)/A0(kx) depends both on m and excitation wavelength. The figure shows

that harmonics m = −1 and m = +1 couple five times up to one order of magnitude better

to the probe than m = 0 for wavevectors up to kx = 4.5 · 10−3 nm−1. The coupling of the

m = −2 harmonic for low wavevectors is four orders of magnitude higher than for the m = 0

harmonic, and for larger wavevectors the ratio decreases by two orders of magnitude.

The difference in coupling efficiency can be understood by realizing that the different

Bloch harmonics have a different wavevector. Different wavevectors may couple differently

to the near-field probe as was shown for photons in ref. [20]. A larger wavevector corresponds

to a smaller effective wavelength and therefore a different interaction to the subwavelength

near-field probe. The difference between m = 1 and m = −1 is surprising. As noted before,
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the harmonics do not have the same absolute wavevector. However, the m = −1 harmonic

has a smaller absolute wavevector than the m = +1 harmonic, which would result in a less

efficient coupling to the probe. We suspect that the difference is caused by the orientation of

the probe with respect to the sample. It is possible that the probe was tilted slightly. This

tilt could have resulted in the situation in which harmonics with a negative wavevector are

directed towards the probe, whereas for harmonics with a positive wavevector the situation

is reversed. This is expected to result in different coupling efficiencies.

Figure 9 shows that all relative coupling efficiencies display a trend of decaying values for

shorter excitation wavelength. In the coupled-wave model for frequencies near the stopgap,

situated around kx = 4.26 · 10−3 nm−1, C0 increases rapidly with respect to all other Cm.

However, in the measurements no pronounced increase in Fm(kx) is present near the stopgap.

We can explain this by taking into account the bandwidth of the wavepackets, which is

around 30 nm. Because of this large bandwidth, the measured values given for a discrete

wavevector, will actually constitute an average value over multiple wavevectors. Close to the

stopgap, frequencies within the wavepacket that are at the red side of the stopgap will leak

out of the grating since they are positioned above the lightline. The loss of frequencies results

in an effective blue shift of the wavepacket spectrum, which results in a lower measured

Fm(kx).

CONCLUSIONS

We have shown for the first time the evolution of individual SPP Bloch harmonics in

space and time. The different harmonics, present in one Bloch mode are separated by

Fourier analysis and turn out to have different mode profiles. Also we showed that higher

order harmonics couple more efficiently to a near-field probe than lower order harmonics.
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The m = −2 harmonic couples on average three orders of magnitude better than the m = 0

harmonic. This is important to realize because near-field microscopy is the only measurement

technique available to study bound, optical Bloch modes. Especially when the amplitude of

the different harmonics is used for example to determine extremely small variations in the

refractive index, one should take into account coupling efficiencies.
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