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Brownian Dynamics algorithms have been widely used for simulating systems in soft-condensed
matter physics. In recent times, their application has been extended to the simulation of
coarse-grained models of biochemical networks. In these models, components move by diffusion
and interact with one another upon contact. However, when reactions are incorporated into a
Brownian dynamics algorithm, care must be taken to avoid violations of the detailed-balance rule,
which would introduce systematic errors in the simulation. We present a Brownian dynamics
algorithm for simulating reaction-diffusion systems that rigorously obeys detailed balance for
equilibrium reactions. By comparing the simulation results to exact analytical results for a
bimolecular reaction, we show that the algorithm correctly reproduces both equilibrium and
dynamical quantities. We apply our scheme to a “push-pull” network in which two antagonistic
enzymes covalently modify a substrate. Our results highlight that spatial fluctuations of the network
components can strongly reduce the gain of the response of a biochemical network. © 2008
American Institute of Physics. �DOI: 10.1063/1.2958287�

I. INTRODUCTION

Most, if not all, biological processes are regulated by
biomolecules, such as proteins and DNA, which chemically
and physically interact with one another in what are called
biochemical networks. These networks are often highly non-
linear, which means that mathematical modeling is critical
for understanding and predicting their behavior. The domi-
nant paradigm has been to consider the living cell to be a
spatially homogeneous environment, analogous to a well-
stirred reactor. It is increasingly recognized, however, that
the cell is a highly inhomogeneous environment, in which
compartmentalization, scaffolding, and localized interactions
are actively exploited to enhance the regulatory function of
biochemical networks. This means that it becomes important
to describe the biochemical network not only in time but also
in space.

In this paper, we present an algorithm for simulating
biochemical networks in time and space that is based upon
Brownian dynamics. Brownian dynamics is a stochastic dy-
namics scheme, in which the solvent is treated implicitly;
only the solutes are described explicitly. The forces experi-
enced by the solutes contain a contribution from the interac-
tions with the other solutes and a random part, which is the
dynamical remnant of the collisions with the solvent mol-
ecules. A pioneering Brownian dynamics �BD� algorithm
was introduced by Ermak and McCammon,1 and detailed,
atomistic Brownian dynamics simulations have been per-
formed to study the dynamics of enzyme-substrate and
protein-protein association reactions.2–8 More recently,
Brownian dynamics has not only been used to study the as-
sociation between two proteins but also to simulate networks

of interacting biomolecules.9–11 In order to simulate these
large systems at the biologically relevant length and time
scales, molecules are coarse grained to the level of simple
geometrical objects, which can diffuse and react with other
chemical species in a confined geometry.

While Brownian dynamics algorithms for simulating
biochemical networks are based on a simplified description
of the molecules and their interactions, they do go beyond
the conventional kinetic Monte Carlo schemes to simulate
biochemical networks.12 These algorithms are based on the
zero-dimensional chemical master equation, and, as such,
they take into account the discrete nature of the components
and the stochastic character of their interactions. However,
they assume that at each instant in time the particles are
uniformly distributed in space. In contrast, Brownian dynam-
ics based algorithms take into account not only the particu-
late nature of the molecules and the probabilistic character
of their interactions but also that at any moment in time
the particles may be nonuniformly distributed in space.
Brownian dynamics thus accounts for both temporal and spa-
tial fluctuations of the components. Moreover, it allows for
the modeling of spatial gradients and localized interactions
in the network.

Recently, a number of algorithms for simulating bio-
chemical networks in time and space have been developed,
which are based upon Brownian dynamics.9–11 In addition,
algorithms for simulating biochemical networks in time and
space have been developed, which are based on the reaction-
diffusion master equation.13–16 The advantage of Brownian
dynamics based techniques is that they are truly particle
based, which means that they do not have to rely on a me-
soscopic length and time scale on which the system is well
stirred, as assumed in schemes based on the reaction-
diffusion master equation. We have recently developed ana�Electronic mail: tenwolde@amolf.nl.
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entirely novel algorithm, called Green’s function reaction dy-
namics �GFRD�.17,18 This is a particle-based scheme to simu-
late biological networks in time and space, like BD. How-
ever, in contrast to BD, GFRD is an event-driven algorithm,
which uses Green’s functions to concatenate the propagation
of the particles in space with the chemical reactions between
them. This makes GFRD orders of magnitude more efficient
than Brownian dynamics when the concentrations are below
0.1–1 �M. For higher concentrations, or for reactions near
surfaces, brute-force BD is more efficient because of the
smaller computational overhead per time step.

Although the main idea of applying BD to reaction-
diffusion systems is straightforward, a number of ingredients
have to be examined with care. One is to which processes do
the association and dissociation rates as used in the simula-
tions correspond to: To the intrinsic rates, which are the re-
action rates at contact, or to the effective rates that also take
into account the effect of diffusion? The other issue is de-
tailed balance. Biochemical networks often contain reactions
that do not consume energy, such as association and disso-
ciation reactions. These equilibrium reactions should obey
detailed balance. Even though a number of BD based algo-
rithms have been presented,9–11 the question whether the al-
gorithm obeys detailed balance has, to our knowledge, not
been systematically addressed.

In this paper, we present a BD algorithm that rigorously
obeys detailed balance and is thus able to reproduce the equi-
librium properties of a reaction-diffusion system. In Sec. II,
we derive our algorithm on the basis of the statistical me-
chanics of chemical reactions. The algorithm is subjected to
stringent tests in Sec. III; besides equilibrium properties, we
test also how well the algorithm reproduces the dynamical
behavior of a bimolecular reaction for different values of the
time step �t. A comparison with a stochastic algorithm that
does not account for spatial fluctuations is also presented.
Finally, in Sec. IV, we show an illustrative application of our
algorithm to a simple coarse-grained model of a chemical
species under the action of two enzymes operating in oppo-
site directions �the so-called push-pull model system�. Simu-
lations conducted with our BD algorithm show that both spa-
tial and temporal fluctuations reduce the gain of the response
of the system.

II. METHODS

A. Detailed balance

Before presenting the outline of the algorithm in the next
section, we discuss the detailed-balance rule that must be
obeyed for equilibrium reactions. To this end, we will con-
sider the elementary bimolecular reaction

A + B � C �kon,koff� . �1�

Here, kon is the macroscopic forward rate for the association
of molecules A and B, and koff is the macroscopic backward
rate for their dissociation. The macroscopic expression for
the equilibrium constant for this reaction is

Keq =
kon

koff
=

�C�
�A��B�

, �2�

where �X� is the concentration of the species X.
In a spatially resolved model, we can decompose reac-

tion �1� in two steps:19

A + B�
kD,b

kD

A · B�
kd

ka

C . �3�

In the first step, particles A and B find each other and form an
encounter complex A ·B, which has not yet reacted to a final
product; this occurs via a diffusion-limited rate kD=4�RD
where R=RA+RB is the cross section with RX the
radius of particle X, and D=DA+DB, with DX is the diffusion
constant of species X.19 Given that the particles are in con-
tact, the reaction can then proceed according to the intrinsic
reaction rate ka. The rates kd and kD,b denote the intrinsic
dissociation rate and the rate at which the particles in the
encounter complex diffuse away into the bulk,
respectively.19,20 It can be shown19 that the equilibrium con-
stant is given by

Keq =
ka

kd
=

kon

koff
�4�

and that the macroscopic forward and backward rate con-
stants are given by, respectively,

1

kon
=

1

ka
+

1

kD
, �5�

1

koff
=

1

kd
+

Keq

kD
. �6�

We will use BD to simulate not only the diffusive motion
of the particles but also the reactions between them. At each
step of the algorithm, each particle is given a trial displace-
ment according to a distribution that follows from the diffu-
sion equation, as described below. If the move does not lead
to an overlap with another particle, the move is accepted.
Importantly, this procedure naturally simulates the formation
of the encounter complex with a rate kD, provided that the
step sizes are smaller than the diameters of the particles. If
two particles are close to each other, and thus form an en-
counter complex, a trial displacement of one of the two can
lead to an overlap; this overlap leads to a reaction with a
probability, as derived below, that is consistent with the
intrinsic reaction rate ka. Conversely, at each step of the al-
gorithm, a product particle C can dissociate with a probabil-
ity consistent with the intrinsic dissociation rate kd. If a trial
dissociation move is accepted, then the particles A and B
have to be put back in the encounter complex. The question,
however, is at which distance should the particles be put
back relative to each other. The BD scheme makes an error
in the dynamics of order �t. This might suggest that the
precise location is not critically important, as long as the
distance is smaller than �r��D�t. However, not every
choice obeys detailed balance, and, as we will show, a choice
that does not obey detailed balance will lead to systematic
errors. We now derive the detailed-balance condition.
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The detailed-balance condition for one given pair of par-
ticles A and B is

Punbound�r�drPu→b = PboundPb→u, �7�

where Pbound is the probability that the two particles are
bound, and Punbound�r�dr is the probability that the particles
A and B are separated by a vector between r and r+dr.
We now first derive the ratio Pbound / �Punbound�r�dr�. To this
end, let us consider the probability P�rA

NA ,rB
NB ,rC

NC ;
�NA ,NB ,NC��drNAdrNBdrNC that the system has �NA ,NB ,NC�
molecules and that these molecules are located at positions
�rA

1 , . . . ,rA
NA�, �rB

1 , . . . ,rB
NB�, and �rC

1 , . . . ,rC
NC�. This probabil-

ity is given by

P�rA
NA,rB

NB,rC
NC;�NA,NB,NC��

= PN�NA,NB,NC� � P�rA
NA,rB

NB,rC
NC	�NA,NB,NC�� , �8�

where PN�NA ,NB ,NC� is the probability that the system has
�NA ,NB ,NC� molecules and P is the conditional probability
density that a given number �NA ,NB ,NC� of molecules oc-
cupy those particular positions. As discussed in more detail
in Appendix A, PN�NA ,NB ,NC� is given by

PN�NA,NB,NC� =
qA,cm

NA qB,cm
NB qC,cm

NC VNA+NB+NC

NA!NB!NC!

1

Q
, �9�

where qX,cm is the partition function of the internal degrees of
freedom of molecule X and Q is the total partition function
of the system. The conditional probability density is the
probability density of finding �NA ,NB ,NC� indistinguishable
ideal particles in a volume V:

P�rA
NA,rB

NB,rC
NC	�NA,NB,NC�� =

NA!NB!NC!

VNA+NB+NC
. �10�

Combining the above equations yields the following ex-
pression for the probability density:

P�rA
NA,rB

NB,rC
NC;�NA,NB,NC�� =

qA,cm
NA qB,cm

NB qC,cm
NC

Q
. �11�

The ratio between the probability densities of being in a state
after and before the transition is

P�rA
NA−1,rB

NB−1,rC
NC+1;�NA − 1,NB − 1,NC + 1��

P�rA
NA,rB

NB,rC
NC;�NA,NB,NC��

=
qC,cm

qA,cmqB,cm
. �12�

By taking NA=1, NB=1, and NC=0, we obtain
Pbound / �Punbound�r�dr�:

Pbound

Punbound�r�dr
=

P�rC;0,0,1�drC

P�rA,rB;1,1,0�drAdrB
=

qC,cm

qA,cmqB,cmdr

=
Keq

dr
. �13�

Using Eq. �4� the detailed-balance condition, Eq. �7�,
then becomes

Pbound

Punbound�r�dr
=

Pu→b

Pb→udr
=

ka

kddr
. �14�

As discussed above, the association between the par-
ticles in the encounter complex to form the product C con-
sists of a two-step process: �1� a “generation” move or “trial”
move, in which an overlap is generated with a probability
Pgen,f, and �2� an “acceptance” move, in which the overlap is
accepted with probability Pacc,f; the product of the probabili-
ties of these moves is related to the intrinsic reaction rate ka.
Similarly, the dissociation move also consists of two steps:
�1� a trial move, in which the dissociated particles are put at
a vector between r and r+dr with probability Pgen,b�r�dr,
and �2� an acceptance move, in which the trial move is ac-
cepted with probability Pacc,b; the product of the probabilities
of these moves is related to the intrinsic dissociation rate
constant kd. The detailed-balance condition can thus be writ-
ten as21

Pbound

Punbound�r�dr
=

Pgen,f�r�Pacc,f

Pgen,bdr�r�Pacc,b
=

ka

kddr
. �15�

This is the principal result of this section. Below, we discuss
in detail how this rule is implemented in our BD scheme. In
Appendix A, we discuss how this detailed-balance rule is
related to the detailed-balance rule for a well-stirred system,
where we do not account for the positions of the particles in
space.

B. Simulation scheme

It is instructive to consider the association between one
particle A and one particle B. We can assume without loss of
generality that DA=0, i.e., that the A particle does not diffuse
in the simulation box. It is then convenient to position it at
the center of the box. The single B particle moves by free
diffusion with diffusion coefficient DB
D. At every simula-
tion step, the system is propagated by a fixed time �t.

In the absence of the A particle, the motion of the B
particle is simply described by the Einstein equation

�

�t
p�r�,t + �t	r,t� = D�2p�r�,t + �t	r,t� , �16�

where p�r� , t+�t 	r , t� is the probability of finding the par-
ticle at position r� at time t+�t, given that it was at r at time
t. We know with certainty the position of the particle at the
initial time. We also impose that at time t+�t, the probability
of finding the particle in space vanishes as we move far away
from the initial position r. We can then formulate the follow-
ing boundary conditions for Eq. �16�:

p�r�,t + �t	r,t� = ��r� − r� , �17�

p�	r�	 → �,t + �t	r,t� = 0. �18�

The solution of Eq. �16� with conditions �17� and �18� is a
Gaussian function, whose variance is proportional to �t:
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p�r�,t + �t	r,t� =
1

�2 � 2D�t�3/2 exp�−
�r� − r�2

2 · 2D�t
� . �19�

This time-dependent probability distribution can be used to
generate new positions for the B particle at every time step
�t.22

In the presence of the A particle, a reaction can occur
when the B particle overlaps with the A particle. In order to
describe the association and dissociation reactions, we have
to specify Pgen,f�r�, Pacc,f, Pgen,b, and Pacc,b in such a way that
detailed balance, Eq. �15�, is obeyed. We first discuss
Pgen,f�r�, then the two quantities related to the backward
move, Pgen,b�r� and Pacc,b, and then we discuss the probabil-
ity by which the trial association move �the overlap� should
be accepted, Pacc,f.

The quantity Pgen,f�r� can be computed analytically: Let
us consider the single particle A held fixed in a center of a
large box, whose edges lie far enough to be neglected in the
following derivation. Using a polar reference frame whose
origin coincides with the center of the A sphere, we can
compute the probability that a B particle initially at position
r is displaced to a position r���, where � is the excluded
volume for B �a sphere, centered in the origin, with radius
R=RA+RB�:

p�r → �� = 

0

R

r�2dr�

0

�

sin �d�

0

2�

d	p�r�,t + �t	r,t�


 g�r,�t� . �20�

The function g�r� can be computed analytically, is radially
symmetric, and depends on the BD time step �t. Details are
given in Appendix B. We will not indicate anymore the de-
pendence of various quantities on �t, since this parameter is
kept constant during the whole simulation. We remind the
reader that in the function g�r�, r represents the position from
which the B particle leaves, given that the move led to an
overlap with A. We set then Pgen,f�r�=g�r�.

Dissociation is modeled as a first order reaction
event, with a Poissonian distribution of waiting times:
P�t�=kd exp�−kdt�. The probability that the reaction has not
happened at time t is then S�t�=1−�0

t P�t��dt�=exp�−kdt�.
Therefore, the probability a reaction does happen is
1−exp�−kdt��kd�t if kd�t
1. If we choose time steps �t
such that �t
1 /kd, the probability that an event happens
within �t can then be approximated to kd�t. We therefore
accept the dissociation move with a probability Pacc,b=kd�t.

Once we have determined that a dissociation event has
happened, we must determine a new position for the B par-
ticle in the reaction box. The crux of our BD algorithm is to
generate a reverse move according to a probability distribu-
tion Pgen,b�r� that is the same as that by which the forward

move is generated, Pgen,f�r�=g�r�, but properly normalized.
The normalization factor can be obtained by integrating
Pgen,f�r� over all initial distances r:



R

�

drr2g�r,�t�

0

�

d� sin �

0

2�

d	 = 4�I��t� 
 V , �21�

where I=�R
�g�r�r2dr. During a dissociation move, the par-

ticle is thus put at a vector between r and r+dr according to
Pgen,b�r�dr=g�r�dr /4�I=g�r�r2dr sin �d�d	 /4�I.

Using Eq. �15�, we can now obtain the desired accep-
tance probability for the forward move:

Pacc,f =
Pbound

Punbound

Pgen,b

Pgen,f
Pacc,b =

ka

kddr

g�r�dr

g�r�4�I
kd�t =

ka�t

4�I
.

�22�

The above expression has a meaningful interpretation: the
intrinsic association rate ka can be written as the product of
two factors: �1� a collision frequency 4�I /�t and �2� the
probability Pacc,f that a collision leads to a reaction. The
dominant contributions to the integral I come from distances
r that are short compared to �D�t �see Eqs. �20� and �21��.
In the limit that the time step �t→0, the rate ka should thus
approach the intrinsic association rate ka as used in theories
of diffusion-influenced reactions;19 here, the intrinsic asso-
ciation rate ka is defined as the association rate given that the
particles A and B are in contact. We also note that this is the
intrinsic association rate as used in GFRD.17,18

C. Algorithm outline

Let us consider a system with M particles of type B and
one particle of type A, held fixed at the center of box of
volume V.

�1� Generate an initial position for the B particles in the
available volume.

�2� Select randomly one of the particles among species B
and C.

�3�

�a� If the particle is type B, for each Cartesian coordi-
nate, generate a new position according to a Gauss-
ian distribution with zero mean and standard devia-
tion �2D�t: xnew=xold+N�0,�2D�t�, where �t the
BD time step.

�b� If the displacement move leads to an overlap of the
B particle with another B particle, the move is re-
jected and the former B particle is put back to its
original position; as discussed below, if the density
of B particles is low, these excluded volume inter-
actions could be neglected.

�c� If the displacement move leads to an overlap of the
B particle with the A particle, that is, if 	rA−rB	
�RA+RB, attempt a reaction according to a prob-
ability Pacc,f =ka�t / �4�I�.

�d� If the trial reaction move is accepted, remove the B
particle from the box and substitute the A particle
with a C. This new particle is not diffusing in the
box.
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�e� If the trial reaction move is rejected, put the B par-
ticle back to its original position.

�4�

�a� If the particle is type C, try a backward reaction
with probability Pacc,b=kd�t.

�b� If the trial reaction move is accepted, substitute the
C particle with an A particle, and create a new B
particle whose radial position is drawn from the nor-
malized distribution g�r�r2 / I and the angular posi-
tion from the uniform distribution ��� ,	�. If this
leads to an overlap with another B particle, reject
the move.

�c� If the trial reaction move is rejected, keep the iden-
tities and positions of the particles.

�5� Repeat step �2� and �3� or �4�. M times, and then in-
crease the simulation time by �t.

Keeping particle A and C fixed could mimic, for ex-
ample, a system where one reactant is anchored to some rigid
scaffold. A relevant biological example is the binding of pro-
teins to DNA in a bacterial cell, particle A representing a
binding site on the DNA, typically in proximity of some
gene. In this case, the motion of A is only related to the
fluctuations of the polymer, which happen on time scales
much longer than the diffusion of proteins in the bacterial
cytoplasm, and can therefore be neglected. The scheme could
straightforwardly be extended to the situation in which the A
particle also moves, or cases with more reaction channels.
We also note that in the algorithm outlined above, the B
particles interact with each other via excluded volume inter-
actions. However, when the density is low, the probability
that two B particles overlap with each other will be low; in
this limit, the excluded volume interactions can be neglected.

III. TESTS

In this section, we check the BD scheme by comparing
the simulation results with analytical results. Our scheme
was built upon a series of assumptions, which should all be
satisfied simultaneously. In particular, �1� the time steps
should not be too large, as a BD algorithm is not able to
resolve the system at time scales below the time step �t; �2�
the acceptance probabilities for the forward and backward
reactions should be small �Pacc,f 
1, Pacc,b
1�. In particular,
the algorithm does not resolve the precise moment in time
when the association and dissociation events happen. Dy-
namical quantities could therefore exhibit systematic errors,
which must vanish in the limit �t→0. On the other hand, on
long enough time scales, even dynamical properties should
be reproduced, provided that the conditions listed above are
obeyed. In the case of two particles, the probability distribu-
tion p�r , t 	r0� of finding the particles separated by a vector r
at time t given that initially they were separated by r0, as
well as their survival probability S�t 	r0�,19 has been com-
puted analytically;23 they will provide a stringent test for the
dynamics of our scheme. As our algorithm obeys detailed

balance, equilibrium quantities, such as the average time
spent in the bound state, must be correctly reproduced for all
time steps �t.

A. Irreversible reactions

We begin by simulating the irreversible reaction

A+B→
ka

C, within the following setup: a single particle A is
held fixed in an unbounded system, and a single particle B is
positioned on a spherical surface at an initial distance r0 from
A, with a random angle. The particles have the same radius:
RA=RB=R /2. We run the algorithm for a time tsim, and we
record the final radial position of the particle B. In the case
that a reactive event happens before tsim, we stop the run.
After a large number of runs, we collect the final positions of
the B particle in an histogram, normalized to the fraction of
B particles which have survived until the final time. This
histogram should reproduce the irreversible probability dis-
tribution pirr�r , tsim 	r0 ,0�.23 This quantity represents the
probability of finding the two particles at time tsim separated
by a distance r, given an initial separation of r0 at t0=0. We
note that this probability distribution is not normalized to
unity: the integral over space of pirr is the survival probabil-
ity of the particle, which is the probability that the particle
has not reacted at the final time. Formally,

4�

R

�

pirr�r,t	r0�r2dr = Sirr�t	r0� . �23�

We are thus able to simultaneously test our algorithm twice:
comparing the analytical curve with the profile of our histo-
gram and the area of the histogram with the analytical value
of the survival probability.

Results are collected in Fig. 1: we simulate the irrevers-
ible reaction for four different simulation times, from

FIG. 1. Radial probability distribution for an irreversible reaction. The four
curves refer to different tsim and were obtained with time steps
�t=10−4tsim, except for tsim=0.1
 where we used �t=10−5tsim=10−6

�
=R2 /D, R=RA+RB�. Particles were initially positioned at contact: r0=R.
The intrinsic association constant is ka=1000R3 /
. The numerical results
�symbols� are in excellent agreement with the analytical curves �solid lines�.
In the inset, we plot the probability distribution for tsim=10−1
 for several
time steps. For large �t, the BD algorithm deviates from the analytical line
and underestimates the survival probability. Error bars are smaller than
symbol sizes.
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tsim=10−4
 to tsim=10−1
, where 
=R2 /D is the natural time
scale of the system. Particles are initially positioned at con-
tact: r0=R. We set the time step �t=10−4tsim, which corre-
sponds to Pacc,f �0.14. It is seen that both the shape and
the area of the irreversible probability distribution function
are correctly captured by our algorithm. In the case of
tsim=10−1
, however, we needed to use �t=10−5tsim. In the
inset of Fig. 1, we show that in this last case, larger time
steps lead our BD scheme to underestimate the survival
probability. The deviation from the analytical results for
large �t is due to the interplay between a number of assump-
tions. One is that 1−exp�Pacc,f�� Pacc,f. A more important
factor is that we compare the numerical results against ana-
lytical results of an analysis in which ka corresponds to the
intrinsic association rate for two particles that are at
contact,23 while in our scheme the particles can already react
when they are separated by a distance ��D�t. This overes-
timates the number of reactions and hence decreases the sur-
vival probability, consistent with the results shown in the
inset of Fig. 1. Another way of putting this is that in our BD
algorithm, the intrinsic association rate is higher than that
used in the analytical calculations.

B. Reversible reactions

We extend now the dynamical test performed above to

the case of the reversible reaction A+B�
kd

ka

C. An analytical

solution to the problem, prev�r , t 	r0 , t0�, is known for one A
and one B particle.23 In this test, we adopt the same setup and
a similar procedure as for the irreversible case, except that
we do not stop the run after a reaction, but we let the particle
dissociate. At t= tsim, we check whether or not the B particle
is in the bound state. If it is not, we record the final position.
The histogram of final positions of the B particles is normal-
ized to the number of survivors at t= tsim, and compared with
the analytical curve prev�r , tsim 	r0 ,0�.23 The fraction of runs
ending in the unbound state yield an estimate for the survival
probability Srev�tsim 	r0�. Again, we initially put the B particle
at contact �r0=R�, so that a larger number reactions and dis-
sociations can happen within tsim. This choice will provide a
stringent test for the dynamics of the system. The parameters
of the system are the same as in Sec. III A, with the addition
of the dissociation rate kd=1
−1. Similar results were ob-
tained for larger values of kd, as well as for other values of
r0, D, and ka.

In Fig. 2, we plot prev�r , tsim 	R ,0� for tsim ranging from
10−1
 to 10−4
, with the same time steps as in the previous
test. We find the BD algorithm correctly reproduces both the
shape and the area of the analytical probability distribution.
Similarly to Fig. 1, we show in the inset prev, computed for
tsim=10−1
, for decreasing time steps �t: As expected on the
basis of the results for the irreversible reaction �Fig. 1�,
simulations with large time steps underestimate the survival
probability.

For the next tests, we consider a setup similar to that
used above, but we allow for multiple B particles, and we
enclose our system in a cubic simulation box of volume V,
endowed with reflecting walls. All the B particles can bind to

the single A particle and do not interact among themselves.
This last assumption, valid only in the limit of low packing
fractions �, is satisfied in our simulations where ��0.02.
Conversely, particles B and C interact as hard spheres, i.e.,
they are not allowed to overlap. We investigate whether equi-
librium properties of the system, such as the probability of
being in the bound state C �pbound�, are correctly reproduced
by the BD algorithm. The probability pbound can be evaluated
by measuring the time when the C particle is present in the
system, with respect to the total simulation time. The mean
field value for this quantity can be obtained from the macro-
scopic rate equation in steady state:

pbound =
KeqNB

KeqNB + V*
, �24�

where Keq=ka /kd, and V*=V− 4
3��RA+RB�3. We note here

that this prediction should be valid when the radial distribu-
tion at contact equals unity; given the low density of par-
ticles in our system, this should be the case.

We simulate the system with a varying number NB of B
particles, with a fixed time step �t=10−4
. We choose
Keq=V*, so that pbound�NB=1�=0.5. The enclosing box mea-
sures �20R�20R�20R�. Figure 3 compares the results of
our simulations with the prediction of Eq. �24�, and we see a
clear agreement. To illustrate that obeying the detailed-
balance condition is important, we also performed a series of
simulations in which the particles after dissociation were put
at contact; in other words, we considered a function
g�r�=��r−R�. This move does violate detailed balance and
indeed affects a correct estimate for pbound, as shown in inset
A of Fig. 3; the incorrect procedure overestimates the time
the particle spends in the bound state, especially for a low
number of B particles. These data clearly show that a naive
treatment of the dissociation events leads to systematic

FIG. 2. Radial probability distribution for a reversible reaction. The four
curves refer to different tsim and were obtained with time steps tstep

=10−4tsim, r0=R, except for tsim=0.1
 where we used �t=10−5tsim=10−6

�
=R2 /D, R=RA+RB�. Particles were initially positioned at contact �r0=R�,
and the association rate constant is ka=1000R3 /
 �
=R2 /D, R=RA+RB�,
while the dissociation rate constant is set to kd=1
−1. The numerical results
�circles� agree with the analytical curves �solid lines�. In the inset, the prob-
ability distribution for tsim=10−1
 is plotted for several values of �t: for
large values of the time step, the BD algorithm deviates from the analytical
line and underestimates the survival probability. Error bars are smaller than
symbol sizes.
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errors. Finally, we verified that the equilibrium properties of
the system does not depend on the chosen time step. To this
end, we computed pbound for NB=1 and different values of
the time step �t. As illustrated in inset B of Fig. 3, we ob-
tained good agreement even for very large time steps, where
probably the dynamics of the system is not entirely natural.

Finally, we compare our BD algorithm with the stochas-
tic simulation algorithm �SSA�, based on a kinetic Monte
Carlo scheme that propagates the system according to the
solution of its zero-dimensional chemical master equation.12

This scheme accounts only for the stochasticity arising from
the fluctuations in the number of particles; spatial fluctua-
tions due to the diffusive motion of particles are completely
neglected. The system is thus assumed to be well stirred at
all times. We consider the reversible reaction A+B�C for
NB=1: in the SSA, the association times follow a Poisson
distribution, with mean 1 /kon, where kon

−1=1 / �4�DR�+ka
−1 is

the macroscopic forward rate.
We collect the association times for a BD run with

V=64 000R3, �t=10−4
, ka=100R3 /
, and koff=1000
−1, and
we compare it with an SSA run obtained with the same set of
parameters, but using the modified association rate kon.
Figure 4 compares the two distributions: the BD line shows a
marked increase in the number of association events at short
times, as compared to the Poissonian distribution with mean
kf of the SSA. This effect has a purely spatial origin and has
been previously observed:18,20 When particles dissociate in
space, their distance is still very small; therefore, the prob-
ability of an immediate rebinding in next few times steps is
very high. Long association times, in a BD simulation, are
related to particles which have wandered diffusively in the

box and have finally found the target. The distribution of
such times is again exponential, with a constant kon.

The tests above show that our BD algorithm, which rig-
orously obeys detailed balance, correctly reproduces the
equilibrium properties and provides a good description of the
dynamics of the system in time and space.

IV. APPLICATION: THE PUSH-PULL MODEL

In this section, we apply our BD to a simple model of a
push-pull network. In this network, two antagonistic en-
zymes continually covalently modify and demodify a sub-
strate, respectively; a well-known example is a protein that is
phosphorylated and dephosphorylated by a kinase and a
phosphatase, respectively. The first enzyme converts a sub-
strate molecule into an “active” state: Bearing in mind the
phosphorylation example, we call this active substrate Sp,
and the enzyme K �kinase�. A molecule in the active state Sp

can be brought back to the original state S under the action of
a second enzyme, P �phosphatase�. The model is nicknamed
push-pull, as the substrates are continuously switching be-
tween the two states, while consuming energy. The reactions
with the enzymes are described according to Michaelis-
Menten kinetics: The two reactants form first an intermediate
bound state, which can lead either to a dissociation or to the
release of a converted molecule. In Ref. 24, the model is
solved at the level of the macroscopical rate equation at
steady state, which yields the average behavior of the
system.

Goldbeter and Koshland showed that such a system can
display an ultrasensitive behavior �that is, a sensitivity curve
steeper than the conventional response showed by the
Michaelis-Menten mechanism� without the need of introduc-
ing cooperative interactions.24 More precisely, the interplay
between two converter enzymes operating in opposite direc-
tions on a target whose quantity is conserved can give rise to
a switchlike response in the steady-state fraction of modified
molecules when the ratio between the conversion rates is

FIG. 4. Distribution of association times, for the reaction A+B↔C, ob-
tained with the BD algorithm �solid line� and with a SSA �dashed line�
neglecting spatial effects. The data are obtained for V=64 000R3, D=R2 /
,
�t=10−4
, ka=100R3 /
, and kd=1000
−1 �
=R2 /D, R=RA+RB�. Spatial
simulations account for immediate rebindings after a dissociation event and
show a higher probability for short association times. The two curves decay
exponentially to zero with the same rate kon

−1=ka
−1+kD

−1.

FIG. 3. Probability of having an A particle bound to a B particle, as a
function of the number of B particles. The time step is set to �t=10−4

�
=R2 /D, R=RA+RB�, and the intrinsic association constant to
kon=71R3 /
 so that Pacc,f =0.1. kb is chosen so that Keq=kon /koff=V
�V=8000R3� and therefore pbound�NB=1�=0.5. The numerical data obtained
with BD are in agreement with the mean-field values. The error bars of the
numerical results are smaller than the size of the circles. In inset A, the
simulations are performed positioning dissociated particles at contact. This
move violates detailed balance and yields an incorrect pbound for low number
of particles. In inset B, pbound for NB=1 is plotted against the time step used
in the simulations. To keep Pacc,f =0.1, we varied kon from 2242R3 /

��t=10−7
� to 0.000 26R3 /
 ��t=10−1
�. As expected for an equilibrium
quantity, pbound does not depend on the chosen time step.
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varied. The requirement for such a sharp transition is the
saturation of the enzymes: The effective conversion rates
then become independent of the number of substrate mol-
ecules, thus making the reaction rates “zero order” in the
substrate concentration.

The above-mentioned analysis does not, however, ac-
count for any kind of fluctuations that may arise from the
low number of reactants, the stochastic behavior of the
chemical reactions, or the diffusion of the molecules in
space. In Ref. 25, the same model is studied at the level of
the chemical master equation, taking into account finite-size
effects that arise in real systems, that is, the discreteness and
the possible low copy number of enzymes and substrates. In
order to achieve ultrasensitivity, the enzymes must be satu-
rated, and therefore their concentration is likely to be very
low. Large fluctuations are then observed around their aver-
age behavior; the authors show that the results obtained with
a mesoscopic approach reduce to those of the macroscopic
analysis of Ref. 24 only when the number of molecules is
sufficiently large. If this is not the case, as it can easily hap-
pen in a bacterial cell where some species are present only in
few dozens of copies, the sensitivity of the system is re-
duced, and the response is less steep than the macroscopic
theory would predict. This deviation can be easily under-
stood when one realizes that high sensitivity corresponds to
highly saturated enzymes. In this regime, the reaction rates
do not depend on the number of substrate molecules. The
system performs a random walk in the number of S mol-
ecules and it is thus subject to large fluctuations. Our BD
algorithm now allows us to study the effect of spatial fluc-
tuations due to the diffusive motion of the molecules.

The system we consider is defined by the following set
of reactions:

Reaction Rate

S+K�KS, kon1, koff1, �25a�
KS→K+Sp, k1, �25b�
Sp+ P�PSp, kon2 ,koff2, �25c�
PSp→P+S, k2. �25d�

Here, kon1 and kon2 stand for the macroscopical associa-
tion rate. The system will be simulated with the BD algo-
rithm in a rectangular box of dimensions xbox=20R,
ybox=10R, and zbox=10R, with a single kinase and a single
phosphatase molecule, held fixed at distance �=0.5xbox on
the central axis of the box, as depicted in Fig. 5. The system
is initially prepared with NStot particles, distributed in the two
states according to the solution of the macroscopical rate
equation. In the following, we investigate the effect of spatial
fluctuations of the substrate molecules on the input-output
relation of the system, and we compare the BD results to
those obtained with the mean-field and the zero-dimensional
chemical master equation approach.

The input-output relation is defined as the mean fraction
of phosphorylated substrate molecules �Sp� /NStot as a func-
tion of the ratio k1 /k2. We compute it with 80 substrate mol-

ecules in the simulation box, in order to meet the require-
ment NS�NK and NSp

�NP �NS+NSp
=NStot�. The parameters

governing the steepness of the sigmoid curves are the
Michaelis-Menten equilibrium rates K1= �koff1+k1� /kon1 and
K2= �koff2+k2� /kon2. In all our simulations, we set K1=K2

=KM. In our simulations, diffusion constants are in the order
of 10−4–10−5R2 /�t, intrinsic association rates between 0.001
and 0.006 R3 /�t, dissociation rates vary between 5�10−4

and 5�10−6��t�−1, and production rates are chosen in the
range 10−4–10−8��t�−1. To vary k1 /k2 keeping KM constant,
we vary koff1 and k1 together, keeping their sum constant.
When KM / �Stot�
1, the enzymes are totally saturated and
the change in the fraction of modified proteins is abrupt; on
the other hand, when KM / �Stot��1 the rise of the curve be-
comes asymptotically close to the hyperbolic Michaelis-
Menten shape.

Figure 6 shows several examples of the input-output re-
lation, obtained with three different methods: with the ana-
lytic macroscopic approach of Ref. 24 �solid lines�, with
SSA simulations as in Ref. 25 �diamonds�, and with the BD
algorithm �circles�. The BD simulations are performed with
intrinsic association and dissociation rates ka and kd, respec-
tively. In the mean-field analysis and the SSA simulations of
the zero-dimensional chemical master equation, for the asso-
ciation reaction, the rate constant was chosen to be that of
the macroscopic association rate kon, as given by kon= �1 /ka

+1 /kD�−1, with ka being the intrinsic association rate and
kD=4�RD the diffusion-limited rate �see Eq. �5��. For the
rate constant of the backward reaction in the mean-field
analysis and the SSA simulations, we chose the intrinsic re-
action rate and not the macroscopic one given by Eq. �6�.
The reason is that the macroscopic dissociation rate takes
into account that, upon dissociation, the dissociated species
rebind a number of times before they diffuse away from each
other into the bulk.20 As we have recently shown, association
and dissociation reactions can be described with effective
rates given by Eqs. �5� and �6� when the associated species
can only dissociate, thus when there is no competing decay
channel for the associated species.20 In particular, in Ref. 20,
we studied the effect of spatial fluctuations due to the diffu-
sive motion of repressor molecules on the noise in the ex-

FIG. 5. Snapshot of the push-pull system. The gray spheres represent the
kinase �marked with letter K� and the phosphatase molecule �marked with
letter P� held fixed along the main axis of the box. The white and black
spheres represent S and Sp molecules, respectively. The system is repre-
sented for SStot=50 and a box of 20R�10R�10R.
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pression of a gene; the simulation results showed that the
stochasticity in the binding of the repressor to the DNA re-
sulting from the spatial fluctuations of the repressor mol-
ecules can be a major source of noise in gene expression.
However, this result could be described by renormalizing the
intrinsic association and dissociation rates for repressor-
DNA binding using the expressions of Eqs. �5� and �6�. Here,
the situation is markedly different. The reason is that the
associated species, KS and PSp, can either dissociate or lead
to a chemical modification reaction, upon which the product
must diffuse to the other enzyme in order to be demodified.
These reaction channels compete with one another, and if
they do so on the same time scale, the effective dissociation
rate is difficult to determine. In our system, however, the
number of rebindings is in the order of unity. Therefore,
renormalizing the rate constants does not substantially
change the actual values of the rate constants. We carried out
simulations where we chose either to renormalize both the
association and dissociation rates or neither of them, and we
found analogous results. In the following, we show only BD

data obtained with the intrinsic dissociation and association
rate. KM is computed with the intrinsic dissociation rates, and
with kon= �kD

−1+ka
−1�−1.

The different panels of Fig. 6 show the data for increas-
ing KM / �Stot�. In panel D, KM / �Stot�=3.7 and the response of
the system is very similar to a Michaelis-Menten kinetics. In
this case, the results of the simulations, obtained both with
BD and the SSA, perfectly follow the analytical curve. When
KM �1, both reactions are in the first-order regime, which
means that their rates are proportional to the number of sub-
strate molecules. As a result, when this number changes, the
rates of conversion in the opposite direction change immedi-
ately. This counteracts the modification and reduces the ef-
fect of fluctuations. However, as we decrease KM, the nu-
merical data start to deviate from the predicted macroscopic
behavior. In the case of SSA, the deviation is mild and barely
visible in panel A, where KM / �Stot�=0.05. In contrast, the BD
simulations yield a much more marked deviation, clearly
seen already from panel C, where KM / �Stot�=0.52.

The data in Fig. 6 confirm and extend the findings of
Ref. 25: stochastic fluctuations of the system dampen the
ultrasensitivity, which could be obtained only in an infinitely
large, well-stirred system. The SSA correctly accounts for
the temporal fluctuations arising from the discrete nature of
the molecules and the stochastic character of their interac-
tions, but it does assume a well-stirred system, where spatial
fluctuations can be neglected. These hypotheses result in a
deviation on the order of a few percent in the ultrasensitive
regime. Brownian dynamics, on the other hand, properly ac-
counts for temporal and spatial fluctuations resulting from
the diffusive motion of the substrate molecules. Indeed, the
BD results of Fig. 6 show that when the intrinsic association
rates are high and the diffusion constants and/or the concen-
trations are low, spatial fluctuations can notably reduce the
sensitivity of system in the zero-order regime.

Finally, we emphasize that BD algorithms can be used to
directly measure spatial properties of the system. Among
several possibilities, we choose to show in Fig. 7 the spatial
density of particles along the main axis of the box. Data are
obtained for two different values of the Michaelis-Menten
constant: KM / �Stot�=4.7, meaning that the system is in the
first-order regime, and KM / �Stot�=0.22, corresponding to the
ultrasensitive regime. The substrate molecules are often
bound to the enzymes: at the kinase enzyme, the S density
has a sharp peak, and so does the Sp density at the location of
the phosphatase enzyme. As expected, the height of the peak
is bigger when the system has a lower value of KM, meaning
that the enzymes are more highly saturated. Interestingly, the
concentrations of both molecules show a gradient along the x
direction, with a higher concentration in the half box where
the molecules are produced; the profiles for the two species
are symmetric, since these simulations are performed for
k1=k2. Figure 7 shows that the concentration gradients are
most pronounced when the system is in the linear regime. In
this regime, the enzymes are not much saturated with sub-
strate, and the catalysis rate is high. This leads to a large
source and drain of phosphorylated substrate molecules near
the kinase and phosphatase, respectively, giving rise to
strong gradients. In the zero-order regime, on the other hand,

FIG. 6. Fraction of converted molecules as a function of ratio of the con-
version rates k1 /k2. The data are shown for increasing values of KM / �Stot�
from panel A to D. Panel A corresponds to full saturation of enzymes,
whereas in panel D the system is in the first-order regime. The continuous
lines are obtained by solving the macroscopical rate equation, whereas dia-
monds correspond to the numerical solutions of the master equation
�obtained with the conventional SSA� and circles to the output of our BD
simulations. SSA data �error bars are smaller than the sizes of the symbols�
show a mild deviation only when the system displays an ultrasensitive
behavior, as in panel A. Brownian dynamics simulations deviate notably
from the macroscopic curve when KM / �Stot��1. Methods accounting for the
stochastic behavior of the system thus show a reduction in sensitivity for
low values of KM. In the simulations for a given value of KM 
KM1= �k1

+koff1� /kon1=KM2= �k2+koff2� /kon2, we keep kon1=kon2 and k2 and koff2 con-
stant. We vary k1 /k2 by changing k1; however, to keep KM constant, we vary
not only k1 but also koff1 such that their sum remains constant. For all panels,
D=10−3R2 / ��t� and NStot

=80. Panel A: k1+koff1=5�10−6�t−1, k2=koff2

=2.5�10−6�t−1, and ka=0.006R3 / ��t�. Panel B: k1+koff1=5�10−6�t−1, k2

=koff2=2.5�10−6�t−1, and ka=0.001R3 / ��t�. Panel C: k1+koff1=5
�10−5�t−1, k2=koff2=2.5�10−5�t−1, and ka=0.003R3 / ��t�. Panel D: k1

+koff1=2�10−4�t−1, k2=koff2=10−4�t−1, and ka=0.0015R3 / ��t�.
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the enzymes are more saturated with substrate, which means
that the drain is mostly blocked; moreover, the synthesis rate
is low, as a result of which also the source is low.

V. DISCUSSION

In this paper we have presented a BD algorithm that
rigorously obeys detailed balance for equilibrium reactions.
Consequently, the equilibrium properties of biochemical net-
works, such as promoter and receptor occupancies, are repro-
duced exactly to within the statistical error. Moreover, the
association and dissociation reaction moves are constructed
such that they allow for a meaningful interpretation: As the
time step �t→0, the association and dissociation rates ap-
proach the intrinsic values corresponding to the reaction
rates of the species at contact. This is useful, also because it
allows the BD results to be compared to theoretical results
on diffusion-influenced reactions, which describe reactions
as happening between species at contact.19 The results shown
in Figs. 1 and 2 show that as �t→0, the BD simulations
correctly describe not only the equilibrium properties but
also the dynamical properties of a bimolecular reaction. For
larger time steps, the BD results deviate from the analytical
results, but this is to be expected, since the analytical results
assume that the molecules move by diffusion up to the small-
est length and time scales and that reactions only occur once
the molecules have moved by diffusion into contact. We be-
lieve that while the BD results and the analytical results
match for �t�10−6R2 /D �Figs. 1 and 2�, the BD algorithm
gives a good description of the dynamics over a large range
of time steps, i.e., for �t�10−4, because in this range the BD
results can be fitted to the analytical results with a different
ka and kd �data not shown�.

As an illustrative example, we have applied our BD
scheme to a push-pull network in which two enzymes co-
valently modify a substrate in an antagonistic manner. This
system was previously analyzed using a continuum
description,24 which revealed that the system responds ultra-
sensitvely when the enzymes are saturated. A study con-
ducted at the level of the chemical master equation,25 thus
accounting for the low copy number fluctuations of the mol-
ecules, highlighted that the ultrasensitivity predicted in Ref.
24 cannot be achieved when the concentrations are low:
Temporal fluctuations limit the sensitivity of the system in
the ultrasensitive regime. Our BD results show that the
steepness of the response curve can be further reduced by
spatial fluctuations of the components. In fact, when the in-
trinsic association rate is high and the diffusion of the par-
ticles is slow, spatial fluctuations can be a major source of
noise in the system and the reduction in the gain can be
significant.
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APPENDIX A: DETAILED BALANCE
FOR A WELL-STIRRED MODEL

In the case of the well-stirred model we used in
Secs. III B and IV, the detailed-balance condition is simpler
than in the spatially resolved model. Let NA, NB, and NC be
the number of A, B, and C molecules and V the volume of
the system. The configurational partition function of the sys-
tem can be written as the following sum of terms in the
canonical ensemble:

Q = �
�N�

Q�NA,NB,NC� , �A1�

where �N� denotes all possible combinations of �NA ,NB ,NC�;
note that we have integrated here over the momenta. The
choice of the canonical ensemble is motivated by the as-
sumption that the cell is a closed system, and it does not
exchange particles with the environment.

Let us consider the case where �A ,B ,C� are ideal par-
ticles in a volume V, except for the fact, of course, that A and
B can form C. The configurational integral Q for
�NA ,NB ,NC� particles is then

Q�NA,NB,NC� =
qA

NAqB
NBqC

NC

NA!NB!NC!
=

qA,cm
NA qB,cm

NB qC,cm
NC

NA!NB!NC!
VNA+NB+NC,

�A2�

where qA is the molecular partition function for an A particle,
and the factor 1 / �NA!� takes into account the indistinguish-
ability of the A particles. The molecular partition function is
given by qA=qA

idqA,cm, where qA,cm is the partition function
corresponding to the internal degrees of freedom relative to
the center of mass and qA

id=V is the partition function asso-

FIG. 7. The spatial density profiles for S, Sp �k1 /k2=1� show clear symmet-
ric peaks around the locations of the two enzymes: the S density is peaked
around the kinase enzyme, at x=0.25xbox, and the Sp density around the
phosphatase, at x=−0.25xbox. These peaks are more pronounced when the
system is in the ultrasensitive regime �thinner lines�. Moreover, for high
values of the Michaelis-Menten constants �thicker lines�, the spatial densi-
ties of the substrate molecules show gradients, with higher concentrations
close to the production sites of the molecules. Simulation parameters:
thick lines: KM / �Stot�=4.7, D=10−4R2 / ��t�, NStot

=80, k1=k2=koff1=koff2

=10−4�t−1, and ka=0.007R3 / ��t�; thin lines: KM / �Stot�=0.22, D
=10−3R2 / ��t�, NStot

=80, k1=k2=koff1=koff2=2.5�10−5�t−1, and ka

=0.01R3 / ��t�.
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ciated with the translational degrees of freedom of the center
of mass. The probability that the system has �NA ,NB ,NC�
molecules, P�NA ,NB ,NC�, is then

P�NA,NB,NC� = Q�NA,NB,NC�/Q . �A3�

Let us now consider the transition from �NA ,NB ,NC� to
�NA−1,NB−1,NC+1� molecules. The ratio between the
probabilities of being in the state after and before the transi-
tion is

P�NA − 1,NB − 1,NG + 1�
P�NA,NB,NC�

=
NANB

NC + 1

1

V

qC,cm

qA,cmqB,cm
�A4�

=
NANB

NC + 1

1

V
Keq =

NANB

NC + 1

1

V

kon

koff
.

�A5�

Please note that Keq has dimension of volume, such that the
expression on the right-hand side is indeed dimensionless.
The above expression serves to illustrate the detailed-balance
rule,21 which states that

PunboundPu→b = PboundPb→u. �A6�

Here, Punbound is the probability of being in the state
�NA ,NB ,NC�, Pu→b is the probability of a transition from
�NA ,NB ,NC� to �NA−1,NB−1,NC+1�, Pb→u is the probabil-
ity of the reverse move, and Pbound is the probability of being
in the state �NA−1,NB−1,NC+1�. Using Eq. �A5� and the
former relation, we obtain

Pu→b =
kon

V
NANB and Pb→u = koff�NC + 1� . �A7�

These transition probabilities precisely correspond to those
used in Monte Carlo simulations of the zero-dimensional
chemical master equation.12

APPENDIX B: DERIVATION OF g„r…

The function g�r�, described in Sec. II, is given by the
integral of Eq. �20�:

g�r� =
1

���2�3/2

0

R

r�2dr�

0

�

sin �d�

0

2�

d	

�exp�−
r�2 − 2rr� cos � + r2

�2 � , �B1�

where �2=4D�t.
Elementary methods can be used: integration over the

angular variables yields

g�r� =
1

���2

exp�− r2/�2�
r



0

R �exp�−
r�2 − 2rr�

�2 �
− exp�−

r�2 + 2rr�

�2 ��r�dr�. �B2�

Integrating over all the possible final positions corresponding
to an overlap between the particles �0�r��R� gives

g�r� =
�

��

1

2r
�exp�−

�r + R�2

�2 � − exp�−
�r − R�2

�2 ��
+

1

2
�erf� r + R

�
� + erf�− r + R

�
�� , �B3�

where

erf�x� =
2

��



0

x

et2/2dt .
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