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‘Well, I’ll eat it,’ said Alice,

‘and if it makes me grow larger, I can reach the key;

and if it makes me grow smaller, I can creep under the door;

so either way I’ll get into the garden,

and I don’t care which happens!’

Alice’s adventures in wonderland

Lewis Carroll

To my parents
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Chapter 1

Introduction

In this introductory chapter we summarize the main concepts that play a role in the work to be discussed

in this thesis. First, we summarize the basics of smectic phases and smectic membranes. Then the nature

of the smectic ordering and the associated fluctuation behavior is discussed. Next, after a summary of

x-ray reflectivity of smectic membranes, the coherent properties of x rays are considered. This allows

us to introduce photon correlation spectroscopy with coherent x rays, which is a main tool used in this

thesis. The chapter finishes with an outline of the rest of the thesis.

1.1 Smectic liquid crystals

In a particular temperature range some substances exhibit properties characteristic of both the

liquid and the crystal state. On the one hand, they behave like liquids as they flow and take the

shape of the vessel they are poured in. On the other hand, they possess typical properties of a

crystal like anisotropy of mechanical and optical properties. Materials exhibiting such a state

are known as liquid crystals [1, 2]. The Smectic A (SmA) phase is formed by liquid crystals

consisting of elongated molecules. In Fig. 1.1 we give three examples of such compounds that

play an important role in the investigations to be described in this thesis. The SmA phase

consists of stacks of liquid layers made up of molecules with their principal axis oriented on

average perpendicular to the layers (see Fig. 1.2). The direction defined by the long axes is

called the director. The molecules possess no positional order in the planes of the layers. The

1
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Figure 1.1: The compounds 4O.8, FPP and 8CB with their phase transition temperatures in ◦C. I stands
for the isotropic phase, N for nematic, SmA and SmC for smectic A and smectic C, respectively, CrB for
crystalline B and K for regular crystal phases.

periodic density profile ρ(r) of SmA can be represented in terms of the Fourier series:

ρ(r) = ρ0(1 + ψe−iq0(z−u(r)) + c.c.+ . . .), (1.1)

where q0 is defined by the smectic layer spacing d as q0 = 2π/d, u(r) is the displacement

of a smectic layer parallel to the layer normal, away from its equilibrium position, ρ0 is the

average density and ψ the Fourier amplitude. For most applications higher order terms in

Eq. (1.1) can be omitted. The order parameter of the smectic phase can be introduced as

ψ(r) = |ψ| exp(−iq0u(r)).

A unique property of smectic liquid crystals is their ability to form films that are freely sus-

pended or free-standing over an aperture in a frame (smectic membranes). This property has

been known since the beginning of the last century. Friedel [3] used it in his monograph on

liquid crystals as an argument in favor of the existence of layers in the smectic phase. How-

ever, it was not before the 1970s that such films found extensive usage in experimental studies

[4–6]. Some reviews are given in Ref. [7, 8]. The smectic layers align parallel to the two air-

film surfaces, which are flat because the surface tension minimizes the surface area of the film.

Apart from the edges, such films can be considered as substrate-free and they can be seen as

membranes consisting of stacks of smectic layers. They have a high degree of uniformity: the

alignment of the smectic layers is almost perfect, allowing to study single-domain samples of

various thickness. The surface area can be as large as a thousand mm2, while the thickness can

be easily varied from thousands of layers (tens of µm) down to two layers (about 5 nm).
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a) b)

Figure 1.2: SmA phase model models. a) Molecular organization. b) Types of deformation: bending (top)
and compression (bottom); the broken lines indicate the equilibrium positions of the layers.

The layered structure of SmA liquid crystals leads to the presence of an elastic energy asso-

ciated with the ordering. As the layers are fluid, displacements of the molecules within these

layers do not cost energy. Hence, for a displacement u(r) we can expect the SmA free energy

to depend only on its components along the director. Because translations of the membrane

as a whole do not cost any elastic energy terms containing u(r) are absent. Rotation around

x or y axis with (x, y) plane parallel to the smectic layers also do not change the free energy.

Consequently, terms ∇xu(r) and ∇yu(r) will be absent in the SmA free energy. The main con-

tributions are given by compression and bending of the smectic layers as illustrated in Fig. 1.2b.

The free energy corresponding to these deformations is known as the Landau-de Gennes free

energy [1, 9]:

FB =
1

2

∫

V

d3r
{
B[∇zu(r)]

2 +K[∆xyu(r)]
2
}
, (1.2)

where B and K are elastic constants and V denotes the volume of the sample. The first term

in this equation corresponds to the compression energy of the membrane and the second term

gives the contribution from the bending energy. In a smectic membrane with a finite thickness

L we have extra contributions to the free energy due to the surface tension [10]. These can be

expressed as:

FS =
1

2

∫

S

d2r γ
{
[∇xyu(r)|z=−L/2]

2 + [∇xyu(r)|z=L/2]
2
}
, (1.3)

where γ is the surface tension and S represents the surface of the membrane. The total free

energy F of a SmA membrane

F = FB + FS (1.4)
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is referred as the Landau-de Gennes-Hołyst free energy and is at the basis of all further discus-

sions of fluctuations in smectic membranes.

1.2 Landau-Peierls instability

In a three-dimensional (3D) crystal the particles vibrate around well-defined lattice positions

with amplitudes small compared to the lattice spacing. As the dimensionality of the system

is decreased, fluctuations become increasingly important. As a result long-range translational

order cannot exist in 2D and 1D; it would be destroyed by thermal fluctuations. The spatial

dimension at which thermal fluctuations just prevent the existence of long-range order is called

the lower marginal dimensionality. In this case, the positional correlations decay algebraically

as a function of distance. Low-dimensional ordering and the associated fluctuation behavior

are of considerable interest and can also be observed in 3D systems that are ordered in one

direction only. Smectic liquid crystals belong to this class and are often used as model systems

of specific types of ordering as they provide a variety of different phases and phase transitions.

On the basis of the Landau-de Gennes free energy we can investigate the stability of the

smectic structure with respect to the fluctuations of the system. Let us consider the displace-

ment of the smectic layers u(q) expressed through their Fourier components:

u(r) =

∫
d3q

(2π)3
ũ(q)eiq·r. (1.5)

Using this representation, the Landau-de Gennes free energy can be rewritten in the following

form:

F =
1

2

∫
d3q

(2π)3
(Bq2z +Kq4xy)|ũ(q)|2. (1.6)

Each term in this sum corresponds to an independent fluctuation with a wave vector q, which

according to the equipartition theorem has an energy of kBT/2. This defines the amplitude of

each Fourier component:

|ũ(q)|2 =
kBT

Bq2z +Kq4xy

. (1.7)

From this equation we can calculate the mean-square displacement of the smectic layers:

〈u2(r)〉 =

∞∫

0

dqz

∞∫

0

dqxy
qxy

(2π)2
kBT

Bq2z +Kq4xy

. (1.8)
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For small values of qxy and qz the integrals diverge because the Fourier amplitude |ũ(q)| tends

to infinity (infrared divergence). In case of a infinite membrane the fluctuation amplitude

diverges logarithmically with its thickness:

〈u2 (r)〉 =
kBT

8π
√
KB

ln

(
L

d

)
. (1.9)

This expression indicates that long-wavelength fluctuations destroy the smectic layering as

soon as the mean-square amplitude becomes of the order of the layer spacing. This effect is

known as the Landau-Peierls instability [11, 12].

Strong fluctuations have a direct impact on the nature of the ordering in the system under

investigation. This can be expressed in terms of the order parameter correlations that vanish

with distance. Defining the order-parameter correlation function G(r) = 〈ψ(r)ψ∗(0)〉 we can

distinguish the following cases for a system of dimensionality p :

G(r)
|r|→∞

=





const, (p > 2),

|r|−η, (p = 2),

exp(−|r|/ξ), (p = 1).

(1.10)

The first case p > 2 corresponds to long-range order in the system because finite correlations ex-

tend to arbitrarily large distances. In the case p = 1 the correlations decay exponentially. In this

situation we find a short-range order with the parameter ξ indicating the characteristic distance

over which the correlations disappear. The case p = 2 corresponds to an intermediate situa-

tion. On the one hand the correlations decay algebraically and we cannot introduce a distance

like ξ because the correlations decay slower than exponentially. In other words, the correlation

length ξ is infinite, as for long-range order. On the other hand, the correlations disappear at

infinity. This situation is commonly referred as quasi-long-range order. The transition from

quasi to true long-range order occurs at the marginal dimensionality, for the present example

given by p = 2. It originates from the infrared divergence in integrals similar as in Eq. (1.8).

Hence, for a particular system its value depends on the actual form of the free energy.

The algebraic decay of the smectic layer ordering [13, 14] was demonstrated by measure-

ments are the slow decay of the scattering around a Bragg position [15–17]. Apart from smec-

tics, this behavior can also be observed in other systems for which the divergence of the Fourier

amplitudes of long-wavelength fluctuations leads to divergence of the mean-square displace-

ment. This includes a wide variety of systems comprising Langmuir films, Newtonian black
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films, and surfactant and lipid membranes [8, 18]. The dynamics of the fluctuations in smectic

membranes constitute the central issue in the investigations reported in this thesis.

1.3 X-ray reflectivity

X-ray reflectivity is a powerful technique to investigate the structure of layered systems like

smectic membranes. X rays scattered from the different layers lead to the formation of an

interference pattern (see Fig. 1.3a). The profile of this interference picture depends on the layer

spacing and the electron density of the layers. In x-ray reflectivity measurements, we refer

to the scattering configuration as specular reflectivity when the incident angle is equal to the

reflected one. The reflectivity, defined as the ratio of the intensity of the scattered and the

incident beam, can be expressed in terms of the electron density profile of the sample in the

scattering plane ρ(z) [19]:

R =
4π

q2z

∞∫

−∞

dρ(z)

dz
exp(−iqzz)dz. (1.11)

Figure 1.3b shows an example of a reflectivity curve. This curve exhibits three distinct fea-
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Figure 1.3: X-ray reflectivity. a) Scattering geometry in which kin and kout are the wave vectors of the
incident and scattered beams, respectively; q = qz = kout − kin is the scattering vector. b) Calculated
reflectivity curve for a 25-layer membrane.

tures. At small scattering angles a region of total external reflection is observed, where the

reflectivity is equal to unity. This occurs because the refractive index of materials in the x-ray

region is slightly smaller than one. At larger scattering angles we observe a series of oscil-

lations. They originate from the interference of waves scattered from the membrane layers.

The high-frequency oscillations are known as Kiessig fringes. They result from interference of
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waves scattered at the top and bottom surfaces of the membrane. From the periodicity ∆qz of

the Kiessig fringes one can calculate the thickness of the membrane using:

∆qz = q0/N = 2π/L, (1.12)

where N = L/d is the number of layers. The two pronounced maxima in Fig. 1.3b are Bragg

reflections. They result from the interference of waves scattered from the periodic electron den-

sity variation associated with the layer structure. Inhomogeneities of the sample and roughness

(a)
kin kout

q
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(b)

Figure 1.4: Rocking scans. a) Scattering geometry in which q = (qxy, qz) and ω is the rocking angle.
b) Experimental rocking curve of a 13-layer FPP membrane at the Bragg position. The almost perfect
uniformity is reflected in the full-width at half maximum of 0.7 mdeg.

of the surfaces lead to smearing of the Kiessig fringes. The uniformity of a sample can be as-

sessed by measuring a rocking curve. Such a curve is obtained by rocking the sample around

a specular position. In this experiment a finite projection of the scattering vector on the surface

of the membrane is created. Figure 1.4 shows an example of a rocking curve from a smectic

membrane. The width of 0.7 mdeg reflects the mosaic distribution of the layer normals. The

small value indicates that the sample is highly uniform. The main contribution to the width of

the rocking curve comes from curvature induced by the non-perfect planarity of the supporting

frame. The intensity at off-specular positions is due to diffuse scattering.

The average effects of the fluctuations in smectic membranes have been extensively investi-

gated by static x-ray scattering [20–23]. An important result is that under most practical circum-

stances the fluctuations of the smectic layers are conformal: the layers fluctuate throughout the

membrane ’unisono’. Evidently, a loss of conformality is expected at very thick membranes. In
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thin membranes it has been observed by off-specular (diffuse) x-ray reflectivity for fluctuations

with a small in-plane wavelength below about 30−50 nm.

1.4 Coherence of x-rays

Coherence is an important concept for the description of static and time-resolved scattering

experiments. Superposition of waves with different phases leads to the phenomenon of in-

terference. In the classical interpretation, the interference patterns are produced as a result of

superposition of secondary waves generated in the sample. In the ideal case the incident wave

has a constant frequency and originates from either a point source (spherical wave) or a source

at infinity (plane wave). In that situation the phases in any two points of the wave and at any

two times are fully correlated. In reality, a light beam represents a superposition of waves gen-

erated by a source that is composed of many correlated or chaotic emitters positioned at a finite

distance from the observer. In such a situation correlations between the phase at two different

points decrease as they become more distant and as the time intervals between the measure-

ments increases. The term coherence defines to which extent such a real beam resembles a

single wave. The coherence is expressed in two length scales: the longitudinal (temporal) and

the transversal (spatial) coherence length (see Fig. 1.5).

The longitudinal coherence length defines the distance between two points along the prop-

agation direction of the beam over which the correlation between the phases is lost. An equiv-

alent picture uses the coherence time, defined as the time interval for which phase correlations

are lost at a fixed point. Such a decorrelation of the phases can occur because of superposition

of waves with different frequencies. We denote the frequency spread in the beam as ∆ω and

consider waves to be out of phase if the phase difference reaches π. The coherence time is given

as tcoh = π/∆ω. Using the relation ∆ω = (2πc/λ2)∆λ, where c is the speed of light, we can

express the longitudinal coherence length in the following form:

ξl = ctcoh =
λ2

2∆λ
. (1.13)

Other conventions for the definition of the out-of-phase waves (for example, a phase difference

2π instead of π), lead to a difference of a factor two in this equation. The value of ξl defines

the maximum path-way difference allowing the observation of interference phenomena. For

modern lasers ξl can extend up to a few kilometers, while in x-ray region it is of the order of
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a few microns. Still this value is large enough to allow us to observe Kiessig fringes in x-ray

reflectivity experiments for membranes up to a thickness of several tens of microns.

S0

S1

l

l+Dl

l

x
l

(a)

(b)

x
tr

Figure 1.5: Coherence of waves. a) Longitudinal coherence. b) Transversal coherence.

The transverse coherence length defines the maximum distance of the phase correlations

in the propagating wave along the wavefront. An extended source can be treated as a collec-

tion of point sources distributed over some area in space between S0 and S1 (see Fig. 1.5b).

Moving across the wavefront created by S0 we encounter changes of the phase of the wave

propagating from S1 (and in between). The distance over which the phases from these extreme

positions change by factor π defines the transverse coherence length ξtr. If the size of the source

is denoted by σ, the transverse coherence length at a distance R from the source is defined as:

ξtr =
λR

2πσ
(1.14)

The value of ξtr defines the maximum size of a spatially coherent beam that can be obtained

from a given source. For lasers ξtr can be as large as a few meters, while the largest value for x

rays achieved at modern synchrotron sources is just over 100 µm. In the x-ray regime spatially

coherent beams can only be created at considerable cost of intensity, as one has to slit down the

beam to submillimeter dimensions.
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1.5 Time-resolved scattering techniques

Fluctuations lead to rearrangement of the scatterers in a sample that can be detected using var-

ious time-resolved scattering techniques [24, 25]. Scattering of spatially coherent light from a

sample produces an image known as speckle pattern. It usually consists of an inhomogeneous

distribution of the scattered intensity, which corresponds to the positions of the scatterers in-

side the coherence volume. If the scatterers move, the resulting intensity profile will change

in time. Recording these intensity fluctuations one can calculate the intensity-intensity time

correlation function (see Fig. 1.6). From this function one can deduce the characteristic decay

time of the correlations τ describing the dynamics of the system. This principle lies at the

basis of photon correlation spectroscopy (PCS). For successful measurements only a few coher-

ence volumes should be present in the illuminated area, which requires a spatially coherent

beam. Scattering from different coherence volumes smears out the speckle pattern resulting

in an ensemble-averaged intensity profile. For ergodic systems this average is equal to the

time-averaged intensity profile and the time-correlation function will tend to unity.

I(
t)

t

á
ñ

I(
t)

I(
t+

)t

tt0

Figure 1.6: Principle of photon correlation spectroscopy.

Apart from the speckle pattern, scattering from a moving medium results in a frequency

shift of the scattered light (Doppler effect). From measurements of this shift, one can also

deduce information about the dynamics of the system. This can be achieved by filtering, in

which a dispersive element like a diffraction grating is used to measure the frequency shifts

directly, or by optical mixing. In latter case we can distinguish two measurement schemes:
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homodyne and heterodyne detection. In the homodyne case, only the fluctuating scattered

intensities are correlated, while in the heterodyne scheme the scattered signal containing a

frequency shift is mixed with a reference signal. For PCS in the optical range (dynamic light

scattering), heterodyne detection is widely preferred above homodyne detection as it provides

higher sensitivity for weak scattered signals.
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Figure 1.7: Time-resolved scattering techniques [26].

X-ray photon correlation spectroscopy (XPCS) is a relatively new, promising technique for

studying dynamics in condensed matter systems, extending classical optical PCS into the x-

ray domain [26–34]. In recent years several publications have appeared reporting results of

the application of XPCS to hard [35–38] and soft [39–55] condensed matter systems. First ex-

periments probing the dynamics of the fluctuations in smectic membranes using XPCS were

carried out by Sorensen et al. [56] using soft x rays, and by de Jeu and coworkers using conven-

tional x rays [57–59]. Dynamic light-scattering studies of smectic membranes with laser light

were carried out by Böttger and Joosten [60] and Nallet, Roux and Prost [61]. XPCS provides

a unique combination of length and timescales to be probed, which are not accessible by other

techniques (see Fig. 1.7), enabling the possibility to probe ’slow’ dynamics at molecular length

scales. In contrast to visible light x rays can be used to measure opaque samples. Moreover

x rays do not suffer from multiple scattering that complicates the data analysis. However, a
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major problem in performing XPCS is the lack of x-ray lasers and the fact that x rays are scat-

tered much weaker compared to visible light. These factors generally lead to the absence of

strong signals in XPCS measurements. As a result XPCS is only possible using high inten-

sity beams provided at undulator beamlines of modern third-generation synchrotrons. In this

context smectic membranes provide excellent model systems for XPCS for which the intensity

problem is partly overcome. The nearly perfect ordering provides strong x-ray reflections that

can be utilized in XPCS, while smectic membranes also exhibit exceptional stability against

beam damage.

1.6 This thesis

This thesis is concerned with the dynamics of fluctuations in SmA liquid crystal membranes.

The ability of smectic liquid crystals to form free-standing membranes with a high degree of

uniformity makes them very suitable model systems of low-dimensional ordering. The effects

of the marginal dimensionality make a decisive impact on the fluctuations of the smectic layers.

Moreover, quantization due to the finite thickness of smectic membrane leads to rich behavior

in terms of fluctuation modes. Different factors as inertia, surface tension and the smectic

elasticity are dominant for different wavelength ranges of the fluctuations, providing a range

of different relaxation behavior. This variety in relaxation dynamics of smectic membranes

provides in turn a great platform to evaluate the potential of XPCS. By extending the range of

XPCS to short times in the range of tens of nanoseconds, also a comparison with Neutron spin

echo (NSE) techniques could be made [58, 59].

The outline of this thesis is as follows: In chapter 2 we present the theory underlying XPCS

and NSE experiments. We describe how the results of both techniques can be analyzed in terms

of intermediate scattering function S(q, t). For XPCS we underline two detection schemes: ho-

modyne and heterodyne. We discuss the conditions for which each of these schemes is realized

and the role of the spatial coherence in XPCS experiments.

In chapter 3 we discuss the experimental setup used for XPCS and NSE measurements at the

European Synchrotron Radiation Facility (ESRF, Grenoble) and at the Institute Laue-Langevin

(ILL, Grenoble), respectively. Particular attention is given to the description of scattering ge-

ometry in these experiments. Chapter 3 also contains a description of the smectic liquid crystal

compounds investigated and the temperature controlled sample holders used. In addition, we

review the influence of an x-ray beam on the stability of smectic membranes.
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In chapter 4 the theory of the fluctuations in smectic membranes is presented. We relate

S(q, t) to the smectic layer displacement correlation function. We evaluate S(q, t) using a con-

tinuum theory of liquid crystals based on the Landau-de Gennes free energy. Three relaxation

regimes are derived for smectic membranes: oscillatory, surface dominated exponential and

bulk-elasticity dominated exponential regimes. We analyze the influence of fluctuations with

different wavelengths on the intensity correlation function.

In chapter 5 measurements are presented indicating three different relaxation patterns in

SmA membranes. In thin samples, we observe fast relaxations with well-pronounced oscilla-

tions. In thicker samples, the oscillations become less pronounced, the relaxation times increase

and the oscillations become slower. In 4O.8 and 8CB samples, we observed at the specular

Bragg position a change from oscillatory to simple exponential relaxation after passing a crit-

ical sample thickness. In FPP membranes, for all accessible thickness at the specular Bragg

position only oscillatory relaxations were detected. At off-specular positions only exponential

relaxations were observed. An experimentally determined ’detection window’ is introduced to

explain the measurements.

In chapter 6 we take a closer look at the detection mechanism of membrane fluctuations in

XPCS measurements. Considering that the speckle pattern generated by scattering of a spa-

tially coherent beam from a smectic membrane can be disturbed only by fluctuations with a

wavelength comparable or less than the size of the coherence volume, we show that experimen-

tal variations (like changing the detector slits) can result in shifts of the observed correlation

functions.





Chapter 2

Time-resolved scattering techniques

In this chapter we introduce the theory describing x-ray photon correlation spectroscopy (XPCS) and

neutron spin echo (NSE) experiments. The results are presented for both cases in terms of an inter-

mediate scattering function and a smectic-layer-displacement correlation function. We also discuss the

differences between homodyne and heterodyne detection schemes in XPCS and the influence of the spatial

coherence and resolution of the x-ray scattering setup on XPCS measurements.

2.1 X-ray photon correlation spectroscopy

2.1.1 X-ray scattering

Intensity patterns observed in a scattering experiment are the result of interference of secondary

waves emerging from the sample. Figure 2.1 shows the geometry corresponding to a scattering

process. We assume that the distances from the source and to the detector are large compared

to the size of the scattering volume. Hence, we consider scattering at the far field (Fraunhoffer

case), for which the wave vectors kin and kout of the incident and scattered waves remain the

same at all points of the sample. The total scattered electric fieldE(q) is equal to a superposition

of the secondary waves originating from the sample. If we consider two points A and B in the

sample, then waves propagating from these two points will have a phase difference δ defined

as:

δ =
2π

λ
(kin · r − kout · r) = −2π

λ
q · r, (2.1)

where q = kout − kin is the scattering vector and λ is the wavelength of the radiation. Taking

15
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Figure 2.1: X-ray scattering experiment.

one point in the sample and summing up all the secondary waves taking into account the phase

shifts given by Eq. (2.1), we can represent E(q) in the following form:

E(q) = E0relP (θ)
eikoutR

R

∫

V

ρ(r)eiq·rd3r. (2.2)

Here E0 is the amplitude of the incident wave, rel = 2.818 · 10−15 m is the classical electron

radius, P (θ) is a constant factor related to the polarization of the incident wave and ρ(r) is the

electron density distribution in the sample.

The intensity of the scattered beam I(q) = 〈E(q)E∗(q)〉 is defined by the structure factor

S(q) defined as:

S(q) =

∫∫
d3r1d

3r2〈ρ(r1)ρ(r2)〉e−iq·(r1−r2), (2.3)

where r1 and r2 are points in the scattering volume. In a cylindrical coordinate system

r = (rxy, z) = (x, y, z) with the z-axis perpendicular to the surface of the membrane, the density

profile of a smectic stack of liquid layers at position z − nd can be represented as

ρ(rxy, z, t) = ρlayer(z) ∗
N∑

n=0

δ(z − nd− u(rxy, nd, t)). (2.4)

Here n indicates a specific smectic layer, N the total number of layers, u(rxy, nd, t) the displace-

ment of the nth smectic layer from its equilibrium position, and ρlayer(z) the density profile of
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a single smectic layer. Introducing Eq. (2.4) into the structure factor we obtain:

S(q) = |ρ̃layer(qz)|2
∑

m,n

ei(m− n)dqz
∫∫

dr1,xydr2,xye
−iqxy ·(r1,xy−r2,xy)

∑

m,n

exp

{
−q

2
z

2
g(r1,xy − r2,xy,md, nd)

}
,

(2.5)

where g(r1,xy − r2,xy,md, nd) = 〈[u(r1,xy,md, t) − u(r2,xy, nd, t)]
2〉 is the static correlation func-

tion of the layer displacements and ρ̃layer(qz) represents the Fourier transform of the den-

sity profile of a single smectic layer. We can also define the dynamic correlation function

g(r1,xy −r2,xy,md, nd, t) by taking the displacements of the layers at different moments of time:

g(r1,xy − r2,xy,md, nd, t) = 〈[u(r1,xy,md, τ) − u(r2,xy, nd, τ + t)]2〉 (2.6)

Using this dynamic correlation function in Eq. (2.5), we obtain the intermediate scattering func-

tion S(q, t), which plays a central role in time-resolved scattering measurements like XPCS and

NSE.

2.1.2 Intensity-intensity time correlation function

XPCS experiments are based upon optical mixing as used in dynamic light scattering [24, 25].

The scattered intensity is integrated out at the detector without any prior filtering. The recorded

intensity is fed into a hardware autocorrelator that computes the normalized intensity correla-

tion function

g2(t) =
〈I(τ)I(τ + t)〉

〈I(τ)〉2 , (2.7)

where I(t) = |E(t)|2 is the intensity at the detector. Similarly we can define

g1(t) =
〈E(τ)E∗(τ + t)〉

〈I(τ)〉 . (2.8)

The time dependence in the field correlator in this equation is somewhat delicate. The phase

of the wave in the incident beam is correlated on the scale of the coherence time tcoh, which is

in our setup of the order of 10−14 s. Obviously any dynamic event to be measured is orders of

magnitude slower at timescales for which the phases of the incident waves are not correlated

anymore. To obtain useful information we should consider correlations of the amplitude of the

scattered field only.
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The intensity-intensity time correlator 〈I(0)I(t)〉 that determines XPCS experiments of smec-

tic membranes is defined as

〈I(0)I(t)〉 =
1

T

T∫

0

dτE(τ)E∗(τ)E(t+ τ)E∗(t+ τ). (2.9)

In this equation, the scattered field E(τ) can be expressed as the Fourier transform of the den-

sity of the sample ρ(r, t) (see Eq. (2.2)). Consequently, the intensity correlator can be rewritten

in the following form:

〈I(0)I(t)〉 =

∫∫∫∫
dr1dr2dr3dr4e

−iq(r1−r2)−iq(r3−r4)〈ρ(r1, 0)ρ(r2, 0)ρ(r3, t)ρ(r4, t)〉. (2.10)

The integration is performed over the coherence volume, which can differ in size from the

scattering volume. In the case of XPCS one would like to match the sizes of these two volumes.

In the further discussion we assume that this is the case and use the terms coherence and

scattering volume as synonyms.

A smectic membrane is homogeneous in the (x, y)-plane, while it has an inhomogeneous,

layered structure in the z-direction. The density of a membrane can be split into two parts:

ρ(rxy, z, t) = ρ0(z, t) + ∆ρ(rxy, z, t), in which ρ0(z, t) represents the average displacement of a

layer within the scattering volume in the z-direction at time t, and ∆ρ(rxy, z, t) denotes time-

dependent fluctuations. We assume that the membranes are incompressible and that all the

layers undulate conformally (‘unisono’). In this case ρ0(z, t) contains only translations of the

scattering volume that do not change the scattered intensity, and we can drop the index n in the

layer displacement function un(rxy, t). Then the total scattered field can be split in two parts:

E(t) = E0(t) + δE(t), (2.11)

where E0(t) and δE(t) correspond to ρ0(z, t) and ∆ρ(rxy, z, t), respectively. In this situation

we can consider E0(t) as a constant ‘reference’ signal. With this representation of the scattered

field g1(τ) and g2(τ) take the following form:

g1(t) =
〈δE(τ)δE∗(τ + t)〉

〈Is〉
, (2.12)

g2(t) =
〈δE(τ)δE∗(τ)δE(τ + t)δE∗(τ + t)〉

〈Is〉2
, (2.13)
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where I0 = 〈E0E
∗
0〉 and Is = 〈δE(t)δE∗(t)〉. Using these definitions and Eq. (2.11), the intensity

correlator in Eq. (2.9) can be expressed in the form [62]:

〈I(0)I(t)〉 = (I0 + Is)
2 + 2I0IsRe[g1(t)] + I2

s [g2(t) − 1]. (2.14)

This formalism allows us to distinguish heterodyne and homodyne detection schemes. The

heterodyne regime is characterized by δE(t) ≪ E0, for which situation the weak scattered in-

tensity Is is amplified by the strong reference signal I0. Consequently, the last term in Eq. (2.14)

can be omitted and the correlator is determined by g1(t). In the case of homodyne detection the

reference signal I0 is absent. Then the right-hand side in Eq. (2.14) equals I2
s g2(t). By definition

I0 is related to translations of the scattering volume and thus contributes in XPCS a δ-function-

like signal at the specular position. By changing the scattering geometry we can either catch

this reflection or not. In this way the presence of the reference signal I0 can be controlled and

the measurement can be switched between homodyne and heterodyne detection.

Both g1(t) and g2(t) can be expressed in terms of the density correlations in the membrane.

The function g1(t) is proportional to the intermediate scattering function:

〈δE(τ)δE∗(τ + t)〉 ∼ S(q, t) =

∫
dr1dr2e

−iq·(r1−r2)〈∆ρ(r1, τ)∆ρ(r2, τ + t)〉, (2.15)

If we assume the density fluctuations ∆ρ(r, t) to be Gaussian, we can express g2(t) as a function

of g1(t). Using Wick’s theorem to factorize the four-point density correlator in Eq. (2.10) [63],

we obtain:

〈∆ρ(r1, 0)∆ρ(r2, 0)∆ρ(r3, t)∆ρ(r4, t)〉 = 〈∆ρ(r1, 0)∆ρ(r2, 0)〉〈∆ρ(r3, t)∆ρ(r4, t)〉

+ 〈∆ρ(r1, 0)∆ρ(r3, t)〉〈∆ρ(r2, 0)∆ρ(r4, t)〉

+ 〈∆ρ(r1, 0)∆ρ(r4, t)〉〈∆ρ(r2, 0)∆ρ(r3, t)〉.

(2.16)

Introducing this expansion into Eq. (2.10), g2(t) can be written as a sum of three terms: g2(t) =

I1 + I2 + I3, each of which is the Fourier transform of the corresponding term in Eq. (2.16).

In I1 the two positions in the correlators are taken at the same time. Consequently, after time

averaging they become time-independent and I1 results in the average intensity squared. In

case of an infinite scattering volume the integration in Eq. (2.10) is extended till infinity and the

correlator 〈ρ(r1, 0)ρ(r3, t)〉 in I2 depends only on the vector difference r1−r3. As a consequence

this term in Eq. (2.16) contributes to the scattering at a zero angle only, and is usually omitted.

The remaining term I3 is equal to the squared modulus of g1(t). As a result Eq. (2.10) transforms
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Figure 2.2: Intensity correlation functions calculated for a 2 µm thick membrane: (a) hetorodyne case;
(b) homodyne case. The graphs are renormalized for clarity.

into the following equation, known as the Siegert relation:

g2(t) = 1 + |g1(t)|2. (2.17)

Note that the validity of this relation depends critically on the neglect of the term I2. The

consequences of inclusion of I2 are considered in Sec. 2.1.3.

Figure 2.2a shows the example of a correlation function in the heterodyne detection scheme.

According to Eq. (2.14), in this case g1(t) defines the profile of the measured intensity correlation

function. Such oscillating profiles have been frequently observed in XPCS measurements at

specular positions where the reference intensity I0 is present [58]. In contrast at off-specular

positions this signal is absent: homodyne regime. XPCS measurements in this situation indicate

a simple exponential relaxation of the intensity correlation function that can be fitted using the

Siegert relation [58].

2.1.3 Effects of the finite-size coherence volume

The finite size of the coherence volume can lead to a non-zero contribution of the term I2 in

Eq. (2.16). This has direct consequences for the validity of the Siegert relation. Let us denote

the lateral size of the coherence volume as 2R. Introducing Eq. (2.4) into the correlator of I2,

we can calculate the corresponding contribution to Eq. (2.9). We shall use the new variables

ξ = r1,xy + r3,xy and η = (r1,xy − r3,xy)/2. Introducing integration limits corresponding to the

finite size and using that I2 is a product of complex conjugate numbers, we obtain the following

result:
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Figure 2.3: Calculation of g2(t) for a 100 layer membrane: (a) without the term I2; (b) including I2. The
graphs are renormalized for clarity.

I2 =

∫∫∫∫
dr1dr3dr2dr4e

−iq(r1+r3)eiq(r2+r4)〈∆ρ(r1, 0)∆ρ(r3, t)〉〈∆ρ(r2, 0)∆ρ(r4, t)〉

=

∣∣∣∣∣∣∣

R∫

−R

dη

∫
dz1dz3e

−iqz(z1+z3)〈∆ρ(η, z1, 0)∆ρ(−η, z2, t)〉
2(R−η)∫

−2(R−η)

dξe−iqxyξ

∣∣∣∣∣∣∣

2

= |ρ̃layer(qz)|2
∣∣∣∣∣∣
4

R∫

0

dη
N∑

m,n=1

exp{−i(m+ n)d}〈e−iqz(u(−η,0)+u(η,t))〉sin(2qxy(R− η))

qxyR
R

∣∣∣∣∣∣

2

. (2.18)

For integration limits at infinity, this term would contribute a δ-function to the scattering on

the specular ridge (qxy = 0). For a finite-resolution setup, the δ-function contribution smears

out and transforms into a sin(x)/x-type function with a finite width in qxy-space still centered

at qxy = 0. Defining g+(η, t) = 〈(u(−η, 0) + u(η, t))2〉 and using 〈exp(ix)〉 = exp(−〈x2〉/2) we

can rewrite I2 in the following form:

I2 = |ρ̃layer(qz)|2
∣∣∣∣∣∣
4

R∫

0

dη exp

(
−q

2
z

2
g+(η, t)

)
sin(2qxy(R− η))

qxyR
R

∣∣∣∣∣∣

2

. (2.19)

In a similar way we can derive an expression for I3. Defining new variable now as

ξ = r1,xy + r4,xy, η = (r1,xy − r4,xy)/2 and writing g−(η, t) = 〈(u(−η, 0) − u(η, t))2〉 we ob-

tain:

I3 = |ρ̃layer(qz)|2
∣∣∣∣∣∣
4

R∫

0

dη exp

(
−q

2
z

2
g−(η, t)

)
cos(qxyR)(R− η)

∣∣∣∣∣∣

2

. (2.20)



22 Chapter 2. Time-resolved scattering techniques

Using Eqs. (2.19) and (2.20) we can finally write g2(t) as

g2(t) = 1+
1

∣∣∣∣∣∣

R∫

0

dη exp

(
−q

2
z

2
g−(η, 0)

)
cos(qxyR)(R− η)

∣∣∣∣∣∣

2

(∣∣∣∣∣∣

R∫

0

dη exp

(
−q

2
z

2
g+(η, t)

)
sin(2qxy(R− η))

qxyR
R

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

R∫

0

dη exp

(
−q

2
z

2
g−(η, t)

)
cos(qxyR)(R− η)

∣∣∣∣∣∣

2)
.

(2.21)

Figure 2.3 shows the effect of the contribution of I2 to the calculation of the intensity correlation

function for finite sizes. The curve in Fig. 2.3b indicates that the presence of I2 shifts all oscil-

lations above the baseline, creating a profile that cannot be obtained on the basis of the Siegert

relation. Such oscillations have been observed in homodyne light scattering experiments of

smectic membranes [64], which suggests that the term I2 can be important for a correct treat-

ment of scattering data in this regime.

2.1.4 Coherence and resolution in XPCS

The wave field E(t) scattered from a particular coherence volume interferes with itself but not

with the field originating from neighboring volume elements. As a result we can represent the

scattering intensity as a sum of intensities scattered by each coherence region. Each component

is related to the structure within the coherence volume and if this structure is changing in time

the scattered intensity will also exhibit a time dependence. On the basis of this approach we

can express the scattered intensity and the intensity correlator of Eq. (2.7) as:

〈I(t)〉 =
M∑

i=1

〈Ii(t)〉,

〈I(τ)I(τ + t)〉 =

〈
M∑

i,j=1

Ii(τ)Ij(τ + t)

〉
=

M∑

i=1

〈Ii(τ)Ii(τ + t)〉 +
M∑

i=1

〈Ii(τ)〉
M∑

j=1

〈Ij(τ)〉,
(2.22)

where M is the number of coherence regions. Furthermore we used the property that the

scattered intensities from different coherence volumes are not correlated and 〈Ii(t)Ij(τ + t)〉 =

〈I〉2 if i 6= j. According to Eq. (2.22) both the first, time-dependent term in 〈I(τ)I(τ + t)〉
and 〈I(t)〉 increase proportionally to the number of coherence volumes in the scattering region.

Consequently g2(t) will decrease if the number of coherence volumes increases. Maximum
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performance is achieved for a spatially highly coherent beam in which the coherence and the

scattering volume match.

In optical mixing experiments we can distinguish homodyne and heterodyne detection

schemes. The homodyne mode works with a superposition of the scattered fields E(t) =
∑
Es(t), while in heterodyne scheme the field Es(t) scattered by the sample is mixed with

the constant reference field Eref . If in the homodyne situation the fields Es(t) are statistically

independent random variables,E(t) will follow a Gaussian distribution that is completely char-

acterized by its first and second moment. This implies that for the homodyne scheme the inten-

sity correlator in g2(t) − which is a 4-field correlator − is related to the 2-field correlator g1(t)

through Siegert relation Eq. (2.17). It is valid for systems with many independent scatterers or

when we have many coherence volumes within a scattering region (although this situation is

unfavorable from the experimental point of view; see above). A direct consequence of Eq. (2.17)

is that g2(t) ≥ 1. When the scatterers become correlated, collective effects come into play and

Eq. (2.17) is not longer valid. In the experimental section we shall encounter correlation func-

tions with time intervals where g2(t) < 1.

In the case of heterodyne mixing an additional source is present. This field Eref does not

depend on time and can interfere with Es(t) from the sample: E(t) = Eref + Es(t). The static

reference field can either be external or can come from the sample itself. In Sec. 2.1.2 the field

from the equilibrium membrane structure E0 was considered as a reference signal. If we can

separate the scattered intensity from the sample into a time-dependent and a time-independent

part, similar arguments as used above can be applied [65]. In photon correlation spectroscopy

(PCS) experiments a special grating is often placed in the beam to create a strong secondary

source, which increases the sensitivity of the instrument. This can be seen from Eq. (2.14);

assuming |Eref | ≫ |Es(t)| we can write

〈I(τ)I(τ + t)〉 ≈ I2
ref + 2IsIrefRe[g1(t)]. (2.23)

Compared to the homodyne regime two points are remarkable. First we observe in heterodyne

regime g1(t) and not its squared value. This has a direct implication on the relaxation time

observed in the homodyne and heterodyne detection schemes. Particularly, if g1(t) decays

exponentially with the relaxation time τ , than in homodyne experiment based on Eq. (2.17) we

would observe the relaxation time τ/2, while in heterodyne mode according to Eq. (2.23) we

would detect the time τ [66]. In the Sec. 6.5 we shall use this fact in the interpretation of the

experimental data. Second the intensity of the local oscillator amplifies the contribution of the



24 Chapter 2. Time-resolved scattering techniques

weakly scattered signal, which makes heterodyne detection the preferred choice in PCS. As we

shall see in Sec. 6.5 this increase in intensity does not necessary lead to an increase in contrast

of the correlation function.

A rigorous description of the scattering of partially coherent light can be given using the

mutual coherence function µ(r1, r2) = 〈E(r1, t)E
∗(r2, t)〉 that can be represented in the follow-

ing form [67]:

µ(r1, r2) = 〈E(r1, t)E
∗(r2, t)〉 = Ψ(r1)Ψ(r2)g(r1 − r2)I/A. (2.24)

Here A is the scattering area to be integrated over, Ψ(r) is an amplitude factor and g(r1 − r2)

a coherence factor. The latter can be related to the transverse coherence lengths ξx and ξy

according to

g(r1 − r2) = exp

(
−(x1 − x2)

2

2ξ2x

)
exp

(
−(y1 − y2)

2

2ξ2y

)
. (2.25)

Using Eq. (2.24) we can write the structure factor St(q) at time t in the following form:

St(q) =

∫
dr1dr2e

−iq(r1−r2)Ψ(r1)Ψ(r2)g(r1 − r2)F (r1, r2)〈ρ(r1)ρ(r2)〉, (2.26)

where F (r1, r2) contains the Fresnel phase factors [67]. Note that this is not a time-averaged

expression but refers to the scattered intensity I(t) at a particular time t. In order to include the

finite resolution of the setup, we must convolute St(q) with the resolution function R(q) that

defines the range of scattering vectors (∆qx,∆qy) probed at momentum transfer q.

The Fourier transform R̃(r1 − r2) of the resolution function can be expressed in a Gaussian

form as [68]

R̃(r1 − r2) = exp

(
−1

2
∆q2x(x1 − x2)

2

)
exp

(
−1

2
∆q2y(y1 − y2)

2

)
(2.27)

and this form can be incorporated into the expression for St(q):

St(q) =

∫
dr1dr2e

−iq(r1−r2)Ψ(r1)Ψ(r2)g(r1 − r2)R̃(r1 − r2)F (r1, r2)〈ρ(r1)ρ(r2)〉. (2.28)

The coherence volume is defined through g(r1 − r2) and R̃(r1 − r2) by the transverse ‘incident’

coherence lengths ξx and ξy. Note that the coherence of the radiation at some point r is de-

fined by the whole optical system [69]. Eqs. (2.25), (2.27) and (2.28) indicate that the coherence

properties of the incident beam and the resolution of the setup have a similar influence on the

scattering function. Hence we can combine in an heuristic way g(r1 − r2) and R̃(r1 − r2) into
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an ‘effective’ resolution of the setup given by

∆′q2x = ∆q2x + 1/ξ2x,

∆′q2y = ∆q2y + 1/ξ2y .
(2.29)

In Sec. 6.2 we present experiments displaying the effects of resolution changes and modifica-

tions of the coherence volume on the XPCS data.

2.2 Neutron spin echo

The main idea of neutron spin echo measurements is to detect changes in the energy of a neu-

tron by using the Larmor precession as ’stopwatch’ with the spin of neutron acting as ’pointer’.

Changes in the energy of the neutrons influence the angular speed of the spin rotation and

consequently lead to differences in the rotation angle, which can be detected and analyzed.

Figure 2.4 illustrates the principle of the neutron spin echo technique [70, 71]. The incoming

p/2 flipper Solenoid 1 Solenoid 2 p/2 flipperp flipper

Sample

Figure 2.4: Principle of NSE spectromety.

quasi-monochromatic beam of neutrons with their spins polarized along the flight path passes

through a π/2 flipper coil. Subsequently, upon passing through the first solenoid the spins will

rotate due to Larmor precession. The rotation angle φ depends on the time a neutron spends

flying through the coil and can be expressed as:

φ =
γHl

v
, (2.30)

where γ = 2.916 kHz/Oe is the Larmor constant, H is the strength of magnetic field and l is the

length of solenoid 1. This leads to a spread in the angle θ of various neutrons, in dependence of

their original velocity v. At the end of solenoid 1 the neutron beam passes through a π-flipper.

Consequently, at solenoid 2 the spin will rotate in the opposite direction over an angle φ′:

φ′ =
γH ′l′

v
. (2.31)
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After another π/2 flip, at the end of the instrument the spins are rotated by an angle φ − φ′

relative to their initial orientation. If no sample is present the velocity of the neutrons in the

first and the second coils are equal and the initial orientation of the spins will be restored if

Hl = H ′l′. This situation is achieved after the tuning process of the NSE spectrometer.

In presence of a sample the scattering process results in a change of the neutron energy, thus

changing the velocity:

~ω =
mv′2

2
− mv2

2
(2.32)

From this energy change we can calculate the difference φ− φ′ as:

φ− φ′ = γHl(
1

v
− 1

v′
) ≈ γHl

2v3
(v′2 − v2) =

γHl

mv3
~ω. (2.33)

Once the neutrons pass the second π/2-flipper the projection of the resulting spin on the initial

polarization direction (say x) is analyzed. this projection can be represented as:

Sx = 〈cos(φ− φ′)〉 =

〈
cos

(
γHl

mv3
~ω

)〉
. (2.34)

The probability of recording a neutron with scattering vector q and energy change ~ω is given

by the dynamic structure factor S(q, ω). The scattering vector q is defined by the scattering

geometry. Introducing the notation

tNSE =
γHl~

mv3
=
γHlm2

2πh2
λ3, (2.35)

we can calculate the average as:

Sx =

∫
S(q, ω) cos(ωtNSE)dω
∫
S(q, ω)dω

. (2.36)

The denominator of this equation has the form of a Fourier transform, which is an interme-

diate scattering function I(q, t). The average spin projection can be represented in terms of

I(q, tNSE) as:

Sx =
ReI(q, tNSE)

I(q, 0)
. (2.37)

As the ’effective’ time parameter tNSE is determined by the magnetic field, I(q, t) can be mea-

sured by varying H . Figure 2.5 illustrates the signal measured in the NSE experiments. It is

recorded by changing current in the few extra turns wound at the end of the solenoid 2. This
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Figure 2.5: Neutron spin echo from a polychromatic neutron beam.

leads to extra spin rotations resulting in the observation of an oscillating profile at the detector,

referred as a spin echo. The width of the "wave packet" in Fig. 2.5 is related to the monochro-

maticity of the beam. The amplitude of this echo is equal to the spin projection Sx, which

defines the value of I(q, tNSE) for the corresponding magnetic field H . Varying H and extract-

ing from the echo signals the values of Sx we can retrieve the intermediate scattering function

I(q, t).

From Eq. (2.35) we see that tNSE ∼ λ3: the most effective way of extending the accessible

time range is to use neutrons with larger wavelengths. On the other hand, an increase of λ

reduces the accessible range of the scattering vectors q because the corresponding scattering

angles become larger and are limited by the instrument. The polarization of the neutrons re-

sults in a significant loss of neutron flux. Combined with monochromatization of the beam this

would make NSE almost unusable. Fortunately, the measurements can be performed using

quasi-monochromatic neutron beam.





Chapter 3

Experimental

In this chapter we introduce the smectic liquid crystal samples used in the experiments. We discuss the

sample preparation procedure, including the sample frames, the two-stage oven and the optical reflec-

tometer setup. Next, we consider the configuration of beamline ID10A at the European Synchrotron

Radiation Facility (ESRF, Grenoble), where the x-ray photon correlation spectroscopy (XPCS) measure-

ments were performed, and the scattering geometry used. Then the effect of the strong x-ray beam on the

stability of the smectic membranes is described. In the last part we discuss the neutron spin echo (NSE)

setup at beamline IN15 at the Institut Laue-Langevin (ILL, Grenoble).

3.1 Preparation of smectic membranes

We studied the smectic liquid crystalline compounds N-(4-n-butoxybenzilidene)-4-n-

octylaniline (4O.8), 4-heptyl-2-[4-(2-perfluorhexylethyl)phenyl]-pyrimidin (FPP) and 4-octyl-

4’-cyanobiphenyl (8CB). Their molecular structure and phase transitions have been given in

Fig. 1.1. The experiments were done at lower end of the SmA temperature region, around 50,

100 and 27◦C for 4O.8, FPP and 8CB, respectively. In Table 3.1 we summarize values of the

relevant material parameters of these compounds.

For the XPCS measurements a rectangular stainless-steel frame with sharp edges and a

variable area was employed, in which two blades could be moved by a micrometer screw (see

Fig. 3.1). Starting with smectic material at (almost) closed blades, membranes up to tens of

µm thick and 5−10 mm long were stretched using 15 mm and 25 mm wide frames. For x-

ray reflectivity studies a large footprint of the incident x-ray beam must be accommodated.

29
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Table 3.1: Material parameters of the compounds investigated (after [8]).

Parameter 4O.8 FPP 8CB

γ/(10−3 N/m) 21 13 25

η3/(kg m−1s−1) 0.05 0.015 0.1

K/(10−12 N) 5 10 20

B/(107 N/m2) 0.10 75 1.8

Figure 3.1: Stainless steel frame used for preparing smectic membranes.

The sharp blades forced the membrane close to the top of the holder, reducing shadowing

of the beam. The samples were placed inside a two-stage oven with thin kapton windows

(see Fig. 3.2) [23, 72]. The oven was pumped down to 103 Pa to prevent parasitic x-ray scattering

from air and sample degradation due to the possible oxidation.

For NSE measurements, in order to accommodate the large neutron beam, large-size mem-

branes of 50 × 50 mm2 were stretched on an aluminum frame. The frame was mounted inside

the supporting aluminum stage. NSE measurements were done at the room temperatureusing

8CB only. These large-size membranes were not of uniform thickness; instead, several different

regions were observed with a thickness from about half a micron at the top of the frame up to

a few microns at the bottom. In order to gain contrast in the neutron scattering, we used 8CB

with deuterated phenyl rings [73].

To prepare appropriate thick membranes, the stretching frame is put inside the open inner

oven and placed in a large preparation oven. The latter oven allows manipulation of the sam-
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(a) (b)

Figure 3.2: Two-stage oven used in XPCS measurements. (a) Side view. (b) Movable frame mounted
inside the oven.

ple via flexible gloves in the window of the door. The temperature of the preparation oven is

set to about 2−3◦C below the upper limit of the existence range of the smectic phase for the par-

ticular compound. Initially the blades of the frame are almost closed, but not fully to prevent

damaging the sharp edges. A smectic droplet is spread over the remaining gap; subsequently

the blades are opened by steps of a few hundred microns. Between each step the membrane is

allowed to equilibrate for 5−10 minutes. During this process defects arise on the surface of the

membrane. The further evolution of these defects depends strongly on the preparation tem-

perature. If the temperature is too low, the defects persist due to the high viscosity of the liquid

crystal. If the temperature is too high, thinner areas can appear spontaneously and lead to

thinning of the membrane. Only in the proper temperature regime relatively thick membranes

up to about 10 µm can be made. Sharp blades are essential to obtain uniform samples and

thus maximize the scattering intensity, but at the same time seem to limit the thickness that can

be reached. Directly after preparation, a film usually consists of regions of different thickness,

from which it equilibrates to a uniform thickness. The equilibration time varies from minutes

to days depending on the specific compound, the temperature, and the type of frame. Usually

the thinnest region grows at the expense of the thicker ones. The two surfaces of a membrane

induce an almost perfect alignment of the smectic layers: the residual curvature of the film is

mainly due to the non-planarity of the edges of the holder. The resulting mosaic distribution,

expressed as the angular spread of the surface normal, can be . 0.001◦over an area of about

100× 500 µm2 (footprint at high resolution) [74]. After completion of the stretching process the
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membrane is cooled down to the measurement temperature. Subsequently the inner oven is

closed, transported to the x-ray setup and placed in the pre-heated outer oven.
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Figure 3.3: Scheme of optical reflectometer setup.
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Figure 3.4: Optical reflectivity. (a) Example of the optical reflectivity curve from the smectic membrane.
(b) The dependence of membrane thickness on the number of observed interference maximas.

The membrane thickness was monitored by optical reflectivity during both the preparation

stage and the experiments (see Fig. 3.3) [7, 72, 75, 76]. An optical fiber was mounted perpen-

dicular to the surface of the membrane. Polychromatic light from a tungsten lamp was guided

through the fiber. The light reflected from the membrane was fed into a spectrometer. Due to

the interference of the light scattered from the top and the bottom surfaces of the membrane, a
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wavelength dependence in the reflected intensity is obtained:

I(λ) =

f sin2

(
2πn‖L

λ

)

1 + sin2

(
2πn‖L

λ

) , (3.1)

where n‖ is the refractive index, L is the thickness of the membrane, λ is the wavelength of

the radiation and f is related to the refractive index n‖. L and f were used as parameters for

fitting the experimental spectra. The spectra were measured in the interval 400 < λ < 800 nm.

As the refractive index depends on the wavelength, the average value of n‖ = 1.5 was used in

fittings in this spectral range. Figure 3.4a shows an example of the data collected in this way.

Oscillations observed in this graph correspond to different interference orders. The number

of maxima observed in the figure is a good reference for a quick estimation of the membrane

thickness. Figure 3.4b shows the dependence of the membrane thickness on the number of

observed interference maxima.

For the membrane thicknesses up to few hundred layers the number of smectic layers can

be precisely determined from specular x-ray reflectivity. Reflection occurs both at the front

and the back interface, leading to constructive or destructive interference as a function of the

incoming angle (Kiessig or interference fringes, see Sec. 1.3). As indicated by Eq. (1.12), the

period of the fringes is inversely proportional to the number of smectic layers N , which can be

determined unambiguously.

3.2 X-ray photon correlation spectroscopy measurements

XPCS experiments have been performed at the undulator beamline ID10A (Troïka I) of the Eu-

ropean Synchrotron Radiation Facility (ESRF, Grenoble) (Fig. 3.5). The x-ray radiation arises

from three undulators placed in series in the storage ring, giving an effective source with full-

width-at-half-maximum (FWHM) dimensions of 928×23 µm2 (H×V). The measurements have

been carried out in the uniform filling mode of the storage ring (992 bunches at intervals of

2.8 ns). Fig. 3.6 gives the scattering geometry. Preliminary collimation is done by Slit 1 and Slit

2 set to 300×300 µm2 and 200×200 µm2, respectively. A single-bounce Si(111) monochromator

(Mono 2) operating in a horizontal scattering geometry selects energies of 8 or 13.4 keV, leading

to a wavelength λ of 0.155 or 0.925 nm, respectively. Subsequently, the beam is reflected by a

Si mirror to suppress higher order light. The choice of the energy has a major influence on the

stability of the samples [77] and will be discussed later. The sample position is at a distance
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of 45 m from the source. The transverse coherence length (see Eq. (1.14)) is . 10 µm in the

horizontal direction (ξH) and & 100 µm in the vertical direction (ξV). A compound refractive

beryllium lens is used to increase the incident intensity by focusing the beam in the vertical

direction. Focusing reduces ξV, matching it to the coherence length ξH in the horizontal direc-

tion. The bandpass of the monochromator Mono 2, given by ∆λ/λ ≈ 10−4, determined the

longitudinal coherence length ξl of about 1.5 µm. The maximum path length difference of the

beam in a smectic membrane of the thickness L is given by 2L sin θ and should not exceed the

value of ξl. At the quasi-Bragg position (θ ≃ 1.5◦) this means that L should not be larger than

about 30 µm.

Mono 1

Slit 1

Mirror

0            26    27                   30.5             33                  36                                            43  44.2 45   46  47m

Slit2Undulator

Be lens

Slit0 Mirror

Sample Detector

Mono 2

Figure 3.5: Scheme of the XPCS setup at beamline ID10A of the ESRF.

We used 10 µm and 100 µm pinholes in front of the sample to select the spatially coherent

part of the beam. The incident beam on the sample was observed to be structured. These

distortions are attributed to speckles occurring from imperfections in the windows and other

optical elements in the beam path, and cause some uncertainty in the spatial coherence lengths

of the beam. Guard slits were placed after the pinhole to remove parasitic scattering. The

coherent photon flux at the sample was for a 10 µm pinhole about 1 × 109 counts s−1/100 mA

at 8 keV and about 3 × 107 counts s−1/100 mA at 13.4 keV.

A fast avalanche photodiode (Perkin Elmer C30703) [78] with an intrinsic time resolu-

tion . 4 ns was used as detector at a distance of 1.5 m from the sample, with pre-detector

slit gaps varying from 0.01 mm to 0.2 mm. The resolution of the setup was estimated as

∆qx ≈ 10−4 nm−1 and ∆qy = ∆qz ≈ 10−3 nm−1. The intensity-intensity time auto-correlation

function was measured in real time using a hardware multiple-tau digital autocorrelator FLEX01-

8D (correlator.com, sampling time down to 8 ns). Thanks to the perfect match between the

millidegree mosaicity of the smectic membranes and the high resolution of the setup we could

reach count rates in the range of tens of MHz. For one experiment the arrival times of all

individual pulses from the detector were stored using a 2 GHz multiscaler board, and the cor-

relation function was calculated later. Fig. 3.7 shows such a direct measurement with 0.5 ns
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Figure 3.6: Scattering geometry. qin and qout represent the incident and scattered wave vector, respec-
tively, and q is the scattering vector. qxy and qz are the projections of q on the surface and on the normal
to the surface of the smectic membrane, respectively.

resolution of the bunch-structure of the storage ring. It nicely demonstrates the ultimate time

limit of 2.8 ns for XPCS in this situation.
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Figure 3.7: Direct measurement of the bunch structure of the ESRF storage ring in the continuous mode.

Initially we worked with the strongest third harmonic of the undulator at 8 keV; in later

experiments we switched to the fifth harmonic at 13.4 keV. At this energy the x rays are less

absorbed, leading to an improved stability of the smectic membranes. On the other hand, at

13.4 keV the intensity is about 30 times less, mainly because the focussing Be lens is not opti-

mized anymore. This provided no great problem as the intensity at the detector was limited

anyhow to about 1 MHz by the hardware correlator. Already for micron thickness membranes
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we needed considerable attenuation to bring the intensity down to the working interval. Fi-

nally, upon increasing the energy also the transverse coherence length of the x rays drops.

Consequently, we expected a decrease in contrast. However, in practice we observed 20−30%

contrast, rather similar to the 8 keV case. Evidently the limiting factor for the contrast of the

correlation function is in the quality of both the sample and the optical elements in the beam-

line.

In most cases we worked with vertical membranes for which gravity assists in equilibrating

the sample [79]. Consequently the scattering plane was horizontal and the Be lens could be

used advantageously to focus in the vertical direction.

3.3 Beam absorption and sample stability

In modern third-generation synchrotrons the high brilliance of the beam can have a destructive

effect on many samples, in particular in the case of soft matter. For soft films on a substrate the

x-ray beam probably generates free electrons in the substrate; these in turn migrate to the soft

film and have a devastating ionizing effect. In the absence of a substrate, smectic membranes

show a remarkable resistance to high energy loads. The problems we encountered were not so

much associated with irreversible beam damage but rather with heat absorption by the sam-

ple. Though in the case of XPCS the pinhole collimation reduces the total intensity strongly,

the local flux does not change (> 1013 photons s−1mm−2 @ Si(111), 8 keV). Hence even the

high-resolution setup used in XPCS experiments puts exceptional stability requirements on the

sample.

The heat generated by 8 keV x rays in a smectic membrane can be estimated as follows. At

the Bragg angle θ ≃ 1.5◦ the path length for a membrane of thickness L = 1.7 µm is given by

L/ sin θ ≃ 65 µm. The absorption of hydrocarbons over this length is about 2% of the incident

intensity of 109 photons/s, which amounts to 2 × 107 photons/s. At 8 keV this is equivalent to

about 3 × 10−8 W. The width W of the beam and the height H perpendicular to the scattering

plane are of the order of 10 µm, the size of the pinhole. Hence the absorption takes place in a

volume V = (L/ sin θ)WH ≃ 6×10−6 mm3. For a density ρ = 103 kg/m3 and a specific heat of

2 × 103 J/(kg◦C), this leads to an increase of the initial temperature in the illuminated volume

of the order of 3◦C/s. At 13.4 keV the absorption is a factor 4 less. The absorption volume is

embedded in the membrane and heat is expected to spread out laterally through the film by

conduction and convection. It is not easy to estimate these effects, but evidently an appreciable
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Figure 3.8: Effects of beam absorbtion on the rocking curve of a 1.7 µm FPP membrane (10 µm pin-
hole). Circles: Initial rocking curve. Crosses: After removal of one attenuator (3× increased intensity).
Asterisks: Immediately after inserting the attenuator again. Triangles: After equilibrating for 6 minutes.

temperature increase can occur. Upon approaching the transition to a nematic or an isotropic

phase this can lead to spontaneous thinning of the membrane.

The heat generated is sufficient to cause some convective instabilities inside the smectic

membrane [80]. This results in fluctuations of the reflected intensity. Figure 3.8 shows changes

of the rocking curve induced by removal of an attenuator of 25 µm Cu leading to three times

more intensity. This increase of incident intensity results in a decrease (!) of the scattered

intensity. After inserting the attenuator back, the original rocking curve profile is restored

after a few minutes. We attribute this behavior to hydrodynamic instabilities in the sample

arising from convective flow caused by local density changes due to heating. This disturbs

the orientation of the layer structure of the membrane leading to a changing rocking curve as

shown in Fig. 3.8. Evidently we are working at the limits of stability of the smectic membranes

themselves. In the case of a 100 µm pinhole the heat load per unit volume is still the same, but

the absolutely absorbed heat is two orders of magnitude larger. Hence variation of the pinhole

can cause large changes in sample stability.

3.4 Neutron spin echo measurements

Neutron spin echo measurements were performed at spectrometer IN15 of the Institut Laue-

Langevin (ILL, Grenoble, France) [81]. Figure 3.9 shows a schematic view of the NSE spectrom-
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eter. The neutron beam of a size of about 40 × 10 mm2 (V×H) was used to give approximately

square footprint at the first Bragg angle. Neutrons initially pass a velocity selector, which gives

about 15% monochromaticity. Wavelengths of 0.9 nm and 1.5 nm were selected, resulting in

accessible time scales up to 40 ns and 100 ns, respectively. The neutron beam is polarized

through reflection from the first supermirror. The first π/2-flipper rotates the spins by 90◦, so

that they precess when they pass through the first solenoid. At the end they pass through the

π-flipper which changes their orientation by 180◦. After scattering by the sample the neutrons

pass the second solenoid and the second π/2-flipper. The resulting spin orientation is analyzed

by reflecting the neutrons from the second supermirror.

Velocity
selector

Supermirror

p/2 flipper

Solenoid

p flipper

Sample

Solenoid

Supermirror

Detector

p/2 flipper

Figure 3.9: Schematic view of the NSE spectrometer.

The reflected neutrons were registered by a 2D position-sensitive detector. Each point of

the detector corresponds to a specific value of the projection qxy of the scattering vector on the

surface of the membrane (see Fig. 3.10). If k = 2π/λ is the wave vector of the neutron beam we

can write for the beam incident on the membrane

qx = k cos

(
ϑ0

2
+ ω

)
, (3.2)

qy = 0 (3.3)

qz = k sin

(
ϑ0

2
+ ω

)
. (3.4)
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Figure 3.10: Scattering geometry in neutron spin echo measurements of a smectic membrane in a reflec-
tion geometry.

For the outgoing beam we obtain

qx = k cos(∆φ) cos

(
ϑ0

2
+ ∆ψ − ω

)
, (3.5)

qy = k sin(∆φ), (3.6)

qz = k cos(∆φ) sin

(
ϑ0

2
+ ∆ψ − ω

)
. (3.7)

Summing up the components in qx and qy we arrive at the following expression for qxy which

corresponds to a point on the detector at angular displacement (δ, ϕ):

qxy =
2π

λ

√
(cos(∆ϕ) cos (θ + ∆ψ − ω) − cos (θ + ω))2 + sin2(∆ϕ). (3.8)

To extract the qxy-dependence of the relaxation time we grouped points on the detector with

close values of qxy. As the scattering directions with the same projection on the surface of the

membrane form a cone, the corresponding points on the detector will form ellipses. Dividing

the detector surface into three elliptic areas and integrating the contributions from all points in

these regions, we constructed at each scattering angle three correlation functions.
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In the NSE measurements, S(q, t) was assumed to behave as a Kohlrausch-Williams-Watts

(KWW) function [82, 83]:

S(q, t) = exp

{
−
(

t

τKWW

)β
}
. (3.9)

This form arises from a broad superposition of exponentials with some distribution function

f(τ) [84]:
+∞∫

−∞

f(ln τ) exp

(
− t

τ

)
d(ln τ) = exp

{
−
(

t

τKWW

)β
}
. (3.10)

In this case S(q, t) can be written as

S(q, t) =

∞∫

0

dτf(τ) exp

(
− t

τ

)
. (3.11)

From this equation, we can define the average value of τ as

〈τ〉 =

∞∫

0

τf(τ)dτ. (3.12)

Now we can calculate the following integral:

∞∫

0

S(q, t)dt =

∞∫

0

∞∫

0

dtdτf(τ) exp

(
− t

τ

)
=

∞∫

0

dτf(τ)τ = 〈τ〉. (3.13)

On the other hand we can use Eq. (3.11) and calculate the above integral exactly:

∞∫

0

S(q, t)dt =
Γ(1/β)

β
τKWW. (3.14)

Equating the results of the last two equations we conclude:

〈τ〉 =
Γ(1/β)

β
τKWW. (3.15)

Fitting the NSE curves with a KWW exponential function and using Eq. (3.15), we obtained the

average value of the relaxation time for each area section of the detector.



Chapter 4

Theory of fluctuations in smectic membranes

In this chapter the theory of fluctuations in smectic membranes is presented, based on the continuum

model. Three different types of relaxation behavior are considered: oscillatory relaxation, surface domi-

nated exponential relaxation and bulk-elasticity dominated exponential relaxation. We discuss the tran-

sition between these regimes as defined by the specific wave vector of the fluctuation. In addition, the

implications of different relaxation profiles on the intermediate scattering function are described.

4.1 Fluctuation spectra

Extensive theoretical models of fluctuations in smectic membranes have been developed in

recent years [10, 85–94]. In this section we consider the theory of fluctuations in smectic mem-

branes following the lines of Ref. [90]. These authors applied Fourier transforms both in space

and time, solving the equation of motion in (q, ω)-space. In the following treatment we give

somewhat different derivation of their results avoiding switching into ω-space and solving the

equation of motion in (q, t)-coordinates. We find such an approach more transparent, as in

x-ray photon correlation spectroscopy (XPCS) as well as in neutron spin echo (NSE) experi-

ments the energy of photons is not discriminated and the results are obtained in terms of the

time-dependant intermediate scattering function S(q, t).
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Let us consider fluctuations of a rectangular smectic-A membrane of thickness L and lateral

sizes (Lx, Ly). The free energy has the form of Eq. (1.4):

F =
1

2

∫
d2rxy

L/2∫

−L/2

dz
{
B[∇zu(x, y, z)]

2 +K[∇2
xyu(x, y, z)]

2+

γ
(
[∇xyu(x, y, z = −L/2)]2 + [∇xyu(x, y, z = L/2)]2

)}
(4.1)

This functional form leads to the following equation of motion

ρ0
∂2u(x, y)

∂t2
= η3

∂

∂t
∇2

xyu(x, y) + (B∇2
z −K∆2

xy)u(x, y), (4.2)

which must be completed with boundary conditions at the surfaces and edges of the mem-

brane:

− γ

B
∇2

xyu(x, y, z = ±L/2, t) ±∇zu(x, y, z = ±L/2, t) = 0, (4.3)

u(0, y, z, t) = 0, u(Lx, y, z, t) = 0,

u(x, 0, z, t) = 0, u(x, Ly, z, t) = 0.
(4.4)

Eq. (4.3) can be obtained by minimizing the free energy F with respect to the surface displace-

ments u(x, y, z = ±L/2, t) [90]. Because Eq. (4.2) is a fourth-order equation in rxy(x, y), two

more boundary conditions are required at the lateral edges. These extra conditions will not

have a major influence because the wavelengths of the fluctuations observed are orders of mag-

nitude smaller than the size of the membrane. We have chosen the following two additional

conditions, mainly because these are the only ones allowing to solve Eq. (4.2) analytically:

u′′(0, y, z, t) = 0, u′′(Lx, y, z, t) = 0,

u′′(x, 0, z, t) = 0, u′′(x, Ly, z, t) = 0.
(4.5)

To analyze the scattering data the displacement-displacement time correlation function

g(rxy, z, z
′, t) = 〈[u(0, z′, 0) − u(rxy, z, t)]

2〉 must be computed. This correlation function can

be expressed in the following form:

g(rxy, z, z
′, t) = G(z, z) +G(z′, z′) − 2G(rxy, z, z

′, t), (4.6)

G(z, z′) = 〈u(0, z′, 0)u(0, z, 0)〉, (4.7)

G(rxy, z, z
′, t) = 〈u(0, z′, 0)u(rxy, z, t)〉. (4.8)
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In Eq. (4.2) derivatives of rxy appear only as Laplace operators. Hence, we can expand the so-

lution in a series of eigenfunctions of the Laplace operator that fulfills the boundary conditions

Eqs. (4.3) and (4.5):

u(x, y, θ, z, t) =
∞∑

m,n=0

Amn(z, t) sin

(
πm

Lx
x

)
sin

(
πn

Ly
y

)
. (4.9)

From this equation we obtain the correlation function G(rxy, z, z
′, t) in the following form:

G(rxy, z, z
′, t) =

Lx∫

0

Ly∫

0

dxdy
∑

m,n

∑

k,p

Amn(z, t)Akp(z
′, t)

sin

(
πm

Lx
x

)
sin

(
πn

Ly
y

)
sin

(
πk

Lx
(x+ x′)

)
sin

(
πp

Ly
(y + y′)

)

=
∑

m,n

Gmn(z, z′, t) cos

(
πm

Lx
x′
)

cos

(
πn

Ly
y′
)
. (4.10)

An equation similar to Eq. (4.2) holds for the corresponding Fourier amplitudes Gmn(z, z′, t)

[90]:

ρ0
∂2Gmn(z, z′, t)

∂t2
= −η3q

2
mn

∂

∂t
Gmn(z, z′, t) + (B∇2

z −Kq4mn)Gmn(z, z′, t), (4.11)

in which

q2mn =

(
πm

Lx

)2

+

(
πn

Ly

)2

(4.12)

denotes the wave vector of layer undulations. Gmn(z, z′, t) fulfils following the following initial

and boundary conditions:

Gmn(z, z′, 0) = G0
mn(z, z′). (4.13)

γq2mn

B
Gmn(z = ±L/2, z′, t) ±∇zGmn(z = ±L/2, z′, t) = 0, (4.14)

Here G0
mn(z, z′) is the Fourier amplitude of the equilibrium correlation function calculated in

Ref. [85] corresponding to the wave vector qmn. In order to solve Eq. (4.11) we separate the

variables t and z:

∂2Gmn(z, z′, 0)

∂2z
+

Υ

B
Gmn(z, z′, 0) = 0, (4.15)

ρ0
∂2Gmn(z, z′, t)

∂t2
+ η3q

2
mn

∂

∂t
Gmn(z, z′, t) + (Kq4mn + Υ)Gmn(z, z′, t) = 0, (4.16)
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where Υ is a constant. The solution can be represented in the form

Gmn(z, z′, t) = A(Υ, t) sin

(√
Υ

B
z

)
+B(Υ, t) cos

(√
Υ

B
z

)
. (4.17)

In order to fulfil the boundary conditions on the top and the bottom surface of the film we need

the roots of the following equations:

cot

(
λi
L

2

)
= −γq

2
mn

λiB
, (4.18)

tan

(
µi
L

2

)
=

γq2mn

µiB
. (4.19)

From these equations we get an infinite spectrum of solutions {λi, µi} defining layer-compression

wave vectors. Now Gmn(z, z′, t) can be represented in the form:

Gmn(z, z′, t) =
∞∑

i=0

A(λi, t) sin (λiz) +B(µi, t) cos (µiz) , (4.20)

where A(λi, t) and B(µi, t) are solutions of Eq. (4.16). They can be written as:

A(λi, t) = S1(λi) exp

(
− t

τs,1

)
+ S2(λi) exp

(
− t

τs,2

)
, (4.21)

B(µi, t) = C1(µi) exp

(
− t

τc,1

)
+ C2(µi) exp

(
− t

τc,2

)
. (4.22)

Here τc,(1,2) and τs,(1,2) denote fluctuation relaxation times. Applying the initial conditions we

find:

A(λi, t) =
Gs(λi, z

′)

τs,1 − τs,2

(
τs,1 exp

(
− t

τs,1

)
− τs,2 exp

(
− t

τs,2

))
, (4.23)

B(µi, t) =
Gc(µi, z

′)

τc,1 − τc,2

(
τc,1 exp

(
− t

τc,1

)
− τc,2 exp

(
− t

τc,2

))
, (4.24)

where

Gs(λi, z
′) =

2

L

L/2∫

−L/2

G0
mn(z, z′) sin (λiz) dz, (4.25)

Gc(µi, z
′) =

2

L

L/2∫

−L/2

G0
mn(z, z′) cos (µiz) dz. (4.26)
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Using the expression for G0
mn(z, z′) given in Ref. [85] we can find exact analytical forms for the

above integrals:

Gs(λi, z
′) =

2kBT

BL(g2 + λ2
i )



sin(λiz

′) −
γq2

mn

B sin
(

λiL
2

)
+ λi cos

(
λiL
2

)

γq2
mn

B sinh
(

gL
2

)
+ g cosh

(
gL
2

) sinh(gz′)



 , (4.27)

Gc(µi, z
′) =

2kBT

BL(g2 + µ2
i )



cos(µiz

′) +

γq2
mn

B cos
(

µiL
2

)
− µi sin

(
µiL
2

)

γq2
mn

B cosh
(

gL
2

)
+ g sinh

(
gL
2

) cosh(gz′)



 , (4.28)

where g =
√
K/Bq2mn. The times τs,(1,2) and τc,(1,2) depend on the wave vector qmn and the

parameters {λi, µi} and can be found from the following relation:

τs,(1,2)(λi) =
2ρ

η3q2mn

(
1 ±

√
1 − 4ρ

η2
3q

4
mn

(Kq4mn +Bλ2
i )

)−1

, (4.29)

τc,(1,2)(µi) =
2ρ

η3q2mn

(
1 ±

√
1 − 4ρ

η2
3q

4
mn

(Kq4mn +Bµ2
i )

)−1

. (4.30)

Summarizing the above calculations we can write the real-space correlation function in the

following form:

G(x, y, z, z′, t) =

∞∑

m,n=1

cos

(
πm

Lx
x

)
cos

(
πn

Ly
y

)

{
∞∑

i=0

τc,1 exp
(
− t

τc,1

)
− τc,2 exp

(
− t

τc,2

)

τc,1 − τc,2
Gc

i (µi, z
′) cos(µiz)+

τs,1 exp
(
− t

τs,1

)
− τs,2 exp

(
− t

τs,2

)

τs,1 − τs,2
Gs

i (λi, z
′) sin(λiz)

}

(4.31)

From Eqs (4.27) and (4.28) we note that Gs
i (λi, z

′) and Gc
i (µi, z

′) decrease for increasing values

of the undulation wave vector qmn and the compression wave vectors {λi, µi}. This means that

Eq. (4.31) is dominated by the fluctuations with the smallest wave vector (largest wavelength).

In the further discussion we concentrate on the compression mode with the smallest wave

vector given by µ1. The corresponding relaxation times τc,1 and τc,2 further will be referred to

as τ1 and τ2. Relaxation times corresponding to the higher order modes with larger values of

{λi, µi} have been discussed in Refs. [91], but seem to be not accessible experimentally.

Let us consider the high-compressibility limit for which B → ∞. In this approximation we

can find analytical solutions for Eqs. (4.18) and (4.19). Approximating the tangent in Eq. (4.19)
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by a linear function we obtain µ1 as:

µ1 =

√
2γ

LB
qmn. (4.32)

Using this value for µ1 we find for Gc
1(qmn, z

′) the following expression:

Gc
1(qmn) =

2kBT

KLq4mn + 2γq2mn

. (4.33)

Eq. (4.31) now reduces to the form:

G(x, y, t) = 2kBT

∞∑

m,n=1

1

KLq4mn + 2γq2mn

cos

(
πm

Lx
x

)
cos

(
πn

Ly
y

) τ1 exp
(
− t

τ1

)
− τ2 exp

(
− t

τ2

)

τ1 − τ2
.

(4.34)

Introducing µ1 into Eqs. (4.30) and (4.29) the relaxation times τ1 and τ2 are given by

1

τ1,2
=
η3q

2
mn

2ρ0

(
1 ∓ i

√
4ρ0

η2
3q

4
mn

(
Kq4mn +

2γ

L
q2mn

)
− 1

)
. (4.35)
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Figure 4.1: Calculated correlation functions for a 10 mm long and a 0.5 µm thick FPP membrane. (a)
Single fluctuations with wave vector number m as follows: triangles: 500, squares: 1000, circles: 2000,
solid line: 3000. (b) Dependence of the correlation function on the upper limit of the sum in Eq. (4.34)
for the lower limit set at 500. Upper limits as follows: squares: 501, circles: 1000, solid line: 2000.

Eq. (4.34) indicates that the layer-displacement correlation function depends on a superpo-

sition of contributions of fluctuations with different wave vectors. By changing the limits of

the summation we can investigate which wave vectors contribute most to the correlation func-

tion. For the sake of simplicity we consider for this exercise a one-dimensional case, omitting
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the y-dependence in the correlation function G(x, y, t). Now the summation in Eq. (4.34) is

performed over one index only and the wave vector is defined as qm = (πm/Lx). Figure 4.1a

shows the result of a series of calculations of the intensity correlation function in which G(x, t)

is defined by a single fluctuation. This is achieved by taking only one term in Eq. (4.34) with

index m corresponding to the chosen wave vector. We observe that for higher-order fluctu-

ations the generated oscillations are weaker. At a cross-over point m = 3000 all oscillations

disappear. Figure 4.1b displays the cumulative effect of the fluctuations on the intensity corre-

lation function. Fixing the lower limit of the summation in G(x, t) at m = 500 and extending

the summation to larger values of m, we see that compared to Fig. 4.1a the oscillations hardly

change. This behavior indicates that the resulting correlation function is mainly defined by

the first terms in the sum in Eq. (4.34) which correspond to the smallest wave vectors. This

argument is used as a basis for the definition of a ’window’ of wave vectors dominating the

correlation functions in XPCS measurements which is introduced in Sec. 5.2.2.

4.2 Relaxation regimes

According to Eq.(4.35) the relaxation times τ1 and τ2 can be given in the following form:

1

τ1,2
= a(qmn) ∓ if(qmn), (4.36)

where

a(qmn) =
η3q

2
mn

2ρ0
, (4.37)

f(qmn) =
η3q

2
mn

2ρ0

√
4ρ0

η2
3q

4
mn

(
Kq4mn +

2γ

L
q2mn

)
− 1. (4.38)

Figure 4.2 shows the dependence of the real part of the relaxation times τ1 and τ2 on the

wave vector of a particular fluctuation. The nature of the dispersion curve changes at a cross-

over wave vector qc for which the square-root in Eq. (4.38) changes sign. For the small values

qmn involved we can disregard the term Kq4mn. Then the relaxation times τ1 and τ2 can be

represented in the following form:

τ1,2 ≈ 2ρ0

η3q2mn

(
1 ∓ i

√
8ρ0γ

η2
3Lq

2
mn

− 1

)−1

. (4.39)



48 Chapter 4. Theory of fluctuations in smectic membranes

10
-6

10
-5

10
-4

10
-3

10
-2

0

1

2

3 0.5 mm

2 mm

5 mm

w
(q

m
n
)
/
m
s-1

q
mn

/ nm
-1

10
-4

10
-3

10
-2

10
-1

0.01

0.1

1

10

100

0.5 mm

2 mm

5 mm

t
(q

m
n
)
/
m
s

q
mn

/ nm
-1

(a) (b)

qc

Figure 4.2: Dispersion curves for the relaxation of fluctuations of 8CB membranes for three different
thicknesses calculated according to Eq. (4.41) and Eq. (4.42) using the parameters from Table 3.1. (a)
Dependence of the relaxation time on the wave vector qmn. The dotted lines indicate for each thickness
the transition wave vector qc; the dashed line give the fast relaxation branch for 0.5 µm. (b) Dependence
of the frequency of the fluctuations on the wave vector qmn.

This cross-over is given by:

qc ≈
√

8ρ0γ

η2
3L

. (4.40)

In the region qmn < qc the function f(qmn) is real. This regime corresponds to a combination

of exponential relaxation and oscillatory behavior. From Eqs. (4.37) and (4.38) we derive the

following expressions for the relaxation time τ and the frequency ω (imaginary part of the

relaxation time):

τ(qmn) = Re

(
1

τ1,2

)−1

=
2ρ0

η3q2mn

, (4.41)

ω(qmn) = Im

(
1

τ1,2

)
=
η3q

2
mn

2ρ0

√
8ρ0γ

η2
3Lq

2
mn

− 1. (4.42)

Note that the relaxation time does not depend on the membrane thickness while the frequency

decreases with thickness as 1/
√
L. The behavior of τ(qmn) and ω(qmn) according to Eqs. (4.41)

and (4.42) is illustrated in Fig. 4.2 for three membranes of different thicknesses.

In the region qmn > qc both solutions are real. Figure 4.2 shows that τ2 strongly decreases

with increasing wave vector qmn. The contribution of this fast relaxation to the correlation

function is weighted by the value of τ2 (see Eq. (4.34)) and consequently also decreases strongly

with wave vector. Hence we can neglect this branch and consider in the region qmn > qc

only the slow branch with relaxation time τ1. In this regime the elastic term Kq4mn cannot

be disregarded anymore. Using 8ρ0γ/(η
2
3Lq

2
mn) ≪ 1, for large qmn the square root can be
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expanded and we can write τ1 in the simplified form:

τ1 =
η3

2γ/L+Kq2mn

. (4.43)

According to this equation we can subdivide the region qmn > qc into two different subregimes.

For Kq2mn < 2γ/L we can omit the second term in the denominator of Eq. (4.43) and arrive at

τ1 = η3L/(2γ). (4.44)

In this ‘surface relaxation regime’ the relaxation time depends only on the surface tension, the

membrane thickness and the viscosity. For Kq2mn > 2γ/L the second term in the denominator

of Eq. (4.43) dominates and

τ1 = η3/(Kq
2
mn). (4.45)

In this ‘bulk-elasticity dominated relaxation regime’ the relaxation time depends on the bend-

ing elastic constant K and on the viscosity, but it is neither sensitive to the surface tension nor

to the membrane thickness anymore.





Chapter 5

Relaxation in smectic membranes

We present a comprehensive account of the dynamics of layer-displacement fluctuations in smectic

liquid-crystal membranes as studied by x-ray photon correlation spectroscopy (XPCS) and neutron spin

echo (NSE). Combining these two techniques at fast relaxation times, three distinct relaxation regimes

can be distinguished. For thin membranes, at the specular Bragg position oscillatory relaxation occurs,

which transforms for thicker samples into exponential decay. At off-specular angles, above a critical an-

gle exponential relaxation is observed in XPCS that does not depend on the scattering angle, indicating

relaxation times independent of the wavelength of the fluctuations. The relaxation of the fluctuations in

this regime is dominated by the surface tension. Using NSE larger off-specular angles can be reached

than for XPCS, for which the relaxation time decreases with the scattering angle. This regime is dom-

inated by the bulk elasticity of the smectic membrane. The results are described using the concept of a

detection ’window’, which incorporates the effects of the mosaic distribution and of the center of mass

movement of the smectic membranes.

5.1 Experimental results

In this chapter we present measurements of the three fluctuation regimes in smectic membranes

that were discussed in Sec. 4.2. The results include a transition from oscillatory relaxation of

the fluctuations (due to inertial effects) to simple exponential relaxation of overdamped fluc-

tuations, both as a function of membrane thickness and of the off-specular angle. Emphasis is

on the factors that influence the dominating wavelength from the fluctuation spectrum. The

choice of this quantity is particularly intricate in the limit qxy → 0.
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Figure 5.1: Correlation functions from XPCS of smectic membranes of different thicknesses; lines indi-
cate fits to Eq. (5.1). (a) 4O.8; filled squares: 0.45 µm; filled circles: 1.0 µm; filled triangles: 2.2 µm;
open triangles: 6.0 µm; open squares: 10.0 µm. (b) FPP; filled squares: 0.48 µm; filled circles: 2.8 µm;
filled triangles: 5.9 µm; open triangles: 13.2 µm; open squares: 15.0 µm.

Figure 5.1 shows typical intensity correlation functions from XPCS of smectic 4O.8 and FPP

membranes of various thicknesses at the first-order specular Bragg position. The experimental

curves were fitted to a simple oscillatory relaxation function:

〈I(t)I(0)〉
〈I〉2 = A exp(−t/τ) cos(ωt+ φ). (5.1)

Here A, τ, ω and φ are fitting parameters representing contrast, relaxation time, frequency and

phase. In thin membranes we note for both compounds a clear oscillatory behavior. In thicker

membranes the oscillations shift to larger times, while for thick 4O.8 membranes the oscilla-

tions disappear completely and only exponential relaxation is left. In FPP membranes, at the

first Bragg position the oscillatory relaxation is present for all thicknesses measured. The only

exponential relaxation found in FPP membranes at any specular position was at the second

Bragg peak (see Fig. 5.2).

The fitted values for the relaxation time τ and the frequency ω for all samples of differ-

ent thicknesses measured are given in Tables 5.1 and 5.2, while their thickness dependence

is plotted in Fig. 5.3. Even though the scatter of the experimental points is considerable, we

can conclude that τ increases and ω decreases with membrane thickness. Note in Table 5.1

the anomalous behavior of a relatively thin 2.2 µm 4O.8 membrane that shows exponential

relaxation, while both thinner and thicker membranes still display oscillatory behavior.

Figure 5.4a shows a series of off-specular measurements of 8CB membranes. Already for a

small offset from the specular position corresponding to 10 mdeg, the oscillatory profile trans-
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Figure 5.2: Correlation functions measured at the first and second Bragg positions of a 13.2 µm thick
FPP membrane.

Table 5.1: Fitting parameters for 4O.8 membranes of different thicknesses (first Bragg peak)

Thickness/µm A τ/µs ω/µs−1 φ/ rad

0.037 0.06 2.0 0.86 0.40

0.068 0.04 3.9 0.32 0.52

0.3 0.03 5.9 0.29 0.41

1.0 0.10 5.4 0.33 0.08

2.2 0.13 2.2 0 0

5.0 0.05 9.7 0.14 −0.09

6.0 0.11 5.3 0.19 −0.48

10.0 0.11 5.9 0 0

forms into pure exponential relaxation. The relaxation time remains about constant for all

measured off-specular positions (see Fig. 5.4b). Figure 5.5 illustrates the transition process from

oscillatory to exponential relaxation in more detail for an FPP membrane. Close to the specular

Bragg position oscillations are still detected; at slightly larger off-specular scattering angles the

behavior changes into exponential relaxation.

On several occasions we obtained for highly ordered membranes a poor contrast for the

correlation functions at the specular reflection position. This occurred in spite of the fact that

such samples with a narrow mosaic distribution show sharp and very intense specular reflec-
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Table 5.2: Fitting parameters for FPP membranes of different thicknesses (first Bragg peak)

Thickness/µm A τ/µs ω/µs−1 φ/ rad

0.047 0.15 2.8 0.25 0.88

0.64 0.15 11.4 0.05 0.95

2.8 0.24 5.8 0.24 0.17

3.0 0.24 2.6 0.28 0.02

5.9 0.27 8.2 0.15 −0.04

7.7 0.21 12.3 0.11 0.13

12.5 0.23 7.7 0.13 −0.49

13.2 0.16 18.7 0.07 0.20

15.0 0.13 31.7 0.04 0.33
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Figure 5.3: Dependence of relaxation time and frequency of the oscillations on membranes thickness;
circles: 4O.8; triangles: FPP.

tions. This effect is illustrated in Fig. 5.6. At the center of the rocking curve hardly any contrast

is left, which starts to develop as soon as we shift slightly (only 0.5 mdeg) off-specular.

Figure 5.7a displays data obtained for 8CB membranes by NSE. At the specular position no

relaxation is observed in this time range, below 50 ns, in agreement with the XPCS results of

Fig. 5.4a. The curves measured close to the specular position indicate a slow relaxation, while

at the larger off-specular positions the relaxation time decreases (see Fig. 5.7b). This behavior

differs strongly from the approximately constant values of τ from XPCS at small off-specular

angles shown in Fig. 5.4.
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Figure 5.4: XPCS measurements of 8CB membranes. (a) Correlation functions for a thickness of 2.0 µm
at the off-specular scattering angles indicated. (b) Experimental relaxation times at off-specular positions
for the thicknesses indicated; solid lines give the theoretically calculated dispersion curves.
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Figure 5.7: NSE results of thick (µm range) 8CB membranes around the first Bragg position. (a) Inter-
mediate scattering function for different positions; squares: specular; circles: 0.1 nm−1 offset; triangles:
0.15 nm−1 offset; diamonds: 0.24 nm−1; full lines: fits to a KWW function with β = 0.59. (b) Experi-
mental relaxation times for various samples; open circles: NSE at 1.5 nm; closed circles: NSE at 0.9 nm;
solid line: dispersion curves calculated for the thicknesses indicated (incompressible membranes); dashed
line: calculation for the 3.8 µm membrane with finite compressibility (B = 106 N/m2).

5.2 Discussion

5.2.1 Off-specular results: Surface and bulk-elastic regimes

In order to probe with XPCS fluctuations of a particular wavelength, the projection of the scat-

tering vector on the membrane surface should match the wave vector of interest. In x-ray

reflectivity this is accomplished by choosing an off-specular angle corresponding tho the de-

sired value of qxy. In Fig. 5.4b the relaxation times from such off-specular measurements have
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been plotted together with the theoretical dispersion curves. In the range accessible by XPCS

no dependence of the relaxation time on qxy is observed, in agreement with the plateau in the

theoretical dispersion curves. The relaxation times scale with the thickness of the membrane as

expected from Eq. (4.43). Note that at these off-specular positions no reference signal is present,

resulting in a homodyne detection scheme. According to the Siegert relation then the intensity

correlation function is proportional to |g1(t)|2, which results for exponential decay in a relax-

ation time τ/2. Hence the values obtained from the experiment have been multiplied by 2 to

obtain τ .

For the relatively fast relaxation times involved in smectic membranes, XPCS requires a

minimum intensity of the order of 104 cts/s. Hence in spite of large count rates at the specular

Bragg position, the steep decrease of the scattered intensity with off-specular angle limits the

accessible range of qxy-values. As a results the accessible wave vector values are all at the

plateau region of the dispersion curve. Larger off-specular scattering angles could be achieved

in NSE experiments. The large size of the neutron beam in combination with the integration

over the detector area results in sufficiently large count rates at off-specular positions as large as

several degrees. As NSE is a quasi-elastic scattering technique, each scattered neutron carries

useful information. Pairs of photon detection events must be counted to calculate the intensity

correlation. As the wavelength of the neutrons is comparable to the x-ray wavelength in XPCS,

the NSE scattering offset angles of several degrees result in values of qxy that are up to two

orders of magnitude larger than probed by XPCS.

In Fig. 5.7b the averaged values of the NSE relaxation time (see Eq. (3.15)) are plotted to-

gether with the theoretical dispersion curves. The data shows a qxy-dependence that is related

to bulk elastic effects. From Eq. (4.43) we expect a 1/q2xy dependence of the relaxation time, well

in agreement with the experimental results. Moreover, no thickness dependence is present any-

more, as expected from theory, which is convenient in light of the nonuniform thickness of the

large-size NSE samples. This lead to measurement results that are a superposition of data for

different values of L.

In the above discussions we assumed so far that the smectic membranes are incompressible.

This approximation works well for fluctuations with a wave vector in the oscillatory or surface

regime. It breaks down at larger qxy-values [21], for which a finite compressibility might play

a role. As indicated in Fig. 5.7b, the effect of a finite compressibility on the relaxation times

manifests itself in a transition region between the surface and bulk-elasticity regimes. Some

NSE results in Fig. 5.7b in the vicinity of this area extend above the high-compressibility limit,
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which could indicate that finite compressibility comes into play. However, these relaxation

times are in the time range up to 100 ns, which is at the limit of the possibilities of NSE. Hence

the correlation functions in this region carry significant uncertainty, which prevents any further

quantitative evaluation.

5.2.2 Specular results: Oscillating regime

From the discussion so far it is clear that with decreasing off-specular angle fluctuations are

probed with a smaller wave vector. Ultimately, at the specular position we reach the limit

qxy = 0. According to Fig. 4.2a in this limit the relaxation time should become infinite, while

the experiments of Fig. 5.1 indicate finite times. Evidently, it is a priori not clear what is the de-

cisive wave vector qmn at the specular ridge. The experimental results suggests that also at the

specular position a window of finite qxy-values determines the XPCS results by selecting fluc-

tuations qmn in the oscillatory regime. Accepting this concept for a moment, we can investigate

some of its implications. We note from Fig. 4.2b that the frequency of the oscillations should

become smaller for thicker membranes, which fits to the observed shift of the minimum of the

oscillations to longer times for thicker membranes in Fig. 5.1. For even thicker 4O.8 membranes

the wave-vector window selects fluctuations from the exponential regime above the cross-over

wave vector qc, leading to exponential relaxations at the specular ridge (Fig. 5.1). At the same

membrane thickness, qc is larger for FPP than for 4O.8. As qc varies as 1/
√
L (see Eq. (4.40)),

this causes for FPP potential exponential relaxations at the specular Bragg position to shift to

larger thicknesses beyond our experimental possibilities. Exponential relaxation at the spec-

ular ridge has only been observed for FPP at the second Bragg position. This indicates that

the wave-vector window of contributing fluctuations has indeed shifted to larger values and

passed qc.

The above explanation evidently requires that we can establish a window of qxy-values that

defines the range of wave vectors qmn dominating the XPCS measurements at the specular

position. In the following we propose such a mechanism by a combination of two ‘filters’,

cutting the low and the high wave-vector range, respectively. The high-pass ‘filter’ is related to

the movement of the illuminated area of the membrane as a whole (center-of-mass movement),

the low-pass ‘filter’ to the width of the rocking curve (mosaic distribution).

In Sec. 2.1.2 we introduced the reference intensity signal I0, which is related to the move-

ment of the coherence volume as a whole. In other words to the movement of the center-of-

mass (CM) of the coherence volume. Fluctuations of a wavelength larger that the size of the
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Figure 5.8: Schematic representation of the window defined for XPCS by the center-of-mass movement
and the mosaic distribution (see text). (a) The correlation function exhibits oscillatory relaxation when qc
is situated at the high-q side of the window. (b) As qc shifts to lower q-values in the window exponential
relaxation takes over. (c) Representation of zero contrast near qxy = 0.

coherence volume contribute effectively mainly to this CM movement. In contrast, fluctuations

of a wavelength smaller than the coherence volume hardly shift the center of mass, but do con-

tribute to the correlation function measured in XPCS. Let us define qCM as the wave vector of

a fluctuation of a wavelength matching the size of the coherence volume. The value of qCM is

defined by the coherence properties of the incident beam and the resolution of the setup. For

4O.8 the experimentally observed transition to the exponential regime occurs close to a thick-

ness L ≈ 10 µm. Using Eq. (4.40) we can calculate the corresponding value qc ≈ 0.08 µm−1

which corresponds to a projection of the transverse coherence length on the membrane of about

80 µm. Accepting this value for a moment, the transition thickness for FPP would beL ≈ 70 µm

(using the parameters from Table 3.1). As the thickest samples measured were . 20 µm, this

explains indeed why for FPP no transition to the exponential regime was observed at the spec-

ular Bragg position. On the other hand, at the second Bragg peak exponential relaxation was

observed for a 13.2 µm FPP membrane (see Fig. 5.2). Because of the twice smaller projection of

the coherence length at this position, here the transition thickness would be four times smaller

at about 17 µm, which is the right order of magnitude. We conclude that the estimates given

explain the trend in the data rather well, but quantitatively the projected coherence length of

about 80 µm is a factor 3−4 too small. Such difference might be related to the speckle structure

which was observed in the incident beam and could have been caused by some optical ele-
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ments in the fly path. In summary, qCM gives the position of a ‘high-pass filter’ of wave vectors

of fluctuations contributing to the correlation function measured by XPCS. Short wave vectors

(long wavelengths) below this value contribute mainly to the CM movement.

A second factor that influences the XPCS results is the mosaic distribution of the sample.

It can be quantified using the width of the rocking curve, to be indicated as qr. This width in-

dicates a range of projections of scattering vectors that contribute to the intensity measured at

the Bragg position. Each contribution corresponds to scattering from fluctuations with a wave

vector matching the projection of the scattering vector on the surface of the membrane. The

intensity profile of the rocking curve weights the contribution of each particular wave vector

to the total intensity at the Bragg position. Hence qr can be considered as a ‘low-pass filter’

of fluctuations influencing the XPCS signal, cutting off input from larger qxy-values. The con-

tribution of each fluctuation is proportional to the intensity at the corresponding off-specular

position. This will effectively suppress input from fluctuations with large values of qmn.

Considering the three parameters: qCM , qr and qc we can build a complete picture of the

XPCS results. The quantities qCM and qr define a window (‘bandpass’) determining the range

of the wave vectors detected. In Fig. 5.8 we indicate three possible scenarios that depend cru-

cially on the position of qc with respect to this window. In case (a) the cross-over wave vector qc

is positioned close to the upper edge of the window. In this situation mainly fluctuations below

qc contribute to the scattered intensity and we observe oscillatory behavior. In case (b) the posi-

tions of qCM and qr are still the same, but qc is situated closer to the lower edge of the window.

Consequently, fluctuations above qc will prevail and we expect to observe simple exponential

relaxation in XPCS. In case (c) there is no intersection between low- and high-pass filter. This

means that fluctuations contributing to the XPCS signal only translate the scattering volume

as a whole without changing the total intensity. This results in the absence of the contrast in

specular measurements. This situation corresponds to the measurement at qxy = 0 indicated in

Fig. 5.6.

Let us make some estimates to connect the results of Fig. 5.6 in more detail to Fig. 5.8c. At

the specular position (qz = 1.16 nm−1) the width of rocking curves from the most uniform,

resolution-limited samples is below 1 mdeg. An offset of 1 mdeg corresponds to a projection of

the scattering vector on the surface qx = 2.0 · 10−5 nm−1 or a lateral size of about 300 µm. This

values is comparable to the estimated length of the coherence volume. Consequently, at the

specular ridge fluctuations are detected with a wavelength larger than the coherence volume.

As argued above, these do not contribute to the XPCS signal. On the other hand, contributions
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Figure 5.9: Lines: Thickness dependence of the scattering angle corresponding to qc for 4O.8 and FPP
membranes. Circles: rocking curve widths for 4O.8 (open circles) and FPP (filled circles) for the thick-
nesses investigated. The arrow indicates exponential relaxation; all other points correspond to the oscil-
latory relaxation regime.

from shorter wavelength fluctuations are not detected at the Bragg position because of the

narrow resolution; they start to contribute only at off-specular positions. This is exactly the

situation pictured in Fig. 5.8c. As a result only membranes with a rocking curve width larger

than about 1 mdeg provide enough contrast to measure a correlation function at the specular

Bragg position.

Figure 5.9 displays the scattering angle corresponding to qc versus membrane thickness.

Superimposed are rocking curve widths from which we can estimate whether the observed

relaxation should be oscillatory or exponential. For points below the cross-over curve, the

main contribution to the resulting XPCS signal stems from fluctuations with oscillatory relax-

ation. For the points well above the curve, fluctuations with exponential relaxations will play

a major role. In Fig. 5.9 we see several point above the corresponding curves which still ex-

hibit oscillatory relaxation. This indicates that the influence of overdamped relaxations in this

cases is not strong enough to suppress the contributions from oscillating fluctuations. The

only point exhibiting exponential relaxation is indicated by an arrow. It is a thin 2.2 µm 4O.8

membrane with accidentally an unusually large 32 mdeg broad mosaic distribution, lying well

above the corresponding curve. As a consequence overdamped fluctuations become dominant

in the measurements of this sample and we observe exponential relaxation, even through some

thicker membranes with narrower rocking curves still exhibit oscillatory behavior.
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In Sec. 4.2 we discussed the surface dominated exponential relaxation regime for fluctua-

tions with a wave vector qxy > qc leading to a relaxation time τ = η3L/(2γ). This result has

been previously obtained in a quasi-stationary model neglecting inertia of the smectic mem-

brane [56]. In such a model no oscillatory regime is present and the exponential relaxation

regime extends to qxy = 0. A linear dependence of the relaxation time on thickness was re-

ported by Price et al. [56] at the specular Bragg position for samples of various different ma-

terials with thicknesses & 5 µm. Figure 5.9 indicates that for these thicknesses exponential

relaxations could be dominant. However, In these early XPCS measurements with soft x rays,

the mosaic distribution of the smectic membranes was rather large. According to Fig. 5.9, which

might also play a role. Such large values of qr lead in Fig. 5.8 to a broad overlap area; in particu-

lar the right edge of the window extends to large wave-vector values. This results in dominance

of fluctuations with exponential relaxation, in agreement with the observation of exclusively

exponential relaxation in the XPCS experiment of Ref. [56].

5.3 Conclusions

Combining XPCS and NSE methods we have mapped out the three different relaxation modes

in smectic liquid crystal membranes predicted by theory: oscillatory relaxations, surface domi-

nated exponential relaxations and bulk-elasticity dominated exponential relaxations. A critical

wave vector qc separates the first from the latter regimes. Fluctuations with a wave vector

qmn < qc exhibit oscillatory relaxation. In the region qmn > qc fluctuations lead to simple

exponential relaxation. For small wave vectors qmn (but above qc) the exponential relaxation

time does not depend on the wave vector and is defined by surface tension, thickness and

viscosity of the membrane. This behavior has been observed in a series of off-specular XPCS

experiments, for which the relaxation time was independent of the scattering angle. For larger

wave vectors qmn the exponential relaxation times are determined by the bending elasticity

of the smectic layers and decrease as 1/q2mn. This regime has been probed by NSE measure-

ments thanks to the accessibility of an order of magnitude larger off-specular scattering angles

compared to XPCS. The NSE results indicate a decrease of the relaxation time with increasing

scattering angle as predicted.

XPCS measurement at specular positions are dominated by a ‘window’ of wave vectors cut-

ting longer and smaller values. This window results from a combination of the finite resolution

of the setup selecting long wavelength fluctuations, and the size of the coherence volume inside

which short wavelength fluctuations perturb the density profile, and is given by the overlap
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of these two regimes. For thin membranes this window is dominated by fluctuations with

qmn < qc, resulting in oscillatory behavior of the intensity correlation function. For thicker

membranes the cross-over wave vector qc shifts towards smaller values and the window of

contributing fluctuations is dominated by exponential relaxations. For extremely well-ordered

membranes characterized by a narrow rocking curve . 1 mdeg, the wave vector window is

empty, which results in the absence of any contrast in the specular correlation function.





Chapter 6

Coherence in x-ray photon correlation spectroscopy

experiments

In x-ray photon correlation spectroscopy (XPCS) the degree of coherence of the x-ray beam determines the

contrast of the observed intensity correlation function. In this chapter we present XPCS measurements

of smectic liquid crystal membranes in a reflectivity geometry showing that both coherence and resolution

can influence the time dependence of the correlation function. Variation of the pre-detector slits as well as

of the projected coherence length on the membrane induce a time dependence of the intensity correlation

function. We also treat several practical aspects and limitations we encountered during our XPCS

studies. Finally the conditions for heterodyne detection at the specular ridge and homodyne detection at

off-specular conditions are discussed.

6.1 Introduction

In the absence of x-ray lasers a paramount problem in XPCS is to get sufficient scattered inten-

sity. A sufficient degree of coherence can only be obtained by selecting via a pinhole the central

flat wavefront from an incoherent source at large distance. For the small wavelength involved

in x rays the beam must be collimated down to micron size, which results in a large loss of

intensity. In addition effects of beam damage put a limit on the incoming flux of the x rays

that can be accepted. As a consequence scattering geometries have to be used in XPCS that dif-

fer from those in conventional photon correlation spectroscopy (PCS). This has unveiled new

ways in which both the coherence properties of light and the resolution of the setup influence

the measurements.

65
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Because of the Landau-Peierls instability the layer-displacement correlation function

〈u(r1, 0)u(r2, t)〉 diverges when the wave vector of the fluctuations approaches q → 0. To

avoid this complication a cut-off parameter has been introduced, which defines the longest

wavelength of the fluctuation present in the system [10] (see Sec. 4.2). For finite-size mem-

branes this parameter is expected to be at the order of the lateral dimension of the membrane.

However, fitting of the experimental data revealed that the cut-off value was closer to the foot-

print of the beam on the surface of the membrane [58, 59]. This result establishes a connection

with the dimension of the coherently illuminated volume of the sample from which the scatter-

ing image (speckle pattern) originates. For a complex optical system the phase profile over the

wavefront is intricate [95]. In this case one can describe the coherence properties of the beam

by the complex degree of coherence µ(r1, r2) (see Sec. 2.1.4). This parameter can be measured

in, for instance, a double slit experiment. In that situation the transverse coherence length can

be identified with the slit separation corresponding to the maximum of the zeroth order of

µ(r1, r2). However, maxima corresponding to higher orders of µ(r1, r2) are present that mani-

fest phase correlations in the wavefront at longer distances. The latter correlations could play

a vital role as they probe fluctuations with a long wavelength that provide a dominant contri-

bution to S(q, t), since they diverge for q → 0.

In order to quantify the observed changes in correlation functions one could attempt to

fit them directly to Eq. (2.5) for S(q, t). However, because of the complicated intrinsic q-

dependence, which has to be integrated out, we started with a more empirical approach based

on the simpler functional dependence (oscillatory relaxation) of Eq. (5.1):

〈I(0)I(t)〉
〈I〉2 = A exp(−t/τ) cos(ωt+ φ). (6.1)

The arguments given above suggest that variations of the scattering volume could lead to dif-

ferent relaxation profiles. In the following sections we present several experiments illustrating

this statement. First we show that variation of the detector slits results in a shift of the cor-

relation function. Subsequently we discuss changes of the projection of the coherence length

that also induce a time dependence of intensity correlation function. Finally the question of

homodyne vs. heterodyne detection will be considered.
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6.2 Resolution effects from the pre-detector slits

In this section we illustrate the influence of the resolution of the setup on the time dependence

of the intensity relaxation function at the quasi-Bragg peak of FPP (q0 = 2.14 nm−1) by chang-

ing the detector slit in either the horizontal or the vertical direction. A first set of measurements

was made with a 10 µm pinhole and a horizontal scattering plane (vertical membrane). The re-

sults are displayed in Fig. 6.1. Opening of the horizontal detector slit results in a strong loss of

contrast and a shift of the correlation function towards longer relaxation times. On the other

hand opening the vertical (out-of-plane) detector slit leads only to minor changes. Similar re-

sults are found in the case of a horizontal membrane (vertical scattering plane), in which the

horizontal and vertical slits switch over their roles (see Fig. 6.2). In Fig. 6.3 we give results

for a 100 µm pinhole (vertical membrane). In this case both the vertical and the horizontal slit

influences the correlation function, slowing down the correlation time while also the contrast

diminishes.

The results for the curves from Fig. 6.1, Fig. 6.2 and Fig. 6.3 are given in Table 6.1, Table 6.2

and Table 6.3, respectively. The frequency of the oscillatory part is constant for vertical mem-

branes. On the other hand the phase factor remains overall constant within the experimental

accuracy. The results for contrast and relaxation times can be summarized as follows.

• For the 10 µm pinhole increasing the in-plane pre-detector slit leads to (i) an important

loss of contrast, and (ii) an increase of the relaxation time. Increasing the out-of-plane

detector slits gives (i) a small but significant decrease of contrast and (ii) no change of

the relaxation time. These results are independent on whether the scattering plane is

horizontal or vertical. Note that a decrease of contrast is not necessarily connected with

a variation of the correlation time.

• For the 100 µm pinhole the initial contrast is less than in the previous case. Upon increas-

ing the width of a pre-detector slit (either in-plane or out-of-plane) the contrast is strongly

reduced and the relaxation time increases.
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Figure 6.1: Correlation functions from a 1.7 µm vertical FPP membrane (10 µm pinhole). Left: Vertical
slit fixed at 0.02 mm, horizontal slit (from top to bottom): 0.03, 0.06, 0.1, 0.2 mm. Right: Horizontal slit
fixed at 0.02 mm, vertical slit (from above): 0.01, 0.03, 0.06, 0.1, 0.2 mm. Fit parameters in Table 6.1.

In-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.03 0.29 3.8

0.06 0.22 4.6

0.1 0.16 5.2

0.2 0.08 5.7

Out-of-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.01 0.33 3.9

0.03 0.31 3.9

0.06 0.29 3.9

0.1 0.26 4.0

0.2 0.24 4.0

Table 6.1: Fitting parameters to Eq. (6.1) for the correlation functions of the vertical FPP membrane
of Fig. 6.1. Top: vertical slit fixed at 0.02 mm; bottom: horizontal slit fixed at 0.02 mm; ω = 0.30 ±
0.02 µs−1, φ = 0.3 ± 0.1.

The size of the 10 µm pinhole is less or about equal to the vertical and horizontal coher-

ence length, respectively. Hence the radiation passed through has approximately symmetric

coherence. For in-plane scattering the projection of the transverse coherence length ξtr on the

surface of the membrane is at the quasi-Bragg angle about 300 µm (the size of the footprint of

the beam). In the out-of plane direction it is still about the size of the pinhole. In the latter

direction one or just a few speckles are accepted by the detector and further opening of the

vertical slit leads to a moderate decrease in contrast. However, in the scattering plane at least
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Figure 6.2: Correlation functions from a 1.4 µm horizontal FPP membrane (10 µm pinhole). Left:
Horizontal slit fixed at 0.02 mm; vertical slit (from top to bottom): 0.01, 0.03, 0.06, 0.1, 0.2 mm.
Right: Vertical slit fixed at 0.02 mm, horizontal slit (from top to bottom): 0.01, 0.03, 0.06, 0.2 mm. Fit
parameters in Table 2.

In-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.01 0.33 6.9

0.03 0.34 7.4

0.06 0.22 8.5

0.1 0.12 10.2

0.2 0.05 9.6

Out-of-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.03 0.39 6.2

0.06 0.33 7.1

0.1 0.36 6.2

0.2 0.28 7.1

Table 6.2: Fitting parameters to Eq. 6.1 for the correlation functions of the horizontal FPP membrane
of Fig. 6.2 (10 µm pinhole). Left: horizontal slit fixed at 0.02 mm; right: vertical slit fixed at 0.02 mm;
ω = 0.16 ± 0.02 µs−1, φ = 0.4 ± 0.1.

ten times more speckles will be received by the detector, and further opening will strongly re-

duce the contrast which in fact almost disappears. The ‘effective’ resolution ∆q′x (Eq. 2.29) is

determined by the largest of the two values 1/ξtr ≤ 10−5 nm−1 and ∆qx ≃ 10−4 nm−1. Hence

for in-plane scattering ∆q′x is mainly determined by the resolution of the setup. When we open

the detector slits we decrease the resolution, and thus the cut-off wavelength Λ, leading to a

larger relaxation time.
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Figure 6.3: Correlation functions from a 1.4 µm vertical FPP membrane (100 µm pinhole). Left: Ver-
tical slit fixed at 0.02 mm, horizontal slit (from top to bottom): 0.01, 0.03, 0.06, 0.1, 0.2 mm. Right:
Horizontal slit fixed at 0.02 mm, vertical slit (from top to bottom): 0.01, 0.03, 0.06, 0.1, 0.2 mm. Fit
parameters in Table 6.3.

In-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.01 0.16 4.6

0.03 0.14 5.3

0.06 0.1 6.5

0.1 0.07 7.1

0.2 0.04 7.8

Out-of-plane slit/mm A± 0.01 (τ ± 0.1)/µs

0.01 0.22 4.3

0.03 0.13 5.3

0.06 0.08 6.0

0.1 0.05 6.1

0.2 0.04 6.5

Table 6.3: Fitting parameters to Eq. (6.1) for the correlation functions of the vertical FPP membrane of
Fig. 6.3. Left: vertical slit fixed at 0.02 mm; right: horizontal slit fixed at 0.02 mm; ω = 0.29±0.02 µs−1,
φ = 0.2 ± 0.1.

For in-plane scattering, in the case of a 100 µm pinhole we have factor 10 larger footprint

than for a 10 µm pinhole. However, the projection of the coherence length ξtr on the surface of

the membrane is still about the same. Hence we can apply essentially the same arguments as

in the 10 µm case. For the out-of-plane scattering the beam size is now about 100 µm while the

coherence length is of the same order. This brings the out-of-plane behavior to the same scale as
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discussed for the in-plane scattering, resulting in the similar behavior observed experimentally.

In conclusion these results illustrate that in the present coherent experiments the whole set-up

after the pinhole should be considered as ‘sample’.

6.3 Dependence of the relaxation on qz

So far we have been working exclusively at the quasi-Bragg peak corresponding to the layer

structure of the smectic membranes. Moving along the specular ridge provides a means of

varying the projection of the beam (and thus of the coherence length) on the surface of the

membrane. To achieve a high enough count rate at different specular positions, we measured a

relatively thin 13-layer 4O.8 membrane, giving broad Kiessig fringes (see Fig. 6.4a). Correlation

functions taken at the maxima of the Kiessig fringes and at the quasi-Bragg position are shown

in Fig. 6.4b. The results of fitting the data to Eq. (6.1) are displayed in Fig. 6.4c, and indicate

shorter relaxation times as we move towards larger scattering angles. Finally Fig. 6.4d shows

an increase in contrast parallel to the variation of the relaxation time with qz .

The results can easily be understood within the framework of our model given in the previ-

ous section. For in-plane scattering now the projection on the membrane surface of both ξtr and

1/∆qx varies inversely proportional to qz . Hence it does not matter which quantity is dominant.

This projection directly determines the largest wavelength of the detected fluctuation which de-

creases with increasing scattering angle leading to the observed shift of the correlation function

towards faster times. Comparing Figs. 6.4a and 6.4d we note that the contrast increases with

decreasing intensity of the Kiessig fringe (or quasi-Bragg peak).

Another potential possibility to vary qz is to work at the position of the second-order quasi-

Bragg peak. In FPP the presence of fluorine leads to an increased intensity ratio of the sec-

ond and first quasi-Bragg peak of about 10−4, which is for other liquid crystals usually about

10−6 − 10−7. This allowed us to measure correlation functions at both the first- and the second-

order Bragg position of a thick FPP membrane, shown in Fig. 5.2. At these positions both the

illuminated footprint and the coherence volume differ by a factor two. At the second quasi-

Bragg position we should probe maximum fluctuations with a twice shorter wavelength than

at the first one. The data show at the first Bragg peak oscillatory relaxation (complex mode, see

Fig. 4.2), and at the second Bragg peak a pure exponential relaxation. As the latter slow-mode

relaxation time does not depend on the wavelength of the fluctuations, we cannot decide on

an exact factor of two difference. However, the change in mode is important, as this is the only

example of FPP showing exponential relaxation on the specular ridge.
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Figure 6.4: Results for a 13-layer 4O.8 membrane at different specular positions. (a) Reflectivity curve.
(b) Correlation functions (10 µm pinhole) taken at the maxima of the Kiessig fringes (shifted along the
vertical axis with values of qz indicated). (c) Dependence of the fitting parameters τ (triangles) and ω
(circles) on the position along the specular ridge. (d) Ibid for the contrast.

6.4 Coherence-induced modulations

In the reflectivity curves of several thin highly-oriented smectic membranes we observed on

top of the standard reflectivity curve additional modulations (Fig. 6.5) with a periodicity of

about 20 mdeg. These additional fringes have an M-shape with secondary minima at about

half the main period (Fig. 6.6). A standard explanation would attribute such a modulation to

different thicknesses of the film. However, several reasons make this unlikely. First this expla-

nation would require rather thick islands on a thin film, which is not very probable. Second

the modulation is also observed at the Bragg position. This would not be the case for multiple

thicknesses as the Bragg position is the same for all thickness regions. Finally modulations

with the same period are observed in samples of different thickness. Hence we conclude that

the modulations have an external cause, probably related to the coherent properties of the

beam. In perspective it is somewhat difficult to establish exactly the conditions under which
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these modulations can be observed. The effect occurred spontaneously in several cases, but

no systematic investigations were made. The relevant samples can be characterized as rather

thin (thicknesses about 40−50 nm) and highly oriented (mosaic below 1 mdeg). In all cases the

10 µm pinhole and the focussing Be lens were in place while the direct beam was not atten-

uated. Usually a sample in a coherent beam acts to some extent as a diffusor, decreasing the

degree of coherence of the beam. Under the conditions described we seem to be in the other

limit: the thin highly oriented smectic membranes act as almost perfect mirrors reflecting the

coherent beam, of course on top of the Kiessig fringes and the quasi-Bragg peak as given by

the reflectivity conditions.
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Figure 6.5: Reflectivity curves measured from (a) 35 nm thick FPP and (b) 43 nm thick 4O.8 membranes.
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Figure 6.6: Magnification of the Bragg peak region from Fig. 6.5b.

It seems natural to consider these oscillations as a multiplcation of the Fraunhofer diffrac-

tion pattern [67] and the reflected intensity from the sample. However, Figs. 6.5 and 6.6 do not
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show a static speckle pattern but reflectivity curves as a function of qz . Hence the scattering

from the sample is a convolution of the incident field with the density distribution in the sam-

ple. In this situation it is not clear how the Fraunhofer diffraction pattern could survive and

lead to oscillations at the detector position.

q1d

q2

Figure 6.7: Pathway difference for the calculation of the source separation.

The data displayed in Figs. 6.5 and 6.6 resemble strongly a classical two-slit experiment [96,

97]. Hence they can be understood if we assume a split incident beam resulting in two reflec-

tion spots on the surface of the membrane. If the two sources are correlated they will create

an interference pattern, which will modulate the reflectivity curves. Denoting the distance be-

tween the two sources by d and the scattering angles corresponding to two adjacent minima in

Fig. 6.6 by θ1 and θ2, we can write (see Fig. 6.7):

d =
λ

2(cos θ1 − cos θ2)
sin(θ) =

λ

4 sin(∆θ/2) sin(θ/2)
sin(θ) ≈ λ

∆θ
. (6.2)

Taking θ = (θ1 + θ2)/2 = 1.544◦, ∆θ = θ1 − θ2 = 0.02◦ and λ = 0.154 nm, this explanation

requires a spacing of the sources d ≃ 0.4 µm. Such a splitting could possibly result from a

speckle pattern generated by one of the optical elements (monochromator crystal, mirror, Be-

window) before the sample. As mentioned in Sec. 3.2, the incident beam was observed to be

structured as measured by scanning with a 4 µm pinhole. However, a separation of 0.4 µm is

evidently beyond this resolution or any other one that could be set in practice. The correctness

of this explanation would be immediately evident from the effect of varying the size of the

pinhole. Unfortunately this possibility was not considered at the time of the measurements that

were in the first place aimed at unravelling the fluctuation dynamics of the smectic membranes.
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6.5 Homodyne/heterodyne detection

As mentioned in Sec. 2.1.2 the density of a fluctuating smectic membrane can be decomposed

into a time-independent (average) part and a time-dependent one. The presence or absence

of the reference signal results in homodyne and heterodyne detection schemes, respectively.

Fig. 6.8a shows some typical experimental results. Around the Bragg position we observe a

Figure 6.8: XPCS measurements of a 3.8 µm 8CB membrane at specular and off-specular positions. (a)
Correlation functions at the positions indicated above each curve. (b) Variation of the relaxation times
as a function of the offset. Inset: Rocking curve with arrows indicating the measurement positions.

specular relaxation time of 6.2 µs. After passing a threshold the correlation function transforms

into another form with a different relaxation time. This transition manifests the switch from

heterodyne to homodyne detection as the contribution of Iref disappears. The threshold is

determined by the angle for which the specular reflection falls on the edge of the detector area.

The results given in Fig. 6.8b indicate a final off-specular relaxation time of 3.3 µs.

The difference of approximately a factor 2 becomes evident if we consider that in the intensity-

intensity correaltion function (see Eq. 2.14) the heterodyne term depends linearly on g1(t) and

the homodyne term on g2(t) which is proportional to g2
1(t) via the Siegert relation. If in the

heterodyne regime the intensity correlator decays exponentially with a rate constant Γ:

〈I(q, 0)I(q, t)〉 ∼ exp(−Γt), (6.3)

we get in homodyne case according to the Siegert relation:

〈I(q, 0)I(q, t)〉 ∼ exp(−2Γt). (6.4)
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Due to this effect the relaxation times obtained in homodyne scheme by fitting experimental

intensity correlation functions to Eq. (6.1) is twice smaller than in heterodyne case [66].
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Figure 6.9: Correlation functions of an underdamped mode showing oscillations. (a) XPCS of a 2.5 µm
thick 8CB membrane at the specular Bragg position (heterodyne). (b) PCS of a 0.1 µm thick 8CB at a
wavelength of at 532 nm and an 3.5◦ off-specular angle (homodyne) [64].

Figure 6.9 indicates the difference between heterodyne XPCS and homodyne light scatter-

ing measurements done using x-ray and laser light, respectively. Figure 6.9a gives specular

XPCS data for a thinner 8CB sample that shows in addition to the exponential decay oscilla-

tions. The direct consequence of the Siegert relation is that g2(t) ≥ 1. For oscillating modes

observed in heterodyne case the relevant correlation function g1(t) is given by scheme an ex-

ponentially damped oscillation of the correlation function is given by

g2(t) = 1 + βhet cos(ωt) exp(−Γt). (6.5)

In homodyne case we get using Siegert relation the following expression for the relevant corre-

lation function g2(t):

g2(t) = 1 + βhom cos2(ωt) exp(−2Γt). (6.6)

Eqs. 6.5 and 6.6 indicate that the difference in the form of oscillations observed in XPCS and

light scattering is due defined by cos and cos2 factors, respectively.

Heterodyne detection is more sensitive, as the weak quasi-elastic intensity is not modu-

lated by itself but by the strong elastic signal. In classical dynamic light scattering, one cannot

measure at the specular position, and, to take advantage of the heterodyne scheme, an artifi-

cial secondary source must be created at off-specular positions. The above discussion suggests

that for x rays the elastic intensity at the Bragg reflection or at any other specular position with
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enough intensity, can act as a ‘natural’ secondary source. This opens up new opportunities for

probing the dynamics of a variety of systems that produce intense x-ray diffraction patterns,

by performing XPCS measurements at Bragg reflections.

6.6 Conclusions

Smectic membranes can be made with an extraordinary uniformity while at the same time they

are very stable in the x-ray beam. In combination with the existence of low-dimensional fluc-

tuations these properties make them very suitable for XPCS, allowing in-depth investigations

of the technique. We have discussed how in XPCS experiments the coherence properties of

the beam influence the time dependence of the measured intensity correlations. The basic as-

sumption is that the coherence volume acts like a filter, selecting fluctuations of the smectic

membrane with matching wavelength. Measurements at different scattering angles support

this model. Changing the resolution of the setup by variation of the detector slits also in-

fluences the time behavior of the correlation function. This indicates a relation with the size

of the scattering volume. Both effects can be incorporated in an ‘effective’ resolution of the

setup that accounts for both the resolution and the coherence of the beam. Clear evidence has

been provided for a transition in XPCS between heterodyne detection at the specular ridge and

homodyne detection for off-specular scattering geometries. In particular a difference in relax-

ation time of a factor 2 is found as expected. In addition, by comparing propagating modes

at the specular ridge (XPCS) and at off-specular positions (PCS with visible light), cos-like and

cos2-like oscillations have been observed as expected for heterodyne and homodyne mixing,

respectively. For XPCS heterodyning occurs because of a strong elastic signal present at the

specular ridge that acts as a time-independent internal reference source.





Bibliography

[1] P. G. de Gennes and J. Prost, The physics of liquid crystals, Oxford, Clarendon Press, 1993.

[2] G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals Fundamentals, Springer Verlag,

1988.

[3] G. Friedel, Ann. Phys. 18, 273 (1922).

[4] C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978).

[5] C. Rosenblatt, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 42, 1220 (1979).

[6] D. E. Moncton and R. Pindak, Phys. Rev. Lett. 43, 701 (1979).

[7] P. Pieranski, L. Beliard, J. P. Tournellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou,

B. Jouvin, J. P. Fénerol, P. Palaric, J. Heuving, B. Cartier, and I. Kraus, Physica A 194, 364

(1993).

[8] W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).

[9] L. D. Landau and E. M. Lifshitzt, Theory of elasticity, Oxford, Butterworth-Heinemann,

1999.

[10] R. Hołyst, Phys. Rev. A 44, 3692 (1991).

[11] R. E. Peierls, Proc. Cambridge Philos. Soc. 32, 477 (1934).

[12] L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

[13] A. Caillé, C. R. Acad. Sci. Ser. B 274, 891 (1972).

79



80 BIBLIOGRAPHY

[14] L. Gunther, Y. Imry, and J. Lajzerowicz, Phys. Rev. A 22, 1733 (1980).

[15] J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaard-

Andersen, and S. Mathiesen, Phys. Rev. B 22, 312 (1980).

[16] C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Belloq,

Phys. Rev. Lett. 57, 2718 (1986).

[17] V. M. Kaganer, B. I. Ostrovskii, and W. H. de Jeu, Phys. Rev A 44, 8158 (1991).

[18] See, for example, P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics

(Cambridge University Press, Cambridge, England, 1995).

[19] M. Tolan, X-ray Scattering from Soft-Matter Thin Films, volume 148 of Springer Tracts in

Modern Physics, Springer, Berlin, 1999.

[20] J. D. Shindler, E. A. L. Mol, A. N. Shalaginov, and W. H. de Jeu, Phys. Rev. Lett. 74, 722

(1995).

[21] E. A. L. Mol, J. D. Shindler, A. N. Shalaginov, and W. H. de Jeu, Phys. Rev. E 54, 536 (1996).

[22] E. A. L. Mol, G. C. L. Wong, J. M. Petit, F. Rieutord, and W. H. de Jeu, Phys. Rev. Lett. 79,

3439 (1997).

[23] E. A. L. Mol, Fluctuations in freely suspended smectic A films, PhD thesis, FOM Institute

AMOLF, Amsterdam, 1997.

[24] B. J. Berne and R. Pecora, Dynamic light scattering with applications to chemistry, biology and

physics, Dover Publications, Inc., 2000.

[25] B. Chu, Laser Light Scattering: Basic Principles and Practice, Academic Press, San Diego,

USA, 1991.

[26] G. Grübel and F. Zontone, J. Alloys and Compounds 362, 3 (2004).

[27] S. Dierker, NSLS Newsletter , July 1 (1995).

[28] G. Grübel and D. L. Abernathy, Proc. SPIE 3154, 103 (1997).

[29] O. Diat, T. Narayanan, D. L. Abernathy, and G. Grübel, Curr. Opin. Coll. Int. Sci. 3, 305

(1998).



BIBLIOGRAPHY 81

[30] D. L. Abernathy, G. Grübel, S. Brauer, I. McNulty, G. B. Stephenson, S. G. J. Mochrie, A. R.

Sandy, N. Mulders, and N. Sutton, J. Synchrotron Radiat. 5, 37 (1998).

[31] M. Itoh, Jpn. J. Appl. Phys. 38, 638 (1999).

[32] D. Lumma, L. B. Lurio, S. G. J. Mochrie, and M. Sutton, Rev. Sci. Instrum. 71, 3274 (2000).

[33] T. Seydel, A. Madsen, M. Sprung, M. Tolan, G. Grübel, and W. Press, Rev. Sci. Instrum. 74,

4033 (2003).

[34] M. Sutton, K. Laaziri, F. Livet, and F. Bley, Opt. Expr. 11, 2268 (2003).

[35] S. Brauer, G. B. Stephenson, M. Sutton, R. Bruning, E. Dufresne, S. G. J. Mochrie, G. Grübel,

J. Als-Nielsen, and D. L. Abernathy, Phys. Rev. Lett. 74, 2010 (1995).

[36] S. B. Dierker, R. Pindak, R. M. Fleming, I. K. Robinson, and L. Berman, Phys. Rev. Lett. 75,

449 (1995).

[37] F. Livet, F. Bley, R. Caudron, E. Geissler, D. Abernathy, C. Detlefs, G. Grübel, and M. Sut-

ton, Phys. Rev. E 63, 036108 (2001).

[38] L. M. Stadler, B. Sepiol, J. W. Kantelhardt, I. Zizak, G. Grübel, and G. Vogl, Phys. Rev. B

69, 224301 (2004).

[39] S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L.

Abernathy, and G. Grübel, Phys. Rev. Lett. 78, 1275 (1997).

[40] O. K. C. Tsui and S. G. J. Mochrie, Phys. Rev. E 57, 2030 (1998).

[41] T. Thurn-Albrecht, G. Meier, P. Müller-Buschbaum, A. Patkowski, W. Steffen, G. Grübel,

D. L. Abernathy, O. Diat, M. Winter, M. G. Koch, and M. T. Reetz, Phys. Rev. E 59, 642

(1999).

[42] L. B. Lurio, D. Lumma, A. R. Sandy, M. A. Borthwick, P. Falus, S. G. J. Mochrie, J. F.

Pelletier, M. Sutton, L. Regan, A. Malik, and G. B. Stephenson, Phys. Rev. Lett. 84, 785

(2000).

[43] D. O. Riese, W. L. Vos, G. H. Wegdam, F. J. Poelwijk, D. L. Abernathy, and G. Grübel, Phys.

Rev. E 61, 1676 (2000).

[44] G. Grübel, D. L. Abernathy, D. O. Riese, W. L. Vos, and G. H. Wegdam, J. Appl. Crystallogr.

33, 424 (2000).



82 BIBLIOGRAPHY

[45] D. Lumma, L. B. Lurio, M. A. Borthwick, P. Falus, and S. G. J. Mochrie, Phys. Rev. E 62,

8258 (2000).

[46] T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, Phys. Rev. B 63, 3409 (2001).

[47] J. Lal, D. L. Abernathy, L. Auvray, O. Diat, and G. Grübel, Euro. Phys. J. E 4, 263 (2001).

[48] M. Tolan, T. Seydel, A. Madsen, G. Grübel, W. Press, and S. K. Sinha, Appl. Surf. Sci. 182,

236 (2001).

[49] H. Kim, A. Rühm, L. B. Lurio, J. K. Basu, J. Lal, D. Lumma, S. G. J. Mochrie, and S. K.

Sinha, Phys. Rev. Lett. 90, 068302 (2003).

[50] A. Madsen, J. Als-Nielsen, and G. Grübel, Phys. Rev. Lett. 90, 085701 (2003).

[51] S. G. J. Mochrie, L. B. Lurio, A. Rühm, D. Lumma, M. Borthwick, P. Falus, H. J. Kim, J. K.

Basu, J. Lal, and S. K. Sinha, Physica B 336, 173 (2003).

[52] A. Madsen, B. Struth, and G. Grübel, Physica B 336, 216 (2003).

[53] A. Madsen, T. Seydel, M. Sprung, C. Gutt, M. Tolan, and G. Grübel, Phys. Rev. Lett. 92,

096104 (2004).

[54] H. Y. Kim, A. Ruhm, L. B. Lurio, J. K. Basu, J. Lal, S. G. J. Mochrie, and S. K. Sinha, Mat.

Sci Eng. C 24, 11 (2004).

[55] S. K. Sinha, Radiat. Phys. Chem. 70, 633 (2004).

[56] A. C. Price, L. B. Sorensen, S. D. Kevan, J. Toner, A. Poniewierski, and R. Hołyst, Phys.

Rev. Lett. 82, 755 (1999).

[57] A. Fera, I. P. Dolbnya, G. Grübel, H. G. Muller, B. I. Ostrovskii, A. N. Shalaginov, and W. H.

de Jeu, Phys. Rev. Lett. 85, 2316 (2000).

[58] I. Sikharulidze, I. P. Dolbnya, A. Fera, A. Madsen, B. I. Ostrovskii, and W. H. de Jeu, Phys.

Rev. Lett. 88, 115503 (2002).

[59] I. Sikharulidze, B. Farago, I. Dolbnya, A. Madsen, and W. H. de Jeu, Phys. Rev. Lett. 91,

165504 (2003).

[60] A. Böttger and J. G. H. Joosten, Europhys. Lett. 4, 1297 (1987).

[61] F. Nallet, D. Roux, and J. Prost, J. Phys. (Paris) 50, 3147 (1989).



BIBLIOGRAPHY 83

[62] J. C. Earnshaw, Appl. Opt. 36, 7583 (1997).

[63] C. D. Cantrell, Phys. Rev. A 1, 672 (1970).

[64] W. H. de Jeu, A. Madsen, I. Sikharulidze, and S. Sprunt, Physica B 355, in press (2005).

[65] C. Gutt, T. Ghaderi, V. Chamard, A. Madsen, T. Seydel, M. Tolan, M. Sprung, G. Grübel,

and S. K. Sinha, Phys. Rev. Lett. 91, 076104 (2003).

[66] D. Langevin, editor, Light Scattering by Liquid Surfaces and Complementary Techniques, New

York, Dekker, 1992.

[67] S. K. Sinha, M. Tolan, and A. Gibaud, Phys. Rev. B 57, 2740 (1998).

[68] D. Sentenac, A. Shalaginov, A. Fera, and W. H. de Jeu, J. Appl. Cryst. 33, 130 (2000).

[69] B. Lengler, Naturwissenschaften 88, 249 (2001).

[70] F. Mezei, Z. Phys. 255, 146 (1972).

[71] F. Mezei, Fundamental of neutron spin echo spectroscopy, in Neutron spin echo spectroscopy.

Basics, trends and applications, volume 601 of Lecture Notes in Physics, Springer, 2003.

[72] A. Fera, Ordering and fluctuations in smectic membranes, PhD thesis, FOM Institute AMOLF,

Amsterdam, 2001.

[73] The deuteration (97%) was carried out by H. Zimmerman, Max-Planck Institut für Medi-

zinische Forschung, Heidelberg, Germany.

[74] I. Sikharulidze, I. P. Dolbnya, A. Madsen, and W. H. de Jeu, Optics Commun. 245, in press

(2005).

[75] C. Rosenblatt and N. Amer, Appl. Phys. Lett. 36, 432 (1980).

[76] I. Kraus, P. Pieranski, E. Demikhov, H. Stegemeyer, and J. Goodby, Phys. Rev. Lett. 48,

1916 (1993).

[77] T. Thurn-Albrecht, F. Zontone, G. Grübel, W. Steffen, P. Muller-Buschbaum, and

A. Patkowski, Phys. Rev. E 68, 031407 (2003).

[78] A. Q. R. Baron, Hyperfine Interactions 125, 29 (2000).

[79] J. C. Géminard, C. Laroche, and P. Oswald, Phys. Rev. E 58, 5923 (1998).



84 BIBLIOGRAPHY

[80] A. Zywocinski, F. Picano, P. Oswald, and J. C. Géminard, Phys. Rev. E 62, 8133 (2000).

[81] B. Farago, Physica B 268, 270 (1999).

[82] F. Kohlrausch, Pogg. Ann. Phys. 119, 352 (1863).

[83] G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).

[84] A. Arbe, J. Colmenero, M. Monkenbusch, and D. Richter, Phys. Rev. Lett. 81, 590 (1998).

[85] A. N. Shalaginov and V. P. Romanov, Phys. Rev. E 48, 1073 (1993).

[86] A. Y. Valkov, V. P. Romanov, and A. N. Shalaginov, Sov. Phys.−Usp. 37, 139 (1994).

[87] A. Poniewierski, R. Hołyst, A. C. Price, L. B. Sorensen, S. D. Kevan, and J. Toner, Phys.

Rev. E 58, 2027 (1998).

[88] H.-Y. Chen and D. Jasnow, Phys. Rev. E 61, 493 (2000).

[89] L. V. Mirantsev, Phys. Rev. E 62, 647 (2000).

[90] A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E 62, 699 (2000).

[91] V. P. Romanov and S. V. Ul’yanov, Phys. Rev. E 63, 031706 (2001).

[92] S. V. Ul’yanov, Phys. Rev. E 65, 021706 (2002).

[93] S. Mora and J. Daillant, Eur. Phys. J. B 27, 417 (2002).

[94] V. P. Romanov and S. V. Ul’yanov, Sov. Phys.−Usp. 46, 915 (2003).

[95] I. A. Vartanyants and I. K. Robinson, Opt. Commun. 222, 29 (2003).

[96] M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1964.

[97] W. Leitenberger, H. Wendrock, L. Bischoff, T. Panzner, U. Pietsch, J. Grenzer, and

A. Pucher, Physica B 336, 63 (2003).



Summary

This thesis describes x-ray photon correlation spectroscopy (XPCS) and neutron spin echo

(NSE) measurements of fluctuations in smectic A (SmA) liquid crystal membranes. XPCS is

a classic dynamic light scattering technique extended into the x-ray domain, which opens the

possibility to investigate dynamics at molecular length scales. Using a spatially coherent x-

ray source available these days at third-generation synchrotrons, the time dependence of the

scattered intensity is observed. In XPCS experiments spatially coherent x rays are used while

working with a single coherence volume. The scattered intensity changes parallel to the posi-

tions of the scatterers in the coherence volume. Constructing the intensity-intensity time corre-

lation function one can extract the relaxation times of the fluctuations in the system. We have

extended this technique into the sub-microsecond range, approaching the limit of 2.8 ns deter-

mined by the bunch structure of the current in the storage ring of the synchrotron. This allows

a comparision with NSE spectroscopy which covers times up to about 100 ns.

Smectic liquid crystal membranes are highly uniformly ordered, strongly fluctuating and

scattering systems that constitute excellent models of low-dimensional ordering. SmA liquid

crystal membranes consist of stacks of liquid layers of elongated molecules (no positional or-

dering within the layers). Consequently, one-dimensional ordering exists along the normal to

the layers. Thermal fluctuations in such a system increase with the sample size and eventually

destroy the ordering (Landau-Peierls instability). Nevertheless, SmA membranes can be pre-

pared with thicknesses ranging from two to several thousand layers, because the divergence

of the fluctuations is weak (logarithmic). We have studied three SmA liquid crystals: 4-octyl-

4’-cyanobiphenyl (8CB), N-(4-n-butoxybenzilidene)-4-n-octylaniline (4O.8) and 4-heptyl-2-[4-

(2-perfluorhexylethyl)phenyl]-pyrimidin (FPP). 8CB differs from the other two by a strongly
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polar end group, 4O.8 is characterized by fast equilibration, and FPP membranes are specific

because of the presence of fluorine, leading to strong scattering and a low surface tension.

The relaxation behaviour in smectic membranes can be divided into three regimes, char-

acterized by oscillatory relaxation, surface dominated and bulk-elasticity dominated exponen-

tial relaxation, respectively. The determining quantity is the largest wavelength from the full

spectrum of fluctuations that contributes to the specific situation. Oscillatory relaxations are

observed at specular positions for long-wavelength fluctuations. A transition from oscillatory

to exponential relaxation is determined by a crossover wave vector qc. Only fluctuations with

wave vectors qmn > qc show exponential relaxation, which is in first instance surface dom-

inated. The relaxation time in this regime depends on membrane thickness, surface tension

and viscosity and does not depend on bulk smectic elastic parameters. Hence, for surface-

dominated relaxation the membrane behaves like a liquid film. For larger wave vectors (shorter

wavelengths) the relaxation time becomes dependent on the elastic moduli of the membrane

while the dependence on membrane thickness and surface tension disappears. In this bulk-

elasticity dominated regime the fluctuation pattern is defined exclusively by the bulk smectic

elasticity of the membrane. The relaxation time now decreases as 1/q2mn with the wave vector

of the fluctuation.

Using XPCS at the Bragg position we observed in thin 4O.8 and 8CB membranes oscillatory

relaxations, and in thicker membranes simple exponential relaxation. In contrast, in FPP sam-

ples at the first Bragg reflection only oscillatory relaxations were seen. Only by going to the

second-order peak we found in FPP exponential relaxation. This can be understood as follows.

The finite resolution of the x-ray setup and the size of the coherence volume create a ’window’

of wave vectors defining the experimental results. The position of the crossover wave vector

qc in this window determines whether oscillatory or exponential relaxation is observed. As

qc decreases with the thickness of the membrane as 1/
√
L, in thin membranes the wave vec-

tor ’window’ is dominated by fluctuations exhibiting oscillatory relaxations, while in thicker

samples exponential relaxation prevails. For off-specular scattering geometries only single fluc-

tuations were probed with a wave vector defined by the rocking angle of the sample. For XPCS,

which allows only relatively small offset angles because of intensity considerations, only the

surface-dominated exponential relaxation regime was accessed. Scattering at far off-specular

angles was possible with NSE revealing the 1/q2mn decay of the relaxation time characteristic

for the bulk-elasticity regime.
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The role of the coherence volume in determining the ’window’ of detected fluctuations was

demonstrated in a series of measurements at the different specular scattering angles and for

different settings of the detector slits. The results indicate that the relaxation shifts towards

larger times for smaller scattering angles, because of the larger coherence volume due to the in-

creased projection of the beam on the membrane surface. Variation of the setting of the detector

slits resulted, apart from changes in contrast, also in small shifts of the relaxation times. Finally,

XPCS measurements at various off-specular positions close to the specular ridge indicate that

the form of the correlation function changes abruptly. Close to specular reflection the finite

resolution of the x-ray set-up catches the elastic specular component related to the equilibrium

structure of the membrane. This signal acts as a ’natural’ reference signal in addition to the

fluctuating part, leading to mixing in a heterodyne detection scheme. In the diffuse tails of a

rocking curve this reference signal is absent leading to homodyne detection.





Samenvatting

In dit proefschrift wordt het fluctuatiegedrag van smectische A (SmA) vloeibaar kristallijne

membranen onderzocht met behulp van X-ray Photon Correlation Spectroscopy (XPCS) en Neu-

tron Spin Echo (NSE) experimenten. XPCS is een klassieke dynamische lichtverstrooiingstech-

niek waarbij de tijdsafhankelijkheid van de verstrooide intensiteit wordt geregistreerd, uitge-

breid naar het gebied van de röntgenstraling. Dit maakt het mogelijk om dynamische eigen-

schappen van de materie op het moleculaire niveau te onderzoeken. Een en ander vereist een

bron van coherente röntgenstraling, tegenwoordig beschikbaar bij synchrotrons van de derde

generatie. In XPCS experimenten wordt de verstrooiing aan één coherente deelvolume in het

preparaat gemeten. De verstrooide intensiteit verandert met de posities van de verstrooiende

objecten binnen het coherente volume in het preparaat. Berekening van de correlatiefunctie

van de intensiteiten in het tijdsdomein geeft de karakteristieke relaxatietijd van de fluctuaties.

We hebben deze techniek uitgereid tot het submicroseconde gebied, tot dicht bij de limiet van

2.8 ns welke bepaald wordt door de gepulste structuur van de stroom in het synchrotron. Dit

maakt overlap mogelijk met NSE methoden die een tijdschaal tot ongeveer100 ns bestrijken.

Smectische vloeibaar kristallijne membranen zijn uniforme, geordende, sterk fluctuerende

en verstrooiende systemen die een excellent model vormen voor de bestudering van laag-

dimensionale ordening. SmA membranen bestaan uit een stapeling van vloeibare lagen van

langgerekte moleculen (geen ordening van de posities in de lagen). Kenmerkend is dus één-

dimensionale ordening van de moleculen in de richting loodrecht op het oppervlak. In een

dergelijk systeem nemen de thermische fluctuaties toe met de grootte van het preparaat, waar-

door ze uiteindelijk de ordening te niet doen (Landau-Peierls instabiliteit). Toch is het mogelijk

stabiele SmA membranen te maken met een dikte van twee tot enkele duizenden lagen, omdat
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de divergentie van fluctuaties langzaam verloopt (logaritmisch). We hebben een drietal SmA

vloeibare kristallen onderzocht: 4-octyl-4’-cyanobiphenyl (8CB), N-(4-n-butoxybenzilidene)-4-

n-octylaniline (4O.8) en 4-heptyl-2-[4-(2-perfluorhexylethyl)phenyl]-pyrimidin (FPP). 8CB on-

derscheid zich door een sterk polaire eindgroep, 4O.8 membranen bereiken snel een stabiel

evenwicht, terwijl de aanwezigheid van fluor in FPP leidt tot sterke röntgenverstrooiing en

een lage oppervlaktespanning.

Het relaxatiegedrag van SmA membranen kan in drie regimes verdeeld worden, geken-

merkt door (1) oscillerende relaxatie, en daarnaast exponentieel verlopende relaxatie gedom-

ineerd door (2) de oppervlaktespanning en (3) door het bulk elastisch gedrag. De beslis-

sende parameter is de grootste golflengte uit het volledige spectrum van fluctuaties die in een

bepaalde situatie bijdraagt tot de verstrooiing. Oscillerende relaxaties worden geregistreerd

voor speculaire posities en fluctuaties met een grote golflengte. De overgang van oscillerende

relaxaties naar het exponentiele regime wordt bepaald door de een golfvector qc. Alleen fluc-

tuaties met een golfvector qmn > qc leiden tot exponentiele relaxatie. In eerste instantie hangt

de relaxatietijd in dit regime af van de dikte, de oppervlaktespanning en de viscositeit van het

membraan en is onafhankelijk van de smectische elasticiteit. Het smectische membraan kan

in dit geval dus als een conventioneel vloeibaar membraan beschouwd worden. Voor grotere

golfvectoren (kleinere golflengtes) wordt de relaxatietijd in toenemende mate afhankelijk van

de elastische moduli van het membraan. De afhankelijkheid van de dikte en de oppervlaktes-

panning verdwijnen. Uiteindelijk wordt de relaxatie volledig gedomineerd door de smectische

volume-elasticiteit. In dit regime varieert de relaxatietijd volgens 1/q2mn met de bepalende

golfvector qmn van de fluctuatie.

XPCS experimenten op de Bragg positie geven in dunne 4O.8 en 8CB membranen os-

cillerende en in dikkere membranen exponentiële relaxaties aan. FPP preparaten tonen voor de

eerste Bragg reflectie alleen oscillerende relaxaties, maar voor de tweede Bragg piek wordt ex-

ponentiële relaxatie gevonden. Deze resultaten kunnen op de volgende wijze kunnen worden

geïnterpreteerd. Het oplossend vermogen van de röntgenapparatuur enerzijds en de grootte

van het coherente volume anderzijds, creëren samen een ’venster’ van toegestane golfvectoren

welke het resultaat van de XPCS metingen bepalen. Het oscillerende of exponentiele karakter

van de relaxatie hangt af van the positie van qc binnen dit ’venster’. Voor membranen met

toenemende dikte L neemt qc af volgens 1
√
L. Binnen het ’venster’ worden dan fluctuaties

met een exponentiële relaxatie dominant. Voor dunnere membranen neemt de bijdrage van

de oscillerende fluctuaties toe, omdat qc groter wordt en daardoor binnen het ’venster’ kortere
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golflengtes domineren. Door te meten bij niet-speculaire verstrooiingshoeken kan de grootste

golfvector die gemeten wordt gecontroleerd worden. In deze situatie is de relaxatie van opper-

vlakte gedomineerde fluctuaties gemeten. Verstrooiing bij grotere niet-speculare hoeken kon

gemeten worden met NSE, waarbij de 1/q2mn afhankelijkheid van de relaxatietijd is gevonden

welke karakteristiek is voor het elastische gedomineerde regime.

De rol van coherente gebieden binnen de definitie van het ’venster’ is geïllustreerd door

metingen bij verschillende speculare posities en met verschillende openingshoeken van de de-

tector. De relaxatie bij kleinere verstrooiingshoeken verschuift naar langere tijden, in overeen-

stemming met een groter coherent volume vanwege de grotere projectie van de invallende

röntgenbundel op het membraanoppervlak. Veranderingen van de openingshoek van de de-

tector leiden naast een variatie in contrast ook tot kleine verschuivingen van de relaxatie profie-

len. Ten slotte tonen XPCS metingen rondom de speculaire Bragg positie een verandering in de

vorm van de correlatie functie. Vanwege het eindige oplossend vermogen van het instrument

wordt dicht bij de speculaire positie een sterk elastische signaal gedetecteerd. Deze compo-

nent wordt bepaald door evenwichtstructuur van het smectische membraan en speelt een rol

als ’intrinsiek’ referentie signaal dat mengt met de fluctuerende intensiteit in een heterodyne

detectieschema. Bij grotere niet-speculaire hoeken is dit signaal afwezig hetgeen resulteert in

homodyne detectie.
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