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Abstract High-resolution Fourier transform ion cyclotron
resonance (FT-ICR) mass spectrometry imaging enables
the spatial mapping and identification of biomolecules
from complex surfaces. The need for long time-domain
transients, and thus large raw file sizes, results in a large
amount of raw data (“big data”) that must be processed
efficiently and rapidly. This can be compounded by large-
area imaging and/or high spatial resolution imaging. For
FT-ICR, data processing and data reduction must not
compromise the high mass resolution afforded by the
mass spectrometer. The continuous mode “Mosaic
Datacube” approach allows high mass resolution visuali-
zation (0.001 Da) of mass spectrometry imaging data, but
requires additional processing as compared to feature-
based processing. We describe the use of distributed com-
puting for processing of FT-ICR MS imaging datasets
with generation of continuous mode Mosaic Datacubes
for high mass resolution visualization. An eight-fold im-
provement in processing time is demonstrated using a
Dutch nationally available cloud service.
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Introduction

Mass spectrometry imaging (MSI) enables high-
specificity spatial mapping of biomolecules from com-
plex surfaces [1, 2]. Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR MS) [3] provides
the highest mass measurement accuracy (lowest mass
error) and mass resolving power for MSI experiments.
The high mass accuracy allows confident identification
of molecules by just their mass-to-charge ratio (m/z) and
the high mass resolving power resolves many closely
spaced ions that cannot be resolved on lower perfor-
mance mass spectrometers. FT-ICR MS requires long
time-domain data to be collected for ultimate analytical
performance, which can result in large datasets that must
be processed efficiently and quickly. This problem is
compounded when high spatial resolution is used and/
or when large samples are analyzed (i.e., a large number
of mass spectra/pixels), where raw data sizes can easily
range from 10 to 100 GB per MSI experiment.

One solution is to process the raw data to mass spectral data
on-the-fly, which is common on commercial MSI platforms
(e.g., Bruker flexImaging and Thermo Fisher RAW files).
This eliminates the need for data post-processing but also
limits parameter selection. Such parameters include
apodization functions, number of zero-fills, baseline correc-
tion, spectral normalization, mass recalibration, peak-picking
algorithms (for feature-based analysis) [4] and m/z bin width
for continuous mode data formats (e.g., BioMap and the
AMOLF Datacube Explorer [5]). Unlike feature-based
methods, where the raw data is peak picked and peaks are

@ Springer


http://dx.doi.org/10.1007/s00216-014-8210-0

D.F. Smith et al.

stored simply as m/z and intensity, the continuous mode
retains the mass spectral character of the dataset in discrete
mass window bins. For example, at m/z 800, if a mass bin
width of 0.001 Da is chosen, all spectral intensity data from
800 to 800.001 will be summed together and represented as a
data point at 800.001 Da. The generation of such high mass
resolution continuous mode datasets requires additional
processing as compared to feature-based methods, thus
more time is needed to produce these large datasets. We
have recently shown that the continuous mode data format
requires bin sizes of 0.00075-0.001m/z in order to faith-
fully reflect the complexity of biological tissue samples,
as well as retain the high mass resolving power inherent
to the FT-ICR experiment [6, 7]. Further, phase correction
of FT-ICR MS data requires the raw time-domain tran-
sient [7-9], which can also add additional time to the data
processing pipeline.

Distributed computing is one approach to deal with the
“big data” challenge associated with large FT-ICR MS imag-
ing datasets. Such approaches are already used to deal with the
large amounts of data generated from modern day mass
spectrometry-based proteomics [10]. One example, that em-
ploys the same cloud service used in this manuscript, used a
parallel approach for identification of tandem mass spectra
using data decomposition and resulted in a 36-fold improve-
ment over a four-core local machine [11]. For MSI, the
OpenMSI project uses supercomputing resources at National
Energy Research Scientific Computing Center to improve
data management, storage, visualization, and statistical analy-
sis by way of a web-based platform [12]. Jones et al. have
reported up to 13-fold improvement in data processing speeds
for multivariate analysis of MSI datasets by means of graph-
ical processing units (GPU) [13]. Further, many cloud-based
services exist for processing and analysis of mass spectrome-
try data (proteomics and metabolomics), which includes those
based on the Galaxy Platform [14—17], such as Galaxy-P
(https://usegalaxyp.org/. Accessed July 27, 2014),
NBICGalaxy@Cloud (http://galaxy.nbic.nl/. Accessed July
27,2014), and Galaxy WUR (http://galaxy.wur.nl/. Accessed
July 27, 2014), and Taverna-based workflows [11, 18, 19].
Further, peptide search engines for bottom-up proteomics
have been parallelized, such as X!Tandem on a Linux cluster
[20] and using Amazon Web Services [21], as well as Hydra
on a Hadoop environment [22] and SpectraST using graphical
processing units [23]. However, none of these services have
provisions for MSI data or continuous mode data generation.

In this manuscript, we describe distributed computing ap-
proaches for processing of FT-ICR MS imaging data for the
generation of continuous mode “Mosaic Datacubes” for high
mass resolution visualization. The AMOLF developed MSI
data processing software “Chameleon” was deployed on a
“self-service” cloud infrastructure and on a desktop personal
computer. The architecture is easily scalable and is based on
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Microsoft Windows for compatibility with existing software
tools. An eight-fold improvement in processing speed is dem-
onstrated for a FT-ICR MS imaging experiment of a rat heart,
over a local desktop personal computer (PC) running a single
processing instance.

Experimental
Samples and mass spectrometry

Rat heart from adult rats (type WU) was sectioned on a
cryomicrotome (Microm International, Waldorf, Germany)
to 12 um thick and thaw-mounted on an indium-tin-oxide
coated glass slide (ITO, 4-8 2 resistance; Delta Technologies,
Stillwater, MN). The heart section was coated with a 20 mg/
mL solution of 2,5-dihydroxybenzoic acid (DHB; 1:1
methanol/water (0.2 % trifluoroacetic acid)) with a Bruker
ImagePrep. Mass spectrometry imaging experiments were
performed with a solariX FT-ICR MS equipped with a 15-T
super-conducting magnet (Bruker Daltonics, Billerica, MA).
The laser was operated at 200 Hz and 60 laser shots were
accumulated per pixel at a raster step size of 150 um, for a
total of 8531 pixels (mass spectra). The raw data was 67 GB
and was compressed (ZIP file format) to a size of 25 GB.
Time-domain transients of 2.3 s were collected for a Fourier
limited mass resolving power, m/Amisg.,=330,000 at m/z 800,
where Amsgo, is the magnitude-mode peak width at half-
maximum peak height. Figure S1 in the Electronic Supple-
mentary Material (ESM) shows an example of the MSI data
acquired from the rat heart, with overlay of three ion selected
images.

Desktop computer processing

A desktop workstation with Windows 7 Enterprise was used
for comparison with cloud computing results. The computer
has an Intel® Core™ i7-2600 K processor (4 CPU @
3.4 GHz) and 16 GB RAM. A batch file was created to run
multiple instances of Chameleon simultaneously, each with a
designated set of spectra for processing. The local hard drive
was used for data read/write.

Cloud architecture

The SURFsara high-performance computing (HPC) cloud
(https://www.surfsara.nl/systems/hpc-cloud. Accessed March
7, 2014), run on OpenNebula middleware (http://www.
opennebula.org. Accessed March 7, 2014) was used. A
Microsoft Windows-based cloud environment was developed
for flexible implementation of existing mass spectrometry
imaging data processing software. A schematic representation
of the cloud architecture is shown in Fig. 1. The head node
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runs on Windows Server 2012 (64 bit, 4 CPU, 64 GB RAM)
and is a dedicated, persistent system that serves as the user
gateway and administrative hub. The system is accessed over
a secure internet connection by way of Windows Remote
Desktop or a Virtual Network Computing (VNC) connection
from the SURFsara OpenNebula web interface. In the present
work, the compressed raw data (25 GB total) was uploaded to
the cloud via Windows Remote Desktop over a 1-Gb/s net-
work connection at a speed of ~160 Mb/s (approximately
20 min to transfer). Following the experiments presented
herein, a File Transfer Protocol connection has been imple-
mented, as well as a 10-Gb/s network connection to the
SURFsara location for improved upload and download speed.

The worker nodes are non-persistent systems that run on
Windows Core Server 2008 R2 (64 bit) and each worker has
four CPU cores with 32 GB RAM (both 2.13 GHz Intel®
Xeon® E7 “Westmere-EX” and 2.70 GHz Intel® Xeon® CPU
E5-4650 CPUs are available and are assigned as available).
Worker nodes can be accessed by Windows Remote Desktop
from the head node or a VNC connection from the SURFsara
OpenNebula web interface. The architecture shares 500 GB of
hard drive space and the head node has a 55-GB capacity
RAM disk. Initial tests that wrote output data to the shared
storage resulted in slower than expected processing times.
However, writing to the RAM disk significantly reduced
processing times, which suggests the write procedure contains
a large overhead in the overall processing scheme. Thus, all
processing runs reported herein use the RAM disk for data
output write and the raw data for processing is located on the
shared storage.

The SURFsara HPC cloud uses the ToPoS token pool
(token pool server) as a pilot job server for administra-
tion of token (job) requests and status (https://grid.sara.
nl/wiki/index.php/Using_the Grid/ToPoS. Accessed
March 7, 2014). The head node and worker nodes run
programs to administer and check for new jobs from the
token pool, respectively. A front-end program was devel-
oped (with graphical user interface, GUI) for submission
of cloud processing runs and definition of all pertinent
cloud parameters (see ESM, Fig. S2). This includes job
name and description, number of worker nodes, number
of processes per worker-node, total number of tokens
(tasks) and token lock time (time until the task is re-
submitted). The GUI also displays a list of jobs with
progress monitor, which can be used to stop running
jobs. The program also sends an electronic mail, with
time-stamp, to a designated recipient that indicates when
a job has been queued, has started running, and has
finished. In addition to cloud processing parameters, the
front-end program also contains inputs to define the data
processing in the in-house-developed Chameleon soft-
ware package. This includes the path to the Chameleon
executable, the path to an XML script file that defines all
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Fig. 1 Schematic of the HPC cloud environment. A head node controls
administrative tasks and serves as the user gateway to the cloud. Worker
nodes perform the data processing and the number of workers is easily
scaled to fit processing demands

processing parameters, and optional wildcard processing
parameters (that take priority over those in the XML
script file).

Data processing and analysis

The AMOLF developed Chameleon software package
[24] was used for data processing, using a workflow
similar to that described previously [6]. For cloud pro-
cessing runs, all processing steps were done on the
cloud environment. Briefly, the raw time-domain tran-
sient is read into Chameleon, apodized using an expo-
nential function, and zero filled once before Fast Fourier
transformation [25]. The spectra were converted from
the frequency to mass domain by the method described
by Francl et al. [26]. Two mass spectral peak-picking
strategies were tested, a signal-to-noise (S/N) baseline
peak picker and a set threshold peak picker, where both
methods use a three-point apex peak-picking algorithm.
The baseline peak-picking algorithm scans the local
baseline over a window of 0.2 Da and saves any peaks
with abundance greater than or equal to five times the
standard deviation of the noise level inside that window
(i.e., a S/N>5). For threshold peak picking, a threshold
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that corresponds to five times the standard deviation of
the baseline noise at m/z 800 was used (S/N>5; m/z 800
is approximately the center of the lipid mass distribution
observed), where any peak with abundance over that
value was saved as a peak. Peaklists were saved in
XML format.

In addition to peak picking, a high mass resolution Mosaic
Datacube was created. The datacube data format uses three
dimensions to store and visualize two-dimensional MSI data.
The first two dimensions are the X and Y coordinates from the
imaging experiment and the third dimension is the m/z dimen-
sion which stores the mass spectral abundance data over a
desired mass bin width (here, this abundance value is stored as
a 32-bit float). A mass bin width of 0.001 Da was used to
facilitate high mass resolution visualization of the datatset.
The resultant dataset is large; a mass range of m/z 550-2,000
(1,450 Da), a mass bin of 0.001 Da, 8,531 pixels, and abun-
dance values stored as 32-bit float results in an expected
datacube size of 49.6 gigabytes (GB), as given by:

1450 D 1000 points 4 b
a OIS ytes x 8,531 spectra
Spectrum 1 Da point
=49.5GB (1)

The Mosaic Datacube architecture has been developed to
ease memory demands of such a large dataset. The dataset is
split into a matrix of adjacent datacubes, which when com-
bined represent the entire dataset. Here, the dataset was split
into a pre-determined set of 60 individual datacubes, though
this set of datacubes could be calculated at the beginning of
the processing run based on the number of pixels, the area of
interest, and the mass range of interest. Any volume of inter-
est, consisting of a mass range of interest and/or a spatial area
of interest, can then be called on-demand from the in-house-
developed Datacube Explorer software [5]. The generation of
these Mosaic Datacubes takes additional processing time, as
compared to peak-picking only (see “Results and discussion”
and Table 1), due to additional storage of the three-
dimensional arrays in memory and the writing of these arrays
to data files. However, since each cube is independent, they
can be created in parallel, which yields a decrease in process-
ing time, as discussed below.

Datacube Explorer [5, 27] was used for visualization of the
Mosaic Datacubes and in-house-developed Matlab routines
(MATLAB version 7.13.0.564 (64 bit), Mathworks, Natick,
MA) were used for analysis of peaklists [6]. Unless noted
otherwise, cloud processing runs had 65 tokens (tasks) with a
lock time of 1,200 s each (25 min) and a Mosaic Datacube that
divided that data into 60 cubes (60 cubes vertically that span
the entire horizontal pixel range). Triplicate processing runs
were done while varying the number of parallel Chameleon

@ Springer

instances (each with five Chameleon instances per worker
node). For desktop PC processing, three different Mosaic
Datacube structures were tested; totaling 64, 100, and 225
individual cubes, all in triplicate.

Results and discussion

The AMOLF FT-ICR MS imaging data processing pipeline
produces a continuous data format (Mosaic Datacube) and
feature-based data (i.e., peak picked). The Mosaic Datacube
continuous format allows high mass resolution exploration of
datasets, whereas the feature-based approach enables multi-
variate data analysis (e.g., principal component analysis) and
reduces the data load [4]. Table 1 shows the data-processing
times of different processing approaches in the HPC cloud
environment. All runs were performed in triplicate with 5
worker nodes, each with 5 instances of Chameleon running
simultaneously (25 total parallel instances). Generation of a
Mosaic Datacube (0.001 Da mass bin size) with S/N baseline
peak picking (of each spectrum) results in an average process-
ing time of 50.3 min. The Mosaic Datacube alone takes
39.7 min and S/N baseline peak picking alone takes
32.9 min. This suggests the creation and writing of the Mosaic
Datacube is more time-intensive than the S/N baseline peak-
picking algorithm and writing of the XML peak lists.

A reduction of processing time is observed when the S/N
baseline peak picker is replaced with a simple signal magni-
tude threshold peak-picking algorithm, from 50.3 to 42.5 min.
This reflects the time required for the calculation of local
baseline noise in the S/N peak picker. When only peak pick-
ing, the processing time is again reduced, from 32.9 min for
the S/N baseline peak picking to just 20.2 min for the threshold
peak picking (an average of 7 mass spectra processed per
second). However, the reduction in processing time is accom-
panied by an increase in the number of potential noise peaks in
the peak lists. This is observed in the output dataload of the
threshold peak picking versus the baseline S/N peak picking,
where an increase from 0.42 to 1.13 GB is observed. This is
due to a non-uniform baseline, where the noise level is higher
at higher m/z, which results in unwanted (potential) noise
peaks to be chosen by the threshold peak-picking algorithm
(see ESM, Fig. S3 for an example from a single mass spec-
trum) [4]. The other consequence of the non-uniform baseline
on threshold peak picking is the loss of peaks at low m/z that
have intensity lower than the set threshold. For these reasons,
and that the S/N baseline peak picker represents a more
compute intensive operation, all further processing runs de-
scribed in this manuscript produced a Mosaic Datacube and
used a S/N baseline peak picker.

The worker nodes are capable of running six simultaneous
instances of the Chameleon software. Errors occur if greater
than six Chameleon instances are run on a single worker node,
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Table1 Comparison of average processing time, output dataload and number of files based on data processing parameters for cloud-based processing of

a MALDI FT-ICR MS imaging experiment of a rat heart

Average processing time (min) Output dataload (GB) Number of files
Datacube, baseline peak picking® 50.3 472 8638
Datacube only 39.7 46.8 107
Baseline peak-picking only 329 0.42 8532
Datacube, threshold peak picking 425 479 8638
Threshold peak-picking only 20.2 1.13 8532

The number of parallel Chameleon instances was fixed at 25 (5 worker nodes, each running 5 Chameleon instances)

 The parameters used throughout this manuscript

where the ToPoS token system fails. Thus, a conservative
maximum value of five Chameleon instances per worker node
was chosen for all cloud processing tests. The number of
worker nodes was increased from one to six to determine the
dependence of processing time on the number of Chameleon
instances running in parallel. Figure 2 shows the data-
processing time as a function of Chameleon instances. Pro-
cessing runs were done in triplicate and the percent relative
standard deviation of the run times varies from 3.8 to 17.5 %.
The processing time decreases on an exponential curve as the
number of Chameleon instances is increased (R*=0.9953), as
expected. There is deviation from the theoretical exponential
decay function (as calculated from the processing time using
on a single Chameleon instance) that can be due to read/write
issues over the internal network and/or the overhead required
by the ToPoS token pool to assign tasks to the workers. The
processing time begins to level off around ~25 Chameleon
instances, with a processing time of ~50 min. The shortest
processing time achieved with these tests was 41.4 min (30
parallel Chameleon instances), which is a 24-fold increase
over the (average) processing time with a single Chameleon
instance.

The same dataset was also processed on a desktop PC,
where multiple instances of Chameleon were run at the same
time, each with an equal number of mass spectra to process.
The inset in Fig. 2 shows this in detail, where the number of
Chameleon instances was increased for three different Mosaic
Datacube configurations. The RAM demands of the processing
are apparent, where the PC can only run a maximum of four
Chameleon instances for a Mosaic Datacube with a total of 64
cubes (8x8). The PC can run six simultaneous instances with a
Mosaic Datacube with 100 cubes (10x10) and eight instances
when the number of cubes is increased to 225 (15%15). As the
number of cubes in the Mosaic is increased, the size of indi-
vidual datacubes decreases and thus the amount of data that
must be stored in RAM (for each cube) is decreased, which
allows more instances of Chameleon to run simultaneously.
The overload to the RAM on this desktop is apparent by the
slight increase of the processing time at the end of each curve in
the inset of Fig. 2, where the processes have demanded more
RAM than is available and performance is degraded (likely due
to virtual memory swapping). Note that the PC used here has
half the RAM of the cloud worker nodes, thus more RAM
would ease memory demands. Under non-overload conditions,

. S 1200+
Fig. 2 Processing tlmg versus & Cloud Single Desktop PC
number of Chameleon instances 500+
for distributed computing by A Theoretical x 64 Cubes
means of cloud-based data 1000 & —~ 400 0100 Cubes
processing (blue) and on a single § ¥ 225 Cubes
PC (inset) of a MALDI FT-ICR . g 300-
MS imaging experiment of a rat 2 800 - ‘e
heart (8,531 spectra/pixels). The 5 o 200 ¥
output was a Mosaic Datacube k= £ ¥ X
with a m/z bin size of 0.001 and E 600 + ~ 100 * o 8
XML peaklists for each mass ()
spectrum E 400 0 T T T T 1
1% 0 2 4 6 8 10
Chameleon Instances
200 - i o ] y = 947.5x0911
K .
MR =g ° R? = 0.9953
L 2 4
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the processing time for this dataset can be improved by a factor
of 3.5 if a Mosaic of 225 cubes is created.

The processing time with a single Chameleon instance on
the desktop PC is 2.6 faster than with a single instance on the
cloud. Data read/write is most likely the main cause of this
difference, as well as a small contribution from the ToPoS
token system employed on the cloud. The desktop PC uses the
local hard disk for read/write, while the cloud reads the raw
data from the shared storage and writes the output data to the
RAM disk of the head node, both over the local network.
However, if only two worker nodes are used (each with 5
Chameleon instances, 10 total), the processing time is already
comparable to the desktop PC. Cloud processing with 30
parallel Chameleon instances is 8.2x faster than a single
instance on the four-core PC and 2.4x faster than the distrib-
uted processing on the four-core PC (7 parallel instances of
Chameleon). More importantly, Fig. 2 shows that four worker
nodes on the cloud (here, each with 5 Chameleon instances)
can process two datasets (of the same size) in the same amount
of time that the single desktop PC can process one dataset.
Herein lays the ultimate power of the cloud processing ap-
proach, where multiple different datasets can be processed
rapidly at the same time. Further, the ability to easily scale
the cloud based on processing demands eases desktop work-
station usage for extended data processing tasks.

Conclusions

The large amount of raw data associated with a FT-ICR MS
imaging experiment can present a challenge for rapid process-
ing. Distributed computing works well for these datasets; here,
it is shown that an eight-fold improvement in processing speed
is obtained when using a cloud-based architecture (over a
single instance on a desktop PC, although with less RAM).
The deployment of the cloud architecture on a “self-service”
system allows high flexibility for choice of operating system,
node configuration, and allows dynamic scaling of the system
based on processing needs. Data read and write were found to
be a limiting factor in the initial implementation of our system.
Current work is focused on the use of worker nodes with local
storage capability to eliminate the use of the RAM disk, fast
data transfer to and from the cloud, automated startup and shut
down of worker nodes, and inclusion of feature-based multi-
variate data analysis into the workflow. These improvements
should improve processing speeds further, which will allow
full exploitation of cloud resources for processing of FT-ICR
MS and other mass spectrometer data types.
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