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Circuit topology of self-interacting chains:
implications for folding and unfolding dynamics†

Andrew Mugler,abc Sander J. Tansc and Alireza Mashaghi*d

Understanding the relationship between molecular structure and folding is a central problem in

disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to

address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological

property because rearranging the contacts requires discontinuous deformations. Conversely, the topology

is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we

investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology

of contact arrangements. We formalize the topology by describing the relations between any two

contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each

other. We show that even when other determinants of folding rate such as contact order and size are

kept constant, this ‘circuit’ topology determines folding kinetics. In particular, we find that the folding rate

increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology

constrains the conformational phase space explored during folding and unfolding: the number of

forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease

with the fraction of series relations. Finally, we find that circuit topology influences whether distinct

intermediate states are present, with crossed contacts being the key factor. The approach presented here can

be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering,

and single-molecule biophysics.

1 Introduction

In mathematics, topology is the study of the properties of objects
that are preserved through continuous deformations of the
objects. A circle can be deformed into an ellipse by stretching,
which implies that they are topologically equivalent. Two closed
knots are topologically equivalent if they can be inter-converted by
any deformation that does not include tearing. Focusing on an
object’s topology greatly reduces the amount of information one
retains about its structure, since any property that can be con-
tinuously deformed, such as inter-object distances or geometric
shape, is explicitly ignored.

In biology, structure plays a pivotal role in determining
the functional properties of self-interacting molecular chains,

such as proteins and ribonucleic acids. Indeed, a chain’s structure,
in terms of its intra-molecular contacts, is particularly important in
determining the kinetics and pathways by which it folds and
unfolds. For example, long-range contacts as well as stabilizing
ones are known to guide folding of chains,1–4 and the number of
intra-molecular contacts is a key determinant of folding rates.5

Contact order, defined as the average separation distance along
the chain between contact sites, has also been shown to correlate
well with folding rate.6 Yet it remains unclear the extent to which
folding properties are determined by structural features that are
continuously deformable, such as inter-contact distances and
overall chain geometry, or by the underlying topology of the chain,
in the mathematical sense discussed above.

Defining the topology of self-interacting molecular chains in
a mathematical sense requires careful distinction between
continuous and discontinuous deformations. A large amount
of previous work has appealed to the notion of topology to
explore the properties of biomolecular chains. Some studies
have used the term topology to describe physical features of a
chain. This includes geometric properties, such as a chain’s
orientation with respect to surrounding structures7–9 or properties
of substructures within the chain,9–11 e.g. the relative orienta-
tion of beta-strands and alpha-helices in proteins. This also
includes distance-dependent properties, such as the set of all
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inter-contact distances.12–14 However, both geometry and dis-
tance are continuously deformable properties, and thus in this
study we employ an alternative definition of topology.15 Other
studies have defined the topology of a chain in the context of
knot theory,16–21 which classifies chains based on the type of
knots they form. However, knot theory generally ignores the
arrangement of intra-molecular contacts. Contact arrangement
is a topological property that we here need to include, since for
a chain in its folded state, rearrangement requires breaking and
reforming a contact, which is a discontinuous deformation.

Here we employ a mathematical definition of the topology of
self-interacting chains that takes into account the connectivity
established by intra-chain contacts.15 This definition is invariant
to inter-contact distances, is provably complete, and can be used
in a principled way to determine structural equivalence. Because
topology explicitly ignores contact details (e.g. their length and
chemical nature) and is invariant to inter-contact distances, we
can adopt a minimal model, which we then explore exhaustively.
In our model, a chain contains specific sites that can each form
a contact with one other site, leading to the formation of a fold
with a specific topology. For any two contacts, one can recognize,
by ignoring all other contacts, one of three possible arrangements,
namely parallel, series, or cross (Fig. 1). Given the analogies with
arrangements of electrical components in a circuit, we refer to this
type of topology as ‘‘circuit topology’’. By classifying all the pair-
wise relations between contacts within a particular fold, the circuit
topology of the fold is defined unambiguously.

Using this model, we study the effects of circuit topology on
function, focusing specifically on the implications for the con-
formational dynamics of chains during folding and unfolding.

Folding here is the sequential formation of contacts between two
sites on the chain, while unfolding is the sequential disruption of
contacts upon pulling the chain ends apart. We find that the
circuit topology (hereafter referred to simply as topology) imposes
fundamental constraints on the conformational search during
both folding and unfolding. Topology sets selection rules for
unfolding transitions, forbidding some transitions while permit-
ting others, with the number of forbidden transitions increasing
with the fraction of parallel relations and decreasing with the
fraction of series relations. We further show that topology is a
generic determinant of folding rate. In particular, we demon-
strate that the impact of topology goes beyond distance-based
measures like contact order, in the sense that two chains with the
same contact order but different topologies can have markedly
different folding rates. Indeed, folding rate increases with the
fractions of parallel and crossed contacts. Finally, we demon-
strate that topology is a key determinant of the number of
intermediate folding and unfolding states. The presence of
crossed contacts emerges as a necessary ingredient for observing
several distinct intermediate states.

2 Results
2.1 Defining topology

Our definition of topology15 is based on the realization that any
two pairs of contacts between sites on a chain must exist in one of
three arrangements: contacts are either (i) parallel to each other,
(ii) in series with each other, or (iii) crossed (Fig. 1A). Indeed,
even when describing chains in terms of inter-contact distances,
these three categories emerge naturally and unavoidably.22,23 This
categorization is complete, in the sense that even for molecular
chains with many contacts, every pair of contacts must be related
in one of these three ways.15 The relations between contact pairs
therefore completely specify the topology of any linear chain. The
topology is shown in matrix form in Fig. 1B. Any two chains with
the same topology matrix are topologically equivalent. Importantly,
this definition is invariant to the actual distances between adjacent
contact sites; the topology remains unchanged if these distances
stretch or shrink.

To investigate the role of topology in determining functional
properties, we consider all linear molecular chains with N mono-
valent contact sites and C binary contacts. We first focus on how
topology affects the dynamics of unfolding upon stretching the
two ends of the chain, then the dynamics of folding, and finally
the properties of the configurational space explored during both
folding and unfolding.

2.2 Topology correlates with forbidden transitions during
unfolding

To understand the constraints that topology places on unfold-
ing, we consider a chain that is pulled apart at the two ends.
We define a single step in the unfolding process as the breaking
of one contact. We assume that only the contacts lying along
the shortest path(s) between the chain ends experience tension
from the pulling, and therefore we specify that only these

Fig. 1 Topology of a self-interacting molecular chain. (A) Any two contacts
in the chain are either in a parallel (P), series (S), or cross (X) arrangement.
To assign a relation to a contact pair, one can omit all the other contacts
and determine the contact relation in the reduced system. Stretching of
shrinking the chain does not change these relations. (B) A linear chain folds
(unfolds) by forming (breaking) intramolecular contacts. The topology of
the folded chain can be represented by a matrix whose elements describe
all inter-contact relations.
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contacts may break in each step. Finally, we assume that broken
contacts may not reform. This produces for each chain a ‘‘tree’’
of possible unfolding trajectories (Fig. 2). Along each trajectory, a
total of C + 1 states, including the fully folded and fully unfolded
states, will be observed as contacts break one by one. A similar
force-dependent, sequential unfolding model has been used
previously to probe the structure-dependent properties of two
proteins;24 here we use such a model to investigate the effects of
topology across a wide class of linear chains.

Fig. 2A shows two example chains with C = N/2 = 3, and
Fig. 2B shows their corresponding unfolding trees (an unfolding
trajectory is also depicted in terms of topology matrices in the
ESI† Appendix). One observes in Fig. 2B that, for a given chain,
while some trajectories are allowed, others are forbidden. This is
a topological effect: when the chain is pulled at its ends, only a
subset of its contacts, as determined by the topology of the
chain, lie along the shortest path and experience the tension
necessary to break. This subset then determines which unfold-
ing transitions are allowed and which are forbidden under the
pulling protocol. Moreover, Fig. 2B also shows that the impact of
topology on which transitions are forbidden can be pronounced.
The two chains in Fig. 2A differ only in the fact that two neigh-
boring contact sites have been swapped. Yet, this swap changes
the topology (as seen in the matrices in Fig. 2A), and leads to a

large change in the structure of the trees (Fig. 2B). This suggests
that small changes in contact arrangement can lead to large
changes in the unfolding dynamics.

To quantify the extent to which topology influences unfold-
ing, we summarize a given chain’s topology by the relative
fractions of parallel, series, and cross relations. We then
compare this fraction to the fraction of forbidden transitions
in its unfolding tree. Fig. 2C shows this comparison for
every chain with C = N/2 = 5. Two trends are immediately
apparent. First, the fraction of forbidden transitions increases
with the fraction of parallel relations (left plot). This is logical
because in a parallel relation, the outer contact shields the
inner contact from the applied tension (Fig. 1A). Indeed,
the unfolding trajectory of a chain with only parallel relations
has only one path, namely the path in which contacts are
‘‘unzipped’’ one by one. As a result, increasing the fraction
of parallel relations in a folded chain’s topology generally
increases the fraction of forbidden transitions in its unfolding
tree, as seen in Fig. 1C.

The second trend apparent in Fig. 2C is that the fraction of
forbidden transitions decreases with the fraction of series
relations (middle plot). Unlike in a parallel relation, in a series
relation each contact is independent of the other (Fig. 1A).
Therefore, neither pathway—one contact breaking first or the
other breaking first—is forbidden. For this reason, increasing
the fraction of series relations in a chain’s topology generally
decreases the fraction of forbidden transitions in its folding
tree, as seen in Fig. 2C.

In a cross relation, neither contact shields the other from
tension, but the two contacts are not independent either
(Fig. 1A). Thus we might expect that the two competing effects
seen for parallel and series relations would balance to a
certain degree. Indeed, Fig. 2C shows that the fraction of
forbidden transitions neither strongly increases nor strongly
decreases with the fraction of cross relations (right plot).
Instead, the most noticeable effect is a tapering of the data as
the fraction of cross relations increases. The tapering is a
consequence of the ‘‘density of states’’ of chains in the
space of contact relations: there are very few chains with a
fraction of cross relations near 1 (indeed, there is only one
chain with this fraction equal to 1); whereas there are many
chains with zero cross relations, since there are many ways
to have a mixture of parallel and series relations. This effect is
not unique to cross, and indeed a similar tapering is pre-
sent in the left and middle plots of Fig. 2C, convolved with
the general trends. Although Fig. 2C illustrates that the fraction
of cross relations does not have a strong effect on forbidden
transitions, we will see below that cross relations are an
important determinant of other properties during folding and
unfolding.

Finally, we note that forbidden transitions may arise in an
unfolding tree in several distinct ways: (i) the contact might not
lie along the shortest path(s), (ii) the transition might originate
from an inaccessible state, or (iii) the transition might involve
breaking two contacts and reforming another. Topology affects
all of these types of forbidden transitions. The mechanisms

Fig. 2 Topology shapes unfolding dynamics by forbidding transitions.
(A) Two chains with C = N/2 = 3 contacts are shown (in their unfolded
states), along with their topology matrices. (B) Unfolding trees corresponding
to each chain are shown, revealing all possible unfolding trajectories.
Many transitions are forbidden, resulting in two different tree structures.
(C) The fraction of forbidden transitions is plotted against the fractions
of each topological relation for all 513 topologically unique chains with
C = N/2 = 5 contacts.
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are similar to those underlying Fig. 2C and are discussed in the
ESI† Appendix.

2.3 Topology guides folding dynamics and affects folding rate

Past research has shown that the folding rate of small proteins
strongly correlates with their contact order, which is defined as
the mean inter-contact distance divided by the protein length.6

For large proteins an important determinant is the size.25 What
determines the folding rate is still incompletely understood.
However there is an agreement that the folding rate correlates
with the metrics of native fold.14,26 Here we investigate how
topology guides folding dynamics and how folding rate and
topology are related.

To understand the constraints that topology places on
folding, we model folding as a step-wise memoryless process.27

The time for each contact to form is proportional to the shortest
inter-contact distance along the partially folded chain, raised to
the 3/2 power, a scaling that is predicted analytically28,29 and has
been measured for proteins.30,31 We consider both deterministic
folding, in which the contact with the shortest formation time
forms first, and stochastic folding, in which the probability of a
contact forming is inversely proportional to its formation time.
The folding rate is then calculated as the inverse of the average
total time to go from the fully unfolded state to the fully folded
state. Results for deterministic folding are shown in Fig. 3.
Stochastic folding gives similar results (ESI† Appendix).

Fig. 3A shows folding trees for the simplest case of chains
with just two contacts. Above each tree is the folding rate,
assuming that the most probable folding path is taken (deter-
ministic folding). The chain folds fastest in the parallel case,
followed by the cross, and then the series. The reason is topo-
logical: in the parallel arrangement, formation of the inner
contact reduces the formation time of the outer contact by
bringing its contact sites closer together, effectively allowing
the chain to ‘‘zip up’’ into its folded state. The cross arrange-
ment features partial nesting of contacts, and therefore also
allows for a speedup due to zipping, albeit to a lesser extent.
The series arrangement, however, does not involve any nesting
of contacts—indeed the formation of each contact does not
affect the folding time of the other—and therefore the series
relation does not result in any speedup.

Experimentally, the folding rates of small proteins are known
to decrease with their contact order.6 Fig. 3B shows that in our
model the folding rate indeed decreases with contact order.
However, all three chains in Fig. 3A have the same contact order,
and yet they have different folding rates. This suggests that
topological features other than contact order can affect the
folding rate. To systematically explore the effects of topology on
folding rate, we consider a group of chains with the same contact
order by fixing the inter-contact distances while varying the
contact positions. To combine results from many such groups,
the folding rate r for each chain is normalized by the minimum
rate r0 for the group, which occurs when all contacts are in series.
The results of this procedure are shown in Fig. 3C and D.

Fig. 3C reveals that the folding rate increases as the fraction
of parallel relations increases. Indeed, a chain with all parallel

relations achieves more than a 5-fold speedup compared to the
all-series arrangement. This speedup is due to the zipping effect
discussed above. The fact that the folding rate increases continually
with the fraction of parallel relations indicates that the effect is
more general than the image of a perfect ‘‘zipper’’ implies: not all
contacts have to be in parallel in order to achieve a speedup in the
folding rate. Moreover, since parallel arrangement is a topological
property and not a physical one, the trend in Fig. 3C shows that the
parallel contacts are not required to be geometrical neighbors in
order to see the advantage of the zipping effect on the folding rate.
Note that this topological advantage occurs even when the contact
order is kept constant.

Fig. 3D reveals that the folding rate also increases with the
fraction of cross relations. Indeed, a chain with all cross relations
achieves nearly triple the folding rate compared to the all-series
arrangement. We note that Fig. 3D includes only chains with no
parallel relations. The reason is that we expect an increase in cross
relations to impart a speedup so long as it does not come at the
expense of a decrease in parallel relations, since the latter is expected
to have the stronger effect on folding rate (Fig. 3A). The increase seen
in Fig. 3D therefore illustrates that, beyond the speedup seen for
parallel contacts, which are fully nested, the advantage of zipping
also extends to crossed contacts, which are partially nested.

Fig. 3 Topology affects the folding rate. (A) Folding trees for three chains,
each with two contacts in parallel (top), cross (middle), or series (bottom).
All have the same contact order, but the parallel case folds fastest, followed
by the cross, then the series. Folding rate (in arbitrary units) assumes the more
probable path is taken (deterministic folding). (B) Folding rate decreases with
contact order. Data are for all 513 topologically unique chains with length
N = 10 and C = 5 contacts. (C) At constant contact order, folding rate
increases with the fraction of parallel relations. (D) At constant contact order,
for chains with no parallel relations, folding rate increases with the fraction of
cross relations. In (C) and (D), data are for 106 chains with C = 5 contacts in
randomly sampled arrangements and N sufficiently large to accommodate
the all-series arrangement, whose folding rate is r0.
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Finally, we point out that cross relations impart a further
geometric folding advantage that is not captured in Fig. 3D, but
is suggested pictorially by the more probable paths in Fig. 3A.
In our model, the folding time for a contact is based on the
shortest inter-contact distance along the chain. In the case of
parallel and series relations, this distance, which is inherently
one-dimensional, may be an accurate proxy for the actual inter-
contact distance in the chain’s three-dimensional geometry.
However, in the case of a cross relation, the fact that the contacts
are crossed means that formation of the first contact brings the
second contact’s sites closer together in three-dimensional space
than this one-dimensional distance would imply. We expect that
this geometrical effect would cause a further increase in the
folding rate with the fraction of cross relations, beyond that seen
in Fig. 3D.

2.4 Topology drives two- or multi-state folding and unfolding

Kinetic models with two or more states32,33 have been the
dominant paradigm for understanding protein folding dynamics.
Multi-state folding and unfolding is also important for bio-
molecular engineering,34 and is exploited in designing molecular
switches. What determines if a molecule exhibits two-state or
multi-state folding or unfolding? The answer to this question is
still unclear. Here we show that topology is a determinant for the
presence of (un)folding intermediates.

As a chain folds or unfolds, it takes on a number of inter-
mediate configurations, as shown by the trees in Fig. 2B and 3A.
Each of these configurations has a characteristic size, which we
define to be the length of the shortest path from one end of the
chain to the other. In principle, the length along any of our
idealized chains, measured as the number of inter-site segments
in the shortest path, may differ from the physical length of a
molecular chain with that topology. For this reason we restrict the
analysis here to chains in which every site participates in a
contact (Fig. 4), which makes length equivalent to a topological
property. Averaging over all possible transition paths, while
weighting by the probability of observing each path (for details
see the ESI† Appendix), we obtain a mean number of times each
length is visited during either the folding or the unfolding
process. Since some configurations are the same length (i.e. that
length is degenerate), this number can be greater than one. We
therefore call this number the path-weighted degeneracy.

Fig. 4A–D shows the path-weighted degeneracy for chains
with all series relations, all parallel relations, all cross relations,
and a mix of parallel and cross. The all-series and all-parallel
cases are straightforward to understand. In the all-series case
(Fig. 4A), we see that all intermediate lengths are visited once,
no matter what path is taken. This is because contacts in series
form or break independently from each other, allowing the
chain to fold or unfold in a continuous fashion, visiting all
possible lengths in between. In the all-parallel case (Fig. 4B),
most even lengths are visited, while most odd lengths are not.
This is because contacts in parallel are nested, such that the
inner contact forms (or the outer contact breaks) with the
highest probability in each step, and both of these events lead
to a change in length of two units. Folding and unfolding with

all parallel contacts is therefore a quasi-continuous process,
similar to the case of all series.

The picture is different in the all-cross case (Fig. 4C). Here,
three distinct lengths or groups of consecutive lengths are visited,
forming three distinct peaks in the path-weighted degeneracy
plot. Two of the peaks are well-separated: between the second
and third peak in Fig. 4C, there are four lengths that are never
visited. Distinct peaks arise because cross relations are highly
interconnected, leading to the requirement that several contacts
form or break before the length changes appreciably. The large
peak separation arises because when these several contacts
ultimately do form or break, the subsequent length change can
be large. Therefore, unlike series or parallel relations, which lead
to a largely continuous exploration of intermediate lengths, Fig. 4C
suggests that cross relations give rise to length distributions that
are concentrated and discrete. Distinct, well-separated peaks are

Fig. 4 Topology influences the number of intermediate states visited
during folding or unfolding. Example chains are shown with (A) all series
relations, (B) all parallel relations, (C) all cross relations, and (D) a mix of
60% cross and 40% parallel. In each case, for both folding and unfolding,
we plot the number of times each molecular length is visited, averaged over
all possible paths (the ‘‘path-weighted degeneracy’’). States are groups of
one or more consecutive lengths separated by unvisited lengths, such that
A–D have 1, 5, 3, and 2 states, respectively. For all chains with length N = 10
and C = 5 contacts that exhibit a given number of states, we plot (E) the
average fractions of each topological relation and (F) the number of such
chains out of the total of 513.
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also possible when cross relations are mixed with other topo-
logical relations: Fig. 4D shows an example of a chain with 60%
cross relations and 40% parallel relations, that exhibits two
clearly separated peaks.

What is the typical topological composition of chains with a
given number of intermediate states? We answer this question
by defining intermediate states as peaks in the path-weighted
degeneracy plot. That is, we define states as consecutive groups
of lengths that are visited with nonzero probability (the chains
in Fig. 4A–D have 1, 5, 3, and 2 states, respectively, under this
definition). To address the question systematically, we consider
all chains of length N = 10 with C = 5 contacts. For all such
chains that exhibit a given number of states, we find the average
fractions of series, parallel, and cross relations. Fig. 4E and F
show the results of this procedure for the case of unfolding.
Results for folding are almost identical (ESI† Appendix). Looking
at Fig. 4E, three key features emerge.

First, as seen in the leftmost bar in Fig. 4E, chains that
exhibit only one state are dominated by series relations. Indeed,
as the number of states increases from one, the fraction of
series relations decreases. This is a general consequence of the
effect seen in Fig. 4A: series relations allow for continuous
folding and unfolding, allowing a chain to access many con-
secutive lengths, which together form one continuous state.

Second, as seen in the rightmost bar in Fig. 4E, chains that
exhibit the maximum of five states are dominated by parallel
relations. Indeed, as the number of states decreases from five,
the fraction of parallel relations decreases. This is a general
consequence of the effect seen in Fig. 4B: parallel relations allow
for quasi-continuous folding and unfolding, allowing a chain to
access every two lengths, leading to many finely separated states.

The third key feature of Fig. 4E is that to observe an inter-
mediate number of states (2, 3, or 4 states), a sizable fraction of
cross relations is essential. Indeed, as a function of the number of
states, the fraction of cross relations reaches a maximum at three
states. This is a general consequence of the effect seen in Fig. 4C:
cross relations yield highly interconnected chains that undergo
appreciable length changes in several discrete jumps. Impor-
tantly, on average the fraction of cross relations is not dominant
in these chains; rather, intermediate state numbers emerge when
cross relations coexist with parallel relations in roughly equal
proportion, similar to the example in Fig. 4D. This implies that
cross relations are necessary to produce several discrete folding
or unfolding states, but that not all topological relations need to
be cross. Finally, we note that these intermediate state numbers
are particularly important because, as seen in Fig. 4F, chains with
two or three states are the most common of the group.

3 Discussion and conclusion

Here we employed a topological description of self-interacting
linear chains beyond what is offered by knot theory and the
metrics of native fold such as contact order. The introduced
topology of contact arrangements, termed circuit topology, is
not only a descriptor of the molecular shape but also is a

determinant of its folding and unfolding dynamics. Our study
shows that topology guides the conformational search and sets
fundamental constraints on conformational transitions.

We have shown that topology can constrain the folding and
unfolding dynamics of a molecular chain. In particular, we
have found that the number of forbidden unfolding transitions
increases with the fraction of parallel relations, thus rendering
the unfolding dynamics more deterministic. Moreover, we have
found that the folding rate increases with the fractions of parallel
and crossed relations. Topology therefore complements standard
determinants of folding kinetics and hence should be considered
alongside energetic and geometric measures in predicting the
dynamics of molecular chains. In some cases, considering topo-
logy alone and considering a different measure alone, such as
bond energy, can lead to contrasting predictions (a simple
example is illustrated in the ESI† Appendix). In such cases, it is
particularly important to consider multiple measures in conjunc-
tion to develop the most accurate predictive framework.

We have focused only on ideal chains with binary contacts.
However, the theory and the computational protocol is general
and can be extended to chains with multivalent contacts. In the
ESI† Appendix we summarize in the form of flowcharts the
computational protocol used to produce the numerical data in
Fig. 2–4, to elucidate the logic of the procedure and facilitate
future extensions.

Our study also yields testable predictions. Comparison to
nucleic acid and protein conformational dynamics can be made
as long as the crystal structure or contacting residues are known.
Contacts can be defined in different ways, depending on the
molecule and question of interest. For RNA, base pairing is a
natural choice, while in proteins beta–beta contacts or residue
contacts are appropriate options. Contacts can also be defined
not only based on structure but also by considering the asso-
ciated energies. For instance, contacts that are not sufficiently
tight could be ignored. One can then ask if the folding rate of
proteins or RNAs correlates with, for example, the fraction of
parallel relations. Another way to test our predictions is to design
and synthesize molecules with desired topological properties.
For example, two RNA molecules (or two synthetic polymers)
with identical lengths and contact orders, can be designed with
two or more contacts being in series or parallel. Interrogation of
these synthetic systems with optical tweezers/AFM would allow
one to experimentally test the predictions developed herein. The
single-molecule force methods allow for direct measurement of
folding rate of single bimolecular chains as well as their folding
and unfolding pathways.35,36

Our results on the implications of topology for unfolding are
based on force-induced unfolding of molecules via pulling at the two
ends. Examples of pulling-induced unfolding are seen in nature.37,38

Alternatively, molecules can be unfolded thermally or chemically,
processes that are mechanistically very different from pulling.39 The
unfolding pathways available for the molecule are then set by its
topology, geometry, and energetics, as well as the applied unfolding
mechanism. Our approach may also find practical applications
in single-molecule pulling studies, where it can be used to infer
structural information from observed unfolded lengths.
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We provided evidence that the topology of the chain sets the
size and number of intermediate states during folding and
unfolding. Our results on the (un)folding intermediates may be
of biological significance, as the physiological role of many
proteins relies on their fold size. The fold size determines
the propensity of proteins for cleavage,40,41 the translocation
efficiency,42 and the binding affinity in physiological43 and
pathological44 conditions. The fact that the arrangement of
contacts could give rise to a certain size distribution is also
important from an evolutionary biology perspective,45 as well as
for molecular engineering.46 Biomolecules are evolved to have a
high designability and a large tolerance to changes in primary
sequence.47 Nonetheless, the design of multi-state protein-based
molecular switches turns out to be a challenge for protein
engineering.47 Our finding that topology influences the multi-
plicity of intermediate states of self-interacting chains, along with
advances in polymer chemistry that have allowed synthesis of
chains with a desired arrangement of contacts,48–52 holds pro-
mise for future rational design of molecules with new functions.

Finally, it would be interesting to study whether proteins
(or nucleic acids) with similar topology also share similar bio-
logical function, as well as the extent to which topology has
been evolutionarily conserved.
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