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1
Introduction

1.1 Light and nano antennas
Human experience and perception is largely determined by the visual observation
of our external universe. This perception has been argued to be a projection of the
complex external reality, projection which is itself interpreted and complemented in
our mind to fit in, or extend, our own mental model of the universe [1, 2]∗. In all
cases these visual observations are unequivocally mediated by the transmissions and
reflections of light by the objects and persons in our surroundings, which makes light
one of the most important mediators for the acquisition of information in our life. The
projections and reflections caused by sun light has shaped our understanding of the
world, and since the invention of artificial light sources and light detectors, these optical
means for gathering information have allowed us to see the intricate relations between
the smallest of things with microscopes [3, 4], and with photomultiplier tubes and
scintillators in high energy experiments [5–7] as well as the biggest of the objects [8, 9]
in the universe with telescopes.
The evident vast importance that light has had in human history becomes even more
apparent when we realize that two of the most important challenges that humanity is
facing nowadays also have to do in one or another way with light. First, we are currently
living in a moment of human history where the effects of global warming are starting
to touch everyone’s experience and perception, since according to international panels
of climate scientist [10] humankind’s consumption of energy, and in particular fossil

∗This idea of perception and mental models has a long standing history. In western culture we can see a
clear early example of such reasoning in the text The Republic with the “The allegory of the cave” by Plato
(347bc)
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1 Introduction

fuels, has given rise firstly to a systematic global warming and secondly to depletion of
available resources. Through general societal debate about IPCC findings [10], the EU
system of CO2 taxation [11], or the increasing shift of subsidy and research funding to
renewable energy sources as consigned in the Europe 2020 plan [12], this challenge is
starting to be felt throughout western society. Projections, such as those of the IPCC
argue that the entire earth eco-system with human life as a marginal contributor has
enjoyed a delicate balance of energy with the continuous input of energy from the sun as
well as the earth-internal radiogenic sources [13] over the last millennia. This balance
is currently shifting owing to the vast rise by ∼365% in human population [14] and
per capita energy consumption in the last century. Rather than acquiring the required
energy from the finite supply of fossil fuels, which accounted for ∼85% of annual
energy in the last decade [13, 15], an indefinitely sustainable energy balance would
require that energy is harvested directly from the sun, in all different forms in which it
can be found in nature, e.g. in form of wind energy, in form of harvesting energy stored
in the earth’s hydrosphere, and through photochemical or photovoltaic conversion of
light into chemical reactions or electricity.

As a second challenge, we are living in an information revolution where people all
over the globe are connected, can process vast amounts of information and can transmit
this information in a matter of seconds from one side of the planet to the other. This
revolution has been possible thanks to the conception and development of faster and
more efficient computers as well as networks of optical fibers, mobile phone antennas
and satellites. Nevertheless electronic chip technology is arriving to a bandwidth and
power consumption bottleneck. The recent improvements in bandwidth in electronic
interconnects have only been possible at the price of increasing dramatically the
circuit power consumption [16]. It is expected that by 2015 interconnections of the
billions of transistors in a modern processor just cannot be miniaturized any further,
as stated by the International Technology Roadmap for Semiconductors (ITRS) [17].
Even forgetting for a moment the issues that photolithography has to solve below
14 nm feature sizes [17], it is a fact that shrinking the copper wires further will be
accompanied by an increase in resistance, power consumption and even breakdown
of the functionalities of the circuits themselves due to electro migration and material
limits which will impose strong limits to this miniaturization [17].

For both challenges possible solutions are sought in the efficient manipulation and
control of light. The energy problem could be solved by increasing the absorption
of photons by thin and cheap solar cells [18]. On the other hand the transmission
and manipulation of information in our computers could be solved by using chips
with dielectric waveguides [19] and optical devices, which transmit the information in
and in between chips, as well as optically manipulate, switch, direct and control the
information carried by the light in waveguide modes.
Both for harvesting photons in a solar cell, and for manipulating the emission, detection
and propagation of light on a photonic chip, a major fundamental challenge is that
the interaction of light with matter is weak. For instance the strong interaction of
electrons and matter ensures that for an electron with an energy of 1 eV the average
attenuation length through which this electron can travel in air before getting absorbed
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1.1 Light and nano antennas

by a molecule is about 6 µm† while for a photon in the visible range this attenuation
length is 30 to 190 km for violet (410 nm) and red (650 nm) photons respectively [21].
Nevertheless, since around 10 years ago the currently big field of nano-photonics and
plasmonics has shown a possible path to overcome this weak interaction by using
optical nano-antennas [22].

Optical nano-antennas are antennas for light. These antennas work in the opti-
cal to infrared frequency spectrum and their sizes are on the order of hundreds of
nanometers [23–25]. They are capable of converting localized energy into propagating
radiation in free space [23, 25] as well as in waveguides as will be seen later in this
thesis. Also, these antennas can do the opposite which is converting incident radiation
into sub-diffraction-limit localized foci of high energy density [23]. Fig. 1.1 shows
a sketch of the operation of these sort of antennas. The materials used for optical
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Figure 1.1: Examples of the modes of operation of nano antennas. Image modified
from Lukas Novotny and Niek van Hulst, Nature Photonics 5, 83−90 (2011)
doi:10.1038 nphoton.2010.237, see Reference [23].

†This distance is an approximation found by using the electron range function in (g cm−2) log (Rp) =
−5.1+1.358x +0.215x2 −0.043x3 where x = log (E(keV )) and using a density for air ρ =0.00129 g cm−3

(see Ref. [20])
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1 Introduction

antennas are varied. Part of the field of optical antennas specializes in using dielectric
antennas. With these dielectric materials light matter interaction can be enhanced by
increasing the residence time of photons in resonant structures. Another part of the
field uses metallic antennas, in a subfield called plasmonics, for which light matter
interaction is increased by confining strong electromagnetic fields to volumes smaller
than the diffraction limit. The light matter interaction enhancements achieved for
dielectric as well as for plasmonic nanoantennas can be explained starting from the
properties of the dielectric function (ε) for these two class of materials.

Dielectric materials present a positive permittivity [21] (Re{ε} > 0, usually in fact
ε > 1) and a Im{ε} ≈ 0. In case of a homogeneous ε, the solutions to Maxwell’s
equations are plane waves (e.g. E(r) = E0e i k·r) of wave number k = |k| = k0

p
εµ, where

k0 = 2π/λ is the free space wave number and λ is the wavelength in free space. From
the expression for the field of a plane wave and the expression for k, it is immediately
evident that Im{ε} introduces an exponential decay, which is associated with material
absorption [21, 25]. Due to the small values of Im{ε} for dielectric materials the
dissipative losses are fairly small. Because of the small losses of dielectrics they have
been used to fabricate wavelength-sized objects with strong resonances, as well as
ensembles of scatterers like powders and sponges that multiply scatter light [26]. A
single scatterer can strongly scatter light when it supports a geometric resonance, for
instance when a wave fits an integer number of times across the perimeter, or in the
bulk of the particle. Archetypical examples are dielectric spheres, array of spheres and
cylinders, nanowires and ring resonators [27–31]. ‡

For the case of nano antennas made of noble metals, like gold or silver, when electric
fields of light drive these plasmonic antennas, the charges in the metal are accelerated
in such a way that the movement of charges will create an induced field which prevents
the driving field to penetrate the metal. Indeed, evaluating the wave number for a
purely real, but negative, ε, shows an exponential decay length δ= 1/(2k0

p
ε)§. This

decay does not point at absorption, but points at the fact that in metals, electrons tend
to rearrange to screen any incident field from penetrating further than the skin depth
into the material. This effect can be included in the dielectric function of the metal.
The simplest model of a metal dielectric function which only takes into account the
movement of free charges is the Drude-Sommerfeld model [21], which supposes the
following equation of motion for any free charge in the metal:

me
∂2r

∂t 2 +meΓ
∂r

∂t
=−eE0e iωt . (1.1)

where e is the charge of the electron, me is the mass of the electron, r is the position
of the electron, t is time, Γ is the damping rate for the movement of the electrons

‡Somewhat arbitrarily the field has used exclusively the term Mie resonances only for the resonances
supported by dielectric scatterers like the ones just discussed, even though resonances found in Mie solutions
are solutions of the electromagnetic equations for sphere and cylindrical scatterers regardless of its material,
and thus any resonance in such a scatterer despite its material could be called a Mie resonance.

§The decay length or skin depth is easily found by using the intensity of a plane wave in the direction of
propagation in the metal E ·E∗ when k is purely imaginary from k = k0

p
ε due to the real negative ε
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1.1 Light and nano antennas

(specifically Γ = vF /`, where vF is the Fermi velocity, i.e. the fastest velocity of
an electron in the metal, and ` is the electron mean free path) and E0 is the driving
harmonic field with frequency ω. The effect of the movement of the driven free charges
on the permittivity is included through the volume polarization density of the material
P = ε0χE = −ner where n is the electron charge density of the material and χ is
the susceptibility of the material [32] which can also be defined as χ= ε−1. Using
these equations and solving Eq. (1.1) we find that for the Drude-Somerfeld model the
permittivity as a function of the driving frequency ω reads:

ε(ω) = 1−
ω2

p

ω2 + iΓω
(1.2)

where ωp is the plasma frequency of the metal defined as
√

ne2/meε0. For ω<ωp

the real part of ε is negative. For common metals ωp is in the UV. For instance,
for gold the plasma frequency is equivalent to the frequency of UV light with a
wavelength of λp =145 nm, for silver λp =129 nm, for platinum λp =241 nm and
finally for aluminium λp =81 nm. Any wave with a wavelength longer than these
plasma frequencies will encounter a medium with a negative permittivity, while light
with shorter wavelengths would encounter a dielectric material.

As it was already commented, a negative real part of epsilon impedes penetration
of fields inside the material, but at the same time a negative epsilon allows for electric
fields with high wave numbers k > k0 to be bound to interfaces between a metal
(Re{ε} < 0) and a dielectric (Re{ε} > 0). As example, we discuss the response of a

E

e-
e+

Figure 1.2: Sketch of a metallic sphere being driven by an electric field. The sphere
is shown with a cut that aids viewing the reaction of the charges inside the sphere.
Due to the electric field the free electrons in the metal, depicted in red, oscillate and
accumulate on the edges of the particle. Neutral atoms are depicted in gold color and
positive ions, shown on the right edge of the particle, are depicted in blue.

small metal sphere driven by an incident oscillatory electric field as shown in Fig. 1.2.
The electron sea easily follows the electric field, as described by Eq. (1.1) to give
rise to an excess negative charge on one side of the sphere, while there is net positive
charge on the other side, attributable to the ionic backbone that remains stationary. This
positive charge pulls back the electrons giving rise to a resonance. Indeed, this intuition

13



1 Introduction

that charge separation sets up a resonant dipole moment is evident from the so called
Rayleigh polarizability,

α(ω) = 4πε0a3 ε(ω)−εenv

ε(ω)+2εenv
. (1.3)

Where we see that in the scenario when the negative ε, stemming from the move-
ment of free charges, reaches values close or equal to −2εenv this creates a strongly
polarizable object. There is one very important effect that stems from the strongly
bound electromagnetic mode at the interface between a metal and a dielectric, which
is that the mode can be confined to very small volumes, well below the size in
free space of the wavelength used [32, 33]. Because of this strong confinement
the electric field per photon can be enhanced up to about 2 orders of magnitude
as shown in Ref. [34]. This strong interaction of electromagnetic fields with matter
thanks to plasmonic nanoantennas has been used to study surface infrared absorption
enhancement SEIRA [35–39], Raman enhanced spectroscopy [38, 40–42], fluores-
cence enhancement [43, 44], fluorescence correlation spectroscopy [45–47], enhanced
transduction in optomechanical systems [48], enhanced solar cell efficiencies [49, 50],
enhanced decay rates of single quantum emitters [51], enhanced non linear frequency
generation [52]. Finally many different sensing strategies have been proposed for
plasmonic antennas, using the strong refractive index sensitivity due to the enhanced
light matter interaction in plasmonics [53, 54].

1.2 Nano antennas as multipolar scatterers
Although the difference in ε between metallic and dielectric materials creates interesting
almost mutually exclusive phenomena, like strong field confinement for metallic
antennas [34] or lossless creation of magnetic scatterers for dielectric ones [27], the
differences in the research fields of dielectric nano antennas and plasmonic nanoanten-
nas are arguably semantic since the equations and theory behind them are the same. A
general theory, with a long standing history [21, 55, 56], used to explain the scattering
of any of these dielectric or metallic nanoantennas is exposed next.

An approach that is followed throughout this thesis to explain experiments and
build theory, is the notion that one can decompose the response of a complex nano
antenna in a handful of terms, ordered in importance according to the concept of a
multipole expansion. This is easily understood starting from the general problem
of scattering [57]. The solutions of Maxwell equations in free space give us all the
possible modes in which electromagnetic radiation can exist in the open universe. Some
solutions for these equations are readily known, as are the ubiquitous plane waves,
spherical and cylindrical waves. When light in a plane wave in free space meets a very
small piece of dust¶ this plane wave will in general undergo a change of direction and
even possibly color. In this thesis we will focus only on the first type of scattering
process, i.e. linear optics, where only the direction and polarization is changed but not
the color. The scattering process redistributes the light over all directions, a process

¶Size on the order of 0.1 µm for typical aerosols.
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1.2 Multipolar scatterers

mathematically abstracted as a spherical wave centered at the dust particle, with a
superimposed angle-dependent amplitude and phase function, which determines the
so-called “differential scattering cross section”. To simplify this problem we start
from Maxwell’s equations for homogeneous space, cast in the wave equation with
k = k0

p
εµ

(∇×∇×+k2)E = 0 (1.4)

(∇×∇×+k2)H = 0. (1.5)

Simultaneously we take into account the divergence condition,

∇·E = 0 (1.6)
∇·H = 0. (1.7)

As shown in the book of Jackson [21] these sets of equations can be combined in one
single set by using the path suggested by Bouwkamp and Casimir [58] which is based
on using r.E and r.H in the Helmholtz equation, as in:

(∇2 +k2)r ·E = 0 (1.8)

(∇2 +k2)r ·H = 0, (1.9)

It is of course very well known that Eq. (1.4) in free space gives rise to plane wave
solutions of transverse electromagnetic waves. A different basis spanning all solutions
to Maxwell’s equations in a homogeneous medium based on spherical waves can be
derived from Eq. (1.8). When these equations are solved we obtain a general solution
to the Maxwell’s equations with the form:

E(r,θ,φ) =
∞∑

n=1

n∑
m=−n

[anm Nnm(r,θ,φ)+bnm Mnm(r,θ,φ)], (1.10)

where Nnm and Mnm are so-called “vector spherical harmonics”. The “vector spherical
harmonics” form a complete set of orthonormal basis functions and represent spherical
waves: they have a radial part expressed in spherical Bessel and Hankel functions
that contain asymptotic e i kR /R dependence. As a function of polar and azimuthal
dependence they are much like the spherical harmonics known from quantum me-
chanics, though as expected, intricacies arise from the vector nature of light and the
polarization conditions coming from Eq. (1.6) and Eq. (1.7). Each order n corresponds
to a multipole order, starting with the electric/magnetic dipole and quadrupole for n=1,2
for the basis functions Nnm and Mnm , respectively. Quantifying the physics of a single
scatterer hence equates to calculating all the multipolar expansion coefficients anm and
bnm induced in response to some driving. In plasmonics and metamaterials, one often
argues that only leading terms (n=1, maybe n=2) are important for scattering plane
waves, while higher order multipoles become important specially as one considers the
effect antennas have on emitters placed in their immediate vicinity.

While Eq. (1.10) provides the full field radiated by a scatterer, it is often insightful
to think in terms of equivalent current distributions of the first few terms. Indeed
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1 Introduction

many works in literature are related to identifying such currents in full-wave near-field
distributions [59]. By abstracting scatterers in this way we can represent small optical
antennas by the most predominant type of currents driven in them. That is, if we have
a linear antenna as in Fig. 1.3a where we can mostly excite linear oscillatory currents
we could replace it in our problem by an electrical dipole and also for instance the
split ring in Fig. 1.3b by a circular oscillatory current and a negative linear oscillatory
current.

J(r’)
J(r’)

a) b)

Figure 1.3: Sketch of: a) a silver rod and the linear currents driven in it and b) a gold
split ring with the circular currents driven in it.

In order to be able to find what are the fields that the induced currents in our
antennas radiate we need the expression

E(r) = iωµ0µ

∫
Ω

G(r,r′)J(r′)dr′ = iωµ0µ

∫
Ω

(
J(r′)ᵀG(r,r′)ᵀ

)ᵀ
dr′ (1.11)

where G is the dyadic Green’s function of free space and J(r′) is the current distribution
created in our antennas. Generally the dyadic Green’s function G satisfies

∇×∇×G−k2G = Iδ(r−r′), (1.12)

where k = k0
p
εµ is the wave number and δ(r− r′) is the distribution delta function.

In practice G is only known for a few cases, including free space, homogeneous
environments, multilayered infinite systems, sphere and ellipsoidal cylinders. The
Green’s function is extremely useful and it has been used for integral equation methods
such as the method of moments and boundary element methods [60, 61]. For free space
and homogeneous environments in its closed form G is:

G(r,r′) =
[

I+ 1

k2 ∇∇
]

G0(r,r′) (1.13)

G0(r,r′) = e±i k|r−r′|

4π|r− r′| . (1.14)
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1.3 Polarizability tensor

The Green’s function for homogenous space as well as for a half infinite layer and
a waveguiding layer will be commonly used throughout this thesis. For a deeper
introduction in how to find it and use it we refer to the book of Novotny [32] as well as
the book of Tai [60].

Having the expression in Eq. (1.11) we can calculate the field created by a given
antenna whose most predominant currents have been determined. For this purpose we
need an expression for the current of the different multipolar currents. Specifically the
currents J(r′) for the first three multipoles are [62]:

JElectric Dipole(r ) =−(iω)δ(r− r′)p (1.15)
JMagnetic Dipole(r ) = (1/µ0µ)δ(r− r′)m×∇ (1.16)

JQuadrupole(r ) =−(iω/3!)δ(r− r′)Q ·∇ (1.17)

where p is a vector that defines the electric dipolar strength, m is the magnetic dipolar
strength vector and Q is the electric quadrupolar strength tensor. The symbol δ(r−r′)
is the distribution delta function that implies that the distribution of these currents is
localized in a point located at r′.

1.3 Polarizability tensor
In section 1.2 we have described how an antenna in which a certain current distribution
has been induced can be described as a combination of basis current distributions
called multipoles. We have also shown how these current distributions would radiate
their power away from the antenna. We have not discussed here yet how such current
distributions are created in the material of the optical antennas in the first place, which
is embodied in how anm and bnm obtain their values. The ease with which a certain
charge distribution is created on a given antenna is quantified to first order by the
polarizability α of the object (see also Eq. (1.3) for the polarizability of a small
scatterer). Thus for a given antenna the electric dipolar moment p (equivalent to a
linear oscillatory current) created by an electric field E can be described as:

p =αE. (1.18)

In general electric fields applied along different orientations will drive currents in the
antennas with different strengths and directions. Since the electric field is a vector
and the current distribution is also a vector, the most general form to describe the
polarizability is by a 3 by 3 second rank tensor. We will show in this thesis that this
tensor may also be extended to contain the information related to the magnetic dipolar
currents and their driving as well as to electric quadrupolar currents. The former can
be found in Ref. [63] while the latter is part of the original work of this thesis.
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1 Introduction

1.4 Nano antennas on substrates and waveguides
In section 1.2 and 1.3 we very briefly reviewed the general approach of induced
multipole moments to discuss the induced currents and radiated fields of subwavelength
antennas. Indeed, if one would solely study subwavelength antennas in free space,
one could envision experiments to directly measure radiation patterns, i.e., far field
distributions of radiated fields, and thus map multipole expansions directly. In this
thesis, we are concerned primarily with the idea that in future applications, antennas
are likely not in free space. For instance, using an antenna to improve LEDs or solar
cells, means that it must sit in a layered, generally high index semiconductor structure,
likely close to an interface. When thinking of sensors, an antenna would likely sit on a
glass substrate, or be integrated with a dielectric waveguide.

Once an antenna is integrated in a nonhomogeneous environment, such as when
it is placed on a planar substrate two distinct effects become important. First, a given
current distribution will have a strongly modified radiation pattern. A second, and more
intricate effect, is that for a given object the ease with which an applied external field
sets up a material polarization changes. We will now discuss these two facts in turn
for the case of a simple electric dipole. Starting with a given current distribution of
an electric dipole we may find its radiation pattern by using Eq. (1.11). If we place
this current distribution in free space we obtain a radiation pattern as the one shown in
Fig. 1.4a. If we change the environment of this current distribution, the reflections and
scattering produced by the environment, will drastically transform the total radiation
pattern as shown in Fig. 1.4b where the same dipolar current was positioned 10 nm
away from a glass substrate. This figure shows how most of the radiation is directed
into the substrate in a narrow angular distribution. Fig 1.4a and b thus form a clear
example that for the radiation pattern the presence of the environment is as important
as the current distribution in the antenna itself (this can also be seen in Eq. (1.11)).

To illustrate the second effect, i.e. how the environment changes the ease with which
an applied external field sets up a material polarization, we consider the case where an
electric field drives an electrically polarizable object creating a dipole moment,

p =α ·Etotal(r′) (1.19)

where p is the dipole moment, α is the polarizability of the object and Etotal is the total
electric field at the center position of the object which is mathematically considered
as a point-like dipolar current distribution centered at r′. If the object is not in free
space but in some more complex environment, the total electric field at the scatterer is
composed not only of the externally incident field Ein, but also contains any field that
the scatterer itself has radiated into the environment and which subsequently returns
to the scatterer, labeled here as Escatt, that is Etotal = Ein +Escatt. This scattered light is
exactly accounted for by the so-called “Scattered part of the Green function” where we
separate G = G0 +Gscatt into a free space part, and a scattered part that quantifies the
multiple scattering caused by the complex environment. For instance, if we consider a
scatterer that is brought to a mirror, the scattered part of the Greens function contains
the reflected field, and is proportional to the mirror reflection coefficients. Therefore
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1.4 Nano antennas on substrates and waveguides

pz

Free Space
a)

10 nm
pz

On Glass Substrate
b)

Figure 1.4: Radiation patterns of a z oriented electrical dipole in a) free space and
b) 10 nm away from the top of a glass substrate. These graphs are polar diagrams of
radiated intensity. That means that for a given viewing direction, θ and φ, the distance
to the origin is proportional to how much power is radiated.

we find that our induced current equals,

p =αEin +α ·ω2µ0µGscatt(r′,r′) ·p. (1.20)

By using a little bit of algebra we can turn this expression into

p =αcorrEin (1.21)

where,
α−1

corr =α−1 −ω2µ0µGscatt(r′,r′) (1.22)

This last expression shows a ‘corrected’ polarizability. With this corrected polarizability
we can deal with the response of the scatterer in a complex system while taking
into account self consistently all the multiple scattering between the scatterer and
its environment. In general, Gscatt(r′,r′) can contribute both a real and an imaginary
correction to alpha. If α is a Lorentzian response function, as for a simple model for
a plasmon sphere, this constitutes a change in resonance frequency (Re

{
G

}
) and a

change in radiation damping (Im
{

G
}
). Returning to the mirror example, these can be

easily understood. Suppose we place a dipole in front of a perfect mirror, so that Gscatt
can be approximated using image charge theory. Qualitatively, the induced dipole in the
scatterer will hybridize with its mirror image. Depending on the relative alignment of
the mirror image and the original dipole, this will give rise either to a blue- or red shift
in energy (as evident from an electrostatic energy consideration), as well as to a net
increase or decrease of net radiative damping, i.e., radiated power per unit of induced
dipole moment. This correction is identical to the radiative line width and resonance
frequency changes experienced by spontaneous emitters, like atoms and molecules, held
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in front of an interface [64], due to backaction of the radiated source field on the source
itself. In fact, in order to obtain a scattering theory that satisfies energy conservation,
an equation of the form of Eq. (1.22) is required to correctly define the polarizability of
an object in vacuum. In such a case, one requires that the entries for Eq. (1.22) contain
the electrostatic polarizability of the object α, defined as α= 3V (ε−εenv)/(ε+2εenv)

(for a sphere) and Gscatt replaced by Im
{

G0

}
=ωpεµ/(c6π). Here the factor Im

{
G0

}
quantifies the backaction a dipole experiences in a homogeneous environment, and
is equivalent to the local density of states. This correction to the polarizability is
also known as a Sipe-Kranendonk correction [65], or dynamic correction. With the
corrected polarizability tensor we are able to handle the inclusion of any substrate for
which we have its Green’s function as long as we know what is the polarizability tensor
of one such an optical antenna.
The point dipole and multipole picture is often used in the field of plasmonics to guide
qualitative understanding of experimental results and full wave calculations. The main
proposition of this thesis is that, when applied with care, this picture can also be pushed
to give quantitative predictions of antenna physics. While it is not a replacement for
all problems solved with full wave calculations, this type of simplification could mean
a considerable economization of time in design and simulation tasks, and it helps to
build an intuitive picture of the scattering processes. This saving of time would allow
for numerical optimizations of designs of multielement scatterers for improvement of
LED illumination, increased solar cell efficiencies, or also higher field confinements for
waveguide integrated single molecule read out and control. In this thesis we will expose
examples of how to use an extended point dipole theory corrected for the presence
of non trivial environments like substrates and waveguides. We will show how this
method is able to explain experimental results and how it is suitable for designs of
novel antennas.

1.5 Outline of this thesis
We begin this thesis by reporting scattering experiments on single rod plasmonic nano
antennas fabricated on top of a Si3N4 ridge waveguide (chapter 2). This study was
done to asses how strongly light propagating in guided modes interact with plasmon
antennas, with the ultimate goal to provide an on-chip plasmon building block for
interconversion between guided modes and strongly localized fields that could, for
instance, interact with active materials. For this study we use point dipole theory to
unravel the performed measurements. We continue showing how by using point dipole
theory we can design a multi element Yagi-Uda antenna that maximizes the incoupling
of light from a single emitter, in the proximity of the antenna, into the guided mode of a
waveguide (chapter 3). In this chapter we show how the system of a plasmonic antenna
plus dielectric waveguide represents a very interesting technology for controlling and
detecting the emission of quantum light sources, e.g. atoms, molecules or quantum
dots.

To complement the experiments done in chapter 3 we used a cathodoluminescence
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measurement setup to generate nanometric position controlled point sources on Yagi-
Uda antennas. By using point dipole theory and a statistical analysis we explain the
features appearing in the acquired spatial excitability maps. Also, we show how random
changes in the size of antenna elements result in a high variability of near field high
and low excitability positions which contrast with the rather robust directionality and
directivity found for these antennas (chapter 4).

In (chapter 5) of this thesis we present a numerical tool with which the polarizability
tensor of any optical antenna with an arbitrary geometry can be retrieved. This retrieval
is done in order to be able to use point dipole theory in more general problems,
involving optical antennas with virtually any shape, while not needing microscopic
analytical expressions for the polarizability tensor of the antennas. We use the retrieval
tool to explain the behaviour of one of the most iconic optical antennas, the split ring
resonator. Besides explaining its scattering properties and exotic pseudochirality we
use the multipolar expansion of this antenna to design a novel split ring based multi-
element antenna with very interesting characteristics as a directive radiation source of
elliptically polarized light from a localized point source (chapter 6).

Having set the stage for retrieving the polarizability tensor of an arbitrary antenna,
we expand the point dipole model to include electric quadrupolar moments. We use
this extended theory to analyze the behavior of two types of antennas. The first of
these is the so-called “dolmen” antenna that consists of a nanorod that is a strongly
dipolar scatterer coupled to a dimer of nanorods that was reported in literature to
support a very strongly quadrupolar mode. In particular, we quantify the claim made
in earlier reports that narrow features in the dolmen extinction spectrum known as
“Fano interference”or “plasmon-induced transparency” are attributable to a quadrupolar
response. The second of these antennas concerns nanopyramids made out of aluminium.
Through optimization of their simultaneous electric dipole, magnetic dipole, and
electric quadrupole response these allow strongly directional scattering, as well as
strongly directed enhancement of emission of nearby emitters. These nano pyramids
are shown to be suitable for vertical asymmetric field confinement that could be used
for enhancing LED illumination and solar cells (chapter 7).

Finally we show how to use the extended point quadrupole-dipole theory in the
presence of a substrate. We explain measurements of nano cylinders with strong
quadrupolar moments, measured in a cathodoluminescence setup, which are capable of
strongly directing light by the interference of its different multipolar moments. These
"nano lighthouses" have the characteristic that they are capable of strongly directing
scattered light although the antenna is composed of one single element (chapter 8).
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2
Single Rod Antenna on a Dielectric Waveguide

For the purpose of using plasmonics in an integrated scheme where single emitters
can be probed efficiently, we experimentally and theoretically study the scattering
properties of single nano-rod gold antennas placed on one-dimensional dielectric
silicon nitride waveguides. Using real space and Fourier microscopy correlated with
waveguide transmission measurements, we quantify the spectral properties, strength
and directivity of scattering. The scattering processes can be well understood in the
framework of the physics of dipolar objects placed on a planar layered environment
with a waveguiding layer.

2.1 Introduction
A highly promising development in nanophotonics is the use of plasmonic antennas to
interface near fields and far fields [1–4]. As opposed to conventional dielectric optics
that are bound by the diffraction limit, plasmonic structures can confine electromagnetic
fields to very small volumes, essentially by packing energy in a joint resonance of
the photon field and the free electrons in the metal. As a consequence, plasmonic
structures are currently viewed as ideal structures to interface single emitters and single
photons [5–16], as well as to realize many types of field-enhanced spectroscopies, such
as Raman spectroscopy [17–20], SEIRA [19, 21–24], and fluorescence correlation
spectroscopy [25]. Currently, most workers in the field of nano-antennas target the
basic understanding and use of antennas in essentially index-matched surroundings.
We propose that all the exciting properties of plasmonic nano-antennas can be used in
even more versatile ways, if it would be possible to excite and interrogate the antennas
efficiently in integrated photonic circuits. Dielectric waveguides, such as high index
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ridges on low index substrates, represent a common and mature photonic integration
technology. [26, 27] We envision local integration of plasmonic antennas as a promising
route to enhance conventional dielectric photonic circuits, and to achieve excitation
and detection of plasmonic antenna resonances in an integrated fashion. In order to
ultimately apply this combination of structures it is important to understand exactly
how antennas interact with waveguides, i.e., how the antenna scatters the waveguide
modes, and conversely how the waveguide affects the antenna resonance frequencies,
resonance profiles, and directivity. In view of these exciting possibilities, it is highly
desirable to comprehensively quantify first how strongly single plasmon building blocks
couple to waveguide modes, and how strongly waveguide modes couple to radiation
channels outside the waveguide. Such a comprehensive experimental study can then
in a second step be used as input to a toolbox for designing phased array antennas.
In this chapter we focus on the first part, i.e. the comprehensive quantification of the
scattering by single rod antennas on dielectric waveguides. This study will be used in
chapter 3 for the design of phased array antennas.

2.2 Experimental setup and methods
In order to study antennas coupled to dielectric waveguides, we employ a setup
that combines a fiber-coupled end-fire setup with a confocal microscope as seen in
figures 2.1a and 2.1b. The setup can be used in two configurations, as further highlighted
in the sketches presented on the left side of the figures. In the first configuration of
the setup shown in Fig. 2.1a light is coupled from one end facet into the waveguide
using a cleaved fiber (Nufern S630_HP) that carries excitation light from a Fianium
supercontinuum light source (SC-450-PP, with the spectrum after the fiber ranging
from 650 to 900 nm, max. power at 725 nm of 0.680 mW when measured through
bandpass filter 700 nm FWHM 50 nm). Light is coupled into the waveguide and
transmitted into a second fiber for spectral analysis on an Avantes peltier cooled Si
CCD array spectrometer (AvaSpec-2048TEC-USB2-2). To quantify the scattered light
spectrally, spatially and in terms of wave vector content, a home built microscopy
system is placed with its optical axis perpendicular to the sample substrate. We use an
Olympus 100x, NA 0.95 M Plan IR objective to collect the scattered light, which is then
directed through a tube lens to a CCD camera (The Imaging Source DMK21AU04) for
imaging, or to a Thorlabs galvo scanner system. This galvo system scans the scattered
light collected from the sample plane over a 50 µm core multimode fiber which acts
as a confocal pinhole (sample-to-fiber magnification 228 times). This fiber brings
out-of-plane scattered light onto a second channel of the same Avantes spectrometer.
This confocal scanning configuration for out-of-plane scattering allows us to retrieve
images of the sample as well as the spectral content of light scattered from different
parts of the antenna. As further functionality, we can flip in a so-called Fourier or
Bertrand lens that allows conoscopic imaging. In other words, when flipping in the
Fourier lens we retrieve the intensity distribution of scattered light over all wave vectors
in the objective NA, essentially through imaging the back focal plane (BFP) of the
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Figure 2.1: Schematic overview of the experimental setup [a) and b)] together with the
representation of the two main working modes. In panels c) and d) the pictures present
a schematic view of the sample used together with a scanning electron micrograph of a
typical result of a fabricated Si3N4 waveguide with a deposited Au antenna.

imaging objective [25, 28–35]. By using a pinhole system at a distance equal to the
focal distance fFourier from the Fourier lens we spatially filter the scattered light prior
to wave vector imaging, so that we collect radiation patterns only from those parts of
the sample that we are interested in, namely the antennas. The Fourier image can again
be collected panchromatically on the CCD, or through the galvo scanning mirrors by
the fiber, which allows us to spectrally resolve the differential scattering cross section.
To conclude, with this configuration of the setup we can study the effect of the antenna
on the waveguide transmission (channel 3 in Fig. 2.1a) and scattering of the antenna
into the air side (channel 2 in Fig. 2.1a). Given the thickness of the quartz substrate
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used for the samples (∼ 600 µm), a home made solid immersion lens system (SIL) was
required in order to also access scattering into the substrate side (depicted as channel 4
in Fig. 2.1a), as the Olympus objective lacks the required working distance. This SIL
system that employs a BK7 glass hemisphere of diameter 2 mm, allowed us also to
collect light that was scattered by the antennas into angles that exceed the total internal
reflection angle of the substrate, however, only with spherical and chromatic imaging
aberrations too large to allow diffraction limited and Fourier imaging.

The second configuration of the microscope in Fig. 2.1b is designed to study the
converse interaction, i.e., rather than coupling in through the waveguide and collecting
scattered light, we study how light coming from free space (channel 2 in Fig. 2.1b)
is coupled into the waveguide mode. This configuration is achieved by swapping
the spectrometer-coupled detection fiber that is placed after the galvo system with
the combination of a pinhole system and free space collimated supercontinuum light
from the Fianium source. The light scattered into the waveguide and detected through
the fibers at the end facets is sent to the spectrometer to quantify the "forward" and
"backward" waveguide in-coupling spectra. In absence of the Bertrand lens, we couple
in light locally using real space focusing at the diffraction limit. When we flip the
Bertrand lens in so that the incident beam is focused in the objective back aperture, we
couple light in over a large area, yet at a well-defined incident angle that can be freely
varied over the entire objective NA.

Normalization of the scattering excited via the waveguide
A particularly difficult problem is how to quantitatively normalize the spectrum of light
scattered by the antennas to the spectrum that is offered through the waveguide to the
antenna. The only possible references we have access to are the spectra measured in
transmission through nominally identical blank waveguides (i.e., without antennas)
as a measure for the incident spectrum, and spectra obtained from scattering centers
that appear comparatively close to the antenna, due to roughness of the waveguide. In
the first case, artifacts may occur due to the fact that the spectrum may vary between
alignments and between waveguides, due to chromatic effects in coupling to the
waveguide, and for the 1 cm long waveguides due to the integrated effect of unexpected
small defects and impurities that change the spectrum along the length of the waveguide.
In the second approach, the advantage is that spectra are taken from a region very close
to the structure. However, one here relies on the assumption that the scattering centers
have no strong frequency dependence, and one does not obtain a quantitative signal
strength comparison, as opposed to when using waveguide transmission. In practice
no large difference between the two approaches is found when spectrally locating the
resonance. Here we present data using the second method (normalization to nearby
scattering centers), preferring spectral fidelity over an absolute scale.
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Sample fabrication
The samples used for the experiments are composed of gold antennas fabricated on top
of silicon nitride waveguides by aligned electron beam lithography. A sketch of the
structures used is shown in Fig. 2.1c. As we ultimately target visible light spectroscopy
applications, we consider silicon nitride waveguides. Fused silica wafers (n=1.45) of
100 mm diameter were covered with 100 nm thick Si3N4 using a LPCVD process. This
process [Lionix BV, The Netherlands] ensures low loss Si3N4 at manageable stress
levels for postprocessing. In order to define 1D waveguide ridges, we perform e-beam
lithography using a Raith e-line machine. The waveguides together with positioning
markers that are used at a later stage were defined in MaN2403 negative resist (200
nm thickness) with an electron beam lithographic step [dose 235 µC/cm2, 35 nm spot
size, current 0.14 nA and a fixed beam movable stage (FBMS) step size of 0.01 µm].
The pattern was then transferred into the Si3N4 by dry etching (Oxford Plasmalab,
50 sccm CHF3 and 5 sccm O2, 100 W forward RF power, 5 min etching time). In
a second electron beam lithography step the antennas were defined on top of the
waveguides, using alignment markers fabricated in the Si3N4 for precise positioning.
In this step ZEP-520A positive resist (125 nm thick, exposed with a line dose of 200 pA
s/cm, 29 nm spot size, current 0.03 nA) was used to define a liftoff mask for thermal
vapor deposition of gold. To mitigate the very poor adhesion of gold on Si3N4, in the
evaporation step we first deposited a thin chromium adhesion layer of ∼3 nm, prior to
the deposition of ∼30 nm of gold. A typical final result is shown in Fig. 2.1d.

In this chapter we discuss only one type of antenna namely the single rod 100 nm
long antennas. This antenna is composed of 1 element with a length of 100 nm and
a height of 30 nm as controlled by the gold evaporation. While we have studied
antennas on various waveguide widths, all the data presented here are for waveguide
widths of 1000 nm and 1500 nm. The strip height is 100 nm. We estimate the
electron beam alignment accuracy of antennas to waveguides to be ∼40 nm, i.e., far
below any typical feature of the waveguide mode structure as shown in the insets of
Fig. 2.2 a and b. The dispersion relations of these waveguides as well as their mode
profiles at different wavelengths are shown in Fig. 2.2. In this figure we present the
dispersion relation for both type of waveguides as calculated using a finite element
mode solver. Figures 2.2a and b show the profile of the waveguide modes at 750 nm
and 850 nm, which, as we will see later in chapter 2 and 3, are the center wavelength
of the resonances of the antennas discussed in both chapters. At these two wavelengths
the waveguides present single transverse electric (TE) mode behaviour. Due to the
polarization of the in-coupled light we excite only the TE modes of the waveguides. For
the widest of the two waveguides shown (1500 nm width) , the second TE waveguide
mode has its cutoff wavelength at around 600 nm. Choosing even wider waveguides
than 1500 nm would hence imply multimode behavior in the spectral window of the
plasmon resonance.
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Figure 2.2: a) and b) show the dispersion relations of silicon nitride ridge waveguides
on top of a fused silica substrate. The dispersion relations are calculated for waveguides
of 1000 nm (a) and 1500 nm (b) width and a guiding layer thickness of 100 nm. The
light lines for the silica substrate and the Si3N4 are the plotted black lines while the
first three modes m=1, 2 and 3 are plotted with color lines. In c) we plot the mode
profile for a 1000 nm wide waveguide at 750 nm wavelength. The inset of this graph
shows two cuts of the profile, one through the y axis and the other along the x-axis
at 15 nm from the top surface of the waveguide. This is the expected position of the
center of the antennas deposited over the waveguides.

2.3 Scattering of guided modes by single element
antennas

We first discuss measurements on single rod antennas excited through the 1000 nm
width waveguides. These measurements are intended to obtain the resonance frequency
of the single rod antennas. In order to obtain this information, TE polarized light
is sent in through the waveguide (channel 1 in Fig. 2.1a), and light scattered by the
antenna into the air-half space is collected and resolved on the spectrometer (channel 2).
Fig. 2.3b (continuous black line) shows the spectrum of light scattered into the air side
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of the sample by a 100 nm rod antenna normalized to the input intensity with which
it is excited through the waveguide according to the normalization method presented
in section 2.2. The antenna spectrum shows a clear peak centered around 750 nm,
with a bandwidth of around 55 nm (FWHM). The resonance frequency is comparable
to resonance frequencies previously found for rods on simple glass substrates [36–
39]. When collecting light scattered by the antenna into the substrate underlying the
waveguides using the (SIL) solid immersion lens system, we find that the resonance
frequency is almost identical (Fig. 2.3b (dashed red line)). However, when comparing
the intensity of the light emitted into the different media for quantitative reference,
we find that a signal approximately 2 times stronger is found into the quartz substrate
than into air, consistent with the fact that a higher scattering intensity towards the
high index medium is expected from the radiation of dipoles on top of a high index
layered system [40]. We conclude from our measurements that waveguide-addressing
of plasmon antennas allows for high signal-to-noise ratio dark-field spectroscopy of
single plasmon antennas both using collection of light from the air side, and from the
substrate side. This conclusion is promising for integrated applications of plasmonic
antennas in sensing using integrated optics. Even more promising is that detection in
such a sensing scheme could also occur via the waveguide itself. We estimate that a
single nanorod antenna removes approximately 20% of the intensity in the waveguide
mode out of the transmission channel (as can be seen in Fig. 2.4) and redistributes it
over waveguide reflection, absorption in the metal, and out-of-plane scattering. This
estimate results from transmission spectra normalized to nominally identical blank
waveguides shown in Fig. 2.4.

To obtain a more comprehensive understanding of how plasmon antennas scatter
waveguide modes, we analyze the scattered light further in terms of polarization and
directionality. In the remainder of this chapter we focus on collection of light on the
air side of the sample, as the quality of our imaging system is far superior in this
configuration. Polarization analysis shows that more than 90% of the light is scattered
in the polarization direction parallel to the direction of the antenna (y direction in the
reference frame depicted in Fig. 2.1a). We have also studied 100 nm rod antennas
fabricated at various rotation angles relative to the waveguide axis. As the antenna is
rotated from 90◦, 45◦ to 0◦ angle relative to the waveguide axis, we consistently find
strong polarization of scattered light collected on the air side of the sample along the
antennas axis.

We have access to the directionality of scattering by the single rod antennas using
Fourier microscopy, i.e., by insertion of a Bertrand lens into our imaging system. While
the 100 nm line rod antennas appear as diffraction limited points in spatial imaging,
interesting information is obtained when looking at the scattered light by imaging
the back focal plane of the objective in this manner. At the air side (channel 2 in
Fig. 2.1a ), the radiated pattern appears to be distributed over a wide range of angles
(up to sinθ = 0.7) relative to the sample normal (Fig. 2.3c and 2.3d). Upon polarization
analysis with a linear polarizer in detection we find a large contrast in integrated
intensity. In addition, the weak cross-polarized radiation pattern is clearly distinct from
the co-polarized pattern in that it consists of four separate lobes. Similar results were
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Figure 2.3: Sketch of the experimental geometry relevant for panels (b-f), in which we
collect out-of plane scattering due to the antenna that is excited through the waveguide.
b) Spectrum of the scattered intensity for a 100 nm long rod antenna on a 1000 nm width
waveguide (continuous black line) taken from the air side of the sample. (dashed red
line) taken from the glass side of the sample with a SIL. The spectrum is normalized to
the light offered to the antenna, measured by integrating light scattered from roughness
of the waveguide adjacent to the antenna. Both peaks show that the scattering of guided
modes happens through a resonant process. c) and d) Graphs of the measured radiation
pattern for the 100 nm rod antenna, analyzed through a vertical c) and horizontal d)
linear polarizer. The white circle indicates the NA of the Olympus objective (N.A=0.95).
The integration time for the vertical polarization is 1.45 s and 30 s for the horizontal
polarization. e) and f) Graphs of the simulated radiation pattern analyzed through a
vertical e) and horizontal f) linear polarizer. Field values are calculated at the position of
the microscope objective, i.e., 1.8 mm from the sample plane. The fields are normalized
to Ey = 1.7× 10−9 V/m, given a guided mode strength of 1 V/m. Graphs c) to f)
demonstrate that a 100 nm rod antenna located over a multi-layer substrate behaves as
an electric dipolar scatterer.

reported in [28] for antennas excited using total internal reflection (TIR) on a prism.
Clearly, waveguide excitation is an efficient alternative to TIR for dark-field Fourier
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Figure 2.4: Normalized transmission spectra of a 100 nm single rod gold antenna and
normalized scattering spectra of the same antenna (see section 2.2).

microscopy. We note that the fact that the radiation pattern extends somewhat outside
the NA of our objective indicates that diffraction by the spatial selection pinhole blurs
the measured radiation pattern. The radiation pattern found in the two polarization
channels for the 100 nm rod antenna in Fig. 2.3c and 2.3d bears the clear signature of an
in-plane y-oriented dipole placed on top of a Si3N4-SiO2 substrate. In high-NA imaging,
such a y-oriented dipole generates cross polarized fields at very large angles due to
the huge refraction angles in the aplanatic imaging system. The measured radiation
pattern for the 100 nm rod antenna, as shown in Fig. 2.3c and 2.3d is in excellent
agreement with the theoretical radiation pattern that is expected for a dipolar scatterer
positioned 30 nm above a 2D layer system consisting of quartz and silicon nitride as
shown in Fig. 2.3e and 2.3f. These theoretical radiation patterns are calculated by using
the analytically known far-field expansion of the Green’s function of a multilayered
system, as explained in Ref. [40]. In this type of calculation the substrate is an infinitely
extended multilayered system composed of Air-Si3N4-SiO2, thereby ignoring the finite
width of the 1D waveguide on SiO2. In this 2D waveguide geometry, we can perform
quantitative scattering calculations of antenna particles excited by waveguide modes
that we obtain by solving for the propagation constants and mode fields of guided
modes that are bound to the Si3N4 waveguide. In this approach, the polarizability
of scatterers is taken as the electrodynamically corrected quasi-static polarizability
of a prolate spheroid [41]. The dynamical correction used in the calculations for the
polarizability is [42]

α−1 = 1

αstatic
I − Im[Ginterface(r0,r0)]. (2.1)
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Here αstatic is the static polarizability of a prolate spheroid and Ginterface(r0,r0) is the
Green’s function of the layered system as found in [43] evaluated at the position of
the scatterer r0. The satisfactory correspondence between the measured radiation
patterns for antennas on 1D guides, and the theoretical figures for 2D guides implies
that the finite width of 1 µm of the waveguide used does not strongly alter the angular
distribution of light scattered out-of-plane. Arguably, close inspection of the data shows
that angular emission is narrowed in ky by the 1D waveguide compared to the 2D
system.

2.4 In-coupling by a single dipole antenna
As a complementary experiment on the antenna-waveguide system, we have also
performed the reverse, i.e., excitation from the far field and detection through the
waveguide (see Fig. 2.1b). In this experiment a diffraction limited focused spot is
scanned over the antenna and the light in-coupled into the 1500 nm wide waveguide
is acquired through the aligned optical fibers at the waveguide end facets. The inset
of Fig. 2.5 shows a plot of the maximum in-coupled intensity for different positions
of the scanned beam. The 2D grayscale plot, which could be viewed as a confocal
raster scanning graph, barring the fact that collection is through the waveguide, and
not through any objective, indicates that the light is being coupled into the waveguide
from a point that is approximately equal in size, or less, than the diffraction limit.
By calibration of the spot to a white light image of the fabrication markers, we
ensured that the center of the maximum in-coupled intensity coincides strictly with
the antenna position. At each position we furthermore collect spectral information,
as the incident beam has a broad spectrum and the detected light is coupled into the
spectrometer. Fig. 2.5 shows the spectrum at the location of maximum in-coupling
determined from the 2D spatial raster scan. We find a maximum coupling from free
space into the waveguide at a wavelength around 750 nm across a bandwidth of
65 nm (FWHM). The excellent correspondence of the in-coupling resonance frequency
with the scattering resonance we observe when illuminating through the waveguide,
indicates that resonant in-coupling into the waveguide occurs at the same wavelength
as scattering of the waveguide mode by the antenna out of the waveguide. Also, the
bandwidth agrees reasonably well with the measured bandwidth in the out-coupling
experiment. However, the spectrum in the in-coupling experiment has a tail towards
the near infrared wavelengths due to the red shifted cutoff frequency of the 1500 nm
wide waveguides compared to the 1000 nm wide waveguides used to obtain Fig. 2.3.

We now attempt to estimate the in-coupling efficiency of light into the waveguide
from the data measured in Fig. 2.5. In this experiment coupling from the waveguide to
the spectrometer used a metallized tapered fiber tip at the waveguide end facets, in order
to reduce stray light contributions such as grazing light coupled to the SiO2 substrate.
Unfortunately, the use of this metallic tip makes it difficult to find a quantitative coupling
efficiency of antenna to waveguide, as the waveguide-to-fiber efficiency is imprecisely
known. On basis of in-coupling intensity data of 10 kcts/s at 750 nm, knowing that
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Figure 2.5: Top: sketch of the experimental geometry. We excite the antenna from the
air side and measure how much light is coupled into the waveguide. Bottom: spectrum
of the light collected at the waveguide end facets, i.e., of the light coupled into the
waveguide upon excitation of the scatterer. A clear plasmon resonance is observed. In
the inset we show a confocal raster scanning graph of in-coupled intensity for different
positions of the focused spot.

the irradiance factor for our spectrometer is 12.86 (kcts/s)/(µW/cm2/ nm) at 750 nm,
we can calculate an in-coupled irradiance of 0.77 µW/(cm2·nm) in the spectrometer;
when using a free space focused beam with an irradiance of 1.56×108µW/(cm2·nm),
an estimated fiber collection efficiency of 10−4, an efficiency in the single mode to
multi mode fiber coupling of 10%, and a loss in the waveguide of 10−2. With this
data we estimate in-coupling efficiencies on the order of 1%, for diffraction limited
in-coupling beams. Unfortunately, the experimental uncertainties especially regarding
the in-coupling of the signal into the detection fibers, imply that our experimental
estimate is not more accurate than approximately one order of magnitude. To obtain an
independent, and possibly more precise estimate, we turn to theory.

We use the model of a dipolar scatterer on top of a 2D waveguide as explained
before. We find the efficiency with which such a scatterer couples light into the
waveguide in two steps. First, we find the extinct power, i.e., the power that is removed
from a plane wave incident from the air due to the presence of the scatterer. The extinct
power is defined as

Pext = ω

2
Im(p ·E∗

o ). (2.2)

Furthermore, the power that the induced dipole moment radiates into the far field
barring the waveguide mode can be calculated from the dyadic Green’s function far
field expansion that can be found in Ref. [40]. The difference in extinct power and
far field radiated power equals the power coupled into the waveguide, plus the power
absorbed by the particle due to losses. We find (assuming a plane wave excitation) that
the coupling efficiency strongly depends on the height of the single rod antenna with
respect to the waveguide as shown in Fig. 2.6 (green curve). This dependence reflects
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the strong spatial dependence of both the guided mode contribution, and radiative
mode contribution to the local density of states of stratified waveguide systems. We
predict a maximum incoupling+absorption of ∼48% for particle heights 30 nm from the
waveguide. This in-coupling decays exponentially with distance from the waveguide
and stabilizes at 30% at distances around 2 µm from the waveguide. Since significant in-
coupling is not expected for such large distances we estimate that those 30% correspond
to absorption in the particle. Taking that as a measure for absorption, we conclude that
a particle just above the waveguide will couple approximately 20% of the light that it
harvests from the input beam into the waveguide. The remaining 80% is split between
far field (50% of extinct power) and absorption (30% of extinct power). It is important
to notice that these numbers indicate the efficiencies with which the power is distributed
in the different radiation channels relative to the total power that couples to the dipolar
scatterer. To convert these relative efficiencies to actual cross sections, one needs to
determine what the absolute extinction cross section of the particle is. The overall
extinction cross section is anticipated to be at most 0.16 µm2, i.e., 1.2 times smaller
than the diffraction limit, as calculated from full wave simulations. To conclude, a
single particle illuminated by a diffraction limited beam can couple approximately 20%
of the incident energy into the waveguide, in accord with the crude measured estimate.
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Figure 2.6: Results of a calculation where a plane wave is sent towards the antenna
from the air side and the efficiency of absorption plus scattering into the waveguide
mode is reported. The axis show the ratio between guided plus absorbed power to
extinction power for plane wave excitation of the antenna found for a single rod antenna
element at different ‘z’ distances from the waveguide at 755 nm.

The constraint of fairly large absorption (30%), which in our system is due both
to the gold and to the underlying Cr adhesive layer, can be mitigated by shifting the
operation range further to the NIR using larger particles, or by swapping Au for silver.
In this case a protective dielectric could be required to avoid particle degradation. Such
capping is expected to also be beneficial optically, as it would pull the waveguide mode
up towards the particle, thereby likely enhancing the coupling efficiency.

38



2.5 Conclusions

2.5 Conclusions
To conclude, we have fabricated plasmonic antennas precisely aligned to dielectric
waveguides, and quantified their properties for applications in waveguide-integrated
plasmonics. We found that single rod antennas scatter light as electric dipoles on top
of a multi-layer system. As a first step, we have quantified how single plasmonic
antennas couple to waveguide modes, in particular quantifying how strongly, and into
which directions, antennas out-couple waveguide modes. Conversely, we have argued
that a single plasmon antenna can already couple up to 20% of a diffraction limited
input beam into the waveguide mode. These electric dipolar scatterers coupled to
dielectric waveguides can therefore be used as couplers of light from localized sources
to waveguide modes, or as phase controlled scatterers that can be addressed through
individual waveguides. Finally the understanding of these antennas and how we can
treat them analytically as electric dipole scatterers opens a way to design multielement
antennas in an analytical fashion without resorting to full wave simulations.
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3
Phased Array Antennas on a Dielectric
Waveguide

We use the single plasmonic structures on top of waveguides as pursued in chapter 2
as dipolar building blocks for new types of antennas where the waveguide enhances
the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda
antennas which show directionality in out-coupling of guided modes. These antennas
also show directionality for in-coupling into the waveguide, of localized excitations
positioned at the feed element. These measurements together with simulations demon-
strate that this system might be useful as a platform for plasmon quantum optics
schemes as well as for fluorescence lab-on-chip applications.

3.1 Introduction
In chapter 2 we showed that single rod antennas interact strongly with dielectric
waveguides and we showed that this interaction can be modeled as the interaction of
electric dipolar scatterers on top of a multilayered waveguiding system. We now turn
to the study of phased arrays antennas. These antennas are of particular recent interest,
since they are array antennas that consist of well understood individual objects, such as
metal nanorods [1] with a strong anisotropic polarizability, which are placed in arrays
of carefully engineered geometry [2–5] in order to obtain specific responses depending
on driving conditions. For instance, one could think of engineering an array of rod
antennas to obtain a system which would create regions with a very strong electric
field intensity (hot spots) in the vicinity of the antenna when driven by a plane wave,
or antennas that when driven by a localized source could direct the light in one or
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more chosen desired directions. The physics of these phased array systems is that
electrodynamically retarded interactions set the strength and phase of coupling between
elements, such that desired functionality ensues from interference. For instance, Yagi-
Uda antennas [3, 4, 6–9] are phased array antennas that provide directionality to locally
embedded fluorophores, due to constructive interference of the waves scattered by
each antenna element in the forward direction. While all the control variables in terms
of building block size and shape, as well as the geometries that optimize interaction
have been investigated by many researchers [2–4, 7–11], it is imperative to note that a
strongly structured embedding dielectric environment will not only change the single
building block response, but also the retarded interactions. Therefore, it is important to
first study how single objects scatter when placed on waveguides, and subsequently to
explore how array antennas function when placed on waveguides which is the main
topic of this chapter. The interaction of sources and scatterers with 2D stratified media
and waveguides is a subject that has attracted large interest for many applications in
optoelectronics, with as main application area photovoltaics and light-extraction from
LEDs. The seminal work by Soller and Hall [12] aimed at quantifying the coupling
efficiency of scatterers to layered media now acquires new significance for plasmon
enhanced solar cells [13, 14]. In the framework of integrated optics, many groups
have studied the interaction of 1D and 2D periodic lattices of plasmon strips [15],
single plasmon strips and particles [16, 17] with 1D and 2D waveguide modes. In
this work we are particularly interested in 1D waveguides coupled to antennas that are
subwavelength phased array antennas, as opposed to extended diffractive structures. A
recent experimental study of plasmon particle arrays coupled to 1D waveguides was
reported by Février et al. [18], who employed near field measurements to show that the
modes of arrays of gold scatterers coupled to silicon waveguides may indeed hybridize
with the waveguide mode.

a)

500nm

b)

Au

SiO2

Si3N4

100 nm

Figure 3.1: In a) and b) we present a schematic view of the sample and substrate used
together with a scanning electron micrograph of a typical result of a fabricated Si3N4
waveguide with a deposited Yagi-Uda Au antenna.

In this chapter we perform calculations on phased array Yagi-Uda antennas po-
sitioned over a 1D Si3N4 ridge waveguide on a fused silica substrate, as shown in
Fig. 3.1 a. These calculations allow us to determine what is the geometry that best
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3.2 Multi-element antennas

fits the requirements for strong coupling of light into the waveguide structure. We
continue the chapter with measurements on the designed antennas (Fig. 3.1b). These
measurements show that we can achieve high contrast efficient unidirectional coupling
of localized excitations to the waveguide, which can be controlled by wavelength.
These results are highly promising for designing and realizing antennas to control the
emission of single emitters.

3.2 Multi-element antennas
For multi-element antennas, we can apply our understanding of the operation of single-
element antennas (chapter 2) to improve the absolute in-coupling cross section, albedo,
and directivity, similar to the functionality of free space Yagi-Uda antennas [2, 4, 7,
9]. To begin, we start by using the approach of considering small rod antennas as
electric dipolar scatterers, so that induced dipole moments p can be found by using the
expression

p =αEtotal(r′), (3.1)

where α is the polarizability tensor that describes the response of the rod antenna
(in this case a dynamically corrected prolate spheroid polarizability [19]) and where
Etotal(r′) is the total electric field present at position r′. In our problem we need to
consider a set of N dipoles positioned on a layered system. An important realization is
that if we have a dielectric system that consists of planar waveguides or 1D waveguides,
understanding coupled systems is a two step process. Firstly, similar to Eq. (1.20), the
induced dipole moments in N particles located at (r1...rN ) will be set by [20]

pn =α[Ein(rn)+ω2µ0µ
∑

m 6=n
G(rn ,rm)pm], (3.2)

where the driving field Ein(rn) is a solution to the antenna-free problem, such as a
waveguide mode, or far field illumination. The Green’s function G(rm ,rn) of the
waveguide system quantifies the particle interactions as they are mediated through
waveguide, substrate, and air cladding layer. Based on chapter 2, we can use the
Green’s function of a 2D waveguide system as an approximation for the near-field
interactions present in 1D waveguide systems, like our ridge waveguide. Therefore in
this chapter it is the 2D infinite multi-layer Green’s function that we employ to calculate
the scattering properties of phased array antennas. The second step in understanding
the physics of multi-element antennas is that the near fields, far fields, etcetera, are
found by coherent superposition of the single-element properties as [20]

E(r) =ω2µ0µ
∑
n

G(r,rn)pn . (3.3)

It is this second step, for which we have quantified properties in chapter 2, that ensures
that multi-element antennas can control directivity, albedo, etc., just as for antennas in
free space [2, 4, 7, 9]. The linear superposition principle will, for instance, imply that
the radiation pattern into free space and waveguide of a multi-element antenna equals
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that of a single-element antenna (form factor) multiplied with a structure factor that
depends on where the different elements are placed. As a consequence, light can never
be redirected into directions into which the single elements do not radiate, but light
can be significantly redistributed through interference between the different channels
into which the single elements do radiate. Thus, one can for instance seek to obtain
enhanced radiation into the waveguide and suppression of radiation into substrate and
air, through destructive interference.

Given that plasmon particles couple strongly to each other both directly and through
coupling mediated by the waveguide one can design multi-element antennas with
different final purposes. One design goal is to achieve antennas that maximize the
coupling of incident plane waves into the waveguide. Another design goal is to
achieve an antenna which maximally couples energy from a single dipolar emitter
into the guided mode. The latter would essentially constitute a waveguide-coupled
plasmon Yagi-Uda antenna. Here we consider both design goals. First we focus on
optimum structures for coupling plane wave excitation incident from the air side into
the waveguide using the dipolar antenna building block at fixed height. The point of
this example is not to design a structure that replaces conventional end-fire in-coupling,
as mode matching to waveguide end facets evidently always has the best potential
for in-coupling. Rather, we aim to show how our toolbox can be used to design
antennas with an ultra-small footprint (below 1 µm length) that harvest light from
out-of-plane directions very well. Such a scenario could be relevant for, e.g., detectors,
or future applications in which vertical optical interconnects are desired on multi-layer
optoelectronic devices [21]. As optimization parameter, we scan the distance between
elements and evaluate the coupling, as shown in Fig. 3.2c. On the x-axis we plot
the distance between elements in units of the guided mode wavelength λwaveguide at
755 nm. We find maximum in-coupling at distances which are n times λwaveguide (with
n an integer) and minimum when the distance is (n + 1/2) times λwaveguide. Since
the scatterers are driven in-phase, the arrangement essentially reflects that just a few
particles already result in the well-known effect of a grating coupler, that can boost
in-coupling by a factor ∼2 to 3 compared to a single rod antenna positioned 30 nm
from the substrate (see Fig. 2.6).

As a second example, more appropriate for extending plasmon quantum optics
to waveguide integrated systems, we consider the scenario of a waveguide coupled
Yagi-Uda antenna. An example of this type of antenna is presented in Fig. 3.1a and b
where we see that a Yagi Uda antenna is commonly an array antenna with a feed
element, a reflector element and director elements that provide directional emission of
the field applied to the feed element. Here, the design goal is to couple the radiation
of a single dipolar emitter, such as a localized molecule, quantum dot or diamond NV
center selectively and unidirectionally to a single waveguide mode using an array of
scatterers. The design goal is hence for the radiation of antenna elements and dipole to
add up destructively everywhere, except in the waveguide. In this case, a dipolar emitter
is located 30 nm above the first element of the antenna. This emitter generates the
driving field Ein(rn) over the n elements of the antenna. With this field we calculate the
induced dipolar moments of the antenna elements which subsequently are used to find
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Figure 3.2: a) Presents a sketch of the calculations shown in panel c). In these
calculations a plane wave is sent towards the antenna from the air side and the efficiency
of absorption plus scattering into the waveguide mode is calculated. c) ratio between
guided plus absorbed power to extinction power for plane wave excitation of the
antenna. Using a height of 30 nm multi-element antennas (2, 3 and 4 elements) are
investigated for different distances ‘d’ between elements composed of 100 nm Au rod
antennas. b) Presents a sketch of the calculations shown in panel d) where an emitter
is positioned 30 nm above the first element of an antenna to calculate the absorption
efficiency plus emission efficiency of the antenna into the guided mode. This ratio of
in-coupled and absorbed light to extinct power is presented for multi-element antennas
(2, 3 and 4 elements) as a function of the distance between the elements when the
antenna is being excited with the dipolar emitter located above the first element of the
array. Horizontal axes are in units of 2π/β= 0.493 µm which is the wavelength of the
guided mode at 755 nm.

the scattered field, as explained earlier. In Fig. 3.2d we plot the incoupling+absorption
rate, as a function of the distance between the directors in the antenna array. As in
Fig. 3.2c we plot distance in units of the waveguide mode propagation wavelength. A
maximum in-coupling is found for a range of separation distances centered around
∼ λwaveguide/4 at 755 nm and ranging from ∼0.1 to ∼0.45 λwaveguide. This range is
commensurate with the standard rule of thumb for free space Yagi-Uda antennas, that
the spacing needs to be around λ/3, and below λ/2 to avoid multiple lobes. However,
in this case the criterion uses the wavelength of the waveguide mode. The optimum
design hence depends on the dispersion of the waveguide. As regards in-coupling
efficiencies, this calculation predicts that less than 20% of the emission is directed
out-of-plane into either air or substrate. At the same time, 80% of the emission that is
captured by the waveguide will be directed in a narrow forward lobe, with an angular
distribution in a half angle cone of 37◦ inside the assumed 2D Si3N4 layer. We note

47



3 Phased Array Antennas

that Yagi-Uda antennas realized so far have been essentially free-space designs placed
for practical reasons on air/glass interfaces [2–4]. In this scenario, a directional beam
results, that is however completely directed into the glass, along the critical angle
for the air-glass interface [9]. The utility of this form of directionality for on-chip
applications is very limited, as the directional beam is directed out-of-plane. Here
we show that this limitation can be overcome by placing the Yagi-Uda concept into,
or on a waveguiding dielectric structure. Our calculation shows that even moderate
waveguide confinement strongly influences the directionality to be entirely in-plane
and into the guided mode. Thereby, the Yagi-Uda-waveguide combination could be
a promising route to plasmon quantum optics. As opposed to, e.g., the plasmonic
nanowire paradigm [22–24] that foresees quantum optics in networks in which the
excitation remains in dark plasmons throughout, here the utility would be that photons
experience entirely lossless transport through established dielectric technology, and
conversion to plasmons for light-matter interaction is localized to the sites where it is
needed.

3.3 Measurements of waveguide excited multi-element
antennas

Based on the design presented in Sec. 3.2 Yagi-Uda antennas were fabricated following
the procedure explained in Sec. 2.2. A typical example of a fabricated antenna and the
waveguide structure is presented in Fig. 3.1a and b. The antennas were fabricated on
top of 100 nm thick and 1000 nm wide Si3N4 waveguides on a fused silica substrate,
and are composed of 5 rod shaped elements, 3 directors, 1 feed element and 1 reflector,
with lengths of 115 nm 120 nm and 180 nm, respectively. The width of the elements is
65 nm and the total length of the antenna is ∼790 nm. The measured center-to-center
distances between the elements are 170 nm between reflector and feed element, and
183 nm between all other neighboring plasmonic rods. This periodicity of 183 nm
or 0.32 ·λwaveguide at the antenna strongest response wavelength (vacuum wavelength
830 nm) falls well in the range predicted to provide directional behavior according to
the theory of the previous section (Fig. 3.2d). We investigated the Yagi-Uda antennas
using the same methodology applied to the single-object nano-antennas in chapter 2.
The measurements are shown in Fig. 3.3. Transmission measurements indicate that
this antenna strongly scatters light from the guided mode, since up to 90% of the light
is being scattered out of the waveguide due to the presence of the antenna (Fig. 3.3a
(black curve)). The spectrum of the guided mode scattering into the air side of the
sample shows a resonance at a wavelength of 830 nm, as shown in Fig. 3.3a (red
curve). This resonance is significantly red-shifted compared to the resonance of single
plasmon particles in Fig. 2.3. In part this shift is due to the fact that the antenna
elements are slightly longer than the 100 nm rods, causing a red-shift of the resonance
in each particle. In another part, this shift is due to the fact that the antenna response of
Yagi Uda antennas is red shifted by plasmon hybridization [25], as reported already
by [7, 8]. Quite unlike the case of a single rod antenna, the spectrum strongly depends
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Figure 3.3: Measurements of the scattering of the guided mode to free space modes
carried out on a Yagi-Uda antenna on top of a 1000 nm width waveguide. a) Normalized
transmission spectra and normalized scattering spectrum into the free space of the
guided mode by the antenna. b) Confocal scans over the sample plane of the scattering
due to the antenna. As sketched in the cartoon the reflector is located at the left side
of the image and the directors are located at the right side. The beam is incident from
the right side through channel 1 and the scattering out-of-plane is measured in the air
side through channel 2. The graphs in b) show different frequencies measured when
focusing at different positions in the sample plane. Panel c) shows the calculated image
generated by an array of dipoles with the polarizability of a prolate spheroid and the
dimensions of the elements of the Yagi-Uda antenna. This image is calculated from
the far fields generated by the scattering of the dipoles using the amplitude and vector
microscope point spread function of confocal microscopy. Finally, panel d) shows the
magnitude and phase of each dipole moment along the antenna array. The magnitudes
and phases are presented for different wavelengths namely 700 nm, 750 nm, 800 nm,
850 nm and 900 nm.
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on the part of the antenna from which the light is detected by our imaging system (see
Fig. 3.3b). In fact in a spectrally resolved raster scan of the antenna one can visualize
two clearly distinct zones which change relative intensity depending on the wavelength.
For λ=700 nm both zones show strong scattering of the waveguide mode, while the
front zone decreases its intensity when shifting λ to the red. At 900 nm wavelength
we observe that the antenna scatters light from the entire area of the antenna. Naively
one might assume that a confocal scan reports an image of the local field intensity
|E |2 at the antenna, blurred by the diffraction limit. In this view, the appearance of
distinct bright zones at different wavelengths would indicate spatial localization of
induced dipole moments |p|2 along the chain, similar to the report by de Waele et
al. [8]. In reality, more information is hidden in our data, since image formation is
a coherent process that actually results from interference of radiation from all the
dipoles in the sample plane on the confocal pinhole. Thus, phase information is also
hidden in the confocal images, and the collected spatial distribution should not be
interpreted simply as a map of |p|2 with Gaussian blurring due to the diffraction limit.
We have performed calculations, shown in Fig. 3.3c and d, that include the interference
in the image formation process using the amplitude and vector microscope point spread
function of confocal microscopy [20], similar to the calculations used to support the
measurement of wavelength-tunable localization of dipole excitations on plasmon
chains in index-matched environments reported in Ref. [8]. Our calculations confirm
that simply changing the input wavelength strongly changes both the spatial distribution
of induced dipole strengths, as well as the distribution of phases excited along the array.
For instance, having all elements in phase results in the antenna appearing as a bright
entity in the confocal scan (Fig. 3.3b, 900 nm wavelength). Conversely, for wavelengths
where the antenna lights up as two distinct regions (Fig. 3.3b, λ < 800 nm), a 180◦
phase jump occurs in the induced dipole moments along the length of the plasmon
chain. To conclude, the spatial maps prove that the Yagi-Uda antenna indeed acts as a
phased array, driven coherently by the waveguide mode.

The spatial mapping shows that, depending on excitation wavelength, the amplitude
and phase of the dipole excitations on the particle chain is strongly varying. It is
exactly this physics that gives rise to the interference that makes a Yagi-Uda antenna
directional. An excellent way to assess the coupling between antenna particles is to map
radiation patterns for different driving conditions. We measure the radiation patterns
on the air side using Fourier imaging. We select distinct wavelength slices using
40 nm bandwidth band pass filters placed in front of the CCD camera. The scattering
into the air side shows strong directionality with a distinct wavelength dependence
(Fig. 3.4). From these measurements we see that Yagi-Uda antennas, when placed over
a waveguide system, continue presenting directionality in their scattering. At 850 nm
close to the scattering resonance the scattering in the forward direction is maximum.
Far from resonance at 700 nm the backward directed scattering and the forward directed
scattering have the same intensity. The scattered light is highly polarized in the direction
parallel to the antenna elements, with polarization ratio > 1:9. In conclusion, Yagi-Uda
antennas on top of waveguides allow spectrally controllable directional out-coupling of
waveguide modes, as well as wavelength and excitation direction dependent control
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Figure 3.4: Measurements of the scattering of the guided mode to free space modes
carried out on a Yagi-Uda antenna on top of a 1000 nm width waveguide. In the panels
we show Fourier images of the Yagi-Uda antenna for the scattered light coming from
the guided modes. The images are acquired with a CCD camera and the different
ranges of wavelength are selected using bandpass filters with 40 nm FWHM. These
graphs show that the antenna on the substrate has directionality in its scattering. (The
integration times are: for 700 nm 9.64 s, for 750 nm 3.09 s for 800 nm 1.45 s, for
850 nm 6.6 s and for 900 nm 30 s.)

of amplitude and phase along the length of the antenna, very similar to observations
recently made in scattering experiments [7, 8]. Such tunable radiation patterns upon
local driving, and reciprocally tunable response upon far field driving can be viewed as
a poor mans version of coherent control, where the phase and amplitude of fs pulses
serve to optimize hot spots or directionality [26–28]. We envision that the localization
and directionality could be further optimized in future experiments by using ultrafast fs
waveguide excitation and pulse shaping strategies [29]. As a possible application one
can envision the use of this platform of waveguide-addressable spatially tunable hot
spots for, for instance spatially cross correlated spectroscopies, such as fluorescence
correlation spectroscopy [30].

3.4 In-coupling by a Yagi-Uda antenna
As a final aspect of our experiment, we report on the in-coupling into the waveguide
mode of a 1500 nm waveguide that can be achieved by raster scanning a focused spot
over the antenna. Our theory has shown that for in-coupling of plane waves a multiple
of λwaveguide spacing is optimal so that a grating coupling effect aids in-coupling. The
Yagi-Uda antenna that we explore in this work is evidently not an ideal structure for
in-coupling plane waves, owing to its much smaller periodicity. Indeed, Yagi-Uda
antennas are designed for in-coupling localized excitations rather than plane waves. For
diffraction limited illumination of just a few antenna elements one might approximate
such localized excitation by almost achieving a situation in which just one element
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Figure 3.5: a) Confocal image of the waveguide obtained by scanning a focused spot
over the Yagi-Uda antenna on top of a 1500 nm width waveguide and collecting spectra
of light coupled into the waveguide at the waveguide end facet. The map is created by
plotting the integrated count rate of the spectra taken at each position of the sample.
b) and c) spectra acquired from the positions of maximum in-coupling located at the
directors and reflector side of the antenna, when measured through channel 1 and
channel 3, as depicted in the top right sketch of the experiment. These graphs show
the different spectral behaviour of the different parts of the antenna, namely, when
exciting the directors the same spectra emerge from both waveguide ends. In contrast
when locally exciting the reflector and feed element the spectra coupled into both
forward and backward guided mode are highly different. The observations show high-
contrast unidirectional coupling into the waveguides that can be reversed by sweeping
wavelength.

of the antenna is excited. Excitation of just the plasmonic feed element by a focused
beam can thereby be used as an experimental probe of antenna directivity that mimics
localized excitation by a molecule in a scattered signal, as realized by Kosako and
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Hoffman for antennas on an air-glass interface [4]. Therefore, we record scattering into
the forward and backward waveguide direction as a function of where we illuminate
the antenna with a tight focus. As in scattering, two distinct zones of high in-coupling
are found when we collect signal in both waveguide branches, and integrate over the
full white light spectrum. Using spectrally resolved detection we assess whether these
two zones of efficient in-coupling, one of which is at the feed element of the antenna,
and the other of which is at the directors, are associated with the same or with different
spectral features in the light that is coupled into both waveguide ends. In Fig. 3.5b we
plot the spectrum that is collected at both the forward, and the backward waveguide
end when we excite the directors of the antenna. When the excitation spot is focused on
the directors, and therefore the directors are excited in phase, almost identical spectra
emerge from both waveguide ends. In stark contrast, when the excitation spot is focused
on the reflector side of the antenna, i.e., largely on the feed element, generating a phase
gradient over the directors, the spectra that emerge at the two waveguide ends are very
different from each other. At the end facet corresponding to the backward direction
(reflector side of the antenna) we obtain a spectrum that is significantly blue shifted
from the spectrum retrieved at the the forward direction end facet. The steep gradient in
the spectra around 830 nm imply that it is possible to completely reverse the direction
of the in-coupled beam that is launched into the waveguide with a very high contrast,
simply by a small change in excitation wavelength. This behavior is reciprocal to
the strongly dependent receiver response of antenna arrays, that is expected to swap
directionality as the excitation wavelength is swept through cutoff, a phenomenon
first reported for plasmonic antennas in experiments by de Waele et al. [8]. When
examining the in-coupling count rates in Fig. 3.5a for the Yagi-Uda antenna we see
that the in-coupling for the Yagi-Uda is around three times more efficient than for the
single element antenna.

3.5 Conclusions
To conclude, we have built on the results from chapter 2 to design plasmonic phased
array antennas. Using the knowledge gained of the response of single element antennas
on top of a waveguide, we have demonstrated how one can use the single dipole
antenna as building block of a rational design strategy for multi-element antennas that
derive functionality from a phased-array coherent response to driving by the waveguide
mode. In particular, we have demonstrated that waveguide-coupled Yagi-Uda antennas
provide a platform for waveguide addressable spatially tunable hot spots, that can for
instance be used as programmable hot spots of pump light for spatially cross correlated
spectroscopies. Conversely, the antennas can provide strong directionality, notably
allowing to couple a local driving field unidirectionally into the waveguide. While
our experimental demonstration of this unidirectional coupling used an external laser
scattered off the antenna, our calculations show that this functionality will directly
extend to fluorophores. Thereby, waveguide-hybridized plasmon array antennas are
a highly promising platform for many applications. For instance, one can efficiently
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collect all the fluorescence of single fluorophores directly through a waveguide. The
combination with the programmable hot spots of pump light that can be generated,
makes this platform highly attractive for making optofluidic lab-on-chip devices that
have entirely on chip integration of driving and readout for advanced fluorescence
assays at single molecule levels. Also, we envision that hybrid systems of plasmon
antennas and dielectric waveguides may outperform proposed plasmon quantum optics
schemes [23, 24]. While plasmonics offer very high light-matter interaction strength
for coupling to localized emitters that act as qubits, the structures with the highest
interaction strength are usually least suited as waveguides for transport, as losses are
high. We propose that the combination of antennas and dielectric waveguides allows
one to combine low loss transport as photons that are converted back and forth to
plasmons only exactly where needed, i.e., at an antenna surrounding an emitter.
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4
Localized Excitation of Antennas on Waveguides

Plasmonic antennas fabricated on dielectric waveguides represent a very interesting
option if one desires localized nodes with strong field confinement for spectroscopy
or enhanced light-matter interaction that are addressable through on-chip channels
with the lossless transmission of dielectric waveguides. In this chapter we show an
experimental and theoretical study of the response of phased array antennas fabricated
on waveguides to localized excitations. These excitations are created using the highly
focused electron beam of an SEM, that can address each one of the antenna constitutive
elements individually. These so-called cathodoluminescence experiments map how
much light the antenna as a whole emits, given that one drives individual elements
with a set driving strength. This total response is a combination of both the coupling
between antenna elements, and the polarizability of each element. Our maps indicate a
large variation in local response as a consequence of the exact antenna geometry. By
calculating the directionality and excitability properties of a large ensemble of Yagi-
Uda antennas with small size deviations, intrinsic to the fabrication process, we show
that while small intrinsic disorder does not affect the directionality of the antennas, in
the near field disorder may strongly affect the excitability of individual elements.

4.1 Introduction
Experiments on plasmonic antennas on waveguides [1–10] have shown that they
constitute a possible route to use the capabilities of nano plasmonics in an integrated
platform. For instance one could conceive of lab-on-chip applications that use on-
chip routing of light in waveguides with plasmonic elements for plasmon-enhanced
spectroscopies. This possibility combines the merits of lossless transmission of
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4 Localized Excitation of Phased Array Antennas

dielectric waveguides and the strong field confinement of plasmonic antennas. The
combination of these functionalities on a chip promises to bring detection of atto liter
analyte volumes as well as control over the transmission of data in waveguides with
plasmonic elements with sub micrometer footprint [11]. We have shown in Chapter
3 that Yagi-Uda phased array antennas on a waveguide not only scatter guided light
directionally out of the waveguide but are also able to in-couple light from free space
into guided modes directionally when one excites just one or a few elements of the
antenna with a narrow focus [2]. This functionality ensues first from the strong coupling
of resonant dipolar scatterers to waveguide modes (chapter 2) and second from the
constructive interference that radiation from these antenna elements have in the forward
direction, created by a properly engineered phased excitation of each antenna element.
The experiment in chapter 3 to prove directional in-coupling into the waveguide used
raster scanning of a focused spot of white light over the antenna and measuring the
intensity of the light coupled to the waveguide with a spectrometer. However, this
is really a poor man’s version of the ideal experiment, which would be to provide
local excitation of single elements by a point source. Curto et. al. [12] showed that
this is feasible by lithographic attachment of quantum dots. As a complement to this
technique we would like to determine maps with a measure of “excitability” as a
function of position on the antenna, i.e., how strongly a point source of given strength
excites the antenna depending on its location. A measurement technique that attains
this is cathodoluminescence (CL). Although in our original plan we also wanted to
measure the directive emission of localized excitations on Yagi-Uda antennas, it turned
out that the number of interferences obtained from direct scattering off the chip edges,
alignment markers and cathodoluminescence signal not coupled to the waveguide
made impossible the identification of directional emission. Therefore, this chapter
focuses solely on spatial maps obtained with cathodoluminescence, and not measured
directionality.

Fabrication In this work we set out to study the response of Yagi-Uda antennas
fabricated on waveguides to local excitation by a 30 keV electron beam in a cathodolu-
minescence microscope set up, i.e., in an SEM with optical detection. This technique
requires the samples to have a moderately high conductivity to avoid charging, which
would decrease spatial accuracy of the electron beam excitation. Since we are interested
in antennas placed on top of non-conductive dielectric waveguides, we chose to
fabricate the samples on dielectric Si3N4 membranes thin enough to avoid charging
effects. We fabricate samples in a two step process. First we deposit antennas made
of gold on top of unstructured membranes. Next we define waveguides in a second
fabrication step. The first step, i.e., definition of antennas was done by an e-beam
(Raith) lithographic step using a ZEP resist on a silicon rich Si3N4 membrane (100 nm
thick. Norcada Inc.), followed by gold evaporation and lift off, see Fig. 4.1a. See
Chapter 2 for a full description of this process. After the evaporation a waveguide
was defined around the resulting antennas with a Gallium focused ion beam (FIB FEI
Helios) (see Fig. 4.1b). One-dimensional waveguides resulted from ion beam milling
two rectangular holes of ∼ 5 µm × 20 µm at each side of the antenna with a distance
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equal to half the width of the waveguide. Subsequently, in order to extract the light
coupled to guided modes in the waveguide, two gratings were defined on the front
and back side of the waveguide as shown in Fig. 4.1c and d, at distances 6 microns
away from the antenna. We fabricated Yagi-Uda antennas composed of five elements.
As usual in literature [12], these elements are called the reflector element, the feed
element, and in this case 3 directors. Since all antennas we report on had different

1 µm400 nm

a) b)

d)

3 µm

Au

Si3N4

c) Waveguide Grating
a=600 nmd=300 nm

Figure 4.1: Scanning electron microscope images of: a) the smallest Yagi-Uda antenna
used (YU1), b) a Yagi-Uda antenna on a bridge waveguide with 1000 nm width (YU4).
c) Sketch of a Yagi-Uda antenna on a Si3N4 waveguide. The waveguide is terminated
with gratings on each end. One of the gratings is shown in fig d). In this case the
grating has a pitch of 600 nm and a duty cycle of 50%

dimensions, we list their sizes individually. To begin, antenna YU5 has a reflector
size of 150 nm a feed size of 111 nm and directors with length 100 nm. The distance
between the reflector and the feed is 170 nm and between the feed and the directors is
208 nm, respectively. The antennas YU4,YU3 and YU2 were designed in such a way
that the rod elements as well as the distance between the elements would decrease 10%
in between every realization of the antennas. Antennas YU1 and YU4 were designed
with the same element size but the distance between the elements in antenna YU1 was
decreased by 50% with respect to YU4. The reason to use these different antennas was
to see how the size and spacing of elements influence the directional emission and what
is the effective tunability that we can have while employing gold for fabricating these
nano-antennas. Due to proximity effects changes in the distance between the elements
also changed the final sizes of the antenna elements from the designed values. The
measured sizes of the fabricated antennas are shown in table 4.1, while SEM pictures
of these antennas are shown in Fig. 4.2.
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Antenna Refl.(nm) Feed(nm) Dir.(nm) Refl.to Feed(nm) Feed to Dir.(nm) Dir to Dir.(nm)
YU1 126 nm 105 nm 95 nm. 89 nm. 100 nm 99 nm
YU2 93 nm 70 nm 60 nm. 119 nm. 140 nm. 137 nm
YU3 125 nm 100 nm 86 nm. 130 nm. 160 nm 160 nm
YU4 130 nm 97 nm 84 nm. 158 nm. 183 nm. 183 nm
YU5 150 nm 111 nm 100 nm. 170 nm. 208 nm 208 nm

Table 4.1: Dimensions used for the fabricated Yagi-Uda antennas.
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Figure 4.2: Scanning electron microscope images of the different antennas used.
Starting from the front side of the antenna as indicated in the figure we find three
directors, a feed element and a reflector located at the back of the antenna.

Measurements We studied the samples in a so-called “cathodoluminescence set-up”.
Such a set-up essentially consists of a scanning electron microscope in which samples
are illuminated by a 30 keV electron beam of 5 nm spot size. Any light that is emitted
as a consequence of this irradiation is called “cathodoluminescence”. While generally
cathodoluminescence might originate from a variety of sources, such as luminescent
centers in the material under study, for metallic structures it has been shown [13–
17] that the dominant mechanism is that the fast electrons induce plasmons that can
subsequently radiate out as light. It is generally accepted that this very localized and
sudden excitation causes a spectrally broad response that upon spectral filtering allows
one to make high resolution spatial maps. In the set up at AMOLF, this resolution
solely derives from the excitation position and not from the detection process, which
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uses a parabolic mirror that integrates over a ∼25×25 µm area, and over 1.46π sr solid
angle. In this work we refer to maps of this excitation-position and wavelength resolved
CL intensity as "excitability maps". Since a fast electron is similar to a transient,
i.e., very broadband, local current source, this “excitability” is often considered to be
proportional to LDOS [18–20]. We refer to Ref. [13, 21] for a detailed account of this
technique. As part of the measurement protocol it is important to note that we normalize
the signal acquired with the spectrometer CCD array by the CL response obtained from
a single crystalline Au substrate, for which we have a validated theoretical transition
radiation (TR) excitation response function [13, 21]. This procedure is done in order
to eliminate the setup response function. After the normalization, we subtracted the
background in order to obtain the signal coming only from the photons created at the
antenna position, and not from photons created due to defects in the substrate. We
subtract background signal measured at the substrate far from the antenna from the
signal acquired at and close to the antenna. Count levels on the CCD at bright antenna
locations were about ∼120 ADU.

In Fig. 4.3a we show the excitability maps measured (blue panels) on the different
antennas of which the dimensions are indicated in Table 4.1. These figures show
in general a very low excitability except at select locations that coincide with the
extremities of the plasmon particles. This indicates the homogeneity of the substrate
signal validating our background correction. In contrast, when the electron beam is
positioned on the elements of the antenna we see that the intensity increases drastically.
The maps show that the recorded intensity is highest at the ends of the plasmonic rods
that compose the Yagi-Uda antenna. When comparing the different panels for a given
antenna, i.e., when comparing different wavelengths, we also see that the recorded
intensity distribution changes significantly with wavelength. For antenna YU1, for
instance the reflector is the brightest element at 800 nm, while the other elements
increase their signal intensity at shorter wavelengths. In general for all antennas we
find the same behaviour, in the sense that the reflector is the most excitable at longer
wavelengths while the feed and director elements become more easily excitable at
shorter wavelengths. However, the precise order (in wavelength scale) in which
directors progressively increase their excitability changes between antennas. An
interesting observation that can be made from the measurements in the excitability
maps is that, in the wavelength range used, all the elements support electric dipolar
resonances. This is concluded from the maps which show that every rod element lights
up at both ends of the rod, consistent with in plane electric dipolar currents excited
with an electric point source aligned out of plane, just as the driving source obtained
with CL. This result is also consistent with the study conducted in chapter 2, where we
demonstrated based on far-field Fourier images that 100 nm long plasmonic rods show
in-plane dipolar resonances at these working wavelengths.

In order to quantify the spectral response of every antenna element we integrate
the recorded counts over an area of 4×4 pixels at the positions of maximum intensity
as a function of wavelength. This dependence of intensity vs. wavelength is plotted
in Fig. 4.3b. We consistently see that the e-beam excites resonances in the individual
antenna elements which show up in our measurement as peaks with an average full
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Figure 4.3: Panels a) show cathodoluminescence images of the Yagi-Uda antennas
studied. These images present the signal acquired by a spectrometer when the electron
beam spot is positioned at the positions indicated in the figures. The different
wavelengths presented are indicated on the top of the image. Panels b) show the
integrated spectra from the excitability maps at the positions of maximum excitation in
the single elements that compose the antenna.

width half maximum (FWHM) of ∼60 nm. Resonances close to 700 nm present the
highest intensities in our measurements. This comes as a result of a combination of
factors which include the gold plasmonic response. In general we see that the resonance
central wavelengths red shift with increasing size of the antenna element. While the
resonances of a given element should depend also on its neighbors, we first present a
zero order analysis that neglects this coupling.
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Fits to the spectra using a decomposition in Lorentzians show two resonances per
element. The two Lorentzians are assigned to the in plane electric dipolar resonance
along the antenna axes (long wavelengths and high peaks) and the out of plane dipolar
resonance due to an oscillating current along the z direction, centered around λ=519 nm
for all antenna elements. For the in-plane dipolar resonances the fitting procedure
generally identifies one peak per resonance, unless the resonance is located far from
the mean wavelength of the resonances of the other elements in the antenna. In such
cases a shoulder is generally apparent. Such a shoulder is a direct signature that
hybridization of resonances occurs through dipole-dipole interaction with neighboring
antenna elements.

Fig. 4.4a shows the resonance wavelength dependence of all the elements as a
function of the size of the element. Sizes are measured from SEM pictures of the
antennas which gives an estimated accuracy of ±10 nm. We see that longer rods present
resonances at longer wavelengths. This resonance wavelength to size dependence
is found to be linear, as seen by the fit in Fig. 4.4a. One might think that the linear
dependence of resonance vs. size of the element is a trivial matter since it has been
already studied in various published works [22–24]. It is important to realize that in this
specific experiment a deep sub-wavelength excitation is performed locally on single
antenna elements pertaining to a phased array antenna. Thus, this figure shows that the
resonant response of an antenna element in a phased array antenna to a highly localized
excitation is governed mainly by the response of the single element itself.

Nevertheless the phased array does have an influence on the response of some
elements as evidenced in Fig. 4.4b. In this figure we show the main and secondary
peaks fitted to the in-plane resonances for all elements of all antennas, sorted by the
position of the element in the array. On the ‘x’ axis we present the different antenna
elements (Reflector, Feed, etc...), while on the ‘y’ axis we present the center wavelength
of the resonance of each antenna element. The directors and feed element show in
general only the main resonance (blue symbols) and in few cases a small shoulder (red
and cyan symbols). From these resonances we find the mean resonance wavelength
< λdi r > per antenna which we use to normalize the ‘y’ axis in order to be able to
compare all antennas in a single plot. The reflector element, being for all antennas the
most disparate in size compared to the other elements, presents in all cases a shoulder
in the resonant response peak (green and cyan symbols). This shoulder, as presented
in Fig. 4.4b, is blue-shifted towards the mean wavelength of the director elements
(< λdi r >). This can be understood from the back-action exerted by the feed and
directors on the reflector, when the reflector is the element driven by the electron beam.
Another way to see this is to note that all the antenna elements hybridize due to the
multiple scattering between the antenna elements. Since by design the reflector element
is chosen to be strongly red-shifted compared to all other antenna elements, it is for
this element that the hybridization process is most clearly visible in the data.

By investigating the resonances of the different elements of the Yagi-Uda antennas
we find that in general the reflector presents a higher excitability at long wavelengths
while the other elements have a low excitability at long wavelengths. In contrast at short
wavelengths the feed and directors present a high excitability but the precise wavelength
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form CL measurements for every element in the different antennas. The wavelengths
are divided by the average wavelength of the director in every antenna, allowing us to
visualize how close the secondary resonances are to the director resonance frequency.

and order at which this happens is not clearly evident from the measurements. In fact
there is no clear correlation between the position of the antenna element and the
wavelength at which its highest excitability occurs. A hypothesis that could explain the
strong variability of the excitability of the director elements is based on the dependence
of size vs. resonance wavelength shown in Fig. 4.4a. This figure indicates that a
determining factor for this response might be found in small random size changes of
the elements rather than their position in the array. On basis of this conjecture we turn
to a theoretical study of phased array antennas, where we use a Monte Carlo approach
to study the influence of random changes in antenna geometry.

4.2 Monte Carlo study of random disorder
We perform a Monte Carlo study of the properties of Yagi-Uda antennas and their
dependence on intrinsic fabrication randomness of the geometry. Randomness is
included in point dipole calculations as a deviation from the designed element geometry.
As design geometry we use the dimensions of the antenna YU1 as stated in table 4.1.
The deviations are introduced as a normal distribution of sizes with a standard deviation
of 2.5 nm. An example of such a distribution for the antenna elements is shown in
Fig. 4.5a. The point dipole calculation, as explained in Ref. [2, 25], is performed
on antennas described by electrically polarizable prolate objects [26] by using the
following self consistent point dipole expression:

pn =αn(E(rn)+ ∑
m 6=n

ω2µµ0G(rn ,r′m)pm) (4.1)

where pn and αn are the dipolar moment and polarizability of the rod element n,
respectively. The rods are located at position rn and are driven by the incident driving
field E(rn) with a frequency ω. The environment is introduced both through the

64



4.2 Monte Carlo study of random disorder

Greens’ function G(rn ,r′m) and through the permeability µ. Randomness is introduced
through the polarizability α of each element which changes in strength and resonance
wavelength dependent on the size of the major and minor axes of the prolate spheroid.
In these calculations we maintained the minor axis of the particle constant while the
major axis is changed consistently with the normal distribution of Fig. 4.5a. We
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Figure 4.5: a) Distribution of the random deviations for all antenna elements, b) shows
the distribution of wavelengths at which the directivity is maximum in either forward
(red) or backward direction (cyan). c) and d) show the distributions of maximum
directivity for the backward and forward directed radiation, respectively.

examine the response to Yagi-Uda antennas to localized excitation, setting the driving
field Ei n to the field of a dipolar current source. We calculate two important properties.
The first is the directionality attained in emission, since this is the figure of merit
that Yagi-Uda antennas are designed to improve. The second property we examine
is the radiative local density of states, since this quantity should be a measure for
the excitability in CL. By comparing simulations of the excitability of the different
elements with and without a substrate for a number of cases, we found that the results
agree well with each other and therefore we speed up the calculations using free space
as embedding medium to increase the number of antennas and improve the statistical
sampling.

We studied an ensemble of 5000 antennas, with a normal random size distribution
independently drawn for each antenna element. We place an electric dipole at the feed
position (the designed position of maximum directivity for a perfect antenna) and find
the directivity (D) of each one of the realizations in the ensemble of 5000 antennas.
For the directivity we use the following expression [27]: D = max

(
4πU (θ,φ)/Ptot

)
,

where U (θ,φ) is the radiation intensity and Ptot is the total emitted power which is
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4 Localized Excitation of Phased Array Antennas

the angular integral of U (θ,φ) over the 4π solid angle of a sphere. Thus, a perfectly
isotropic source has D = 1 and a dipolar source which radiates perpendicular to its
axes has D = 1.64. We also determine the wavelength at which max(U (θ,φ)) occurs.
Results for directivity of all antennas when driven at the feed element are shown as
histograms in Fig. 4.5. Panel a) shows a histogram of antenna size deviations, while
panel b) shows the distribution of wavelengths of maximum forward and backward
directivity, and panels c) and d) show histograms of the maximum directivity in either
direction. We first discuss Fig. 4.5b, i.e., the wavelengths at which the antennas have
a maximum directivity. There are two ranges of wavelengths at which the directivity
peaks. The first peak in the histogram is centered around 674 nm with a FWHM of
27 nm, while the second peak is centered around 811 nm with a FWHM of 38 nm. For
all antennas we find that the strongly directive emission occurring at short wavelengths
is invariably (100% of the antennas) directed to the back of the antenna. On the
other hand the strongly directive scattering occurring at long wavelengths (800 nm) is
invariably directed to the front of the antenna. In general we find that when we drive
these Yagi-Uda antennas at the feed element they all directionally radiate energy to
the front side of the antenna at long wavelengths and to the back of the antenna when
driven at short wavelengths. The original Yagi-Uda design is meant to operate through
driving at the feed element and in the long wavelength band at 800 nm.

Fig. 4.5c and d show histograms of the maximum backward and forward directivity
for the antenna ensemble. The backward directivity distribution (Fig. 4.5c) is centered
at an average directivity < D >=3.3 and shows a bi-modal distribution to which we fit a
double Gaussian as guide to the eye (blue line). For these two distributions we found a
FWHM of 0.92. Fig. 4.5d shows the distribution of directivity for the forward directive
radiation, corresponding to the actual design purpose of the antenna. This distribution
is found to be centered at an average directivity < D >=3.5. The forward directivity
distribution is spread in a single asymmetric peak with a FWHM of 0.97. In general
these results indicate the robustness that the Yagi-Uda antennas have for angle and
direction of its emission. We attribute this robustness due to the fact that the Yagi-Uda
antenna operates by interference, which is generally not sensitive to variations of a few
nm’s, as opposed to operating on plasmonic near-field enhancement effects. However,
we note that in this study we did not include positional disorder. The position accuracy
of the e-beam during lithographic definition of the antennas is superior to the particle
size accuracy.

The fact that Yagi-Uda antennas are robust against disorder when it comes to
directivity need not imply that they are also robust when it comes to radiative LDOS
enhancement, i.e., CL excitability. Fig. 4.6 shows the radiative LDOS for positions
located at each one of the Yagi-Uda antenna elements. In essence such a calculation
answers the question how sensitive CL maps, such as those shown in Fig. 4.3 for
antenna YU1, are to size variations of the elements of nominally identical antennas.
The different panels in Fig. 4.6a show radiative LDOS at wavelengths of 650, 700, 750
and 800 nm as indicated above the panels. In order to improve the readability of these
figures we organize the different antenna realizations according to a digitization of the
radiative LDOS. This digitization is inspired by Fig. 4.3, from which it appears that a
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Figure 4.6: a) Radiative LDOS calculated for excitations at every one of the elements
of the antennas. These calculations are done for 5000 realizations of antennas with
random changes in the size of all their elements (σ=2.5 nm). b) Organizational base
used and histograms with the frequency of occurrence of each pattern found in panels
a). c) Directivity calculated for excitations at every one of the elements of the 5000
antenna realization.

particle as a whole will either be responsive and “bright” in a CL map, or “dark”. For
instance, from Fig. 4.3 it appears that at long wavelengths, for all antennas all particles
are dark except for the last (digitized as 00001). As an arbitrary thresholding procedure
for digitization we label any particle that has radiative LDOS within 20% of that of the
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4 Localized Excitation of Phased Array Antennas

highest LDOS particle in the array as bright, and all others as dark. With this definition
we can sort antenna realizations using an organizing base as shown in Fig. 4.6b. This
organizing base is defined as the enumeration of all different possibilities of ‘on’ and
‘off’ states in a 5 element binary array. The sorting allows to assess visually what
excitability maps should be predominantly observed for a given wavelength. We present
our results as follows. Fig. 4.6a shows the calculated radiative LDOS as grayscale on
all 5000 antennas, sorted according to the digitization base in panel 6b. In order to
assess how many antennas would be quantified to correspond to a certain five digit
binary “on-off” pattern Fig. 4.6b shows histograms with the frequency of occurrence
of each pattern. For 650 nm we see that the reflector element is mostly not excitable,
while the element where the highest radiative LDOS is located is usually one of the
directors. Only for very few cases (<1%) ( top of Fig. 4.6a left panel), the feed element
is found as a highly excitable element. Since this wavelength matches very well to the
resonance of the directors, and not that of the feed and reflector, it is not surprising that
they are generally easiest to excite. Nevertheless, the excitability of these elements may
vary from ‘on’ to ‘off’ state, which is a clear sign of the sensitivity of hybridization
between nominally identical elements to the actual geometry.

For 700 nm we find more realizations (44%) where the feed element is highly
excitable. Again just as for 650 nm, excitability is mainly distributed over all director
elements with a large variation between realizations. For 750 nm the trend shows that
in general the radiative LDOS is lower than for 650 and 700 nm, with a maximum
average of 12.7ρ0 located at the feed element. For circa 70% of the realizations
the feed is the only excitable element, while in 30% of the realizations also director
elements show high LDOS. Finally, at long wavelengths (800 nm) we find that mostly
the reflector is the element with the highest excitability (above 90% of realizations).
Realizations where both the reflector and the feed element are highly excitable are also
found. Broadly speaking, the conclusion that the excitability shifts from directors to
feed and reflector when approaching the red edge of the spectrum is consistent with
the difference in element size, and also borne out by our experimental observations.
A less trivial conclusion is that in the 650 to 700 nm spectral range, the excitability
strongly differs from antenna to antenna realization and is spread over the entire set of
directors. This is also consistent with the wavelength range over which experimental
excitability maps show patterns spread out over the directors and large differences
between antennas.

A final question we examine is if near-field CL measurements on a given antenna
should be expected to have predictive power to say something about directivity. For
this we proceed to compare the previous calculations of radiative LDOS to calculations
of the directivity attained by every antenna of the ensemble. We present the results in
Fig. 4.6c by showing maps of the directivity calculated for the studied ensemble of
antennas. We organize the antennas in the same order as the one found for the radiative
LDOS figure in Fig. 4.6a. That is, we can compare every realization from both figures
directly. The panels in c) are organized by wavelength starting with 650 nm and ending
with 800 nm just as in panel a). Again every column in the panel defines the element
position at which a current source is placed to drive the antenna. We see that at 650 nm
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the radiation is most directional when the antenna is driven through director 3. At
700 nm both director 1 and 2 provide strong directional emission with <D>=3.7 and
3.4. At 750 nm director 1 creates the most directional emission with a max(D)=6.4
and <D>=3.08. Finally at 800 nm, which is the wavelength at which the antenna is
designed to work, the antenna presents its maximum directionality when driven at the
feed element, with a <D>=3.06 and a max(D)=5.0.

Comparison of Fig. 4.6a and 4.6c suggests that there is little correlation between
LDOS maps and maximum directionality except for the antenna design wavelength
(800 nm). That is, at 800 nm for all antennas that are directional as designed (highest
directionality obtained at the feed element), the radiative LDOS map indicates highest
radiative LDOS at the reflector. Conversely, those antennas in which the LDOS map
shows low excitability in the reflector tend to also show poor directivity performance.
At other wavelengths, however, it is evident that the correlation between radiative
LDOS distribution and directivity is poor. At 700 nm, for instance, directivity is
high for excitation at directors 3 and 4 almost irrespective of the antenna realization,
although antenna realizations have very different LDOS maps.

4.3 Conclusions
We reported cathodoluminescence images of phased array antennas fabricated on 1D
Si3N4 waveguide. The images clearly show in-plane electric dipole resonances in the
individual elements. To first order the resonance wavelengths per element simply follow
the expected size relation for single elements. However, spectra per element show
subtle features of hybridization. We observe large variations in pattern at wavelengths
shorter than 750 nm. We performed a Monte Carlo study of radiative LDOS and
directivity for antennas modeled as point dipoles with randomly varying particle size.
We find that directivity features are fairly robust at the design wavelength, and that the
design usage of exciting the feed means high directivity but low radiative LDOS. At
shorter wavelengths antennas may be strongly directional too, in the opposite direction.
We expect LDOS maps at these shorter wavelengths to vary remarkably strongly.
This study highlights the importance of studying robustness to fabrication disorder in
plasmonic designs of antennas, especially since different figures of merits will be very
differently affected.
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5
Method to Retrieve Magneto-Electric
Polarizability Tensors of Metamaterial Antennas

A key quantity in design of plasmonic antennas and metasurfaces, as well as metama-
terials, is the electrodynamic polarizability of a single scattering building block. In
particular, in the current merging of plasmonics and metamaterials, subwavelength
scatterers are judged by their capability to present a large, generally anisotropic electric
and magnetic polarizability, as well as a bi-anisotropic magnetoelectric polarizability.
This bi-anisotropic response, whereby a magnetic dipole is induced through electric
driving, and vice versa, is strongly linked to optical activity and chiral response of
plasmonic metamolecules. We present two distinct methods to retrieve the polarizability
tensor from electrodynamic simulations. As basis for both we use the Surface Integral
Equation method (SIE) to solve for the scattering response of arbitrary objects exactly.
In the first retrieval method, we project scattered fields onto vector spherical harmonics
with aid of an exact discrete spherical harmonic Fourier transform on the unit sphere.
In the second, we take the effective current distributions generated by SIE as basis to
calculate dipole moments. We verify that the first approach holds for scatterers of any
size, while the second is only approximately correct for small scatterers. We present
benchmark calculations, revisiting the zero-forward scattering paradox of Kerker [1]
and Alú [2], relevant in dielectric scattering cancelation and sensor cloaking designs.

5.1 Introduction
Metallic and dielectric nano-scatterers currently enjoy a surge of interest in photonics,
due to the unusual optical properties that may be obtained through a suitable choice
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of material and geometry. In plasmonics, it is well established that Ag and Au single
nano-spheres, rods, wires, pyramids, triangles, cubes, stars or core-shell particles, as
well as oligomers and arrays of such objects have very distinct scattering resonances
that can be used for optical sensing, improvement of LEDs and solar cells, as well
as plasmon-enhanced spectroscopy on basis of large field enhancements near metals
at the plasmon resonance [3–9]. In a related development, the field of metamaterials
uses metal split rings, loops, as well as so called cut-wire pairs to generate a strong
collective magnetic response [10–12]. The effective magnetic permeability and electric
permittivity that is achieved arises from the strong electric and magnetic polarization
obtained in each building block. Recently, the fields of plasmonics and metamaterials
have come together in so-called ‘metasurfaces’, where non-identical subwavelength
resonant scatterers are organized in a plane at subwavelength distances, in order to
achieve arbitrary phase and amplitude masks that control the transmission, reflection,
refraction and diffraction of light [13–15]. In all these developments, the response is
fundamentally quantified by the geometrical arrangement of scatterers on one hand,
and the electric and magnetic polarizability of each building block on the other hand.

Numerical methods in electrodynamics play an increasingly important role in the
design and understanding of nano structures in an electromagnetic field. In daily
practice, finite difference time domain codes, finite element simulations, and boundary
element methods are used to replicate experiments, and extract expected observables
such as transmission and reflection coefficients, or the brightness and directivity of
localized sources. Remarkably, it is not common practice to use simulations to extract
the fundamental parameter, i.e., the electric and magnetic polarizability, as well as
possibly higher order multipoles, that quantify how a building block scatterers. A
first step to this goal is a recent paper by Mühlig et al. [16] that shows a retrieval of
the multipolar moments induced in various metamaterial scatterers for a particular
incident field. Here we propose a rapid and accurate method to retrieve electric,
magnetic and magneto-electric polarizabilities of meta-atoms which can be applied
to any electromagnetic solver (FDTD [17], VEM [18], BEM [19]). In our specific
implementation this method is based on Surface Integral Equation calculations to solve
Maxwell equations for electric and magnetic field exactly, and to calculate the induced
effective electric and magnetic surface currents that quantify the scatterer response.
We show how to extract polarizabilities both from the calculated scattered field, and
as an alternative method, also from the induced currents. This chapter is organized
as follows. In section 5.2 we present the surface integral equation method, and the
retrieval of polarizability tensors. In section 5.3 and 5.4 we benchmark the retrieval for
magnetoelectric spheres, illustrating the zero-forward scattering paradox of Kerker.

5.2 Surface integral equation method and α-tensor
retrieval

Any electromagnetic problem is completely specified by the Maxwell equations,
together with a definition of the source, and the boundary condition. We use the
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equations in integral form [20]. We divide space into a region 1, defined as the
embedding medium that we take to be a homogeneous dielectric with permittivity
ε1 and permeability µ1, and a region 2 that represents the volume occupied by the
scattering material of dielectric constant ε2 and permeability µ2. In the integral equation
formalism, it is useful to solve for the electromagnetic response by first finding effective
auxiliary electric and magnetic surface current densities J and M on the interface
between medium 1 and 2 that are used to satisfy the boundary conditions for continuity
of tangential E and H, and normal B and D. Once these surface currents are solved for,
they can be used to construct the electromagnetic field solution everywhere. Assuming
harmonic time dependence (frequency ω) the currents are set by an Electric Field
Integral Equation (EFIE),

ωµi

i

∫
S

dS′Gi(r,r′) · J(r ′)−
∫

S
dS′[∇′×Gi(r,r′)] ·M(r′) =

{
Einc

1 (r) for r in region i= 1

0 for r in region i= 2
(5.1)

and a Magnetic Field Integral Equation (MFIE) that reads:∫
S

dS′[∇′×Gi(r,r′)] · J(r′)+ ωεi

i

∫
S

dS′Gi(r,r′) ·M(r′) =
{

Hinc
1 (r) for r in region i= 1

0 for r in region i= 2
.

(5.2)
Here G(r,r′) is the electric dyadic Green function for each type of homogeneous
medium ‘i’ (with i= 1,2) and ∇′ ×G(r,r′) is the curl of the Green’s function. The
integral runs over the surface S that contains the current densities. We use the method
introduced by Kern et al. [21], which is based on the method of moments (MoM)
[22], coined the Surface Integral Equation (SIE) method to solve these equations. In
brief, in the SIE method any scatterer is represented by effective electric and magnetic
surface current densities J and M that are discretized on finite elements over the surface
of the scatterer with the help of the Rao, Wilton and Glisson (RWG) basis functions
fn [23]. Consider the surface S meshed with triangles. We define n = 1. . . N nodes as
the shared edges of the triangles. The basis function fn(r) is zero everywhere except on
the triangle pair T ± that shares node n. Here the function is pyramid shaped, with,

fn =
{±Ln

2A±
n

(
r−p±n

)
: r ∈ T ±

0 : otherwise
(5.3)

where Ln is the length of the shared node, A±
n is the area of the triangle pair and p±n are

the non-shared vertices of the triangles, as explained in [21]. The discretized strength
and direction of the currents is accounted for through basis expansion coefficients αn

and βn in the following way,

J(r) =
N∑

n=1
αn fn(r) (5.4)

M(r) =
N∑

n=1
βn fn(r). (5.5)

75



5 Polarizability Tensor Retrieval

By projecting the EFIE and MFIE equations onto the RWG basis functions, the integral
equations transform into a set of linear equations for the αn and βn values:

M ·
(
αn

βn

)
= q. (5.6)

In this system of linear equations the matrix M needs to be found only once and can
be used for any incident field, that is only contained in q . The matrix M is defined by:

M =
[

D1 +D2 −K 1 −K 2

K 1 +K 2 D1

Z 2
1
+ D2

Z 2
2

]
(5.7)

where Zi =
√
µi/εi,

D i
mn = ωµi

i

∫
Sm

dSfm(r) ·
∫

Sn
dS′Gi(r,r′) · fn(r′), (5.8)

K i
mn =

∫
Sm

dSfm(r) ·
∫

Sn
dS′∇′×Gi(r,r′) · fn(r′). (5.9)

Note how M self-consistently contains the interactions between all the discretized
current elements, as evident from the appearance of Gi(r,r′). After this matrix is
calculated it can be inverted and multiplied by the vector q which is the projection of
the incident field that drives the scatterer into the RWG functions. Specifically,

q =
{∫

Sm
dSfm(r) ·Ei nc

1 (r) : m = 1....N∫
Sm−N

dSfm−N (r) ·Hi nc
1 (r) : m = N +1....2N .

(5.10)

We order the variables such that the vector q has the projections of Ei nc on the N basis
functions as the first N elements, and the projection of Hi nc on the basis functions as
elements N +1 to 2N . As an important implementation note, one of the key features of
this method is that the Green’s function, which is singular at r = r′, is written as the
sum of a smooth G(r,r0)S and singular part G(r,r0)N S as follows

G(r,r0)S = [1+ ∇∇
k2

i

]G(r,r0)S = [1+ ∇∇
k2

i

]
1

4π

(
e i kiR −1

R
+ k2

i R

2

)
, (5.11)

G(r,r0)N S = [1+ ∇∇
k2

i

]G(r,r0)N S = [1+ ∇∇
k2

i

]
1

4π

(
1

R
− k2

i R

2

)
(5.12)

where ki is the wave vector defined as ki = 2π/λ ·pµiεi and R = |r−r0|. The singular
part of the integral is treated analytically. For a detailed explanation of this separation
method, we refer to Ref. [21]. Without this separation, the matrix M would be highly
inaccurate on its diagonal, as well as for elements Dmn and Kmn that correspond to
close triangles. Moreover subsequent retrieval of the scattered field from the calculated
currents would be highly inaccurate close to the scatterers.
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5.2 Surface integral equation method and α-tensor retrieval

Once found, the coefficients αn and βn completely specify the electric and magnetic
surface currents that in turn allow one to find the scattered field and the total field by
propagating the currents with the aid of the Green’s function in the following manner:

Ei(r) =
{+
−

}∑
n

[
−αn

ωµi

i

∫
Sn

dS′G(r,r′) · fn(r′)

+βn

∫
Sn

dS′[∇′G(r,r′)]× fn(r′)
]
+

{
Ei nc

1 (r) : for r in region i= 1

0 : for r in region i= 2
(5.13)

Hi(r) =
{+
−

}∑
n

[
−βn

ωεi

i

∫
Sn

dS′G(r,r′) · fn(r′)

−αn

∫
Sn

dS′[∇′G(r,r′)]× fn(r′)
]
+

{
Hi nc

1 (r) : for r in region i= 1

0 : for r in region i= 2
(5.14)

We have implemented the described algorithm in MATLAB, using triangular surface
gridding that defines the set of fn(r) as input that we generated using Gmsh [24]. The
main objective of our paper is to discuss the retrieval of polarizabilities from the SIE
calculations. On basis of the current contributions found through SIE two different
approaches can be taken in order to find the polarizability tensor. On one hand the
fields produced by the effective currents can be propagated with the aid of G and ∇′×G
(Eq. (5.13) and Eq. (5.14)) onto a sphere that is centered around the structure under
consideration. The projection of the fields on the sphere on vector spherical harmonics
directly define the multipole moments through the expansion coefficients anm and
bnm , as explained by Jackson [Ch.10][20], as well as by Mühlig et al. [16]. Thus, for
this first retrieval method we use two steps. First we use SIE to solve for the fields
E and H and then we project these fields onto VSH to find the dipolar moments and
hence the polarizability tensor. This means that E and H might as well be found by
using any other full wave calculation, for instance FDTD or FEM. As an alternative
method, multipole moments can be defined directly from the current distributions,
without calculating fields. Here we first discuss the multipole expansion method, and
then the direct definition based on J and M.

Multipole moments based on the projection onto Vector spherical
harmonics
We use the vector spherical harmonic functions as defined by Mühlig et al. [16], which
are equivalent to the textbook definition of [25]. As proven in [25] the vector spherical
harmonics form a complete and orthonormal set [25]. Therefore the field E(r,θ,φ)
found from SIE has a unique expansion

E(r,θ,φ) =
∞∑

n=1

n∑
m=−n

[anm Nnm(r,θ,φ)+bnm Mnm(r,θ,φ)], (5.15)
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DSHTS Points Scattered Field E

Plasmonic Scatterer

•

Figure 5.1: Sketch of the calculation protocol for retrieving multipolar moments with
vector spherical harmonics (VSH). Here a gold split ring represents the scatterer, while
the scattered field is represented in red. The sphere and black points, located around
the scatterer and field, show how we only use a small number of points at which we
calculate the electric field for the discrete spherical harmonics transform on the sphere
(DSHTS).

where the expansion coefficients anm and bnm can simply be found by taking the inner
product of the calculated E(r,θ,φ) with the vector spherical harmonic functions. Here
Nnm(r,θ,φ) and Mnm(r,θ,φ) are the vector spherical harmonic functions, and the inner
product is defined as the integration over the unit sphere. Therefore the anm and bnm

coefficients are corresponding to the "Mie" coefficients [20]. While in principle one
could densely sample E(r,θ,φ) on the unit sphere to evaluate the inner product, it is
particularly advantageous to use the fact that a discrete spherical harmonic transform
is exact for Legendre polynomials up to order N if sampling points and weights are
chosen consistent with Legendre quadratures for Legendre polynomials of order N +1.
Thereby one can obtain a highly efficient and exact algorithm, that requires only very
few field sampling points for multipole expansion coefficients up to order n=N [26], by
carefully separating the vector spherical harmonics into ordinary spherical harmonics.
As in any discrete Fourier transform, the only caveat for this exact method is that
aliasing artifacts may occur if the radiated field contains significant contribution from
multipoles of order higher than the truncation order of the transform. Therefore we use
a truncation order N=5, corresponding to just 50 sampling points on the unit sphere,
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5.2 Surface integral equation method and α-tensor retrieval

as we do not expect multipole moments beyond N=2 to be significant throughout this
chapter. The coefficients anm , and bnm , and hence the retrieved moments finally, will
depend on where the center of the sphere is chosen [16, 20, 27] but are independent
of the radius of the sphere as long as the scatterers are fully enclosed. The dipolar
moments p and m are calculated from the coefficients anm and bnm using the procedure
explained in [16]. A sketch of how this calculation is performed is shown in Fig. 5.1.

Multipole moments based on the effective currents
As a second method to obtain the induced dipole moments p and m (electric and
magnetic dipole moments) we can directly use the effective magnetic and electric
current densities M and J calculated as the intermediate solution step in SIE. In
particular

p = i

k

p
µε

∫
Ω

J(r)dS − ε

2

∫
Ω

r×MdS (5.16)

m = i

k

√
ε

µ

∫
Ω

M(r)dS + 1

2

∫
Ω

r× JdS, (5.17)

where the integration is performed over the surface of the scatterer Ω. In contrast to
other brute force methods, SIE naturally provides the effective magnetic and electric
currents as an essential part of its solution strategy. In standard implementations of, for
instance, FDTD modeling, retrieving these currents with enough numerical accuracy
would itself be a challenge. On a standard FDTD Yee-grid inaccuracies arise from
the approximation of curved boundaries into discretized Cartesian grids, as well as
from the fact that in general the field components and their derivatives are not sampled
right on the boundary. Consequently, right at object boundaries large inaccuracies of
local fields, fluxes and currents are obtained unless one uses specially improved FDTD
algorithms [28]. The definitions of the RWG basis functions imply that∫

T ++T −
fn(r)dS = Ln(rc−

n − rc+
n ) (5.18)∫

T ++T −
r× fn(r )dS = (Ln/6)(p+n −p−n )× (r2 + r3), (5.19)

where rc−
n and rc+

n are the centroid vector of the two triangles that share node n, Ln is
the length of the shared line between the two triangles, and finally r2 and r3 are the
vector positions of the shared vertices of the two triangles. Inserting these results in
the discretized form of Eq. (5.16 and 5.17) allows to retrieve p and m in terms of the
coefficients αn and βn :

p = i

k

p
µε

N∑
n=1

Ln(rc−
n − rc+

n )αn − ε

2

N∑
n=1

(Ln/6)(p+n −p−n )× (rn2 + rn3)βn (5.20)

m = i

k

√
ε

µ

N∑
n=1

Ln(rc−
n − rc+

n )βn + 1

2

N∑
n=1

(Ln/6)(p+n −p−n )× (rn2 + rn3)αn . (5.21)

79



5 Polarizability Tensor Retrieval

Both the electric dipoles p arising from the effective magnetic currents as well as the
magnetic dipoles m arising from the electric effective currents depend on the choice
of origin. One of the potential advantages of the effective current approach over the
VSH approach is that one can find the dipolar contributions of single scatterers in close
proximity to other scatterers, for instance when examining the physics of multi-element
plasmon antennas. Furthermore one can even envision that one could calculate the
multipole moments for structures close to an interface or inside lossy environments,
while this is certainly not possible with the VSH approach.

Polarizability tensor retrieval
For both the VSH retrieval method and the direct current-base retrieval method the
electric dipole moment p and magnetic dipole moment m are retrieved given a particular
incident field. Motivated by recent developments in the field of metamaterials, we
propose to retrieve polarizability tensors that specify the response for any incident field,
rather than induced moments for a particular incident field. We focus on objects with
an electric and magnetic dipole response, which we expect to be fully captured by a
6×6 polarizability tensor[29]:(

p
m

)
=α ·

(
E
H

)
=

(
αE αE H

αHE αH

)
·
(

E
H

)
(5.22)

In this tensor the upper diagonal 3× 3 block ᾱE is the usual electric polarizability
tensor, while the lower diagonal block ᾱH is the magnetic polarizability tensor. The
off-diagonal blocks represent magnetoelectric response, i.e., the electric (magnetic)
moment that might be induced through magnetic (electric) driving. This form of
the polarizability tensor is commonly used in the field of bi-anisotropic and chiral
media [30]. Evidently, one should choose six independent incident conditions, retrieve
the induced moments, and apply matrix inversions to obtain

α=
(

p1 · · · p6

m1 · · · m6

)
·
(

Ei nc
1 · · · Ei nc

6
Hi nc

1 · · · Hi nc
6

)−1

. (5.23)

In our work we use as incidence conditions standing waves constructed as plane waves
incident from opposing Cartesian directions. To construct six independent conditions
we use the three Cartesian axes as incident directions, each with two orthogonal
polarizations (also along the Cartesian axes). Due to the fact that SIE rigorously respects
the linear superposition principle, this choice of incidence conditions is immaterial
for the final result. Although this choice is entirely arbitrary it has the esthetic appeal
of corresponding exactly to each one of the six Cartesian basis vectors used for the
driving fields. As a final note on the retrieval protocol we add that the definition of
origin that is chosen to refer the dipole moments to, is a nontrivial matter, due to the
well-known dependence of electric and magnetic dipoles on the choice of origin (more
precisely, both the contributions to the electric dipoles created by magnetic currents
and to the magnetic dipoles created by electric currents depend on origin). We have
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5.3 Benchmark of vector spherical harmonics and effective current density α-retrieval

made use of the Onsager relations that the polarizability tensor has to fulfill due to
reciprocity. Onsager relations in particular state that the upper diagonal and lower
diagonal cross-polarizabilities are each other’s negative transpose for purely dipolar
scatterers. Accordingly, we choose the origin for both retrieval algorithms as the
position for which the sum |αE H +αHE | is minimum.

5.3 Benchmark of vector spherical harmonics and
effective current density α-retrieval

In order to benchmark the SIE code and the retrieval of the polarizability tensor we
consider an entirely known object, i.e., a Mie sphere. We focus on a sphere that has
both a dielectric and magnetic response in order to benchmark both the electric and
magnetic dipole retrieval. We compare to the rigorous theoretical values for electric
and magnetic polarizability given by the Mie coefficients (labeled here as cT M

1 and
cT E

1 ) [31, 32]:

αE =−6πiε0cT M
1

k3
0

I, (5.24)

αH =−6πi cT E
1

k3
0

I, (5.25)

For our benchmark, we fix µ = 4 and set ε equal to the dielectric constant of gold
as tabulated by [33]. While these values do not represent any currently physically
realizable object, these values allow to asses whether we can accurately separate electric
and magnetic dipole moments. We use a fixed discretization of the sphere surface by
572 nodes composed of 1241 triangles. While the vertices of the mesh are exactly
located on the assumed nano-particle radius of 10 nm, we note that the triangulated
surface is entirely located within the assumed sphere. For this reason, SIE simulations
effectively underestimate the sphere size, to a degree that reduces with increasing
number of nodes. We quantify the effective radius by calculating the mean distance
from the center of the sphere to the surface of the meshing triangles. For the particular
meshing conditions used here, the effective radius is 9.96 nm, which we use in the Mie
calculations to which we compare the SIE results. In Fig. 5.2 we plot the diagonal
elements αE xx and αH y y of the polarizability tensor over the wavelength range from
100 nm to 4000 nm. For both the vector spherical harmonic projection, and for the
equivalent current retrieval there is an excellent correspondence between the retrieved
dipole moments and the polarizabilities predicted by Eq. (5.24) and Eq. (5.25). The
origin used for the retrieval was found to coincide with the center of the sphere, as
expected based on symmetry. The error between the VSH retrieval procedure and
the theoretical dipole moments is less than 0.1% throughout the whole wavelength
range of the simulation. This agreement is only possible due to the precision of the
discrete spherical harmonic transformation over the sphere on which the scattered field
is collected (taken here to have radius of 10 µm), and of course also to the extremely

81



5 Polarizability Tensor Retrieval

good convergence of the SIE method. Furthermore this almost perfect agreement to
the theoretical values spans all the way to wavelengths equal to the diameter of the
sphere. This agreement is hence beyond what is needed for metamaterial analysis
where wavelengths around 5 to 10 times bigger than the structures are commonly used.
When examining the current retrieval procedure we find that the error between the
effective currents retrieval and the theoretical electric dipole moments is less than
0.006% at 4000 nm and grows monotonically up to 1% at 100 nm wavelength. For the
magnetic dipole it is 0.03% at 4000 nm and 8.7% at 100 nm. The difference between
the rigorous values and those extracted from the effective currents method is due to
the fact that the current-to-dipole expression used in the current retrieval procedure
(Eq. (5.16 and 5.17)) are only valid for krmax << 1 as explained by Jackson [20].
These two equations, which are the equations commonly used in the metamaterial
field [34–36], derive from exact formulae (9.167 and 9.168 in [20]) by replacing the
involved spherical Bessel functions by their small-argument asymptotes. Therefore the
effective current method is only expected to be accurate for r ¿λ/2π (i.e. kr∼1). The
error is thus not a numerical error but an error due to a poorly met approximation. This
error and whether it is larger for p than for m or vice versa, not only depends on the
size of the scatterer but also on the specific weighting given by the current distribution.
In contrast the VSH retrieval through fields is valid for arbitrary frequency and arbitrary
size of the radiating object.

MatLab code for the VSH retrieval method can be found in our group webpage
(http://www.amolf.nl/research/resonant-nanophotonics/), to be used with the fields
calculated with any full wave Maxwell solver.
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Figure 5.2: Magnitude of the electric and magnetic polarizabilities for a bead 10 nm
radius, with ε = εGol d and µ = 4. The polarizabilities are calculated with a vector
spherical harmonic expansion of the scattered fields (VSH), with the use of the effective
currents (currents) and finally based on the theoretical Mie expansion of a sphere. The
electrical polarizabilities are divided by 4πε0 while the magnetic polarizabilities are
divided by 4π so as to have the dimensions of volume.
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5.4 Polarizability retrieval applied to Kerker’s paradox

5.4 Polarizability retrieval applied to Kerker’s
paradox of zero-forward scattering spheres

As a more challenging benchmark we consider magnetoelectric spheres where material
parameters are set to the very special condition that is the subject of Kerker’s paradox
raised in [1] and resolved in [2]. It was first noted by Kerker [1] that at a particular
combination of ε and µ, spheres appear to have zero forward scattering, yet nonzero
extinction. This apparent paradox that occurs for very small spheres when ε = (4−
µ)/(2µ+1) gained new interest in the framework of cloaking and invisibility [37, 38].
Alú et. al. [2] showed that these spheres indeed have very low, yet nonzero forward
scattering, thereby complying with the optical theorem. The almost zero forward
scattering results from destructive interference in the forward direction of the radiation
of the generated electric dipole and magnetic dipole moment. Here we reproduce three
of the examples studied by Alú [2], using the SIE method (see Fig. 5.3) and retrieve the
polarizability tensor. First, in Fig. 5.3 the bistatic scattering cross section or differential
scattering efficiency is plotted for the spheres treated in [2]. The spheres have different
radius a=λ/100, a=λ/20 and a=λ/4. The permeability of the three spheres is µ=3 while
the permittivity is ε=0.143, ε=0.121 and ε=0.315. It should be noted that for larger
spheres, the condition of minimal forward scattering is shifted away from the criterion
ε= (4−µ)/(2µ+1). The calculated efficiencies are in excellent quantitative agreement
with the values reported by Alú [2]. It is evident that the forward scattering for the
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Figure 5.3: Differential scattering efficiency (bistatic scattering cross section/πa2)
for parallel and perpendicular scattered field form three different magneto electric
spheres of radius ‘a’, as studied in [1]. The first sphere has an ε = 0.143 and µ = 3,
the simulation is done at λ = 100a. The second sphere has an ε = 0.121 and µ = 3,
the simulation is done at λ = 20a. The third sphere has an ε = 0.315 and µ = 3, the
simulation is done at λ= 4a. The table shows the retrieved values of α expressed in
units of a3 for all three spheres, as extracted from the VSH method and expressed in
units of the particle radius cubed.
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three spheres is close to zero. We report as a table in Fig. 5.3b the retrieved values of
α expressed in units of a3 for all three cases, as extracted from the VSH method and
expressed in units of the particle radius cubed. All off-diagonal elements are at least
105 times smaller than the diagonal elements, i.e., zero within numerical precision.
The retrieved polarizabilities are isotropic to within 0.1%. We therefore only report
the mean diagonal αE and αH . Evidently, for all three spheres the condition p =−m
required for complete destructive interference in the forward direction is almost met,
consistent with the conclusion derived in [2] and [1] that this is a necessary condition
for zero forward scattering. For increasing sphere size compared to the wavelength
the imaginary part of the diagonal elements of the tensor increases due to radiation
damping. For the largest sphere, p deviates noticeably from -m, and forward scattering
is noticeable.

This benchmark shows the usefulness of SIE to simulate magneto-electric scatterers
with a very high precision, and suggests that the retrieved α-tensor can be used on
more complex systems to gain insight into the problem beyond that usually obtained
from just brute force calculations.

5.5 Conclusions
We have developed and benchmarked the SIE method to retrieve the polarizability
tensor of scatterers. This retrieval is performed in two different ways. The first method
consists of a vector spherical harmonics projection of the scattered fields, which yields
an extremely good precision for any wavelength and size of the scatterer, thanks to the
aid of a discrete harmonic transform on the sphere. With the second method, based
on effective electric and magnetic surface currents, we can successfully retrieve the
polarizabilities of small scatterers with the advantage that this retrieval can be done on
non-isolated structures.
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6
Designing Antennas with the Aid of the
Polarizability Retrieval Method

Based on the retrieval of the polarizability tensor discussed in chapter 5 we can
understand the basic response of antennas in a more complete way than is possible by
analyzing snapshots of near fields or surface currents. In order to demonstrate the ease
with which this method can be used we report the polarizability tensor of split rings,
and show that split rings will strongly influence emission of dipolar single emitters. We
find that in the context of plasmon enhanced emission, split rings can impart their large
magnetic dipole moment to the emission of simple electric dipole emitters. Finally, we
present a split ring antenna array design that is capable of converting the emission of
a single linear dipole emitter in forward and backward beams of directional emission
of opposite handedness. This design can for instance find application in spin angular
momentum encoding of quantum information.

6.1 Introduction
Metamaterials and ‘metasurfaces’ are engineered structures with properties that cannot
be found in nature. These ‘materials’ and ‘surfaces’ have been designed to have
extraordinary responses to incident fields e.g. negative refraction [1], pseudochi-
rality [2] or in general an arbitrary phase and amplitude response to incident light.
For all these structures their extraordinary response to incident light originates from
the magnetoelectric polarizability of their constitutive elements, which essentially
are optical nano antennas. In literature we find many examples for such scatterers,
ranging from single metallic rod nano antennas, to V-shaped metal particles [3, 4],

87



6 Designing Antennas with the Aid of the Polarizability Retrieval Method

large dielectric objects [5], and split ring resonators [6]. Split rings have drawn
a considerable amount of attention due to their strong magneto electric response,
and their possible application for cloaking [7] and enantiomeric discrimination of
molecules [2, 8]. Several workers have argued that split rings should be viewed either
as an electric plus a magnetic dipole each with a polarizability [9], or as a cross-coupled
object that also has a magneto-electric response [10]. By applying the polarizability
retrieval method developed in chapter 5 to, among other objects, split rings, we retrieve
exciting insights regarding the electric and magnetic response of split rings. We show
that split rings are strongly magneto-electric, implying that a large magnetic dipole
moment is most easily induced by electric driving. The particular phase relation
between the electric, magnetic and magneto-electric polarizability further implies
record-high per-building block optical activity in extinction and scattering. We show
that the insights gained from the polarizability tensor can be used to construct new types
of plasmonic array antennas that have the directivity of Yagi-Uda antennas [11, 12], but
with unique polarization properties. In particular we show how metamaterial antennas
allow control over the magnetic dipole content of emission, and over the handedness of
emitted light. On basis of this type of control over emission we envision applications in
control of magnetic dipole emitters [13], directionality of single dipole emission [14],
photon spin angular momentum encoding in single photon sources, and enantioselective
spectroscopies that employ near-field enhancement of chirality.

This chapter is organized as follows. In section 6.2 we discuss the polarizability
of split rings. In section 6.4 and 6.5 we demonstrate how, on basis of the extracted
polarizability, split rings can be used for rational design of antennas for emission
control.

6.2 LC model for split rings
In the metamaterial community the performance of a material is usually quantified
through effective responses ε and µ. However the fundamental parameter underlying
the effective ε and µ is the α-tensor of the metamaterial building block, which is
much less frequently studied. Here we use the benchmarked code of chapter 5 to
understand split rings. Extensive literature has been devoted to explain the response
of this structure [2, 6, 15] in terms of LC resonators. Fig. 6.1 a shows a sketch of an
LC resonator circuit. The basic ideas behind the split ring are that it can be driven by
an incident magnetic field H that points through the loop, that circulating current in
the ring will correspond to a magnetic dipole, and finally that the current is strongly
enhanced by generating an LC resonance using the split as capacitor. Thus it should
have the basic property that it has a magnetic dipole polarizability in response to
magnetic fields. However, note that a circulating current will pile up as charge at
the capacitor, meaning that an electric dipole response is inextricably linked to the
magnetic response. The equation of motion for the current in this type of circuit with
external driving is:

L
d I (t )

d t
+ q(t )

C
= Edrvd+ A

d Hdrv

d t
, (6.1)
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Figure 6.1: Figures a) and b) show a comparison between an LC circuit and a split
ring resonator. c) shows a SEM picture of an array of split ring resonators which work
at near infrared frequencies. Picture courtesy of Ivana Seršic

where L is the inductance, I (t ) is the time dependent current, q(t ) is the time dependent
charge, C is the capacitance, Edrv is the magnitude of the driving electric field along
the capacitor gap, d is the distance of the gap between the capacitor plates, A is the
effective area of the inductor and Hdrv is the driving magnetic field which flux drives a
current along the inductor.

The LC-circuit has often been used to describe the scattering of split rings. The
main important predictions for polarizability that it represents are the following. First,
the LC circuit is expected to have a Lorentzian resonance line shared among all tensor
elements. Second, the LC circuit will respond only to electric fields along the gap
direction x, and magnetic fields oriented through the ring (z) . Third, the response
will involve an induced electric dipole moment p = qd solely along x and a magnetic
moment m = AI solely along z. Fourth, the fact that I = q̇ imposes a relation between p
and m, which means that it is not trivial to independently control either the magnitude,
or the phase between p and m. Fifth, the driving side of the LC equation shows that
both p and m will be driven by both E and H. That means there must be cross coupling,
known in the field as "bi-anisotropy" or "magneto-electric coupling". Finally, it should
be noted that the off-diagonal polarizabilities will be a quarter cycle out of phase with
the diagonal elements, as embodied in the d/d t in Faraday’s law, and in the relation
m ∼ I = q̇ ∼ ṗ.

To summarize these findings from the LC circuit, we would expect the polarizability
tensor to have the following form[

p
m

]
=L (ω)

[
αE αE H

αHE αH

]
·
[

E
H

]
. (6.2)

Note that this form satisfies a set of general constraints known as Onsager constraints.
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6 Designing Antennas with the Aid of the Polarizability Retrieval Method

The Onsager constraints require that αE = αT
E , αH = αT

H and αHE = −αT
E H (See

Ref. [10]). Any violation of these constraints would mean that the scatterer violates
reciprocity. A further observation is that if you evaluate Eq. 6.1 for polarizability
then αE and αH turn out to be real and αE H and αHE turn out to be imaginary, with
values given by geometry. In other words there is a quarter wave phase offset for the
off-diagonal elements. This is also a fundamental requirement, as otherwise energy
conservation would be violated.

6.3 Retrieved polarizability tensor of split rings
Here we report the full polarizability tensor of split rings resonant at 1.5 µm as retrieved
from full wave SIE calculations using the methods of chapter 5. We consider a gold
split ring with dimensions of 30 nm height, 200 nm length and 200 nm width with a
central hole of 140 nm by 80 nm. A SEM picture of a fabricated array of such split
rings is shown in Fig. 6.1c. In our simulation the split ring is placed in a homogeneous
environment with ε= 1 and µ= 1 and the surface discretization used consists of 774
nodes. Fig. 6.2a reports the total scattering cross section upon excitation by a plane
wave with polarization of the electrical field in the x direction and k vector directed
in the negative z direction. The response of the split ring presents two resonant peaks
in the wavelength range studied i.e. from 400 nm to 1700 nm. The first resonance is
centered around 1544 nm with a width of 124 nm and the second resonance is centered
at 689 nm with a width of 44 nm, in excellent agreement with experiment and FDTD
simulations [16]. The first resonant peak is also called the LC resonance as described
in Ref. [16]. This resonance has a calculated maximum total scattering cross section
of 0.13 µm3 very well in agreement with measured data, that show an extinction
cross section of 0.3 µm3 at an albedo of 30% [16, 17]. We focus on this fundamental
resonance and its scattering characteristics, choosing the wavelength of 1544 nm for
the retrieval of the polarizability tensor. At the split ring resonance, the quadrupolar
terms contribute less than 2% to the total extinction. Therefore, here we disregard
any higher multipolar terms. The center used for the retrieval was found at the point
where magnetic moments created by electric fields and the electric moments created
by magnetic fields are the negative of each other. This condition arises from Onsager
relations [2]. This center is -25 nm from the geometrical center in the y direction. i.e.
closer to the base of the split ring. The SIE dipole polarizability retrieval procedure
allows us to quantify both the diagonal values in the polarizability tensor as well as
the cross-coupling between the magnetic and electric moments. We find the following
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values for the VSH and effective current retrieval procedures

Elements of α VSH Eff. Currents
αEx /(4πV ε0) −1.38+10.47i 0.32+10.87i
αEy /(4πV ε0) 1.52+0.10i 1.53+0.10i
αEz /(4πV ε0) 0.11i 0.12

αE Hxz /(4πV /c) −2.83−0.41i −2.92+0.04i
αHEzx /(4πV /Z ) 2.85+0.48i 2.92−0.00i

αHx /(4πV ) −0.01i −0.01
αHy /(4πV ) 0 0
αHz /(4πV ) −0.15+0.78i −0.02+0.79i

(6.3)

where V denotes the geometrical volume of the split ring V = 6.33×10−4µm3. All the
other values in the polarizability tensor are 10−3 below αEx . Both the VSH and the
effective currents retrieval procedures indicate that the scatterer has a magneto electric
nature given the values of the magnetic and cross polarizabilities. The difference
in magnitude between both retrieval procedures is maximally 16%. Based on Mie
calculations (Chapter 5) we already saw that the VSH retrieval procedure is accurate,
whereas the common current-based definition is fundamentally limited and only valid
for small objects of size r<λ/2π. This condition is not met for the split ring. Therefore
we will focus now on the values retrieved with the VSH procedure. The electric
polarizability for the px oriented dipoleαEx is the largest polarizability in this structure,
and is well in excess of the physical particle volume. Thereby the split ring is very
much like a strongly plasmonic particle. That the retrieved αEx is mostly imaginary
confirms that λ=1544 nm corresponds to resonant driving. The magnetic polarizability
for the mz oriented dipole αHz is 13 times smaller than the electric polarizability. The
off-diagonal values αE Hxz and αHEzx significantly exceed the magnetic polarizability.
We note that the retrieval very well confirms fundamental constraints on the cross
polarizabilities. In particular, the cross polarizabilities are the negative of each other to
within 2%, as fundamentally expected from Onsager relations. Also the phase relations
arg(αE Hxz /αEx ) = π/2 and arg(αHz /αEx ) = 0 are satisfied to within 0.06 rad. These
phase relations are consistent with the LC-circuit intuition that if a magnetic response
arises through electric driving, i.e., through cross polarizability, it must lag by a quarter
wave, as it is due to relaxation of the charge that accumulates in response to E across
the capacitor. Finally, we note that αHEzx =i

p
αHzαEx to within 0.4%. The numerical

values that we retrieve are in reasonable accordance with experimentally retrieved
values [2], which were reported to be approximately |αEx | = 6.4V , |αHz | = 0.9V and
αHEzx = 2.1V . That the split ring in our model is comparatively even less magnetic
than extracted in experiment is likely due to either one of two causes. First, the split
ring resonator (SRR) response depend sensitively on geometrical details such as the
exact gap size and the rounding assumed for approximating the SRR shape. The SRR
that we model is comparatively thin and rounded compared to the SRRs in experiment.
Secondly, in the experiments the polarizability was retrieved rather indirectly, from
comparison of SRR array transmission to a lattice summation model. The fact that
SRRs were located at an air-glass interface was disregarded. At a dielectric interface,
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Figure 6.2: a) Total Scattering cross section of a split ring with width=200 nm,
length=200 nm, height=30 nm and an inner hole of 80×140 nm. The inset shows a
model of the split ring used. b) Total Scattering cross section of a split ring for different
angles of incidence of circularly polarized light with right-handed polarization σ+ and
left-handed polarization σ−.

polarizabilities can be significantly renormalized [18].

Optical activity
As mentioned earlier optical activity or pseudo-chirality is expected to exist in every
antenna with a cross-coupled term in the polarizability tensor [2]. This can be seen
from the following example. Suppose we have a structure with a polarizability tensor
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α which defines the response of the particle as in:[
px

mz

]
=L (ω)

[
αE iαC

−iαC αH

]
·
[

Ex

Hz

]
(6.4)

The eigenvectors of this tensor are:[
E1

H1

]
=

[
−i (αH −αE +

√
4α2

C + (αE −αH )2)/(2αC )

1

]
(6.5)

and [
E2

H2

]
=

[
i (αE −αH +

√
4α2

C + (αE −αH )2)/(2αC )

1

]
(6.6)

which define a minimum and a maximum strength of the structure’s response given by
the eigenvalues

α1 = (1/2)L (ω)(αE +αH −
√

4α2
C + (αE −αH )2) and (6.7a)

α2 = (1/2)L (ω)(αE +αH +
√

4α2
C + (αE −αH )2). (6.7b)

For a non vanishing αC we see that the right eigenvectors present a phase delay between
E and H, evident from the fact that the arguments of E and H are different. This phase
delay can be approximately met by using circularly polarized light under an oblique
incident condition. A change in the handedness in the circular polarization, even under
the same incident angle, would change the response of the structure, as seen in the right
eigenvalues and eigenvectors. This is a form of optical activity, specifically circular
dichroism in extinction. Note that in this formulation there also evidently is a degree
of maximum cross coupling. If αC > p

αHαE , the extinction corresponding to the
smallest eigenvalue will flip sign, meaning an unphysical negative cross section. This
would only be possible if there would be gain in the system and is hence unphysical.

Now we turn to the full wave SIE calculations for split rings. Fig. 6.2b shows the
extinction cross section for left-handed and right-handed illumination as a function
of incident angle, for a wavelength of 1544 nm (i.e., on resonance). Fig. 6.2b indeed
shows a strong optical activity for the split ring, as evidenced from the change of
scattering cross section for right- and left-handed circularly polarized excitations at
different incident angles. In order to compare the split-ring to other antennas with
reported magnetic responses, we show in Fig. 6.3 the calculated optical activity for
different metamaterial antennas. The data used to compare them comes from our VSH
retrieval method and from measurements performed by Ivana Seršic and Marie Anne
van de Haar in Ref. [2]. This retrieval is applied on archetypical metamaterial scatterers
as shown in Fig. 6.3a, which are essentially split rings, Omega particles, and nested split
rings. Given that the Omega particles have a very clearly defined symmetry center, we
use the polarizability retrieval on these structures to verify that the Onsager constraints
are satisfied. We calculate scattering cross sections and polarizability tensors in the
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Figure 6.3: Master diagrams summarizing optical activity and bi-anisotropy mapped
as a function of ξ= (αE −αH )/((αE +αH ) and η= (αC )/((αE +αH ) . All structures
we tested, numbered as in panel a), are close to the locus of maximum cross coupling
(ellipse), except (8). The color scale shows optical activity contrast Ψ, in the
dipole approximation (color scale) and for tested structures (dots). Panel c) is a
3D representation of b).

same way as we did for the split ring which in this case is represented by the structure
number 7 in Fig. 6.3.

In order to allow a comparison of scatterers independent of their size we summarize
the results for the retrieved polarizabilities and scattering cross sections in a ‘master
plot’. The scatterers are shown in Fig. 6.3a. As a first variable we use ξ = (αE −
αH )/(αE +αH ), which is dimensionless and equals +1 for purely electric scatterers,
−1 for purely magnetic scatterers, and 0 for equal electric and magnetic polarizability.
As a second variable we use the cross coupling and normalize it to the electric and
magnetic polarizabilities i.e. η = αC /(αE +αH ) . The location of maximum cross
coupling is the ellipse η=

√
1−ξ2/2. Almost all metamaterial scatterers we analyzed

have ξ far from 1 as shown in Fig. 6.3, indicating significant magnetic polarizability.
Furthermore all particles lie essentially on the boundary of the ellipse, demonstrating
that all the scatterers present maximum cross coupling. This is a strong indication that
bianisotropy is ubiquitous as claimed in Ref. [2]. If one considers the LC model, it is in
fact evident that since p and m derive from the same circulating charge, there is little
room to independently engineer αE , αH and αC by variation of geometrical parameters.
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6.4 Single split ring as a magnetic dipole converter

Explicitly, calculation shows that the LC model always results in αC =p
αEαH , i.e.,

maximum cross coupling.
The measure of optical activity for these scatterers is presented as a third axis for

the master plot. In order to quantify the optical activity we use the scattering cross
section for right σR (θ) and left σL(θ) handed polarized light. The parameter that we use
for this quantification is Ψ= |σR (θ)−σL(θ)|/(σR (θ)+σL(θ))) evaluated at incidence
angle θ = 45◦. This parameter has the merit of allowing us to quantify the maximum
attained difference in extinction which is always maximal at 45◦ and also of being
dimensionless so that we can compare all the scatterers regardless of their size. The
colored surface in Fig. 6.3b shows Ψ versus ξ and η as predicted by point scattering
theory. Optical activity is expected to be absent for zero cross coupling, and to increase
monotonically as cross coupling increases. From point dipole theory we expect a very
strong contrast in extinction for right and left polarized light along most of the ellipse
that defines maximum cross coupling. This contrast should vanish only for purely
electric (ξ = 1), and purely magnetic (ξ = −1)dipole scatterers. Our simulations in
SIE show that all the calculated metamaterial scatterers exhibit strong optical activity
in very good agreement with the dipole model. The only object that does not show
maximum cross coupling is the nested split ring that has two resonances, formed by
hybridization of the resonance in each ring. The fact that this object has a resonance
with bi-anisotropy smaller than the maximum cross coupling value is due to the fact
that it cannot be described as a single LC resonator. When multiple resonances are
combined, partial cancelation of bi-anisotropy is possible.

6.4 Single split ring as a magnetic dipole converter
One of the most exciting features of plasmonic antennas is that since the plasmons
are a combined oscillation of the optical fields and the free electrons in the metal, its
resonances can be confined to very small modal volumes [19]. These small modal
volumes make plasmonic antennas perfect candidates for coupling to single emitters
since near fields and LDOS are enhanced [20]. Some of the functionalities that have
been already experimentally proven for single emitters coupled to these antennas are
change of polarization of the emitted field by using rod antennas [21] and directionality
in the emission of the emitter through the use of Yagi-Uda antennas [22]. We present
calculations of the interaction between a single emitter and a split ring resonator.

A technical issue is that the field of a dipolar source driving the scatterer is singular
at the position of the emitter. Therefore unless a very fine discretization is used
simulations are prone to big numerical errors. This holds for virtually any brute force
method. In the case of SIE this problem occurs when calculating the values of the
projection of the electric and magnetic fields over the discretized surface of our scatterer
as is done for calculating q (see Eq. (5.10)) for fields stemming from a dipole in close
vicinity to the scatterer. However since the field of the dipole source is given by the
Green’s function of the environment, we can follow a similar procedure to Eq. (5.11
and 5.12), in which the integral over G(r,r0) is separated into a smooth G(r,r0)S and
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singular part G(r,r0)N S , leading to the following equation for q:

q =
{∫

Sm
dS(ω2µµ0)(G(r0,r)S +G(r0,r)N S ) · fm(r) ·p : m = 1....N∫

Sm−N
dS(iω)(∇(G(r0,r)S +G(r0,r)N S ))× fm−N (r)) ·p : m = N +1....2N

(6.8)
where we used Eq. (5.10) and the facts that G(r,r′)T = G(r′,r) and (∇×G(r,r′))T =
−∇×G(r′,r) for the free space Green’s function [23], and the identity ∇×G(r0,r) =
∇G(r0,r)×1 (Eq. (28) in Ref. [24]). The smooth part can be calculated with a normal
quadrature routine. The singular part can be calculated by using the integration of the
RWG function found in Ref. [25], i.e. by

qN S =



∫
Sm

dS(ω2µµ0)(( 3Ln

8πk2
i

[ 1
A+

n
(

k2
i

2 K1
3(T +

n )−K−1
3 (T +

n ))...

− 1
A−

n
(

k2
i

2 K1
3(T −

n )−K−1
3 (T −

n ))])...

+( 1
4π [K−1

2 (Sn)− k2
i

2 K1
2(Sn)])) ·p : m = 1....N∫

Sm−N
dS(iω)( 1

4π [K−1
4 (Sm−N )− k2

i
2 K1

4(Sm−N )]) ·p : m = N +1....2N ,
(6.9)

where Kl
j (Tn) are the integrals defined in Ref. [25] which are performed over the

triangle Tn or over the surface Sn linked to the triangle with the same index. After
having found q , we find the strength of the current densities J and M by finding αn and
βn as already explained in chapter 5. It is important to notice that this same procedure
can be used to find the scattered field at the source and thereby the local density of
states [26] when using SIE, avoiding common problems encountered when working
with the fields from a dipolar emitter close to scattering structures.

We performed simulations of an electric dipolar emitter located at different distances
to the split ring and also at a fixed position in the middle of the split ring for different
orientations of the emitter. Fig. 6.4a shows the calculated electric and magnetic dipole
moments found from just the scattered field of the split ring for different distances of
the emitter to the center of the split ring. In other words we calculate the induced dipole
moments in the antenna. The induced electric dipole is given in units of the emitter
dipole strength (p0), while the units of the magnetic dipole are given in terms of p0c.
With this choice of units we can compare the magnetic and electric dipoles directly,
since the magnitude of the radiated power produced by an electric dipole with strength
p0 is the same as the one generated by a magnetic dipole with strength p0c. Fig. 6.4a
shows that when the dipole is far from the split ring the induced dipole is fairly weak.
Therefore the total system emits only with an electric dipolar nature given by the emitter
itself. As the emitter gets closer to the split ring to within 230 nm, the total electric
dipole moment of the system increases to exceed that of just the emitter, as expected
for a high local density of states position near a plasmonic structure. Furthermore the
nature of the lumped system starts to acquire a magnetic character to the point that 30%
of the emission is of magnetic nature. In the bottom part of the graph we see that the
phase of the driven electric dipole when the emitter is in close proximity to the split
ring (50 nm from the geometrical center of the split ring) is delayed π/2 as expected
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Figure 6.4: Single emitter in the vicinity of a split ring. In a) we show the calculated
dipolar moment of the scattered field for different distances to the split ring center. In
b) we show the dipolar moment of the total field (scattered field plus single emitter
field) for different orientation angles of the single emitter in a position 0.05 µm from
the center of the split ring. The angles are rotated around the z axis, therefore, we show
the x and y electric dipole as well as the z magnetic dipole. The other components of
the electric as well as the magnetic dipole are negligible in magnitude. In c) we show
the scattered field pattern of a split ring excited with an electric dipolar emitter at the
position on maximum coupling. The electric field magnitude |E |2 is calculated at a
radius 100 µm from the center of the split ring. The red continuous line shows the field
in the plane ‘xy’ and the blue dashed line shows the field in the plane ‘yz’. In d) we
show the calculation of the normalized total and radiative LDOS for different positions
in a line along the y axis through the center of the splitring.

for a structure driven on resonance. On the other hand the magnetic dipole is in phase
with the driving emitter, π/2 advanced with respect to the induced electric dipole. This
is expected from Ref. [10] since αE H =−i

p
αEαH in the polarizability tensor of a split

ring.
In a subsequent calculation we have placed the electric dipolar emitter at the

position of maximum radiative LDOS i.e. 0.05 µm from the center of the split ring,
and we varied the orientation of the dipole. From the total scattered plus emitted
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field of the lumped system we calculate the effective dipole moments of the complete
system. Fig. 6.4b shows the electric and magnetic dipole moments as a function of
the orientation of the electric emitter, where the emitter orientation is rotated around
the z axis that points through the split ring plane. It is evident that the coupling to
the structure only occurs for the x component of the dipole, i.e., when px from the
emitter couples to αEx of the split ring. The maximum total electric and magnetic
dipole moment occurs when the dipolar emitter is aligned with the x axis. For this
alignment, py <0.005 p0 is essentially zero, while px=15.1 p0 and mz=4.9 p0c. This
result is commensurate with the relative magnitude of the purely electric and cross
coupled polarizability of the split ring in Eq. (6.3), indicating that the dipolar scattering
approximation of the split ring can be used for dipolar emitter excitations while still
obtaining an agreement of 85% with the full wave calculation. It is important to notice
that this agreement is dependent on the distance of the emitter to the split ring, since
dipolar emitters in close proximity to a plasmonic structure (typically <20 nm) can
increasingly excite higher multipolar moments of the plasmonic structures due to the
strong gradients in the exciting fields [27]. When the dipolar emitter is aligned with
the y axis, i.e., rotation angle π/2 then py =0.44 p0, px=0.12 p0 and mz=0.04 p0c.
This result indicates, first, that py hardly induces a magnetic dipole and second that
this position has a local density of states for y oriented dipoles lower than free space.
Fig. 6.4c shows a polar plot of the far field intensity distribution of the scattered field
for a split ring, excited with a dipole located at the position of maximum coupling and
aligned along the gap of the split ring i.e. along the x direction. The |E |2 distribution is
evidently different to that of an electric dipole, since on the one hand the emission is
asymmetric in the y axis due to the front-to-back asymmetry of the split ring, and on
the other hand the emission in the x axis is different than zero, evidencing the partial
magnetic nature of the scatterer. Finally in Fig. 6.4d we show the calculated total
and radiative LDOS normalized to the vacuum LDOS. The calculations are done for
different positions on the y axis along a line which starts at the center of the split ring.
The maximum total and radiative LDOS occurs at a position ∼50 nm away from the
center of the split ring. While at this position the total LDOS for an x oriented dipole
is ∼755 ρ0 the radiative LDOS for an x oriented dipole is ∼252.7 ρ0. This radiative
LDOS is consistent with the generated total electric dipolar moment of 15.1 p0 and
magnetic moment of 4.9 p0c for the lumped system. These values for the dipole
moments indicate a radiative LDOS enhancement of (p2 +m2)/p2

0=252. The fact
that the total LDOS is 3 times the radiative LDOS is consistent with experimental
measurements of the albedo of ∼30% measured for a single Au split ring by Husnik
et. al. [17]. The relative magnitude of the total vs. radiative LDOS indicates that the
quantum efficiency of the system is η∼33% equal to the albedo of the split ring.

6.5 Split ring array antenna
Having understood the split ring as a system composed of an electric and a magnetic
coupled dipole moment whose maximal response to circularly polarized plane waves
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occurs for a certain polar angle θM AX , and having studied the way electric dipoles
couple to single split rings we turn to the design of an array of split rings and to the
study of the special properties that arise from it. In our design we combine two of our
earlier results. Firstly, Fig. 6.2 shows that the purest handed response is obtained at
off-normal incidence of 20◦. Secondly, excitation of a split ring array with a single
molecule is most advantageous when placed 50 nm from the geometrical center and
with a dipolar orientation along the gap. In addition we know from Ref. [11, 12, 22, 28]
that one can attain directionality in the scattering of arrays of particles by placing them
in a linear array with a pitch of ∼ λ/3. Our design combines these three ideas in an
array of 5 split rings tilted at θM AX and excited by a dipolar emitter in the central
element. Figure 6.5a presents the scattering pattern of the antenna which clearly shows
directivity in its scattering, with scattered fields confined in a half angle < 40◦. By
studying the complex fields obtained from the front and back scattering from the
antenna we can retrieve the polarization and plot it on the Poincare sphere, see Fig. 6.5b.
We find right handed elliptically polarized light emanating from the front of the antenna
(depicted by the blue point in Fig. 6.5(a and b)) and left handed elliptically polarized
light emanating from the back of the antenna. Both fields have an electric field 7
times stronger in the x direction than in the y direction and the major axis of the
ellipse is aligned with the x axis. Thereby, metamaterial antennas allow new forms of
control over emission compared to plasmon antennas. We foresee that with split rings
with a stronger magnetic polarizability term, it would be possible to reach a totally
circular polarized light regime. Reaching stronger magnetic polarizability currently
seems easiest at mid-infra-red and microwave frequencies [2]. We foresee interesting
applications especially if one can reach this at optical frequencies. In this regime one
could envision using split ring antennas to generate a single photon source from a
simple linear electric dipole emitter, or from a localized χ(2) nonlinear material that
emits its photons in handed beams, or split in two narrow beams, where handedness
and direction are entangled.

6.6 Conclusions
We have made use of the polarizability tensor retrieval method to calculate the α tensor
of split rings. This method allows us to confirm that these type of planar scatterers
can be described excellently by an LC circuit model, where the α tensor must have
maximally strong cross coupling. It also lets us confirm and quantify the strong response
in the αE H cross-coupled polarizability elements. This cross-coupled response implies
that the structure possess optical activity. We have used the lumped system of a
dipolar emitter and a split ring to show how the radiation nature of the system changes
drastically from a simple electrical dipole emitter. In the lumped system the emission
is modified by the scattering of the split ring, which can imprint its magneto-electric
nature on the emission. This realization further extends current research efforts that
have shown how emission from a single electric dipole transition in a quantum dot can
appear as if it originates from a multipole transition by strong coupling of the emitter to

99



6 Designing Antennas with the Aid of the Polarizability Retrieval Method

0
1

V =
1

2

1
-1

A =

1

2

1
1

D =

1

2

1
- i

R =

1

2

1
i

L =

1
0

H =

b)a)

c)

30

210

60

240

90

270

120

300

150

330

180 0

  0.01

  0.02

  0.03

  0.04

Perspective diagonal view

Top view

Figure 6.5: a) Scattered field pattern of a split ring array antenna showing directionality
in its scattering. The antenna is excited with a unit dipole positioned at 50 nm from the
center in between the arms of the central split ring in the array. The field is calculated at
a sphere 100 µm from the center of the antenna. The solid line shows |E |2 in the plane
zx and the dashed line shows |E |2 in the plane z y . b) Depiction of the polarization state
of the scattered field of the array antenna found on the forward (blue) and backward
direction (red). c) Cartoon model that shows the positioning of the electric dipole on
the split ring array antenna as well as the angled relative positioning of the split rings.

a plasmon antenna multipole resonance [29]. Also, such magnetic and magnetoelectric
antennas may enhance the magnetic LDOS that magnetic transitions are sensitive
to, as recently shown for rare earth ions near an interface [13]. Finally we used our
understanding of split rings to design an array antenna that splits emission from a
point source into two beams of oppositely handed elliptical polarization. For ultimately
strong magnetic scatterers, these findings might provide new ways to manipulate spins
via light, and enhance enantioselective spectroscopies in the near field [8, 30].
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7
Adding Electric Quadrupolar Terms to the
Retrieval of the Polarizability Tensor

In this chapter we extend the retrieval of the polarizability tensor that we explained in
chapter 5 with the electric quadrupolar terms. We do this to underpin hybridization
intuition for complex nanoantennas. In plasmonics and metamaterials it is a common
practice to explain scattering features of complex structures in an intuitive manner as
due to hybridization of electric dipoles. Recent developments in metamaterials as well
as in plasmonic Fano systems have further included magnetic dipoles, and electric
quadrupoles in this reasoning. We derive a method based on retrieval of the dipole and
quadrupole polarizability tensors of nano scatterers from full-wave simulations that
allows us to underpin this intuitive reasoning by quantifying the existent modes and
their strengths in complex nano antennas. By application to a dolmen plasmon structure,
we show how the retrieval sheds new light on plasmon induced transparency. Further
by applying this method to aluminum nanopyramids we show how the interference
between the multipole moments create asymmetrical LDOS enhancement that can be
used for increasing LED’s as well as solar cell efficiencies.

7.1 Introduction
The fields of plasmonic antennas, metasurfaces, and metamaterials, revolve around the
idea that very strong scattering resonances in deeply subwavelength objects can be used
to tailor the strength of optical near fields, scattering, and radiative processes [1–3].
Indeed great strides have been reported in using engineered clusters of nanoparticles
to enhance solar cell absorption [4, 5], LED light emission [6, 7], single molecule
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7 Adding Electric Quadrupolar Terms to the Retrieval of the Polarizability Tensor

emission brightness and directivity [3, 8–13], optical sensing of very dilute analytes [14–
16], and the development of metasurfaces [17, 18]. A workhorse interpretative tool
to understand complex clusters of antennas is to reason in terms of coupled induced
dipole moments that hybridize [19–21]. Surprisingly, once retardation and radiative
corrections are taken into account accurate results can be obtained for especially far field
observables such as extinction and scattering spectra, describing very well the essential
physics of hallmark structures such as Yagi-Uda phased array antennas [10, 11, 22]
as well as oligomers with plasmon induced transparency (PIT) features, such as the
plasmon heptamer in which collective modes with large, resp. small net electric dipole
moment form [23–28]. In fact, viewing a complex plasmon antenna as a collection of
electric point dipoles has been employed not just as qualitative, but also as quantitative
tool known as the "Discrete Dipole Approximation" (DDA) that is recognized to be
valid as long as field gradients are small on the scale of the discretization [29]. More
recently, efforts in metasurfaces as well as in plasmonically induced transparency have
underlined that, rather than separating a structure into a set of discrete constituent
electric dipoles, intuition may be advantageously developed by assigning to a given
structure not just an electric dipole response, but also a magnetic dipole and electric
quadrupole moment. While it is evident that both the DDA (taking many dipoles) and
a full multipole expansion by definition can always capture the complete physics, the
important notion here is that intuition benefits from reasoning with just few terms,
and that for moderately sized antennas the response is usually assumed to derive from
at most three leading multipoles. The first is the electric dipole response to incident
electric field that is key to plasmonic hybridization. The second is a resonant response
to curls of the electric field that embody magnetism in metamaterials and is implicitly
assumed whenever a metamaterial object is viewed as an LC resonator. Thirdly, in
recent works the resonant response of a structure to symmetric gradients of the electric
field, i.e., the electric quadrupole response has been invoked. Including just the electric
dipole and magnetic dipole response allows to derive simple models for the response
of metamaterials that quantitatively explain most reported optical experiments on
split rings [30–32] and provide a minimal model to understand chirality and ‘pseudo-
chirality’ in nano-optics, i.e., the handed optical response of geometrically chiral,
respectively non chiral structures [33, 34]. In a separate body of literature, workers
focusing on plasmonically induced transparency have invoked the excitation of electric
quadrupole modes as responsible for the occurrence of sharp features in extinction of
antennas such as dolmens. Generally, one then fits the optical response to a coupled
oscillator model, where one interprets the fitted coupling constants, damping rates and
resonance frequencies to represent properties of the assumed quadrupole resonance
(often coined ‘dark mode’) and electric dipole mode (often coined ‘bright’). We argue
that there is a large need for a simple but quantitative method to underpin whether the
intuition that magnetic dipoles and electric quadrupoles are indeed at play is valid, and
if so, what their properties are in terms of scattering strength, resonance frequency and
width. One should realize that the common underpinning of intuition by examination
of snapshots of field or charge distributions from full-wave simulations at distinct
frequencies is problematic, since snapshots represent unseparated superpositions of

104



7.2 Retrieval of quadrupoles and reduction of terms

excited modes. For particular structures, several authors have sought to overcome this
problem [28, 35]. Here we propose a method to retrieve and visualize electric and
magnetic dipolar polarizabilities as well as quadrupolar polarizabilities, that generically
allows us to underpin the intuition of which modes are involved in the scattering
processes. As a useful byproduct this model can be used not just as an a posteriori
interpretative tool. In a predictive manner, the output of our polarizability retrieval
can be used as input for self-consistent multiple scattering calculations [20, 21, 31] for
point particles that are assigned the retrieved responses. This predictive power then
allows firstly design of new structures, and secondly to put the intuitive reasoning to
the test and find out until what point it remains valid. To summarize the structure of
this chapter, first we show that using a few essential symmetries, quadrupole moments
can be treated with the same ease as dipole moments. In particular we retrieve the
quadrupolar moments as well as electric and magnetic dipole moments from full-wave
calculations, and show how these retrieved moments can be used to quantitatively
underpin hitherto qualitative explanations of the physics of interesting systems. As a
first example we revisit the “dolmen" structure [24, 26, 35–39], which was reported
to show a Fano interference due to electric dipole-electric quadrupole coupling. We
show that while these two modes are indeed at play, this description misses essential
physics of the dolmen structure. Indeed, we find that the narrow resonance is due
not just to a strong electric quadrupole, but in equal parts to a strong magnetic dipole
character. This example thereby shows how our method greatly helps to objectify
which modes to pinpoint as input for a coupled oscillator model. As a second example
we apply the retrieval method to aluminum nano pyramid antennas, which show a
strong asymmetrical directional emission of fluorescent dyes. In this example the super
polarizability tensor retrieval gives us an insight of the origin of the very complex near
field interferences that create this exotic effect.

7.2 Retrieval of quadrupoles and reduction of terms
The starting point of our work is chapter 9 in the book of Jackson [40] and recent
work by Mühlig et al [41]. To recapitulate this starting point, we assume that a
full-wave solution for the near field of the scatterer of interest in a homogeneous
medium, and upon plane wave excitation is available. While any method may be
used, we employ a surface integral equation method (SIE) [42] that we implemented
previously (chapter 5). To derive induced multipole moments, we use the fact that
the vector spherical harmonic functions Nnm(r,θ,φ) and Mnm(r,θ,φ) form a complete
and orthonormal set [43]. Therefore the scattered near field E(r,θ,φ) has a unique
expansion

E(r,θ,φ) =
∞∑

n=1

n∑
m=−n

[anm Nnm(r,θ,φ)+bnm Mnm(r,θ,φ)], (7.1)

where the expansion coefficients anm and bnm can be simply found by projecting
the calculated E(r,θ,φ) on the vector spherical harmonic functions. The expansion
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coefficients are linearly related to the multipole moments in the following way:

px = εC0(a11 −a1−1)

py = εC0i (a11 +a1−1)

pz = εC0(−p2a10)

mx =−
√
ε

µ
i cC0(b11 −b1−1)

my =
√
ε

µ
cC0(b11 +b1−1)

mz =−
√
ε

µ
i cC0(−p2b10)

Qx y = D0(a2−2 −a22)

Qxz = D0i (a2−1 −a21)

Qy z = D0(a2−1 +a21)

Qxx = D0(i (a22 +a2−2)− i

p
6

3
a20)

Qy y = D0(−i (a22 +a2−2)− i

p
6

3
a20)

Qzz = D0(i
2
p

6

3
a20).

(7.2)

Where C0 = 2
p

6πi /(c Z0k3), D0 =−12ε
p

30π/(Z0ck4), k = (ω/c)
p
εµ, Z0 =

√
µ0/ε0,

ε0 is the permittivity of free space µ0 is the permeability of free space, c is the speed of
light, ω is the frequency and finally ε and µ are the permittivity and permeability of the
medium inside which the scatterer is positioned. As explained in chapter 5, one can very
efficiently calculate the coefficients with excellent accuracy using numerical integration
on just very few sampling points with points and weights chosen consistent with
Legendre quadratures [44], owing to special properties for discrete Fourier transforms
on the unit sphere.

Having summarized the established starting point, we turn to the key question, i.e.,
how to reconstruct and analyze polarizabilities, given that it is possible to calculate
multipole moments for any given illumination condition. The polarizability is the
central quantity that summarizes the possible responses of a scattering unit to arbitrary
incident fields, and can be used as input for predictive modeling of complicated
arrangements of such units. For electric and magnetic dipoles deriving the polarizability
from calculations of induced moments is completely resolved in chapter 5. Therefore,
the key ingredient in this work is to revisit the quadrupole tensor. The quadrupole
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moment is defined as a symmetric traceless tensor [40]

Q =
 Qxx Qx y Qxz

Qx y Qy y Qy z

Qxz Qy z Qzz

 (7.3)

In a deeply subwavelength object, the quadrupole moments are generally set up by
the symmetric part of the gradients of an incident electric field, through a fourth rank
‘quadrupolarizability’ [45] tensor [46, 47] αQ

i j mn

Qi j =αQ
i j mn(∂mEn +∂nEm)/2 (7.4)

Here we use the Einstein summation notation, and abbreviate the spatial derivatives
∂/∂xm as ∂m (m = 1,2,3 for x, y, z). If we use the fact that both the traceless tensor Qi j

and the tensor (∂mEn +∂nEm)/2 are symmetric, we can eliminate some redundancy in
Eq. (7.4) and obtain a much simpler matrix equation Qi =αQ

i j♦E j . Here the vectors

Q = {2Qx y ,2Qxz ,2Qy z ,Qxx ,Qy y ,Qzz } and (7.5)
♦E = {(∂x Ey +∂y Ex )/2,(∂x Ez +∂z Ex )/2,(∂y Ez +∂z Ey )/2,∂x Ex ,∂y Ey ,∂z Ez } (7.6)

represent complete information on the quadrupolarizability tensor and the Diamond
operator ♦ is introduced to ease the handling of the symmetric gradient operations.

We now combine this insight for quadrupoles, with the insight we reported in
Ref. [31] and in chapter 5 for electric and magnetic dipole polarizability. We define the
combination of dipole and quadrupole response as a ‘superpolarizability’ αS tensor of
the form:  p

m
Q

=αS

 E
H
♦E

 (7.7)

An important practical merit of this definition over the use of the rank 4 quadrupolariz-
ability is that the rank 2 superpolarizability tensor can be immediately plotted as a 2D
color image, allowing direct comparison of dipolar and quadrupolar contributions. The
superpolarizability furthermore leaves open the possibility that a scatterer or scattering
cluster is strongly plasmonic (electric dipole polarizability is dominant), a metamaterial
object (magnetic dipole polarizability is strong), bi-anisotropic (cross-polarizability
in which magnetic (electric) driving begets an electric (magnetic) dipolar response,
as in an LC-resonator), and quadrupolar. The quadrupole could be driven by the 6
components of ♦E, as appropriate for a deeply subwavelength object, or by E or H,
through an equivalent of “bi-anisotropic cross coupling", as we will see below for the
well-known dolmen plasmon antenna.

To find the 12×12 superpolarizability of an arbitrarily shaped object, it is necessary
to supply sufficient linearly independent incident conditions, retrieve the induced
moments, and then perform matrix inversion. A subtle point is that invertibility
requires to remove one more degree of redundancy, which owes to the facts that
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the quadrupole tensor is traceless Qxx +Qy y +Qzz = 0, and that E is divergence
free i.e. ∂x Ex + ∂y Ey + ∂z Ez = 0. The redundancy can be removed by replacing
Q by Q̂ = {2Qx y ,2Qxz ,2Qy z ,Qxx ,Qy y } and ♦E by ♦̂E = {(∂x Ey + ∂y Ex )/2,(∂x Ez +
∂z Ex )/2,(∂y Ez +∂z Ey )/2,(∂x Ex −∂z Ez ), (∂y Ey −∂z Ez )}. To cast the 12×12 tensor αS

in 11×11 form α̂S requires simply dropping the last column and row. In this work,
procedurally, we first find the 11×11 α̂S tensor from the moments (p,m,Q̂) induced by
11 incidence conditions, and then expand to 12×12 form. To this end we define the
11×12 matrix M which has the 11×11 identity matrix as upper diagonal block, and
which as last column has zeros except for its last two entries M11,11 = M11,12 =−1. With
this definition, the expanded polarizability is retrieved as αS = M T α̂S M . Throughout
this work we plot the full 12×12 superpolarizability, while for calculations that require
matrix inversion we cast to and from the equivalent 11×11 form.

A sketch of the 11 required driving conditions is presented in Fig. 7.1. First, to
construct three incidence conditions that only provide an electric field at the origin,
without any magnetic field or electric-field gradient, we take counter-propagating co-
polarized plane waves along the three Cartesian axes. Fig. 7.1a shows such a driving
for the y axis. Next, to provide no electric field, but an H-field, at the origin, we shift
the three standing waves by λ/4. Fig. 7.1b also shows such a driving for the y axes. It
should be noted that this condition is not, in fact, free of electric field gradient at the
origin. To form the 5 required electric field gradients without any admixing of E and
H, we use 2 orthogonal pair sets of counter propagating plane waves with antiparallel
polarization of the E field. Fig. 7.1c shows the combination of these 4 plane waves
on the x y plane, which generates the required ♦Ex y driving. We create 3 of the 5
required excitations with zero E and H field, but a strong field gradient, at the origin,
by combinations along the Cartesian axes. In addition 2 excitations are created by
using diagonals of the Cartesian cube. The superpolarizability simply follows from
matrix inversion and is in fact entirely independent of the actual choice of linearly
independent input fields. Finally we note two important facts. Firstly, it is important
to realize that the simplification to a superpolarizability tensor does not involve an
electrostatic approximation. Indeed, we use vector spherical harmonic projection of
the full field solution to obtain the generalized Mie coefficients anm and bnm , i.e., the
electrodynamic multipole coefficients that include all retardation effects. Secondly,
while it is the sole purpose of this paper to derive an interpretative tool to underpin
prior works that have invoked electric dipole, magnetic dipole and electric quadrupole
responses only, the method can be extended also to include higher order moments. In
particular, we note that while so far it has often been taken on face value that orders
beyond the electric quadrupole are not relevant, the important question whether taking
only the selected multipole terms indeed suffices at all is easily answered for any
structure simply by calculating the higher order expansion coefficients of the scattered
field using Eq. (7.1).
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Figure 7.1: Sketches of the fields used for (a) a "pure" electric field driving with
a combination of plane waves, (b) an antisymmetrical gradient (magnetic field) and
a symmetric gradient field driving with a zero electric field, and finally in c) we
show a "pure" symmetrical field gradient driving created with the combination of 4
counter-propagating plane waves.

Note on units
In order to be able to compare the magnitudes of driving field components, polarizabil-
ities, respectively induced dipole moments in a useful way, we use a non-SI scaling of
quantities based on the CGS unit system. Here we provide the unit conversion to SI,
and the rationale behind the choice. In summary the rationale is that equal entries in the
polarizability tensor correspond to equal scattered power. First, we scale the electric
field, magnetic field, and electric field gradient to share as common unit [V/m], scaled
such that a simple plane wave represents unit strength for all its nonzero components.
The conversion reads

E = ESI, H = Z0HSI and ♦E = k♦ESI. (7.8)

Here Z0 is the free space impedance. Next we scale all the induced moments from
their SI definition so as to obtain as common unit [C m] (Coulomb meter), and such
that any moment of unit strength radiates exactly the same power into the far field. The
conversion reads

p = pSI, m = 1/cmSI and Q = kp
60

QSI. (7.9)

The factor k/
p

60 results from the quadrupolar equivalent of Larmor’s formula. For
a dipole, Larmor’s formula states that the radiated power is P = c2Z0k4/(12π)|pSI|2,
while for a quadrupole P = c2Z0k6/(1440π)

∑
α,β |QSI,α,β|2. Finally, it should be noted

that with this choice of units the superpolarizability tensor is automatically cast to have
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7 Adding Electric Quadrupolar Terms to the Retrieval of the Polarizability Tensor

units ε0m3 for all entries, where comparable entries necessarily contribute comparably
to the scattered power. For completeness, here we tabulate the complete conversion.
For the block diagonals the conversion reads:

αE
p =αSI

E
p, αH

m = 1

Z0c
αSI

H
m, and α♦E

Q = k2

p
60
αSI

♦E
Q . (7.10)

For the off-diagonal blocks, the conversion reads

αE
m = 1

c
αSI

E
m, αH

p = 1

Z0
αSI

H
p , αE

Q = kp
60
αSI

E
Q,

αH
Q = k

Z0
p

60
αSI

H
Q , α♦E

p = kαSI
♦E
p , α♦E

m = k

c
αSI

♦E
p . (7.11)

Also, due to our definition of the vector Q, the rows 7,8 and 9 in αS are divided by 2.
In Figures 7.3 and 8.2 we further take out the factor ε0 so that the plotted quantity has
units of volume and can be directly compared to particle volume.

7.3 Dolmen αS-tensor
To demonstrate the utility of the multipole polarizability retrieval for the rigorous
underpinning of hybridization intuition, we apply it to retrieve the αS-tensor of a silver
dolmen structure. This structure is composed of a single x-oriented rod, closely coupled
to a y-oriented dimer of rods, and is well known because it exhibits PIT [24, 26, 35–
39] when measuring extinction for x-polarized light incident along z. The structure
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Figure 7.2: a) Sketch of the dolmen structure and the expected areas with high field
enhancement. The sketch also presents the dimensions used. b) Total scattering cross
section of the silver dolmen structure. The thickness is 20 nm.

used in our calculations is shown in Fig. 7.2a, with the corresponding dimensions.
For the silver material we use the tabulated data in [48]. In Fig. 7.2b we show the
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7.3 Dolmen αS-tensor

total scattering cross section of the structure as a function of optical wavelength. The
resonant scattering cross section has two distinct features. The dominant feature is a
maximum cross section at 687 nm, with a minimum close by at 665 nm. The spectral
features are in good agreement with literature reports [36]. The proposed physics in
those reports is that a Fano resonance occurs upon direct driving of the x-oriented
dipolar resonance, which in turn through near field coupling drives a dark quadrupolar
resonance of the dimer [36].

Figure 7.3: Plot of the superpolarizability tensor and the magnitude of its different
components at a wavelength λ= 665 nm. The units of αS are µm3. (see note on units
in sec. 7.2)

We retrieve the 12x12 superpolarizability of the entire dolmen and visualize its
elements in Fig. 7.3. Figure 7.3 shows αS at a wavelength of 665 nm as a color plot,
where we present the logarithm of the magnitude of the elements of αS . The logarithmic
scale has the merit that it allows to quickly identify the entries that dominate the optical
response as the red/orange color (see Methods in Sec. 7.2). Since the logarithmic scale
unfortunately obscures small relative differences between elements (differences smaller
than a factor 2) as well as phase information, we also report quantitative values for all
non-negligible tensor elements in Appendix B of this thesis, and plot the amplitude
and phase for select elements in Fig. 7.4.

To understand the structure of the reported tensor, the αS tensor can be divided in 9
block matrices, four 3x3 matrices, two 3x6 matrices, two 6x3 matrices and one 6x6
matrix. Throughout its diagonal we find that the first block matrix (αE

p) is related to
the purely electric dipolar response of the object, i.e. it quantifies the electric dipole
created by an electric field. In particular, for the dolmen structure at 665 nm one finds
a strong electric dipole polarizability α

Ex
px

= 7.8×10−3 µm3 along x, attributable to
the resonance of the top rod. The two y-oriented rods are responsible for a sizeable

111



7 Adding Electric Quadrupolar Terms to the Retrieval of the Polarizability Tensor

electric dipole polarizability α
Ey
py

= 7×10−3 µm3 along y . While their resonance is
shifted away from that of the x-oriented rod towards the blue to 625 nm, their large
joint volume still ensures a significant polarizability comparable to that of the single
x-rod. Finally, due to the small height of the rods the electric dipole polarizability
along z is αEz

pz
= 3.4×10−4 µm3 or 1.3 orders of magnitude smaller.

The second diagonal block (αH
m) of the αS tensor can be likewise interpreted as

the purely magnetic dipolar response due to incident magnetic fields, while the third
diagonal block is the quadrupolar response of the object due to symmetric gradients of
the electric field (α♦E

Q ). The blocks outside the diagonal quantify cross coupling terms.
In particular the 3x3 off-diagonal blocks quantify bi-anisotropy, i.e., the generation of
a magnetic dipole response upon driving by electric fields (αE

m) and vice versa. Finally,
we also find quadrupoles induced directly by an electric or magnetic field(αE

Q,αH
Q). In

terms of polarizability contributions that stand out for the dolmen in terms of magnitude
(apart from the electric dipole polarizability), we find that a strong z-oriented magnetic
dipole, as well as a strong Qx y can be induced by driving simply with the x−oriented
E-field (first column of αS , discussed at length below) , while driving by y-oriented
E-fields (second column) sets up a strong linear quadrupole moment along y (since
Qy y =−2Qxx =−2Qzz [phase not shown in plot], with all other quadrupole moments
negligible) . We further note the approximate symmetry of αS , which for purely dipolar
magnetoelectric scatterers (top 6x6 block) is rigorous and a consequence of Onsager
reciprocity [31, 49].

Evidently, the entire αS tensor contains very rich physics that allows pinpointing
for each excitation condition exactly which moments are induced. Such insights may
then be further cast into a microscopic analysis by examination how particular incident
field distributions set up, for instance, particular charge oscillations inside the cluster.
To illustrate how such an analysis can enrich insights in important optical phenomena,
we specifically focus on the dolmen response to an x-polarized plane wave, i,e, the
first column only of αS . The retrieved polarizability shows that the dominant responses
driven by an x-polarized plane wave as used in all reported experiments, involve
px , and the expected ‘dark’ quadrupole Qx y . More unexpectedly an out-of-plane
magnetic response mz also is significant. These three response contributions are cross
coupled, in the sense that driving any of the three ‘directly’ (via the diagonal of αS),
also excites the others. For instance, in the original description of PIT experiments,
it is understood that one drives px directly by Ex , which then induces the expected
in-plane quadrupole response Qx y (as well as the associated magnetic response mz).
Conversely, the quadrupole can also be directly driven via application of the symmetric
E-field gradient ♦Ex y , in which case also an electric dipole moment px is induced.
Thus, the polarizability tensor directly evidences the suspected hybridization of an x-
oriented electric dipole with the Qx y quadrupole moment. Furthermore our results point
at an accompanying magnetic response that was not invoked in previously reported
discussions on PIT in dolmens.

As regards microscopic analysis of their origin, out of these three contributions
the px and Qx y were already assigned in literature to the fundamental dipole mode
of the top rod, respectively the antisymmetrically oscillating dimer. This assignment
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7.3 Dolmen αS-tensor

Figure 7.4: a) Magnitude and phase of the polarizability of the isolated dolmen’s top
particle for electric dipoles created by electric fields in the x direction, b) magnitude
and phase of the polarizability of the dolmen’s arms for magnetic dipoles in z created
by magnetic fields in the z direction, quadrupoles in the xy plane created by ♦Ex y
gradients as well as magnetic dipoles created by ♦Ex y and quadrupoles in the xy plane
created by magnetic fields in the z direction. Finally c) and d) show the magnitude
and phase of the polarizability vs. wavelength of the electric dipole in the x axis, the
magnetic dipole in z as well as the quadrupole in the xy plane for an electric field
oriented in the x axis.

can be further underpinned by examining separately the superpolarizabilities of the
isolated particles that compose the dolmen, i.e the x-oriented rod on one hand, and the
dimer on the other hand. As shown in Fig. 7.4a the isolated top particle has a strong
electric dipole polarizability αEx

px
= 14.4×10−3 µm3 that is resonant at 687 nm with

a width of 89 nm. The top particle alone is responsible for essentially the complete
x-oriented electric polarizability of the entire dolmen. The isolated dimer in contrast
(Fig. 7.4b ) shows a resonance that carries both the expected quadrupolar α♦Ex y

Qx y
that PIT

literature has focused on, and the magnetic dipole αHz
mz

that was hitherto disregarded
in PIT literature but emphasized in literature on metamaterial applications for cut
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wire pairs [50]. These moments are associated with the same asymmetric current
distribution mode of the bare dimer, centered at 665 nm with a width of 50 nm. Clearly,
the magnetic dipole and electric quadrupole belong to the same resonance, and share
cross polarizabilities. This feature is generally found for antennas constructed by two
separated electric dipoles such as in cut-wire pairs [50, 51]. Meyrath et al. [52] in a
critical appraisal of the law of electromagnetic induction have argued that in absence
of closed conduction loops and given the non-electrostatic nature of the system, a strict
separation cannot be made between magnetic and electric responses. We note that the
induced moments can through Eq. (7.1), be separated clearly either mathematically on
basis of projection on vector spherical harmonics, or in an experimental observable such
as the far field angular radiation pattern that differs markedly for magnetic dipoles and
electric quadrupoles [53]. The ambiguity that Meyrath et al. [52] point out, however is
evident in the fact that the asymmetric resonance cannot be uniquely assigned either
to a response to magnetic field Hz or to a response to nonuniformities in electric field.
Indeed, the asymmetric mode of the cut-wire pair is simply driven by ∂x Ey , which
is contained equally in the curl of E (i.e., in Hz = ∂x Ey −∂y Ex) and in the symmetric
gradient (i.e. in ♦Ex y = 1

2 [∂x Ey +∂y Ex ]).
Returning to the superpolarizability for the entire dimer, we consider the frequency

dependence of select components in Fig. 7.4c to trace the emergence of PIT. For αEx
px

,
the dipolar polarizability of the rod gains a dispersive Fano resonance at 665 nm,
demonstrating that hybridization occurs. As complementary information, Fig. 7.4d
demonstrates that the resonances of the strong cross polarizabilities αEx

mz
and α

Ex
Qx y

likewise are a product of the hybridization of the composing elements, where the
quadrupole contribution broadens as a consequence of coupling to the bright dipolar
resonance of the rod. Thus the simple superpolarizability retrieval presented here
provides important underpinning for the physical picture proposed in literature. Rather
than resorting to quasi-electrostatics, or visually inspecting snapshots of simulated
charge distributions, the superpolarizability tensor quantitatively reports which multi-
pole moments are involved.

As a further insight that is provided by the superpolarizability analysis, we find
that it allows to quantify the common assumption that the dimer resonance with its
combined electric quadrupole and magnetic dipole moment is a dark resonance. As we
see in the plotted amplitudes of αS , the magnetic and quadrupolar moments induced
through the incident electric field scatter comparable amounts, and the total power
radiated by the asymmetric mode is within a factor 3 from that radiated by the induced
electric dipole. To summarize, while the term ‘dark’ adequately describes the lack
of direct coupling between an incident x-polarized plane wave incident along z and
the asymmetric mode, the radiation pattern of a dolmen actually contains significant
contribution from the asymmetric mode, in apparent contradiction to the terminology
‘dark’ resonance.

A third observation is that the Fano lineshape is ultimately determined not only
by the amplitude but also by the phase of the cross-polarizability, as motivated from a
coupled oscillator model by Zhang et al. [36]. In principle the superpolarizability tensor
provides a direct method to read off, and microscopically understand, the phase. Finally
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we note that as in any optical Fano system, a challenge is to ultimately identify the true
normal, i.e., uncoupled eigenmodes, as was recently reported for the Fano resonance in
plasmonic heptamers [28], and investigated by Gallinet et al. [35]. We propose that
such an analysis can be realized by examining poles of the superpolarizability as one
sweeps frequency into the complex frequency plane [20, 54, 55].

7.4 Nanopyramids αS-tensor
As a second application of the super polarizability tensor retrieval we use the method
on aluminum nanopyramid antennas, like the ones shown in Fig. 7.5. This study
is motivated by recent extinction and photoluminescence experiments performed at
Phillips Research by S.R.K. Rodriguez et al. [56] on such truncated pyramids. The
nanopyramids are fabricated using soft imprint lithography at Philips, for an envisioned
application in LED remote phosphor technology. White light LEDs are most efficiently
made by using a blue pump LED in combination with a phosphorescent or fluorescent
material that efficiently converts blue light into longer wavelength visible photons.
Therefore, intense research efforts are directed to incorporating plasmonic structures
in ultrathin fluorescent layers to enhance absorption of blue light, and to accelerate
or redirect emission of visible light. Beyond the use of small metal nanoparticles
that simply provide an electric dipole moment, emission might be advantageously
redirected into preferred directions by using scatterers with high order moments. In
particular, we were inspired by the Kerker paradox for scattering which states that
for scatterers with a special ε and µ the scattering appears to have zero forward
scattering, yet nonzero extinction. This apparent paradox that occurs for very small
spheres when ε= (4−µ)/(2µ+1) gained new interest in the framework of cloaking and
invisibility [57, 58]. Alú et. al. [59] showed that these spheres indeed have very low, yet
nonzero forward scattering, thereby complying with the optical theorem. The almost
zero forward scattering results from destructive interference in the forward direction
of the radiation of the generated electric dipole and magnetic dipole moment. On this
basis one might ask if particles like nanopyramids could attain asymmetric emission of
the phosphorescent or fluorescent light stemming from the interference of the different
multipolar components of the nanopyramid antennas, which would increase the total
efficiency in LED lighting. We will present an analysis consisting of the following
ingredients: superpolarizability retrieval and geometric optimization of nanopyramid
shaped antennas to reach a generalized Kerker condition, calculations to verify this
scenario provides asymmetric emission, and finally a summary of experimental results.

Pyramids αs retrieval and geometrical optimization
To start we find αs (Fig. 7.6a) for a typical fabricated aluminum nanopyramid, with
a geometry presented in Fig. 7.6b where t =84 nm, h =150 nm and b =144 nm.
Fig. 7.6a shows αs (in units of µm3), where we see that the ANPs possess a strong
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400 nm

Figure 7.5: Scanning electron micrograph of an aluminum nanopyramid array.
Courtesy of S.R.K. Rodriguez and Mark Verschuuren

magneto-electric cross-coupling polarizability αE
m and αH

p . Comparing this to the
electric polarizability, we find |αE

p|/|αE
m|=13. This resembles split ring resonators at

infrared frequencies as we show in chapter 6.2, but now realized at visible frequencies,
thanks to the high plasma frequency of the aluminum. Fig. 7.6a further shows that x or
y polarized plane waves, without a strong gradient, directly induce quadrupoles in the
xz and y z planes. The magnetic dipoles along x and y and the quadrupoles in the y z
and xz planes, respectively, are intimately related through the rotational symmetry of
the structure. This superpolarizability shows us that the nanopyramid antennas possess
strong multipolar modes. The next question that comes to mind is if the modification
of parameters in this antenna, e.g. material or shape could alter the strength of the
multipoles independently so that we can create antennas with controlled combinations
of electric, magnetic and quadrupolar moments.

By looking at the different components of αs as a function of the nanopyramid
geometry we analyze their dependence on the height and tapering of the pyramids. The
geometries used for this analysis are presented in Fig. 7.7. The calculated volumes for
the first row of pyramids, where the size of the top face is varied, from left to right are:
1.47x10−3 µm3, 1.7x10−3 µm3, 1.97x10−3 µm3, 2.29x10−3 µm3, 2.64x10−3 µm3,
3.03x10−3 µm3. The calculated volumes for the second row of pyramids, where the
height of the pyramid is varied, from left to right are: 0.793x10−3 µm3, 1.19x10−3 µm3,
1.58x10−3 µm3, 1.97x10−3 µm3, 2.37x10−3 µm3. The light grey pyramid presented in
Fig. 7.7 is the model of the pyramid used for the experiments that will be shown below.
The reported top size of the fabricated pyramid is 70 nm which is the same size as the
one of the light grey model without the chamfer used to avoid unreal sharp edges.

To compare in a fair way structures with different geometries, we divide αs by
the volume of the corresponding structure. We consider x-polarized illumination, for
which the most significant elements of αs are indicated by the legend in Fig. 7.8. In this
figure αs is evaluated at the electric dipolar resonance wavelength for each structure, i.e.
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Figure 7.6: a) Superpolarizability tensor αs of an aluminum pyramid with t = 84 nm,
h = 150 nm and b = 144 nm, at the electric dipolar resonance wavelength. b) Schematic
of the structure.
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Figure 7.7: Geometries of the pyramids used for the simulations. The top line shows
the array of pyramids with variations in their top size. The bottom line shows the array
of pyramids with variations to their height.

600 nm, 620 nm, 660 nm 680 nm, 720 nm and 740 nm for the pyramids with top size
shown in Fig. 7.7, first row, in order from left to right. We begin by fixing b = 144 nm
and h = 150 nm, at the same time we vary t as shown in the top part of Fig. 7.8a. Fig. 7.8a
shows that the magnetoelectric (αE x

my ) and quadrupolar (αE x
Qxz) response are weak

without tapering, but increase monotonically by 3 orders of magnitude for increased
tapering. We continue our parametric investigation of the influence of the geometry
on αs by fixing t=84 nm, b=144 nm, while varying h, as shown in Fig. 7.8b. The
magnetic (αH y

my ), magnetoelectric (αE x
my ), and quadrupolar (α♦E xz

Qxz ) response increase
monotonically while the electric dipole (αE x

px ) response decreases. Figure 7.8 indicates
a possible route to follow regarding the design of pyramidal antennas. As shown by the
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figure magnetoelectric and quadrupolar moments increase monotonically with tapering
and height. This enables us to approach the generalized near-field Kerker condition as
described in Ref. [60], without needing to use magnetic materials with exotic optical
µ 6= 1. In turn, radiation patterns with a pronounced forward to backward asymmetry
are expected. Note that the magnetoelectric enhancement saturates for increased h.
Therefore, unnecessarily high structures must be avoided to minimize Ohmic losses
without degrading the magnetoelectric response.
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Figure 7.8: a) and b) display the most significant elements of αs as function of the
tapering and height of the pyramids, respectively.

Calculations of emission directivity
We resort to our home-written SIE program to calculate the radiation patterns of
nanopyramids excited with a localized source. The radiation patterns allow us to prove
that a reasonable choice of height and tapering provides nanopyramidal structures
with a pronounced forward to backward asymmetry in radiation. First we show in
Fig. 7.9a the scattering far field pattern of our pyramidal antenna (light grey antenna in
Fig. 7.7), the radiation is calculated 100 µm from the center of the antenna i.e. ∼166
wavelengths away. This scattering is created when the antenna is driven by a single
dipolar emitter positioned in the vicinity of the pyramid 25 nm from the pyramid (red
curve) and -25 nm from the pyramid (black curve), at a wavelength of 660 nm. In the
left panel of Fig. 7.9a we present the total emitted plus scattered power created by a
planarly oriented dipolar source while on the right panel we present the results for a
vertically aligned dipolar source (As shown in the insets). The unbalanced emission in
both cases indicates that selectively positioning emitters provides directional emission.

Fig. 7.9b shows the modified radiative local density of states where we only
integrate the radiated power in the top half sphere ρtop and the bottom half sphere
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Figure 7.9: a) Radiation pattern for an electric dipole positioned above (red line) or
below (black line) the pyramid, and oriented parallel (left panel) or perpendicular (right
panel) to the top and bottom facets of the pyramid. The dipoles are located 25 nm from
the top and bottom facets of the pyramid, as shown in the insets. b) Top and bottom
directed radiative local density of optical states (LDOS), ρt and ρb respectively, for
x, y and z oriented dipoles near the pyramid, normalized to the free-space LDOS ρ0.
c) d) and e) top-bottom difference in LDOS enhancement, (ρt −ρb )/ρ0, with respect
to the free-space LDOS ρ0. This graph shows that a horizontal dipole radiates more
efficiently towards the bottom if positioned on top of the pyramid or towards top if
positioned under the pyramid.

ρbot tom for the three different Cartesian orientations of dipoles positioned around the
pyramid. Here ρ0 is the free space radiative LDOS.

In Fig. 7.9c, d and e we plot the top-bottom difference in LDOS, (ρt −ρb)/ρ0, with
respect to the free-space LDOS ρ0, In this figure we observe that for both in-plane
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and out-of-plane dipoles radiation is enhanced towards the bottom when the dipole
is positioned on the top region of the pyramid. Conversely the radiation is enhanced
towards the top when the dipole is position on the bottom region of the pyramid.
Fig. 7.9e shows that the effect is the same when all dipole orientations are considered.

Measurements
In order to test the theory, we compare it to measurements of photoluminescence
enhancement of an array of pyramids embedded in a polymer matrix (polystyrene)
doped with 1% fluorescent dye (Lumogen F305). The pyramids have the dimensions
described for the light grey structure in Fig. 7.7. The polymer is spin cast on top of
an array with a pitch of 400 nm. Since the pyramids are fabricated on top of a glass
substrate the coating procedure ensures that we are positioning the dye molecules
only on the top region of the pyramid. Fig. 7.10a shows an extinction measurement
performed by S.R.K. Rodriguez on the array where the broad peak at 660 nm indicates
the position of the localized plasmon resonance of the individual pyramids and the
narrow blue shifted peak at 580 nm is associated to the delocalized surface lattice
resonance. This resonance is created by the array where a grating condition is
met. At this frequency the scattering from all the antennas in the array interferes
constructively in the plane of the array creating a delocalized mode which is extended
throughout the array of particles. Fig. 7.10b shows the photoluminescence enhancement
measurements performed by acquiring the dye fluorescence directed towards the bottom
of the pyramids (red line) and towards the top of the pyramids (black line). At the
wavelengths of the pyramidal localized plasmon resonance we clearly see that the light
is preferentially sent towards the bottom of the pyramid since the PLE in the red curve
is about 4/3 times higher than the black curve. This complies well with the theory
exposed above. Surprisingly the PLE is higher towards the top of the pyramids for the
wavelengths centered around the surface lattice plasmon resonance. This last effect
could be modeled by introducing the αs in a multiple scattering point dipole-quadrupole
theory which so far we have not developed but which based on the knowledge of this
chapter could be straightforwardly implemented. In full wave calculations performed
with COMSOL, which take into account the arrays and the presence of the substrate,
indeed the reversed asymmetry for the surface lattice plasmon resonance is also found.

7.5 Conclusions
To summarize, we have presented a straightforward method to retrieve dipolar but also
quadrupolar polarizabilities αQ for arbitrary scatterers in order to provide substantiation
for hybridization intuition, and even input for quantitative hybridization reasoning for
plasmonic antenna structures. A key simplification is to handle quadrupolar terms
through the ♦ operator to avoid redundancy and ease visualization. As a first example
we have analyzed the plasmonic dolmen structure, providing a quantitative under-
pinning for reported hybridization intuition in terms of electric dipole-to-quadrupole

120



7.5 Conclusions

Wavelength(nm)

Ex
tin

ct
io

n

a) b)
1 10

0.2

0.4

0.6

0.8 8

2

4

6

PL
E

0

Wavelength(nm)
580580 620 660 700 620 660 700

Figure 7.10: a) Measured extinction, and (b) photoluminescence enhancement (PLE)
towards the top (black line) and bottom (red line) of the pyramids. The inset in (a)
displays a SEM of the fabricated structures before the dye doped layer was spin coated.
The dashed line in b) indicates the Rayleigh anomaly.

coupling. In addition to quantifying the strength of the induced moments, the retrieval
also evidenced a commonly disregarded but equally important magnetic dipole moment.
As a second example we have used the method for analyzing aluminum nanopyramid
antennas. The analysis gave us the understanding of what are the most important
multipoles involved in the scattering processes and how these multipoles interfere
and produce an interesting near field asymmetrical effect, which can be used for
enhancement of LED illumination or solar cells light capturing. In our view, these
examples clearly show the very large potential of superpolarizability retrieval for
the quantitative understanding of many complex plasmon and dielectric antenna
phenomena.
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8
Correcting the Super Polarizability for Antennas
in Scattering Environments

In this chapter we extend our method of retrieving the super polarizability of antennas
to deal with scatterers placed in non trivial surroundings. We show how to implement
radiative corrections to the dipole-quadrupole model, when scatterers are placed near
a surface, sphere, or stratified medium, similar to the known correction of dipole
polarizabilities by the local density of optical states. We demonstrate how this model
allows to interpret near field excitation data of plasmon structures taken on antennas
deposited on a high-index substrate that present highly directional emission.

8.1 Introduction
In nano-optics one frequently relies on first developing intuition for the functioning
of antennas or Fano-resonant structures when they are in isolation, to then explore
the functioning of these structures in more complex geometries. Examples are the
placement of antennas in arrays, or the placement of antennas on dielectric interfaces
or stratified media. Regarding the latter example, the applications based on antennas
placed on substrates are abundant. For instance, plasmon antennas are used on dielectric
interfaces such as glass cover slips in microscopy experiments [1–4] and sensing
applications, or on high index semiconductors, for example in LEDs (III-V substrates),
and solar cell applications[5, 6]. Nevertheless, it is well known that the presence of a
scattering environment could drastically change the response of the antennas. Therefore,
the question arises of how to take this into account for when magneto electric dipolar
and quadrupolar responding antennas are placed in such an environment. We solve this
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8 Correcting the Super Polarizability for Antennas in Scattering Environments

issue by incorporating back-action effects that modify a scatterer when it is moved into
a nontrivial photonic environment, such as the commonly encountered layered medium
in LED and solar applications. This leads to a correction equivalent to the powerful
“radiation damping corrections" for the dipole model. This radiation damping correction
is fundamental to build an energy conserving multiple scattering theory [7–10]. We
apply this insight to predict the response of large plasmon scatterers placed on top of
a silicon substrate as encountered in recent cathodoluminescence experiments [11].
In particular, we predict strongly directive antenna action for locally excited large
scatterers as consequence of the fact that the nearby interface enhances the magnetic
and quadrupolar response.

8.2 Back-action correction for hybridization with
environments

α

GScatt(r0,r0)

G0(r0,r0)

Figure 8.1: Sketch of the self driving on an electrically polarizable particle produced
by the reflection of fields created by an interface.

Here we ask if an extracted superpolarizability for a complex antenna in isolation
can be used as input for a predictive model where the antenna is placed in a complicated
environment. In the dipole approximation the environment can be taken into account in
the electric dipole polarizability by including induced self interactions produced by the
environment, as depicted in Fig. 8.1. In this example an electric dipole

p =α ·Etotal(r0) =α · (Ein(r0)+Escatt(r0)), (8.1)

is driven in a scatterer with polarizability α by an electric field Etotal at the position
of the scatterer r0. The total electric field is a sum of the incident electric field Ein
plus the scattered electric field Escatt. In the case of an environment with a substrate
the scattered electric field would be the reflected field by the substrate. The scattered
electric field created by the dipole, due to the substrate is given by

Escatt(r0) =ω2µµ0(Gscatt(r0,r0)) ·p (8.2)
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8.2 Back-action correction for hybridization with environments

where Gscatt is the scattering part of the Green’s function for the electric field. By
introducing Eq. (8.2) in Eq. (8.1) we obtain:

p−αω2µµ0Gscatt(r0,r0) ·p =α ·Ein(r0). (8.3)

Therefore we can define a corrected polarizability in the following manner:

αcorr = (I−αω2µµ0Gscatt(r0,r0))−1 ·α (8.4)

or using the matrix identity (A ·B)−1 = B
−1 ·A

−1 we can rewrite it as:

α−1
corr = (α−1 −ω2µµ0(Gscatt(r0,r0)). (8.5)

The corrected polarizability is equal to the original polarizability of the particle plus a
self interaction term that is essentially the scattered Green function of the embedding
medium [12–15]. This term naturally includes radiation damping and a reactive shift
in the polarizability due to the environment. This correction is of large use, as it allows
us to quantitatively predict the response of arbitrary antenna geometries in complex
backgrounds using as input single building blocks for which the free space polarizability
is already tabulated. Here we derive a similar correction for the superpolarizability. In p

m
Q

=αS

 E
H
♦E

 (8.6)

one should take into account that the driving field (E,H,♦E) should not just be the
incident field, but also the field that comes back via interaction with the background
to the scatterer, as quantified by the scattered part of the Green’s function of the
background system. Thus the total field reads

 E
H
♦E

=
 E0

H0

♦E0

+


a1GE ·p+a2∇×GH ·m+a3(♦′GT
E )T ·Q

a1
iωµµ0

∇×GE ·p+a4GH ·m+ a3
iωµµ0

∇× (♦′GT
E )T ·Q

a1♦GE ·p+a2♦(∇×GH ) ·m+a3♦(♦′GT
E )T ·Q

 (8.7)

where in the SI unit system a1 =ω2µµ0, a2 = iω, a3 = a1/6, a4 =ω2εε0. This result
combines the magnetoelectric Green dyadic [16] with the electric field radiated by
a quadrupole[17, 18] Q that is given by E(r) = (1/6)ω2µ0µ(♦′GT

E (r,r′))T ·Q. Equa-
tion (8.6) is of the form P = αS[E0 +GP ], where P is the generalized induced
moment, E0 is the driving field, and G is a generalized field propagator which includes
the Green’s function, the curl of the Green’s function as well as its symmetric gradients.
Hence the corrected polarizability defined through P =αS

correctedE0 must be of the
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familiar form αS
corrected

−1 =αS−1 −G . Explicitly, we define the corrected αS
corrected

tensor as

αS
corrected

−1 =αS−1 − ...
a1GE a2∇×GH a3(♦̂′GT

E )T

a1
iωµµ0

∇×GE a4GH
a3

iωµµ0
∇× (♦̂′GT

E )T

a1♦̂GE a2♦̂(∇×GH ) a3♦̂(♦̂′GT
E )T

 (8.8)

where the actual inversion again requires first casting to the 11x11 form as outlined
in section 7.2, and also it requires to use the operator ♦̂ which is defined as ♦̂E =
{(∂x Ey +∂y Ex )/2,(∂x Ez +∂z Ex )/2,(∂y Ez +∂z Ey )/2,(∂x Ex −∂z Ez ), (∂y Ey −∂z Ez )}. In
absence of quadrupolar contributions, this correction reduces to the magnetoelectric
radiation damping correction derived for metamaterials by Belov [9] and Seršic [16],
which in itself is a generalization of the Sipe-Kranendonk formalism [10]. Note that
owing to the required matrix inverse, a nontrivial environment such as a nearby surface
can induce magnetoelectric cross coupling [19], as well as mixing of dipolar and
quadrupolar excitations. As a final comment, it is very important to emphasize that
here we only use the scattered part of the Green’s functions, unlike Ref. [9] and [16].
The retrieved superpolarizabilities already include the self-polarization due to free
space and the only additional correction needed is for the polarization created by the
reflections and scattering of the new environment which are included in the scattered
part of the Green’s function.

8.3 Single particle on a Si substrate as directional
antenna

We apply the correction of the superpolarizability tensor due to a silicon substrate to a
simple experiment recently performed in cathodoluminescence, on Au disks on a Si
substrate [11] of height 80 nm and varying diameter up to 180 nm. We retrieve the
superpolarizability for the biggest particle with height 80 nm and 180 nm diameter in a
vacuum environment, and subsequently we correct αS with the back-action correction
(evaluated at mid-height, i.e., 40 nm above the silicon substrate).

Figure 8.2b and c summarizes as color plots the αS , before and after the correction,
taking as wavelength 565 nm, and again scaling the superpolarizability tensor elements
(Methods, section 7.2) such that equal value means equal scattered power. As for
the dolmen (section 7.3), here we present a logarithmic color plot to facilitate quick
identification of relevant entries; the appendix C provides numerical values. In absence
of the substrate, the particle response is dominated by a strong electric polarizability
along the three principal particle axes. Here x and y are strictly degenerate by symmetry,
while the polarizability along z is somewhat lower with a ratio of 0.34 owing to
the smaller height. Evidently, the isolated disk has a significant magnetic dipole
response and quadrupolar response owing to the big disk size. The particle symmetry,
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8.3 Single particle on a Si substrate as directional antenna

however, implies absence of bianisotropy. Clearly once the disk is brought to the
substrate, the substrate induces cross coupling between different elements, namely
bianisotropy linking electric and magnetic dipoles (px and my ), and coupling of dipolar
and quadrupolar responses.
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Figure 8.2: a) Magnitude of the elements of the superpolarizability tensor for a gold
cylinder with 180 nm diameter and 80 nm height at a wavelength of 565 nm. b)
Magnitude of the elements of the superpolarizability tensor corrected for the presence
of a silicon substrate. c, d) Magnitude of the different elements of the αS -tensor vs.
wavelength, for the free space case and the αS tensor corrected for the backaction due
to the presence of a silicon substrate.

To gain more insight, we highlight the polarizability tensor elements that are
relevant in a typical normal incidence scattering experiment, i.e, when impinging along
the ‘z’ direction with an ‘x’ polarized plane wave. The most important elements in the
super polarizability tensor that play a role, i.e., αEx

px
, αEx

my
, αHy

my
, and αEx

Qxz
are plotted as

function of wavelength in Fig. 8.2d (see methods in Sec. 7.2). For the particle in free
space, the strongest contribution to the scattering is simply the purely electric dipolar
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8 Correcting the Super Polarizability for Antennas in Scattering Environments

response αEx
px

, with a maximum of 1.8×10−2 µm3 at a wavelength of 680 nm. The

next important terms, i.e., the magnetic dipole response αHy
my

and electric quadrupole

α
♦Exz
Qxz

are 10 to 100 times smaller, while the off-diagonal cross polarizability is another
factor of 100 to 1000 smaller still.

Once the scatterer is placed on the substrate, the back action correction modi-
fies this ordering. Fig. 8.2e reveals that the electric polarizability is enhanced and
shifted in resonance due to its interaction with the silicon substrate. Remarkably, the
crosspolarizability α

Ex
my

and hyperpolarizability α
Ex
Qxz

are enhanced by 3 to 4 orders
of magnitude, thus allowing electric fields to much more efficiently excite magnetic
dipoles and quadrupoles. The physics is that if initially an electric dipole is induced in
the scatterer, its image dipole has sufficient gradient for driving quadrupoles and the
magnetic dipole. For the corrected case we present the values of the different elements
of αS in appendix C. On basis of recent experiments and theoretical proposals, it is
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Figure 8.3: a) Emission patterns for a gold cylinder antenna excited with a dipolar
emitter locater 40 nm above the point dipole-quadrupole and 60 nm off axis. The three
graphs present 3 different wavelengths 550, 600 and 700 nm. The three white circles
display the angles for 30, 60 and 90 degrees. b) Cross cuts of the |E |2 emission patterns
of figure a). c) Polar plots of the radiated intensity by the cylindrical antennas when
excited with a electrical dipolar emitter located at different positions from the center of
the antenna.
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8.3 Single particle on a Si substrate as directional antenna

expected that if one actually manages to excite magnetic dipole moments and electric
quadrupoles as strongly as the fundamental electric dipole term, one can engineer
complicated and directional radiation patterns [4, 20–22]. Here we predict that if
the Au antenna on silicon that we analyzed is excited with a localized source, as in
cathodoluminescence, strongly directional radiation patterns indeed emerge. We predict
these radiation patterns simply from two ingredients: the free-space superpolarizability,
and the known interface Green’s function [8], i.e., without any recourse to a full wave
solution beyond extraction of the superpolarizability of the disk in free space. To
obtain a prediction, we simply take as driving field the field (i.e., E,H and ♦E) of
an electric dipole emitter as given by the known interface Green function. Next, we
calculate the induced moments by multiplication of the driving field with the substrate-
corrected superpolarizability tensor. Finally we find the far field radiation pattern by
coherent addition of the known far fields of the induced moments, for which asymptotic
expansions are likewise textbook material [8].

In Fig. 8.3a we show the total field intensity squared (|E |2) for the cylindrical Au
antenna excited with a dipolar emitter with strength p0, located 60 nm off axis, from the
center of the cylinder, and 40 nm above the center of the multipolar scatterer antenna.
Fig. 8.3a shows results for three driving wavelengths, namely 550 nm, 600 nm and
700 nm, which are the resonant wavelengths of the quadrupoles, in-plane electric dipole
and out of plane electric dipole respectively. These figures together with the cross-cuts
shown in Fig. 8.3b show how we can achieve a very strong directional emission with
only one single particle. The strong directionality results from coherent superposition
of the electric dipole, magnetic dipole, and electric quadrupole terms that are excited
in such a ratio as to yield comparable far field flux. For instance, in the first panel
of Fig. 8.3a the antenna acquires an electric dipole of |px |=1.69p0, |pz |=1.56p0 and
a magnetic dipole of |my |=1.17p0 while the dominating acquired quadrupoles have
a magnitude of |Qxx |=3.86p0, |Qy y |=3.61p0, and |Qxz |=2.09p0 demonstrating how a
localized dipolar source can excite quadrupolar moments in single elements antennas
whose radiating power exceed the radiated power from the dipolar moments.

Finally, we sweep the position of the dipole over the antenna, starting from the
center moving in steps of only 5 nm. We find (Fig.8.3c) that the angular emission
changes drastically with the position of the emitter with respect to the antenna. For
instance, viewing emission under a 70◦ angle relative to the substrate, it is possible to
acquire a signal that changes up to 15% between two given points per nm of lateral
position shift of the excitation source. This effect could allow using simple gold
antennas on a substrate as sensitive position detectors of fluorescent molecules with
resolutions better than those of STORM [23] and PALM [24] microscopy. This ultra-
high sensitivity to position of a source relative to an antenna is similar in concept to
a recent proposal to use a notched high index dielectric sphere with an overlapping
electric and magnetic resonance [21]. However, from the practical side, fabricating
an Au cylinder on a Si substrate is far simpler than preparing notched high index Mie
spheres.
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8 Correcting the Super Polarizability for Antennas in Scattering Environments

Measurements
To complement the theoretical discussion we present experimental results of direction-
ality measurements performed by Toon Coenen of cylindrical gold antennas excited
with a localized source. To measure these antennas we use a tightly focused 30 keV
electron beam as local excitation source to drive the cylindrical Au nanoantennas. The
electromagnetic field created by electron beam provides a broadband and very localized
source (∼10 nm). This source allows one to do in a single experiment very fine spatially
resolved measurements over a broad spectral range and to determine the scattering
properties of very small nano antennas.

1

0

(1)

(2)

(3)

(4)

(5)

Figure 8.4: Experimental normalized angular CL emission patterns collected from a
pillbox shaped particle with a diameter of 180 nm and a height of 80 nm. The patterns
are shown at λ= 600 nm for excitations at the center of the particle, shown in fig (a),
and for excitations near the edge of the particle for four angles: 0◦ (b), 90◦ (c), 180◦
(d) and 270◦ (e). The excitation positions are indicated by the cartoons next to the
radiation patters. The patterns have been normalized to the maximum intensity value
for all five patterns to show the relative brightness for different excitation positions.
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8.3 Single particle on a Si substrate as directional antenna

Cylindrical gold nanoparticles like the ones discussed in Sec. 8.3 were fabricated
with diameters ranging from 50-180 nm in 5 nm steps and a height of 80 nm on a
crystalline silicon substrate using electron beam lithography, thermal evaporation and a
lift-off procedure. For these measurements light is collected by a half parabolic mirror
which is placed between the sample and the electron microscope pole piece. This mirror
directs the light either to a grating spectrometer, or to a 2D CCD camera. Therefore at
each excitation position one either can collect a spectrum in the visible/nearinfrared
spectral region, or an image with the information of the scattering directivity. For all
the measurements a beam current of 0.8 nA was used.

To measure the far-field angular emission patterns the beam coming from the
parabolic mirror was projected onto the CCD camera, to obtain the angular emission
distribution. This technique has already been used and is explained in detail in Ref. [25].
Angular patterns are collected for free-space wavelengths (λ) from 400 to 750 nm
using 40 nm band pass filters for all disk diameters. We will further discuss only the
180 nm disk. To optimize the signal-to-noise ratio, 120 s integration times were used
for λ=400, 450, 700 and 750 nm and 60 s for λ=500-650 nm.

Fig. 8.4 shows the angular pattern for a λ =180 nm particle at λ =600 nm for
excitation on four orthogonal edge positions of the nanodisk as depicted in the insets.
The pattern clearly shows that the radiation patterns present strong angular asymmetries
and that the particle radiates away from the excitation point when excited at the edges.
If the nanodisk is excited in the center the emission intensity is lower and as expected
based on symmetrical consideration the the emission is azimuthally symmetric.

We continue by studying the angular emission distribution for different wavelengths.
Fig. 8.5 shows normalized angular patterns for λ=400-600 nm for the particle disk for
edge excitation on the left side. The pattern for λ=400 nm shows a strong radiation
lobe directed to the zenith. The relative contribution of this lobe strongly decreases
for longer wavelength while the sideward lobe becomes dominant. At λ=600 nm the
forward scattering ratio is maximum and most of the radiation is emitted into one strong
crescent-shaped lobe pointing away from the excitation position as the one shown in
Fig. 8.4.

In order to unravel the multipolar composition of complex scattering phenomena
several groups have opted to fit emission patterns to superpositions of multipole
radiation patterns [4, 22, 26]. By using the knowledge obtained in Sec. 8.3 we
can discriminate based on symmetry considerations of the excitation field and the
superpolarizability tensor which are the main multipolar contributions to the scattering
process. More specifically, and although the field obtained with the e-beam is not trivial
to calculate, based on symmetry consideration we know that this excitation possess an
electric field in the z and x directions E = Ex +Ez , a magnetic field in the y direction
H = Hy and a gradient of the electric field along the ‘xz’ plane as well as one on the ‘xy’
plane which is 45◦ rotated ♦E =♦Exz +♦Exx +♦Ey y . The presence of all these fields
can also be inferred by finding what are the fields created by a ‘z’ oriented electrical
dipole, which share the same symmetries as the electron beam excitation. These fields
when multiplied by the superpolarizability tensor indicate which are the multipolar
moments involved in the scattering process i.e. pz , px , my , Qxz and a symmetrical
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8 Correcting the Super Polarizability for Antennas in Scattering Environments

combination of Qxx +Qy y (which gives us a quadrupole in plane as Qx y but rotated
45◦). We single out these components to then fit the data. The results of the fitting
procedure are presented in Fig. 8.5b. It is evident that the correspondence is very
good. Therefore we can be confident that the superpolarizability tensor pinpoints in an
elegant and straightforward way which are the only elements needed to understand the
scattering process.

We believe that the reason why these radiation patterns differ from the ones
presented in Fig. 8.3 is that we do not have an accurate description of the magnitude
and relative contributions of the electric and magnetic fields for the electron beam
induced field, which is different from an excitation generated by an electric dipole.
For completeness in Fig. 8.5c we present the radiation patterns of the multipole
moments involved in the scattering process. The measurements together with the
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Figure 8.5: Figure a) shows the measured experimental CL radiation patterns, while
figure b) shows the numerically fitted theoretical patterns for a D=180nm Au disk
excited on the ‘left’ side for λ=400-600 nm. These patterns are a result of the coherent
interference of five multipole components. Figure c) shows the theoretical radiation
patterns for the individual multipolar components that compose the resonances in the
cylinder. These radiation patterns are calculated for λ=500nm when the multipoles are
placed 40 nm above a silicon substrate. As a last panel in d) we show the corresponding
charge distribution of the multipoles used. Two perspectives are used for showing the
charge distributions. First, we show a top view of the disk on the left and second we
show a cross section of the disk in the ‘xz’ plane, presented on the right.

theory demonstrate that the knowledge of the superpolarizability tensor for a given
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8.4 Conclusions

structure offers a deeper insight to the complex scattering processes happening in
antennas. In the case of the cylindrical antenna we show how a careful balance between
the multipoles involved in scattering can give rise to an interesting “lighthouse” effect.
This effect, where we can define the direction of emission by nanometric tuning of
the excitation can be useful for novel types of sensors and to control directionality of
LEDS and lasers.

8.4 Conclusions
To summarize, we have shown how to predict the scattering properties of a building
block in a complex environment on basis of on one hand the free space building
block superpolarizability and on the other hand the environment Green function. As
an example we use an Au cylinder big enough to support dipolar and quadrupolar
resonances placed on top of a silicon substrate. We have shown that this particle is
capable of sustaining very directional scattering when driven by a localized source.
This directionality is shown to be fostered by the strong interaction of the dipolar and
quadrupolar resonances. The type of study presented in this chapter and performed
on the Au cylinder will have a large impact on the quantitative modeling of plasmon
and dielectric antennas in typical applications for solar cells, LEDs and sensors, where
antennas always function in a complicated dielectric environment. Importantly, we
emphasize that the complex environment can induce or enhance particular multipolar
moments, yielding new methods to control directionality of scattering and emission.
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9
Applications

This chapter discusses possible applications inspired by this thesis. In particular, a
large part of this thesis was devoted to waveguide-integrated plasmonic antennas to
combine the local field enhancement of plasmon antennas with lossless propagation in
integrated optics. As demonstrated in chapter 2 and 3 the system composed by antennas
on waveguides allows us to measure scattering out of plane from antennas with a
very low background signal. Because of this dark field character one can measure
scattering spectra of single nano-rod antennas with a very low integration time on a
common silicon detector. Also by measuring the transmission through the waveguide
we could determine how the antenna scattering affects the waveguide transmission
spectrally. Both characteristics depend on the scattering resonance of the antenna and
therefore can be controlled by the antenna design. A depiction of these properties
is shown in Fig. 9.1. This figure also shows that resonances of the antennas create
strong confinement in small volumes of high electromagnetic fields (hot-spots). The
properties of low-background efficient detection by out of plane detectors, and the
possibility of completely waveguide-integrated excitation and detection of plasmon
resonances spur a varied number of possible applications.

9.1 Chemical and biological detection fluidic
environment

By functionalizing gold antennas on waveguides and integrating the system in a fluidic
environment one can envision the detection out of plane as well as through waveguides
of chemical and biological samples in very small volumes and very low concentrations.
During our work for this thesis we developed PDMS fluidic cells that can be pressed
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Localized excitation with
directional incoupling

Au

Waveguide addresing of
 hotspots

Figure 9.1: Sketch of some of the possible capabilities attained with phased array
antennas on waveguides.

on top of the waveguide so that the effect of different fluids as well as solutes dissolved
in the fluid could be measured, for instance by monitoring transmission through the
waveguide. Also fluidic cells integrated with on chip waveguides are commercially
available from LIONIX BV for “lab-on-chip” applications. These cells provide the
means to bring liquid carrying analytes close to the antennas on waveguides. The
presence of a chemical or biological sample that is brought in close proximity to the
antenna can be detected in different ways. One method is based on fluorescence of
the analyte. In this case the analyte can be optically pumped though the waveguide
or with an excitation beam perpendicular to the substrate and the signal could be
measured through the waveguide. This signal is therefore seen as an increase in
intensity on a spectrally filtered photodetector integrated on or with the waveguide. A
difficult challenge to overcome when performing both the addressing and the readout
through the waveguide in a completely integrated fashion, is that fluorescence from
the waveguide material itself can obscure the analyte signal. In our investigations
we observed that when measuring transmission through LPCVD deposited Si3N4

waveguides with milliwatts of CW laser illumination this effect was not important.
Nevertheless when measuring with a pulsed laser with λ = 640 nm, 80 picosecond
pulse length and an average power in the milliwatts regime and repetition rates of tens
of MHz then fluorescence from the waveguide became apparent. The second method is
based on the fact that the scattering properties of a nano-antenna change as function
of refractive index changes in the medium surrounding the antenna, particularly in
the volume of enhanced near-field. Analytes with a different refractive index (or
polarizability per volume) than the solvent would thereby cause a fluctuating optical
signal as they diffuse into, and out of, the antenna near field. This change in n in the
antenna near field causes two different effects that could be measured. On the one
hand in a phased array antenna a ∆n would change the directionality of the scattered
light out of the guided mode. Thus, this signal can be measured through an intensity
change on a photodetector. On the other hand this signal could be seen in transmission
both by measuring the spectra through the waveguide and by a change in intensity of a
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9.2 Antennas and single emitters

monochromatic source spectrally positioned at a flank of the spectral feature created by
the presence of the antenna. This method may provide a measurement device capable
of measuring the presence of single molecules as demonstrated in Ref. [1] but with the
advantage of being based on an integrated on-chip platform.

9.2 Antennas and single emitters
A concept that is taking increasingly more importance in the field of quantum informa-
tion is the quantum internet [2]. The idea is to connect objects or systems that behave
quantum mechanically. Connections between these objects should, in a reversible
way, be able to convert quantum states from one system to the quantum states of
another system. These quantum interconnections would allow the distribution and
teleportation of quantum states among the different nodes of the network and have a
multi-node entanglement across the network. A candidate for such an interconnect is
based on the coupling of single photons and single degrees of freedom in matter, such as
electron spin, or electronic excitation in atoms, molecules, or quantum dots. One of the
problems of this idealized system is that photons interact weakly with matter as already
explained in chapter 1 of this thesis. In order to overcome this issue, many efforts are
directed towards photonic crystal waveguides and coupled photonic crystal cavities in
III-V semiconductors [3, 4], while for use of other emitters plasmonic nanowires have
been proposed [5–7]. As alternative to the highly lossy transport of light in nanowires,
we propose to exploit plasmonic antennas on waveguides. This system, on the one
hand, would increase the interaction between photons and matter due to the strong
field confinement of the antennas in the vicinity of strategically positioned atoms, NV-
centers, molecules or quantum dots. On the other hand by using waveguides for this
network photons could be transported losslessly between nodes. We have theoretically
shown in chapter 3 that by positioning single atoms, NV-centers, molecules or quantum
dots in the vicinity of an antenna on a waveguide it is possible to couple the emitted
light from the single quantum emitter into the waveguide and direct it towards an
integrated detector. The directional coupling to the waveguide was experimentally
demonstrated in chapter 3 of this thesis. Also, the theory with which we understand
and design these antennas was used to understand the response of Yagi-Uda antennas
due to a very localized excitation similar to the one produced by a single emitter
(chapter 4). Thus, we believe phased array antennas as well as quadrupolar antennas
in combination with waveguides could find an application in the efficient coupling of
single photons into integrated optical chips. One of the main problems for this idea is
that with gold antennas the emission incoupling into the waveguide was theoretically
predicted to be around 60% which is far from ideal for scalability of the system and
which therefore would be far from the read-out efficiencies of 84% achieved for cavity
systems (Ref. [8]). Nevertheless we believe that arrays of quadrupolar antennas may
increase this coupling due to the strong near field gradients and better matching to
the waveguide modes. Furthermore, hybrid structures of plasmon antennas coupled
to moderate Q-cavities could alleviate the drawbacks of plasmonics while removing
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the scaling problems that ultra high Q resonators suffer due to their sensitivity to
fluctuations in environment and fabrication.

9.3 On-chip integrated Coulomb-blockade photon
sources

Hot electrons are electrons in a material with energy in excess of the Fermi energy [9].
These electrons can be created or injected into a material in different ways, for instance
by the absorption of a photon or by tunneling electron transport. Hot electrons are
drawing attention lately in the field of plasmonics, for instance for their use in plasmon
based detectors [10], but also for the generation of photon sources by injection of
hot electrons into metal antennas [11]. We propose to use hot electrons to create a
single photon source introducing single hot electrons into the metallic feed element of
a Yagi-Uda antenna by using an intermediate step employing small (<5 nm) metallic
islands between electrical contacts and the feed element of the antenna. Due to the
Coulomb charging effect one could envision that only a single electron at a time tunnels,
resulting in the possibility of single photon generation, where single photons would be
expected to appear, matched to the antenna resonance. Alternative to the hot electron
generation process, one could imagine immobilizing a single quantum dot or molecule
in the gap [12–14]. Due to the directionality of this antenna we would also attain
control over the emission direction of these photons. See Fig. 9.2 for a sketch of the
concept.
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Figure 9.2: Artist impression of an on-chip integrated Coulomb-blockade photon
source based on a Yagi-Uda antenna.

Some of the main problems that should be resolved to assess the feasibility of this
approach are firstly to assess if multi-photon emission probabilities are indeed low,
and secondly if deterioration of devices due to electrical driving can be avoided. To
avoid that multiple photons are produced one can enhance the radiative LDOS by the
use of a proper designed antenna for wavelengths close in energy to the energy of
the hot electrons. To avoid deterioration due to electrical driving one could imagine
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working in a vacuum environment or by embedding the system in a properly chosen
high-k dielectric medium. This technology would need to compete with single photon
production of 103 photons/second/nm achieved with NV center based commercially
available single photon sources e.g. [http://qcvictoria.com/] or 106 photons/s/nm
achieved with spontaneous parametric down conversion [15].

9.4 Design of antennas with asymmetrical scattering
capabilities

Finally we review possible applications of one of the main results of this thesis, namely
the asymmetries in terms of the differential scattering cross section and its polarization
dependence that arise due to magnetic, magnetoelectric, and quadrupolar effects.
Usually plasmonic antennas like for instance rod antennas, due to their small size,
are seen as objects that scatter light equally whether they are excited in the forward
or backward direction along a certain orientation. That is, these antennas usually
scatter light symmetrically under a spatial inversion in the direction of excitation.
This symmetrical scattering can be understood from the point of view that scatterers
considerably smaller than the wavelength can be well described as electrical dipolar
scatterers. Therefore, the only driving input for the scattering process is the electric
field (E). This input does not change (up to a phase factor) upon an inversion between
forward or backward excitation direction. In contrast, in this thesis we found examples
of antennas for which an asymmetrical forward-backward scattering was present due
to the appearance of higher order modes like magnetic dipolar and electric quadrupolar
modes. For these modes, as explained in chapter 7, the excitation is also given by
the magnetic field (H) and the symmetric electric field gradient (♦E). With E, H and
♦E as driving for the scattering process it is easy to see that the scattering can not be
symmetric under inversion, since even for a plane wave excitation E, H and ♦E must
change relative phase and sign under such an inversion. This can be condensed in
the following statement: if the superpolarizability tensor contains cross coupled terms
there will be an asymmetry in the forward-backward excitation scattering, which also
implies that for every axis with a broken geometrical symmetry a cross coupled term
will be obtained.

Applications of these asymmetries fall apart in two classes: control over polarization
degrees of freedom, and control over the spatial distribution of scattered light. As
regards the first, in Chapter 6, we discussed the fact that magneto-electric scatterers,
such as split rings, show a strongly handed response to incident light. In other words,
the coherence relation between the electric and magnetic dipole moment that can be
simultaneously induced in a split ring ensure a large difference in extinction depending
on handedness of the incident light, at least for particular incidence directions, and
viceversa a strong handedness of scattered light for particular scattered wave vectors.
Moreover, we demonstrated that this effect can be significantly boosted by placing
scatterers in arrays, in such a way that the scattering patterns narrows around the wave
vectors for which reradiated light is strongly handed. An interesting possibility is to use
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such antennas to create directional emitters that radiate handed light. More precisely
such antenna proposed in Chapter 6 is shown to radiate the emission of a source close
by the antenna in the forward direction with right handed elliptical polarization, while
it will radiate in the backward direction left handed elliptically polarized light. This
type of correlation between direction and spin angular momentum has been already
investigated in e.g. the photon spin Hall effect introduced by Bernevig et al. [16]
as well as in the work of le Feber et al. [17]. The coupling between photon angular
momentum and photon pathway could be used as an implementation of flying q-bits.
Also, this type of antenna might be used for an on-chip enantioselective discrimination
of chiral molecules like the ones found in pharmaceutical complexes [18, 19].

Regarding the second class of antennas, with which we can control the spatial
distribution of scattered light, we return to the nano-pyramid antennas discussed in
Chapter 7. These structures possess a strong asymmetric scattering created by the
interference of the electric dipolar and the magnetic dipolar and electric quadrupolar
modes sustained in these structures. Specifically when these structures are illuminated,
with light at a wavelength centered around 660 nm, from the top with linearly polarized
light, high field intensity zones are created on the bottom of the antenna, while when
illuminated from the bottom such local hot spots are created on the top of the antenna.
We propose together with Said R.K Rodriguez that this vertical asymmetry in scattering
and in field confinement close to the antenna is based on the interference between
the dipolar and quadrupolar modes which creates this special scattering asymmetry.
By understanding the basic elements of this type of scattering one could optimize
in a single or in a multi-element structure this interference effect. Having a strongly
asymmetric scattering object could be used for lighting applications using LEDs. In
particular, for white light generation there is a large demand for efficient conversion
of blue LED light into other colors by a phosphorescent layer. Asymmetric scattering
structures could aid both the absorption and the emission process. Moreover, for
particular lighting applications in, e.g., automotive or projection devices, directional
emission could be useful. Also, near-field asymmetric scattering might be used for
enhancing solar cell absorption. This enhancement is possible since near field excitation
could be concentrated only where required, for instance at the active layer of the solar
cells.
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A
Quadrupolar Fields and 12×12 αS-Tensor

Here we show that given the choice of casting the rank 2 quadrupole tensor in a vector,
and reducing redundancy due to the tensor symmetry, the ♦ operator is completely
determined. Starting from the symmetric traceless quadrupole tensor Q, the field
emitted by a quadrupole in Einstein notation is

Ei (r) = ω2µµ0

3!
Q j k∇′

k G j i (r,r′), (A.1)

with ω the optical frequency, µµ0 the permeability of the surrounding medium and G
the 3× 3 electric Green dyadic. That the tensor Qi j is symmetric allows a regrouping
of terms (where we abbreviate ∂x′Gi j (r,r′) as Gi j x ′)

E=ω
2µµ0

3!
· Q12(G11y ′+G12x′ )+Q13(G11z′+G13x′ )+Q23(G12z′+G13y ′ )+Q11G11x′+Q22G12y+Q33G13z′

Q12(G21y ′+G22x′ )+Q13(G21z′+G23x′ )+Q23(G22z′+G23y ′ )+Q11G21x′+Q22G22y+Q33G23z′
Q12(G31y ′+G32x′ )+Q13(G31z′+G33x′ )+Q23(G32z′+G33y ′ )+Q11G31x′+Q22G32y+Q33G33z′


(A.2)

which can be identified as

E = ω2µµ0

3!
(♦′Gᵀ

(r,r′))ᵀ ·Q. (A.3)

Thereby defining Q as a 6-vector as in Eq. 7.5 fixes the definition of ♦. Mutatis mutandi
the same reasoning holds if in Eq. (A.2) one eliminates Qzz on basis of the traceless
nature of the tensor Q, in which case inserting the definition of Q̂ fixes ♦̂.
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B
Dolmen αS-Tensor Elements

Here we report on Fig.B.1,B.2 and B.3 the amplitude and phase of the superpolarizabil-
ity tensor elements versus wavelength of a silver Dolmen structure. These figures are
shown to complement our report on Sec. 7.3 about the elements of |αS |, which were
shown for one wavelength and on a logarithmic color scale.
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Figure B.1: Elements related to px , mz and Qx,y of the αS -tensor of a silver dolmen
structure. These elements span the subspace relevant for PIT in the dolmen system.
Solid curves show amplitude while dashed curves show phase.
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B Dolmen αS-Tensor Elements
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Figure B.3: Summary of weaker elements of the αS -tensor of the silver dolmen
structure, generally corresponding to out-of-plane charge separation. Solid curves show
amplitude while dashed curves show phase.
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C
Gold Disk αS-Tensor Elements

To complement our report in Sec. 8.3 of elements of |αS | at one wavelength and as
a logarithmic color scale for the Au nanodisk on a Si substrate, here we report the
superpolarizability tensor element amplitude and phase versus wavelength in Fig.C.1.
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C Gold Disk αS-Tensor Elements
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Figure C.1: Elements of the αS -tensor of a gold cylinder with 180 nm diameter and
80 nm height.
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Summary

Currently our society faces two large challenges: a challenge in information technology
where a growing number of people request access to increasingly large internet
bandwidths, and a challenge in energy, i.e., to sustainably provide for the world energy
consumption without dependence on fossil fuels. For both these problems possible
solutions are sought in the efficient manipulation and control of light. For information
technology, light has the large advantage that signals can be multiplexed by encoding
information in different wavelengths, allowing a single fiber to carry up to Terabytes/s
of information. As regards energy, if we would be able to harvest just 0.02% of the
solar energy incident on the entire earth yearly, this would completely fulfill our energy
demands. Both challenges require exquisite control over how light propagates, and
over how light interacts with matter through emission, absorption and scattering. This
control has been vastly improved in the last decade by recently developed new design
ideas and fabrication possibilities for nanophotonic structures. In order to contribute to
science in this specific direction, in this thesis, we explore ways in which we can more
intuitively understand and design complex nanophotonic structures that are composed
of metal scatterers embedded in dielectric structures. Metal scatterers are currently
studied very intensively in the field of “plasmonics”. Especially structures made of
noble metals can act as very strong “antennas” that strongly scatter and confine light.
In this work we specifically target the question how antennas can be integrated with
dielectric structures such as waveguides which can losslessly carry information as light,
which, could be the next step of the revolution in information technology started by
optical fibers.

Chapter 2 reports on scattering experiments on single rod plasmonic nano antennas
fabricated on top of a single mode Si3N4 ridge waveguide. This study was carried
out to assess how strongly light propagating in guided modes interact with plasmon
antennas, with the ultimate goal to provide an on-chip plasmon building block for
interconversion between guided modes and strongly localized fields that could, for
instance, interact with active materials. We found that when placed on a single mode
dielectric waveguide, the response of plasmonic rod antennas can be simplified to that
of electric dipolar scatterers placed on a multilayer system. When driven on resonance
these small antennas scatter out of the waveguide up to 20% of the light from the guided
mode, showing the strong interaction of plasmonic antennas with the waveguide mode.
To gain control over the scattering process we use this building block as a base for more
complex antennas. Therefore, we continue this research in chapter 3 by studying the
system of a multi-element phased array plasmonic antenna plus dielectric waveguide.
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In this chapter we characterize the scattering processes created by a phased array
antenna positioned on a waveguide. We find that phased array antennas on a waveguide
couple very strongly to the guided mode. We also find that interference, occurring due
to the scattering from the different elements of the antenna, endow the system with
directional scattering both out of the waveguide mode and into the waveguide mode. To
complement the study performed in chapter 3, regarding the incoupling of light from
point sources, we continue with chapter 4 by studying phased array antennas under
localized excitation. For this purpose we used a cathodoluminescence measurement set-
up to generate nanometric position controlled point sources on Yagi-Uda antennas. By
using point dipole theory and a statistical analysis we explain the features appearing in
the acquired spatial excitability maps. We conclude that Yagi-Uda antennas are highly
robust when it comes to providing directivity, but exquisitely sensitive to disorder as
regards to the enhancement in radiative power provided by the antenna.

In chapter 5 we change focus and work on developing analytical theory tools that
allow us to understand and design optical nano antennas. In this chapter we present
a numerical tool with which the polarizability tensor of any optical antenna with an
arbitrary geometry can be retrieved. This tool is based on either an expansion of
the scattered fields in vector spherical harmonics (VSH) or on the integration of the
effective surface currents driven on the scatterers. We compare both routines and we
find that the VSH tool is more accurate than the effective currents approach, although
the latter allows for the retrieval of the polarizability tensor for scatterers on surfaces
and in close proximity to other scatterers. In chapter 6 we use the retrieval tool to
explain the behaviour of one of the most iconic optical antennas, the split ring resonator.
We find that the split ring has a strong magneto optical coupling that amounts to 27% of
the electric polarizability. We proceed to use the multipolar expansion of this magneto
electric antenna to design a novel split ring based multi-element antenna with very
interesting characteristics as a directive radiation source of elliptically polarized light
from a localized point source. The ellipticity of the radiated light can be increased by
using magnetoelectric scatterers with a stronger cross coupling that the obtained with
the split ring.

In chapter 7 we expand the point dipole model to include electric quadrupolar
moments. We use this extended theory to analyze the behavior of two types of antennas.
The first of these is the socalled “dolmen” antenna that was reported in literature to
support a very strongly quadrupolar mode. In particular, we quantify the claim made in
earlier reports that narrow features in the dolmen extinction spectrum known as “Fano
interference” or “plasmon-induced transparency” (PIT) are attributable to a quadrupolar
response. We find that in fact the PIT is not only due to the quadrupolar mode but that a
commonly disregarded magnetic dipole term is also present and contributes as much as
the quadrupolar one in the interference process. The second of these antennas concerns
nanopyramids made out of aluminium. Through optimization of their simultaneous
electric dipole, magnetic dipole, and electric quadrupole response these nanopyramids
are shown to be suitable for vertical asymmetric field confinement that could be used
for enhancing LED illumination and solar cells. Finally, in chapter 8 we show how to
use the extended point quadrupole-dipole theory in the presence of a substrate. We
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explain measurements of nano cylinders with strong quadrupolar moments, measured
in a cathodoluminescence setup, which are capable of strongly directing light by the
interference of its different multipolar moments. These “nano lighthouses” have the
characteristic that they are capable of strongly directing scattered light although the
antenna is composed of one single element.
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Samenvatting

Momenteel staat onze samenleving voor twee grote uitdagingen: een uitdaging in
informatietechnologie , waar een toenemende groep gebruikers toegang wil hebben tot
steeds meer bandbreedte, en een uitdaging in onze energie voorziening, waar het doel
is om duurzaam te voorzien in de wereldwijde energie consumptie zonder afhankelijk
te zijn van fossiele brandstoffen. Voor beide problemen worden mogelijke oplossingen
gezocht in de efficiente manipulatie en controle over licht. Voor informatietechnologie
heeft licht het grote voordeel dat signalen gemultiplexed kunnen worden door het
coderen van informatie in verschillende golflengtes, waardoor er door 1 enkele fiber
Terrabytes aan data per seconde gestuurd kan worden. Wat betreft het energie probleem
is het zo dat als we in staat zijn om 0.02% van alle zonne-energie die jaarlijks op de
aarde valt op te slaan we volledig voldoen aan onze energie behoefte. Beide uitdagingen
vereisen nauwkeurige controle over hoe licht interageert met materie door middel van
emissie, absorptie en verstrooiing. In de afgelopen tien jaar is deze controle sterk
verbeterd door recent ontwikkelde ontwerp ideeen en fabricage mogelijkheden voor
nanofotonische structuren. Om in deze richting bij te dragen aan de wetenschap
exploreren we manieren waarop we meer intuitief complexe nanofotonische structuren
samengesteld uit metalen verstrooiers in dielectrische media kunnen begrijpen en
ontwerpen. Metalen verstrooiers worden momenteel intensief bestudeerd op het gebied
van “Plasmonics”. In het bijzonder kunnen structuren gemaakt van nobele metalen
goede ‘antennes’ zijn die het licht sterk verstrooien en licht kunnen opsluiten. In
dit proefschrift richten we ons specifiek op de vraag hoe we zulke antennes kunnen
integreren met dielektrische structuren zoals golfgeleiders die zonder verliezen licht
kunnen transporteren.

We beginnen dit proefschrift met hoofdstuk 2 waar we verstrooiingsexperimenten
beschrijven op enkele plasmonische nano-antennas die gefabriceerd zijn op golfge-
leiders die bestaan uit een siliciumnitride strip op een kwartssubstraat, en die slechts
een enkele optische mode geleiden. Het doel van dit experiment is om uit te zoeken
hoe sterk de interactie is tussen het licht dat zich voortplant in de golfgeleider en
de plasmon antennes met als uiteindelijke doel het verkrijgen van een plasmonische
bouwsteen om reciproke conversie mogelijk te maken tussen golfgeleider modes en de
sterk gelokaliseerde velden die een interactie kunnen hebben met bijvoorbeeld actieve
materialen. Het blijkt dat we de respons van de plasmonische nanostaafjes op de enkele
mode golfgeleider kunnen vereenvoudigen tot die van elektrische dipool verstrooiers
op een systeem van multilagen. Wanneer de nano-antennes geexciteerd worden op
hun resonantie dan verstrooien ze tot 20% van het licht van de golfgeleider mode,
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wat demonstreert dat er een sterke interactie is tussen de plasmonische antenne en de
golfgeleider mode. Om controle te krijgen over het verstrooiingsproces gebruiken we
deze bouwsteen als basis voor meer complexe antennes. In hoofdstuk 3 bouwen we
verder op de resultaten uit hoofdstuk 2, en bestuderen zogenaamde “gefaseerde antenne
arrays”, bestaande uit een aantal plasmonische nanostaafjes op nanoschaal afstand
van elkaar gegroepeerd op een golfgeleider. In dit hoofdstuk karakteriseren we het
verstrooingsproces dat ontstaat door de gefaseerde array antennes op een waveguide.
Het blijkt dat, net als de enkele antennes ook deze gefaseerde array antennes sterk
koppelen aan de golfgeleider mode. Daarnaast zien we dat de interferentie door
de verstrooiing van verschillende elementen van de antenne ervoor zorgt dat het
systeem directioneel verstrooit. Dit geldt voor zowel verstrooing uit de waveguide
mode als verstrooiing in de waveguide mode. De studie van hoofdstuk 3 inzake
het inkoppelen van licht van puntbronnen complementeren we met experimenten
beschreven in hoofdstuk 4, waar we gefaseerde array antennes bestuderen met lokale
excitatie. Hiervoor hebben we een kathodeluminescentie meetopstelling gebruikt
waarmee we nanometrisch precies gepositioneerde puntbronnen kunnen genereren
op de Yagi-Uda antennes. Door puntdipool theorie te gebruiken en een statistische
analyse toe te passen kunnen we kenmerken verklaren die te zien zijn in de verkregen
positieafhankelijke exciteerbaarheidskaarten. We concluderen hieruit dat Yagi-Uda
antennes zeer robuust zijn wat betreft van directionele verstrooiing, maar uitzonderlijk
gevoelig zijn voor wanorde wat betreft de vergroting van stralingsvermogen van de
antenne.

In hoofdstuk 5 verplaats het aandachtsgebied van het proefschrift zich naar het
ontwikkelen van een analytische theorie die ons in staat stelt optische nano-antennes
te begrijpen en te ontwerpen. In dit hoofdstuk presenteren we een numeriek model
waarmee we de polariseerbaarheidstensor van optische antennes met een willekeurige
geometrie kunnen verkrijgen. We hebben twee manieren om de polarizeerbaarheidsten-
sor te vinden. Ofwel de verstrooide velden worden weergegeven als een expansie in
vector bolfuncties (VSH), ofwel er worden effectieve oppervlakte stromen geintegreerd
die aangedreven worden op het oppervlak van de verstrooiers. We vergelijken beide
routines en zien dat de VSH methode nauwkeuriger is dan de effectieve stroom routine.
In hoofdstuk 6 passen we deze methode om de polariseerbaarheidstensor te verkrijgen
toe op één van de meest iconische optische antennes: de ’Split Ring Resonator’ (SRR).
We laten zien dat de SRR een sterke magneto-optische koppeling heeft die 27% is van de
elektrische polariseerbaarheid. We gebruiken de multipool expansie van deze magneto-
electrische antenne om een nieuwe multi-element antenne te ontwerpen gebaseerd op
de SRR, die interessante kenmerken heeft. Zo blijkt het een directionele stralingsbron
van elliptisch gepolariseerd licht te zijn. De ellipticiteit van het uitgestraalde licht kan
vergroot worden door magnetoelectrische verstrooiers te gebruiken met nog sterkere
magneto-optische koppeling dan de SRR.

In hoofdstuk 7 breiden we het puntdipool model uit door ook electrische quadrupool
momenten mee te nemen. We gebruiken deze uitgebreide theorie om het gedrag van
twee soorten antennes te analyseren. De eerste is de zogenaamde ‘dolmen’ antenna
waarvan al is aangetoond dat deze een sterke quadrupool mode heeft. We kwantificeren

160



de bewering gemaakt in eerdere artikelen dat spectraal smalle kenmerken die zichtbaar
zijn in het extinctie spectrum, bekend als zogenaamde ‘Fano interferentie’ of ‘plasmon-
geinduceerde transparantie’ (PIT) toe te schrijven zijn aan een quadrupolaire respons.
We laten zien dat PIT niet alleen aan de quadrupolaire mode is toe te schrijven, maar dat
ook de magnetische dipolaire mode bijdraagt - een mode die vaak buiten beschouwing
wordt gelaten. Deze mode draagt net zo veel bij aan het interferentie proces als
de quadrupool mode. Het tweede type antenne dat we analyseren is de aluminium
nanopyramide. Door gelijktijdig te optimaliseren voor de elektrische en magnetische
dipool en de elektrische quadrupool laten we zien dat deze nanopyramides geschikt
zijn om het veld asymmetrisch op te sluiten.. Dit heeft mogelijke toepassingen in het
verbeteren van LED verlichting en voor zonnecellen. Tot slot laten we in hoofdstuk 8
zien hoe we de uitgebreide puntquadrupool-dipool theorie kunnen gebruiken wanneer
er ook een substraat aanwezig is. Grote, platte nanocylinders van goud blijken
sterke quadrupolaire momenten te hebben als ze op een silicium substraat liggen.
Door de interferentie van de verschillende multipolaire elementen hebben deze ‘nano-
vuurtorens’ het bijzondere kenmerk dat ze verstrooid licht sterk één kant op sturen
hoewel de antenne zelf maar uit één element bestaat. Wij passen onze theorie toe
op kathodeluminescentiemetingen gedaan aan deze nanocylinders en verklaren de
metingen.

161





List of publications

This thesis is based on the following publications:

• Plasmonic Antennas Hybridized with Dielectric Waveguides, Felipe Bernal Arango,
Andrej Kwadrin, A. Femius Koenderink, ACS nano 6(11), 10156-10167 (2012).
(Chapter 2) and (Chapter 3)

• Localized Excitation of Antennas on Waveguides, Felipe Bernal Arango,
Rutger Thijssen, Benjamin Brenny, Toon Coenen, Albert Polman, and
A. Femius Koenderink, in preparation. (Chapter 4)

• Polarizability Tensor Retrieval for Magnetic and Plasmonic Antenna Design,
Felipe Bernal Arango, A. Femius Koenderink, New J. Phys. 15 073023 (2013).
(Chapter 5) and (Chapter 6)

• Ubiquity of Optical Activity in Planar Metamaterial Scatterers, Ivana Seršic,
Marie Anne van de Haar, Felipe Bernal Arango and A. Femius Koenderink, Phys.
Rev. Lett. 108, 223903 (2012). (Chapter 6)

• Underpinning Hybridization Intuition for Complex Nanoantennas by Magneto-
electric Quadrupolar Polarizability Retrieval, Felipe Bernal Arango, Toon Co-
enen, A. Femius Koenderink, ACS Photonics 1 444-453 (2014). (Chapter 7)
and (Chapter 8)

• Breaking the symmetry of forward-backward light emission with localized and
collective resonances in magnetoelectric nanopyramid arrays, Said R.K Ro-
driguez, Felipe Bernal Arango, Tom P. Steinbusch, Marc A. Verschuuren,
A.Femius Koenderink and Jaime Gómez Rivas submitted PRL (Chapter 7)

• Directional Emission from a Single Plasmonic Scatterer, Toon Coenen, Fe-
lipe Bernal Arango, A. Femius Koenderink, Albert Polman, Nature Comm.
10.1038/ncomms4250 (2014) (Chapter 8)

163



Other publications by the author:

• Optical Forces and Trapping Potentials of a Dual-Waveguide Trap Based on
Multimode Solid-Core Waveguides, Matheus M. van Leest, Felipe Bernal Arango,
Jaap Caro, J. Europ. Opt. Soc. Rap. Public. 6 11022 (2011)

• Optofluidic tuning of photonic crystal band edge lasers, Felipe Bernal Arango,
Mads Brokner Christiansen, Morten Gersborg-Hansen, and Anders Kristensen,
Appl. Phys. Lett. 91, 223503 (2007)

Patents:

• Optical Trap, Chip, Sensor System and Method for Manufacturing an Optical
Trap, Matheus Maria Van Leest, Felipe Bernal Arango, Jaap Caro, WO Patent
2,012,033,409

164



Acknowledgements

I would like to keep this register of gratitude short, not because I do not have many
people to thank but precisely because of the contrary. In fact, to be fair to all, I would
need to write an account documenting the innumerable times that I have been helped
during and before this period of my life. All these instances have contributed to who I
am and to what I have done to a degree that we can simply not comprehend. Due to
our interconnectedness, for all you have done for me and for this work, thank you!

Very briefly, I would like to thank Wikipedia, a representation of you, me and all
human knowledge, without which this thesis would have taken much longer to produce.
Also, I would like to explicitly thank a group of people, not because of their direct
contributions, but rather because of how much they have inspired me:

Thanks Femius for showing me how the motivation of performing a good work
should be faithfully kept until the end. Your continuous joyous effort, your strength
and delight in doing things properly has kept me going even in moments of doubt and
fatigue. I have learned a lot from you.

Thanks Anne for inspiring me with your kindness and compassion, which has taken
you as far as the middle of the desert to empower girls with your knowledge.

Thanks Alejo for your joy, compassion and hard work that took you the remote
jungle where nobody wanted to go, to show that beauty can be found and help can be
provided when a proper motivation is present.

Thanks Juan for showing me how patience, concentration and hard work may one
day illuminate (as in LEDs) the poorest places in the world.

Thanks Ma for showing me how loving kindness and affection can motivate you
to listen and heal the most troubled of the people anywhere and anytime, and for
introducing me to this other side of life.

Thanks Papo for your tireless work, your unforgettable lessons and your immense
wisdom which brought us here and allowed us to rejoice with your piece of the Nobel
Peace Prize.

Finally, and as I said before, thank you...

165




