


Magnetic optical scatterers
and backaction



Ph.D. thesis University of Amsterdam, September 2014
Magnetic Optical Scatterers and Backaction
Andrej Kwadrin

ISBN/EAN: 978-90-77209-86-8

A digital version of this thesis can be downloaded from
http://www.amolf.nl.



Magnetic optical scatterers
and backaction

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D. C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 10 september 2014, te 12.00 uur

door

Andrej Kwadrin

geboren te Dresden in Duitsland



Promotor: prof. dr. A. F. Koenderink

Overige leden: prof. dr. H. Bakker
dr. M. P. van Exter
prof. dr. M. S. Golden
prof. dr. H. B. van Linden van den Heuvell
prof. dr. C. Rockstuhl

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis is part of the research program of the
“Stichting voor Fundamenteel Onderzoek der Materie (FOM)”

which is financially supported by the
“Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”.

This work was carried out at the
Center for Nanophotonics,
FOM Institute AMOLF,

Science Park 104, 1098 XG Amsterdam, The Netherlands,
where a limited number of copies of this dissertation is available.



Contents

1 Introduction 7
1.1 Refractive index . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Effective media and metamaterials . . . . . . . . . . . . . . . 9
1.3 Local density of optical states . . . . . . . . . . . . . . . . . . 12
1.4 Motivation and thesis outline . . . . . . . . . . . . . . . . . . 16
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Calibrating radiative and nonradiative decay constants of
fluorophores 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Gray-tone lithography . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Wedge profile characterization . . . . . . . . . . . . . . . . . . 28
2.4 Preparation of fluorophores . . . . . . . . . . . . . . . . . . . 30
2.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 38
2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Probing the electrodynamic LDOS with magnetoelectric
point scatterers 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Magnetic LDOS near metallic and dielectric interfaces . . . . 47
3.3 Green function . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Radiative linewidth near an interface . . . . . . . . . . . . . . 51
3.5 Magnetoelectric LDOS . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Finite element modelling example . . . . . . . . . . . . . . . . 58
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5



Contents

4 Diffractive stacks of metamaterial lattices 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Starting point: 2D lattice-sum theory . . . . . . . . . . . . . 67
4.3 Complex base and stacks of 2D layers . . . . . . . . . . . . . 70
4.4 Diffractive calculation . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Fourier microscopy setup . . . . . . . . . . . . . . . . . . . . 74
4.6 Diffraction measurement . . . . . . . . . . . . . . . . . . . . . 75
4.7 Angle-resolved transmission and pseudochirality . . . . . . . . 77
4.8 Stacked lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.A Lattice sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Backaction on a lattice of scatterers in front of a reflective
interface 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Summary 109

Samenvatting 113

Acknowledgments 117

6



Chapter 1

Introduction

To predict and explain the propagation of light through a medium,
one particular quantity plays a major role: the mediums’ refrac-
tive index. As the first section of this chapter shows, its value,
and how refractive index is spatially distributed is omnipresent in
the explanation of a plethora of optical phenomena. How a refrac-
tive index comes about in natural materials is usually discussed
in terms of the underlying response of the mediums’ constituent
polarizable atoms to impinging electromagnetic waves. In the last
decade, a new field of ‘metamaterials’ emerged, in which unconven-
tional effective medium responses are generated by nanostructured
‘meta-atoms’. This thesis studies metamaterials in the near field
through a quantity called ‘local density of optical states’ (LDOS).
In the second section of this Chapter, we introduce the reader
to the concept of the LDOS and its universal role in phenomena
such as fluorophore emission and light scattering. Based on both
concepts, we end by giving a motivation and outline of the topics
covered within this thesis.
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1 Introduction

1.1 Refractive index

This thesis is set in a field of physics that is called ‘nanoscale-optics’. Optics
is the branch of physics that deals with light, i.e., how light is emitted, how
it propagates from A to B, and how it is absorbed. Optics, however, really
is as much about matter as it is about light. Indeed, solutions of Maxwell’s
equations in vacuum are simply unconfined plane waves that exhibit recti-
linear propagation [1]. For useful phenomena to occur, such as reflection
and refraction of rays in a lens, image formation in a camera, guiding of
light in a telecommunications fiber, or the appearance of diffraction orders
in a spectrometer, light must interact with polarizable matter. In partic-
ular, the material parameter that enters the problem is usually introduced
in textbooks through the concept of refractive index [2]. To describe and
predict the propagation of light one naturally follows the concept of rays
traveling in straight lines from A to B, experiencing refraction as a ray tra-
verses from one medium to the next. The key parameter describing the
process, as formulated by Snellius in the 17th century is, in the simplest
case, a single real-valued quantity: the refractive index n ≡ c/v defined as
the ratio of the light’s speed in vacuum c and its speed in the medium v [3].

The concept of refractive index turns out to be an exceptionally powerful
simplification of the processes taking place. In fact, electric and magnetic
fields that are oscillating in time and space interact with large amounts of
atoms, typically 1023 in a cm3 for a solid, that each have many degrees of
freedom [4]. Yet the behavior of light is very well described by just one
effective parameter for the medium, namely n. Delving somewhat deeper
into electrodynamics it turns out that it would be more appropriate to say
that one deals with the effective medium parameters ‘dielectric permittivity’
ε and ‘magnetic permeability’ µ [5]. To show the wealth of phenomena that
the concept of effective medium parameter, or refractive index, explains,
just consider that by lumping all the degrees of freedom of a material in
one parameter, the making of layers, powders, fibers, etc. is sufficient to
describe lensing, scattering, why clouds, paint and snow appear white, why
one should buy polarizing sunglasses, the colorful reflection of opals and
oil films, interference filters, etc. In fact, if one adapts the refractive index
to be dispersive in frequency, or to be a tensorial quantity depending on
propagation direction and polarization, one can extend its validity to deal
with more complex materials such as metals and birefringent crystals [3].

The only two regimes where the effective medium approach is taken
to break down is when either features in the material distribution become
atomic in size, so that quantum confinement corrections set in [6], or when
electric fields strengths are so large that nonlinear responses occur [7]. A
range of interesting phenomena appear, such as harmonic generation, and
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1.2 Effective media and metamaterials

the optical Kerr effect which both are based on an intensity dependent
refractive index. However, throughout this thesis, we will work in a regime
where a material’s response to electromagnetic radiation depends linearly on
the electromagnetic-field strengths. As a consequence, our chosen material
parameters will not depend on the intensity of the light field. Furthermore,
we note here that throughout this thesis light-matter interaction is treated
in the classical (non-quantum) sense.

Microscopically, the overall response of a medium to electromagnetic
radiation stems from the combined responses of the materials’ individual
constituents, e.g., molecules of a gas or atoms of a solid dielectric described
by their polarizability or electrons of a metal explained by a Drude model [8,
9]. For instance, the simplest textbook description of the permittivity of a
crystalline insulating material would read

ε = 1 + ρα (1.1)

where ρ is the number density of atoms, and α is their polarizability, a
number with units of volume, which quantifies how large a dipole moment
is induced per unit strength of incident electric field. We refer to Jackson [1],
Chapter 4 for further treatments of microscopic formulas to approximate ε.
Based on this logical assumption, it is valid to ask when it is feasible to
cover such an ‘effective’ response in a single quantity such as a refractive
index. Surely, to be able to give a reasonable answer one has to assess and
compare the characteristic length- and time-scales of the wave phenomenon
of electromagnetic energy propagation to the characteristic values of the
medium under investigation. In the optical regime, the typical wavelength
of light is a µm, which is more than three orders of magnitude larger than
the typical spacing of atoms in a crystal. It should be noted how in nature,
at optical frequencies materials have an electric response ε, which could
be either positive or negative, and no magnetic response, i.e., µ = 1 as
in vacuum. At this point it is interesting to summarize effective material
parameter ranges available in nature in Fig. 1.1, a.

1.2 Effective media and metamaterials

Historically, there has been a large interest to extend the idea of an effec-
tive response also to nanostructured composites. In particular, suppose you
create a mixed topology, such as by etching air holes in a solid material to
obtain a nanoporous sponge, or when putting colloids in a liquid, then a
logical question is how you estimate the refractive index of the mixture from
that of the constituents. Since the separation of length scales is absent, an
improved approach is required. Specifically, Bruggeman [10] and Maxwell-
Garnett [11] have derived expressions for the effective refractive index of
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Figure 1.1: (a) Natural materials cover a range of permittivities ε and per-
meabilities µ. At optical frequencies, the permeability is limited to µ = 1.
Dielectric polarization allows for positive ε, while metals offer negative ε for
frequencies below their respective plasma frequency. Therefore, the squared
refractive index n2 = εµ can either be positive or negative, corresponding
to transparent media, respectively, media in which propagation is exponen-
tially damped. (b) An archetypical meta-atom is the split ring resonator
(SRR). When being driven at the SRR’s resonant frequency, charge separa-
tion (±q) along the split gives rise to an electric dipole moment p. In turn,
a circulating current j give rise to a magnetic dipole moment m, pointing
out of the SRR plane.

mixtures of materials, for instance often used to predict the optical proper-
ties of powders and suspensions. For instance, the simplest effective medium
theory would estimate the effective permittivity of a composite simply by
averaging as

ε = ε1φ+ ε2(1− φ) (1.2)

where φ is the volume fraction of material of permittivity ε1, with the re-
maining material having permittivity ε2. This approach is equivalent to
simply adding up the polarizabilities of constituents in vein of Eq. 1.1. Evi-
dently, this would be a poor approximation for some topologies. For instance
for a nanoporous metal film, you would expect a response that strongly de-
pends on whether the metal forms a conductive percolating network or not,
meaning that a dielectric host with metal inclusions would be very different
from its inverted counterpart. Maxwell-Garnett’s formula

εeff = εm
2(1− φ)εm + (1 + 2φ)εi
(2 + φ)εm + (1− φ)εi

(1.3)

is an example of a mixing formula that treats isolated inclusions (volume
fraction φ, permittivity εi) very differently from the backbone εm. However,
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1.2 Effective media and metamaterials

note that since these are all averaging formulas, taking volume-fraction av-
erages, these composites are always predicted to have ε between those of the
constituents, hence being constrained to the same range of refractive index
values as achievable with unstructured materials.

In 1967, Veselago discussed the intriguing consequences of being able to
utilize media with effective material parameters outside those available in
nature [12]. Since the year 2000, many efforts have been devoted to make
structures that appear to respond as if they are effective media with ε and
µ far from that of their constituents, in particular having µ different from
one [13, 14, 15, 16, 17]. The central paradigm has been to generate so called
meta-atoms that are subwavelength sized metallic resonators that have a
resonant response that involves oscillating charge distributions (Fig. 1.1,
b). If these oscillations include a circulating component, an effective mag-
netic dipole moment is set up. Most meta-atoms are hence loop-shaped
particles with a gap that present an LC-resonance owing to the inductance
of the loop and capacitance of the gap. The LC-resonance means that each
building block has a very large polarizability α, compensating for the low
density ρ of objects. Moreover, the resonant response embodied in α can
be both positive and negative, depending on how the driving frequency is
chosen relative to the LC-resonance frequency. Thereby, sizeable changes
in permittivity and permeability can be achieved, with values outside the
scope of traditional averaging formulas. In this way, optical magnetism was
reported even at visible wavelengths [18, 19, 20].

A key question is how valid the assignment of parameters ε and µ is for
structures accessible in experiment. Naturally, it is evident that a system
with length scales exceeding the characteristic wavelength will diffract, and
have grating orders. Thereby, it will not be ‘effective’. However, suppose
a reflection/transmission measurement on a slab of material would tell us
that it appears to be an effective medium. Are the same retrieved parame-
ters then valid for all possible measurements, e.g., for incidence under any
angle? This question has triggered a revisiting of theories of homogeneous
media, in particular examining in how far the response of metamaterials
can be captured as spatial dispersion in ε [21]. And supposed that a meta-
materials’ response in any far-field experiment can indeed be parametrized
— through possibly tensorial effective dielectric and magnetic constants, in
which experiments is it then discernibly not an effective medium. In par-
ticular, one expects that when one moves a probe to within a wavelength
distance, comparable to the meta-atom size, effective medium parameters
must break down. Exactly how this cross over occurs is highly interesting.
The philosophy of this thesis is to address this question in the near field. As
the key concept in this region, we will employ the local density of optical
states which we introduce in the following section.
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1 Introduction

1.3 Local density of optical states

Processes in nature which involve the conversion of the energy light ‘carries’
to change the state of an interacting piece of matter are manifold. One par-
ticularly relevant phenomenon is the process of photoluminescence [22]. An
electron in the ground state of an atom, quantum dot, molecule, or impurity
in a solid, might be promoted to an excited state in its energy level scheme,
for instance by absorption of an incident photon or electrically as occurs
in a LED. Relaxation to a lower-energy state via the re-emission of a pho-
ton can happen on different timescales depending on the probability of this
high- to low-level electronic energy state transition to take place. A likely
transition between two singlet states happens on the typical timescale of
nanoseconds and is termed fluorescence. A much less likely spin-forbidden
transition from a triplet to a singlet state happens on timescales of millisec-
onds, and is termed phosphorescence. This difference in timescale indicates
that the transition probability per unit of time depends on the excited state
and final state electronic wave functions, and in particular on their overlap
as embodied in the dipole matrix elements. It should be realized that the
process of photon absorption can be considered as instantaneous as it is
orders of magnitude faster (typically 10−15 s) than the relaxation process.

The time scale of the relaxation process does not solely depend on the
transition-dipole matrix elements of the involved electronic wave functions
of the emitting object. The environment ‘into’ which the photon is released
is of equal importance as transition probabilities incorporate not only the
objects’ electronic level scheme, but also the available photonic states of the
environment into which the photon can be released [23]. Transition rates
for dipolar transitions from an initial state |i〉 to a final state |f〉 can be
deduced from Fermi’s Golden Rule

γ =
2π

~2

∑
|f〉

∣∣∣〈f | µ̂ · Ê |i〉∣∣∣2 δ(Ef − Ei) (1.4)

which sums matrix elements of the product of transition-dipole operator µ̂
and radiation-field operator Ê over all available final states under conserva-
tion of energy represented by the δ-term. The final state |f〉 encompasses
the fate of both the fluorophore, ending up in a lower energy ground state,
as well as the radiation field, now carrying an additional photon emitted
from the fluorophore, after the transition process. All relevant information
about the fluorophore is found within the electronic structure and wave
function, i.e., the knowledge of excited and ground state energies separated
by an energy difference of ~ω. However, the sum of Eq. 1.4 has to be carried
out taking all available final states of the radiation field (with an additional
photon of energy ~ω) into account as well. Particularly in the context of
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1.3 Local density of optical states

so-called ‘photonic crystals’, a field developed in the late 1990’s and early
2000’s, it was realized that the availability of final states for the photon, as
counted by δ(Ef − Ei) can be strongly modified and even completely sup-
pressed over large frequency bands [24, 25, 26]. Moreover, this availability
of modes should not just count if a mode exists in the system (as embodied
in the density of states), but also how strong each mode is at the location of
a fluorophore. A canonical example is that of an emitter in a microcavity,
where it is evident that coupling of the fluorophore to the cavity requires
precise alignment with the cavity mode field maximum [27, 28, 29, 30].
This can be summarized by formulating the fluorescence transition rate as
a quantity depending on transition-matrix elements µ and a spatially de-
pendent quantity called the local density of optical states (LDOS) ρ(r, ω)
fully characterizing the fluorophore’s environment [23]

γ =
πω

3~ε0
|µ|2 ρ(r, ω). (1.5)

The optical LDOS has been exploited in three ways. First, in particular
photonic systems a controlled variation of LDOS ρ(r, ω) can be generated,
which allows to quantify the photophysics of an unknown fluorophore simply
by varying its position in the LDOS landscape [31, 32, 33, 34, 35, 36, 37].
Second, if one has known fluorophores one can use them to map the LDOS
of an unknown photonic system by measuring decay rate as a function of r
and ω [38, 39, 40, 41]. Third, for the fabrication of efficient single-photon
sources and quantum-optics devices, there is a large demand for controlled
engineering of ρ(r, ω) in order to ensure that an emitter couples selectively
to a given mode, in order to completely control how fast a photon is emitted
after excitation, and in order to reach strong light-matter interaction [42].
We will now review the first two of these three uses.

Monitoring the influence of a non-uniform environment on the fluores-
cence behavior of an emitter allows one to calibrate the emitters’ fluores-
cence properties. Indeed, a common question when desiring to quantify an
unknown fluorophore is what its quantum efficiency and oscillator strength
(embodied in µ) is. A non-unity quantum yield comes about when the
excited state has a nonradiative decay channel (decay rate γnonrad) in addi-
tion to the radiative decay, for instance due to the generation of phonons,
i.e., heat. Since the nonradiative decay does not involve a photon it has
a rate independent of the photonic mode structure, meaning that the to-
tal fluorescence decay rate one would measure in a fluorescence decay-rate
measurement that maps intensity I(t) = I0 exp (−γt) is

γ = γnonrad + ρ(r, ω)γrad. (1.6)

The first experimental realization of this approach by Drexhage et al. [43]
studied the fluorescence lifetime of europium ions as a function of the dis-
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1 Introduction

tance to a silver mirror and showed that solely the radiative decay rate of
the emitter was affected by the environment, leaving the nonradiative de-
cay rate unchanged. Knowledge of both decay rates allows for quantitative
assessment of the fluorescence process in the form of an intrinsic quantum
efficiency. This approach lent the name to a plethora of Drexhage-type ex-
periments and the study of fluorophores [31, 32, 33], quantum dots [34],
nitrogen vacancy centers [35, 36] in diamond and magnetic dipole transi-
tions [37]. Figure 1.2 shows the decay rate enhancement Γ compared to
vacuum LDOS for a dipole oriented perpendicular and parallel to a perfect
mirror (ε = −∞).

Furthermore, the same qualitative effect of the environment’s LDOS is
found in the scattering properties of plasmonic particles (introduced in the
previous section). If one has a plasmonic scatterer of sufficient size (radius
above 20 nm), it is a resonant polarizable object that has as dominant loss
channel radiation of its excitation as scattered light into the far field. Since
the LDOS modifies the number of channels available to radiate into, one
expects that the radiation damping of a scatterer varies as a function of
LDOS. Indeed Buchler et al. [44] showed that a plasmonic particle’s extinc-
tion cross section linewidth plotted as a function of particle-mirror distance
follows an LDOS lineshape. This effect of a mirror on the scattering prop-
erties of a plasmon particle can be viewed as a backaction, whereby the
particle is not only driven by an incident field, but also by its own mirror
image. This backaction essentially renormalizes the particle’s polarizability
tensor. In contrast to the transition-dipole picture in the fluorophore case,
here, the radiation of externally driven dipole(s) (spatial charge separation
in the classical sense) is affected by the presence of a mirror, again allowing
for characterization of the radiating dipole(s) quantum efficiency and the
particle’s plasmon spectrum.

Turning to the second exploitation of LDOS, once one has full knowledge
of the behavior of an emitter embedded in a homogeneous reference medium
(for simplicity: vacuum) allows one to use this characterized emitter as a
reference probe. Bringing such an emitter in proximity to an unknown, pos-
sibly inhomogeneous and therefore more intricate structure, one can map
the LDOS in the structures’ surrounding. Examples range from the study of
plasmonic nanowires with scanning tips featuring fluorescent molecules [38]
or nitrogen vacancy centers [39] to the complete mapping of photonic crys-
tals with quantum dots [40] and mode structure analysis of photonic cavities
by cathodoluminescence spectroscopy [41].
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1.3 Local density of optical states
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Figure 1.2: A radiating dipole separated from a perfect mirror (ε = −∞)
at a geometrical distance d will experience a decay rate enhancement Γ
(compared to the dipole in vacuum) depending on the dipole orientation.
We plot Γ for two particular dipole orientations with distances presented in
units of wavenumber×distance: kd. A dipole oriented parallel to the mirror
surface experiences a total inhibition of its radiative decay when touching
the mirror surface (black). In contrast, a dipole oriented perpendicular to
the mirror surface experiences a decay rate enhancement of factor 2 when
being brought close to the surface (gray). For ever larger distances, the
decay rate will not be affected by the mirror and will reach the value for
vacuum, independent of the dipole orientation.
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1 Introduction

1.4 Motivation and thesis outline

Having given a very brief introduction into first, the field of effective media
and the realization of artificial metamaterials based on resonant plasmonic
building blocks and second, the concept of the local density of optical states
in the context of the fluorescence phenomenon, we want to state our motiva-
tion. The philosophy of the Ph.D. research project presented in this thesis
was to obtain a better understanding of what a metamaterial, and what
a metamaterial scatterer is, through LDOS. In particular, at the time this
research was initiated, far-field normal-incidence transmission spectra mea-
sured on 2D arrays of split-ring scatterers were reported and interpreted as
implying effective medium behavior with negative ε and µ [20, 21, 45, 46].
This behavior was attributed to individual building blocks, i.e., the split
rings, and the notion that these are subwavelength polarizable dipoles with
a coupled electric and magnetic response [19, 20, 47, 48, 49]. From these
assertions the following questions emerge:

1. What should the LDOS for a dipole with an electric-dipole allowed
transition actually be if one would have a hypothetical magnetic mir-
ror or magnetic and electric metasurface (Fig. 1.3, a)?

2. Up to what point are effective ε and µ derived from far-field normal-
incidence data actually good descriptors for a metamaterial, as one
brings a probe from the far field into the near field to measure LDOS?

3. Can we strengthen or refute the claim that a single split ring is a
magnetic dipole scatterer by probing if its radiation damping actually
traces out magnetic LDOS (Fig. 1.3, b)?

4. How do single building-block magnetism on the one hand, and packing
of objects in 2D periodic arrays on the other hand that must have
collective Bloch modes conspire to give magnetic signatures in LDOS,
and in far-field observables?

Since proposed metamaterial applications are mainly near-field applica-
tions, i.e., perfect lensing, cloaking, and transformation optics, experiments
towards answering these four questions force one to come much closer to
understanding metamaterials than far-field transmission and reflection ex-
periments alone [50, 51, 52, 53, 54, 55].

In this thesis, we report on research intended to provide answers to the
four key questions posed above. A first prerequisite to probe LDOS near
surfaces is to establish a method to controllably separate LDOS probes
and the surfaces that provide the LDOS change. An effective way of real-
izing a structure fulfilling the requirements of controlled distances on the
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1.4 Motivation and thesis outline

a b
radiating

dipole

metasurface mirror

magneto-

electric

scatterer

Figure 1.3: Questions raised and addressed within this thesis include: (a)
What is the LDOS at the position of a radiating (transition) dipole above
a metasurface? (b) How does the presence of a mirror affect the scattering
properties of a magneto-electric scatterer such as a SRR?

nanometer scale over a large sample area on the micrometer scale is pre-
sented in Chapter 2. We show how, by applying gray-tone UV-lithography,
a wedge-shaped dielectric can serve as a spacer layer between a silver mir-
ror and a layer of fluorophores (dyes, quantum dots). Covering a range
of distances up to about the respective fluorophores’ emission wavelength,
we effectively implement Drexhage’s method to conduct quantitative decay
rate measurements on emitter ensembles and can calibrate and compare
intrinsic quantum efficiencies.

In Chapter 3, we discuss the concept of introducing a magneto-electric
scatterer such as a split ring resonator (SRR) into a photonic environment
with a well-known density of optical states such as a mirror. We predict
that the scatterer’s extinction cross-section linewidth depends on its dis-
tance to the mirror-surface due to a combination of electric, and magnetic
local density of states effect, in accordance with earlier claims that split
rings have both an electric and a magnetic dipole contribution to their
scattering. Moreover, split rings have been predicted to have nonzero cross-
coupling, meaning that electric fields can drive magnetic responses and vice
versa. This effect is coined ‘bi-anisotropy’, and is strongly related to chiral
responses of scatterers. Strikingly, the nonzero cross-coupling components
in the scatterer’s polarizability tensor will be reflected in the extinction
cross-section lineshape. For a SRR, this lineshape differs from a lineshape
expected from a purely electric or magnetic dipole. We show how this differ-
ence is stemming from the interplay of both dipole components as predicted
by our analytical magneto-electric point-dipole model and support our find-
ing by finite-element simulation.
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1 Introduction

Chapter 4 covers periodic two-dimensional arrangements of split ring
resonators. We compare two types of lattices, indistinguishable by the indi-
vidual split ring orientation within their respective unit cell. Transmission
measurements conducted on (i) diffractive and (ii) nondiffractive realiza-
tions of both types of lattices reveal (i) the background-free signature of
magnetic dipole response in Fourier imaging on illumination on resonance
and (ii) a reduction of the apparent bi-anisotropy effect for off-normal illu-
mination. A general model for metamaterial lattices with complex 2D unit
cell of poly-atomic basis is introduced and explains experimentally observed
phenomena. Furthermore, we extend this model to treat finite stacks of 2D
lattices and calculate reflection and transmission spectra as a function of the
number of layers. This model provides all the essential ingredients required
to predict the LDOS change that metasurfaces will induce.

We combine our experience of sub-100 nm distance control and our com-
prehension of metasurfaces in Chapter 5 by studying combined systems of
lattices formed by periodic arrangements of magneto-electric scatterers in
front of a mirror. Combining the lattice-sum formalism with the interface
Green-function approach we analytically calculate the renormalization of
the per-particle polarizability and extract reflection coefficients. Calculated
reflection and transmission coefficients for the individual interfaces serve as
input parameters in a simple Fabry-Pérot model and apparent differences to
the analytical approach are discussed that are interpreted in terms of back-
action. A system comprised of SRR lattices separated from a silver mirror
by a dielectric wedge spacer is fabricated and reflectivity data is acquired as
a function of separation and frequency for different pitches. The experimen-
tally acquired distance dependent reflectivity is compared to predictions of
our lattice-sum magnetoelectric point-dipole model. Both find clear discrep-
ancies to a simple Fabry-Pérot model which neglects the near-field influence
on the single lattice atom’s polarizability.
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Chapter 2

Calibrating radiative and
nonradiative decay constants of

fluorophores

We present a method that is accurate yet fast to implement to
realize non-planar dielectric structures with a controlled height
profile for use in calibration of fluorophores. Calibration of fluores-
cence quantum efficiency and intrinsic radiative and nonradiative
decay rates of emitters is possible by using changes in the local
density of optical states, provided one can control the emitter-
surface distance with nanometer accuracy. We fabricate PMMA
wedges (4 mm×4 mm×2µm) by gray-tone UV-lithography of Ship-
ley S1813G2. Its applicability as dielectric spacer is demonstrated
in Drexhage experiments for three different emitters in the visible
and near-infrared wavelength regime. The decay-rate dependence
of the fluorescent state of emitters on the distance to a silver mir-
ror is observed and compared to calculations of the local density
of states. Quantitative values for (non)radiative decay rates and
quantum efficiencies are extracted. Furthermore, we discuss how
Drexhage experiments can help to scrutinize the validity of effec-
tive material parameters of metamaterials in the near-field regime.
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2 Calibrating radiative and nonradiative decay constants of fluorophores

2.1 Introduction

A key contribution of photonic technology to society is the realization of
light sources with desirable properties, such as controlled spectrum, bright-
ness, improved wall-plug efficiency, or coherence properties. The creation
of such novel light sources, i.e., LED’s and lasers, heavily depends on two
types of innovation. These are firstly the realization of cheap materials
that have optical transitions of high efficiency and desired frequency, and
secondly the integration of these source materials with photonic structures
that further improve the performance. Among the material developments,
innovations in the last decade range from organic dyes and light-emitting
polymers in organic LEDs [1], to the use of epitaxially grown III-V semicon-
ductor quantum dots [2] and quantum wells [3] in common laser diodes and
LED’s, to colloidally fabricated II-VI quantum dots [4] that are size tun-
able throughout the entire visible spectrum. To improve the performance of
the bare sources, or homogeneous thin layers of the luminescent materials,
many groups pursue nanophotonic techniques to improve light extraction,
as well as to increase the spontaneous emission rate in favor of undesired
nonradiative decay constants. Both photonic crystals [5] as well as pat-
terning with arrays of plasmonic antennas [6, 7, 8, 9] have been shown to
succesfully contribute to light extraction, and optimization of the radiative
time constants [10]. The key quantity that quantifies the possible improve-
ment of the radiative decay is the local density of optical states (LDOS)
enhancement that a nanophotonic structure provides [11, 12]. The LDOS
counts the total number of optical modes, weighted by their amplitude right
at the emitter, that are available to the source for radiative transitions, and
hence directly appears in Fermi’s Golden Rule for spontaneous emission [12].
Optimization of LDOS is not only important for macroscopic classical light
sources, such as LEDs, but is also key for quantum optical applications
where a single quantum emitter is to be strongly coupled to a single optical
mode [13, 14].

A method to reliably measure the intrinsic time constants of arbitrary
emitters is of large importance both for quantifying improvements in emis-
sive materials, and for quantifying the LDOS enhancing potential of a
nanophotonic structure. For an emissive material, the challenge is to deter-
mine rapidly and accurately the intrinsic radiative rate, nonradiative rate
and quantum efficiency of emitters as a tool to guide material improvement
and to understand the mechanisms behind, e.g., unwanted nonradiative de-
cay. Conversely, if one wishes to benchmark the local density of states
improvement that a structure can intrinsically provide, it is important to
probe the structure with a source that has first been quantified in terms of its
radiative and nonradiative rate constants. Unfortunately, commonly used
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2.1 Introduction

fluorescence decay measurements only provide the sum of rates [15], while
quantum efficiency measurements are usually based on brightness compar-
isons. Such comparisons are prone to imprecision if one has to rely on
comparison to a fluorescence quantum efficiency standard, and yield erro-
neous results when a sample consists of a heterogeneous ensemble in which
fluorophores exhibit large brightness variations. On basis of an experiment
first performed by Drexhage [16, 17], many authors have realized that intrin-
sic rate constants can be reliably measured by applying a known, controlled
LDOS variation to an emitter [18, 19, 20]. Drexhage studied the radiative
decay rate of europium ions as a function of distance to a silver mirror. The
observed variation in decay rate, stemming from interference of emitted and
reflected light, can be explained by a change in the LDOS at the emitter
position [21]. Since the LDOS is exactly known, the data can be quantita-
tively separated into an intrinsic nonradiative rate that does not vary with
LDOS, and a radiative rate that does. This technique has been used for
organic dyes, rare-earth ions [19, 22], and more recently for II-VI quantum
dots [23], III-V quantum dots [24, 25], and even single emitters when us-
ing a nanomechanically scanned mirror [20]. Unfortunately, the techniques
to controllably vary distance are generally elaborate, and material specific.
For instance, Leistikow et al. [23] required fabrication of a large set of sam-
ples with evaporated layers of calibrated heights. In the case of Stobbe
et al. [24], a single substrate could be used, but an elaborate reactive ion
etching step specific for III-V chemistry, and using a complicated masking
procedure was required to fabricate discrete steps. In this work, we report
an easily implemented method to realize Drexhage experiments on top of
arbitrary planar structures.

In this chapter, we propose that gray-tone optical lithography [26] al-
lows to attach very shallow wedges on top of arbitrary substrates. Drexhage
experiments can then be performed either by depositing the wedge on the
emitter and evaporating a mirror on it, or conversely by placing the wedge
on a mirror, and distributing sources on the wedge (Fig. 2.1). The key re-
quirement for the optical wavelength regime is that the wedge has a shallow
angle so that the mirror is almost parallel to the emissive substrate, yet also
to have nanometer control over the wedge height and roughness that sets the
spatial separation of the emitter and the substrate. We fabricated wedge-
shaped dielectric spacers by gray-tone lithography and performed Drexhage
experiments to calibrate three different emitters: fluorescent polystyrene
beads emitting at 605 nm, CdSeTe/ZnS (core/shell) quantum dots emitting
at 800 nm, and Dibenzoterrylene molecules in anthracene crystals emitting
at 750 nm. While these emitters were chosen for their promising use in
nanoscale quantum optics with plasmon antennas [27, 28, 29, 30] and meta-
materials [31, 32, 33], the method is easily applied to any emitter that can
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substratemirror
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Figure 2.1: A wedge shaped dielectric separates a layer of emitters from
a mirror. This geometry allows to conduct a Drexhage experiment — ob-
serving the fluorescent decay rate of emitters as a function of distance to a
mirror — on a single sample.

be reasonably homogeneously distributed in a planar layer. The wedges
can also be used with calibrated emitters, to measure LDOS near unknown
substrates, such as gratings and plasmon antenna arrays. The chapter is
structured as follows. In section 2.2 we discuss gray-tone UV-lithography,
wedge-profile characterization and emitter layer spin-coating steps. Sec-
tion 2.5 covers the optical measurement procedure. Lifetime measurements
and derived intrinsic rate constants for the three emitters are presented in
section 2.6. Finally, along with our conclusion we provide an outlook.

2.2 Gray-tone lithography

In this chapter, we discuss four samples: three samples featuring emitters
with specific emission wavelengths and fluorescent lifetime characteristics
and one benchmark sample to check the height profile using a variety of
techniques. All samples feature an optically thick (≈ 100 nm) layer of silver
that is evaporated on silicon wafer pieces (each ≈ 20 mm×20 mm). The
silver layer, which we characterized by ellipsometry, serves as mirror for the
Drexhage experiments. The essential step is the fabrication of a dielectric
spacer with controlled and graded height profile using optical lithography.
Since optical lithography resists tend to fluoresce themselves, we create two
types of samples, namely samples with and without an intermediate, consid-
erably less fluorescent, PMMA layer. For samples of the first type a 2µm
thick layer of PMMA (M = 950 000 g/mol, 8 % in Anisole) is spincoated
(45 s at 1000 rpm, baking for 2 min at 180◦C). For all samples (with and
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2.2 Gray-tone lithography

Figure 2.2: Diffuse UV-illumination of a ‘gray-tone’ chromium mask gener-
ates a wedge shaped zone with doses above the critical dose of the positive
resist. After development, the wedge can be transferred into a different ma-
terial, such as PMMA, via reactive oxygen ion etching (a). Differential in-
terference contrast microscopy images of developed Shipley S1813G2 resist
without diffusive element during UV-exposure, resembling the chromium
mask pattern (b), and with diffusive element, showing a ‘smoothed out’
continuously sloping surface (c). The interference color change along x im-
plies varying distances to the silver mirror.

without PMMA) we then spincoat a 2µm thick layer of Shipley Microposit
S1813 G2 positive UV-resist (45 s at 1000 rpm, baking for 2 min at 115◦C).
To define the wedge shape in the resist, we perform UV-lithography us-
ing a Süss MJB3 mask aligner with a binary chromium mask that consists
of parallel lines, at varying surface coverage similar to Christophersen et
al. [26]. The mask for each dielectric wedge is a 4 mm×4 mm area, made up
of 4 mm long chromium lines in the y-direction with increasing width in the
x-direction from 1.5µm (low end of the wedge) up to 12µm (high end of the
wedge). All lines are spaced in the x-direction by gaps of 3µm. Thereby,
the average density continuously varies from 33 % surface coverage to 80 %
surface coverage. To generate a graded illumination, we use an opal glass
diffuser (Edmund Optics, NT02-149) placed in a filter holder ≈ 1 cm above
the sample and mask. The resist is exposed with a dose of 300 mJ/cm2
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Figure 2.3: Panel (a): height profiles of 4 different wedges, used for fluo-
rescent beads, quantum dots, DBT, and a topographic benchmark sample.
For the benchmark we also performed Mirau-interferometry (round sym-
bols) and find good agreement with profilometry. The fluorescent bead and
DBT in AC samples feature an additional PMMA layer underneath the
S1813 UV-resist. The wedge for the quantum dot sample consists solely
of S1813 (a). Panel (b): an atomic force microscopy scan is conducted to
retrieve a roughness estimate of the typical wedge surface. Line traces in
(c) show a sub-30 nm roughness as indicated by the double-arrow.

and developed in Microposit MF-319 for 15 s (Fig. 2.2). At this point, we
have a wedge profile in S1813 on top of Ag or a Ag/PMMA stack. For
the samples with PMMA, the wedge profile, defined in S1813, is transferred
into the PMMA layer by reactive oxygen ion etching (Oxford Instruments
Plasmalab 80+, 20 sccm O2 gas flow, 50 W forward power, 292 K operating
temperature). After approx. 35 min of etching the S1813 is completely re-
moved from the lower end of the wedge. The etch rate of PMMA is twice
the etch rate of S1813, therefore the slope of the original profile is changed
and the upper end of the PMMA wedge will be covered with residual S1813.

2.3 Wedge profile characterization

We characterize the wedge profiles by profilometry (KLA-Tencor Alpha-
Step 500) and compare the profilometry data set of a benchmark sample
to Mirau-interferometry data (Nikon 20x CF IC Epi Plan DI) (Fig. 2.3,
a). Mirau interferometry is a purely optical method in which one places the
sample in a standard white light reflection microscope. However, rather than
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using a standard objective one uses a so-called Mirau objective that fits in a
standard objective thread, yet contains in a addition to a standard glass lens
a reference mirror. In more detail, halfway between lens and sample, a 50/50
beam splitter reflects part of the incident halogen light on to the reference
mirror. The reflection off the mirror recombines with the reflection off the
sample at the same 50/50 beam splitter. Imaging the sample on a CCD
camera hence shows a fringe pattern that encodes height differences in the
sample versus lateral coordinate. While for monochromatic illumination one
can only measure heights modulo half integer wavelengths as zero crossings
in the fringe pattern, for white light illumination one can actually measure
absolute heights in relation to the reference mirror conjugate plane. Indeed,
for white light illumination, the fringes are strongly chromatic, except when
the sample plane is exactly conjugate to the reference mirror, in which case
a black fringe results. In our work we trace the height of the wedge relative
to the substrate by monitoring when the black fringe appears on the bare
substrate, respectively on the wedge as we scan the sample upwards using
a calibrated piezo.

As regards profilometry, in this technique height is determined by scan-
ning a sharp stylus laterally over a horizontal surface while applying a con-
stant vertical load and monitoring vertical stylus displacement. We note
that the KLA-Tencor Alpha-Step 500 is not designed to scan such large lat-
eral areas (for the wedges in question: 4 mm×4 mm). Hence raw profilom-
etry data showed apparent sample curvature as well as apparent roughness
that in fact turned out not to be intrinsic to the sample, but to be system-
atic and reproducible artefacts that are due to the stylus scanner mechanics.
However, once one uses a flat optical substrate, such as an optical grade sil-
ver mirror (Thorlabs PF10-03-P01), as reference in the profilometer, a good
agreement between profilometry and interferometry is obtained (Fig. 2.3, a,
dots and curve). This supports the sole use of the profilometer as a tool
to acquire (x,z)-profiles of all the other samples. Typically, the base of a
wedge, in contact to the silver mirror, is 4 mm wide in the x- and y- (scan-)
directions, as inherited from the mask. The (x,z)-profiles resemble a ’fin’-
shape starting off with a steeper slope at the low end and ending with a
shallower height increment per sideways displacement at the upper end of
the wedges. The overall slope remains well below 1.5µm/mm, meaning that
the wedge angle is so shallow that effectively constant-height data can be
obtained in micro-fluorescence experiments. Since neither profilometry nor
Mirau-interferometry can resolve roughness reliably on lateral length scales
below 1µm, we also performed atomic force microscopy measurements. We
extract a typical surface roughness of ∆z/∆x < 30 nm/50µm (Fig. 2.3 b,
c). Compared to established methods for Drexhage experiments, which are
usually based on controlled stepwise RIE etching, or on controlled evapora-
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tion of different thicknesses, our method has the advantage that all desired
source-mirror distances are created on a single substrate with a single sim-
ple optical lithography step. The roughness and shallow slope of the wedge
imply that Drexhage experiments can be performed for wavelengths down
to ≈ 500 nm (< λ/10 roughness). Finally, we note that Fig. 2.3(a) shows
that while all samples have a smooth wedge, not all wedges have the same
overall height profile. In general etching from S1813 into PMMA steepens
the height profile due to a factor two difference in etch rate. In our work
differences in height profile also occur due to minor variations in the spin-
coated thickness and in the UV exposure dose, as a result of adjustments
in the mask aligner illumination alignment between runs. In this work we
use individual z-profile calibrations for each wedge, though improvements
in processing could render this procedure unnecessary.

2.4 Preparation of fluorophores

A succesful Drexhage experiment not only requires smooth dielectric spac-
ers of controlled height, as characterized above, but also that the emitters
can be homogeneously dispersed on the wedge. We present measurements
on three types of fluorophores. Firstly, we use fluorescent polystyrene beads
(Invitrogen Fluospheres F8801), with a nominal bead diameter of 0.1µm
containing about 103 randomly oriented dye-molecules each, that are com-
pletely chemically shielded from the bead’s environment. We estimate this
number of dye molecules on the basis of intensity measurements taken in
a single molecule sensitive microscope of known collection efficiency as re-
ported by Frimmer et al. [34]. Their fluorescence intensity peaks at 605 nm.
Since S1813 wedges in themselves fluoresce in the same wavelength range,
with comparable time constants, we use a nonfluorescent PMMA wedge.
To counteract agglomeration of beads we sonicate the stock solution (2 %
solids) for 2 minutes prior to mixing 1µl of the bead solution with 1 ml of
deionized water. This mixture is spin-coated for 10 s at 500 rpm (100 rpm/s
acceleration) followed by a second spin step of 45 s at 1500 rpm (500 rpm/s).
From a typical confocal fluorescence microscopy image (Fig. 2.5, left) we de-
duce a bead concentration of ≈ 0.15µm−2.

As a second emitter, we study CdSeTe/ZnS (core/shell) quantum dots
(Invitrogen Qdot 800 ITK carboxyl) as they were recently proposed as light
sources for plasmonic applications [29, 27]. In comparison to more common
CdSe/ZnS quantum dot nanocrystals for visible emission, these quantum
dots feature longer lifetimes [35]. The quantum dots are diluted in a borate
buffer solution (pH = 8.0) to a molar concentration of 8µM. We mix 4µl of
this solution with 1 ml of deionized water and spincoat a droplet of the mix-
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ture on top of the S1813 wedge-sample for 45 s at 4000 rpm (4000 rpm/s).
Here, the use of an S1813 wedge is justified, since the fluorescence of the
quantum dots and of the polymer can be separated easily via spectral se-
lection, and a factor 10 contrast in fluorescence decay constants.

As third type of emitter, we investigate Dibenzoterrylene (DBT) mole-
cules in Anthracene (AC) crystals [36, 37]. DBT molecules have been found
to feature great photostability and brightness at room temperature (1012

emitted near-infrared photons before photobleaching) while also fluorescing
in the near-infrared around 750 nm [37]. We dissolve 0.6 mg of DBT powder
(Dr. W. Schmidt, PAH Research Institute, Greifenberg, Germany) in 1 ml
of Toluene. In accordance with the recipe by Toninelli [37], we use 5.3 mg of
AC dissolved in 2 ml of Diethylether and 20µl of Benzene. Finally, 80µl of
DBT-solution is mixed with 0.5 ml of AC-solution. The resulting solution
is spin-coated for 40 s at 3500 rpm (500 rpm/s acceleration).

2.5 Experiment

Fig. 2.4 depicts the basic components of the confocal fluorescence lifetime
scanning microscope, in which we perform the Drexhage experiments. Light
from the excitation laser is focused to the diffraction limit, and emitted light
from fluorescent objects in the focus is collected via the same objective
(Nikon 100×, NA = 0.90, Plan Fluor) in a confocal arrangement. The fluo-
rescent light is separated from the excitation at a dichroic beamsplitter and
passes additional long-/bandpass filters chosen according to the absorption
and emission spectrum of the emitter of interest. The fluorescent beads as
well as the quantum dots are pumped by a pulsed laser (Time-Bandwidth
Products) operating at 532 nm emission wavelength (green), 10 MHz repe-
tition rate with pulse widths < 10 ps. Dibenzoterrylene molecules have a
25 times higher absorption cross section in the red compared to the green
part of the spectrum. Therefore, we choose a different pump source for
this emitter: a pulsed laser diode (Edinburgh Instruments EPL) at 635 nm,
operated at 10 MHz repetition rate featuring pulse widths of < 100 ps.

Achromatic optics focuses the fluorescent light onto a silicon avalanche
photodiode (APD) (ID Quantique id100-20ULN) with an active area diame-
ter of 20µm, using an effective magnification from objective to APD of 20×.
The APD-pulses and the reference pulses from a trigger diode (green laser)
or electrical trigger output (red laser) are registered by a picosecond, 16
channel, pulse correlator (Becker&Hickl DPC-230), which records absolute
timestamps at 165 ps resolution for each event. The sample is mounted on a
(x,y)-piezo stage. By scanning the sample with respect to the objective we
acquire fluorescence intensity maps of 100 × 100 pixels (≈ 10µm×10µm)
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2 Calibrating radiative and nonradiative decay constants of fluorophores

Figure 2.4: Sketch of the time correlated single photon counting setup.
Light from a pulsed pump laser is focused onto the emitter layer. A dichroic
mirror is used to separate the fluorescent light stemming from the emitters
and the pump light. Depending on the emission wavelength of the emitters,
appropriate long-/bandpass filters are added to the beam path. In that way
only light stemming from fluorescent objects of interest is focused onto the
APD. The photon arrival times with respect to the pump pulse together
with the (x,y)-piezo stage position generate a fluorescent lifetime image of
the sample at a certain emitter-mirror separation z.

with a pixel scan rate of 100 Hz. For each scan we sum the single photon
events of a chosen region of interest in a time-histogram. These areas are so
small that no appreciable height gradient occurs in the wedge. The images
hence serve to assess local homogeneity in fluorophore intensity only. For
each scan we correlate the single photon detection events and laser pulses
to form a fluorescence decay histogram, which we sum either over the full
image or over a chosen region of interest (e.g., to select isolated beads) in
the 2D scan. Different positions along the height gradient of the wedge are
reached by a manually operated micromechanical stage.

2.6 Results

Fig. 2.5, left shows a typical scan of beads on top of the wedge aquired by
fluorescence-lifetime imaging microscopy (FLIM). The intensity map shows
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Figure 2.5: Typical fluorescence intensity image of beads on top of the
PMMA wedge (left) and corresponding fluorescence decay histogram (ac-
cumulated events from diffraction limited bright spots in intensity image)
(right). We clearly see a single exponential decay for which intensity and
lifetime τ are fitted in the maximum likelihood sense assuming Poissonian
counting statistics for each time bin.

isolated diffraction limited bright spots on a very dark background, which
is consistent with having a dilute sprinkling of isolated beads. Although
the slight top-bottom intensity gradient in this particular image suggests a
small focus drift during the measurement, our method is robust against such
drift. Raster scanning excludes photophysical changes in the sample, such as
bleaching as artifact. Since our quantum efficiency calibration does not rely
on extracting brightness, but on extracting lifetimes, we are not prone to,
e.g., the small setup drifts that can cause brightness artifacts. Selecting only
those events that appear in the diffraction limited bright spots we obtain
a histogram of photon counts versus arrival time after the pump pulse,
i.e., a fluorescence decay curve, for all beads within the scanned image.
One such histogram is shown in Fig. 2.5, right, taken from the fluorescence
image Fig. 2.5, left, recorded around position x = 340µm along the wedge
length (i.e., z ≈ 700 nm). For each position along the wedge profile, i.e., for
each sample-source distance where we acquired a FLIM image, we fit the
observed fluorescence decay histogram with a single exponential decay. In
our fit we assumed the background to be fixed (set to the mean events per
bin in the time bins with time delay < 0 s, before pump pulse arrival) and
fit only a decay rate and an initial amplitude. We find the most probable
set of these two parameters by using the maximum-likelihood method under
the assumption of Poissonian counting statistics for each time bin [38]. In
Fig. 2.6, left, we plot the experimentally retrieved fluorescent decay rate as
a function of bead-mirror distance z. We find an increase of the decay rate
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up to 0.27 ns−1 for z ≈ 90 nm. We did not resolve decay rates for values
closer to the mirror which, predicted by LDOS theory, would first decrease
to a minimum at around z = 25 nm before rising again for z → 0. For z >
100 nm, the decay rate dependency resembles a damped oscillation around
0.18 ns−1 with a periodicity of ≈ λem

bead/(2nPMMA) ≈ 200 nm as expected
when considering the interference condition for emitted and reflected field
amplitudes.

In order to extract a quantitative calibration of the intrinsic decay con-
stants of the emitters, i.e., their intrinsic nonradiative decay rate and their
radiative decay rate when held in vacuum, we fit the experimentally ac-
quired total decay rate γtot(z), dependent on the emitter-mirror separation
z, to

γtot(z) = γrad · ρ(z) + γnonrad (2.1)

where ρ(z) equals the relative local density of states ρ =LDOS/LDOSvac for
a dipole above a silver mirror. Note that the intrinsic nonradiative decay
γnonrad acts as an offset that is not affected by the mirror. Any quenching
induced by the mirror is contained in the term proportional to the intrinsic
radiative decay rate, i.e., in ρ. We use established theory [21, 18, 39, 12]
to calculate ρ on basis of the refractive indices for S1813, PMMA and the
silver mirror that were acquired from ellipsometry measurements.

Since in our experiment, we acquire fluorescence intensity from an en-
semble of ≈ 103 dye molecules within each bead, we assume an isotropic
distribution of dipole orientations. Therefore we use the orientation aver-
aged

ρiso(z) =
1

3
ρ⊥(z) +

2

3
ρ‖(z) (2.2)

where ρ⊥(z) and ρ‖(z) are the relative local density of states for dipoles
oriented perpendicular and parallel to the mirror surface, respectively [40].

The fitted γiso
tot(z) (calculated for dipoles embedded 10 nm below the

PMMA/air interface to account for the bead material) is plotted as the
red line in Fig. 2.6, left. We find fair agreement with the experimental data.
For distances exceeding the vacuum emission wavelength of the emitter (due
to the wedge index this encompasses several oscillations in the LDOS) the
oscillation amplitude of the local density of states decreases and becomes
comparable to the uncertainty in fitted total decay rates. We hence use
the emitter’s emission wavelength as upper bound on distances plotted.
By plotting decay rate versus LDOS, instead of decay rate versus z, we
can directly find the radiative and nonradiative decay rate from the slope
and ordinate intersection of the linear dependence, respectively (Fig. 2.7).
Throughout this work, error bars on rates and efficiencies result from the
LDOS fit, taking into account error bars on the decay rate fitted at each
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vertical distance. For the fluorescent beads, we find an intrinsic radiative
decay rate of (0.10 ± 0.01) ns−1 and a nonradiative decay rate of (0.07 ±
0.01) ns−1. The hypothetical radiative decay rate for this emitter in vacuum,
extrapolates to a radiative rate of (0.15 ±0.01) ns−1 in its PMMA host. We
extract a quantum efficiency

q.e. ≡ γrad/(γrad + γnonrad) (2.3)

of 61%±7% for the emitter hypothetically in vacuum, and around 70%±6%
for the emitter embedded in its bulk host material, i.e., bulk PMMA.

In many applications targeting the use of metamaterials and plasmonics
to control emitters, one preferentially does not use emitters with emission
wavelengths at 605 nm, such as the beads, but rather emitters emitting fur-
ther into the near-infrared. Recent reports by Curto et al. [29] propose that
CdSeTe/ZnS quantum dots emitting at around 800 nm are ideally suited
single emitters for plasmonic applications, as they are ultrabright. The flu-
orescence time delay histogram retrieved from a FLIM image of an ensemble
of Invitrogen Qdot 800 ITK carboxyl quantum dots does not resemble a sin-
gle exponential decay. In order to fit these traces, we make use of the fact
that an ensemble of quantum dots should be modeled with a continuous
distribution of decay rates [41, 42]. More precisely, the natural logarithm
of decay rates γ is assumed to be normally distributed—as verified by Lun-
nemann et al. [43]—according to the log-normal distribution

p(γ) = A · exp

(
− ln2(γ/γmf)

w2

)
. (2.4)

The normalization constant A is given by the condition
∫∞

0 p(γ)dγ = 1. The
dimensionless width w can be rewritten as the width of the rate distribution
for which p = 1/e:

∆γ = 2γmf sinhw. (2.5)

Hence, the two free parameters of our fit-model are the most frequent de-
cay rate γmf , at which the log-normal distribution is centered, and the rate
distribution width ∆γ. The fitted most frequent decay rates are shown
in Fig. 2.6, center, and Fig. 2.7, center, together with a fit to the LDOS
for isotropically oriented dipoles. We would like to point out that as we
fit the Drexhage model to just the retrieved γmf , the extracted values we
quote quantify only the most frequently occurring decay rates and quantum
efficiencies, and not the width of the underlying distribution. For the quan-
tum dots we find a most frequent intrinsic radiative decay rate of (5.46 ±
0.51)µs−1, a most frequent nonradiative decay rate of (0.62±0.66)µs−1 and
a most frequent quantum efficiency of 90%± 11% for the emitter hypothet-
ically in vacuum. In its actual bulk host material, i.e., bulk S1813 we find
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a most frequent radiative decay rate of (9.00 ± 0.84)µs−1 and a quantum
efficiency of around 94%± 7%.

The high quantum efficiency for these quantum dots makes them excep-
tionally promising for plasmon quantum optics, since operating at 800 nm
optimizes the emission frequency to be at the intersection of low plasmon
loss, yet efficient silicon detection. The high quantum efficiency is surprising
given that the solvent/ligand exchange to aqueous condition, and operation
of quantum dots unprotected against oxygen as in our experiment usually
adversely affects the photophysical properties. Here we note that mea-
suring quantum efficiency via modulation of radiative lifetime selectively
measures the quantum efficiency of the ensemble of dots that radiate, i.e.,
that are not temporarily or permanently dark due to (photo)chemical pro-
cesses such as bleaching or blinking. This property should be contrasted
to absorption/emission brightness measurements that report quantum effi-
ciency as the fraction of absorbed photons that is converted into radiated
photons by an ensemble of nanocrystals. In such measurements a mixture
of a dark subensemble that absorbs but does not emit with a subensemble of
unit-efficiency emitters is indistinguishable from a homogeneous sample of
emitters with below-unit quantum efficiency. The conclusion from our mea-
surement is that those dots that are not (photo)chemically altered by an
oxygen-rich or aqueous environment, retain high quantum efficiency. A sim-
ilar conclusion that the quantum efficiency of those dots that radiate is much
higher than the ensemble efficiency obtained from a absorption/emission
brightness measurements was also reached by Leistikow [23], for CdSe quan-
tum dots emitting around 600 nm, with efficiencies between 66% and 89%.
Evidently, the CdSeTe/ZnS core shell dots emitting at 800 nm have a 6-fold
longer lifetime compared to CdSe quantum dots, consistent with observa-
tions by Vion et al. [35]. It is remarkable that the (bright) 800 nm dots
in our work manage to retain a very high quantum efficiency, despite this
6-fold longer lifetime [23].

An interesting alternative to the quantum dots, which while efficient,
have a slow and non-single exponential decay, could be DBT with an emis-
sion wavelength of ≈ 750 nm [36, 37]. DBT was recently reported to be
ultrastable and ultrabright as an emitter at room temperature [37]. In
contrast to Toninelli’s observations on single molecules, we observe a non-
single exponential decay trace for ensembles of DBT molecules. Therefore,
we apply the same analysis scheme as for the quantum dots: log-normally
distributed decay rates [41]. In this manner we find a most frequent intrin-
sic radiative decay rate of (0.05± 0.01) ns−1, a most frequent nonradiative
decay rate of (0.27 ± 0.01) ns−1 and a most frequent quantum efficiency of
16% ± 3%, when calculating with the radiative rate extrapolated to vac-
uum. Decay rate data and LDOS fit for DBT are shown in Fig. 2.6, right
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Figure 2.6: Fitted total decay rates γmf
tot vs distance to the mirror z (black

dots). White circles are fitted values to decay traces gathered right on top
of the mirror (next to the wedge, z ≈ 0) and plotted at a fixed height offset
from zero for good visibility. The lines indicate fitted relative LDOS ρiso for
isotropically oriented dipoles.

and Fig. 2.7, right. Since DBT is always used in anthracene, it is useful to
extract the quantum efficiency in bulk anthracene. Correcting for the index
of refraction of anthracene, we find a most frequent radiative decay rate of
(0.09± 0.02) ns−1 and a quantum efficiency around 24%± 4%.

The moderate to low quantum efficiency that our measurement retrieves
for DBT is surprising, since Toninelli et al. [37] have reported very high
count rates from single DBT molecules in anthracene at room temperature.
In saturation, they reported detecting photons at a rate of up to 0.5% of the
inverse lifetime. A quantum efficiency of around 25% is within, but at the
low end of, the range of values that are consistent with the observation of
Toninelli et al. [37], depending on the actual microscope collection efficiency
(state of the art: a few percent at 800 nm). We note that the observations
of Toninelli et al. [37] are strictly for individual molecules selected to be
ideal in the sense of being long lived, which likely selects molecules from
those 10% best incorporated in the anthracene matrix. While agreement
with LDOS theory for isotropic dipole orientations is good, we found poor
agreement of decay rate data to LDOS lineshapes for specific dipole orien-
tations, despite reports of preferential orientation for this system [37]. This
further highlights that we probe a heterogeneously distributed ensemble of
emitters, as opposed to selecting particular emitters as in single molecule
experiments [37]. From observation of the film quality, we note that it was
difficult to obtain homogeneous anthracene crystal films throughout the en-
tire wedge length, both on the wedge material as well as on clean cover
slips.

Tab. 2.1 summarizes the retrieved radiative and nonradiative decay con-
stants and respective quantum efficiencies for all three fluorophores.
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Figure 2.7: Total decay rates γmf
tot vs relative LDOS ρiso for isotropically

oriented dipoles. The lines indicate fits according to eq.2.1.

Invitrogen Fluo-
spheres F8801

Invitrogen Qdot
800 ITK car-
boxyl

DBT in AC

γmf
rad,host (0.15±0.01) ns−1 (9.00 ±

0.84)µs−1
(0.09±0.02) ns−1

γmf
nonrad (0.07±0.01) ns−1 (0.62 ±

0.66)µs−1
(0.27±0.01) ns−1

q.e.mf
host 71%± 6% 94%± 7% 24%± 4%

Table 2.1: Table of emitter properties retrieved from our Drexhage exper-
iments. As we assumed a log-normal distribution of decay rates for the
probed Invitrogen Qdot and DBT ensembles, the stated decay rates and
quantum efficiencies are the ones which are most-frequent (superscript ‘mf’).
Radiative decay rates and quantum efficiencies are quoted for the emitters
embedded in their respective host medium: PMMA (Fluospheres), S1813
(quantum dots), and anthracene (DBT).

2.7 Conclusions and outlook

In conclusion, we have demonstrated that gray-tone UV-lithography [26]
provides a facile method to create samples to calibrate ensembles of emit-
ters. The essential steps of this method are (1) gray-tone lithography to
create S1813 or PMMA polymer wedges on flat reflective substrates, such
as an Ag or Au mirror, (2) a homogeneous dispersal method to distribute
fluorophores on the wedge, and (3) lifetime measurements along the length
of the wedge to effectuate Drexhage experiments [19]. Previous methods
rather used controlled stepped etching into substrates that had the light
sources embedded in them, i.e., a material-specific technique suited for III-
V sources [24], or depended on the creation of a large but discrete set of
substrates with different deposition thicknesses of dielectric spacer layer [23].
Instead, our method allows to create a continuous wedge on a single sub-
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strate. Our method can thus be of large use for calibrating a range of
fluorophores for applications ranging from quantum optics, to organic and
inorganic light emitting diodes. We note that a large range of variations is
easily implemented. For instance, if surface chemistry means it is advanta-
geous to first deposit the fluorophores on glass, then create a wedge, and
then deposit a mirror, this is equally easily implemented. Beyond calibra-
tion of unknown emitters using a known LDOS, the same method is also of
large interest to do the reverse, i.e., to measure an unknown LDOS using a
calibrated emitter. Indeed, in plasmonics, metamaterials, and the new field
of metasurfaces, one frequently encounters questions that revolve around
the LDOS at controlled distance. Consider for instance the optimization of
light emitting diodes by plasmon particle array surfaces [6, 8, 9] or extraordi-
nary transmission gratings [44]. The question at which distance one should
optimally place the emitters to both enhance outcoupling, radiative rate,
and quantum efficiency is of key importance, yet difficult to address exper-
imentally. Likewise, the fundamental study of effective medium parameters
of metamaterials come to mind. Photonic metamaterials are artificial ma-
terials with periodic arrangements of subwavelength scatterers aimed at ar-
bitrary control of permittivity ε and permeability µ to realize perfect lenses
and invisibility cloaks via transformation optics [45, 46, 47, 48]. For a wide
range of metamaterials ε and µ have been reported [49, 50, 51], showing that
it is indeed possible to obtain, e.g., effectively negative µ. Effective medium
constants are commonly retrieved from far-field experiments. Since meta-
materials have intrinsic near-field benefits, it is interesting to test whether
these effective material parameters retrieved from far-field measures such
as transmittance and reflectance, are still valid in the near field. Using
our wedge technique one can continuously sweep source height through the
near field zone to examine the transition from resolving individual build-
ing blocks to resolving just the effective parameters [52, 53]. The polymer
wedges that we fabricate can indeed also be readily made on patterned sur-
faces, thereby opening the road to controllably vary the near-field spacing
and measure the metamaterial LDOS. This method is complementary to
elaborate near-field scanning methods [34]. The loss of lateral resolution
in our method compared to near-field scanning is offset by the ease of use
of the gray-tone lithography wedge technique, and the fact that in many
applications (e.g., plasmon enhanced LEDs) the only useful quantity would
anyway be of ensemble averaged nature.
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Chapter 3

Probing the electrodynamic
LDOS with magnetoelectric

point scatterers

In a scattering experiment, the induced dipole moments of a mag-
netoelectric point scatterer in response to driving fields are given
by its polarizability tensor α. Its linewidth will be dictated by
the local density of optical states (LDOS) at the scatterer’s posi-
tion. To retrieve the magnetoelectric cross-coupling components
of α for an archetypical magnetoelectric scatterer—a split ring
resonator—we study the frequency dependent extinction cross sec-
tion σext as a function of distance to an interface. Rather than
following a purely electric or purely magnetic LDOS, we find a de-
pendence which reflects the interplay of both dipole moments in
a ‘mixed’ magnetoelectric LDOS. For a strongly magnetoelectric
cross-coupled microwave scatterer, we compare analytical point
dipole with finite element method calculations.
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3 Probing the electrodynamic LDOS with magnetoelectric point scatterers

3.1 Introduction

While electricity and magnetism are inextricably connected in optics, the
interaction of light with matter is generally considered to be almost en-
tirely mediated by the photon’s electric field and the electric polarizabil-
ity of matter [1]. In the last decade, this paradigm has shifted with the
emergence of the field of metamaterials [2, 3, 4]. In this field of research,
complete control over the flow of light is promised by transformation optics
[5], provided one can engineer arbitrary AC (optical frequency ω) permit-
tivity ε(ω) and permeability µ(ω) of the medium it passes through. To
reach this goal, many workers nanostructure materials that intrinsically
have µ = 1 and ε 6= 1 to create effective media that spoof a magnetic
response µ. The workhorse object in the field is the so called split ring
resonator [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], a metallic ring of an overall
size of around λ/10 with a single cut that provides a magnetic response
through a circulating charge mode that corresponds to an LC-resonance.
At telecom frequencies, experiments indicate that split rings, and similar
metamaterial building blocks, have a strong magnetic polarizability of sev-
eral times their physical volume [10, 13, 14]. Therefore, it is possible to
induce a strong magnetic dipole in such scatterers upon driving with the
incident magnetic field of light. At the same time, metamaterial scatterers
often feature a strong electric, and a so-called ‘magnetoelectric’ polarizabil-
ity, whereby electric driving sets up a strong magnetic response and vice
versa [17].

Parallel to the development of metamaterials, interest recently emerged
in engineering magnetic fluorescent transitions [18, 19, 20, 21]. Just as the
response of materials to light is dominated in nature by ε, the fluorescence
of deeply subwavelength objects like atoms, quantum dots and molecules,
is usually entirely dominated by electric dipole transitions [22]. Thus, re-
searchers in the field of spontaneous emission control conventionally take
the local density of optical states (LDOS), that quantifies how many photon
states are available for an emitter to decay into, as strictly meaning the local
density of electric field vacuum fluctuations. This electric field LDOS not
only governs spontaneous emission, but is also commonly associated to, e.g.,
light generation by cathodoluminescence [23, 24], or the radiative damping
of plasmonic, i.e., purely electrically polarizable, scatterers as measured by
Buchler et al. [25]. While in context of spontaneous emission, the magnetic
LDOS, i.e., the local density of magnetic field vacuum fluctuations, usually
plays a negligible role, it was already recognized to be equally important as
the electric LDOS in determining the local energy density of the thermal
field as reviewed by Joulain et al. [26, 27, 28]. Very recently Taminiau et al.
[21] demonstrated that in rare earth elements magnetic transition dipoles
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3.2 Magnetic LDOS near metallic and dielectric interfaces

can be sufficiently strong for magnetic LDOS to be cleanly observed.

In this chapter, the two developments described above come together
in a single question and its answer. If a scatterer such as a split ring is
indeed a magnetic, or even a magnetoelectric scatterer of mixed electric-
magnetic character, which LDOS actually sets the radiative linewidth? To
formalize this question, we ask how radiation damping affects a split ring if
we abstract it to a point scatterer with a formally 6×6 polarizability [29, 7]
of the form (

p
m

)
=

(
αE αC
−αTC αH

)(
E
H

)
. (3.1)

Here, the electric response to electric fields and magnetic response to mag-
netic fields are given by the 3 × 3 tensors αE and αH , respectively. The
off-diagonal quantifies how strongly a magnetic dipole can be set up by
an electric field and vice versa. A polarizability such as Eq. (3.1) con-
tains very nontrivial features, such as optical activity, pseudochirality, and
handed radiation patterns, depending on the amount of magnetoelectric
cross-coupling αC [30, 17, 31]. In how far this polarizability truly describes
experiments is a matter of debate. Matching of far-field transmission spectra
of periodic arrangements of such metamaterial scatterers to a lattice model
for point dipoles is excellent [32] but one may wonder if the dipole picture
stands up to scrutiny in a near-field experiment. A particular near-field ex-
periment would be to test if a split ring responds to the LDOS, a quantity
specific to dipole transitions and scattering. In this chapter, we first answer
the question how a split ring’s radiative linewidth is modified by the LDOS,
and show that in addition to the electric and magnetic LDOS, a third quan-
tity emerges in the form of a magnetoelectric LDOS. Secondly, we show
that controlled variations in LDOS should allow one to measure the magni-
tude and test the conceptual validity of the point scatterer’s polarizability.
Finally, we benchmark our proposal to finite element calculations.

3.2 Magnetic LDOS near metallic and dielectric
interfaces

The effect of the LDOS on a point scatterer is well understood by first
considering a polarizable dipole in front of a perfect mirror. As first demon-
strated in a groundbreaking experiment by Buchler et al. [25], the scattering
resonance of a plasmon particle can be modified in width by mechanically
approaching a planar reflective substrate. This effect can be interpreted in
exactly the same manner as the explanation usually given to Drexhage’s
experiment on the radiative transition rate of a fluorophore near a mir-
ror [33, 34, 35, 36, 37]. The scattering resonance carries an electric dipole
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3 Probing the electrodynamic LDOS with magnetoelectric point scatterers

Figure 3.1: Split ring resonators with two distinct orientations are placed
above a perfect mirror. In the point dipole picture each split ring is described
by an electric dipole p along the split ring gap and a magnetic dipole m
pointing out of the split ring plane. The mirror images for both split ring
orientations are depicted together with their respective image dipoles p′ and
m′.

that hybridizes with its mirror image, which for a dipole moment parallel
(perpendicular) to a perfect mirror interface has reverse (identical) orienta-
tion according to image charge analysis (Fig. 3.1). The two electric dipoles
together correspond to either a subradiant or superradiant configuration,
depending on dipole orientation and distance. Consequently, the radiative
linewidth oscillates with distance to the mirror in proportion to the electric
LDOS. It is not immediately obvious that this method can be useful to also
probe linewidth changes in objects such as split rings, with both an electric
and magnetic dipole moment. While the rule for choosing the image dipole
orientation reverses in the magnetic case, compared to the electric case, one
should also consider that in a split ring the electric and magnetic dipole
are at 90◦ relative orientation. In most experiments, the magnetic dipole is
perpendicular to the substrate (labelled z-oriented from hereon), while the
electric dipole is in-plane (x-oriented). An image dipole analysis assuming
a perfect mirror predicts essentially no discernible difference between the
linewidth of an in-plane electric dipole and an out-of-plane magnetic dipole.
That electric and magnetic LDOS have essentially the same dependence for
the perpendicular dipole orientations in a mirror charge analysis was also
noted by Karaveli et al. [18]. Discerning magnetic and electric LDOS effects
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3.3 Green function

hence either implies that one rotates the scatterer (Fig. 3.1, right) to have
both electric and magnetic dipoles in plane, or requires that one finds an
LDOS with distinct electric and magnetic spatial dependence for the desired
polarizations.

3.3 Green function

To calculate LDOS, we require the 6 × 6 dyadic Green function near a
planar interface where source r′ and observation point r are in the same
halfspace.We separate the Green function in a free part (in absence of an
interface) and a reflected part

G(r, r′) = Gfree(r, r
′) + Greflected(r, r′)

with

Gfree(r, r
′) =

(
Ik2 +∇∇ −ik∇×
ik∇× Ik2 +∇∇

)
G(r, r′) (3.2)

where k = ωn/c is the wave number in the medium of index n that contains
both r and r′, c is the speed of light, and G(r, r′) is the scalar Green function.
The reflected part of the Green function reads

Greflected(r, r′) =
ik2

2

∫ ∞
0

k||dk||[j0(k||R)M0 +

j1(k||R)M1 + j2(k||R)M2]eikzz

(3.3)

where if r = (x, y, z) and r′ = (x′, y′, z′) we define cylindrical coordinates
through (R cosφ,R sinφ,Z) = (x − x′, y − y′, z + z′). With kz we denote√
k2 − ||k||||2, while jn(x) is the Bessel function of order n. The 6 × 6

matrices Mi contain the k|| dependent Fresnel reflection coefficients rs and
rp for s and p polarization. In detail:

M0 =



rs/kz − rpkz 0 0

0 rs/kz − rpkz 0
0 0 2rpk

2
||/kz

0 rp − rs 0
rs − rp 0 0

0 0 0
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0 rp − rs 0
rs − rp 0 0

0 0 0
rp/kz − rskz 0 0

0 rp/kz − rskz 0
0 0 2rsk

2
||/kz

 (3.4)

and

M1 = 2ik||



0 0 −rp cosφ

0 0 −rp sinφ
rp cosφ rp sinφ 0

0 0 rp/kz sinφ
0 0 −rp/kz cosφ

−rs/kz sinφ rs/kz cosφ 0

0 0 −rs/kz sinφ
0 0 rs/kz cosφ

rp/kz sinφ −rp/kz cosφ 0
0 0 −rs cosφ
0 0 −rs sinφ

rs cosφ rs sinφ 0

 (3.5)

and finally also

M2 =



(rs/kz + rpkz) cos 2φ (rs/kz + rpkz) sin 2φ 0

(rs/kz + rpkz) sin 2φ −(rs/kz + rpkz) cos 2φ 0
0 0 0

−(rs + rp) sin 2φ (rs + rp) cos 2φ 0
(rs + rp) cos 2φ (rs + rp) sin 2φ 0

0 0 0

(rs + rp) sin 2φ −(rs + rp) cos 2φ 0
−(rs + rp) cos 2φ −(rs + rp) sin 2φ 0

0 0 0
(rskz + rp/kz) cos 2φ (rskz + rp/kz) sin 2φ 0
(rskz + rp/kz) sin 2φ −(rskz + rp/kz) cos 2φ 0

0 0 0

 . (3.6)

Throughout we have used the units of Ref. [17].

To specify the calculation method for the LDOS at a position r above the
interface, we calculated the imaginary part of the Green function G(r, r),
as described in the textbook by Novotny and Hecht [22], using the com-
plex wave vector integration contour of Paulus et al. [38]. From hereon we
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3.4 Radiative linewidth near an interface

suppress the argument of the Green function. We generalize the calcula-
tion to encompass the electric LDOS ImGEE , the magnetic LDOS ImGHH

and the crossed Green dyadic ImGEH . Notably, the calculation of magnetic
and electric LDOS is comparable in methodology to the report by Joulain et
al. [27], with the distinction that we do not average over dipole orientation,
specify how to implement the full Green function G(r′, r) at arbitrary dis-
tinct source and detector coordinate, and include the magnetoelectric cross
term.

In Fig. 3.2, we plot the electric and magnetic LDOS for vacuum/Si
and vacuum/Ag interfaces for both parallel and perpendicular dipole ori-
entations with the aim of obtaining a large difference between the LDOS
for x-oriented electric dipoles and z-oriented magnetic dipoles. We take
ε = 12.11 for silicon and ε = −121.53 + 3.10i for silver, as tabulated for
the resonant wavelength of 1.5µm [39, 40], typical for 200 nm×200 nm split
rings, and plot LDOS normalized to the LDOS in vacuum (Fig. 3.2). For
the vacuum/Ag interface we observe that the magnetic z-oriented and elec-
tric x-oriented LDOS are quite similar in magnitude, except within 50 nm of
the interface. As anticipated from the perfect mirror intuition, a dielectric
interface is advantageous in providing a higher contrast of magnetic electric
LDOS contrast compared to a metal. Continuity conditions on E‖ and H‖
ensure that the electric and magnetic LDOS are highly distinct. The range
over which a large distinction remains away from the interface extends well
into the regime beyond the first oscillations in LDOS at 200 nm, as shown
in Fig. 3.2. Therefore, scanning the separation distance between split ring
and interface allows to independently vary the electric and magnetic LDOS
over a substantial range.

3.4 Radiative linewidth near an interface

Now we proceed to examine the radiative linewidth of a point scatterer
described by a magnetoelectric polarizability, as proposed by Sersic et al.
[17], which is based on the static polarizability introduced by Garcia-Garcia
et al. [7] generalized to include radiation damping. The induced dipole
moments of a scatterer in vacuum are entirely set by its full 6 × 6 dy-
namic polarizability tensor αdyn

free that is of the form Eq. (3.1). In a qua-
sistatic description of the scatterer, one starts from an LC circuit to obtain
a static polarizability αstat

free that consists of a Lorentzian frequency depen-

dence L(ω) =
ω2
0V

ω2
0−ω2−iωγ . (resonant at the LC frequency ω0 , damping rate

γ set by the Ohmic resistance R) multiplying a frequency independent 2×2
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Figure 3.2: Relative electric (x-oriented dipole p, dark gray) and magnetic
(z-oriented dipole m, light gray) LDOS for distance d from a vacuum/Ag
(dashed lines) and vacuum/Si (solid lines) interface at a vacuum wavelength
of 1.5µm. Especially at close distances d < 0.2µm, a vacuum/Si interface
provides a higher LDOS contrast of x-oriented electric dipoles and z-oriented
magnetic dipoles than a vacuum/Ag interface.

matrix

αstat
free = L(ω)

(
ηE,xx iηC,xz
−iηC,zx ηH,zz

)
(3.7)

where ηE , ηH , ηC are real parameters simply set by geometry. For an ideal,
infinitely thin SRR all other elements of the 6 × 6 polarizability are zero.
To end up with an energy conserving scatterer, a radiation damping term
must be added:

αdyn
free

−1
= αstat

free
−1 − iImG. (3.8)

where G is shorthand for the 6×6 Green function G(r, r′) evaluated with
both r and r′ equal to the position of the scatterer. In vacuum the cor-
rection amounts to the usual radiation damping term iImG = 2/3ik3I,
where k = ω/c, and I the identity matrix, that is standard in the field
of plasmonics. In front of the interface, however, the Green function is
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3.4 Radiative linewidth near an interface

modified according to Fig. 3.2. For the effectively 2×2 polarizability of the
split ring, the relevant ImG tensor is also only 2 × 2, containing on the
diagonal only the electric LDOS for x-oriented dipoles ImGEE,xx, and the
magnetic LDOS for z-oriented dipoles ImGHH,zz, while the off-diagonal con-
tains ImGEH,xz. The off-diagonal term, but at distinct spatial coordinates,
i.e., ImGEH(r, r′), was already recognized to be relevant by Agarwal [26]
in the context of fluctuating electromagnetic fields. In that context, the
term quantifies coherence in blackbody fluctuations, i.e., as cross-spectral
correlation function between electric field at position r and magnetic field
measured at position r′. In the thermal energy density near simple inter-
faces as treated by Joulain et al. [27], this cross term does not appear, owing
to the fact that it does not contribute to thermal energy density if the fluctu-
ating electric and magnetic currents from which the thermal energy density
arises are independent. In this case only the trace of the Green function
enters, i.e., the sum of the dipole-orientation averaged electric and magnetic
LDOS. However, as soon as bi-(an)isotropy (evident as optical activity) is
at play this assumption breaks down and the ImGEH term will enter in
transition rates of emitters, radiative linewidths of scatterers and thermal
energy density. Indeed, bianisotropy is the hallmark of the LC model for
a split ring, in which electric and magnetic dipole derive from the same
charge motion, at fixed quarter wave phase difference. We refer to Ref. [41]
for a recent treatment of fluctuational electrodynamics in chiral bi-isotropic
media.

We obtain the radiative linewidth as one would measure it in an extinc-
tion experiment, by calculating the extinction cross section in the following
manner. The scatterer is driven by a plane wave impinging from above,
plus its Fresnel reflection due to the interface. We take the incident beam
as normal to the interface with the electric field polarized along the gap.
We calculate the work done per unit cycle on the scatterer via

W =

〈
ReE · Re

dp

dt
+ ReH · Re

dm

dt

〉
. (3.9)

Plots of the work show an oscillatory dependence with distance of the split
ring to the interface, due to two effects. Firstly, the driving field forms
a standing wave. Secondly, the polarizability varies with the oscillating
LDOS. To obtain a true extinction cross section we divide out the local
field strength of the driving

σext =
2Z

|E|2
W, (3.10)

with Z the impedance of the host medium, in this case vacuum. As Fig. 3.3(a,
inset) shows, the retrieved extinction cross section is of Lorentzian spectral
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3 Probing the electrodynamic LDOS with magnetoelectric point scatterers

shape, and varies in width and central frequency as the scatterer is ap-
proached to the interface. We extract the resonance width, which is the
sum of the radiative and absorptive damping rate of the scatterer.

As a benchmark, Fig. 3.3 shows the linewidth of the extinction cross
section of a purely electric scattering sphere, i.e., taking ηE = 1, ηH = 0 and
ηC = 0, resonant at 1.5 µm wavelength, with Ohmic damping rate γ = 8.3×
1013 s−1 and a particle volume of V = 100 nm3 . As the scatterer approaches
the interface, its extinction linewidth oscillates, and almost doubles when
the scatterer is close to the interface. We find that the linewidth Γ follows
the dependence Γ = Γabs +Γrad×LDOSEE,xx. Analogous to the calibration
of quantum efficiencies of fluorophores [35, 36, 37], this dependence allows to
extract the radiative and Ohmic damping rate of the particle, and thereby
also the LDOS dependent albedo of the scatterer. For the sphere studied
here, the albedo in absence of the interface is a = 0.41. This benchmark
calculation shows that our model reproduces the experimental observation
by Buchler et al.[25]. Similarly, a calculation for a purely magnetic scatterer
verifies that the damping rate of a magnetic scatterer traces the magnetic
LDOS [calculation not shown].

In Fig. 3.3, as a measure for Γ, we examine the extinction linewidth for
objects that have both an electric and a magnetic character. For demonstra-
tion purposes, we take the electric and magnetic polarizability equally large
at ηE = ηH = 1. If no cross-coupling, i.e., no bianisotropy is present in the
object (ηC = 0), the extinction linewidth simply traces the electric LDOS,
provided excitation is normal to the sample so that the magnetic dipole is
not directly driven at all [curve not shown]. As cross-coupling is introduced,
and increased to its maximum value, the extinction linewidth shifts away
from the purely electric LDOS, and towards the magnetic LDOS curves. At
maximum cross-coupling (ηC = 1), the extinction linewidth exactly traces
the mean of electric and magnetic LDOS consistent with the fact that the
induced electric and magnetic dipole are equal in size. Generally, for this
geometry and excitation, the averaging is weighted by the magnitudes of the
dipole moments, i.e., |p|2 and |m|2. We conclude that an experiment such
as performed by Buchler et al.[25], but applied to a split ring can indeed
provide a quantitative test of the magnetic and bianisotropic dipole response
of a single object, and a calibration of the magnitude of polarizability tensor
elements.

3.5 Magnetoelectric LDOS

That a weighted average of electric and magnetic LDOS is obtained for a
scatterer with both electric and magnetic dipole moment, may seem a likely
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Figure 3.3: (a) Analytical calculation of the FWHM-linewidth of the ex-
tinction cross section normalized to driving field intensity as a function of
distance d to a vacuum/Si interface for a purely electric (ηE = 1, ηH =
ηC = 0) sphere resonant at 1.5 µm wavelength, with Ohmic damping rate
γ = 8.3 · 1013 s−1 and a particle volume of V = 100 nm3 (dots) in com-
parison to the purely electric LDOS lineshape for this interface. (b) The
dots represent the same quantitity as before, but for a realistic split ring
resonator (ηH = 0.7, ηE = 0.3, ηC = 0.4)[14] that is oriented with the
SRR plane parallel to the surface. Electric, magnetic and magnetoelectric
LDOS are shown as lines. (c) Maximally cross-coupled split ring resonator
(ηE = ηH = ηC = 1) parallel to and with the gap pointing towards and
pointing away from the interface, respectively.
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general description of the physics describing radiative linewidths. However,
we note that in a split ring the electric and magnetic dipole are coherently
coupled through the magnetoelectric coupling, and hence may also probe
the off-diagonal term in ImG. Moreover, in a split ring the electric and
magnetic response have a fixed phase relation, necessarily being a quarter
cycle out of phase since the current inducing m and the charge separation
inducing p are related by charge conservation. This coherence for instance
results in a strongly handed response of split rings under certain viewing
angles [17, 31]. We predict that the coherence also affects the strength of
interaction between the split ring and its mirror image in the substrate,
i.e., the radiative linewidth. In the example we examined in Fig. 3.3, this
effect was fortuitously obscured due to the fact that the cross term GEH,xz
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by symmetry happens to be exactly zero. Microscopically, the radiation
emitted by an x-oriented electric dipole in front of a planar surface does
not cause any magnetic field along z to be reflected to the split ring to
provide back action. If we rotate the split ring to stand with arms up, or
point with arms down, cross-coupling becomes important as GEH,xy 6= 0.
Microscopically, this indicates that an x-oriented electric dipole will receive
a y-oriented magnetic field as parts of its reflection in the interface, which
in turn will drive the object if it has a y-oriented magnetic polarizability.
In Fig. 3.3 we report the radiative linewidth for a point scatterer oriented
to exactly represent this case, i.e., that of a split ring that stands up with
its legs normal to the plane. The radiative linewidth in this case does not
trace a weighted combination of magnetic and electric LDOS. It will depend
on GEH,xy instead. Remarkably, this dependence is different for the split
ring pointing upwards to the split ring pointing downwards although the
object has the same electric and magnetic polarizability. A recent paper
by Andersen et al. [42] reports a similar effect, but for the radiative rate
of self-assembled III-V quantum dots. Depending on the orientation of the
trapezoidally shaped dots relative to a plasmonic interface their decay rate
is different, although the transition electric dipole moment strength and
orientation is invariant. In the quantum dot case, this difference is due to
the fact that the highly extended wave functions also introduce an electric
quadrupole character to the transition. While quadrupole effects are lim-
ited to strong field gradients and hence short distances (< 100 nm) from
the interface, for the split rings we expect the orientation asymmetry to
persist over longer distances as it is set by dipolar contributions only. As
in the experiment reported by Andersen, the key to the asymmetry is that
while the electric and magnetic polarizability are invariant upon reversal of
the split ring, coherence between the electric and magnetic contributions is
important. Indeed, when reversing the split ring orientation, the only differ-
ence is the sign of the cross-coupling polarizability, i.e., whether the quarter
cycle phase difference between magnetic and electric response is a lag or an
advance. Thus the fact that radiation reaction is a coherent effect means
that the linewidth provides a direct way to measure phase relations be-
tween polarizabilities, and not only absolute values. For instance, one could
measure if the quarter wave phase difference between αE ,αH on the one
hand and αC on the other hand, that is generally surmised from quasistatic
ciruit theory for split rings, in fact carries over to real scatterers that are
not negligibly small compared to the wavelength and that are not composed
of ideal conductors. To our knowledge, this is the first proposition that a
new property of the structure that can potentially be engineered indepen-
dently of the well-known electric LDOS and the recently evidenced magnetic
LDOS, may enter radiative linewidth modifications for dipole objects. We
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term this a magnetoelectric LDOS effect. Generally, as soon as multiple
multipole moments are relevant, not only the separate multipole LDOS’s,
but also coherences between the different terms will be key to control the
overall radiative rates and linewidths for emitters and scatterers.

3.6 Finite element modelling example

Our predictions for the effect of the magnetic and magnetoelectric LDOS on
the linewidth of metamaterial scatterers are all subject to the assumption
that the scatterers can actually be described in a point dipole picture. An
important question that is yet to be tested in experiment and simulations
is if this assumption holds at all for metamaterial scatterers, and if so for
what classes of optical experiments. Therefore, we perform a numerical ex-
periment and compare the radiative linewidth found from a finite element
method calculation with the point dipole predictions. To optimally discrim-
inate for magnetic LDOS effects, we choose an omega-shaped particle that
earlier surface integral equation simulations [31, 43] predict to have a very
large magnetic and magnetoelectric response. In Ref. [31], the polarizabil-
ity was quantitatively retrieved by projecting calculated scattered fields for
the scatterer held in free space on vector spherical harmonics. We have
performed full-field finite element calculations of the omega-shaped scat-
terer, which is resonant in the microwave regime, again above a high-index
substrate (n = 3.5). The scatterer geometry is that of a 60 nm thin flat
loop of inner radius 0.74 µm and outer radius 1.19 µm radius. Before the
loop closes, the arms smoothly curve to be parallel over a length of 390 nm,
leaving a gap of 520 nm across. As material we use a Drude model for
gold (ε(ω) = εb − ω2

p/(ω(ω + iγ)) with εb = 9.54, ωp = 2.148 · 1015 s−1

and γ = 0.0092ωp). We employ the commercial COMSOL 3D FEM solver
with elements of quadratic order and a grid finesse down to 5 nm. Per-
fectly matched layers enclose a cylindrical simulation domain (cylinder axis
normal to the substrate) that extends 10 µm around the scatterer. We per-
form a total field-scattered field simulation where, as in the point dipole
model, the scatterer is excited by the superposition of a plane wave and its
Fresnel reflection. We extract extinct power as the sum of scattered power
(obtained from a near-field flux integral over a surface enclosing the parti-
cle) and absorbed power, and normalize extinct power to the local driving
strength. This procedure was tested on Mie scatterers to give cross sections
to better than 1%.

Extinction spectra show a Lorentzian linewidth at all separations, with
a varying width and a slightly varying center frequency around a wavelength
of 13.5 µm. The center frequency varies because Eq. 3.8 in its most gen-
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eral form also contains ReG, corresponding to a real frequency shift due to
the hybridization of the scatterer with its mirror image. We focus on the
linewidth, plotted in Fig. 3.4. Evidently, the linewidth shows oscillations in-
creasing in amplitude when approaching the interface, and is twofold larger
close to the interface than away from it. To move beyond this qualitative re-
semblance with the point dipole prediction, we also plot the linewidth found
from point dipole calculations. No adjustable parameters are used for the
comparison, as we insert the polarizability values extracted from SIE cal-
culations in Ref. [31], which are characterized through |αH/αE | = 0.3511
and |αC/αE | = 0.596. We note that the object has an on-resonance electric
polarizability |αE | = 3.9 µm3, approximately 30 times the particle volume.
The point dipole model is seen to satisfactorily agree with the linewidth in
simulations. Thereby, we establish that the point dipole approach not only
describes far-field measurements on arrays of split rings, but is also directly
applicable for split rings in the near-field of structures that modify LDOS.
We propose that the residual deviations contain interesting physics to pur-
sue. Firstly, whether a metamaterial scatterer actually traces the magnetic
and magnetoelectric LDOS can be seen as a fundamental test in the dis-
cussion in how far a spoof magnetic scatterer is actually a true magnetic
scatterer. Secondly, if one accepts that a scatterer that largely radiates ac-
cording to the magnetic and magnetoelectric LDOS is a bona fide magnetic
dipole, one can assess on basis of the residual deviations between simulation
and analytical model in how far multipolar corrections are important.

3.7 Conclusion

To conclude we have examined the dependence of the radiative linewith
of split ring scatterers on their distance to an interface that modifies the
electric LDOS, the magnetic LDOS and a new quantity that we term mag-
netoelectric LDOS. We propose that this linewidth, i.e., the backaction of
the field radiated by the scatterer on itself, can serve as a calibration probe
of the complex polarizability tensor and as a fundamental test of the pro-
posed dipolar nature of metamaterial scatterers. Of particular note is the
concept of magnetoelectric LDOS, whereby the electric dipole of an object
radiates magnetic field that back-acts on the magnetic dipole. It is an inter-
esting question to explore whether such a magnetoelectric LDOS will also
affect quantum mechanical transitions. While in the recent breakthroughs
by Taminiau et al. and Karaveli et al. magnetic-only transitions in rare
earth ions are enhanced [18, 19, 21], it is an open question if transitions
with a clear simultaneous electric and magnetic character can be found.
Conversely, we propose that coupling single emitters with a purely electric
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response to magnetoelectric scatterers may allow to spoof quantum me-
chanical transitions with a magnetoelectric character, as antennas tend to
imbue their polarization characteristics on emitters. Such emitters would
likely have interesting chiral properties, since magnetoelectric cross-coupling
implies optical activity [44, 45].
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Chapter 4

Diffractive stacks of
metamaterial lattices

Metasurfaces and metamaterials promise arbitrary rerouting of
light using 2D planar arrangements of electric and magnetic scat-
terers, respectively 3D stacks built out of such 2D planes. An
important problem is how to self-consistently model the response
of these systems in a manner that retains dipole intuition, yet does
full justice to the self-consistent multiple scattering via near-field
and far-field retarded interactions. We set up such a general model
for metamaterial lattices of complex 2D unit cell of poly-atomic ba-
sis as well as allowing for stacking in a third dimension. In particu-
lar, each scatterer is quantified by a magneto-electric polarizability
tensor and Ewald lattice summation deals with all near-field and
long-range retarded electric, magnetic and magneto-electric cou-
plings selfconsistently. We show in theory and experiment that
grating diffraction orders of dilute split ring lattices with complex
unit cell show a background-free signature of magnetic dipole re-
sponse. For denser lattices experiment and theory show that com-
plex unit cells can reduce the apparent effect of bi-anisotropy, i.e.,
the strong oblique-incidence handed response that was reported
for simple split ring lattices. Finally, the method is applied to cal-
culate transmission of finite stacks of lattices. Thereby our simple
methodology allows to trace the emergence of effective material
constants when building a 3D metamaterial layer-by-layer, as well
as facilitating the design of metasurfaces.
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4.1 Introduction

In the field of metamaterials, there is a growing interest in metasurfaces [1,
2]: two-dimensional (2D) arrangements of subwavelength scatterers which
combine a strong electric and magnetic response to electromagnetic fields,
both of which may contribute equally to scattering [1, 3, 4]. These lat-
tice arrangements offer unprecedented level of control over the reflection,
transmission, and refraction of light as seen in state-of-the-art phase mask
[5] and phased array antenna designs [6, 7]. While metasurfaces are typi-
cally 2D sheets of nonidentical scatterers forming a complex repeated unit
cell, metamaterials, in turn, can be conceptually viewed as a 3D stack of
2D lattices of identical meta-atoms [8, 9]. Exactly how the collective re-
sponse of a metasurface or metamaterial comes about is a function firstly of
the scattering properties of individual building blocks, and secondly how a
multitude of possibly non-identical building blocks are arranged to cover a
surface [10, 11]. Exactly how the magnetic and electric scattering of single
building blocks comes about has been a topic of intense discussion, center-
ing mainly on electric dipole models for plasmonics, and LC-circuit models
[9, 12, 13, 14, 15] for metamaterial atoms such as split rings. LC-circuit
intuition directly implies electric and magnetic dipole-dipole interactions,
as well as ‘bi-anisotropic’ magnetoelectric cross-coupling terms [16, 15, 14].
Given this single building block understanding, an important question cur-
rently faced by designers of metasurfaces and metamaterials is how to deal
with complex 2D lattices and lattice stacks, while accounting for both elec-
tric and magnetic interactions between such building blocks.

In this chapter, we set up an analytical theory based on Ewald lattice
summation [17] that can predict the response of diffractive as well as non-
diffractive 2D periodic lattices with complex unit cells, as well as stacks
of such gratings that form a 3D structure, taking as input the magneto-
electric polarization tensors of the magneto-electric scatterers that form the
unit cell. In order to test this model, we experimentally verify the optical
response of 2D lattices of split rings, since for split rings the single-object
polarizability is well known [18, 14, 19, 20]. In particular we examine both
dilute and dense lattices of two symmetries, i.e., square lattices in which all
SRRs are arranged with their slits pointing in the same direction (A-lattice,
Fig. 4.1, left), respecively, in which slit orientations (B-lattice) alternate.
This choice is motivated by experimental studies on low-symmetry planar
arrays initiated by Decker et al. [21]. The dilute lattices are designed to
show grating diffraction orders which we examine for magnetic signatures.
In particular we predict and observe additional diffraction orders for the
B-lattice as compared to the A-lattice that directly reflect purely mag-
netic dipole contributions. As a second test we examine the transmission
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of dense, i.e., non-diffractive, lattices, in particular focusing on oblique-
incidence circularly polarized input and detection. This geometry provides
a measure of bi-anisotropy or ‘pseudochirality’. We observe cancellation
of the bi-anisotropy present in each building for the collective response of
the B-lattice. Finally we demonstrate that our calculation methodology has
large potential for resolving the fundamental question how effective medium
parameters emerge from the stacking of building blocks into 3D slabs, by
demonstrating that one can self-consistently calculate reflection and trans-
mission amplitudes that can be used as input for retrieval algorithms. The
unique property of our approach is that it is very simple, allows arbitrary
magneto-electric response per building block, yet accounts for all the com-
plex self-consistent retarded interactions both in the plane of periodicity,
and transverse to the stacked planes, that define the debate on how to deal
with spatial dispersion and bi-anisotropy in the resulting effective medium.

This chapter is structured as follows. Sections 4.2 and 4.3 describe
the theory. Section 4.4 reports grating diffraction calculations for the two
lattice symmetries. Section 4.5 covers the Fourier microscopy setup that
was utilized to gather diffraction patterns discussed in section 4.6. Angle-
resolved transmission experiments conducted on non-diffractive lattices are
described and compared to analytical point dipole (lattice-sum) calculations
in section 4.7. In section 4.8, we apply our point dipole model to calculate
transmission and reflection for finite stacks of 2D metamaterial layers.

4.2 Starting point: 2D lattice-sum theory

The main point of this chapter is to take the point dipole model reported
in Ref. [14], and show how to extend it to arbitrary stacks and supercells
of 2D lattices. In a point scattering model [22], the induced electric and
magnetic point dipole moments p and m in response to an incident electric
and magnetic field Ein andHin are set by the point scatterer’s polarizability
α according to (

p
m

)
= α

(
Ein

Hin

)
. (4.1)

For completeness, we briefly recapitulate how one can deal with an arrange-
ment of such scatterers in a simple 2D lattice, defined by lattice vectors
Rmn = ma1 + na2 with integer m and n and real space basis vectors a1,2.
The response of a point scatterer at position Rmn is self-consistently set by
the incident field, plus the field of all other dipoles in the lattice according
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Figure 4.1: Non-primitive unit cell with equal (A) and alternating (B) split
ring orientation. An x-polarized electric driving field sets an electric dipole
moment p for each individual split ring. Depending on the orientation of
the respective split ring, a magnetic dipole momentm will be acquired. The
electric dipole orientation will be the same for unit cells A and B, namely
in +x-direction. However, the magnetic dipoles, while being uniformly +z-
oriented for unit cell A, will be alternating in +z and −z orientation for
unit cell B.

to (
pmn
mmn

)
= α

[(
Ein(Rmn)
Hin(Rmn)

)

+
∑

m′ 6=m,n′ 6=n
G0(Rmn −Rm′n′)

(
pm′n′

mm′n′

) .
(4.2)

If we take a plane wave incident with parallel wave vector k|| and using
translation invariance of the lattice, we can substitute a Bloch wave form
(pmn,mmn)T = eik||·Rmn(p00,m00)T to obtain(

p00

m00

)
= [α−1 − G 6=(k||, 0)]−1

(
Ein(R00)
Hin(R00)

)
(4.3)

Here, G 6=(k||, 0) is a summation of the free space 6×6 dyadic Green function
G0 over all positions on the 2D periodic real space lattice barring the origin:

G 6=(k||, r) =
∑
m,n 6=0

G0(Rmn − r)eik||·Rmn . (4.4)
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We will refer to the summation without exclusion of m = n = 0 as G(k||, r).
The necessary steps for 6 × 6 dyadic Green functions are easily derived
from the known scalar Green function lattice sum. We refer to the Ap-
pendix 4.A of this chapter and our recent report on the optical properies of
two-dimensional magnetoelectric point scattering lattices [23] for implemen-
tation details. As a subtle point we note that throughout this work Rmn

represent reciprocal lattice vectors strictly in the z = 0 plane, while the ‘ob-
servation point’ r = (x, y, z) = (r||, z) at which the lattice sum is evaluated
is anywhere in 3D, i.e., at any z. Since each G0(Rmn − r) is essentially a
spherical wave, the lattice sum contains retardation both in the plane and
perpendicular to the plane, even though only a phase factor depending on
k|| is explicitly visible in Eq. (4.4).

Once one has obtained the induced dipole moments given the incident
field, it is straightforward to calculate the near-field distribution at any
point inside, or outside the lattice, i.e., at any r.(

E(r)
H(r)

)
=

(
Ein

Hin

)
eik·r + G(k||, r)

(
p00

m00

)
(4.5)

Similarly, one can calculate the intensity and polarization of the diffracted,
reflected and transmitted waves. Using the completeness relation of the
lattice, one retrieves diffracted orders in the far-field of the form [17](

E(r)
H(r)

)
=

∑
g,|kg|≤k

(
Eg

Hg

)
eik

g·r, (4.6)

where the diffracted wave vectors are

kg = (k|| + g,±
√
k2 − |k|| + g|2), (4.7)

which can be identified with polar diffraction angles θ, φ through kg =
k(cosφ sin θ, sinφ sin θ, cos θ). Note that the diffracted orders are simply set
by parallel wave vector conservation modulo addition of any vector g from
the reciprocal lattice. The fields associated with each order are(

Eg

Hg

)
=

2πki

A cos θ
M(θ, φ)

(
p0

m0

)
. (4.8)

Here, A is the unit cell area. The orientation matrix M(θ, φ) simply con-
tains the radiation pattern of a single dipole. In other words, the radiation
pattern from a grating is simply that of the individual dipole, multiplied by
a comb of δ-functions at exactly the diffracted grating orders. Mathemati-
cally, the orientation matrix M(θ, φ) reads

M =

(
D O
−O D

)
(4.9)
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where

D =

1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2

 (4.10)

and

O =

 0 −z y
z 0 −x
−y x 0

 (4.11)

using as short hand x = cosφ sin θ, y = sinφ sin θ and z = cos θ. Since these
are only scattered fields, one still needs to add the incident field to obtain
the zero-order transmitted beam.

4.3 Complex base and stacks of 2D layers

Having defined our starting point, we now turn to setting up a theory that
can deal with almost arbitrary stacks of 2D lattices. To define the class
of problems for which our approach is applicable more clearly, we outline
how to deal with an arbitrarily large but finite set of N lattices where each
lattice has the same reciprocal lattice vectors, but can have its real space
base point arbitrarily shifted both in the plane of periodicity, and transverse
to it. Furthermore each lattice can contain a different type of scatterer.
Thereby, our theory as outlined in this section can directly deal with a rich
variety of problems. These include the physics of planar structures with
complicated supercells of many different scatterers, such as metasurfaces,
or stacks of metamaterial planes that form a 3D structure.

Suppose we have m = 1 . . . N lattices of the same symmetry, each shifted
by an arbitrary spatial offset rm0,0 sideways, and zm perpendicular to the
plane, and potentially each containing a different type of scatterer of polar-
izability αm. As an example, lattice type B (Fig. 4.1, right) can be repre-
sented by two lattices (one for each split ring orientation) with relative offset
of
√

2/2 in the (x, y)-plane. Since under our assumption Bloch’s theorem
still holds, the problem of N infinite periodic lattices reduces to finding just
theN dipole moments on the central lattice sites in each lattice, i.e., the sites
(rm0 , z

m). Indeed, Bloch’s theorem asserts that at any other lattice site in the
same layer m, the moment is simply pm(rm0 + R, zm) = eik||·Rpm(rm0 , z

m).
The N independent dipole moments are once again set by a self-consistent
equation. For the dipole moment at (rm0 , z

m) in layer m, the self-consistent
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equation reads(
pm

mm

)
= αm

[(
Ein

Hin

)
eik·(r

m
0 ,z

m) + G 6=(k||, 0)

(
pm

mm

)

+
N∑

m′=1,m′ 6=m
G(k||, (r

m′
0 − rm0 , zm′ − zm))

(
pm

′

mm′

) .
(4.12)

Here, the interpretation is that any dipole is driven by the external incident
field (first term on the right hand side), by all the dipoles except itself in
the same layer (second term on the right hand side that also occurs in Eq.
(4.2)), and moreover by all the dipoles in all the other layers. In this third
term a full lattice summation, including the (0, 0) term, occurs. It should
be noted that in the first term, i.e., the direct driving, the retardation of
the driving across the structure is directly explicit both transverse to the
plane, and in the plane, as the term k · (rm0 , z) explicitly contains the full
3D wave vector and 3D lattice base point coordinate. What is less obvious
upon inspection is that the third term, i.e., G(k||, (r

m′
0 − rm0 , zm′ − zm))

also accounts both for retardation in plane (evident through the explicit
argument k||) and out of the plane, i.e., for phase increments across the
distances zm′ − zm between planes. Note from the definition Eq. (4.4) that
this retardation is in fact accounted for in the lattice sum not through the
explicit Bloch phase term eik||·Rmn but through the fact that one coherently
sums spherical waves G0 at given overall k. In the actual implementation
of the lattice sum (see Appendix), the retardation transverse to each plane
appears explicitly (cf. Eq. (4.18) in particular) as the different real and
evanescent diffracted orders kg that couple lattices each involve different

phase slips kgz |zm′ − zm| with transverse wave vector kgz =
√
k2 − |k|| + g|2.

Returning to the overall solution strategy, we note that the summation
in the new, third term of Eq. (4.12) is no more difficult to deal with than
the original lattice sum in Eq. (4.3) and Eq. (4.4). In terms of its overall
structure, Eq.(4.12) is almost identical to a usual multiple scattering prob-
lem for just N scatterers, and is a simple set of 6N linear equations for 6N
unknowns once one has calculated the required lattice summations that cou-
ple the lattices. However, while usually the coupling matrix would simply
have α−1

m on the diagonal, now the block diagonal reads α−1
m − G 6=(k||, 0).

In other words, the polarizability of each scatterer is renormalized by the
lattice sum of the layer in which it is embedded. The off-diagonal terms for
a standard multiple scattering problem would simply be the Green function
G(rm, rm′) that quantifies the dipole field at rm due to a dipole at rm′ .
Here, the off diagonal terms are given by the lattice-summed Green func-
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tion G(k||, r
m′
0 − rm0 , zm′ − zm) that quantifies the field strength exerted by

lattice m′ on lattice m.
Once the dipole moments in each layer are retrieved, one can once again

find the far-field intensity in each diffracted order, taking into account the
fact that different layers are shifted to have the base point away from the
origin, giving rise to a phase shift. The fields associated with each order are(

Eg

Hg

)
=

2πki

A cos θ
M(θ, φ)

N∑
m=1

(
pm

mm

)
e−ik

g·(rm0 ,zm). (4.13)

While exactly the same diffracted orders appear as for a single lattice, their
amplitude is now a coherent summation of the diffracted fields from each
layer separately. The coherence involves both the phase in (pm,mm) that
arises from the selfconsistent interactions, and an additional phase slip owing
to the displacement (rm0 , z

m).

4.4 Diffractive calculation

Our calculation method can be applied to 2D lattices that have more than
one scatterer per unit cell (complex basis for the lattice) [11, 10, 1], as well
as stacks of such 2D lattices that form a 3D structure. In this section we
show calculations for 2D lattices with more than one scatterer per unit cell.
As a first demonstration, we have calculated grating diffraction efficiencies
of comparatively dilute split ring lattices for two types of lattices. Lattice
A is a simple square lattice (periodicity 1500 nm) while lattice B has every
second split ring rotated by 180 degrees in checkerboard geometry [10].
These two lattices have identical number of scatterers per unit area, but
have differently sized unit cells. In particular, the B lattice has a larger
unit cell, thereby giving rise to extra allowed diffraction orders. These
orders have nonzero amplitude only when the scatterers have an induced
magnetic dipole, and can hence be viewed as direct and background-free
quantification of the magnetic SRR response. As split ring polarizability we
include radiation damping according to

α−1 = α−1
LC − i

2

3
k3I, (4.14)

in the static LC-circuit polarizability

αLC =
ω2

0V

ω2
0 − ω2 − iωγ


ηE 0 ... 0 iηC
0 0
...

. . .
...

0 0
−iηC 0 ... 0 ηH

 (4.15)
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exactly as argued in Ref. [14]. This formulation ensures a scattering theory
that satisfies reciprocity and the optical theorem in limit of no Ohmic damp-
ing, while γ introduces absorption loss. We assume the LC resonance to be
described by a resonance frequency ω0 = 1.26 × 1015 s−1 (corresponding
free space wavelength λ = 1500 nm), damping rate γ equal to the Ohmic
damping rate of gold (γ = 1.25× 1014 s−1) and parameters {ηE , ηH , ηC} =
{0.7, 0.3, 0.4}, where V is the split ring volume (150×150×30 nm3). As en-
vironment we assume a homogeneous medium of index n = 1.0. Figure 4.2
reports the calculated zero order transmission coefficient, and the efficien-
cies for transmitted grating orders, assuming normal incidence, and plot-
ting only the intensity co-polarized with the incident beam. A polarization
analysis will be presented below in the framework of our experiments. The
zero-order transmission shows a broad minimum punctuated by a narrow
grating anomaly around 6700 cm−1 (wavelength equal to the grating pitch).
The transmission depth is around 20%, commensurate with the very dilute
nature of the grating and the per split-ring cross section [18] of around
0.3µm2. The grating anomaly is coincident with the emergence of the first
order grating diffraction at grazing exit angle. The first order grating diffrac-
tions reach efficiency values of around 0.5 to 1% at λ−1 = 7100 cm−1. For
a simple lattice of electric dipoles polarized along the x-axis, one would
expect the highest grating efficiency to occur for the (0,±1) order, owing
to the fact that the single dipole emission pattern is peaked away from the
dipole orientation. For instance, for a frequency of λ−1 = 7100 cm−1, the
grating orders appear at circa 80◦ from the plane normal. For this an-
gle, the expected intensity ratio assuming purely electric dipole scatterer is
sin2 θ : cos2 θ = 8 : 1 for the (0,±1) orders compared to the (±1, 0) orders.
Reference [24] verifies that this reasoning to estimate grating diffraction effi-
ciency from single-dipole radiation patterns indeed quantitatively holds for
dilute lattices of plasmonic rod dipole antennas. The fact that in experi-
ments the actual ratio for the split ring lattice is closer to 2 : 1 than the
estimated 8 : 1 is a direct consequence of the magnetic dipole radiation.

Next we turn to the superlattice. If the base lattice A has reciprocal
lattice vectors b1 = 2π/d(1, 0) and b2 = 2π/d(0, 1), the superlattice can
be classified as having a two-atomic basis with reciprocal lattice vectors
b1 = 2π/d(1/2, 1/2) and b2 = 2π/d(1/2,−1/2). Consequently, a set of
extra diffraction orders appears. We label the extra orders with half integer
number pairs obtained by normalizing the G-vector added to k|| in the
diffraction process to 2π/d. It should be noted that the extra orders will
not correspond to all combinations of half integers. Indeed, the first set
is at (±1/2,±1/2) (and not at (±1/2, 0) resp. (0,±1/2)). The calculated
diffraction efficiencies contain two independent measures of the magnetic
dipole component of SRR scattering. Firstly, the amplitude in the half-
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Figure 4.2: Calculated transmission for diffracted orders for SRR lattices
of type A (left) and B (right) assuming a lattice of 1500 nm pitch, in an
environment of n = 1. As SRR parameters we use ω0 = 1.26 × 1015 s−1,
γ = 1.25 × 1014 s−1, {ηE , ηH , ηC} = {0.7, 0.3, 0.4}. Note the emergence
of half-integer diffraction orders for lattice type B with their cut-off being
outside of the presented frequency range.

integer orders can be viewed as direct and background-free quantification
of the magnetic SRR response, since they would not appear for ηH = ηC =
0. As Figure 4.2 shows, the half integer orders appear from frequencies
1/
√

2×6700 cm−1 onwards, and indeed contain significant amplitude (up to
2.5% total diffraction efficiency spread over four beams). A second measure
of the magnetic dipole strength is evident in the (±1, 0) and (0,±1) orders.
As soon as the condition for emergence of the (±1, 0) and (0,±1) is crossed,
the (±1/2,±1/2) orders diminish in amplitude. Remarkably, the contrast
between the (0,±1) and (±1, 0) orders is much stronger than in the A lattice,
reaching up to 10:1 rather than 2:1. This larger ratio is a direct consequence
of the fact that, in the superlattice, the magnetic dipoles are aligned in
antiphase in the two sublattices, while the electric dipoles are aligned. Since
the (±1, 0) intensity for the A lattice is mainly from the z-oriented magnetic
dipoles, the diminished (1, 0)-diffraction strength is due to cancellation of
the magnetic dipole contributions in the antiparallel arrangement [10].

4.5 Fourier microscopy setup

In order to verify the predictions for diffraction by the A and B lattices,
we perform a diffraction experiment in the near infrared on Au split ring
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4.6 Diffraction measurement

resonator arrays fabricated using e-beam lithography and lift-off [25]. The
dimensions are 150 nm×150 nm×30 nm with gaps of 50 nm×80 nm. The
setup (sketch shown in Fig. 4.3) is essentially built as an infrared-range
copy of the setup reported in Ref.[24] with achromatic lenses specified for
1050 nm−1620 nm. Light from a supercontinuum source (Fianium) is fre-
quency selected by passing through an acousto-optical tunable filter (Crys-
tal Technology PCAOM NIR 2) that allows to select any wavelength from
1100 nm to 2000 nm, with a spectral selection FWHM-bandwidth of around
12 nm at 1550 nm. After passing a linear polarizer (Thorlabs LPNIR100)
the beam is weakly focused to a spot of ≈ 20µm diameter, smaller than an
individual lattice which covers an area of 50µm×50µm. This illumination
approximates a plane wave as it has an angular spread ∆k||/k = 0.02. Light
passing through the sample is collected by a 100× oil objective (Olympus
UPLSAPO, NA = 1.4). To retrieve k-space information, we image the back
aperture of the objective onto an InGaAs CCD (Vosskühler NIR 300-PGE)
via a 4f -imaging system (ftelescope = 50 mm, fFourier = ftube = 200 mm).
An iris placed in the real space image plane in between the 1 : 1 telescope
lens pair blocks light stemming from the edges of an illuminated lattice
which would cause additional features in the k-space image. Our aim is to
study the intensity and polarization for non-zero diffracted orders. How-
ever, the sparse arrangement of scatterers will result in back focal plane
images that are dominated by the 0-order transmitted beam. Indeed, the
calculations in Fig. 4.2 indicate an intensity ratio on the order of 103:1,
making acquisition of diffraction orders well above the noise, without over-
saturation of the zeroth order problematic on a CCD limited dynamic range
of 12 bit. We overcome this limitation by placing a 0-order beam block at
the back aperture of the objective. The beam block is a metal sheet disc of
2.5 mm diameter supported by a cross of thin wires (200µm width), made
by electrical discharge machining in a 200µm thick metal foil. The size of
the disk should be compared to the backaperture size of our Olympus UP-
LSAPO 100× objective which is 7.1 mm in diameter. For cross-polarized
excitation/analysis configurations the beam block may be omitted.

4.6 Diffraction measurement

First, we compare the diffraction patterns of the lattice of type A to the
B-lattice (sketch in Fig.4.4) under plane-wave illumination at 1550 nm. We
use lattices immersed in index matching oil to obtain a completely symmet-
ric optical environment, and use a pitch of 1250 nm. The measurements
are hence done well to the blue of the diffraction condition. Data in the co-
polarized channel, i.e., with input polarization and detection polarization
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Figure 4.3: In our Fourier microscopy setup, light from a filtered supercon-
tinuum light source is incident from the left at an angle θ from the lattice
plane normal. A 100× immersion objective collects transmitted light. The
iris provides real space filtering prior to Fourier imaging.

along the split ring base x, clearly evidence the (±1, 0) and (0,±1) diffrac-
tion orders. The efficiency in these four orders stand in almost 1:1 ratio, in
apparent contradiction to Fig. 4.4. However, it should be noted that at the
wavelength used, the grating diffraction angle of about 55◦ is much closer to
the sample normal than in the calculation example. Consequently, the ex-
pected intensity ratio on basis of electric dipoles alone is around 2:1 further
reduced by magnetic contributions. The magnetic contribution to diffrac-
tion should appear much more clearly in cross-polarized detection, since the
electric dipole should be x-polarized for all orders, while the magnetic dipole
should give rise to y-polarized light for the orders on the kx axis (and vice
versa). Indeed, in cross-polarized detection the (0,±1) orders almost vanish
compared to the orders on the x-axis (±1, 0) diffraction orders, yielding a
7:1 ratio.

For the B-lattice, the diffraction-pattern in co-polarized excitation and
detection is dominated by the (±1, 0) and (0,±1) orders, as in the A-lattice.
This similarity, which is much stronger than expected from Fig. 4.2 is in-
dicative of the fact that actual split rings do not have equally electric, mag-
netic, and magneto-electric polarizability, but in fact are expected [19] to
have αE : αH : αC = 4 : 1 : 2. Nonetheless, the extra half-integer orders
are faintly visible in the co-polarized Fourier image. The magnetic nature
of the SRR scatterers is much more clearly evident in the cross-polarized
Fourier image. In cross-polarization, all the integer orders almost vanish.
For the (0,±1) orders such vanishing is expected since both the electric
and magnetic dipole contributions are x−polarized for wavevectors in the
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4.7 Angle-resolved transmission and pseudochirality

yz-plane. For the (±1, 0) orders, all y-polarized light must result from the
magnetic dipole radiation. However, in strong contrast to the A-lattice,
where the magnetic dipoles are all aligned and give a clear (1, 0)-diffraction,
in the B-lattice cancellation occurs owing to the fact that the two distinct
sublattices have magnetic moments in antiphase. Remarkably, in the cross-
polarized data the half-integer diffraction orders clearly stand out at the
(±1/2,±1/2) nodes, providing a background free measure for the presence
of magnetic polarizability in the single SRR polarizability. Strictly no in-
tensity is expected at the (±1/2, 0) and (0,±1/2) nodes if the split rings
could be considered points located exactly on a square lattice. Careful in-
spection points at a very faint diffraction intensity at these angles, which
we attribute to a minute deviation in split ring positioning introduced by
the RAITH-lithography pattern generator.

Next we turn to a more comprehensive polarization analysis of the half-
integer orders. We study a lattice of higher split ring density (pitch 900 nm),
so that the diffraction orders move outwards in the Fourier image. In fact, at
this pitch, the condition for integer order diffraction (±1, 0) are not yet met,
while the half-integer orders occur at large NA, conveniently far from the
zero-order transmitted beam. According to point scattering theory, if the
split rings would have no magnetic polarizability, and no bi-anisotropy, they
would all carry identical electric dipole moment, no magnetic moment, and
the half-integer orders would have strictly zero intensity. From symmetry
it is apparent that even in presence of bi-anisotropy and split ring coupling,
at normal incidence the induced electric dipole moments in each sublattice
will still be equal. Consequently, the half-integer diffraction orders are solely
due to the induced magnetic dipoles. Since in high-NA Fourier imaging of
an out-of-plane magnetic dipole, the back focal plane image must contain
a radially polarized magnetic field, polarization analysis of the Fourier im-
age must reveal azimuthal polarization. Figure 4.5 shows Fourier images
with excitation polarization along the split ring base x, and the detection
polarizer set at 0◦, 90◦ and ±45◦ relative to the x-axis. The four orders
indeed are dominantly azimuthally polarized, commensurate with radiation
of out-of-plane magnetic dipole moments.

4.7 Angle-resolved transmission and
pseudochirality

Recent reports indicate that dense split ring lattices that have square sym-
metry and all split rings aligned show a strongly handed response when
illuminated under an angle. This handed response was first noted for split
ring lattices by Plum et al. [26, 27, 28], who proved that an asymmetric
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Figure 4.4: Diffraction pattern analysis for lattice type A (a,c) and lattice
type B (b,d) for plane wave illumination with x-polarized light at 1550 nm.
For cross-polarized analyzer orientation (y-direction) the diffraction pat-
terns for A and B (c,d) are clearly distinct. For A, diffracted light is found
in orders (blue) close to the maximum collection angle of the system (dashed
circle). In contrast, lattice B also shows half integer orders (red). Cross-
polarized detection brings out these orders more clearly. Histograms (e,f)
quantify the cross-polarized intensity. Low diffraction order intensities at
positions indicated in green are attributed to minute deviations of SRR
center positions from a perfect square lattice introduced during the manu-
facturing process.
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Figure 4.5: Experimental polarization analysis for lattice type B. For a lat-
tice pitch of 900 nm pitch, only the orders are propagating. Fourier images
for different analyzing polarizer settings (white arrow) reveal that the orders
are azimuthally polarized.

response is allowed under oblique incidence even for geometrically nonchi-
ral structure. The key to their argument is that the illumination geometry
should be included in the symmetry considerations. A different interpreta-
tion is that the handed response is intrinsic to the single split ring polariz-
ability tensor and directly results from the off-diagonal bi-anisotropy. This
form of ‘pseudochirality’ was already discussed in 1997 by Tretyakov [29] in
the framework of current carrying cut wires, omega particles and helices.
Recently, this pseudochirality was measured to be exceptionally strong in
split rings by Sersic et al. [19]. A shortcoming of that work was that, while
the asymmetric response was attributed to the single building block, in fact
the observation was made on lattices without mapping the influence of the
lattice symmetry. Here, we present calculations as well as experiments on
superlattices of different symmetry, i.e., the A-lattice with all split rings
aligned, and the B-lattice in which bi-anisotropy should cancel in the zero-
order transmission.

Figure 4.6 (left) shows calculations for the A lattice, assuming split
rings in a square lattice of pitch 300 nm, in surroundings index-matched
to glass (n = 1.5). As parameters we take {ηE , ηH , ηC} = {0.7, 0.3, 0.4},
γ = 1.25×1014 s−1, and ω = 1.108×1015 s−1 in order to match the resonance
wavelength to the wavelength with lowest normal incidence transmission
dip. As also reported by Sersic et al. [19] and Lunnemann et al. [23] lattice
A shows a strongly asymmetric handed response when rotating the sample
in the incident beam around the split ring symmetry axis and collecting
the total transmitted signal without analyzer. The asymmetry consists of a
sharp decrease in transmission when going from normal incidence to positive
angles at handed incidence light, and almost vanishing of the transmission
resonance when either rotating the sample in the opposite direction, or col-
lecting in the opposite helicity channel. For rotation around the x-axis, the
asymmetry vanishes entirely. Here we have measured and calculated trans-

79



4 Diffractive stacks of metamaterial lattices

b

(50°)

(0°)+T
+T

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

+T + T +T T +

0.2

0.4

0.6

0.8

0

1.0

50°

µm1.6 50°

µm1.6

 

 

0.2

0.4

0.6

0.8

0
+T + T +T T +

50°

µm1.6

d

(50°)

(0°)+T
+T

1.2 1.4 1.6

wavelength / µm

0

0.2

0.4

0.6

0.8

1.0

tr
a

n
s
m

is
s
io

n
 (

c
a

lc
.) a

(50°)

(0°)+T
+T++

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

50°

µm1.6

0.2

0.4

0.6

0.8

0

1.0

 

 

0.2

0.4

0.6

0.8

0
+T + T +T T +

+T + T +T T +

50°

µm1.6

tr
a

n
s
m

is
s
io

n
 (

e
x
p

.) c

1.2 1.4 1.6

wavelength / µm

0

0.2

0.4

0.6

0.8

1.0

(50°)

(0°)+T
+T

Figure 4.6: Calculated and experimentally retrieved transmission spectra
for SRR lattices of type A (a, c) and B (b,d) with lattice pitch 300 nm.
Right- (+) and left-handed (−) circularly polarized light is incident at 0◦

(blue) and 50◦ (red) from the lattice normal. The insets depict histograms
for transmission at 1600 nm and 50◦ angle of incidence. The contrast in
co-polarized transmission channels T++ and T−− for lattice type A (insets
a,c) vanishes for lattice type B (insets b,d). Transmission for cross-polarized
polarization channels T+− and T−+ is considerably smaller for both lattice
types compared to the co-polarized case.
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mission for both the helicity conserving (T±±(θ) channels, and the helicity
nonconserving channels (T±∓(θ)). Calculations of transmission resolved for
the output polarization shows that the handed transmission contrast is not
associated with polarization conversion. Indeed, our calculation predicts
a large contrast between T++ and T−−, but no amplitude in the helicity
non-conserving channel (T+− = 0 and T−+ = 0).

Our transmission measurement is effectuated in the same set up also
used for diffraction experiments. The detection path again uses a N = 1.4
oil immersion objective and InGaAs CCD detector. Oblique illumination is
provided by fiber coupling the spectrally filtered supercontinuum light and
mounting the output fiber coupler, collimation and focusing optics, as well
as polarization optics on a manually adjustable goniometer arm. We can
select the transmitted beam from just the patterned sample area using real
space and Fourier space filtering in the detection path. A reference for the
transmission measurement is obtained by shifting the sample to image an
unpatterned region.

Measurements of transmission for two handednesses for an index matched
lattice with 300 nm pitch of split rings (150 nm arm lengths, gap size of 50 nm
by 80 nm, 30 nm height) indeed show strong asymmetry in oblique incidence
transmission for the A lattice. Compared to the previous report by Sersic
et al. [19], the measured transmission asymmetry is clearly evident, yet less
pronounced, which we attribute to the fact that in that measurement the
substrate was not index matched. Presence of a dielectric substrate can
significantly affect the magnetic polarizability and increase bi-anisotropy
as was reported for split rings on substrates [30] as well as fishnet meta-
materials [31]. Polarization analysis of the transmitted light on resonance
λ0 = 1600 nm quantifies that the transmitted light does not show strong
polarization conversion.

Figure 4.6 (top and bottom right) show transmission calculations and
measured data for the B lattice. The handed-dependent difference in angle-
dependent transmission vanishes entirely, showing that in this particular
type of structure it is the single building block that determines the asymmet-
ric response, as opposed to spatial dispersion that was recently proposed to
mimic chirality [32]. A viable solution to reduce the apparent bi-anisotropy
in metamaterials is hence to create superlattices with rotated copies of the
same bi-anisotropic building block. However, the price is that the increased
unit cell size causes diffractive effects already at lower frequencies.
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4.8 Stacked lattices

Finally, we discuss application of our multi-stack point scattering theory to
a problem of large interest in metamaterials research, i.e., the emergence
of properties such as transmission, ε and µ, as a function of the number of
lattices that one stacks to obtain a truly 3D structure. A second context
in which stacking is relevant is in the formation of stereometamaterials,
in which identical lattices are stacked with split rings rotated from layer
to layer, and in which retardation between layers may also occur[15]. We
refer to Ref. [33] for a treatment of this model in electrostatic circuit theory
amended to include a retardation phase. We suppose one could stack layers
of split rings resonant at 1.5µm that are in 2D square lattices of 300 nm pitch
with a spacing between layers of 300 nm, so that a finite crystal of simple
cubic symmetry is formed. As parameters we use ηE = ηH = ηC = 1, γ =
8.3× 1013 s−1, ω = 1.256× 1015 s−1, which emulates the case of maximally
magneto-electric cross-coupled SRRs, with a damping rate comparable to
silver. Stacked fabrication of split ring lattices was reported by Liu et
al. [15]. Figure 4.7(left) shows the calculated transmission coefficient as a
function of the number of layers. As one expects from reported data, a single
layer already presents a significant suppression of transmission to below
15%, owing to the large cross section per split ring. The reflection coefficient
of around 45% (right panel in Figure 4.7), shows a peak complementary
to the transmission, leaving a significant residual 40% absorption. As the
number of layers is increased, the transmission stop gap significantly deepens
and widens, as would be expected for an increasingly thick slab with a strong
absorption resonance. At the same time, the reflection resonance reduces in
strength, stays comparable in width to the single layer reflection peak, and
gains a significant number of fringes with increasing structure thickness.
Since the multi-stack point scattering theory returns full amplitude and
phase information for reflection and transmission, one could continue to
pursue a number of interesting studies on the convergence of ε and µ as
retrieved from the reflection and transmission, as a function of thickness,
density, and single dipole polarizability. Moreover, one could explore how
multiple scattering interactions become apparent as spatial dispersion in the
retrieved material constants.

4.9 Conclusion

In this work, we successfully described experimentally retrieved grating or-
der intensities and transmission spectra for diffractive and non-diffractive
SRR lattices with a magnetoelectric point dipole model extended for stacks
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Figure 4.7: Calculated transmission and reflection for N stacked layers of
lattice type A so that the SRRs (ηE = ηH = ηC = 1, γ = 8.3 × 1013 s−1,
ω = 1.256 × 1015 s−1) are in a simple cubic arrangement with a lattice
constant of 300 nm.

of 2D lattices applying Ewald’s summation technique. The role of magnetic
dipole response for SRR lattices was revealed by comparing diffraction order
intensities of a lattice formed by a trivial unit cell (single-atomic base) to
a lattice formed by a complex unit cell (two-atomic base) with alternating
SRR orientation. The alternating SRR orientation in the complex unit cell
case lead to the absence of transmission contrast for right- and left-handed
incident light for off-normal illumination as predicted by our model. Fi-
nally, we explored the influence of the finite number of 2D metamaterial
layers forming a 3D stack on the stack’s total transmission and reflection.

4.A Lattice sum

The 6× 6 dyadic Green function of free space can be obtained by applying
the operator (

Ik2 +∇⊗∇ −ik∇×
ik∇× Ik2 +∇⊗∇

)
(4.16)

to the Green function of the scalar wave equation. Hence also the 6×6 dyadic
lattice sum follows from the lattice sum for the scalar Green function, i.e.,
from ∑

m,n

eik|Rmn−r|

|Rmn − r|
eik||·Rmn = Γ(1) + Γ(2). (4.17)

Note that in this defintion, Rmn are real space lattice vectors strictly in the
x, y plane, while the observation point r = (x, y, z) = (r||, z) may be outside
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the lattice plane, i.e., away from z = 0. In the right hand side we have split
the scalar lattice sum in a real space and reciprocal space part that read as
reported by Linton [34] as follows:

Γ(1) =
π

A

∑
g

{
ei(k||+g)·r||

kgz
×
[
eik

g
z |z|erfc

(
kgz
2η

+ |z|η
)

+e−ik
g
z |z|erfc

(
kgz
2η
− |z|η

)]}
Γ(2) =

∑
R

{
eik||·R

2ρmn
×
[
eikρmnerfc

(
ρmnη +

ik

2η

)
+e−ikρmnerfc

(
ρmnη −

ik

2η

)]}
.

(4.18)

The first term sums over all reciprocal lattice vectors g and in terms of
its dependence on the ‘observation’ coordinate r at which it is evaluated
explicitly splits in in-plane and transverse coordinates (r||, z). All retarda-
tion effects in the plane appear explicitly through k|| · r||, while retardation

transverse to the plane appears explicitly through kgz =
√
k2 − |k|| + g|2.

The second part Γ(2) sums over real space lattice vectors R. In terms of
the ‘observation’ coordinate r at which it is evaluated, each summand is
essentially in a spherical coordinate, with dependence only on the radius
ρmn = |Rmn − r|. Notice that since r = (r||, z) not only has a component
parallel to the plane but also transverse to it, the kρmn terms account for
retardation both in, and transverse, to the plane. As regards numerical
implementation, the formulation holds for any choice of η; however optimal
convergence requires η around

√
π/a where a is the lattice constant. Point-

ers as to how to apply the operator Eq. (4.16) and how many terms to sum
are contained in Ref. [23].
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nanostructures: Spatial dispersion mimics chirality, Phys. Rev. Lett. 106,
185501 (2011).

[33] H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and Giesse, Lagrange
model for the chiral optical properties of stereometamaterials, Phys. Rev. B
81, 241403 (2010).

[34] C. Linton and I. Thompson, One- and two-dimensional lattice sums for the
three-dimensional Helmholtz equation, J. Comp. Phys. 228, 1815 (2009).

87





Chapter 5

Backaction on a lattice of
scatterers in front of a

reflective interface

In this chapter, we study back scattering on scatterers, as in Chap-
ter 3, however for periodic lattices of scatterers, as in Chapter 4.
In particular, we ask how the response of a lattice of scatterers is
modified when the lattice is held in front of a reflective interface.
We set up an analytical point scattering model to calculate the re-
sponse of scatterers at a planar interface taking all electrodynamic
retarded multiple scattering interactions into account. We show
that while the polarizability of scatterers is strongly affected by
their environment, the reflectivity of the combined system is quite
close to that predicted from the bare lattice reflectivity and the
bare interface reflectivity in a Fabry-Pérot model. Furthermore,
we isolate the subtle deviations in a ‘reflectivity-backaction’ effect.
Finally, we present preliminary results from an experiment on split
ring arrays at controlled distance from a mirror, as realized using
the fabrication technique of Chapter 2.
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5 Backaction on a lattice of scatterers in front of a reflective interface

5.1 Introduction

If it has a size smaller than the wavelength, a single scatterer in vacuum
can be described in a point dipole model by a dynamic polarizability tensor
α that fulfills energy conservation by taking the radiation damping for free
space into account [1, 2, 3]. Changing the environment of a single magneto-
electric scatterer, for instance by simply placing it in front of a mirror affects
the particle’s polarizability which in turn becomes separation dependent in
an intriguing way as we report in Chapter 3. In essence, this can be viewed
as a backaction effect whereby a scatterer interacts with its own scattered
light that returns to the scatterer via the mirror, similar to the backaction
effect that normalizes the linewidth and resonance of a radiating atom or
molecule [4]. In Chapter 4, we report that the polarizability also effectively
gets renormalized for periodic arrangements of such scatterers. In this case,
the renormalization is not due to the multiple scattering interaction of a
scatterer with a mirror, but with all other scatterers in the lattice, leading
to significant lattice-dependent resonance shifts and broadenings of exper-
imentally accessible quantities such as the reflection coefficient for infinite
(non-)diffractive 2D lattices, as discussed in [5] and 4. The open question
we would like to address in this chapter is how these two renormalization
steps will manifest themselves in a combined system of a lattice of scatterers
separated from an interface. Furthermore, we investigate to which extent, if
at all, the combined system of a lattice and a mirror can be treated within
a Fabry-Pérot model as proposed by Ameling et al., and whether or not
backaction should be included in this case [6, 7, 8].

We present our results according to the following structure. First, we
present an analytical approach to selfconsistently calculate the optical re-
sponse of a lattice of point scatterers embedded in a stratified system. This
approach combines the lattice-sum formalism of Chapter 4 with the inter-
face Green function approach of Chapter 3. Next we examine the effective
per-particle polarizability as a function of its environment. In particular,
exactly according to the reasoning in Chapter 3, the effect of a nearby inter-
face on a particle is to renormalize the extent to which it can be polarized by
a given incident field applied at its location. In a similar way the per-particle
polarizability is renormalized by the presence of all other particles in a lat-
tice arrangement. Finally, these two effects add up in a nontrivial fashion
once one places a lattice of particles in front of an interface. In section 5.3
we compare predictions for these three cases. Next we turn to predicted re-
flectivity coefficients of lattices of resonant particles held in front of a mirror
as predicted from our exact theory for point scattering lattices in front of
interfaces. Resonant features of the lattice together with interference from
the various multiple reflections conspire to give a complex frequency and
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distance dependence reminiscent of the physics of a Fabry-Pérot resonator
comprised of a mirror geometrically separated from a second interface that
features a resonant response.

Finally, we examine the Fabry-Pérot analogy in more detail. Using
just the reflection constant of mirror and bare lattice, we evaluate what a
simple Fabry-Pérot model would predict for the composite structure, and
show subtle deviations from the full point scattering model. One striking
interpretation is that the reflection coefficient of just the lattice that one
needs to enter in the Fabry-Pérot model varies as function of distance to
the mirror, as opposed to the standard theory for etalons where solely the
interface separation enters as a phasefactor. By inverting the Fabry-Pérot
model we can retrieve the effective reflection constant of the lattice from the
full calculation. This effective reflection constant varies with distance to the
mirror in an oscillatory manner analogous to that in which the polarizability
of a particle varies with mirror-particle separation. We thus predict a subtle
backaction effect on the reflectivity of metasurfaces.

5.2 Theory

Our goal is finding the full lattice-summed Green function G for a system
composed of a two-dimensional, infinite lattice of point scatterers separated
by a distance d from, and parallel to, an interface. The two media forming
the interface are assumed to be simple homogeneous media described by
dielectric constants ε.

As in Chapter 4, our starting point is that the response of a periodic
lattice of polarizable point particles illuminated by a plane wave (parallel
wave vector k‖) can be summarized entirely by the response of the particle
at the lattice origin which reads

(
p
m

)
= α

(E
H

)
+
∑
n6=0

G((Rn, d), (0, d))eik||·Rn

(
p
m

) . (5.1)

Here, Rn are real space lattice vectors, while d is the height along z where
the lattice that is parallel to the (x, y)-plane is situated. In this work, we
take the interface at z = 0. Exactly as in Chapter 4, G(r, r′) denotes the
dyadic Green function in absence of the lattice, i.e., for a single dipole, while
with G we will denote the lattice-summed Green function. The polarizability
α must be chosen to represent a self-consistent scatterer in presence of the
environment specified by G(r, r′), meaning it must be corrected for the
presence of the substrate exactly as Chapter 3, Eq. 3.2. We recall that for
an interface system, the dyadic Green function can be separated as a free
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space and reflected part

Gfull(r, r
′) = Gfree(r, r

′) + Grefl(r, r′). (5.2)

Therefore, also the lattice-summed Green function G 6= can be written as a
sum of a free space and a reflected part.

G 6=(k‖, r) = G 6=free(k‖, r) + G 6=refl(k‖, r). (5.3)

We will not discuss the lattice summation required to obtain Gfree as it was
the topic of Chapter 4. If one desires one can rewrite the problem such that
one uses the bare polarizability α0 in absence of the interface, noting that
the required lattice sum without the term at the origin then reads

G 6=(k‖, r) = G 6=free(k‖, r) + Grefl(k‖, r). (5.4)

In terms of mirror images, the interpretation is that a given particle interacts
with all the particles except itself in the physical lattice, and furthermore
with all the mirror imaged scatterers including its own mirror image. For a
lattice in the (x, y)-plane at z = 0 and the reflective interface at a distance
d at z = −d the Green function for the reflected part reads

Grefl(k‖, r) =
∑
m,n

Grefl(Rmn − r‖)e
ik‖·Rmn

=
∑
m,n

i

2π

[∫
dq

1

kz
Mrefle

iq·(Rmn−r)eikz |z+2d|
]
eik‖·Rmn

(5.5)

where the 6× 6 matrix Mrefl depends on the wavevector q and the Fresnel
coefficients of the interface exactly as specified in Equations 3.4, 3.5 and 3.6
of Chapter 3. By making use of the ‘completeness’ of the lattice∑

m,n

eik‖·Rmn =
(2π)2

A
∑
m,n

δ(k‖ − gmn), (5.6)

one can evaluate the expression for Grefl as a sum over the reciprocal lattice,
thereby avoiding the calculation of a sum over poorly converging Sommer-
feld integrals entirely. Indeed it is remarkable that owing to parallel wave
vector conservation, the interface lattice sum is easier to calculate than the
interface Green function. The sum reads

Grefl(k‖, r) =
2iπ

A
∑
m,n

1

kgz
Mrefle

i(k‖+g)·r‖)eik
g
z |z+2d|. (5.7)

Far field observables, i.e., reflection, transmission and diffraction efficiencies
follow simply once the induced polarizability has been solved for, by using
the far field asymptotic expansion of the reflected part of the Green function
listed in Novotny and Hecht, Chapter 10 [2].
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5.3 Results

Renormalized polarizabilities

In this section we study the response of two-dimensional lattices of non-
magnetic resonant scatterers to the driving by a normal-incidence plane
wave with an x-polarized electric field. As we assume no direct magnetic
response and no cross-coupling response, the sole consequence of this driving
condition is the generation of an electric dipole moment at the scatterers
position. Therefore, within our point scattering theoretical treatment the
static polarizability parameters read: {ηE , ηH , ηC} = {1, 0, 0}. The resonant
feature is described by the following parameters: resonance frequency ω0 =
1.26×1015 s−1 corresponding to a free space wavelength of λ = 1500 nm, an
ohmic damping rate of 1.25× 1014 s−1, and a volume of 200× 200× 30 nm3.
The single-particle dynamic polarizability will be renormalized due to first,
the presence of the interface, which we take to be a silver mirror (we use
tabulated optical constants from [9]) and second, due to the presence of all
other scatterers in the lattice. Through the help of Figure 5.1, we examine
each of these renormalization steps.

In Figure 5.1, we compare the frequency and distance dependent imagi-
nary part of the dynamic polarizability (x-component) for a single scatterer
and lattices with different pitch in front of the silver mirror. We focus
on the imaginary part of the polarizability, because for a scatterer in free
space 4πk Imα can be identified with the scatterer’s extinction cross section.
For the chosen scatterer the imaginary part of the polarizability presents a
Lorentzian peak at 1500 nm and a peak extinction cross section of≈ 0.3µm2,
about an order of magnitude larger than the geometrical cross section in-
dicating that our parameters correspond to an archetypical plasmonic scat-
terer. At any fixed distance to the mirror, the single-scatterer polarizability
(Fig.5.1, a) presents a clearly defined resonance around the single parti-
cle resonance. The resonance width, center frequency and strength varies
with distance due to interaction of the single scatterer with its own mir-
ror image. For very small separations less than 100 nm, the resonances in
fact red shift when approaching the mirror. However, we note that in this
range the dipole approximation is not valid, as the separation is smaller
than the assumed particle size. Therefore, throughout this chapter, we
omit in all plots separations below 100 nm. This effect is exactly as dis-
cussed in Chapter 3. The polarizability at the resonance angular frequency
is weakly oscillating with distance at a periodicity of ≈ 800 nm. We fit
a Lorentzian lineshape to the polarizability to retrieve the full-width half-
maximum (FWHM) linewidth change with distance. The extracted single-
particle polarizability linewidth follows the (purely electric) LDOS-lineshape
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Figure 5.1: Point dipole lattice-sum calculations to retrieve the polariz-
ability of non-magnetic ({ηE , ηH , ηC} = {1, 0, 0}) resonant scatterers (λ =
1500 nm, ohmic damping rate: 1.25 × 1014 s−1) at a distance from a silver
interface driven by an x-polarized plane wave under normal incidence. The
single-particle polarizability (a) varies with distance due to the interaction
with its mirror image. The single-particle polarizability linewidth follows
the local density of states lineshape for the vac/silver interface (b). Lat-
tice arrangements of 1000 nm (c), 500 nm (e), 300 nm (g), and 150 nm pitch
reveal the increased dispersivnes. For the single scatterer and two most di-
lute lattice cases it is feasible to compare the single particle linewidth to the
overall lattice polarizability linewidth. For 1000 nm pitch (d), the single par-
ticle contribution is of comparable strength, while for 500 nm pitch (f), the
renormalization effect stemming from the lattice dominates the linewidth.
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for a vac/silver interface (Fig. 5.1, b).

Having presented the results for a single particle in free space and in front
of a mirror, we now turn to the effective polarizability per object for the
case of a lattice in front of a mirror. In Figure 5.1, left column, we present
the lattice- and interface-normalized single particle polarizability covering
a range of pitches from the dilute (1000 nm pitch) to the dense (150 nm
pitch) case. Evidently, the polarizability reduces strongly and broadens
significantly with increasing density. This effect is well known from Sersic
et al. [10], and is due to the fact that many dipoles oscillating in phase
(k‖ = 0) experience superradiant damping (radiated power of N dipoles
being proportional to N2). Another viewpoint is that the extinction cross
section 4πkImα per object must remain below the unit cell area, limiting
the per-building block α.

Going from dilute to dense lattices the polarizability is more and more
dominated by a strong feature that is neither solely attributable to the
interface, nor to the lattice alone. Indeed, the fringes in polarizability mag-
nitude apparent for the single particle appear to sharpen considerably, and
to become very strongly dispersive, forming features along lines of constant
d/λ. The oscillation period reduces to ≈ 750 nm, i.e., half the single-particle
resonance wavelength.

While for the dilute lattice the modification of the polarizability is subtle
and the single particle resonance is still clearly visible at any lattice mirror
separation, for the densest lattices the fringes essentially span over the en-
tire frequency axis. This notion is consistent with the fact that for dense
bare lattices, the single particle polarizability looses relevance, as the polar-
izabiltiy is increasingly determined by just the unit cell area. For such dense
lattices, the calculated effective polarizability in effect implies that a strong
dipole can be induced only whenever the lattice and the mirror satisfy a
Fabry-Pérot resonance condition. It should be noted that the areal density
of maximum achievabe polarization is high, especially for the 300 nm pitch
lattice, which could be beneficial for, e.g., fluorescence or sensing applica-
tions.

The right column of Figure 5.1 shows accompanying graphs depicting
the FWHM dependence of the lattice and interface normalized polarizabil-
ity (green). The single-particle polarizability renormalized for the presence
of the interface depicted in Figure 5.1, b serves as a reference in all the
FWHM plots. In this way, this common contribution independent on the
lattice pitch can be compared to the pure lattice renormalization. Clearly,
for a dilute lattice (1000 nm lattice pitch) Figure 5.1, d the interface and
lattice contribution to the linewidth is of comparable strength. For a lat-
tice pitch of 500 nm the renormalization effect stemming from the lattice
already dominates the linewidth, being about three times larger than the
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5 Backaction on a lattice of scatterers in front of a reflective interface

interface contribution on average across the whole distance range. For even
denser lattices (300 nm and 150 nm pitch) it is unfeasible to attribute a
single particle polarizability linewidth.

To conclude, as in the single particle case, a renormalization of the lattice
polarizability occurs when a lattice is held in front of an interface. In con-
trast to the case of a single particle, this modification has a period exactly
λ/2, and a modulation depth that stays much stronger for larger distances.
The period, and the fact that one observes an only weakly damped oscilla-
tion of absolute polarizability is indicative for the fact that backaction is now
through an entire extended lattice of mirror dipoles. Importantly, while a
single particle mirror image yields backaction through a spherical wave, for
a mirror-image of scatterers forming a periodic array, backaction is through
a reflected wave at k‖ = 0 stemming from combined and fixed-phase related
outgoing and receiving reflected plane waves.

Point dipole lattice-sum calculations

We now turn from polarizability to an actual observable, i.e., the reflection
coefficient. We discuss reflection coefficients that we have calculated through
the exact Green function formalism that we set up in the Theory section.
For comparison we plot the absolute squared of the frequency dependent
reflection coefficient rPD

lattice stemming from point dipole (PD) lattice-sum
calculations for the non-magnetic scatterers arranged in a 2D square lattice
in absence of the mirror (Fig. 5.2, a) alongside calculations that contain the
mirror (Fig. 5.2, b). For now, we focus on a relatively dilute lattice with
a pitch of 1000 nm. The results for other lattice pitches will be presented
below. We assert that for the dilute case the absolute squared value of
the reflection amplitude is small in the whole frequency range, varying from
0.5% to about 5.5% at the resonance frequency. Of course, in absence of any
mirror, shifting the lattice away from z = 0 leaves the reflection coefficient
constant. Figure 5.2, b shows the reflection coefficient

∣∣rPD
stack

∣∣2 that we cal-
culate for the full system. The off-resonant absolute squared value of the full
stack reflection coefficient is almost 100 % throughout the distance range as
expected as at these frequencies it is dominated by the reflection of the silver
mirror. On-resonance, we recover a low reflectivity of less than 10 % for the
most part of the distance range. Only at specific, periodically occurring dis-
tances, ‘sharp’ features of highly reflective r dissect the reflection dips. We
note that the combined system has a large range of reflectivity, i.e, a large
reflectivity contrast of [1%, 95%], while the individual interfaces both feature
a small reflectivity contrast of [0.5%, 5.5%] for the lattice and [98%, 99%] for
the mirror for the reported angular frequency range of [0.8, 1.7]×1015 rad s−1

corresponding to a wavelength range of [1.1, 2.4] µm. The fact that fringes
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Figure 5.2: The reflection coefficient for a lattice of non-magnetic scatter-
ers (1000 nm pitch) from lattice-sum point-dipole calculations embedded in
vacuum (a); and forming a stack being at a distance to a silver mirror (b).
Off-resonance, the overall reflectivity is dominated by the high reflectivity
of the silver mirror. On-resonance, a low reflectivity of less than 10% is
recovered, only dissected by sharp regions of high reflectivity at specific dis-
tances where the round trip path length coincides with integer multiples of
a full wavelength. The low lattice reflectivity and the high reflectivity of the
mirror lead to a high reflectivity contrast in the combined system. A Fabry-
Pérot model for the stack retrieves the same general reflectivity dependence
(d). The apparent lattice reflectivity (c) that, used in the Fabry-Pérot
model, would lead to the full point-dipole lattice-sum result shows a dis-
tance dependent oscillation, revealing the backaction of mirror dipoles on
the lattice.
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Figure 5.3: As we decrease the lattice pitch to 500 nm the free-space lattice
reflectivity (a) will broaden around the single-particle resonance, which in
this case increases to about 30%. The reflectivity dips for the combined
system of lattice and mirror (b,d) are more frequency dispersive compared
to the dilute case of 1000 nm pitch in Fig. 5.2. As in the dilute case, the
apparent lattice reflectivity (c) features a distance dependent oscillation due
to backaction of mirror dipoles.

occur at λ/2 intervals is entirely consistent with the idea of a Fabry-Pérot
resonator which is governed by constructive interferences when the round
trip accumulates a full wavelength (2kd = m2π). Also it is intuitively rea-
sonable that the resonance bandwidth limits the frequency range over which
fringes are visible. Quite remarkable is that the very weak, and partially
absorbing, resonance of the metasurface translates to a big contrast in re-
flection in the Fabry-Pérot geometry, and concomitantly also in a very big
enhancement in absorption efficiency of the scatterers.

Fabry-Pérot model

While qualitatively, the features of the reflectivity of the full system might
be similar to that of a Fabry-Pérot model, here we ask in how far this
similarity is quantitative. Let us assume we can set up a Fabry-Pérot (FP)
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Figure 5.4: Going to even denser lattices with a pitch of 300 nm, the free-
space lattice reflectivity is broadened further and reaches values > 60% (a).
Mirror and lattice form a stack featuring a total reflectivity with highly
dispersive lineshapes (b,d). The lattice response function undergoes a π
phase flip at the lattice resonance causing the reversal of reflectivity contrast
from high/low to low/high passing a dispersive feature from small to larger
distances.

model for a vac/lattice/vac/mirror system with a varying thickness for the
vac-layer in between the lattice and the mirror as shown in Figure 5.6). The
etalon-reflectivity formula predicts

rFP
stack = r12 +

t21r23t12

(
−e2in2kd

)
1− r21r23 (−e2in2kd)

(5.8)

for the complex amplitude reflection coefficient of a system characterized
by a mirror reflection amplitude coefficient r23, and with r12, t12 being the
complex reflection and transmission coefficients of the first layer, i.e., the
lattice in this work as calculated within the point dipole model. For the sec-
ond interface, the complex amplitude reflection coefficient r23 of a vac/silver
interface is simply the Fresnel coefficient (deduced from the tabulated com-
plex refractive index data), exactly the same as it enters in the full point
dipole model. In a standard Fabry-Pérot model, r12 and t12 of the first
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Figure 5.5: The reflection coefficient for a lattice of non-magnetic scatter-
ers in the most dense case (150 nm pitch). The reflection coefficient from
point dipole calculation for the lattice in vacuum (a) shows a significantly
frequency-broadened high reflectivity of > 50%, about ten times higher than
for the retrieved maximum value for the most dilute case (1000 nm pitch)
presented in Fig. 5.2. The total reflectivity of the combined system of lat-
tice and mirror (b, d), is high (> 90%) except for sharp reflectivity dip
features (< 50%) resembling those of a typical etalon; the single-particle
resonance is not visible for such dense lattice arrangements. The apparent
lattice reflectivity (c) however, still retains the distance dependence. Re-
flectivity values exceeding the presented color scale, which is the case for
small distances (< 100 nm) have been omitted in order to visualize (c) and
(a) on comparable scale.
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Figure 5.6: Fabry-Pérot system: a lattice (amplitude reflection coefficient
for normal incidence: r12) separated from a mirror (r23) by a distance d

layer are independent of the presence of the second layer. Therefore, let us
evaluate the Fabry-Pérot equation taking for the first interface the complex
amplitude reflection and transmission coefficients of the vac/lattice interface
from our point-dipole calculations in absence of the mirror. Figure 5.2, a
shows the lattice reflectivity in absence of the mirror, while Figure 5.2, d
shows

∣∣rFP
stack

∣∣2, the absolute squared of the amplitude reflection coefficient
for the combined system according to the Fabry-Pérot model. Compared
to the point dipole calculation result, we find a similar distance dependence
and reflectivity contrast. However, the Faby-Pérot model fails to retrieve
the resonance frequency shift for small separations and underestimates the
resonance feature width.

Inverse Fabry-Pérot model

To extract exactly how the full result for the reflectivity from point dipole
calculations and the simple Fabry-Pérot model differ, we ask the following
question: suppose one would apply the Fabry-Pérot model, then what is
the apparent lattice reflectivity that makes the Fabry-Pérot model match
the full calculation? In essence this question boils down to asking what
apparent reflectivity constant one would retrieve for the lattice given the
full reflectivity and the geometry of the stack. The exact same question
one could address in an experiment, provided one would acquire the nec-
essary phase information to retrieve complex reflection coefficients, a usual
requirement when attempting to retrieve the effective optical constants of
metamaterials and metasurfaces. Evidently, this might result in an effective
reflectivity that depends on distance between lattice and mirror. We note
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5 Backaction on a lattice of scatterers in front of a reflective interface

that Eq. 5.8 can be inverted by very simple algebra to obtain a complex r
with no ambiguity. We solve for the apparent reflection coefficient for the

lattice of pitch 1000 nm, and plot the resulting
∣∣∣rFP,app.

latt.

∣∣∣2 in Figure 5.2, c.

Clearly the retrieval is successful, in that the retrieved apparent reflectivity
does not show the very strong fringing contrast of the composite system. In-
deed, one would expect for a normal FP a completely distance independent
apparent reflectivity that exactly matches that of the bare lattice. However,
the apparent reflectivity does depend on the distance to the lattice. The res-
onance frequency oscillates with distance to the mirror. It should be noted
that while the effective reflectivity resonance of the lattice varies in center
frequency and width in a manner that is qualitatively reminiscent of the
variation in polarizability, the variation is much less strong in amplitude.
Qualitatively, whenever the lattice and its mirror image form a subradiant
pair, their polarizability is highest due to the weak radiative damping. Yet
at the same time, the overall radiated strength per unit of induced dipole
moment will not be large owing to the destructive interference of the lattice
and its mirror image. The converse reasoning holds for separations at which
the lattice and its mirror image form a superradiant pair. From this reason-
ing, it is evident that variations in polarizability are much larger than those
in reflection constant. This distinction should be important when utilizing
meta-surfaces in near field aplications.

To conclude, the reflectivity of a stack that consists of a metasurface in
front of a reflector can be interpreted very well as a Fabry-Pérot resonator,
provided, however, one is willing to accept that the reflectivity of the meta-
surface depends on its environment due to interaction with its own mirror
image. This is a backaction effect analogous to the modification of a parti-
cle polarizability due to hybridization of its own mirror image, constituting
both a frequency shift and width change of the resonant response.

Different lattice density

Finally, we follow the same procedure for smaller lattice pitches of 500 nm
(Fig. 5.3), 300 nm (Fig. 5.4), and 150 nm (Fig. 5.5). The smaller the lattice

pitch, the larger
∣∣rPD

lattice

∣∣2 for the lattice in vacuum: namely up to 60%
for 300 nm; a 10-fold increase compared to a maximum of about 6% for
1000 nm lattice pitch, roughly commensurate with the order of magnitude
higher surface coverage. Furthermore, the angular frequency width of the
resonance feature is larger, the smaller the lattice pitch. The increase of the
reflection coefficient and the broadening of the resonance in frequency space
is expected when going to denser lattices given the larger areal density of
scattering objects, and the effect of superradiant damping.
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5.4 Experiment

For the dilute lattice in front of the mirror, we have seen the reflec-
tion coefficient being dominated by resonant absorption peaks, leading to a
high reflection contrast. While the reflection coefficient contrast for stacks
formed with denser lattices stays similarly high ([5%, 95%] for 500 nm and
300 nm; [40%, 95%] for 150 nm), sharp dispersive features in the reflection
coefficient are present. For the lattice with a pitch of 300 nm, the reflectiv-
ity is qualitatively very different, having gone from absorptive features on a
high background to asymmetric dispersive lineshapes. The reversal of con-
trast at 1.2× 1015 rad s−1, i.e., whether the reflectivity is low or high to the
left, or the right of the Fabry-Pérot resonance is due to the lattice resonance,
whose response function goes through a π phase flip. This transition could
be understood as a transition from coherent mixing of a continuum (mirror
reflectivity) with a weak absorption resonance (dilute lattices, walking along
paths of constant separation), to mixing of a continuum (mirror reflectiv-
ity) with a strong resonance (lattice response). Thus the lineshape change is
akin to that in the families of lineshapes of the Fano interference effect that
has attracted significant attention in many communities, including recently
that of optical scattering [11].

Finally, we discuss our results in view of the work of Ameling et al. who
calculated reflectivity in terms of the simple Fabry-Pérot model, without
taking backaction into account [6, 7, 8]. It should be noted that in all cases,
the differences between the full reflection constant and the simple Fabry-
Pérot model are subtle. Thereby, the model of Ameling et al. is effectively
validated by our full multiple scattering calculation. For all lattices, the
apparent lattice reflection constant experiences backaction but observing
signatures of this backaction in experiments will be difficult, as the total
reflection amplitude and phase must be measured very accurately for an
accurate retrieval of the effective lattice reflectivity. The most remarkable
conclusion of our calculation, which adds insight beyond the Fabry-Pérot
model is that, while in a Fabry-Pérot interpretation of the reflectivity, the
reflectivity of the lattice varies only moderately with distance to the mirror,
in fact the dipole that can be induced in each particle with a set incident field
varies remarkably strongly. Therefore, sharp features would be expected
in experiments that are sensitive to excitation strength in the near field.
This conclusion might be relevant for instance when using particle lattices
to enhance pump light absorption and fluorescence emission in white light
LED scenarios, where blue LED light is upconverted using green and red
emitting phosphors [12].
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Figure 5.7: The sample sketch (a) depicts the following sample structure:
lattices consisting of gold split ring resonators in a periodic arrangement on
glass are separated from a silver mirror by a dielectric wedge (S1813G2 UV-
resist). Under bright field illumination (b) these lattices feature a smooth
color change in x-direction revealing the smooth change in lattice-mirror
separation on a µm-length scale.

5.4 Experiment

Finally, we report on a pilot experiment that qualitatively reproduces fea-
tures observed in the theory. These experiments were originally inspired
by the proposition in Chapter 3 that the line width of a single split ring
would vary as function of distance to a reflective interface, an effect that
we believed would be more practically measured on arrays than on single
scatterers. As the theory in this chapter shows, it is in fact impossible
to measure the single particle linewidth from an array measurement. The
measurement combines split rings with the wedge fabrication technique of
Chapter 2 to realize a gradually varying array-reflector distance. In partic-
ular, we first fabricated split rings of 100 nm arm and base length, 30 nm
height, and 70 nm gap using electron beam lithography, Au evaporation,
and lift-off of a ZEP-520 e-beam resist. Next, we covered the arrays with
a S1813G2 UV resist wedge by gray-scale lithography. Subsequently, the
entire structure was coated with 100 nm silver. The sample structure is
presented in Fig. 5.7, a together with a bright field low-magnification mi-
croscopy image Fig. 5.7, b. The silver surgace appears bright white. Periodic
arrays of SRR lattices, with 150 nm periodicity are visible as darker small
squares, 50µm in size arranged in a checkerboard pattern. The wedge con-
tour is clearly visible, coinciding with the color-onset in the second lattice
from the left. The color is changing from rosé to red with increasing height
of the wedge material (positive x-direction). Arrays covered by more wedge
material appear darker compared to arrays covered by less wedge material.

To conduct reflectivity measurements, the sample, placed on a mechan-

104



5.4 Experiment

ically movable (x, y)-stage, is illuminated with focused NIR-light (Nikon
Plan Apo 20× /0.75). A polarizer in the incoming path is aligned along x,
such that the magnetic resonance condition of the split ring lattice can be
realized at a certain resonance wavelength. Reflected light is collected via
the same objective and sent to a fiber coupled NIR-spectrometer (Acton
SP-2350i, coupled to an OMA V 1024 pixel InGaAs array). A displacement
of the sample in the positive x-direction results in an increase in lattice-
mirror distance. As the illumination spot size of about 5µm diameter is
ten times smaller than the lateral extend of a single lattice, we can con-
duct several measurements on a lattice before moving on to the next one
displaced in x and y. This checkerboard arrangement additionally serves
as a reference when acquiring the wedge height-profile in the profilometer
as a scan along x will result in visible height dips of about 30 nm from the
height difference caused by the gap of 50µm between lattices. We plot the
measured reflectivity for two different lattice pitches in Fig. 5.8, correspond-
ing to very dense (150 nm pitch), and a more dilute (300 nm pitch) lattice.
The bare split ring resonance is at around 1.6 × 1015 rad s−1, i.e., around
1100 nm. This resonance wavelength is consistent with reports by de Hoogh
et al. [13] who reported that the resonance of such small 100 nm sized split
rings on glass shifts from 825 to 1100 nm upon capping with a high index
polymer (n = 1.65 similar to S1613). Evidently, for the dilute lattice we re-
trieve a high overall reflectivity, with a set of deep minima around the single
particle resonance qualitatively similar to the calculated results in Fig. 5.2
and Fig. 5.4. For the dense lattice, the reflectivity is quite different, with
strong contrast across the entire spectral bandwidth, and clearly asymmet-
ric fringes that flip asymmetry at the single particle resonance. This result
is consistent with Fig. 5.4. We note that the actual densities in the experi-
ment for the two cases are higher than in the calculation. We attribute this
to the fact that the split rings in the experiment are shifted to the blue in
resonance frequency as well as being less strongly scattering than assumed
for the scatterers in the calculation. While being qualitatively consistent
with the calculations, the measurements also point at the large difficulties
in extracting the backaction effect. First, it is difficult to obtain an artifact-
free measurement set since the plot is built up from spectral slices that are
taken on physically different arrays. Secondly, owing to chromatic artifacts
of microscope optics in this wavelength range, it would be very difficult to
collect data of sufficient quality to actually retrieve the reflectivity of the
lattice per se.
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Figure 5.8: Experimental reflectivity data for split ring lattices with a pitch
of (a) 150 nm and (b) 300 nm as a function of angular frequency and lattice-
mirror separation. The reflectivity dips in (b) are appearing at the lattice
resonance frequency around 1.5× 1015 rad s−1 dissected by regions of high
reflectivity. For the denser lattice (a), the low reflectivity features are highly
frequency dispersive and shifted to higher frequency.

5.5 Conclusion

To conclude, we have derived a calculation method to predict the optical
response of metasurfaces and particle gratings held in front of a silver inter-
face. We have applied this model to study the backaction of the interface
on the polarizability of the lattice. We conclude that while a Fabry-Pérot
which takes as input the reflectivities of the substrate and lattice alone
provides a reasonably satisfactory description of the joint optical response,
in fact there is a surprisingly large effect of the substrate on the particle
polarizability. This could significantly impact the result of such composite
systems in the near field.

Finally, we note that the calculation method is easily extended to lat-
tices embedded in any arbitrary stratified system. Indeed, for any stratified
system the Green function is analytically known and always takes the form
of the expression in square brackets in Eq. 5.5, albeit with different ten-
sorial prefactor M. However, the key point is that the difficult parallel
wave vector integral always reduces to a discrete sum that is easy to eval-
uate. Thereby, we expect that this model will be of large utility not just
for metasurface physics, but also for predicting the physics of diffractive
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5.5 Conclusion

outcoupling structures patterned on and in LEDs and remote phosphors to
improve light generation and directional extraction. Importantly, our model
is not restricted to non-diffractive systems, nor to any particular incident k‖.
Thereby, it contains the full richness of grating diffraction, distributed feed-
back, and hybridization of lattice modes with the dispersion of any guided
modes in the stratified system.
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Summary

Nanoscale structures which allow for control of the emission intensity, direc-
tionality and wavelength tunability are essential for integrated optical in-
formation processing, as well as improved light emitting diodes, solar cells,
and optical detectors. ‘On-chip’ realizations ask emitters to be incorporable
with state-of-the-art processes found in today’s semiconductor industry.
Therefore, researchers in the field of nanophotonics are focusing on the
creation of stable light sources, lossless waveguides, and highly-directional
and wavelength-selective antennas. This research on the one hand requires
a good understanding of ‘the source’, i.e., photophysics of electronic transi-
tions and fluorophores, and on the other hand excellent control of light in
passive structures through nanostructuring dielectrics and metals.

The wavelength of visible light dictates the typical length scale on which
aforementioned building blocks need to be realized in an effective, reliable
manner. In Chapter 2, we present a fabrication process based on gray-tone
UV-lithography which allows for dielectric material to be realized in a wedge
shape. Overall dimensions and surface quality of this dielectric wedge fulfill
the requirements to conduct experiments following the Drexhage scheme
which is a key experimental approach to calibrate photophysics of sources.
Here, one is required to offer a change in the local density of photonic states
(LDOS) by controlling the distance of photon sources, e.g., fluorophores or
quantum dots emitting at the visible wavelength λ, to surfaces such as plain
metallic mirrors or metamaterial lattices on to about λ/20. This level of
accuracy allows us to measure distance dependent total decay rates of an
ensemble of emitters. The total decay rate is comprised of a radiative and
nonradiative part. Only the radiative decay rate is affected by a change
in LDOS. As we demonstrate, our realization is feasible for effective quan-
tification and comparison of the intrinsic quantum efficiency of different
ensembles of emitters.
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As fluorescence is usually dominated by electric dipole transition, the at-
tributed LDOS is, strictly speaking, the local density of electric field vacuum
fluctuations. This electric field LDOS also governs the radiative damping of
purely electrically polarizable scatterers (plasmonic particles). Recently, in-
vestigation of magnetic transition dipoles in rare earth elements allowed for
the observation of a magnetic field LDOS. That both electric and magnetic
field LDOS can be of equal importance has been discussed in the field of
thermal radiation. One archetypical object that features an electric as well
as a ‘spoof’ magnetic response (due to its geometric shape) to driving fields
is the split ring resonator (SRR)—a metamaterial building block. Such a
SRR is well described as a magnetoelectric point scatterer featuring a 6× 6
polarizability tensor. To quantify the strength of the electric, magnetic, and
magnetoelectric response one needs to gain knowledge of all polarizability
tensor components. Particularly, the cross-coupling terms are of special in-
terest to answer the question as to how induced electric dipole moments due
to driving with an electric field can in turn induce magnetic dipole moments
in such a scatterer.

Following the Drexhage scheme, we examine the radiative linewidth of
a SRR when varying the distance to an interface in Chapter 3. A change
in the backaction of the radiated field by the scatterer on itself leads to a
linewidth change and can thus serve as a calibration probe of the complex
polarizability tensor. Radiation of magnetic field from an electric dipole
that back-acts on a magnetic dipole is introduced via the concept of mag-
netoelectric LDOS. An experimentally accessible quantity is the extinction
cross section linewidth as determined from a scattering experiment. For a
magnetoelectric scatterer resonant in the microwave regime we simulate a
Drexhage experiment and indeed retrieve a linewidth change that does not
follow purely electric or purely magnetic LDOS indicating strong magneto-
electric cross-coupling.

The promise of unprecedented level of control of reflection, transmission
and refraction of light by a planar structure composed of subwavelength
scatterers that combine a strong electric and magnetic response to electro-
magnetic fields is the driving force in the field of metasurfaces. Any new
metasurface design of, e.g., phase masks or phased array antennas requires
knowledge of how exactly the collective response of two-dimensional peri-
odic arrangements of (supposedly well understood) single building blocks
comes about. Chapter 4 offers an analytical theory based on Ewald lat-
tice summation, capable of predicting the response of diffractive as well
as non-diffractive 2D periodic lattices of building blocks described within a
magnetoelectric point dipole model. We show in experiment and theory how
the magnetic dipole response of SRR lattices can be revealed by comparing
diffraction order intensities of a lattice formed by a trivial unit cell (single-
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atomic base) to a complex unit cell (two-atomic base) with alternating split
ring orientation. Furthermore, we demonstrate that our calculation method
not only accounts for all complex self-consistent retarded interactions in one
2D plane, but also transverse to stacked planes which form a finite 3D slab.
Calculated reflection and transmission amplitudes can serve as input for re-
trieval algorithms that try to assign effective medium parameters for such
stacked planes. Exactly how these effective parameters emerge and to what
extend the spatial dispersion and bi-anisotropy is properly dealt with lies at
the heart of debate in effective medium theory. We report transmission and
diffraction experiments on split ring lattices. Firstly, these confirm well the
developed theory. Secondly, they provide direct evidence for the magnetic
nature of split rings and point at a route to avoid undesirable bi-anisotropy.

In Chapter 3, we report how the change of the environment of a single
magneto-electric scatterer, e.g., by placing it in front of a mirror, affects the
particle’s polarizability which becomes separation dependent. Chapter 4
describes how periodic arrangements of magneto-electric scatterers cause a
renormalization of their respective polarizabilities due to multiple scattering
interaction with all other scatterers in the lattice. In our final Chapter 5,
we address how both renormalization processes manifest themselves in the
combined system of a lattice of polarizable particles above an interface. The
lattice-sum formalism together with the interface Green function approach
allows us to calculate the per-particle polarizability and extract reflection
and transmission coefficients. Therefore, it is possible to directly compare
our full analytical approach to a Fabry-Pérot model which treats the system
as a mirror geometrically separated from a second interface that features a
resonant response. By principle, the Fabry-Pérot model does not take near-
field effects into account as solely reflection and transmission coefficients
of substrate and lattice come into play. However, it provides a reasonably
satisfactory description of the joint optical response. The small residual
deviations can be converted back into a backaction effect in itself, however,
now as a backaction correction to lattice reflectivity. We project that the
notion that simple multilayer models do not describe metasurface stacks due
to backaction will be very important for future metamaterial applications.
Our analytical calculation method is extendable to lattices embedded in any
arbitrary stratified system. Furthermore it covers non-diffractive as well as
diffractive systems for arbitrary incident parallel wavevector relevant for,
e.g., optimizing outcoupling structures in and on LEDs, as well as incoupling
structures for solar cells.
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Samenvatting

Structuren op nanometer schaal maken het mogelijk de intensiteit, richting,
polarisatie, kleur, uitstraling, en absorptie van licht te manipuleren. Deze
controle van intensiteit, richting en golflengte van geëmiteerd licht is essen-
tieel voor de verwerking van optische informatie in gëıntegreerde circuits,
verbeterde licht emiterende dioden, zonnecellen en optische detectoren. ‘On-
chip’-oplossingen vragen naar nanoschaal lichtbronnen die integreerbaar zijn
in moderne procestechnologie van de hedendaagse halfgeleider industrie.
Om deze redenen ligt de focus voor onderzoekers in de nanofotonica op het
construeren van stabiele lichtbronnen, verliesvrije golfpijpen en richtings- en
golflengte-selectieve antennes. Dit onderzoeksgebied vraagd enerzijds naar
een goed begrip van ‘de lichtbron’, dwz. fotofysica van elektronische transi-
ties in fluoroforen, zoals organische molekulen, halfgeleider quantum dots en
zeldzame aard-ionen. Anderzijds is excellente controle van licht in passieve
structuren door nanostructureerde dilektrica en metalen van noodzaak.

De golflengte van zichtbaar licht bepaalt de typische lengteschaal op
welke de vooraf genoemde ‘bouwstenen’ op een effectieve, herhaalbare manier
gerealiseerd moeten worden. In hoofdstuk 2 presenteren wij een fabricage
procedure gebaseerd op grijs-waarde UV-litographie die het maken van
dilektrische materialen met een wig-geometrie mogelijk maakt. De dimen-
sies en oppervlakte-kwaliteit van deze diëlektrische wig voldoet aan de eisen
om experimenten naar het klassieke ontwerp van Drexhage uit te kunnen
voeren—een sleutel-experiment als het om het kalibreren van lichtbronnen
gaat. In dit geval wordt voor een verandering van de lokale fotonische
toestandsdichtheid (in het Engels: local density of states, oftewel LDOS)
gezorgd door de afstand van een lichtbron, bv. fluorescente molekulen of
quantum dots, die licht met de golflengte λ emitteren naar een oppervlak
zoals metallische spiegels of metamateriaal roosters op λ/20 nauwkeurig in
te stellen. Deze nauwkeurigheid is genoeg om afstandsafhankelijk de fluores-
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cente levensduur van een ensemble van bronnen te meten. Deze levensduur
is samengesteld uit een stralend en niet-stralend deel. Alleen het stralende
deel wordt door een verandering in de LDOS bëınvloed. We laten zien dat
onze ‘manier’ geschikt is voor het kwantificeren en vergelijken van intrinsieke
quantum efficiënties van verschillende ensembles van lichtbronnen.

Omdat fluorescentie normaalgesproken gedomineerd wordt door elek-
trische dipool transities, is de bijhorende LDOS specifiek de locale toes-
tandsdichtheid van vacuum fluctuaties van het elektrische veld. Dit elek-
trische veld bepaalt niet alleen de fluorescente levensduur van quantum
mechanische overgangen, maar ook de stralende demping van puur elek-
trisch polarizeerbare verstrooiers. Een klassiek voorbeeld wordt gegeven
door plasmonische deeltjes, goud of zilver nanodeeltjes met een sterke ver-
strooingsresonantie in het zichtbaar. Niet lang geleden leverde het onder-
zoek van magnetische dipoolovergangen in zeldzame aarden de observatie
van magnetisch veld LDOS op. Dat elektrisch en magnetisch veld LDOS
gelijkwaardige invloed op een fenomeen kunnen hebben werd ook in het
vakgebied van thermische straling bediscussieerd. Een van de typische ob-
jecten die zowel elektrische als ook een effectieve (‘spoof’) magnetische re-
actie (door de geometrische vorm) op drijvende velden vertonen is de split
ring resonator (SRR)—een basis element voor zogenoemde metamaterialen.
Een SRR kan als magnetoelektrische punt-verstrooier met een 6× 6 polar-
izeerbarheidstensor omschreven worden. Om de sterkte van de elektrische,
magnetische en magnetoelektrische reactie te bepalen, is de kennis van alle
tensor componenten noodzakelijk. Voornamelijk de kruiskoppelingsterm is
interessant om de vraag te beantwoorden op welke manier elektrische dipool
momenten (gëınduceerd door elektrische aandrijvende velden) magnetische
dipool momenten in dit soort verstrooier kunnen induceren.

Het Drexhage idee volgend bepalen we de stralende lijnbreedte van een
SRR onder variatie van de afstand naar een grensvlak in hoofdstuk 3. Een
verandering in de terugkoppeling (‘back-action’) van het afgestraalde veld
dat de verstrooier zelf uitzendt en weer terugkeert naar de strooier veroorza-
akt een verandering in lijnbreedte en kan op deze manier als calibratrie
voor de complexe polarizeerbaarheidstensor dienen. Afstraling van mag-
netische velden van een elektrische dipool die weer terugwerken op een
magnetische dipool wordt door het concept van magnetoelektrische LDOS
gëıntroduceerd. Een experimenteel toegankelijke grootte is de extinctie
cross-sectie lijnbreedte zoals door verstrooingsexperimenten bepaald. Voor
een magnetoelektrische verstrooier resonant in het microgolf regime simuleren
wij een Drexhage experiment en vinden inderdaad een lijnbreedte afhanke-
lijkheid die niet de puur elektrische of puur magnetische LDOS volgt—
indicatief voor een sterke magnetoelektrische kruiskoppeling.

De belofte van een ongekend niveau van controle voor reflectie, trans-
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missie en refractie van licht door een vlakke structuur samengesteld door
sub-golflengte verstrooiers die gecombineerd een sterke elektrische en mag-
netische reactie op elektromagnetische velden tonen is het doel van meta-
oppervlakken. Ieder nieuw meta-oppervlak design, bv. fase maskers of
‘phased array’ antennes vraagt om kennis van het tot stand komen van
de collective reactie van twee-dimensionale periodieke arrangementen van
(goed begrepen) enkele bouwstenen.

Hoofdstuk 4 introduceert een analytische theorie gebaseerd op Ewald
rooster sommen die geschikt is om de respons van zowel diffractieve als
ook niet-diffractieve 2D-periodieke roosters van bouwstenen omschreven in
een magnetoelektrisch punt dipool model te voorspellen. We laten zowel
experimenteel als ook theoretisch zien hoe de magnetische dipool respons
van SRR roosters te voorschijn kan komen door het vergelijken van diffrac-
tie orde intensiteiten van een rooster gebaseerd op een triviale eenheidscell
(enkel-atoom basis) met een rooster gebaseerd op een complexe eenheidscell
(twee-atoom basis) met alternerende split ring orientatie. Verder laten wij
zien dat onze berekeningsmethode niet alleen alle complexe zelfconsistente
geretardeerde interacties in één 2D vlak meetelt, maar ook transversaal
op gestapelde vlakken die met elkaar uiteindelijke een 3D volume vormen.
Berekende reflectie en transmissie amplitudes kunnen als uitgangspunt voor
terugreken-algoritmes dienen die proberen om effectieve materiaal parame-
ters toe te kennen aan dit soort gestapelde vlakken die een metamateriaal
vormen. Op welke manier deze effectieve parameters precies verschijnen
en tot hoe ver er met de ruimtelijke dispersie en bi-anisotropie rekening
gehouden moet worden is een kernpunt van het debat in de theorie van effec-
tieve medium beschrijvingen van metamaterialen. Wij stellen transmissie-
en diffractie-experimenten met split ring roosters voor en stellen vast dat
deze ten eerste de ontwikkelde theorie bevestigen en ten tweede een direkt
bewijs voor de magnetische natuur van split rings leveren en verder laten
zien op welke manier ongewenste bi-anisotropie is te voorkomen.

In hoofdstuk 3 laten wij zien hoe de verandering van de omgeving van
een enkel magnetoelektrische verstrooier, b.v. door hem voor een spiegel te
plaatsen, zijn polariseerbaarheid afstandsafhankelijk maakt. Hoofdstuk 4
legt uit hoe de individuele polariseerbaarheid van magnetoelektrische ver-
strooiers in periodieke roosters gerenormaliseerd wordt door multiple ver-
strooingsinteractie met alle andere verstrooiers in het rooster. In het laat-
ste hoofdstuk 5 bespreken wij hoe beide renormalisatie stappen in een
gecombineerd systeem—een rooster van polariseerbare deeltjes boven een
grensvlak—optreden. Het rooster-som formalisme samen met de grensvlak-
Green-functie benadering maakt het mogelijk de enkel-deeltje polariseer-
baarheid te berekenen en reflectie en transmissie coefficienten te extraheren.
Daardoor zijn wij in staat om onze volledig analytische, zelfconsistente be-
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nadering te vergelijken met een simpel Fabry-Pérot model dat het systeem
beschouwt als een spiegel nabij een gedeeltelijk transparant grensvlak met
resonante respons. Het Fabry-Pérot model houdt per definitie geen rekening
met respons renormalisatie door ‘backaction’ omdat enkel reflectie en trans-
missie coefficienten van het substraat en het rooster een rol spelen. Nochtans
geeft het een bevredigende benadering van de gecombineerde optische re-
spons. De kleine overgeblevene afwijkingen kunnen in een ‘back-action’
effect samengevat worden, in de vorm van een correctie van de reflectie
van het rooster. Wij voorspellen dat de conclusie dat simpele multi-laag
modellen niet strikt voldoende zijn om stapels van meta-oppervlakken te
omschrijven van groot belang zal zijn voor het ontwerpen van toekomstige
metamateriaal toepassingen. Onze analytische berekening is uitbreidbaar
voor roosters in een willekeurig gelaagd systeem, relevant voor bijvoorbeeld
uitkoppelings-structuren in en op LEDs, als ook inkoppelings-structuren
voor zonnecellen.
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