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Introduction

Mechanical oscillators have long been used for measurement. Two of the most
basic examples are pendulum clocks, for timekeeping, and tuning forks, for mea-
suring frequency. This is possible because of the high mechanical quality factors
Q that are attainable, creating stable timekeepers and clean tones. The frequency,
amplitude and phase of a mechanical oscillator can be perturbed by coupling to
the environment. In some cases, this is an unwanted effect. But it also means that
the mechanical oscillator can be used a sensor: detecting forces, displacements,
masses and accelerations with high sensitivity. By reading out the state of the mech-
anical oscillator, these external influences can be detected. Nowadays, mechanical
resonators with masses ranging from the 10726 kg of a single trapped ion to the
kilogram-scale mirrors in gravitational wave detectors are used, with frequencies
ranging from ~Hz up to GHz.

To measure small perturbations, using smaller mechanical oscillators is beni-
ficial: as their own mass goes down, their susceptibility to perturbing forces in-
creases. Itis for this reason that over the past decades micro-electromechanical sys-
tems (MEMS) have been scaled down to nano-electromechanical systems (NEMS)
[1, 2].

To create a full sensor, it is not enough to have the oscillator sense the environ-
ment: its change in oscillation must also be ‘transduced’ to a measurable signal.
The motion of MEMS and NEMS can be transduced using a variety of techniques,
for instance capacitively, magnetomotively, or piezoresistively. As the devices be-
come smaller and the measurements more sensitive, the limitations of these elec-
trical readout methods are becoming more and more severe, as electrical noise
limits come into play.



1 Introduction

Optical transduction has been shown to offer benefits over electrical transduc-
tion: quantum-limited optical sources (low-noise lasers) and detection techniques
(interferometry) [3] are readily available, allowing new levels of sensitivity.

The most simple detection of motion using light is by reflecting photons from a
mechanical oscillator, as sketched in Figure 1.1a. If the oscillator moves by 6x, the
phase difference d¢ of the reflected beam will be

8¢ =k-bx, (1.1)

where k = w/c is the light’s wavevector. Because the change in position 6x is typi-
cally small compared to the wavelength, the change in phase is also small. A solu-
tion is to use a reflecting mechanical oscillator as one of the mirrors in a Fabry-Pérot
cavity, as sketched in Figure 1.1b, boosting the phase change by having the photon
make multiple passes through the cavity:

5 = %m.sx, (1.2)

where % is the cavity finesse. The finesse is defined as & = Awrsr/«, with Awpsg =
mc/ L the cavity’s free spectral range, where L is the length of the cavity and « is the
loss rate. We now introduce the optomechanical frequency shift

_ 0w,

©oox’
with o, the cavity resonance frequency. For a Fabry-Pérot cavity, with G = —w./L,
we rewrite the phase shift as

(1.3)

G
Sp=4-"0x, (1.4)

expressing the transduced phase change as a change in the cavity resonance fre-
quency.

Because photons carry momentum, they can, besides measuring the position
of the mechanical oscillator, also exert a force on the oscillator. This leads to vari-
ous phenomena that can be discerned in a cavity optomechanical system, such as
optical bistability [4], the optical spring effect [5, 6], and optical cooling [7, 8], which
can be used to reach thermal occupations close to the quantum regime [9-11].

There are many examples of Fabry-Pérot cavities with movable end mirrors,
showing various implementations of the moving mirror: coated cantilevers [8, 12,
13], micropillars [14], mirror pads on cantilevers [15], and photonic crystal slabs
(16, 17].

Another implementation is to use internal mechanical modes of deformable
guided wave optical cavities, guiding light around the rim of a microdisk [18, 19],
microtoroid [11, 20-22], or microsphere [23, 24].

However, for all these systems, the mechanical oscillator is much larger than the
(optical) wavelength. Scaling down the oscillator reduces its mass and increases
its frequency, which can improve sensitivity. To measure the motion of nanome-
chanical oscillators, where one or more dimensions of the oscillator are smaller



(a) (b) ()
Q Q Wl O

Figure 1.1: Schematic of different optomechanical interactions. (a): mo-
mentum transfer on reflection, (b): Fabry-Pérot optomechanical cavity,
(c): plasmonic metal-insulator-metal cavity.

than the wavelength, such a mechanical oscillator can be introduced into a Fabry-
Pérot cavity, modifying the cavity’s optical properties either through dispersion [25]
or dissipation [26]. One realization is to introduce the mechanical object directly
into the (free space) cavity, using for instance silicon nitride (SiN) membranes [25]
or carbon nanotubes [27] as mechanical element. Another implementation is to
place the mechanical oscillator in the optical near-field of a guided mode opti-
cal microresonator, for instance using a SiN string near a microtoroid [28] or two
closely spaced microdisk resonators [29-31]. A third approach in this category is to
use optically levitated particles as mechanical resonators, allowing very low masses
and strongly suppressed clamping losses. This has been shown with micron-sized
[32, 33] and submicron [34] silica dielectric particles in an optical dipole trap in a
high-vacuum chamber.

These motion-in-a-cavity systems all suffer from the imperfect overlap between
the optical and mechanical modes, which leads to modest optomechanical coup-
ling. This modest coupling is compensated by using high-Q optical resonators.
Stronger mode overlap, and therefore stronger coupling, can be obtained in
photonic crystal cavities. By engineering photonic crystal cavities, the optical and
mechanical mode can be co-localized, as has been shown for 1-dimensional [35]
and 2-dimensional [36, 37] cavities, which are also known as ‘optomechanical
crystals’.

Finally, cavity-free implementations have also been demonstrated, with either
a deformable waveguide close to a substrate or two waveguides close to each other
[38-42], using the strong coupling from exponentially decaying near-fields. One of
the advantages of not using a cavity is an increase in optical bandwidth, due to not
having a resonant structure. A disadvantage of these systems is that they typically
require a long interaction length.

In this work, we will use plasmonic resonances as an optical cavity for the trans-
duction of mechanical motion (Figure 1.1c). As we will show, the near-field con-
finement in plasmonic structures can be very high, allowing very high coupling
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between motion and light while using a subwavelength optical element. We will use
multi-element plasmonic resonances, and place at least one element on a mech-
anical oscillator. Motion of the oscillator then changes the plasmonic configura-
tion, thus changing the optical properties of the cavity.

The small size of plasmonic resonators allows high mode overlap with highly
confined mechanical modes. At the same time, the free-space addressability of
localized surface plasmon resonances allows the use of simple optical elements to
couple light to and from the cavity, without having to resort to for instance nano-
scale positioning of tapered optical fibers, as is necessary for many photonic crystal
cavity and microcavity optomechanical implementations. The simple addressabil-
ity also allows parallel transduction of multiple oscillators in a subwavelength area
with a single laser beam, which is challenging with many other implementations.

1.1 Plasmonics for transduction of motion

In this thesis, we use plasmonics an an intrinsically sub-wavelength optical tech-
nique to probe mechanical motion. An interface between a metal and a dielectric
supports surface plasmon polaritons, which are evanescent waves that are strongly
coupled to coherent oscillations of the free electrons of the metal near the surface.

On a flat interface between a metal and a dielectric (Figure 1.2a), a propagating
surface plasmon polariton is supported, with dispersion relation [43]

ke = Koy | —2, (L5)
e+em

where €, is the dielectric constant for the surrounding dielectric, € is the dielectric
constant for the metal, and ky is the free-space wavevector. We express the dielec-
tric constant for the metal using the Drude model for a free-electron gas [44],

2
Wy

my (1.6)

€Drude(®) =1 -
where wy, is the plasma frequency and I' is the damping rate, which is due to
electron-electron and electron-phonon scattering.

These surface plasmons are characterized by exponentially decaying optical
near-fields extending into the dielectric, making them very sensitive to changes in
€m- By placing a mechanical oscillator in the surface plasmon near-field, we can
change the surface plasmon’s properties due to the mechanical oscillator’s vibra-
tions.

A surface plasmon on a (semi-infinite) surface cannot couple to free space ra-
diation due to the momentum mismatch between ky and k,. When the surface
plasmon geometry is no longer infinite, ky is not conserved and the plasmon can
couple to free space radiation. In a finite-sized system, this creates particle plas-
mon resonances, of which the most basic is the dipole mode of a metal nanopar-
ticle (Figure 1.2b). For a spherical particle much smaller than the wavelength, the
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Figure 1.2: Sketch of different plasmonic geometries. (a): Metal-insulator
surface plasmon mode. (b): Particle plasmon, showing charge distribution.
(c): Metal-insulator-metal plasmon modes, showing the symmetric mode
profile. (d): Dimer particle plasmon, showing the charge distribution for the
bonding mode. (e): Field distribution in a truncated metal-insulator-metal
waveguide. (f): Dimer particle plasmon, showing the charge distribution for
the anti-bonding mode.

polarizability can be found to be [45]

3 €E—€np

a =4mnega (1.7)

€+2e,

where a is the radius of the particle.

The near-field sensitivity of surface plasmons has found wide application in
sensing, both using surface plasmons [46] and particle plasmons [47-50]. The near-
field intensity enhancement around particle plasmons has also found other appli-
cations, for instance for fluorescence enhancement [51], in higher harmonic gen-
eration [52], creating steam [53], or for plasmonic welding [54].

The high field enhancements and high gradients near plasmonic particles lead
to strong optical gradient forces [55, 56], leading to the application of plasmonics
in trapping dielectric particles, first of micron scale [57], then 100’s of nanometer
scale [58], and finally particles of 20- [59] and 12-nm diameter [60]. This force
enhancement implies that plasmonics could also be used not only for transducing
mechanical motion but also to control mechanical motion.

In this thesis, we will use coupled surface plasmons [61] for sensing displace-
ments by displacing two plasmonic elements in each other’s near-field. A metal-
insulator (MI) plasmon propagating on a surface can be changed to a coupled con-
figuration by bringing a second metal surface into its near-field. This creates a
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metal-insulator-metal (MIM) plasmon (Figure 1.2c), whose propagation is strongly
dependent on the spacing between the plates [62]. Again, there are two modes,
this time usually referred to as the symmetric and antisymmetric mode. While the
antisymmetric mode can be tuned to show negative refraction [63], we will focus
on the symmetric mode, which has a higher fraction of its field intensity in the
dielectric, leading to lower absorption losses in the metal. In Chapters 4 and 5,
we study very short MIM waveguides. This creates a more complicated geometry,
where reflections from the interfaces between the MIM and the air on both sides
play a role, as sketched in Figure 1.2e. This truncation of the MIM then leads to the
creation of localized resonances.

In an analogous way, the dipolar particle plasmon resonance can be converted
to a coupled mode by placing a second particle nearby, creating a dimer antenna,
as sketched in Figure 1.2d and f. Due to the evanescently decaying field around
each of these particles, the coupled system is very sensitive to the displacement of
the particles along their interparticle axis [64-66]. The individual plasmonic modes
of the particles hybridize, forming a bright, dipolar, bonding mode (panel d), and a
dark, quadrupolar, antibonding mode (panel f).

Multi-element plasmonic antennas of the basic geometries discussed above
have found application in position sensing, using both particle plasmons [67] and
metal-insulator-metal waveguides [62].

As discussed earlier, reducing the size of a mechanical oscillator can increase
the sensitivity. However, for many (cavity) optomechanical implementations, the
mode mismatch between the optical and mechanical modes then leads to a re-
duction in the transduction efficiency. The small optical mode volume of the plas-
monic resonators we study here can improve this: by increasing the mode overlap,
good coupling can still be achieved even for the smallest mechanical oscillators,
and even with very modest quality factors.

1.2 This thesis

In this thesis, we study two types of plasmonic transducers for mechanical motion:
metal-insulator-metal plasmonic waveguides between mechanical nanobeams,
and dimer antennas with the two elements each placed on separate nanobeams,
as shown in Figure 1.3a and b respectively.

In the first geometry, the entire beam is coated in a layer of gold. When mea-
suring in transmission, this creates an intrinsic darkfield geometry, improving the
signal-to-noise ratio, though at the cost of increased oscillator mass. These plas-
monic transducers will be studied in Chapters 4 and 5. An SEM image of a typical
double-beam plasmonic mechanical transducer as studied in Chapter 4 is shown
in Figure 1.3a.

In the second, antenna, geometry, we use a plasmonic dimer antenna for trans-
duction of mechanical motion, with Figure 1.3b showing an SEM image of a dimer
antenna on a nanobeam. This implementation has the advantage of using far less
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Figure 1.3: SEM micrographs of the structures studied in this thesis.
(a): Mechanical nanobeams suspended in a Si3N4 membrane, coated with
gold, with a metal-insulator-metal waveguide in the gap between the two
beams. (b): Plasmonic coupled dimer antenna on freestanding nanobeams.

metal, allowing for smaller and lighter mechanical oscillators. This geometry will
be studied in Chapter 6.

In Chapter 2, we introduce a scattering model to show how plasmonic scatterers
transduce mechanical motion to light fields. We also calculate the thermal occupa-
tion of mechanical beams using Euler-Bernoulli beam theory. These derivations
are used to calculate the attainable measurement sensitivities.

Chapter 3 will discuss the experimental setup to measure plasmonic motion
transduction and the fabrication techniques used to create the structures we will
study.






Principles of plasmonic transduction

In this chapter, we will model the interaction of focused laser beams with plas-
monic antennas to determine the experimental observables of scattering and ex-
tinction. More importantly in the context of motion transduction, we will deter-
mine the change in scattering and extinction with changes in mechanical configu-
ration. Therefore, it is logical to use a scattering model to describe the interaction
of light and matter.

First, we review the mechanical portion of our plasmo-mechanical transducer,
using Euler-Bernoulli theory to derive expressions for the eigenfrequencies and
mode-shapes of the doubly clamped beams in our experimental structures. We
then use the fluctuation-dissipation theorem to describe the thermal displacement
fluctuations of the mechanical modes.

Next, we determine the polarizability a of two coupled dipoles and discuss the
radiation corrections to the electrostatic model. We then determine Im(a) and
|a|2, with which extinction and scattering, respectively, are proportional, and find
expressions for the change in Im(a) and |a|? with changes 6x in mechanical con-
figuration. We study the interaction of such a system with a focused laser beam, to

find the transmittance,
P out

Pi '
with Pj, the input power and Py, the transmitted power. From 9~ and the depen-
dence of Im(a) and || on changes dx we will determine the change in transmit-
tance %. We include input- and output polarizers in this model, which we will use
to study a crossed-polarizer geometry, which for some scattering parameters can
be used to improve signal-to-noise ratios.

g

2.1)
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Figure 2.1: Sketch of beam geometry indicating relevant parameters. L:
beam length, v(x): displacement.

We illustrate the attainable measurement sensitivity with this plasmonic trans-
duction scheme by considering two systems with mechanical properties that have
been demonstrated by other groups. We also adapt this model to study transduc-
tion of motion by plasmonic metal-insulator-metal geometries and compare this
to motion transduction by a geometric shadow geometry, which is relevant for the
experimental structures studied in Chapters 4 and 5.

2.1 Mechanical modes of doubly clamped beams

In this thesis, the mechanical modes we study are those of silicon nitride beams,
sometimes coated with a layer of metal. These beams have a large ratio of thickness
in the direction of motion to length, such that we have to take their flexural stiffness
into account [68, 69]. For the boundary conditions we assume that the beams are
doubly clamped: the endpoints are constrained to have no displacement and no
bending®. In the following, we will discuss the mechanical modes of these systems.
We will derive the eigenfrequencies for beams governed by flexural stiffness, and
show the modifications to include tensile stress and bilayer beams.

Following the derivation by Weaver, Timoshenko and Young [69], we start from
the equation of motion for a beam:
o*v(  0*v\ AOZ v 0y
6x2( 6x2)_ ot?’ (2.2)
with displacement v(x, t), Young’s modulus E, moment of inertia I, mass density
p and cross section A = w x h. If the beam is prismatic, i.e. has a constant cross
section along its length, Young’s modulus and moment of inertia are independent
of x, reducing the equation to

o AP i 2.3)
oxt P2 '
We rewrite this as
v 1 4%
=0 (2.4)

oxt azorz

*In Section 5.3, we will discuss the validity of this assumption for our experimental geometry, using
finite-element simulations of the full geometry.

10



2.1 Mechanical modes of doubly clamped beams

where we define a = %. If the beam is vibrating in an eigenmode, we can write
v(x, ) = X(x)(AcosQt + BsinQt). Substituting this in Equation (2.4) gives
d*X  o?

o aX=0, (2.5)

and by defining k* = ‘;Lj, we obtain

d*x

o KXx=o. (2.6)
If we let X = e™*, we obtain

et —khH =0, 2.7)

which has solutions n = (k, —k, —ik, +ik). The general solution can be written as

X =Cj(coskx + coshkx) + Co(cos kx — cosh kx)
+ C3(sin kx + sinh kx) + C4(sin kx — sinh kx) (2.8)

The equation of motion being studied here is a fourth-order differential equation,
and therefore requires four boundary conditions. For a doubly clamped beam, the
beam displacement and bending at the endpoints are fixed to 0:

dx dXx
= 0) X|x:L = Ov T

Xlx=0=0, —_—
lx=o dx x=0 dx x=L

=0. (2.9)

The first two boundary conditions imply that C; = C3 = 0. From the third and fourth
boundary conditions we then obtain the coupled equations

Cy(coskL—coshkL) + C4(sinkL —sinh kL) =0 (2.10)
—Cy(sinkL +sinh kL) + C4(cos kL —cosh kL) =0. (2.11)

The determinant of this problem is
cos(kL)cosh(kL)—1=0. (2.12)

The zeros of this determinant can be found numerically, and determine values for
k. Defining 8, = k,,/ L, we show these solutions in Table 2.1.

. . - 2 . .
Using our previous definition of k* = %, the eigenfrequencies are

_Pu |EL

= . 2.13
Ay (2.13)

The g values determine the frequency spacing between the different modes. Note
that the eigenfrequencies of a doubly clamped beam are not harmonically spaced.

11



2 Principles of plasmonic transduction

mode 0 1 2 3

Bn 4.73004 7.8532 10.9956  14.1372
Co,n/Cap 1.01781 0.999223 1.00003 0.999999
fn,in (MHz) 14.2454 39.2679 76.9808 127.253
fn,in MHz) (FEM) 14.1988 38.8893  75.5933  123.644
Sfn,out MHz) 2.84907 7.85358 15.3962  25.4506

fnout MHz) (FEM) 2.87522  7.97144 15.7509 26.3022

Table 2.1: Mode numbers for the first four modes of a doubly clamped
flexural beam, showing B and the ratio Co/C4. We also show, for a
Si3N4 beam with parameters as given in Table 2.2, the in-plane and out-of-
plane eigenfrequencies in MHz. These eigenfrequencies are both calculated,
using Equation (2.13), and extracted from FEM simulations.

1.0

0.5

0.0

X(X)

-0.5

-1.0k . . . . .
00 02 04 06 08 1.0
X/L

Figure 2.2: Mode shapes for the first four eigenmodes of a doubly clamped
beam, from Equation (2.8) and with parameters f;, and Cz ;,/Cy,, from
Table 2.1, with the maximum mode amplitude max(Xj; (x)) normalized to 1.

silicon nitride  gold

Young’s modulus E 250 GPa 70 GPa
density p 3100 kg/m3 19300 kg/m3
thickness h  50nm 100 nm
width w 500 nm 500 nm
length L 18um 18 pm

Table 2.2: Parameters for silicon nitride and gold beams used in this
section.

12



2.1 Mechanical modes of doubly clamped beams

Again using the boundary conditions for a doubly clamped beam given in Equa-
tion (2.9) we can solve for Cy ,,/Cy,,. This parameter determines the shape of the
eigenmodes. We find the values in shown in Table 2.1 by solving

dX(L)
=0.
dx

(2.14)

The resulting mode shapes are plotted in Figure 2.2.

Using relevant experimental parameters, which we show in Table 2.2, we
can calculate the in-plane and out-of-plane eigenfrequencies for silicon nitride
nanobeams. These frequencies are shown in Table 2.1, together with values ex-
tracted from FEM simulations with identical geometrical and material parameters.

The values extracted from FEM are slightly different than the analytical results,
with FEM underestimating the in-plane eigenfrequency and overestimating the
out-of-plane eigenfrequency by less than 1%. We attribute this difference to
inaccuracies in meshing the beam, mainly around the clamping points.

2.1.1 Effective mass calculation

The maximum potential energy of a harmonic oscillator is given by

1 1
Upot,max = 5 kvZ .. = 5 MeQ2 V2 (2.15)

where the spring constant is determined by Q2, = m%ﬁ and vy is the oscillator’s
maximum displacement. For the doubly clamped beams under consideration here,
the maximum displacement is not constant along the beam: it is determined by the
mode profile X(x). We account for this by introducing the effective mass mg [70,
71]. We integrate the potential energy over the volume elements dV of the beam,
normalized to the displacement at the center, as this is where we will generally

probe the motion [72]:
1 L 2 21 2 2
Upot = EQm dVpQ,X(x) = Emefom max (X (x))”. (2.16)
0

The effective mass for the fundamental mode is then, with the maximum displace-
ment max (X (x)) = X(L/2),

L (X (2]
= dVp——. 2.17
Mett f p[X(L/2)12 2.17)

Performing the integration for the fundamental mode, using the mode shape from
Equation (2.8) and the parameters from Table 2.1, we obtain:

Mefr = 0.39WhLP = 0.39Myppys, (2.18)

where mppys = whLp the physical mass of the beam.

13



2 Principles of plasmonic transduction

Frequency (MHz)

0 100 200 300 400 500
Stress (MPa)

Figure 2.3: Eigenfrequencies for in-plane (black) and out-of-plane (red)
mechanical modes of a silicon nitride beam. Dots are values extracted
from FEM simulations, lines are analytical calculations using Equation (2.22).
Parameters used are from Tables 2.1 and 2.2.

2.1.2 Flexural beams under the influence of axial ten-
sion

So far, we have only included flexural restoring forces. There can also be axial ten-
sion in a beam, causing an additional restoring force. This modifies the governing
differential equation as follows [73]:

d*x Sde
dx*  dx?
where S = 0 A is the tension in the beam, calculated as the axial stress ¢ times the
cross-sectional area A. Using Rayleigh’s method, equating the maximum kinetic
energy and the maximum potential energy in the beam, we can solve for the eigen-
frequencies of the beam:

EI = pAw?X, (2.19)

- L[l (X'W)dt oar? fy (X'()" dx
L\l ox@ds B} (x@)?dx )

(2.20)

where X = x/L, the (rescaled) position along the beam’s length, and the prime (')
denotes differentiation with respect to .

We can then find the leading order stress dependence of the frequency by filling
in the deflection function X(x) for a beam in the absence of stress, as given in
Equation (2.8), which we can rewrite for the fundamental mode (with g = ),

cosh By — cos B

X (%) =coshBox— X+
(X) = cosh foX — cos fox sinh fo = sin fy

(sin BoX — sinh B %), (2.21)

finding the frequency f:

fo L Bs | EI 1230012

= +—. 2.22
2n L2\ pwh pB; (2.22)
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2.2 Spectral density

We can rewrite this as a function of the unstressed frequency f;, shown in Equa-
tion (2.13), to emphasize the contribution of axial stress to the eigenfrequency:

ol?

FO)=fo\[1+ 3z

(2.23)
Figure 2.3 plots the resulting eigenfrequencies for a silicon nitride beam with pa-
rameters given in Table 2.2, and compares these analytical results with values ex-
tracted from FEM simulations. The agreement for the in-plane mode is very good.
However, for high stress we see that the FEM simulations predict a slightly lower
eigenfrequency than the analytical calculation. We attribute this to not having
enough mesh points in the out-of-plane direction in the FEM simulations, thereby
not modeling the geometry accurately enough. As the out-of-plane thickness is 10
times smaller than the the in-plane width, this direction is easily under-meshed.

2.1.3 Bilayer beams

In Chapters 4 and 5 we study beams made of silicon nitride covered with a layer
of gold. To model these bilayer beams, the values for the Young’s modulus, density
and stress must be replaced with effective parameters that represent the weighted
average of the two materials, each with cross-section area A;;, = wy, hpy:

_ ESi3N4 A813 Ny + EAU AAll

E, = (2.24)
AsisN, + Aau
Ny ASiaN, + 0ALA
peo= PSisNy ASisNg T PAu/1Au (2.25)
AsigN, + Aau
05iaN, AsiaN, + T aud,
.= SizNy 41Si3 Ny Au/iAu (2.26)

ASig Ny + AALI

as shown by Su et al. [74] and Bose et al. [75]. We use this to modify Equation (2.22),
and compare the result to values extracted from FEM simulations for a bilayer beam
in Figure 2.4, and observe a good match. Due to the added layer of gold, the eigen-
frequencies are lower when compared to the silicon-nitride-only beam eigenfre-
quencies shown in Figure 2.3.

2.2 Spectral density

To study the (very small) mechanical motion of the beams, and to determine the
sensitivity with which this can be done, it is useful to define noise spectral densities.
For areview of noise spectral densities, we refer to the appendices of Clerk et al. [76].

Wiener-Khinchin theorem

A measurement of an observable X(t) is typically performed during a finite time
T. The gated Fourier transform X7 (Q) of X(¢) respresents the spectral content of a
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2 Principles of plasmonic transduction
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Figure 2.4: Eigenfrequencies for in-plane (black) and out-of-plane (red)
mechanical modes of a bilayer silicon nitride and gold beam. Dots are
values extracted from FEM simulations. Lines are an analytical model using
Equation (2.22) with Equations (2.24)-(2.26). Parameters used are from
Tables 2.1 and 2.2.

single observed trace:
T/2

1 .
X1(Q) = — X(ne'dr. (2.27)
VT J-112
By repeating the measurement over (individual) runs, we can obtain the spectral
density {(|X(Q)I?).
We can also define the noise power spectral density of the process X(¢) as the
Fourier transform” of the autocorrelation function:

o0

Sxx(Q)Ef (X(1)X(0)ye!dr (2.28)

In most cases we are dealing with stationary processes, for which the autocorre-
lation function (X (¢ + t')X(#)) does not depend on ¢ and can therefore be given
by (X(#)X(0)). In these cases, the Wiener-Khinchin theorem links the measured
spectral density to the noise power spectral density:

Sxx(€2) = %EI;O<|XT(Q)|2> = Tliirolo<XT(Q)XT(—Q)>, (2.29)

Note that this is a “two-sided” spectral density, defined for positive and negative
frequencies Q). We also define a “single-sided” spectral density, for Q = 0, as

Sx () = 285xx (€2), (2.30)

if we assume X(#) is a real-valued and classical variable (X (#) and X (') commute
for all {¢, #'}). The units of both Sx and Sxx are [X]? /Hz. Note that the square root
of a spectral density v/Sxx is also often quoted, with units [X]/vHz.

*We define the Fourier transform of a function f(x) as f (w) = ffgo f elotdr,
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2.2 Spectral density

By integrating the spectral density in Equation (2.29), we obtain:

© dQ
Sxx(Q) — = (X?). 2.31
[ a5 =x?) 231)
As such, the integral over a spectral density is the variance of the signal.

Transfer function

If two processes X and Y are linearly related through
Y(Q) = g(Q)X(Q), (2.32)
the spectral densities Syy and Sxx are related as
Syv(Q) = |g( Q)] Sxx (. (2.33)

The function | g(Q) |2 is called a transfer function.

2.2.1 Spectral displacement density

The mechanical modes of the beams we study can be characterized by their suscep-
tibility, which depends on their eigenfrequency Q,, damping rate I'y, and effective
mass Meg. In Section 2.1, we used Euler-Bernoulli beam theory to determine Qy,
and meg. Here, we will derive the susceptibility and determine the thermal fluc-
tuations of the eigenmodes of a mechanical system. Assuming that the different
modes of the system are sufficiently separated in frequency ((Q2 — Q;) > I'1,T2),
where I';, T’ are the loss rates of the modes, we can describe the different modes
independently. Then, we can describe the time evolution of the position x(¢) for
one of the modes by the equation of motion for a harmonic oscillator:

dx%(p) dx(1)
+ Mgl m ——— + MeQZ X (1) = Fexe (1), (2.34)

m —_—
eff " q 2 dt

where Fey; is the sum of all the forces acting on the system. If there are no external
driving forces, only the stochastic thermal Langevin force contributes. In frequency
space, the solution can be written as §x(Q) = Yxx(Q) Fext (Q2). This defines the mech-
anical susceptibility, connecting the driving force to the response of the mechanical

oscillator: )

Mefr(Q2, — Q2) — imegT Q)

Yxx(€) = (2.35)

Fluctuation-dissipation theorem

With the equation for the susceptibility given in Equation (2.35), the fluctuation-
dissipation theorem relates the thermal displacement spectral density to the
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2 Principles of plasmonic transduction
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Figure 2.5: Spectral displacement density of a mechanical oscillator
with Qm = 2w x 10 MHz, Q = 1000, megs = 160 fg. (a): Spectral
displacement density (blue line), and spectral displacement density with
added imprecision level S;rxnp =3 x 10728 m?/Hz (purple line). Integration
of the spectral displacement density 5;2(9) (indicated by the blue shading)
gives the variance of the displacement (x%) = 1.6 x 1072° m?, using
Equation (2.31). (b): Same data as (a), but plotted as v/Sxx(Q), as is often
seen in the literature, with units of fm/Hz!/2.

mechanical susceptibility [68]:

kT
sth) = 2%1@(XX
1 2Tm
e (Q2—-0Q2)2+T2.0

kg T, (2.36)

which is plotted in Figure 2.5 for the experimental parameters of the nanome-
chanical systems studied in Chapter 6: Qg = 27 x 10 MHz, mes = 160 fg,
Q=Qy/T'y, =1000, T =300 K.

Integrating S(Q) according to Equation (2.31) yields the variance, which for
weak damping is given by the equipartition theorem [68]:

()= 2L
Mg QG

(2.37)

finding 1/(x2) = 1.26 x 107!% m for the spectral displacement density shown in

Figure 2.5. Here, we see an advantage of high-Q oscillators: because {x?) does not
depend on Q, having a higher Q leads to a higher peak displacement.

2.3 Dipolar scattering

Now we have determined the mechanical properties of the system, we turn to the
optical properties. To model plasmonic transduction of motion, we will consider
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2.3 Dipolar scattering

how a dipolar scatterer, which has a polarizability that is a function of some mech-
anical degree of freedom characterized by position coordinate x, can be used to
transduce the mechanical motion x(¢). First, we discuss how a conformational
change, caused by mechanical displacement, affects the polarizability of the scat-
tering system, while properly taking into account radiation reaction.

2.3.1 Coupled-dipole polarizability

As an example of a system that can show a strongly changing optical response upon
nanoscale displacements, let’s consider a scatterer consisting of two particles that
we will treat as point dipoles, separated by a distance d which is much smaller than
the wavelength of light. The total dipole moment of the system is then given by

P =p1+p2. (2.38)

If the total scattering system is sufficiently small, i.e. much smaller than the wave-
length, its interaction with a light beam can be described in the dipolar approxima-
tion: an incident light field E;, induces a dipole moment

p=a-Ep, (2.39)

where a is the 3x3 polarizability tensor associated with the scatterer (we neglect
magnetic interactions here). The induced dipole at position r, gives rise to a scat-
tered field

2

elkr (fo)xf+(3f(f-p)—p)( ! i )) (2.40)

Edip(r) = (kr)z - E

4dmegr
in free space, where r = [r—rp| and k = w/c.

Neglecting radiation for the moment, the equation of motion of dipole 1 in the
electrostatic limit can be expressed to first order as

P1+yip1 +wip1 = fiE, 2.41)

where p; is the induced dipole moment, y; the internal dissipation rate (i.e., ab-
sorption), wy the resonance frequency, and f; the oscillator strength of the individ-
ual particle. Note that the definition of f here is different from the usual definition
of atomic oscillator strength expressed in units of e?/ m,, with e and m, the electron
charge and mass, respectively. We can however still interpret its magnitude as
q*/ m, where q is the induced charge and m its effective mass. In the case of our
dimer, the dipole is driven by the field E; consisting of the incident field, with
strength Ej,, and the field of the second dipole. For small d, and for an incident field
aligned along the line connecting both particles (which we define as the x axis), the
magnitude E; of the field can be found from Equation (2.40) as

p2

By =B+ —2—
1= M 2meqd3

(2.42)
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2 Principles of plasmonic transduction

where we have now changed to scalar notation as we are considering only fields
and dipole moments along the x direction. Since p; = p, and fi = f> we can write
the equation of motion for the dipole moment of particle 1:

Pr+yipr+ |0}

- W) p1 = fiEmn, (2.43)

The above equation can be written in the Fourier domain as

(wz h

0" 2meodd

w? - iYiw) p1 = f1Ein. (2.44)

As such we can identify the electrostatic polarizability of the first dipole (respond-
ing to Ej, and in the presence of particle 2):

N

a1 (W) = —————, (2.45)
Wes — W= —1yjw
writing
_ o N
Wes = || WG — reod’” (2.46)

We will consider the effect of small variations 6x of d on the resonance frequency
wpn. We write d = d + 6x. Approximating wes as wes(0x) = @eg + GOx by taking the
first term in the Taylor expansion, we obtain for the polarizability:

N

a)(w) = s 2.47
1@) @2 +2GDesbx — 02 — iyiw @47
with coupling strength
3f
G=—1 (2.48)
ATEg@es At

This parameter, the frequency shift per unit displacement, is a measure for the
strength of the optomechanical interaction. To make an estimate for its magni-
tude, let’s consider each dipole to be a small spherical particle with electrostatic
polarizability [45]:

€—€m
ao(w) =4meyV ( ) , (2.49)
€+2€em

where ¢ is the dielectric constant of the metal, ¢, is the dielectric constant of the
surrounding medium and V = %nag’ is the particle’s volume. For a metallic particle
in vacuum (e, = 1), using the Drude model for the metal permittivity,

2

1 e 2.50
€ =1-—F, .
Drude o+ iYi) ( )
we can obtain for the polarizability
w5
(Xo(w) =47[€0V 5 (2.51)

P
Wi — w* —iYiw
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2.3 Dipolar scattering
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Figure 2.6: Dependence of coupling strength G on interparticle spacing d,
for gold nanoparticle dimers, with particle diameters of 20, 40, 60, and 80
nm (red to brown). The dashed black line indicates d = 4a (particles spaced

by one diameter). The coupling strength diverges for touching particles (d =
2a).

with wy = wp/ V/3 for a spherical particle. We can then recognize the oscillator
strength f in Equation (2.45) as

fi =4ne Vw}, (2.52)

and rewrite the electrostatic resonance frequency (Equation (2.46)) as:

— 2 v
Wes = wo(l—zﬁ). (2.53)
As a result, the coupling strength (Equation (2.48)) for two spherical nanoparticles
is
_ 3Vwj

@esd?’
where G has units of [frequency]/[distance]. Figure 2.6 shows G for gold nanopar-
ticles of radius 10 nm, 20 nm, 30 nm, and 40 nm (red to brown), using a plasma
frequency for gold of wp = 27 x 476 THz [77]. We can see that for particles spaced
by about 1 particle diameter, marked by the dashed black line, this dipole-dipole
model predicts a coupling strength of G = 27 x 1 THz/nm. When the particles touch
(d = 2a), the coupling strength diverges. In this regime, this dipole-dipole model
will have lost its validity, as higher order modes will start playing an important role.

(2.54)

2.3.2 Radiation reaction
We can now express the polarizability of the total system of two coupled dipoles as
f

2

o, (2.55)
Wes — W* —1yiw

a(w) =
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2 Principles of plasmonic transduction

using f = fi + fo = 2f;. At this point, it is crucial to correctly take into account
the effect of radiation reaction, which we have omitted up to now: we need to
acknowledge the action of the scattered field on the scatterer itself [78, 79]. The
electrostatic polarizability should be corrected as

a' = ayl - Gryr). (2.56)
Rd 2 .
In this correction, G (ry,rg) = 220 el*7 is the Green’s function, with r = |r; —rpl, that

4nr
describes the electric field at position r; produced by a dipole at position ry through

E(r1) =G (r1,1o) - p. 2.57)

The real and imaginary part of a (ro,xrp) cause a frequency shift and radiation
damping, respectively. We take the first order expansion of G:

1

27eq |1 —1o)?
3

Re(G (r1,10)) ~ (2.58)

Im(G) ~

2.59
67e 3 (2.59)

The real part of G (ry, ro) diverges for a point dipole, an issue that is usually treated
by introducing an effective cutoff radius r. (motivated by the reasoning that real-
istic charge distributions have some finite size) such that the phenomenological
resonance frequency wy, is obtained:

2_ 2 f
Wy = Weg — . (2.60
" s 27megrd )
The imaginary part leads to an effective total damping
2
w
Y=vi+ f— (2.61)

6megcd’

Properly taking into account radiation reaction therefore leads to a polarizability
for the dimer system:

f
2

(l((l))z —2
Wy — W — 1wy

(2.62)

We can rewrite the electrostatic coupling strength G from Equation (2.54) in terms
of the electrodynamic variables:

3f
G=——— (2.63)
2n€0nd?
leading to the polarizability

f

@3 +2Gdn6x — w? —iyw

a(w) = (2.64)
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2.3 Dipolar scattering

Change in particle radius

Up to now, we have discussed changing the center-to-center distance between two
particles. As the plasmon resonance frequency depends on the radius of a sin-
gle particle, internal mechanical modes of a plasmonic particle can also lead to
changes in scattering [80]. Typically, these internal modes have frequencies in the
GHz range, with gold nanoparticles measured to have stretch vibrations between 3
and 7 GHz [81, 82], and radial breathing modes up to 100 GHz [83, 84]. These high
frequencies make measuring the scattering in the time domain challenging, and
therefore these modes are often studied with for instance Raman scattering [85, 86]
or time-resolved pump-probe measurements [87, 88]. Due to the high frequencies
involved, we will not observe these effects in this thesis.

2.3.3 Determining da(w)/0x

We are modeling a scattering system with a transmittance 9, that depends on
scattered power and extinct power, as observables. The scattered power scales with
|a|?, and the power extinct from the beam scales with Im(a) [45]. It is therefore
useful to determine expressions for |a|? and Im(a). From Equation (2.62), we can
find the following expressions:

f2

- w2)2 +w?y?

wy
f |]|2
2

(2.65)
_w2)2 +w2)/2 (wn

Im(a) =

C
For the transduction of motion, it is not the value of the transmittance that is
of paramount importance, but the change in transmittance with a mechanical
change, expressed as the partial derivative 66%. This change in transmittance then

dlal? dlm(a)
depends on =5~ and =5~

We therefore calculate the derivatives of Im(a) and || with respect to x from
Equation (2.65):

_ -2 _ 2
olm(a) _ . fwydn@; w)2 (2.66)
0x (@2 - )2 + w2y?)
2 24 (=2 _ 2
dlal® _ - [r@n(@y - . (2.67)
0x (@3 — 0?)? + w?y?)

In Figure 2.7a and b, we show Im(a) and |a|? as a function of changing center
frequency, choosing center frequencies 350, 375, 400 and 425 THz. The albedo,
which is defined as
Y-vi__fo?

o = = —
Y 6megc3y

(2.68)

is o/ = 0.85 for these scatterers, and they have quality factor Qopt = wo /7y = 6. We see
the effect of changing the center frequency, showing the effect of radiation reaction
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Figure 2.7: Dispersive change in polarizability. (a): Imaginary part of
polarizability Im(a), for center frequencies wg = 27 x 350,375,400,425 THz
(from red to brown), with optical quality factor Qgpt = 6, albedo </ = 0.85.
Data is plotted in units of [cm3], which is equal to Im(a)/(4meg) in SI
units. The black line is the imaginary part of the unitary limit shown in
Equation (2.73). (b): |a|? for scatterers identical to those in (a). (c): Change
in Im(a) for the scatterer with wg = 27 x 400 THz, with G = 27 x 1 THz/nm
and a change in interparticle spacing 6x = 1 nm. (d): Change in |a|2, for
parameters identical to those in (c).

on the polarizabilities. For higher center frequencies, the radiation reaction lowers
the quality factor and slightly increases the albedo. In Figure 2.7c and d, we plot
the change in polarizability for a change in particle spacing of 6x = 1 nm with a
coupling strength G = 2z x 1 THz/nm. We see that the red side of the resonance
shows a stronger change in polarizability, due to radiation reaction. Therefore,
choosing a red detuning to measure small mechanical changes in such a scattering
system will be more sensitive.

In many realistic systems, it will however not only be the resonance frequency
that changes upon a displacement 6x. In the example of the dimer, the fact that
the particles will have finite size, comparable to their separation, will establish a
contribution of higher order multipoles to the interparticle coupling. For coupled
dipolar particles, this leads to an increased induced charge to compensate for the
field gradient experienced by the finite-sized particle. As such, also the oscillator
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2.3 Dipolar scattering

strength f can change with the distance d. We will write f(5x) = f + Féx. By filling
in Equation (2.62), this leads to:

(f + Féx)

a(w) = = ~ - ) (2.69)

W2 [*Fox _ f+Fox _ o (y~ + a)z(f+F6x))

e Zneod_3(l+%")3 2megr? ! 6reoc?
which reduces to
f + Fox
a(w) = 1(f i )w : s (2.70)
_ _ es—Wn : -, w?Fdx
Wn —2Gn0x — chx(zﬂe()d3 + T) e (Y (Y+ 6n6003)

where we see that the (radiative) damping rate is affected when the oscillator
strength varies with displacement, leading to a natural appearance of dissipative
optomechanical coupling alongside dispersive coupling. In Chapter 6, in
Figure 6.2b, we will show finite-difference-time-domain simulations of the
scattering cross section of coupled dipolar gold nanoparticles, showing both a
frequency shift G and change in oscillator strength F with changing separation d.

From Equation (2.70), it is straightforward to derive Im(a) and la|? as well as
dlm(a)/dx and 8 |a|?/6x. In Figure 2.8a and b, we show Im(«a) and lal?, applying
a large dissipative coupling strength F. Figure 2.8c and d show the derivatives of
Im(a) and |a|?> with F = 0.1, fora change in interparticle spacing of 1 nm. Note that
due to the change in oscillator strength, the transduction is stronger on the red side
of the resonance, as was also observed for dispersive coupling in Figure 2.7. We note
that the magnitude of F is not predicted by the model shown in this section and
must therefore still be determined from e.g. FDTD simulations for experimental
geometries.

2.3.4 Cross sections

With expressions for Im(a) and |a|2, we can calculate the extinction and scattering
cross sections [45]. These observable quantities express how much light is extinct
or scattered by a polarizable particle from an incident plane wave:

w

Cext = —Im(a) (2.71)

€gC
4

_w 2
negc‘*lal . (2.72)

Csca =
Using these cross sections, we can determine that for the polarizability shown in
Figure 2.7, we have Ceyx; = 0.178 um?, Csca = 0.153 um?, and the relative change in
both Ceyt and Cycy for 6x = 1 nm is 2.7%/nm. We can also calculate the albedo,
using «f = Cyca/ Cext, €valuated at resonance. In Figures 2.7 and 2.8, the scatterer
has o/ =0.87.
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Figure 2.8: Dissipative change in polarizability. (a): Imaginary part of
polarizability Im(a), with dissipative coupling strength F = (0,0.2,0.4,0.6)
(from red to brown), with center frequency wg = 27 x400 THz, optical quality
factor Qopt = 6 and albedo < ~ 0.85. Data is plotted in units of [cm3], which
is equal to Im(a)/(47meg) in SI units. The black line is the imaginary part of
the unitary limit shown in Equation (2.73). (b): |a|? for scatterers identical
to those in (a). (c): Change in Im(a) for the scatterer with wg = 27 x400 THz,
with F =0.2 and a change in interparticle spacing 6x = 1 nm. (d): Change in
la|?, for parameters identical to those in (c).

With the inclusion of radiation reaction in the polarizability, we can also cal-
culate the unitary limit. This is the polarizability for a scatterer with no intrinsic
loss i, so that all energy is reradiated: such a particle has an albedo « = 1. Setting
7i = 0 and assuming resonance, w, = w, Equation (2.62) reduces to

6miegc®
Quni = T i (2.73)

Calculating the extinction cross section for this unitary limit gives:

312
Cuni = —, (2.74)
21

where A = % is the free-space wavelength. We can then also express the albedo as

of =Im(a)/Im(ayni)-
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2.3 Dipolar scattering

Figure 2.9: Schematic of the coordinates used in Section 2.3.5. (a): Refer-
ence sphere for focusing. (b): Angles for input and output polarization, as
used in Section 2.3.6. The scatterer is at the origin, marked by O.

These cross sections are useful, as they give physical intuition, expressing the
interaction of a scatterer with light as an area, which can be related to the particle
size. They are however only valid for interaction with a plane wave, and do not
describe the interaction of a scatterer with a focused beam. Therefore, in the next
section, we will determine the electric field at the focus of a laser beam, and deter-
mine the interaction of a scatterer with this field, using a, Im(a) and |a|? as derived
in this section.

2.3.5 Interaction with a focused beam

We will now consider the situation where the scatterer is illuminated with a beam
that is focused using an input lens with opening angle Bj,, and light is collected
through a second lens with opening angle B,¢" (see Figure 2.9a). We follow here the
treatment of Novotny and Hecht [78]. It has been shown before that for plasmonic
particles near-unity extinction can be obtained using tightly focused beams [89-
92].

We will assume that the lenses have unity transmission coefficients and the
medium surrounding the scatterer is air. For a given input field Ein (6,¢) =
(Ex,in (0,9), Ey,in (0,4),0), the field just to the right of the reference sphere of the
focusing lens, with focal length F, is

sin® ¢ + cos®>pcosH  singcos (cosh —1) £ (0
Ecoin (0,¢p) = Vcos8 | singcos¢p (cosf —1)  cos® P +sin? pcosO (Ex'?“ (0’¢)).
—cos¢sind singsinf yin (0,9)
(2.75)

*We will also express the opening angle of objectives as a numerical aperture (NA), where NA =
nsin B, with n the refractive index of the medium surrounding the lens.
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2 Principles of plasmonic transduction

The focal field can be derived from this far field through

ikF —ikF  pBin 27 . . )
E(p,gb, Z) — _lk Zen f f Ecojin (Q,QD) g ikzcos0 ikpsing cos(p—¢) sinfdedo.
0 0

(2.76)

In the following, we will assume the incident field is a plane wave polarized at

angle (i, with respect to the x axis, i.e. Ein (6,¢) = (Ein €08 {in, Ein $in{in, 0), and the

total incident power is Pi, = nF2E2 sin? fin. We furthermore assume the scatterer
is placed at the origin, and thus driven by the field

idmweq Fe kF c0sCin
Eo,inz—T&{OEin sinlin |, 2.77)
0
where s
k 8 1 1
dy= —— | — — = cos®? B, — = cos”’? B; ) 2.78
O7 4meo \15 3 Fin =3 Pin (278)

We consider a scatterer with a highly polarization-dependent response that is
maximum along the x axis. In other words, all tensor elements of @ except a,, =
a (w) vanish. Taking the dipolar far field and including the collection angle of the
collection lens, we find the scattered field in the output beam:

sin? ¢ + cos® ¢ cosH
iae 2% ofy By cos {in /08 Bin | singcos ¢ (cosd —1) |, 6 < Bout
Eout,sca (Q;QD) = 0
Oy 6 > ﬁout-

Of course, the electric field transmitted through both lenses is simply
e_ZikFEin (0, (,b) , 0 =min {ﬁin’ ,Bout}
0, 0 > min {ﬁin; ﬁout}y

and hence the total power in the output beam can be found by integrating the
intensity in the output beam as

Eoutin (0,¢) = { (2.79)

1 Bout 27 2 0
Pout = Eceof f |Eout (6,)|” F sin6 cos0dpdo, (2.80)
0 0

where Eqoyt (0,¢) = Eoutsca (0, ¢) + Eoutin (0, ¢). The result for oyt < Bin is
sin? Bout
sin? Bin

4 8—5cos3/? —3cos’?
_ Im(af)do E ﬁout ﬁout

Pout:Pin[

2
cos“{j
sin? Bin n
sin? (Bout/2)

2 1
+|a|23¢2(3+—cos + —cos2
0 3 ﬁout 3 ,Bout sin2 ,Bin

cosZCin], (2.81)
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Figure 2.10: Transmittance 9 for a scatterer with albedo </ =1 and lenses
with NA = 1, showing the increase in contrast when adding an analyzer after
the collection objective. Red line: no output polarizer. Blue line: with output
polarizer. The curves are plotted as a function of detuning A = w — wy,
normalized to linewidth y. The beam incident on the first lens is a plane
wave.

where we recognize an extinction term scaling linearly with Im(a) and a scattering
term scaling linearly with |a|?. Together with dIm(a)/dx and d|a|? /dx, which were
found in Section 2.3.3, one can now predict the transduction of displacement to

optical output power 62}“ by the scatterer.

2.3.6 Using an output polarizer

We furthermore consider the scenario where a polarizer is added in the output
beam, and the intensity is recorded after this analyzer. By choosing the angles
between input polarization, scatterer and analyzer, we can achieve strong sup-
pression of the portion of the transmitted power that does not interact with the
scatterer. If the albedo is low, suppressing this background can improve the signal-
to-noise ratio.

For input polarization angle (i, between the input field polarization and the
x axis, and analyzer angle {,, with respect to the x axis, as shown in Figure 2.9b,
the output power is given by

Bou 2m
Pout :f tf |Eout (0, ) - (X cosout + j/sinéout)|2F2 sinfcosfdgdh. (2.82)
o Jo
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2 Principles of plasmonic transduction

We again give the result for Byt < Bin:

sin’ Bout
sin® ﬁin

4 8-5co0s%? —3cos”’2
15 sin” Bin

3 1 1 5
(5 + 3 cos Bout + 5 c0s2Bout + 1 €082 out

Poyt = Pin cos? (€in = Cout)

€08{in €08 out €08 (Cin — Cout)

.2
sin’ /2
+|a|2$z¢02—_(€0Ut )

sin” Bin

1 1
+ g Cos (,Bout - 2(out) + g COos (ﬁout + zcout)

1 1
+ —Cos (Zﬁout - 2(out) + —Cos (zﬁout + zcout))

. (2.83)
24 24

We note that for (o« = 0 and (i, = 0, the resulting transmitted power is
marginally different from that without an analyzer: for large albedo and strong
focusing, the extinction is increased by a few percent by adding the analyzer. This
result is shown in Figure 2.10, which shows the transmittance for a scatterer
with albedo &/ = 1 and lenses with NA = 1, both without output analyzer
(Equation (2.81)) and including an output analyzer (Equation (2.83)), which is
aligned with the input polarization and scatterer ({in = {out = 0). This change in
transmittance through adding an analyzer is caused by high-angle components
of the scattered dipole field that are not polarized along x. The extinction dip
does not go to 1 (both with and without output polarizer) due to the non-dipolar
components of the incident light field at the scatterer’s position.

Of course, for other angles the effect is pronounced: the two polarizers can
strongly suppress either the non-scattered background field or the scattered field,
leading to a strongly polarizer-angle dependent transmittance. Figure 2.11a shows
the transmittance as a function of detuning for scatterers with an albedo of 1. The
crossed-polarizer transmission is at {in = —7n/4, {our = +7/4. At { = 0.207, the
scattering and extinction are exactly matched, so neither an extinction dip nor a
scattering peak are visible. The height of the scattering peak for { oyt = —(in = /4
is exactly four times smaller than the depth of the extinction dip for oy = (in =
0. In the situation we are describing now, a factor of 2 is due to the 45° angle
between input polarizer and scatterer, and another factor of 2 is due to the 45°
between the scattered light and the analyzer. We see that 9 and |09 /dx| show
different scaling with polarizer angles, indicating that, depending on the properties
of the scatterer, carefully choosing polarizer angles can improve the sensitivity of
motion transduction, as the measured signal will scale with 9 /dx but various
noise contributions with 9.

In Figure 2.11b, we show the change in transmittivity 9~ and the absolute value
of the change in transmittivity |09 /dx| for 6x = 1 nm as a function of polarizer
angles —(in = {our, for a scatterer with of =1 at optimum detuning A = ﬁg% with
G =27 x 1 THz/nm and NA = 1. In Figure 2.11c, we again plot 9 and |09 /0xl|,
this time for a scatterer with a low albedo <« = 0.05. We can see that |09 /dx| has a
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Figure 2.11: (a): Transmittance as a function of detuning for a range of
polarizer angles, indicated along the right vertical axis. Albedo « =1,
polarizer angles range from 0 to +m/4 in steps of 0.057. The top dark
blue curve is for (i, = {out = 0, the bottom orange line is for crossed
polarizers with {j; = —n/4 and {out = /4. (b): Transmittance I (blue)

and derivative % (purple) for a scatterer with «# = 1 and optimum
detuning. (c): Transmittance J (blue) and derivative )%) (purple) plotted

on a logarithmic scale, for o/ = 0.05 and optimum detuning. Note the
different scaling of 9 and ‘%) with polarizer angles: for the low albedo
scatterer, |09 /0x| has a much slower decrease with increasing ¢ than the
transmittivity 9.

weaker reduction with increasing polarizer angle { than . : the difference between
|09 /0x| and 9, indicated by the black arrow, becomes smaller. Therefore, for
scatterers with low albedo, using crossed polarizers can increase sensitivity. We will
also later show, in Figure 2.16, that measuring transduction from scatterers with
non-optimal detuning can benefit from using crossed polarizers.

2.4 Transduction & conversion

We next calculate how the spectral density of motion, Sgi, is converted to Pggp, the
power we measure on an electronic spectrum analyzer, and describe the various
noise sources that are added to this signal. These noise sources, taken together,
cause an imprecision background, which imposes a limit on the sensitivity of the
measurement. In this section, we will identify the relevant contributions to the
imprecision in this implementation of motion transduction and the scaling of these
contributions with optical power.

The laser beam that is modulated by the plasmon-mechanical transducer is not
free of noise: it has laser classical noise and quantum shot noise components. The
total optical signal, modulated by mechanical fluctuations and noise fluctuations,
is converted to a photocurrent in a photodiode, amplified in a transimpedance
amplifier, where electronic amplifier noise is added to the total signal, and then
converted to an electronic power in an electronic spectrum analyzer. In this sec-
tion, we will show the transfer functions for each of these steps and determine the
noise power spectral densities.
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2 Principles of plasmonic transduction

2.4.1 Transduction of mechanical motion

To convert the displacement spectral density to an (optical) power spectral den-
sity, we have to find the transduction function as defined in Equation (2.33). This
transduction function is determined by the change in transmittance as a function

of x:
o

09
0 Pout = Pin—90x. (2.84)
0x

The power spectral density of the transmitted light due to mechanical fluctuations
is thus:

0T \?
Spp =P, (a) sth), (2.85)

where the subscript P refers to (fluctuations of) the optically transmitted power
Pyyt. To calculate ‘%, we start from Equation (2.83). The only terms that have a
dependence on x in this equation are the Im(a) and the |a|? terms. By replacing
these with their derivatives, which are shown in Equations (2.66) and (2.67), we

in 0T
obtain R

2.4.2 Noise sources

We identify three major sources of noise in our experiment: electrical noise, clas-
sical laser noise and quantum shot noise of the detected laser light. These have
different power and frequency depencies, which implies that there is an optimum
choice for detection schemes to reduce the noise contributions. We will add the
three contributions in the optical power spectral density, as

Spp(Q) = Y Spp(Q) (2.86)
i
_ X SN class el
= S5, (Q) + SON + S5 () + SEL,. (2.87)

In this section, we will determine the magnitude of these noise contributions.

Shot noise

Shot noise is an intrinsic effect related to quantum fluctuations of the light field. We
can quantify its amplitude by considering a stream of photons arriving at random
times:
N =) 6(t—1t)) (2.88)
J

where #; are the random arrival times of the photons. If we detect N photons in a
time T

T
N= f dtN(p), (2.89)
0
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2.4 Transduction & conversion

defining an average number arriving per unit time as N, the autocorrelation func-
tion of the photon flux N is

T/2
(N(®N(©0) = lim lzz/ de's(t' —)é(’ —tj+1) (2.90)
T—o00 T ] j! -T2
= Tlijrolo%zz5(tj—tj/+t). (2.91)
i

If T is large, the autocorrelation becomes (N ()N (0)) - N& (#): only those terms

for which j = j’ contribute to the summation, for a total of N§(t) = NT&(t). The
Wiener—Khinchin theorem then gives the spectral density of photon numbers:

Sqx =N, (2.92)

with units Hz2/Hz, which we can convert to a power P(f) = hwN(t). We then obtain
a shot noise power spectral density:

Spp = () Sy () = Fiw Poy. (2.93)

Electrical noise

Electrical noise is generated in the photodiode’s transimpedance amplifier, and
is independent of optical power and detection frequency. The amplifier noise is
defined as a noise-equivalent-power: NEP = \/S?,l = ZSE,IP. SI‘;IP is the optical
power spectral density which, after conversion to electrical current spectral density,
is equal in amplitude to the electrical noise (signal-to-noise ratio is 1). For the pho-
todiode we use (Femto HCA-S-200M-IN) we determined a NEP of -138.5 dBm/Hz
on the electronic spectrum analyzer.

Using the inverse of equations (2.102) and (2.104) along with the experimental
parameters ¢ ger and {amp we can determine a NEP of 4.38 pW/ vHz, to get a power
spectral density

S%, = 2 NEP?. (2.94)

Note that while this is expressed as an optical power spectral density, the electronic
noise is not actually present until after the transimpedance amplifier.

Laser classical noise

The laser classical noise can be split into two contributions: intensity fluctuations
and phase fluctuations. While the intensity fluctuations can be directly measured,
the phase fluctuations require e.g. an optical cavity or a scatterer to be converted
to observable intensity fluctuations.

The main source of classical intensity laser noise in the laser used for most of the
experiments (NKT Koheras E15 EDFL) is relaxation oscillations in the laser, where
power is exchanged between the laser cavity and the gain medium. This noise is
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Figure 2.12: Measured laser classical noise caused by relaxation oscillations
between the gain medium (Er3* jons) and the laser fiber cavity. The laser
classical noise is expressed as relative intensity noise (RIN). The different
curves are for different drive powers. An attenuator was used to keep
the laser power on the photodiode constant at 50 pW. The black solid line
indicates the electrical noise, the dashed black line indicates the shot noise.

strongly peaked around 300 kHz, tailing off at higher frequencies. This also drove
the choice of length of our oscillators: we designed the length to give a mechanical
resonance frequency much higher than the typical laser noise band. The classical
noise on the spectrum analyzer scales as P(Z)ut:

S8 = (PoyRIN)? = P2 I ?RIN?, (2.95)

where RIN is the relative intensity noise, with units of 1/Hz. The RIN can also
be converted to a log scale, and then has units of dBc/Hz (decibels relative to the
carrier per Hertz bandwidth).

The laser classical noise is also dependent on the drive power of the laser [3].
The measured laser classical noise for our laser is shown in Figure 2.12. The figure
also shows the electrical noise caused by the amplifier and the photon shot noise.
The electrical noise was measured by blocking the laser beam from the photodiode.

The shot noise has an optical power spectral density \/Sgg = /liwPyy, which for

the detected power of 50 uW is calculated to be S}S,g =2.58x 10712 W/v/Hz . The

resulting noise floor of S}S}lf + Sf,lp was subtracted from the other traces. For all the

measurements, the drive power was attenuated by rotating a linear polarizer to
achieve a detected power of 50 uW. Note that for constant detector power it is better
to have the laser running at full power with an attenuator rather than setting a lower
power on the laser.
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2.4 Transduction & conversion

Laser classical phase noise

The laser also has phase fluctuations. We can express the laser light field as [93],

a(t) =V I(1)e @) (2.96)

where I(t) is the fluctuating intensity and ¢(¢) is the fluctuating phase, where we
set (¢(1)) = 0. Then the spectral density of phase fluctuations is, by the Wiener-
Khinchin theorem,

1 [
Spp = ﬂf_oo e (Pp(1)p(0)) dt. (2.97)

The instantaneous laser frequency can be determined from the instantaneous

phase:

d[¢o+¢(1)]
dt

leading to an expression for the frequency noise spectral density:

w(r) = = (1), (2.98)

Sww () = S4(€2) = W Spep(Q) (2.99)

This expresses the frequency noise as an angular frequency. The equivalent expres-
sion for frequency, expressed in Hertz, is Syy = Sgp¢/ (47%). The frequency noise is
converted to optical power spectral density by the scatterer:

m

2(1637

2
89,(Q) = P EE) Sww (€. (2.100)

x in| ox
duction function between Sy, and Spp. The optomechanical frequency shift G links

the displacement spectral density to the scatterer’s central frequency spectral den-
sity: Sxx = G*Syw-. Therefore, we divide by 1/G? in Equation (2.100) to calculate the
transduction function between S,,,, and Spp.

This also allows us to calculate the imprecision spectral density due to laser
phase fluctuations:

o o 2
The factor of 1/G is included due to our definition of %i, with P2 (ai) the trans-

. 1 Q2
SmP () = G2 S0 (D = 7S (2.101)

By using the parameters shown in Table 2.3, we can compare the power spectral
density of transduced phase noise to the electrical noise of the photodiode. We will
assume optimal detuning for the optimal scatterer defined earlier, and find Sgp =
6.6 fW/vHz for an input power Py, = 500 uW. This is 3 orders of magnitude smaller
than the electrical noise-equivalent-power (see Table 2.3). Therefore, we will in the

remainder of this thesis assume that laser phase noise can be neglected compared
to the other noise sources described in this section.
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2 Principles of plasmonic transduction

We note that for many cavity optomechanical experiments, laser phase noise
can be a limiting factor [22, 94, 95]. In these experiments, G is much smaller, but
the cavity loss rate « is also much smaller, leading to a much stronger transduction
of frequency fluctuations.

In other words, our experimental geometry strongly transduces mechanical dis-
placements to frequency fluctuations, while having a much weaker transduction of
frequency fluctuations to intensity fluctuations. In the cavity optomechanical case,
this is usually reversed, with much weaker transduction from displacement to fre-
quency, and very strong transduction of frequency fluctuations to intensity fluctu-
ations. This strong frequency-to-intensity transduction necessarily also transduces
the laser phase noise.

2.4.3 Electrical conversion

The photodiode converts the optical power to a photocurrent, Ioy; = EgetPout- The
conversion efficiency ¢ ge¢ (in A/W) includes the quantum efficiency and the photon
energy, and is therefore wavelength dependent. The total current spectral density
is then

Si(Q) = &2, | SEp(Q) + SEN + Sghass () + 584, | .

The photodiode has a built-in transimpedance amplifier, which converts the pho-
tocurrent to a voltage:
Swi() =¢ imp Sn(Q),

in V2/Hz. Finally, the voltage spectral density is read out on a spectrum analyzer
with impedance R to produce power
V2 Samply
Ppsp = — = —2 ¢t g, 2.102
ESA = o R PP ( )
This electrical power V (¢) is filtered around Q by the ESA’s resolution bandwidth
(RBW). If the signal is flat on the scale of the RBW, the displayed power is

total 2 Stotal
Pgsp = RBW VH = RBW }V?V ) (2.103)

This is typically displayed on a dBm scale:
Pgsa(dBm) =10log;, (Prsa (W) -1000). (2.104)

Table 2.3 shows the relevant parameters for equipment used in the experiments
described in this thesis.
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2.5 Displacement sensitivity

device parameter symbol  value units

laser: NKT relative intensity noise RIN 74%x1078 1/Hz (@ 10 MHz)
Koheras Adjustik  frequency noise Si2@ 13 Hz/vHz (@ 1 MHz)
E15 spectral density

photodiode: conversion efficiency Edet 0.95 A/W (A = 1550 nm)
Femto transimpedance gain Samp 2x10% V/IA
HCA-S-200M-IN  noise-equivalent-power ~ NEP 4.38 pW/vHz

ESA: Rohde & impedance R 50 Q

Schwarz FSV-3 resolution bandwidth RBW 300 (typ) Hz

Table 2.3: Experimental parameters for conversion of power spectral
density Spp to electronic spectrum analyzer power Pgga.

2.5 Displacement sensitivity

We can now compare the tranduced signal to the various noise sources. We can
define the imprecision displacement spectral density:

Slmp Q — —Slmp Q
o () PZ (0T 10x)? pp (€

1
2 2p2 g2
= m[zNEP +hwPinJ +RIN°P; T°) + Gz Se0(@)  (2.105)
m

which is the imprecision added to the motion transduction by the various noise
sources. This forms a limit to the sensitivity with which we can measure Sg‘((Q). We
can identify two major power regimes: one where the input power P, is fixed and
one where the power at the detector Py is fixed.

The input power can be limited because of for instance demands on the laser
power or a limited damage threshold power at the scatterer.

In other cases, one is instead constrained by the power at the detector rather
than by Pj,, for instance due to photodiode or transimpedance amplifier satura-
tion. Then, the imprecision for a given value of P, is the proper figure of merit for
the transducer’s performance.

In the figures in this section, we will not plot the phase noise imprecision contri-
bution, as shown in Equation (2.101). For the phase noise as given in Table 2.3, with

S!/2 = 13 Hz/v/Hz, we can find an imprecision /SI'P% = 1.3 x 10720 m/+/Hz . This
is much smaller than the thermal occupation of a typical mechanical oscillator we
will use, as shown for instance in Figure 2.5, and also much smaller than the other
imprecision contributions, as will be shown in the remainder of this section.

We will investigate the imprecision levels for two cases: a high-albedo scatterer
and a low-albedo scatterer. Figure 2.13 shows the scattering and extinction cross
sections for these scatterers. Both scatterers have optical quality factor Qupt = 10
and will be used at optimum detuning A = w —wp = ﬁg% with G =27 x 1 THz/nm.
For the high-«f scatterer we will use an excitation and collection NA = 1 and albedo
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Figure 2.13: Extinction (blue) and scattering (purple) cross sections for a
high-<7 scatterer (albedo «# = 1, solid line) and a bad scatterer (albedo ¢ =
0.1, dashed lines), with the unitary limit plotted in black. Note that for the
scatterer with albedo «f =1 the extinction and scattering cross section are
identical. Both scatterers have Qopt = 10. The gray vertical line indicates
the laser frequency w = 27 x 200 THz.

o =1, for the low-of scatterer we will use a limited numerical aperture of NA = 0.4
and « =0.1.

2.5.1 Imprecision for limited input power P,

For fixed input power Pj,, the imprecision is determined by Equation (2.105). Fig-
ure 2.14 shows this fixed-input-power imprecision Sy’ (Q2) as a function of polar-
izer angles, using the noise parameters tabulated in Table 2.3 and an input power
of 500 uW. The different noise contributions to the imprecision are also plotted.
Figure 2.14a shows the data for the scatterer with « = 1, while Figure 2.14b shows
the data for the scatterer with o/ = 0.1. First, it is obvious that the total imprecision
is much lower for the good scatterer.

Second, both scatterers show an angle where the imprecision diverges. This is
the angle where the scattering peak is exactly equal to the extinction dip, leading
to a net 0 transduction, as shown in Figure 2.11 for the high-</ scatterer, where
in Figure 2.11a the line for { = +0.2x is flat, and in Figure 2.11b the change in
transmittivity %i; is equal to 0. As this angle depends on the scattering properties, it
is shifted for the low-<«/ scatterer shown in Figure 2.14b, moving closer to { = +7/4.

For the high-<f scatterer, using crossed polarizers does not improve sensitiv-
ity: the reduction in detected power by using crossed polarizers due to Malus’ law
increases the classical and shot noise contributions.

Near the crossed-polarizer angle ({ = £7/4), the laser classical noise contribu-
tion to the imprecision for the low-</ scatterer is strongly suppressed, leading to a
reduction in imprecision. At these angles, the bad-scatterer-imprecision is domi-
nated by the electrical contribution, as this does not scale with the transmittance
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Figure 2.14: Imprecision for constant input power Pj, as a function of
polarizer angles, with {j; = —{out. (a): Imprecision for a scatterer with
o/ =1 and NA = 1. (b): Imprecision for a scatterer with &/ =0.1 and NA =
0.4. Lines indicate the various imprecision contributions (Equation (2.105));
black: total imprecision; blue: electrical imprecision; purple: shot noise
imprecision; gold: classical noise imprecision. For both panels, Qopt = 10,
G = 21 x 1 THz/nm, wg = 27 x 210 THz, w = 21 x 200 THz, to achieve
optimum detuning of A = w —wg = ﬁgy. Imprecisions are calculated for

Py, = 500 pW.

9, which is strongly reduced at crossed polarizer angles. We note however that
with proper optical amplification (either using an EDFA or beating with a local
oscillator) could reduce its contribution significantly.

2.5.2 Imprecision for limited output power P,

For the limited output power regime, we can rewrite Equation (2.105) to reflect the
limiting output power:

imp 2NEP?2 972 ho T2 , J°?
S () = S S ~+RIN .
P2 (0T 10x)2 " Pou 0T 10%) 0T 1ox)
__T° |2NEP® Mo o (2.106)
T 0T1002 | P2, Pou ’ '

out

separating out 9 and % from the noise parameters.

Figure 2.15 shows the fixed-output-power imprecision for a detected power of
50 uW. As can be seen from Equation 2.106, all three imprecision contributions
have the same scaling with polarizer angles, as these angles only enter into 9~ and
aai:. Again, as in Figure 2.14, we plot data for an & = 1 and for an &/ = 0.1 scatterer.
For limiting Pqy, as for limiting Pj, crossed polarizers do not increase the sensi-
tivity for the high-<f scatterer. For the low-<f scatterer however, we see that the
imprecision is greatly reduced near the crossed-polarizer angle.
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Figure 2.15: Imprecision for constant output power Pgyyt as a function of
polarizer angles, with (i = —{out. (a): Imprecision for a scatterer with
&/ =1 and NA = 1. (b): Imprecision for a scatterer with & =0.1 and NA =
0.4. Lines indicate the various imprecision contributions (Equation (2.106));
black: total imprecision; blue: electrical imprecision; purple: shot noise
imprecision; gold: classical noise imprecision. For both panels, Qopt = 10,
G =21 x 1 THz/nm, wy = 21 x 210 THz, w = 27w x 200 THz, to achieve
optimum detuning of A =w - wg = ﬁgy. Imprecisions are calculated for

Pout =50 |J.W

2.5.3 Imprecision as a function of detuning

So far, we have only studied the polarizer-angle dependence of the imprecision,
while setting the laser at the optimum detuning on the slope of the resonance.
In Figure 2.16, we calculate the imprecision as a function of detuning relative to
the peak resonance frequency. We compare the total imprecision Sy, for scatter-
ers with « = 1 both with constant Pj, (Figure 2.16a) and with constant Py (Fig-
ure 2.16b), for {in = {out = 0 and i = {out = /4, finding that for larger detunings,
using crossed polarizers has a lower imprecision than using aligned polarizers. The
crossing points are at A/y = —0.4,+0.49 for constant Pj,, and at A/y = —0.45,+0.55
for constant Pgy;.

We see that for good scattering and optimal detuning, a very low imprecision
can be achieved without using crossed polarizers. However, when the scattering is
small or the detuning is large, the crossed polarizers can be a useful way to suppress
noise sources that scale with the transmittance .

2.5.4 Experimental techniques to reduce noise

There are other experimental techniques to reduce noise levels and thereby
improve sensitivity. A commonly used technique is homodyne interferometry [3].
Instead of the direct transduction used in this thesis, the laser is tuned to the
center of the optical resonance. The mechanical oscillations then imprint phase
fluctuations onto the transmitted laser beam. This light is then interfered with a
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Figure 2.16: Imprecision for an &/ =1, NA=1, G =27 x 1 THz/nm scatterer
as a function of detuning. (a): Imprecision for constant Pj, = 500 pW.
(b): Imprecision for constant Poyt = 50 pW. Blue: (in = {out = 0, purple:
—Cin =Cout =7/4.

much stronger homodyne reference branch and split to two balanced photodiodes,
and the difference signal is monitored. The interference with the strong local
oscillator can effectively amplify weak signals, and the interferometer suppresses
common-mode classical noise. However, it does require a properly stabilized and
arm-length-matched Mach-Zender interferometer.

If the imprecision is limited by electrical or shot noise, an optical amplifier
(for instance an erbium-doped fiber amplifier (EDFA) when working at telecom
wavelengths) can be used after the scatterer and before the photodiode to amplify
the signal, increasing the total power at the photodiode, and thereby reducing the
electrical and shot noise imprecision. The EDFA will not improve the classical noise
imprecision, as this has the same scaling with optical power as the signal. An EDFA
also adds noise itself, with this “excess amplifier noise” typically adding on the
order of 6 dB of noise to the shot noise level, implying that it is dependent on the
ratios of the imprecision contributions whether or not using an EDFA will improve
sensitivity.

2.6 Transduction examples

In this section, we will calculate the sensitivity achievable using our plasmonic
transducer geometry. We will assume this geometry can be realized in a system
with mechanical properties demonstrated by two other groups: a low frequency,
high-Q silicon nitride string oscillator, demonstrated by Verbridge et al. [96], and
a high frequency, low-Q silicon carbide oscillator, demonstrated by Yang et al. [97].
Finally, we will investigate the properties of a beam similar to the beams we will
study in Chapter 6. As many imprecision contributions scale with the optical power
used, we will plot the imprecisions as a function of input power Pjj,.

This section will use the the high-</ scatterer as seen in the previous section
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2 Principles of plasmonic transduction

beam f (MHz) Q Metf L(pm) w@mm) hmm) T (K
Verbridge 1.03 1.3-105 110pg 275 350 110 300
Yang 190 5000 96 fg 2.3 150 100 4.2
10 MHz 10 1000 160 fg 10 120 100 300

Table 2.4: Parameters for the mechanical oscillators described in
Section 2.6.

for transduction, with parameters: «f =1, NA =1, Qopt = 10, G = 27 x 1 THz/nm,
wo = 27 x 210 THz, w = 27 x 200 THz, operating at an optimum detuning of A =

_ 1
w—wo—m}/.

2.6.1 Imprecision comparable to that at the standard
quantum limit

We can also calculate the power needed to achieve an imprecision equal to that at
the standard quantum limit.

In an ideal, lossless, quantum-limited measurement, the total noise added by
the measurement (i.e. imprecision plus measurement back-action) reaches a min-
imum at a certain power, when

i _ 1.
gimp — gaba _ EsffF, (2.107)

the so-called standard quantum limit (SQL). Here, Sxx(Q) denotes the symmetrized
spectral density: Sxx(Q) = (Sxx(Q) + Sxx(—Q)) /2. Sff F is the spectral displacement
density associated with the quantum-mechanical ground state. At the mechanical
resonance frequency, this is equal to

n

SZPEQm) =hI Qm)|= ———.
w (2m) |m)(xx( m)| Mol

(2.108)

The (quantum) back-action Sf}f % is caused by the fluctuating radiation pressure
force. The force spectral density of this back-action is the force per photon squared,
(hG)?, times the photon number spectral density:

4n*G? _
Nphot» (2.109)

Sit = n*G*Sxn =

where the number of photons circulating in the cavity is estimated to be

k Im(a) 4Py,

flphot = ———
PRI ey oy yho'

(2.110)

where o is the effective focal area from Equation (2.78).
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2.6 Transduction examples

The back-action force spectral density causes additional displacement of the
mechanical resonator:

ST = |y (@) ST, @.111)

where yx(Q) is the mechanical susceptibility as defined in Equation (2.35). For
measurement at the optical cavity resonance, the quantum back-action and the
photon shot noise imprecision should be equal at the standard quantum limit in
an ideal measurement.

Our measurements are not ideal, in the sense that not all scattered light is col-
lected, we detect for non-zero detuning, and noise sources other than quantum
noise contribute. Therefore, an imprecision comparable to SZF is obtained only
at higher power. For comparison, it is still interesting to see for which power such
(imprecision) noise levels can be reached. We call this power PimpesqL-

In Figures 2.17-2.19 we plot all noise contributions to the imprecision, includ-
ing shot noise (purple line), which can be compared to the shot noise imprecision
for an ideal measurement (purple dashed line).

2.6.2 High-Q,, oscillator

In Figure 2.17, we show the spectral density of the low-frequency beam, with mech-
anical parameters shown in the top row of Table 2.4. Panel (a) shows the spectral
displacement density 5’;};((2) and the added imprecision S ¥ for an input power
Pin = 10 uW. The displacement can be integrated to find a variance (x*) = 5.4 x
10729 m?, using Equation (2.31). The imprecision was calculated using the param-
eters from Table 2.3, multiplying the RIN by 10 to account for the increased laser
classical noise at 1 MHz (see Figure 2.12). Panel (b) shows the square root of the

spectral displacement density 1/ S (€).

In panel (c), we plot various imprecision and displacement spectral densities
as a function of input power Py,. The red line is the total signal S©(Qp,) + S *,
consisting of the constant thermal displacement density (blue) and the total noise
imprecision (black), which is speg:iﬁed in Equation (2.105). We can determine that
the power for which Sg Q) = S;‘f P at which we can resolve the mechanical dis-
placement with a signal-to-noise ratio of 1, is the low value of Pj, = 69 nW: this is
the point where the black line crosses the blue. This panel also clearly shows the
power-scaling of the different imprecisions: at low power the imprecision due to
electrical noise (blue), scaling with Pi;lz dominates, and at high power the classical
noise imprecision, which is non-power dependent, dominates (gold). The shot
noise (ox Pi;l) is shown in purple, and the shot noise limit, which would be attained
for an ideal measurement on resonance (which would require interferometry to
convert the resulting phase fluctuation spectral density) is shown as the dashed
purple line. The quantum back-action, which scales o« Py, is plotted as the green
dashed line.

The zero-point fluctuations are shown as the dashed black line in Figure 2.17.
For this mechanical resonator, we find PimpesqL = 8 pW using plasmonic trans-
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Figure 2.17: Calculated transduction for the plasmonic system in combina-
tion with a high-Q mechanical oscillator. (a): Spectral displacement density:
S Q) (blue) and SR(Q) + Si® (red), for Py, = 10 uW. (b): Square root
of the spectral displacement density. (c): Imprecision and displacement
spectral densities as a function of input power. The solid blue line
is the thermal spectral density S%‘((Qm), the dashed black line shows
the symmetrized zero point fluctuations S,%{)F(Qm). The imprecision
contributions are electrical (blue), shot noise (red) and classical noise (gold),

with the black line the total imprecision. The red line shows S,tg(gmnsig‘".

The green dashed line is the measurement back-action S,%?a, and the
purple dashed line is the shot noise limit: the minimum possible shot
noise-induced imprecision, for measurement on the optical resonance.
Mechanical parameters are shown in Table 2.4, electrical parameters in
Table 2.3.
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2.6 Transduction examples

duction. This is the power for which the total imprecision _)ié(n plot g equal to the

zero-point fluctuations. This low Pjmpesqr shows the high sensitivity that is in
principle attainable with plasmonic transducers. If we calculate the shot-noise
limited imprecision (setting sgass =0and Sg( =0), we find PimpesqL = 66 nW.

2.6.3 High-Q,, oscillator

Next, we perform the same analysis using mechanical properties of a high-
frequency oscillator such as that of Yang et al. [97], (see properties in second row of
Table 2.4), with spectral densities and imprecisions shown in Figure 2.18.

First, we note that, both due to the higher frequency and the much lower
temperature compared to the low-frequency beam, the thermal occupation of
the mode is much smaller than for the low-frequency oscillator; integrating the
spectral displacement density leads to a variance of (x2> =5x 1072 m?. This
reduces the sensitivity: the thermal displacement is much lower compared to the
imprecision. We find that to achieve Sy * = Sg(Qm) (i.e. a signal-to-noise ratio of
1), we need an input power Pj, = 64 uW. This situation is plotted in panels a and
b, for S and \/Q respectively. In panel c, we again plot the power-dependence
of the imprecision. For this oscillator, we see that the classical noise imprecision

gimpelass o, SZPF(() ). We can however calculate that the shot-noise limited
imprecision is equal to the SQL (Sy, " = S4F) for an input power Pimpasqr. = 5 mW.

2.6.4 10 MHz oscillator

Finally, we also plot the sensitivity curves for the 10 MHz beam, whose spectral
density is shown in Figure 2.5. This beam is representative of the beams we will
study in Chapter 6. The sensitivity curves are plotted in Figure 2.19, for both a high-
& and alow-«f scatterer. Because the NA in Figure 2.19b is smaller (NA = 1 in panel
(a) vs NA = 0.4 in panel (b)), the difference between the shot noise imprecision and
the shot noise limit is much larger in panel (b) than it is in panel (a): fewer photons
are detected due to the smaller numerical aperture.

To obtain an imprecision equal to the thermally driven displacement,
S = Sg(Qm), we require 250 nW of power for the high-«/ scatterer and
22 uW for the low-<f scatterer. For the current parameters, we can not attain
an imprecision equal to that at the SQL: the laser classical noise imprecision is
larger than the zero-point fluctuations. If we were to perform a shot-noise limited
measurement, PimpesqL would be approximately 120 uW for the good scatterer,
and approximately 900 mW for the bad scatterer.

In this section, we have investigated the different noise imprecisions as a func-
tion of measurement power, using three different mechanical systems. In all three
cases, the laser classical noise is the limiting factor in achieving measurement im-
precisions at the standard quantum level. For the 10 MHz beam, the classical laser
noise imprecision is larger than the spectral density of the zero-point fluctuations.
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Figure 2.18: Calculated transduction for the plasmonic system in combina-
tion with a high-frequency mechanical oscillator. (a): Spectral displacement
density: S1(Q) (blue) and S(Q) + Sk P (red), for Py, = 65 pW, attaining
a signal-to-noise ratio of 1. (b): Square root of the spectral displacement
density. (c): Imprecision and displacement spectral densities as a function of
input power. The solid blue line is the thermal spectral density S)%}(Qm), the
dashed black line shows the symmetrized zero point fluctuations SQ)F (Qm).
The imprecision contributions are electrical (blue), shot noise (red) and
classical noise (gold), with the black line the total imprecision. The red
line shows S8(Qm) + S¥. The green dashed line is the measurement

back-action S%E’a, and the purple dashed line is the shot noise limit: the
minimum possible shot noise-induced imprecision, for measurement on the
optical resonance. Mechanical parameters are shown in Table 2.4, electrical
parameters in Table 2.3.
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Figure 2.19: Calculated transduction for the plasmonic system in combina-
tion with a 10 MHz mechanical oscillator with Qn, = 1000. (a): Transduction
by o =1, NA =1 scatterer. (b): Transduction by o = 0.1, NA = 0.4
scatterer. The solid blue line is the thermal spectral density S%}(Qm), the
dashed black line shows the symmetrized zero point fluctuations S%fF (Qm).
The imprecision contributions are electrical (blue), shot noise (red) and
classical noise (gold), with the black line the total imprecision. The red
line shows Sg‘((ﬂm) + ngp. The green dashed line is the measurement
back-action S%lfa, and the purple dashed line is the shot noise limit: the
minimum possible shot noise-induced imprecision, for measurement on the
optical resonance. Mechanical parameters are shown in Table 2.4, electrical
parameters in Table 2.3.

Because the classical laser noise has the same scaling with input power as the trans-
duction of mechanical fluctuations, increasing the measurement power does not
reduce the relative contribution of the classical laser noise to the imprecision. We
do note that the classical laser noise is a technical limitation, and there are several
methods to reduce this noise, several of which are described in Section 2.5.4.

For the good scatterer, very low powers to measure at the SQL are obtained,
especially for the high-Q,, beam. We do note that the good scatterer is the ulti-
mate limit, using two NA = 1 objectives and a non-absorbing scatterer. Therefore,
we have also plotted the sensitivity for the low-</ scatterer for the 10 MHz beam,
showing a more experimentally feasible scenario.

2.7 Plasmonic metal-insulator-metal transduction

In Chapters 4 and 5, we measure plasmonic transduction using gold-coated beams
(Figure 1.3a), where the sidewalls of the gold layer support a plasmonic metal-
insulator-metal (MIM) resonance. The geometry is effectively reversed from that of
a dipolar scatterer: the gold covering layer creates a dark-field geometry, where the
only light that is transmitted is light that has been scattered through the plasmonic
aperture. In cavity optomechanics, this is equivalent to a two-sided Fabry-Pérot
cavity, where transmission is monitored.
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Figure 2.20: Geometry for plasmonic metal-insulator-metal (left) and
geometric toy model (right) transduction.

In this section, we will show how the plasmonic MIM geometry is similar to us-
ing crossed polarizers, and compare it to a simple geometric shadowing toy model
[98]. Figure 2.20 sketches the plasmonic metal-insulator-metal and toy model con-
figurations.

2.7.1 Plasmonic darkfield transduction

For the transduction by the plasmonic metal-insulator-metal resonance, we use the
focused scattering model derived in Section 2.3, starting from Equation (2.81). Be-
cause the metal covering on the beams rejects all the direct transmission (reflecting
it instead); we set two of the three terms to 0: the direct transmission term and the
Im(a) term, which represents the extinction, leaving only the scattered field:

sin? (Bout/2)

2
cos“(in|. (2.112)
Sil’l2 ﬁin Cm

2 1
Pout = Pin |laf® o (3 *3 cos Bout + 3 €082 Bout

For the comparison of the MIM geometry with the geometric toy model, we
assume a dipole scattering at the unitary limit, with y; = 0 and Q = y/wg = 12.
We use G = 27 x 1 THz/nm, which is a reasonable value for a width of the gap
between the MIM sidewalls of 30 nm, a typical value used in the experiments in
Chapters 4 and 5. The transmittance 9 and the change in transmittance %—{ are
plotted for these parameters in Figure 2.21, as a function of focusing angle 8 and
frequency w. Both 9 and % are strongly dependent on these parameters, with
both improving for increasing numerical aperture. At the optimum detuning and

0.05

NA =1, a transduction of @ = T is calculated.

2.7.2 Geometric model transduction

We compare the resonant MIM transmission to a geometric toy model, as sketched
in Figure 2.20. We assume that in the focal plane, the beam has a circular effective
area <qfr, with a power density & = Pi,/ oefr, and integrate this power density over
the opening area given by the opening width x. For the area of the focused laser
beam in the focal plane, we will extract the effective area /¢ [78, 89] from the
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Figure 2.21: Transmittivity for the MIM darkfield geometry as a function of
focusing angle B and laser frequency w. Left panel: transmittance J~ (as
shown in Equation (2.112), right panel: derivative of transmittance 0@%_ The
mesh lines normal to the f axis indicate NA = (0.1,0.2,...,0.9).

focusing analysis in Section 2.3.5 as

P.
$2feff=—;1
2eW,(0)
)lzsinzﬁin
=— 2.113
n.%(0)? ( )
using
D SR
P, = ZeocEOﬂa , (2.114)
FEy|.%(0)]\?
wel (0):(w) , and (2.115)
¢ 21
B (0)—2( 8 10053/2ﬁ~ lcos5/2ﬁ~ (2.116)
0 = 15 3 in 5 in|» .

where Pj, is the incident power, I/Vi‘;lC(O) is the electromagnetic energy density at
the origin and .#(O) is a diffraction integral, evaluated at the origin.

We will take the power density 22 in the focal plane to be constant, as & =
Pin/ o for radial distances r within the effective focal area, r < \/ <o/ 7. To find
the transmitted power we integrate this power density over the opening width x,
finding the transmittance:

Pout oo prx/2
T geom = = f 2dx'dy (2.117)
Pin oo J—x/2
2x 5
~ +0(x%), (2.118)
.,Qfeffﬂ'

49



2 Principles of plasmonic transduction

(b) ()7'/(‘2)\( (%/nm)
S TT—

Figure 2.22: Left panel: transmittance 9 (Equation (2.118)), right panel,
change in transittance % (Equation (2.119))for the geometric model, as a
function of slot width X and focusing angle 8. The mesh lines normal to the
B axis indicate NA = (0.1,0.2,...,0.9).

assuming x < r. In this limit, we can find the change in transmittance due to a
change in gap width:
ag—geom ..Qfeff

=2 . 2.119
0x /4 ( )

. 0T, . .
In Figure 2.22, we plot Tgeom and —5-, as a function of x and fi,. The geometric

toy model transduction is a non-resonant effect. It is however weakly dependent
on the laser frequency in that the size of the focal spot depends on the frequency,
with higher frequencies leading to more tightly focused spots and therefore more
transmittance. We note that for very small gaps, the output power modulation can
be high:

acof-geom

ox ox
The change in transmittance does not depend on the unmodulated gap width
X. However, the DC transmittance PiyJgeom can be very small (as shown in
Figure 2.22), leading to high modulation. We note that this model is a fairly
simple approximation. The full analysis requires calculating the transmittance
through a slit in a perfectly conducting screen, as discussed by Born & Wolf
in §11.8.3 of Principles of Optics [99].

We can now compare the imprecision attainable for the MIM transduction and
the geometric toy model transduction. We repeat Equation (2.105):

6 Pout = PinT geom (2.120)

gmp 2NEPY_ 1 he T e T 2.121)

xo P2 (0T 10x)? ' Pin (0T 10x)? (0T 16x)?’ ’
filling in 95 d 97 anq g d 2Zsom Hiotting th It in Figure 2.23
g miv and =5 and Jgeom an 5 plotting the result in Figure 2.23.
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Figure 2.23: Comparison of the imprecision level for MIM transduction and
geometric transduction. (a): comparison as a function of input power Pj,, for
a gap width of 30 nm. Solid lines: imprecisions for MIM geometry; dashed
lines: imprecisions for geometric model. Black: total; blue: electrical;
purple: shot noise; gold: classical laser imprecision. (b): Geometric model
imprecision as a function of gap width x, at power Pj, = 500 uW, showing
low imprecision for very narrow gaps.

For the MIM transduction, we use the good-scattering parameters, as discussed in
Section 2.5: Qopy = 10, G =27 x 1 THz/nm, wg = 27 x 210 THz, w = 27 x 200 THz, to
achieve optimum detuning of A = w — wg = ﬁgy. The gap width for the geometric
model was set to X = 30 nm, with w = 27 x 200 THz. The solid lines show the
imprecision contributions for the MIM geometry, the dashed lines those for the
geometric model. Clearly, the plasmonic geometry has a lower imprecision for all
input powers.

We can compare the sensitivity obtained at Pj, = 500 uW to that for the scat-
tering plasmonic dimer as shown in Figure 2.14, and see a very similar impreci-

sion level for plasmonic dimer and MIM geometry: \/S)i;? E,HM =8x 107 m/VHz,
\/S;izgimer =5x 1071 m/v/Hz at { = 0. The geometric transduction for a 30 nm-

wide gap is S;I;geom =1x10""% m/VvHz

In Figure 2.23b, we show the geometric toy model imprecision levels as a
function of gap width. Increasing the gap width increases the power transmitted
through the slot, while keeping the change in transmittance %% constant.
Therefore, we see that increasing the gap width increases the shot noise and
classical noise imprecision contributions. For narrow gaps, the transmittance
goes down. This leaves the geometric transduction limited by the electrical noise
contribution to the imprecision, estimated here for the detector used in our
experiments.
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2.8 Radiation pressure force & the optical spring ef-
fect

Up to now, we have only discussed how light can be used to detect mechanical
motion. However, because photons carry momentum, they can exert a force. By
exerting forces, the light field can influence the mechanical properties of the sys-
tem. In this section, we will discuss the radiation pressure force. As we will see in
Section 5.4, there is also another way a photon can exert a force: through absorp-
tion, light can cause heating, which can then drive the mechanical system.

In cavity optomechanics, the radiation pressure force is characterized by the
coupling factor G and the number of photons circulating in the cavity 7icay:

F(x) = hGTicay. (2.122)

This equation shows both the strength and the weakness of the plasmonic system
under study here. Because G is large, around 27 x 1 THz/nm, the force per photon is
high. However, due to the low optical quality factor of plasmonic systems, the num-
ber of circulating photons 7ipp, is relatively low. We assume dynamic phenomena
due to retarded radiation pressures, such as cooling and heating, are limited, as
the photon lifetime is much smaller than the mechanical oscillation period: 1/y «
1/Qm. This implies that an individual photon does not ‘see’ the cavity oscillating,
but instead sees a ‘snapshot’ of the optical cavity configuration. Therefore, we will
not study these effects.

We restrict ourselves to determining static phenomena, and focus on the op-
tical spring effect: the radiation pressure mediated stiffening or softening of the
mechanical oscillator. We use the properties of scattering dipoles calculated in
this chapter to determine the optical force between the two dipoles of the dimer
antenna, and determine the magnitude of the optical spring effect.

The radiation pressure force can be derived from a potential, following the
derivation by Aspelmeyer et al. [100]:

oV,
Fx) = - 2Vrd®), (2.123)
0x
The total potential for the mechanical oscillator is then:
Q
Vix) = %xz + Vrad (1) (2.124)

This modified potential creates a new equilibrium position, xo # 0, and changes the
effective spring constant to a new value:

kett = V" (x0) = megQE, + Vit g (x0), (2.125)

ra

where the prime (') indicates differentiation with respect to x. This leads to an
expression for the change in mechanical frequency :

nnax
8Qm = 8AE, - Reav 5. (2.126)
YV 2MetOm 1+ (2A4/7)2]
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Figure 2.24: (a): Frequency shift and (b) optical force as a function of
frequency for the good and bad scatterer. The scatterer is excited with
500 uW of optical power through an NA = 1 objective for the o/ = 1 scatterer,
and through an NA = 0.4 objective for the o/ = 0.1 scatterer, with coupling
rate G = 2w x 1 THz/nm. The beam has a resonant frequency of 9 MHz, with
Q =1000.

We now need to determine the number of photons circulating in our plasmonic
cavity. Using the expressions derived for the transmittance, we set the photon num-

ber to be:
_ k Im(a) 4P,
fiphot = — —

) 2.127
e Sy Yho ( )

which is equal to the extinction term in Equation (2.81), where we have defined
Mgas: = fiphot (A = 0). The resulting frequency shift and optical force, Fopt = AGiphot
are shown in Figure 2.24a and b respectively, as a function of optical detuning. For
the dimer antennas studied in Chapter 6, we have fi, =9 MHz and Q = 1000. The
results in Chapter 6 show an albedo worse than that of the low-<« scatterer studied
in this chapter. This implies that we will not observe an optical spring effect in
Chapter 6. However, the calculations shown in Figure 2.24 show that, if we improve
the experimentally observed albedo, an optical spring effect should be observable,
as the frequency shift 6f calculated in Figure 2.24 is more than 2 times larger than
the mechanical loss rate Qp,/Q = 9000 rad/s measured in Chapter 6.

2.9 Conclusion

In this chapter, we have shown the theoretical properties of the systems we will
study in the remaining chapters, investigating both the mechanical and optical
properties.

First, we derived the mechanical properties of doubly clamped beams. The
model for a uniform doubly clamped beam was expanded to include bilayer beams
and the effect of axial stress. Next, we used the fluctuation-dissipation theorem to
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\V/ S (m/vHz) high-o#/ low-of

constant Py, 5x10718 4% 10714 = n/5)
constant Py 6x1071%  1x107B( =n/4)
MIM 8x 10716

geometric 1x1071

oscillator \/ S,‘}}( (m/vHz)  PimpesqL

high-Q 59x1071 66 nW

high-Qp, 1.9x1071% 5mwW

10 MHz 1.7x107% 113 pw

Table 2.5: Calculated imprecision and thermal displacement spectral
densities for the various transduction models and beams described in this
chapter. The terms “high-«/" and “low-«/" refer to the different scatterer
parameters as defined in Section 2.5. Mechanical parameters for the
different beams are given in Table 2.4. The 10 MHz beam is typical for the
beams we will study in Chapter 6. Its spectral density is plotted in Figure 2.5.
Pgq, refers to the power needed to perform a measurement with a shot-
gimp,SN _ SZXXPF

noise limited imprecision Syy , as discussed in Section 2.6.

calculate the displacement spectral density caused by the thermal occupation of
beams.

To investigate the optical properties of plasmonic antennas, we started by
analyzing the scattering properties of two coupled particles, calculating the
interparticle-spacing-dependent scattering properties of such a system. Next, we
calculated the excitation of such a system by a focused light field. We included
polarization, which allowed the investigation of the use of crossed polarizers
to improve signal-to-noise ratios. In Chapters 4 and 5, a different plasmonic
transducer is used, using not a scattering particle but an MIM slot. A model for this
system was created, and we compared this to a geometric transduction model.

The noise in the measurements is due to the fact that the laser beam and de-
tector used to measure are not noise free. We showed typical noise parameters
for the laser and detector we used in most of the experiments performed in this
thesis, and calculated how the noise spectral densities propagate through the sys-
tem, allowing a comparison of signal and noise. This is conveniently expressed
as displacement imprecision spectral densities Sy " (Q2), which can be compared
to a (nano)beam’s thermal spectral displacement density S&(Q). We calculated
imprecisions both for constant input power Pj, and constant output power Py, for
both an ideal and a more realistic scatterer. We then compared these imprecisions
to thermal displacements for several different mechanical systems, and introduced
the standard quantum level as a measure for sensitivity. Table 2.5 gives an overview
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2.9 Conclusion

of these calculated values, showing the low imprecisions obtainable with optimized
plasmonic systems.
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Methods

Measuring the nanomechanical motion of plasmonic nanostructures requires sev-
eral components, which we will describe in this chapter. First, in Section 3.1, we
describe the vacuum microscope used for measurements, including the vacuum
chamber, scanning stages, optics, electronics, and software control. Section 3.2 de-
scribes the fabrication process for creating gold-coated silicon-nitride nanobeams
using sputter coating and focused ion beam (FIB) milling. In Section 3.3, we de-
scribe the fabrication processes used to create individual plasmonic antennas on
nanobeams. We used two fabrication protocols: the first uses sputter coating of
gold and FIB milling. The second uses electron-beam lithography (EBL) to pattern
antennas, followed by a FIB step to define the nanobeams around the antennas.

3.1 Measurement setup

In this section, we will discuss the optical setup used to accurately focus and scan
laser spots on samples containing plasmonic transducers and to measure the op-
tomechanical response. A schematic of the setup is shown in Figure 3.1. First, we
discuss the design of the vacuum chamber. As the motion of the mechanical oscil-
lators is damped by ambient air pressures (a measurement is shown in Chapter 4,
Figure 4.7), the samples must be placed in a vacuum environment.

Figure 3.2 shows the nano-optomechanical vacuum system that was designed
and constructed at AMOLE Photographs of the completed system are shown in
Figure 3.3. A square aluminum chamber was mechanically milled from a solid
aluminum block. A PMMA lid was placed on top, with a rubber O-ring for seal-
ing. A turbomolecular pump was used to pump to a typical vacuum pressure of
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\ WP: M2 waveplate
laser vacuum chamber | BS: 95:5 beamsplitter spectrum
(1550 nm) LP: linear polarizer

PD: photodetector analyzer
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Figure 3.1: Schematic of the nano-optomechanical measurement setup.

~ 1073 mbar, limited by the outgassing of the PMMA lid. The vacuum chamber floor
was made 20 mm thick for mechanical rigidity. A thinner floor (10 mm), used in an
initial design, was measured to bend by 20 pm in the center when under vacuum,
leading to a defocusing of the microscope objectives.

The sample and the incoupling objective are placed on five-axis stip-slick
motor-driven stages (New Focus 8081-M) to allow 3 mm of motion control.
The outcoupling objective is placed in a micrometer-driven translation mount
(Thorlabs ST1-XY/M) to allow alignment of this objective onto the optical axis.
The sample stage includes a three-axis capacitive-feedback piezo stage (PiezoJena
Tritor 40) to allow for high-resolution raster scanning of the sample. The objectives
are placed inside the vacuum chamber to allow the use of high-NA short working
distance objectives.

In most experiments we use an erbium-doped-fiber laser (NKT Photonics Ko-
heras) operating at 1550 nm (linewidth < 100 kHz), in combination with a DC-
coupled InGaAs photodiode for detection (Femto HCA-S-200M-IN-FC). A 633 nm
HeNe laser (Melles Griot) and a 780 nm external cavity diode laser (New Focus SWL-
7500) were also used, in combination with an AC-coupled silicon photodiode (New
Focus 1801-FC). Waveplates, polarizers and polarizing beamsplitters are used to
control the polarization states of the input and output beams. The output polarizer
is placed in a motorized rotation stage (Newport NSR-1). Pellicle beamsplitters are
used to divert light to front and back microscopes equipped with CMOS cameras
and white-light LED illumination sources, to image input and output spots on the
sample.

The photodiode signal is analyzed on an electronic spectrum analyzer
(Rohde & Schwarz FSV-3), and passed through a low—pass filter to an oscilloscope
(Tektronix TEK-200) and DAQ card (National Instruments USB-6229), with the
low-pass filter blocking high-frequency noise from the DAQ card. This card is
also used as a digital-to-analog converter to control the piezo stage, and TTL lines
are used to control the illumination LEDs. The entire experiment is controlled
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Figure 3.2: Design drawing of vacuum chamber (design: Iliya Cerjak,
AMOLF). (a): top view, (b): side view, (c): exploded view.
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(@) (b)

Figure 3.3: (a): Nano-optomechanical measurement setup photographed
from the side, showing incoupling microscope and (b) from the top, showing
the inside of the vacuum chamber. Photography: Henk-Jan Boluijt.

by a specially designed LabView program, controlling the motion of the 5-axis
translation stages and piezo stage, polarization rotator, microscope illumination
lamps, electronic spectrum analyzer and analog-to-digital-converter.

3.2 Fabrication of linear arrays of micromechanical
oscillators

Gold-coated nanomechanical oscillators, measurements on which are described in
Chapters 4 and 5, were made using high-stress (o = 800 MPa) stoichiometric silicon
nitride membranes, with 0.5 x 0.5 mm square windows on 200-pum-thick 5 x 5-mm-
square frames (Norcada, Canada), shown in Figure 3.4a. We use sputter coating, at
abase pressure of 10~ mbar of Ar gas, to deposit 100 nm of gold on the back side of
the membrane, and 3 nm of gold on the top side, using an Emitech 575DX sputter
coater.

Focused ion beam milling was used to create linear slots in the metal-coated
membranes to form the mechanical oscillators. A 30 keV gallium ion beam was
used in a FEI Helios-600 dual beam system. Using a beam current of 9.7 pA, two
types of samples were made: with two parallel mechanical beams in which light is
coupled to the slit between the two beams, and arrays composed of 8 parallel mech-
anical beams. In these array structures, we can either probe the beams separately,
using a tightly focused laser beam, or collectively, using a laser spot defocused to
cover the entire array.

We mill from the top side, as sketched in Figure 3.4b. The 3-nm-thin gold top
layer keeps the silicon nitride from charging, greatly reducing sample drift during
milling. By milling from the top side, the tapering inherent in focused ion beam
milling is used in our favor: the taper in the silicon nitride beams acts as an etch
mask for the softer gold behind it, leading to narrower slits in the gold layer, allow-
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Figure 3.4: (a): Photo of a 50-nm-thick 0.5-mm-square silicon nitride
membrane in a 5-mm-square silicon frame (photo credit: Anneke Thijssen).
(b): Schematic cross section of membrane geometry, with the arrow
indicating the direction of ion beam incidence. (c): Zoom of one of the milled
slits. Layer thicknesses and slit width are to scale.
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Figure 3.5: First 16 rows of serpentine pattern used for milling single-pass
structures with FIB. Blue dots indicate milling positions, the arrows indicate
the milling order. The gray vertical sections are the milled slots.

ing more control over the plasmonic modes in the gap between the gold-coated
beams.

When fabricating these freestanding structures it is important to manage the
release of the different beams to prevent beams collapsing onto each other. To do
this, we mill in a single pass, with a long dwell time (200 ps per pixel, 3 x 3 nm pixel
size), in a serpentine fashion, as shown in Figure 3.5, which shows the first rows of
the milling pattern for a double-beam structure, with the blue dots indicating the

61



3 Methods

30 keV Ga* sputtering of Si,N,

Sputtered Atoms/Ion

0 10 20 30 40 50 60 70 80 90
Sputtering Angle (°)
Figure 3.6: SRIM simulation of the sputtering rate in sputtered atoms per

incoming ion as a function of the angle of the incoming ion beam, with
normal incidence at 0°.

milling pixels, executed in the order indicated by the arrows. The gray rectangles
indicate the resulting slots. This procedure keeps all the beams the same length
during milling, preventing beam collapse.

The milling rate is strongly dependent on the angle at which the gallium ions hit
the membrane. This is shown in Figure 3.6, which shows the sputter rate of SizNjas
a function of incident angle for 30 keV Ga* ions as calculated by the Stopping Range
of Ions in Matter (SRIM) progam [101, 102]. This strong angle dependence implies
that initially it will take relatively longer to penetrate the membrane (incident angle
= 0°). Therefore the initial hole is created using a longer dwell time of up to 1000 ps
per pixel. Subsequently, as the ions mill along the edge of the lengthening slot, the
angle increases and the higher sputter rate allows for a shorter dwell time. Optimiz-
ing these dwell times decreases the overall milling time required to generate these
structures and also decreases gallium contamination of the structures.

To mill the desired patterns, the FEI dual beam system was controlled using
predefined ‘streamfiles’, which allow near-arbitrary pixel-by-pixel control over
position, dwell time and blanking of the ion and electron beams. A streamfile
consists of a three-line header, with the digital-analog-converter bit-depth used,
the number of times to loop the streamfile’s list of positions, and the number of
lines in the streamfile. Following this are 3-row columns of dwell times (in units
of 100 nanoseconds), x-positions and y-positions (the latter two in DAC bits). An
optional fourth column can be used to blank and un-blank the beam. An example
of a streamfile is:
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3.2 Fabrication of linear arrays of beams

Figure 3.7: SEM images of FIB-milled beams in metal-coated silicon nitride.
(a): Top-view of double-beam structure. (b): Center slot in double-beam
structure, with ~15 nm slit width. (c): Overview of double-beam structure,
taken at an angle of 52°. (d): Overview of 8-beam array.
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A MATLAB script was written to calculate and export these streamfiles, based on
the desired nanobeam sizes, allowing easy iteration to find the optimum milling
parameters.

Figure 3.7 shows the results of this fabrication method. Figure 3.7a shows a
top view SEM image of a double-beam geometry, in which two 1-um-wide beams
are separated by a 20 nm wide slit. A detailed view of a typical slit is shown in
Figure 3.7b. Figure 3.7c shows a completed double-beam structure, composed of
two 20-um long beams. The image is taken under an angle of 52° and clearly shows
the large gap at the side of the array, which is due to bending of the silicon nitride
membrane. The beams themselves are straight and remain in the plane of the
membrane, leading to very narrow gaps between the beams. These structures are
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Figure 3.8: Double-beam structure with dimer antenna fabricated using FIB
milling for beam release and antenna fabrication. Note the leftover grains
of gold and the narrowing of the beams in the milled region.

investigated in Chapter 4. Figure 3.7d shows an array of 8 parallel beams with a
length of 18 pym and beam widths ranging from 475 to 525 nm, investigated in
Chapter 5.

3.3 Fabrication of single plasmonic antennas sup-
ported on nanobeams

A second geometry that was used in the experiments is composed of plasmonic
dimer antennas, consisting of two dipolar scatterers, with each antenna element
placed on an individual mechanical nanobeam, which we study in Chapter 6. This
section describes two fabrication methods we used to fabricate these structures.

3.3.1 FIB milling of dimer antennas

The first method uses FIB milling not only to define the beams, but also to create
antennas. We start with the same silicon nitride membranes as described in Sec-
tion 3.2, and again use sputter coating to deposit 100 nm of gold on one side of
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the membrane. To define the antenna, we mill from the same side as the gold was
deposited. In a first milling step, we define the dimer antenna by millinga 2 x 3 pm
area, leaving the antenna unmilled in the center. This requires careful tuning of
the milling dose; too low doses leave many gold grains surrounding the antenna,
causing unwanted light scattering. On the other hand, overmilling into the silicon
nitride can damage the mechanical properties of the beams.

In the next step, we use the focused ion beam to release the beams. We milled
the beams from the same side as the antenna. As a result, the gap between the
antenna elements becomes slightly larger than the width of the slot between the
beams. In addition to these milling problems, a disadvantage of this antenna design
is that it leaves a large portion of the beam covered with gold. This greatly increases
the effective mass of the oscillator, reducing the thermal fluctuations we want to
probe.

3.3.2 Fabrication of antennas using electron-beam
lithography

We then developed an alternative fabrication procedure for creating dimer anten-
nas on nanobeams. First, we use electron-beam lithography, thermal evaporation
of gold and liftoff to pattern antennas on a SisN; membrane. We create dimer
antennas and longer single antennas. The dimer antennas are used for optical
characterization, while the single antennas are used in fabricating antennas on
beams. In the next fabrication step, we use focused ion beam milling to create two
beams around the longer single antennas. In separating the beams we also divide
the antenna in two elements, thus creating a dimer antenna. The final result is a
structure with two beams, each with a dipole scatterer on top.

For antennas fabricated using EBL, we used low-stress silicon nitride mem-
branes (Norcada, Inc.), of 100 nm thickness, with window sizes of either 0.5 x
0.5 mm, 1.0 x 1.0 mm or 1.5 x 1.5 mm, and large frames (7.5 x 7.5 mm). We first
attempted to create antennas on beams on high-stress membranes. However,
when releasing the beams on these high-stress membranes, the membrane would
break soon after beginning milling, possibly due to too high stresses around
the initial milling opening. This problem is eliminated by using lower stress
(0 <250 MPa) silicon-rich membranes.

Table 3.1 shows the workflow used for electron-beam lithography of antennas
on membranes; Figure 3.9 shows a schematic of these steps. To pattern the anten-
nas we use the positive-tone resist ZEP520a, diluted 2:1 with anisole. To improve
the wetting properties of the resist on the silicon nitride, the membranes are ozone-
cleaned for 10 minutes and a layer of HMDS is applied. Because the frame size is
still fairly small, getting the resist to spin coat to a uniform layer can be difficult.
To control the spin coating process on the very small membrane samples we use
a custom made sample-adapter, consisting of a PDMS gel-box glued onto a glass
microscope slide. The membrane is mounted on the PDMS, and the spin coater
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Figure 3.9: Electron-beam lithography workflow as used to fabricate dimer
antennas on silicon nitride membranes. Top left: photograph of a 100-
nm-thick 1.5-mm-square low-stress silicon nitride membrane suspended in
a 7.5-mm-square silicon frame (Norcada, photo credit: Henk-Jan Boluijt).
Fabrication steps depicted here are detailed in Table 3.1. Step 7 is the FIB
milling step to create nanobeams and dimer antennas from single rods of
double length.




3.3 Fabrication of single plasmonic antennas supported on nanobeams

step description details
1 ozone clean 10 minutes
dry bake 150° C, 5 minutes
spin adhesion layer hexamethyldisilazane (HMDS), 4000
rpm for 32 s, 2000 rpm/s acceleration
bake adhesion layer 150° C, 1 minute
2 spin resist ZEP520A : anisole 2:1, 1500 rpm
for 45 s, 500 rpm/s acceleration
bake resist 180° C, 5 minutes
3 electron beam exposure 100 pum write field, aperture 10 pm

area dose 100 uC/cm?,

line dose 250 pC/cm

pentyl acetate, 90 s

methyl isobutyl ketone (MIBK) & iso-
propyl alcohol (IPA), MIBK:IPA 9:1, 15 s
IPA, 15

argon plasma clean, 2 minutes

3-4 nm germanium, 35-40 nm gold
N-methyl-2-pyrrolidone (NMP), 65 ° C.
At least 2 hours, use syringe to aid liftoff
Rinse in acetone and IPA, 15 s each
From reverse side. Current 9.7 or 28 pA.

4 develop resist

5 evaporate Ge & Au

6 liftoff resist

7 FIB milling

Table 3.1: Electron-beam lithography workflow. Step numbers refer to the
schematic shown in Figure 3.9.

(Suss Delta 80) is first spun slowly to check the centering of the membrane window
over the rotation axis of the spincoater. Membranes supported in 7.5 x 7.5 mm
frames were used to increase the yield of the spin coating process.

For electron-beam exposure, development, evaporation, and liftoff, we mount
the membranes in a custom holder (Figure 3.10) to increase ease of handling and
reduce the risk of puncturing the membrane, and expose using a Raith e-LiNE
system. Even though silicon nitride is an insulator, we do not apply a conductive
coating to improve the electron-beam imaging and pattern writing. While charging
is visible when focusing on the frame region of the sample, the thin Si3Ny layer
only absorbs a small fraction of incident electrons, so that charging during pattern
writing creates a negligible effect.

After exposure, the resist is developed, and Au is deposited using a thermal
evaporator at a base pressure of 1078 mbar. Before evaporation, we run an argon
plasma for 2 minutes to clean the chamber and increase the adhesion of the sur-
face. Then we evaporate 3-4 nm of germanium (as an adhesion layer) and 35-40 nm
of gold.

After coating, the sample is placed in NMP for liftoff. Figure 3.11 shows an SEM
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Figure 3.10: Sample holder for electron-beam lithography process (design:
Henk-Jan Boluijt, AMOLF).

Figure 3.11: SEM image of a portion of a 70x70 um array of 250x40 nm-
size antennas, with a 30 nm gap between the elements, with the antennas
placed at a 1 um pitch in both x- and y-directions.

zoom image of a portion of a 70 x 70 um array of 250 x 40 nm-size antennas, with
a 30 nm gap between the elements, with the antennas placed at a 1 um pitch in
both x- and y-directions. These dimer antennas were used in optical transmission
measurements, which are shown in Figure 6.2a.

Dimer antennas on double nanobeams were made by first fabricating single
antennas of roughly the same length as a dimer antenna in Figure 3.11. The same
electron-beam lithography and liftoff procedure as described above was used. Af-
ter liftoff, the samples are mounted on an aluminum sample holder using copper
tape (3M) for FIB milling. This holding plate is also used in the optomechanical
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Figure 3.12: Pattern used for milling narrow beams for plasmonic dimer
antennas. The color scale indicates the ion beam dwell time per pixel. Pixel
spacing is 3 nm.

measurement setup, eliminating another sample handling step.

Next, we use FIB milling to create beams in the Si3sN, membrane using a current
of 9.7 or 28 pA, with milling direction as indicated in panel 7 in Figure 3.9, milling
the structures in a single pass. The antennas are on the top side of the membrane,
to enable the EBL fabrication process. We mill from the reverse side, to protect
the antennas from gallium contamination and to use the tapering inherent in FIB
milling in our favor to create small antenna gaps. This process leads to both the
creation of two beams and the cutting of the antenna into parts, to form the dimer
antenna.

Figure 3.12 shows a schematic of a MATLAB-generated streamfile we use to
control the ion beam, with a dwell time of 1500 us/pixel for the initial hole, 60
ps/pixel for separating the beams, and 400 ps/pixel for the narrow gap between
the antennas. The pattern uses a small pixel size of 3 nm, and the total milling time
per structure is about 1 minute. Because the beams are only 120 nm wide, we leave
an ‘island’ of silicon nitride to support the 250-nm-long antennas.

To align the pattern onto the pre-existing antennas, we use the electron beam in
our dual-beam FIB system to image the antennas through the silicon nitride. This
places high requirements on the alignment between the electron and ion beams.
In practice, we use each milled structure to check the alignment, and if necessary
we use the beam-shifting coils on the electron column to realign the beams.

Because the membrane is nonconductive, charging due to the ion beam can
cause large beam drifts during milling. This drift is especially severe during the
milling of the initial hole. We have obtained the best results by leaving the electron
beam running in imaging mode, zoomed out enough to see the area of the complete
structure, while milling the initial hole. After the ion beam has penetrated the
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Figure 3.13: SEM images of dimer plasmonic antennas on nanobeams,
fabricated using EBL and FIB. Panel (a) shows an overview of the complete
structure. Panel (b) shows a zoom of the antenna region.

membrane, the electron beam is blanked. Once milling is complete, the structures
are stable under electron-beam illumination, and do not stick together due to elec-
tron charging. Figure 3.13a shows a completed structure, and Figure 3.13b shows
an image zoomed on the antenna region, showing that we can reliably fabricate
dimer antennas (200 x 40 nm) on 10 um long beams with a cross-sectional area of
100 x 120 nm.
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Measurement of nanomechanical motion
using metal-insulator-metal plasmons

This chapter demonstrates plasmon-mechanical coupling in a metalized nanome-
chanical resonator. A surface plasmon polariton mode is excited in the 25-nm
wide gap between two gold-coated silicon nitride beams. The strong plasmonic
dispersion allows the nanomechanical beams’ thermal motion at a frequency of
4.4 MHz to be efficiently transduced to the optical transmission, with a measured
displacement spectral density of 40 fm/v/Hz. Our results show that novel function-
ality of plasmonic nanostructures can be achieved through coupling to engineered
nanoscale mechanical oscillators.

4.1 Plasmonic coupling

The experimental structure is composed of two parallel 20-pm-long and 1-pm-
wide freestanding doubly-clamped 50-nm-thick SisN4 beams, coated on one side
with a 120-nm thick Au layer using sputter coating. The central gap width between
the two beams is varied between 15 and 120 nm for different structures. A top-view
scanning electron microscopy image of the structure is shown in Fig. 4.1a. Due to
strong residual stress in the silicon nitride layer the membrane on the outer side of
both nanobeams bends away, increasing the size of the two outer gaps, while the
central gap keeps its width as fabricated. Figure 4.1d shows a magnified view of a
structure with a 25-nm central gap size.

The relative mechanical motion of the nanobeams is probed by measuring the
transmission of a laser beam that is incident normal to the sample, with its focus
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4 Measurement of nanomechanical motion using MIM plasmons

Figure 4.1: Plasmonic nanomechanical transducer geometry. (a): Scanning
electron micrograph (incident angle 52°) of the double beam structure after
fabrication. The two-beam structure is freestanding and lifted above the
surrounding membrane due to mechanical stress in the latter. (b): Cartoon
of the anti-symmetric out-of-plane mechanical mode of the double beam
structure. (c): Cartoon of the anti-symmetric in-plane mechanical mode
of the double beam structure. (d): Scanning electron micrograph (incident
angle 0°) of the center part of the double beam, showing the 25-nm-wide
central gap. The Au layer is visible as the grainy structure on top.

centered on the middle slit. The laser excitation generates metal-insulator-metal
(MIM) plasmons that are confined within the 25-nm gap suspended by the Au lay-
ers. Figure 4.2a shows the calculated plasmon dispersion relation [103] for a semi-
infinite gold-vacuum-gold MIM waveguide (see inset) for gap widths ranging from
120 nm to 10 nm. As the width of the insulator gap region is reduced, the plasmonic
coupling between the two metal interfaces becomes stronger, increasing the wave
vector and the effective index of the plasmonic MIM mode [62]. The reflection of
the MIM plasmon at the upper and lower dielectric discontinuities defines an MIM
Fabry-Pérot cavity. For this cavity, as well as for the propagating MIM mode, the
plasmonic coupling between the two metal interfaces is dependent on the width
of the insulator gap region, creating nanomechanical cavity resonance wavelength
shifts.

4.2 Optical transmission spectra
Figure 4.3 shows optical transmission spectra for double-beam slits in the red

and near-infrared spectral range, probing the plasmonic localized mode in the
slit. Light from a fiber-coupled halogen lamp was focused on the central slit using
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a confocal transmission microscope. The light is incident on the SizsN, side of
the membrane (see inset Fig 4.2b) to optimize impedance matching from the
free-space incident beam to the MIM plasmon mode. The spot size diameter is
about 1.5 pm. The light transmitted through the slit is spectrally analyzed using a
fiber-coupled grating spectrometer equipped with a silicon deep-depletion CCD
detector. A clear resonance is observed near 700-750 nm, with the spectral shape
varying with gap width. The transmitted intensity increases with gap width and
shows a blue-shift of the peak resonance wavelengths with increasing slit width,
both in agreement with the calculations shown in Fig. 4.2b.

4.3 Finite-difference time-domain simulation

Figure 4.2b shows a 2D finite-difference-time-domain simulation (Lumerical So-
lutions) of the transmission through the 120-nm long MIM waveguide (see inset).
Several characteristic resonant features are seen in the transmission spectrum. In
the range 700-800 nm, a resonant Fabry-Pérot mode is observed that results from
the reflection of the MIM plasmon at the upper and lower dielectric discontinuities
defining the MIM cavity. As the gap width is reduced, the plasmon wave vector
increases and the resonance redshifts. The inset in Figure 4.2c shows the field
distribution at 750 nm for a 20 nm gap width, corresponding to the first-order
(n = 1) Fabry-Pérot resonance that occurs when the cavity length is equal to one-
half of a plasmon wavelength, taking into account the phase jump at the inter-
faces [104]. Note that the strong resonance shift with gap width in this plasmonic
MIM cavity geometry is due to the strong sensitivity to dispersive plasmonic effects
rather than being linearly linked to a mirror displacement as is the case in con-
ventional optomechanical Fabry-Pérot cavities. Figure 4.2c shows the simulated
center frequency and relative shift of the n = 1 Fabry-Pérot resonance frequency
for different gap widths. From the data shown in Fig. 4.2b, we extract the peak
positions of the n = 1 resonance and calculate G, the optical frequency shift per unit
displacement, with units of [Hz]/[m], to derive many optomechanical interaction
parameters. For instance, the radiation pressure exerted by the plasmonic mode
on the mechanical oscillator is #G per photon. For gaps smaller than 40 nm, the
simulated optomechanical coupling constant is larger than 2 THz/nm, which is
larger than has been shown in any optomechanical system to date: for Fabry-Pérot
cavity systems the frequency shift is limited to G = w¢/L, which typically (w. =
27 x 300 THz, L =25 mm [105]) gives a frequency shift on the order of 10 MHz/nm.
For photonic crystals, a frequency shift of 350 GHz/nm has been shown [106], and
for nanoscale GaAs disk resonators, a frequency shift of G = 450 GHz/nm has been
shown [18]. At longer wavelengths, the n = 0 plasmonic mode is excited, which
modulates the transmitted intensity as a function of gap width, as shown in Fig-
ure 4.2d.
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Figure 4.2: Dispersion of metal-insulator-metal plasmons. (a): Calculated
dispersion relation for a gold-air-gold metal-insulator-metal (MIM) wave-
guide, shown schematically in the inset, with the mode profile indicated in
black. The width of the air gap ranges from 10 nm (blue) to 120 nm (red).
The light line is indicated by the dashed black line. (b): Simulated (FDTD)
transmission through a 120 nm long MIM cavity, as shown in inset, with
gap widths from 5 nm to 40 nm. (c): Calculated resonance frequency
as a function of gap width for the n = 1 Fabry-Pérot mode (black) and
differential peak shift (blue) at each gap width. (d): Calculated modulation
of transmission for the n = 0 mode at A = 1550 nm. The insets in (c) and
(d) show the electric field intensity | E|? of the two modes for a gap width of
20 nm.

4.4 Measurement of mechanical modes

To investigate the transduction of the nanomechanical motion to the optical sig-
nal, we use the experimental setup described in Chapter 3. A narrowband laser is
focused through the center slit of a double beam structure, with TM polarization,
exciting MIM plasmons. The transmission is detected on a fast photodiode.

Figure 4.4a shows the frequency spectrum of the signal transduced by the
plasmonic nanocavity. Four mechanical resonances are clearly observed, at
f =2.75, 4.4, 4.6, and 5.8 MHz. To corroborate the mechanical nature of these
resonances, we fabricated a series of beams with lengths between 12 and
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Figure 4.3: Optical transmission spectra of double-beam structures in the
NIR wavelength range. A series of beams with different center widths
(indicated by the different colors) was fabricated, and transmission was
measured using a confocal microscope.

25 ym. For all these beams, we measured spectra similar to the one shown in
Figure 4.4a and extracted the mechanical resonance frequencies, which are plotted
in Figure 4.5. These measured eigenfrequencies show good agreement to finite-
element-method (COMSOL) simulations of the mechanical eigenfrequencies of
the beams as shown in Figure 4.5, assuming a reasonable value for the stress in
the SisN4 membrane (o = 700 MPa). This simulation also allows us to identify
the nature of the mechanical eigenmodes at the different resonant frequencies,
with corresponding FEM simulations inset in Figure 4.4a. We find that the modes
near 2 MHz correspond to out-of-plane oscillation of the beams (sketched in Fig
4.1b), while modes in the 4-5 MHz spectral range are due to in-plane oscillation
of the beams (Figure 4.1c). The 5.8 MHz resonance matches the second-order
out-of-plane mode.

Figure 4.4a also shows a reference measurement taken on a Si3N4 beam struc-
ture without gold film. Manufacturing narrow slits in the o = 700 MPa membranes
without gold coatings was unsuccessful: the beams collapsed onto each other dur-
ing milling, due to the high stress in the membrane. However, this structure was
successfully milled in a lower-stress membrane, with ¢ = 200 MPa. From FEM
simulations for this geometry the lowest-order out-of-plane and in-plane modes
would be expected at 4.41 and 18.5 MHz, respectively. No mechanical modes are
observed, clearly demonstrating that detection of mechanical motion observed in
the metallic beams is due to MIM plasmons in the narrow metal gaps.

Figure 4.4b shows a more detailed view of the resonant modes at v = 4.447 MHz
and 4.566 MHz. The observation of the doublet resonant modes is attributed to
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Figure 4.4: Nanomechanical frequency spectra of plasmonic nanores-
onators measured at A =1550 nm. (a): Black line: Mechanical spectrum
measured using a spectrum analyzer. Four mechanical resonances are
visible, at v =2.8,4.5, 4.6 and 5.75 MHz. The broad peak centered at 250 kHz
is attributed to laser classical noise. The insets show FEM simulations
of the associated mechanical modes. Gray line: mechanical spectrum of
a reference sample, consisting of a double beam structure in low-stress
(200 MPa) silicon nitride without gold, vertically shifted by —3 dBm. No
mechanical resonances are observed. (b): Higher RBW measurement of
the mechanical resonances around 4.5 MHz. The data very well fit a
double-Lorentzian line profile superimposed on a constant background
representing the classical noise, shot noise and electrical noise. The lower
and higher frequency resonances have quality factors Q = 617 and Q = 634,
respectively. The signal amplitude corresponds to an RMS mechanical
amplitude Xyms = 10.4 pm, in agreement with theory, demonstrating the
high displacement sensitivity of the plasmonic nanocavity.
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Figure 4.5: Measured eigenfrequencies for beams of different lengths
(black stars), compared to eigenfrequency values extracted from FEM
simulations.

the lifting of the degeneracy of the double-beam resonant modes by small differ-
ences in beam sizes resulting from slight differences in the ion milling parameters.
Lorentzian line shapes are fitted through the resonances, in combination with a
constant background due to classical noise, shot noise and electrical noise, as dis-
cussed in Chapter 2. Good agreement with the data is observed, with quality factors
of Q =617 and 634, respectively, for the two modes. These values being close again
testifies to the degenerate nature of the two resonant modes. The mechanical qual-
ity factor is limited in these structures by the large amount of gold on the beams. By
depositing gold only in the optically probed region of the beams, the quality factor
could likely be improved [107]. In Section 5.5, we will show that this is indeed the
case for an array of nanobeams.

4.5 Transduction

From the Lorentzian line fits the energy stored in each mechanical mode is de-
termined. Dividing by the known DC electrical power output from the detection
photodiode a signal modulation depth of 5.2 x 10~* is found. Using the simulated
intensity modulation of 0.05/nm at A = 1550 nm for a gap width of 20 nm (Fig. 4.2c)
this corresponds to a RMS amplitude of the mechanical mode of ;s = 10.4 pm.
From the equipartition theorem we find the root-mean-square displacement:

kgT
Orms = 5 =15pm, 4.1

assuming an effective mass meg = 42.5 pg calculated from the bridge geometry,
in good agreement with the measurement given the uncertainties in material pa-

77



4 Measurement of nanomechanical motion using MIM plasmons

z
o
S 30F g
€ 25/ s
< 20t o
o 15t o
Q_10_ (@)
c a
= 5t w
g 0 s
o ie)
o o
I5)
<
o

0 45 90 135 180 225 270 315 360
Polarisation angle ()

Figure 4.6: Measured mechanical signal (blue line) and transmitted optical
power (green line) as a function of the polarization of the incident beam
at A = 1550 nm. The polarization angle relative to the beam structure is
indicated in the insets of the plot.

rameters. These data demonstrate the high displacement sensitivity of the plas-
monic nanocavities. Using this calibration, we calibrated the spectrum shown in
Figure 4.4b to a displacement spectral density, expressed as v/Sx(Q), showing an
imprecision of about 40 fm/v/Hz .

We have also compared these data to the modulation expected from a knife-
edge modulation, as discussed in section 2.7. In the naive approach, taking only the
geometric width change into account without any resonant effects, the transmitted
intensity scales with the gap width, leading to a modulation of dx/xy. For the mea-
sured transduction at A = 1550 nm, these values are close to each other. However,
near the resonance at 780 nm, plasmonic transduction offers higher sensitivity.
This can be understood from Fig. 4.2b, as the transduction benefits especially from
strong plasmonic mode dispersion with the laser tuned to the side of the resonant
peak.

To further verify that the optomechanical spectra shown in Figure 4.4 are due to
cavity plasmonic resonances, we studied the dependence of the optomechanical
spectra and the DC transmission background on incident polarization, while keep-
ing the incident power constant. Figure 4.6 shows the optomechanical resonance
peak intensity for the resonance at 4.447 MHz and transmitted DC power as a func-
tion of polarization angle. A sinusoidal trend is observed with maxima and minima
for TM and TE polarization, respectively, directly proving the plasmonic nature of
the coupling mechanism. For TE polarization, the mechanical peak is no longer
visible above the detector noise background.

We have also systematically varied the gas pressure in the measurement cham-
ber: the signal gradually reduces and the linewidth increases for increasing pres-
sures as shown in Figure 4.7, with blue circles indicating the linewidth and black
stars the signal-to-noise ratio as a function of vacuum pressure. The linewidth

78



4.6 Conclusion

6 510
= I
) == 6 =
= 3t ES
[3] =
c 14 =2
3 2| i 2

1t —o— —O— —o— —— {2 -~

0—2 .—1 .0 .1 .2 9

10 10 10 10 10 10

Pressure (mbar)

Figure 4.7: Pressure dependence of signal and linewidth measured for the
out-of-plane resonance at = 2.1 MHz for the double beam structure. Black
stars: signal amplitude, blue circles: linewidth. Note the strong change as a
function of chamber pressure above 10 mbar.

broadening and reduction in amplitude shows that the signal is indeed mechanical
in origin.

4.6 Conclusion

In conclusion, we demonstrated a plasmonic optomechanical resonator with
high displacement sensitivity. Light is coupled to plasmonic localized Fabry-
Pérot resonances that show large amplitude modulation with small mechanical
displacements of the cavity, with an optomechanical coupling constant larger than
2 THz/nm. We detect the fundamental cavity mechanical mode with v = 4.447 MHz
and Q =617 and determine an RMS amplitude of the mechanical mode as small as
8rms = 10.4 pm, with a displacement sensitivity of 35.8 fm/v/Hz. These plasmonic
nanocavities provide a rapid, effective and ultra-sensitive readout method of
nanoscale mechanical motion that could be of use in both fundamental and
applied studies, in which nanomechanical systems act as transducers, sensors or
active elements.
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Parallel plasmo-mechanical transducer array

Arrays of nanomechanical resonators have many applications, ranging from force
and mass sensing [1, 2] to collective nonlinear dynamics [108] and mechanical
memories and computing [109]. In particular, large numbers of integrated mech-
anical sensors can enable sensitive, rapid, label-free and massively parallel detec-
tion of biochemical species and trace gases [110, 111]. By varying the frequency of
the oscillators in an array, the sensing bandwidth can be effectively increased. Par-
allelization can also address some of the difficulties associated with scaling down
mechanical oscillator size, which is generally favorable for sensitivity: difficulties
that include reduced power handling capability [112, 113] and reduced effective
interaction cross section (i.e. the sensor surface area). Another challenge that nano-
scale mechanical systems pose is how to efficiently transduce mechanical motion
to a measurable signal, crucial to any sensor’s operation.

In the case of a sensor consisting of multiple mechanical oscillators, it is often
useful to create a system that can be measured using a single input and single
output, as described in [114], by separating the oscillators in frequency. Mech-
anical arrays have been demonstrated using various readout schemes: electrical
readout [115], using optical diffraction [116], and using (deformable) optical wave-
guides [39].

Here, we demonstrate the parallel transduction of the motion of an array of
nanobeams using a single laser beam focused on the array. The transduction is
mediated by surface plasmon resonances in the narrow metal-coated slots between
the nanobeams, as discussed in detail in Chapter 4, can be extended to measuring
individual mechanical resonator modes in an array of nanobeams.

The small size of plasmonic resonators allows high mode overlap with nanome-
chanical modes. At the same time, the free-space addressability of localized sur-
face plasmon resonances allows the use of simple optical elements to couple light
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to and from the cavity, without having to resort to for instance nanoscale posi-
tioning of waveguides, as is necessary for many photonic crystal cavity [35] and
microcavity [21] optomechanical implementations. This free-space addressability
makes measuring multiple mechanical oscillators with a single laser beam a rela-
tively straightforward process.

During the measurement, the beams absorb some of the incident light. We
demonstrate that this leads to photothermal modification of the beams’ eigenfre-
quencies [117-120]. At high enough driving powers, the photothermal heating can
parametrically amplify the motion of the beams. This photothermal amplification
effect has been observed in a variety of optomechanical systems: in metal-coated
cantilevers [12, 121], in semiconductor membranes using electron-hole pair relax-
ation [122], and in microdisks [123]. Photothermoelastic interactions may thus
allow for both tuning and actuation in these systems. Finally, we discuss the mech-
anical coupling between the nanobeams and show a fabrication technique to im-
prove the mechanical quality factor of the system.

5.1 Experimental methods

To fabricate arrays of parallel mechanical nanobeams, 110 nm of gold is sputter
coated on commercially available high-stress stoichiometric silicon nitride mem-
branes of 50 nm thickness (Norcada, Canada). Using a focused ion beam (30 keV
Ga+ ions, current 10 pA), we mill 9 18-pm-long slits in a single pass, creating 8
nanomechanical beams, each separated by a slit width of 20 nm. The beam widths
are fabricated to range in incrementing steps from 475 to 550 nm wide. The dif-
ference in beam widths lifts the degeneracy of the in-plane eigenfrequencies and
allows the identification of individual beams from the transduced mechanical spec-
trum. The out-of-plane mechanical eigenfrequencies are to first order indepedent
of beam width, and are therefore more difficult to separate spectrally. However, the
out-of-plane and in-plane eigenmodes are well separated in frequency (~ 2.2 and
~ 3.7 MHz respectively), and we will mostly consider the latter below.

Figure 5.1a shows a scanning electron microscopy (SEM) image of the fabri-
cated array, taken with the gold-coated side of the membrane upward and the sam-
ple tilted at 52°. The narrow gaps between the nanobeams are clearly visible; a
larger gap is seen for the two outer sides, where the silicon nitride membrane bends
downwards due to its in-plane stress.

The sample is then placed in a custom-built confocal transmission microscope,
as described in Chapter 3. A 1550 nm wavelength CW erbium-doped fiber laser
is focused onto the sample, polarized orthogonal to the slits, and incident from
the gold-coated side of the nanobeams, as shown in the schematic cross section in
Figure 5.1b. Different focusing conditions were used, as will be described later on.
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Figure 5.1: Experimental geometry. (a): SEM micrograph of array structure,
tilted at 52°, taken on the gold side of the array (beam length: 18 pm,
thickness: 50 nm SizgN4, 110 nm Au, beam widths: 475 to 550 nm, gap width:
20 nm). (b): Schematic cross section of the nanomechanical beam array.
Red spots indicate plasmonic Fabry-Pérot resonances excited in the slits
between the Au layers by a 1550 nm CW laser. (c): Frequency spectrum of
light intensity transmitted through the array, showing 5 distinct resonances
caused by 5 of 8 nanomechanical beams in the array.
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Figure 5.2: Parallel mechanical transduction. (a), (b): Schematic of
transduction through (a) constant-width and (b) alternating-width gaps.
SEM micrographs of center of arrays of (c) constant-width gap (20 nm)
and (d) alternating-width gap (20 nm and 50 nm) array structures.
(e) Transmission through slit as a function of slit width d, extracted from
FDTD simulations. The red line is a linear fit to the transmission through
slits of width greater than 35 nm.

5.2 Nanomechanical transduction

Mechanical displacement affects the optical response of the slots, changing the
transmitted power. In the present geometry, the motion of 8 parallel nanobeams
is measured simultaneously. Figure 5.1c shows the frequency spectrum measured
by defocusing the laser beam to a spot diameter of ~ 5 pm, so that all plasmonic
gaps are illuminated, and detecting a power of approximately 12 pW. The peaks are
related to the thermal motion of individual mechanical modes. Interestingly, only 5
resonant mechanical modes are observed in the spectrum, with varying amplitude.
To analyze this, we first analyze how the motion of the 8 beams is transduced to the
measured intensity.

The motion of each of the beams is probed by its two adjacent slits, each of
which supports a plasmonic resonance. The transmitted power through each slit
is given by 1(d;)%;, where 2; is the optical power density (in W/m?) interacting
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with the slit and 7n(d) is an effective scattering cross section into the transmission
channel, which is a function of the slit width d;.

For in-plane motion, the two slits at either side of the beam have widths d; (x) =
dy+xand dy(x) = dp — x, respectively, where d denotes the mean width of slit i.
The total transmitted power is as such T = 1(d; + x)2| +1(d> — x)2,. This power is
modulated through oscillations of the beam, as to first (linear) order
=Mz - D)o 6.1
The slit widths are modulated by the displacement x of the beam (we take the mean
displacement x = (x(¢)) = 0).

For a plane wave incident on a nanobeam surrounded by two identical slits, this
would lead to completely vanishing transduction of motion as d =ds and &, = P,.
Figure 5.2a shows a schematic of this geometry. An SEM image of such an array is
shown in Figure 5.2c.

We can also describe this vanishing d7/dx using a symmetry argument:
there is a symmetry axis through the center of the beam. This implies that
dT/dx =dT/d(-x), which must be equal to 0. However, if we break the symmetry,
for instance by changing the width of the two slits, the derivatives can be different:
dT/dx # dT/d(—x). This also holds for more complicated optical modes, for
instance if the modes are (optically) coupled across multiple beams.

Two factors can potentially break down this expectation and lead to a resonance
peak: (1): a different input power density £ on the two slits, due to the fact that
a non-uniform (for instance, a focused) beam is used, and (2) a difference in slit
widths d # do. Because the plasmonic coupling strength is dependent on the slit
width, 7 is not linearly dependent on d, such that % (dh) # %(d_z) ifd, # do.

This implies that by changing the width of the slit on either side of a beam,
we can allow transduction of motion to transmitted power. Importantly, it is the
nonlinear dependence of slit transmission 7 on slit width d (or on slit area, for that
matter), that is crucial to allow transduction. Such a strong dependence on slit
width, shown in Figure 5.2¢, is a defining characteristic of plasmonic response. In
this figure, the black data points are the transmission extracted from a series of
FDTD simulations of slits of differing widths. The transmission is normalized to
the transmission through the 20-nm-wide slit. The red line is a linear fit to slits of
widths between 35 and 100 nm, showing the nonlinear behaviour of the plasmonic
transmission for slit widths narrower than 30 nm.

In the structure of Figure 5.1 differences between slit widths are caused by fab-
rication imperfections, allowing observation of the motion of some of the beams in
Figure 5.1c. The outermost slits in the structure are much wider: in-plane stress in
the silicon nitride causes bending in the membrane surrounding the array struc-
ture, leading to a resonance peak for the two outermost beams. For some of the
inner beams, the surrounding slits are also slightly different.

Next, we study the transduction for an an array in which the slits were inten-
tionally made alternately narrow (20 nm) and wide (50 nm), shown schematically
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Figure 5.3: Frequency spectrum of light transmitted through an array with

8 beams, with alternating-width slits of 20 and 50 nm, with beam widths

ranging from 475 to 525 nm. The laser beam was defocused to a spot size
of ~5um.

in cross section in Figure 5.2b and in an SEM image in Figure 5.2d. For these
structures, we expect that %(d_l) # % (dl) for all beams, based on finite-
difference-time-domain simulations of metal-insulator-metal slits of varying width
(Figure 5.2e). Therefore, the motion of all beams is expected to be transduced.
At the laser wavelength of 1550 nm, we find from the FDTD simulations that
41 (20 nm) = 1.132 (50 nm).

We again measured the transduction with a defocused beam, and simultane-
ously detected the modulations induced by 8 beams with widths ranging from 475
to 525 nm. This time, we achieve parallel transduction of motion of all 8 beams,
as shown in Figure 5.3, when we detect a power of 15 uW. This shows that using
alternate slit widths (20 nm and 50 nm) is a viable method to enable parallel trans-
duction of the motion of 8 parallel resonators using a single focused laser beam.

To further investigate the transduction of each beam by its two neighbouring
slits, we perform measurements in which both structures were scanned through
the focus of alaser beam (2.48+0.06 um FWHM for the constant-width array, 2.84 +
0.13 um for the alternating-width array), scanning orthogonal to the long axis of the
beams.

Figure 5.4a and b show color plots of the spectral density of transduced power
as a function of the position of the laser beam across the constant-gap-width and
alternate-gap-width arrays respectively. Eight different curves are now clearly re-
solved for both structures, each corresponding to the motion of an individual nano-
beam. Interestingly, as the laser beam is scanned across a single nanobeam, the
mechanical resonance wavelength decreases and increases. This will be discussed
further in Section 5.3.

Another striking feature in the transduction spectra in Figure 5.4a is that the
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Figure 5.4: Mechanical resonance intensities. (a) Linescan across the center
of an array of 8 nanobeams separated by a fixed width of 20 nm. The peak
resonance frequency is plotted on the horizontal axis, and the resonance
peak intensity is represented by the color scale. Dots indicate Gaussian
fits to peak frequencies as a function of laser focus position on the array.
(b) Similar as in (a), for an array with beams alternately separated by 20
and 50 nm. (c) Transduction curves extracted from (a): the resonance
peak intensity intensities are shown as a function of laser spot position
(red dots), along with the peak resonance frequencies (blue line). A dashed
line indicates that the signal was too low to extract for use in fitting. The
gray vertical lines indicate the positions of the slits, with the solid lines
indicating the slits next to the beam for which the transduction is plotted. (d)
Transduction curves extracted from (b). The focal diameters, 2.48 + 0.06 um
FWHM for (a), 2.84 + 0.13 um for (b), were determined from the average
width of the Gaussian fits. Laser power detected was 11.5 pW for (a), (c) and
10.5 pW for (b), (d).
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intensity shows clear dips close to the center for all beams, except for the two out-
ermost ones. The red data points in the subpanels of Figure 5.4c show the mechani-
cal transduction power at resonance for each laser beam position. Each subpanel
shows data for a single beam. The transduction curves clearly show dips in trans-
duction for the 6 center beams when the focal spot is close to the center of each
beam, when 2, = %,, implying a vanishing transduction, and showing that d is
very similar for the seven center slits.

The mechanical transduction for each beam in the alternate-gap-width array
is plotted in Figure 5.4d. The dips in the transduction are now much less pro-
nounced compared to those observed for the constant-width array shown in Fig-
ure 5.4a and c, and are in fact absent in most cases, showing that %(50 nm) #
% (20 nm).

The measurements in Figures 5.3 and 5.4 provide direct proof that the trans-
duction through the arrays is due to a plasmonic effect. If the transmission through
the slits were simply due to a geometric effect, i.e. a transmission that is linearly
proportional to the slit width, we would not observe any transduction of motion:
for in-plane motion, the total width of the 2 slits surrounding a nanobeam is con-
stant, and therefore no transduction would be expected. However, the plasmonic
resonance mediating the transmission through the slit will lead to nonlinear depen-
dence of transmission on slit width (as shown in Figure 5.2e, allowing the alternate-
slit-width structure to improve transduction of the in-plane mechanical mode, and
precludes the observed effects being due to a purely geometric modulation of the
transmitted light by the beams’ motion.

5.3 Thermal tuning of eigenfrequencies

Figure 5.4 shows that the mechanical eigenfrequencies of the beams depend
strongly on their position relative to the laser spot. We ascribe this to a pho-
tothermal effect: heating-induced expansion of the tensile-stressed beams leads
to a reduction in the axial stress, leading to reduced resonance frequencies. The
maximum frequency shift is observed when the laser beam is centered on a
nanobeam, where heating is maximum. We perform Gaussian fits to the (thermally
shifted) resonance frequency as a function of laser focus position for each beam.
The blue lines in the subpanels of Figure 5.4c and d show the thermally tuned
frequency shift A f = (fiuned — fo)/ fo.- Frequency shifts as high as 5% (150 kHz) are
observed.

To further investigate this effect, we calculate the relative frequency shift as a
function of absorbed power using a simple thermal model [117-120]. We calculate
the eigenfrequencies as a function of stress in the nitride layer of the beams:

f

1 82 | E.I 1230012
b ¢ <+ ¢ (5.2)
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Figure 5.5: Non-thermally shifted eigenfrequencies for constant-width
array (blue data points derived from Figure 5.4a,c) and alternate-width array
(red dots, derived from Figure 5.4b,d) and model, fitting effective Young's
modulus Ee and in-plane stress oe.

using geometric averaging to calculate the effective stress o, Young’s modulus E,
and density p, for the Au/Si3N, bilayer beams. As we are measuring the fundamen-
tal mode, we use 8 =4.73004 [69].

To fit the model to the data, we first extract the non-thermally shifted eigenfre-
quencies from the Gaussian fits in Figure 5.4(a,b), and plot these as a function of
beam width in Figure 5.5. We then fit Equation (5.2) to the data using the effective
Young’s modulus E. and stress o, as free parameters, using length and height as
determined from SEM images, and using literature values for the mass densities of
gold and silicon nitride. Figure 5.5 shows good agreement between model and data
for an effective Young’s modulus of E, = 75.2 GPa, between the value of that for gold
and silicon nitride. The fitted effective stress is o = 36.5 MPa. Assuming the man-
ufacturer’s specification of o, = 250 MPa, this implies that there is a compressive
stress of o, = —60 MPa in the gold layer.

To verify the analytical bilayer eigenfrequency model, we also performed finite-
element-method (FEM) simulations (COMSOL 4.3), with parameters identical to
those quoted above. The eigenfrequencies calculated in the FEM simulation are
shown together with the curves calculated using Equation (5.2) in Figure 5.6, show-
ing excellent agreement between our analytical model and the FEM simulations.
We note that when performing FEM simulations of beams with flexural stiffness, it
is important to include enough (approximately 15) mesh points in the direction of
the vibration. Otherwise, the flexural stiffness will be incorrectly modeled, leading
to an underestimation of the eigenfrequencies for low stress values.

The beams are however not completely doubly clamped: they are connected
through the supporting silicon nitride membrane. We therefore also performed a
FEM simulation of the full geometry of an array of 8 beams of increasing width. Fig-
ure 5.7 shows the simulated mode profile at the eigenfrequency of the fourth beam.
As can be seen, the third beam (which is narrower than the fourth beam) is moving
in phase with the fourth beam, while the fifth beam (wider than the fourth beam)
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Figure 5.6: Resonance frequencies for a doubly-clamped gold on silicon
nitride bilayer beam, showing the fundamental out-of-plane (red) and in-
plane (blue) modes as a function of silicon nitride stress, calculated using
Equation (5.2) (parameters given in main text). The dots are calculated
eigenvalues extracted from a FEM simulation. The green dots are for the
first excited out-of-plane mode.

-

Figure 5.7: Simulated array of beams of increasing widths showing the
shape of the fourth in-plane eigenmode, showing that the neighbouring
beams are also in motion due to the coupling at the anchoring points of
the beams. Displacements are greatly exaggerated for clarity.

is moving in antiphase. Figure 5.8a shows that the full-array-simulation leads to
slightly different eigenfrequencies compared to simulating individual beams. We
attribute this to the slightly different boundary conditions: in the full array simula-
tion, as in the experiment, the boundary condition is not fully clamped: the mode
can extend into the surrounding membrane, albeit with much larger stiffness and
therefore smaller deflection.

Figure 5.8b shows the fundamental in-plane mode shape extracted from the
simulation, compared to the analytical mode shape derived in Section 2.1 (blue
line). We also plot the mode shape for a doubly fixed beam, with mode shape
X (x) =sin(rrx/L), which can be derived from the boundary conditions for a doubly
fixed beam, X(0) = X(L) =0, X" (0) = X"(L) = 0 [69] (see also Section 2.1). We see
that the simulated mechanical mode profile has good agreement with the analytical
doubly clamped mode profile: using single beam simulations is a good approxima-
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Figure 5.8: (a): Simulated resonance frequencies of an individual doubly-
clamped bilayer beam (circles) and an array of beams (squares). Red:
fundamental out-of-plane mode. Black: fundamental in-plane mode.
(b): Calculated mode amplitude of the fundamental in-plane mode, as
extracted from one of the beams in the full-array simulation (blue dots).
Blue line: analytical mode amplitude for the fundamental doubly-clamped
mode, calculated using Equation (2.21). Purple line: analytical mode
shape for the fundamental mode of a doubly fixed beam, given by X (x) =
sin (7x/L) [69].

tion for these arrays.
Next, we investigate the effect of heating of the nanobeams as they absorb light,
changing the stress in the nanobeam through the thermal expansion coefficient:

0=0;+0;=0;— a.EAT, (5.3)

where o; is the original stress, o is the thermal stress, AT is the average tempera-
ture increase of the nanobeam, and a. is the effective thermal expansion coefficient
_ aSigN4 ASi3N4 + aAuAAu

Qe = . (5.4)
¢ ASigN4 + AAH

For this formulation for o to be valid, we assume the endpoints of the beam do not
move. We can then calculate the relative frequency change due to heating, using
Equation (5.2):

sp= Sl i (B o 55)

f fi fi;) 34Ew?

where f; is the thermally tuned frequency (Equation (5.2) with o from Equa-
tion (5.3)) and f; is the pre-stressed frequency without heating (Equation (5.2) with
o =0;) and fy is the eigenfrequency for a beam with no added stress (o = 0).

We use a 1-dimensional heating model, in which the beam is heated by a power
P,ps applied evenly across the cross-section of the beam at xy, while the ends of the
beam are kept at ambient temperature (T(0) = T(L) = 298 K). In the stationary case,
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Figure 5.9: Measured thermally induced maximum frequency shifts from
Figure 5.4 for constant-width (blue) and alternating-width (red) arrays as a

function of beam width. The drawn lines are fits using Equation (5.8), with
the fraction of absorbed power y as a free parameter.

the absorbed power equals the outgoing fluxes:

1
Paps = Ax (T (xo) — T'(0)) (— + ) (5.6)
xo L—xg
with k the heat conductivity, so that
Py L
AT = —2bs— 5.7)
8xA

Inserting Equation (5.7) in Equation (5.3), we find from Equation (5.5):

a.L3
of = \/ ﬁ 7ot Pabs 1 (5.8)

Effective parameters for a and x are derived from the weighted averages (as
in Equation (5.4)) using asi,n, = 1.23 x 107 K™}, aay = 14 x 107® K7}, «sipn, =
25Wm 'K, kau=320Wm™ ! KL

Assuming the laser focus has a 2D Gaussian shape, the power density absorbed
on one beam, with width w, can be expressed as a function of the incident power
Pj, and a parameter y describing the fraction of incident power that is absorbed in
the beam:

In2
Paps = v PinErf —FWHM (5.9)

For example, for the constant-width array, a 500-nm-wide beam has 18% of the
total optical power incident upon it, given the laser spot size. For the alternating-
width array, the slightly larger focal width leads to a 500-nm-wide beam having
16% of the total power incident upon it. Figure 5.9 shows the measured maximum
thermally induced frequency shift from Figure 5.4 as a function of beam width for
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Figure 5.10: Calculated frequency shift in %/mW of absorbed power for a
gold-coated silicon nitride beam, plotted as a function of beam width. The
purple line is for the alternating-width array, the blue line for the constant-
width array.

the constant-width and alternating-width arrays. The frequency shift is stronger
for narrower beams, as these have a lower heat capacity. The drawn lines are fits of
Equation (5.8) to the data, taking into account the width dependence of the inci-
dent power on the area of the beam (Equation (5.9)) and assuming a fixed fraction
y of the power incident on the beam to be absorbed in the beam. We find the data
can be fitted well with this model for both constant- and alternating-width arrays,
and find that for a 500-nm-wide beam P, = 611 pW for the constant-width array
and Py = 396 uW for the alternating-width array.

Using the thermal frequency shift model, we find that for both the constant-
width and alternating-width arrays, the sensitivity of frequency to absorbed power
is, for a 500-nm-wide beam, §f/Pqyps = 6 %/mW. This is shown in Figure 5.10. Be-
cause the heat capacity of a narrow beam scales with its width, the narrower beams
are more sensitive to Pypg.

5.4 Parametric oscillation of nanobeams

We have also studied the out-of-plane mechanical mode under high illumination
power; Figure 5.11 shows the mechanical resonance spectrum for an array of 8
beams under 10 mW irradiation. The mechanical transduction amplitude exceeds
50 dB, and is much larger than the 7 dB observed in Figure 5.3. Also, the effective
quality factor of the resonance increases to Qp, > 50.000; this is a lower limit de-
termined by thermal fluctuations that shift the resonance during the measurement
averaging time. Figure 5.11 shows several harmonics at a frequency spacing exactly
equal to the fundamental frequency of 2.21 MHz.

The appearance of these higher-order sidebands is intrinsic to the large mod-
ulation amplitude (up to 10% of the DC transmitted power). At these modulation
amplitudes, power is transferred not only to the first sideband, but also to higher-
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Figure 5.11: Mechanical response of a beam undergoing thermally induced
parametric amplification, showing greatly increased response amplitude,
high effective Q-factor and higher-order sidebands of the fundamental out-
of-plane mode at 2.21 MHz.

order sidebands [22]. Spectra such as that shown in Figure 5.11 are observed for
laser powers > 8 mW, with the exact threshold depending on the exact laser focus-
ing condition.

We attribute this behaviour to parametric oscillations [12, 21] that occur due to
a driving force that is bolometric in nature [123, 124]: for the out-of-plane mode,
power absorbed in the beams causes an out-of-plane bending stress, due to the bi-
layer geometry of the beams and the differing thermal expansion coefficients asi,n,
and ay, of silicon nitride and gold, which, if this stress is modulated at twice the
mechanical frequency, can lead to parametric oscillations. When the out-of-plane
displacement of one of the beams increases, the incoupling into the plasmonic
resonance is reduced, reducing the heating and allowing the beam to cool off, with
a certain time delay controlled by the heat capacity, restoring the equilibrium po-
sition. Then, light can be coupled back into the cavity, once again increasing ab-
sorption, driving the beams to greater and greater displacement. This process is
eventually limited by coupling of mechanical energy into the higher harmonics of
the system.

5.5 Improving mechanical quality factor

The mechanical quality factors observed here and in Chapter 4 are all in the range
Q =500 - 1000, much lower than the typical values for high stress silicon nitride
beams, which show quality factors up to Q ~ 107 [96, 125]. The quality factor is
determined by viscous air drag, clamping losses and intrinsic material damping

94



5.5 Improving mechanical quality factor

-118 : : . . .
(b) Q, =6729
Q,=3356 1

BN

N

o
T

iR
N
N

iR
N
[e)}

Signal (dBm/Hz)
|
o
N

N
N
[o)

0 L L L L L
5.1 5.11 5.12 5.13 5.14 5.15 5.16
Frequency (MHz)

Figure 5.12: (a): SEM image of 5 um wide gold bars on 20 pm long silicon
nitride nanobeams. (b): Mechanical resonances in 2 um wide gold bars on
20 pum long silicon nitride nanobeams, showing higher mechanical quality
factor Qm. The red line shows a fit consisting of two Lorentzians and a
constant offset through the data.

[107, 126, 127]. The viscous air drag is greatly reduced by measuring in vacuum,
as is shown in Figure 4.7. The strain in the beam is the highest near the clamping
points, leading to the highest losses due to intrinsic material damping, consisting
of two-level systems [128, 129] and thermoelastic damping [125]. As the damping
in gold is expected to be higher than that of silicon nitride, we fabricated a sample
with no gold near the clamping points, using electron beam lithography, thermal
evaporation and liftoff, following the method outlined in Section 3.3.2. Wide bars
of gold (2-5 um) were deposited on a silicon nitride membrane, which was then
patterned into beams using focused ion beam milling. A SEM micrograph of a
completed structure is shown in Figure 5.12a. Mechanical resonance spectra for
these structures are shown in Figure 5.12b, and show quality factors up to Q = 7000.
This indicates that intrinsic losses are a significant portion of the low Q factors seen
so far.

Other groups [37, 130, 131] have shown that the clamping losses can be reduced
by engineering the surroundings of the beam to form a phononic crystal: the acous-
tical analog of a photonic crystal, which prevents the mechanical phonons from
tunneling into the surroundings.

We expect that the quality factor is also limited by gallium implanted during the
fabrication process. Using a dry-etch process with for instance CF, or SFg to release
the beams could potentially increase the mechanical quality factor.

We also note that this reduced effective mass of the structure should increase
the amplitude of the mechanical motion. Reducing the covering of the beams also
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5 Parallel plasmo-mechanical transducer array

changes the transduction model: the gold covering the beams creates a darkfield
geometry, suppressing background noise, as described in Section 2.7. Reducing
the gold coverage will allow light that has not been modulated by the plasmonic
cavity to reach the detector, increasing the noise imprecision. Finally, for much
longer beams (length 1 cm), Schmid et al. [119] show that removing the gold near
the beams’ anchoring point can increase the thermal eigenfrequency tuning, by
decreasing the thermal conductivity to the substrate, which is useful in the con-
text of the thermal tuning shown in Section 5.3, as well as for using the devices as
bolometric sensors.

5.6 Avoided crossings in arrays of beams

Multiple mechanical oscillators can not only be used for parallelization of mea-
surements. If the mechanical modes are coupled, a range of different effects can
be observed and exploited, for instance using localized modes [132] to improve
sensitivity [133], or using coupled resonances to create mechanical RF filters [134,
135], to enable single-input single-output mass sensing [136] or to observe syn-
chronization [137].

If two resonators are coupled, and then are tuned to make their eigenfrequen-
cies match, their eigenfrequencies as a function of coupling will show an avoided
crossing, as shown earlier for nanomechanical systems [138, 139]. Figure 5.7 shows
a FEM simulation of the in-plane eigenmode of the fourth beam, showing that the
neighbouring beams also contribute to the eigenmode. To study the coupling be-
tween the beams, we fabricated an array of eight beams with beam widths leading
to in-plane eigenfrequencies such that they could be thermally tuned to match.
This was achieved by fabricating an array of eight beams with widths of 425, 450,
459, 480, 500, 525, 545 and 570 nm, where the third and fourth beams have nearly
identical widths. The gap widths were fabricated to be alternating between 20 and
40 nm.

Figure 5.13 shows the measured mechanical transduction as a function of fre-
quency and of the position of the focused laser beam in the array. The thermal tun-
ing behaviour observed in Figure 5.4 is clearly observed for 4 beams. Two avoided
crossings are observed, indicated by the dashed outlines.

We also observe a non-avoided crossing, suggesting these mechanical modes
as being related to non-adjacent beams. For non-adjacent beams, we expect very
low mechanical coupling between these beams, and therefore do not expect to see
a splitting in the crossing.

5.7 Conclusion
We demonstrate parallel transduction of the thermally driven mechanical motion

of an array of nanobeams using a simple free-space technique. The motion of each
beam is transduced by the adjacent plasmonic slits. When these are identical, the
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Figure 5.13: Mechanical transduction spectrum of an array of 8 mi-
crobeams, engineered to show avoided crossings in the thermally tuned
eigenfrequencies of the microbeams. The widths of the beams was
chosen such that one pair of neighbouring beams would have similar
eigenfrequencies. The dashed outlines indicate avoided crossings. The solid
outline indicates a non-avoided crossing.

transduction of in-plane motion can cancel, due to antisymmetric transduction by
the slits. By tuning the gap width, the plasmonic resonances are tuned, allowing
simultaneous parallel transduction of the mechanical modes of all beams.

The thermal tuning due to optical power absorption leads to resonance fre-
quency shifts as large as 6%/mW of power absorbed in the beam. At powers above
8 mW parametric oscillations are observed due to a bolometric driving force. We
find that neighbouring beams are mechanically coupled through the membrane
in which they are suspended. When thermally tuning such an array to make the
eigenfrequencies of two neighbouring beams match, the coupling between these
beams creates an avoided crossing in the transduced mechanical modes of these
two beams. The photothermoelastic effect observed in this work could therefore
find application in tuning and actuating micro- and nanomechanical resonators.
Creating beams that are free of gold near the clamping points can greatly increase
the mechanical quality factor and reduces the total mass.

The principle of parallel plasmonic mechanical transduction could be used in
a variety of sensor array applications, due to its simple free-space readout and
scalability to include many more resonators than shown here.
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Plasmonic dimer antenna
nano-optomechanical transducers

Dipole-dipole-coupled plasmonic dimer antennas, with nanoscale optical
confinement in all 3 dimensions, are among the smallest conceivable optical
resonators. Such a small optical system can naturally be interfaced with nanoscale
mechanical beams. We use beams with a cross section of 100 x 120 nm and a length
of 10.5 um. Structures are fabricated with two beams, placing each of the dimer
antenna elements on an individual nanobeam. Using small nanomechanical
resonators is favorable for sensing: the reduction in effective mass increases
the sensitivity for force and mass. We note that for the system studied in this
chapter, the optical mode is smaller than the mechanical mode. This implies that
the plasmonic antenna could be used to transduce the motion of even smaller
mechanical systems than studied here.

The antennas are used to transduce thermally driven mechanical motion of
the strings, measuring with a displacement sensitivity of 800 fm/vHz . This ap-
poraches the thermal limit of the sensor, which has a single-sided force sensitivity
of 420 aN/v/Hz and a mass sensitivity of 10 fg in a 1 Hz bandwidth on resonance
at room temperature. We analyze the sensitivity of this system, study a crossed-
polarizer technique to enhance the sensitivity, and investigate the different contri-
butions to the measurement imprecision.

Finally, we discuss the possibility of further enhancing the sensitivity in
future experiments, using coupled dipolar—-quadrupolar plasmonic resonators. By
combining the narrow linewidth of the radiatively limited quadrupolar mode with
the strong plasmonic optomechanical frequency shift expected for dipole-dipole
coupling, improved sensitivity is predicted.
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6.1 Methods

The dipole—dipole coupled antennas operate around 1550 nm, utilizing the strong
near field enhancement in the gap between the dimer elements for strong sensi-
tivity to changes in the width of this gap. Gold antennas (total length 485 nm) are
integrated with freestanding silicon nitride beams (meg = 160 fg, QO = 9 MHz).
The mechanical transduction is based on the near-field coupling between the an-
tenna’s two elements, where the two antenna elements are dipole scatterers. Due
to dipole—dipole coupling, the modes of the antenna elements hybridize, forming a
bright mode, with in-phase dipole moments and a dark mode, where the two dipole
moments are driven in antiphase [61]. In this experiment, we observe the dipole-
dipole coupled bright mode. When the in-plane motion of the nanobeams changes
the distance between the antenna elements, the resonance frequency is changed,
as described in detail in Section 2.3.

Figure 6.1a shows a schematic of the antenna-on-beam geometry, fabricated
using a combination of electron-beam lithography and focused ion beam milling,
as described in Section 3.3.2. SEM images are shown in Figure 6.1b and c. We can
realize double-beam structures with lengths up to 15 pm and nanobeam separation
of 30 nm. Separations down to 20 nm are achievable but with very low fabrication
yield.

6.2 Optical design

Before fabricating antennas and milling beams around them, we first measure
the resonance properties of arrays of dimer antennas using white light scattering.
This is done to determine the scattering properties of the antennas, which aids
in fabricating antennas with the correct dimensions on the nanomechanical
beams. We perform Fourier-transform-infrared-spectroscopy (FTIR) transmission
measurements on arrays of antennas, as measuring the transmission scattering
spectrum from a single antenna in the infrared is experimentally challenging. Our
FTIR microscope has a spot size with a diameter of approximately 70 um with a
numerical aperture NA = 0.39. To match this, we fabricate 70 pm x 70 pm fields
of antennas with a pitch of 1 pum on a 100-nm-thick silicon nitride membrane.
The antenna lengths range from 100 to 250 nm (length of one of the elements),
with some fields of antennas having touching elements and others with element
separations of 10 and 20 nm, as measured using an SEM. The results for arrays
with antennas of different lengths, with element spacing of 20 nm, are shown in
Figure 6.2a. We observe two resonances: the localized surface plasmon resonance
(LSPR) around 1.4-1.5 pm, and a high-Q surface lattice resonance [140, 141] at
1.25 um, where the different antennas are coupled through a transverse-electric
mode propagating through the 100-nm-thick silicon nitride membrane [142]. The
LSPR resonance exhibits a clear red shift in extinction for increasing antenna
element length, as expected. The laser wavelength in subsequent experiments is
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Figure 6.1: (a): Schematic depiction of the experimental geometry. (b): SEM
image of the two elements (225 nm x 50 nm x 40 nm) of a dipole-
coupled gold plasmonic dimer antenna, placed on individual silicon nitride
nanobeams (10.5 um x 120 nm x 100 nm), with a 30 nm gap between the
two antenna elements. The beams’ in-plane mechanical motion leads to
modulation of the 1550 nm laser light scattered by the dimer antenna. The
antennas are fabricated as one gold bar using electron-beam lithography,
thermal evaporation of gold and liftoff, after which the beams and antenna
are released using a single pass of focused-ion-beam milling. Scale bar:
100 nm. (c): SEM micrograph of a double beam structure with antenna.
Scale bar: 1 um. (d): Optically transduced thermal vibration spectrum of
one of the nanobeams.

indicated with the dashed line. Based on this measurement we chose to use the
225 and 250 long antennas to create freestanding dimer antennas, since for these
lengths, the laser wavelength is on the slope of the resonance, leading to the largest
change in scattered power if the inter-element spacing is changed.

As the FTIR measurements are performed with unpolarized light, and the scat-
tering from the antennas is highly polarization dependent, it is expected that the
extinction for light polarized along the dimer axis is a factor 2 larger than shown
in this measurement. The in- and outcoupling objective in the vacuum micro-
scope (Figure 6.3a) both have NA = 0.75, while the FTIR measurement uses a lower
numerical aperture (NA = 0.39). As we have seen in Section 2.3.5, the measured
transduction of motion is sensitive to the NA used. Also, the antennas on beams
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Figure 6.2: Optical characterization. (a): FTIR measurement of the
transmission through 70 x 70 um? fields of antennas of different lengths,
all with gap width of ~ 20 nm. Lengths quoted in the legend are the
lengths of one of the two elements. The laser wavelength of 1550 nm is
indicated by the dashed black line. Inset: SEM micrograph of a portion
of a field of dimer antennas, length 250 nm, with field pitch 1 um. Scale
bar: 1 um. (b): Finite-difference-time-domain simulation of the scattering
spectrum of a dimer antenna with elements of 225 nm long for different
gap between the two elements, showing a change in center frequency wg
and in total scattering as a function of gap size, with scattering cross section
increasing and center wavelength red-shifting for decreasing gap width. The
scattering cross section is normalized to the geometrical cross section of
one antenna element (225 x 50 nm2). Arrow indicates varying gap width.
Inset: schematic of the simulation volume, showing two gold particles
and the silicon nitride substrate, which extends through the simulation
boundaries. Arrows indicate the propagation direction and polarization of
the incident light.

have a different dielectric surrounding, consisting of silicon nitride beams and vac-
uum, rather than a planar silicon nitride membrane. Therefore, the scattering from
antennas as measured in the FTIR microscope can be different from that measured
in the vacuum microscope.

Next, we performed finite-difference-time-domain (FDTD) simulations to ver-
ify the FTIR results, shown in Figure 6.2b. The inset in this figure schematically
shows the total-field/scattered-field simulation used. The simulation shown is for
a single particle, surrounded by perfectly matched layers. The localized surface
plasmon resonance around 1.4 pum observed in the FTIR measurements for 225 nm
particle length is clearly reproduced in these simulations.

The extinction dip at 1.25 pm is not observed in this single-particle simulation.
When the simulation boundary conditions are set to be periodic, with a lattice
period of 1 um in both x and y directions, closely reproducing the experimental
conditions for the FTIR measurement shown in Figure 6.2a, this dip is reproduced
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Figure 6.3: Measuring mechanical transduction. (a): Laser light from an
erbium-doped fiber laser operating at 1550 nm is aligned onto the sample
through the incoupling objective. The sample and in- and outcoupling
objectives are placed on motor-driven stages in a custom built vacuum
chamber evacuated to 1073 mbar using a turbomolecular pump. The
sample is mounted on a 3-axis feedback piezo stage to control the sample
position in the laser focus. A second microscope is used to align the
outcoupling objective. The transmitted light is then sent to an amplified
photodiode. The AC output is monitored on a spectrum analyzer, and
the DC output is monitored on an analog-to-digital converter. (b): Crossed
polarizers are used to reduce the signal background. Light is sent in with
horizontal polarization, with the sample mounted at 45°. A vertical polarizer
is used to block non-scattered light and transmits 1/2 of the scattered light.

in the simulations, showing that this is a lattice-mediated resonance.

The simulations were also used to estimate the optomechanical frequency shift
G= a(;’;c and the scattering properties of individual antennas. For the design sepa-
ration of 15 nm, we extracted G = 27 x 1 THz/nm from the simulation, defining x as
the spacing between the antenna elements. However, the antennas as fabricated
have a separation of 35 nm, leading to G = 27 x 0.45 THz/nm. This leads to a
predicted relative change of the scattering cross section of 0.01/nm in the antennas
as fabricated. We choose the length for antennas on beams such that the laser
probes the red side of their resonance, as this side has stronger transduction, as
can be seen in Figure 6.2b. This is due to the radiation damping being lower for
lower frequencies.

6.3 Mechanical transduction

The nanobeams exhibit both in-plane and out-of-plane mechanical modes, with
resonant frequencies between 8 and 10 MHz, as predicted from FEM simulations.

103



6 Plasmonic dimer antenna nano-optomechanical transducers

y (um)
y (um)

0 1 2 3
X (Hm) X (um)
HE ] )
50 100 150 25 26 27 28 29
Max signal (aW/Hz) DC power (uW)

Figure 6.4: Raster scanning. (a): shows an SEM micrograph of the
nanobeam with antennas, at a scale equal to (b) and (c), scale bar length:
1 um. (b) and (c): Scanning the sample through the focus. (b) shows the
signal power spectral density at the mechanical resonance frequency, with
the noise background subtracted, while (c) shows the DC component of the
transmitted power.

In this experiment, we are most sensitive to the in-plane motion, where the gap
between the antenna elements changes with the vibration of the beams.

The mechanical transduction is measured by raster scanning the structures
through a transmission microscope (Figure 6.3a), and recording intensity mod-
ulations in the transmitted light on an electronic spectrum analyzer (ESA). A
1.55 pm CW laser was used, with a spot size of about 1.8 pm FWHM on the
sample (determined from Figure 6.4c). The experimental setup is discussed in
detail in Section 3.1. Figure 6.1d shows a typical frequency spectrum obtained
on the ESA, where the peak is the signal due to thermally driven mechanical
motion of the beams, and the background is caused by various noise sources
in the experiment. The transmitted signal, consisting of the light scattered by a
single dimer antenna, is weak. We therefore use crossed polarizers (Figure 6.3b)
to enhance the signal relative to the background noise sources in the experiment.
Figure 6.4a shows an SEM image of the two double beam structures measured in
Figures 6.4b and c. Figure 6.4b shows the highest value of the measured signal
power spectral density for each pixel. The noise contributions are found by fitting
a second-order polynomial to the total scan (2 MHz bandwidth). This is subtracted
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Figure 6.5: Signal power density (blue line) measured along the beam for
the data shown in Figure 6.4b (data extracted on white dashed line as
indicated in Figure 6.4b). The calculated double beam mechanical mode
profile (Equation (2.8), plotted in red) is overlaid with the data.

from the measured peak value. The relative magnitude of signal and noise will be
described later in this chapter. Figure 6.4c shows the DC optical power measured in
the same raster scan. We see that due to the low albedo of the antenna, a reduction
in scattering is observed at the antenna position, relative to the scattering from the
beams.

6.3.1 Comparing signal profile to mechanical mode
profile

If the mechanical transduction is due to scattering by the plasmonic antenna, we
expect the signal in the raster scan (Figure 6.4b) to be strongly peaked around the
antenna position in the center of the beam. If the transduction were not due to scat-
tering from the antenna but some form of scattering or extinction from the whole
beam, we would expect the signal strength to be proportional to the mechanical
mode profile. To study this, we extract the signal strength along the beams from
the raster scan in Figure 6.4b, and plot this in Figure 6.5. The red curve shows
the mechanical mode profile, as calculated in Section 2.1. The center position
of the mechanical mode profile is obtained from a least-squares fit to the mea-
sured mechanical transduction signal. The width of the mode profile is equal to
the length of the beams (10.5 pm), and the amplitude and offset are determined by
the minimum and maximum values of the plotted transduction signal. We see that
the mechanical mode amplitude is more strongly peaked in the center of the beams
than the mechanical mode. Rather, the width of the signal peak is comparable to
the 1.8-um spot size extracted from Figure 6.4c, indicating that the signal origin is
from the antenna location at the center of the nanomechanical beams.
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Figure 6.6: Distribution of antenna element lengths in this study. The color
indicates the signal intensity measured on each antenna. The symbols are
drawn to scale, with lengths & gaps matching sizes determined from SEM
measurements.

6.3.2 Antenna length

To determine the resonance properties of the dimer antenna, we performed motion
transduction measurements on antennas on beams with antenna elements and
gaps of different sizes, as shown in Figure 6.6. In this figure the measured antennas
are plotted as a function of the lengths of the elements. The antenna elements’
lengths and the gap between them is plotted to scale in the symbols plotted in this
graph. The transduced signal strength is indicated by the color: white antennas
showed no transduction, green antennas show a weak signal (including noise) with
SNR < 1 dB, and the red antennas had the highest SNR, with SNR > 1 dB. We find
that for a fairly large range of antenna lengths there is some transduction. How-
ever, the antennas with the highest SNR in their transduction are clustered around
L; =240 nm, Ly = 240 nm. This matches well with the antenna array transmission
measured in Figure 6.2b, where the arrays with antenna lengths of 225 nm and
250 nm have their resonance such that the laser at 1550 nm is on the steep part
of the red side of the resonance.

6.3.3 Noise sources in transduction

Figure 6.7 shows a signal trace for one of the antenna geometries, expressed in
displacement spectral density (blue dots), with the various signal and noise con-
tributions indicated. The vertical axis is calibrated using the spectral displacement
density for thermal fluctuations:

2I'm

sth@) =
= Megt (Q2 — Q2)2 +T2,Q

SkgT. (6.1)
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Figure 6.7: Measured mechanical displacement spectral density Sxx(Q),
detecting a total power of 22 uW. Blue dots: measured data points. Red
line: total calculated signal, consisting of four separate contributions:
displacement density (black); electrical noise (blue); classical noise (gold:);
and shot noise (dark red). The determination of the relative magnitude of
the noise contributions is described in Section 6.3.4.

The effective mass meg = 160 fg is determined from the structural dimensions. The
mechanical resonance frequency Qg and damping rate I'y, = Qp,/ Q were extracted
from the Lorentzian fit to the measurement. The spectrum shows two mechanical
resonances. For the double-beam geometry which we study here, the two beams
could couple through their clamping points. This leads to two modes: one with
the beams moving in phase with each other and one with the beams moving out of
phase. The former would have no transduction: the in-phase motion of the beams
would not modulate the dimer antenna spacing.

The fact that we observe two resonances and that the mechanical transduction
has almost the same strength for these two resonances implies that the two modes
we observe are both confined to individual beams, with low coupling strength, and
with frequency differences due to slight differences in fabricated width. As such,
we can assume that the effective mass in Equation (6.1) is that of one moving beam.
The G extracted from simulations earlier is the same for one beam or two coupled
beams, due to the definition of x as the gap between the two antenna elements.
From the Lorentzian fit we can find a total measurement imprecision Sy * = 8 x
1072° m?/Hz.

The displacement spectral density of the beam modulates the power scattered
and absorbed by the antenna, leading to a power spectral density Sj,(Q).

This signal is superimposed on the signal due to three noise sources: shot
noise and classical noise from the laser and electronic noise from the photodi-
ode/amplifier combination. This offset in Figure 6.7 is due to these three noise
sources and determines the measurement imprecision. In Section 6.3.4, we will
show how we determined the relative amplitudes of the noise sources.
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Figure 6.8: Mechanical transduction and noise versus polarization.
(a): Mechanical trace with the polarizer at an angle {out — (in = 82°. The two
mechanical peaks are the slightly non-degenerate eigenfrequencies of the
two beams in the system. The gray trace shows the electrical background
noise. (b): Various components of the signal: peak 1 (8.87 MHz) and 2
(9.02 MHz) are the amplitudes of Lorentzian fits to the two mechanical
resonances visible in (a). The green line is the total background level of the
signal, taken by averaging the power in the trace far from the mechanical
resonances. This background level is decomposed into three sources
(dashed lines): shot noise (purple), classical laser noise (gold) and electrical
noise (blue). (c): The signal-to-noise ratio, comparing the two peaks to the
total noise level. (d): The signal-to-noise ratios, comparing the signal to the
different noise components (peak 1: solid lines, peak 2: dashed lines). We
note that only the shot noise is fundamental; the other two noise sources
could be reduced by changing experimental parameters.

6.3.4 Crossed-polarizer sensitivity

The scattering signal from the antennas is superimposed on a high background,
as can be seen in Figure 6.4c which shows the DC intensity measured at the de-
tector: the scattering from the antenna is not seperately visible due to strong scat-
tering from the edges of the beams, instead appearing as a reduction in transmit-
ted power. The antenna scattering could be low due to damage to the antennas
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during the FIB milling process. An alternate explanation is that the antenna does
scatter light, but not into the collection NA. This could for instance be due to the
the complex dielectric environment created by the nanomechanical beams. To
suppress (non-modulated) directly transmitted light and improve the signal-to-
noise ratio, all measurements were performed with the structures placed between
crossed polarizers, as discussed in Section 2.5. This occurs at the cost of a 3/4
reduction in scattered power: the 45° angle between input light and scatterer leads
to a factor 2 reduction in scattered power. The 45° angle between the scattered light
and detection polarizer leads to another factor 2 loss, this time in the collection
efficiency.

Mechanical transduction spectra shown in Figure 6.8a were then measured for
a large range of output polarizer angles, keeping the input polarization fixed. For
every angle, a Lorentzian fit was performed to that data (see Figure 6.8a) and the
signal to background ratio was determined.

Figure 6.8b shows the amplitudes for the two resonances as a function of polar-
izer angle (red and blue circles, joined by solid lines). The polarizer angle plotted in
this figure is the angle between output- and input polarization { = {out — {in- This
angle is well calibrated. The angle i, between antenna and input light is harder to
determine, and will be extracted from the data. The background offset included in
the Lorentzian fit is the total noise power detected. This noise power is plotted as
the green circles in Figure 6.8b.

Figure 6.8c shows the signal-to-noise ratio as a function of the polarization an-
gle. We find that the highest signal-to-noise, or lowest imprecision, is obtained not
at —(in = (out = 45°, but with the output polarizer rotated to {oy¢ = 35° (80° in the
plot).

In this section, we will use the noise imprecision analysis developed in Chap-
ter 2 to model this optimum polarizer angle. We start by rewriting Equation (2.105)
as
g? 1
P2, 0T 1ax)?’
replacing Py, with Py,/9", with I the transmittance, to reflect the fact that we
directly measure the output power. As discussed in Sections 2.4 and 2.5, we will
assume we can neglect the phase noise contribution to the laser classical noise.

There are three main factors in this equation. The first factor is the noise power
spectral density, composed of three three different noise contributions and their
scaling with Pgyy:

P  ghoise () 6.2)

SPRI*C(Q2) = 2 NEP? + /10 Py + RIN® Pl (6.3)

The second factor is 72/PZ,. As in this experiment the scattered power is much
smaller than the directly transmitted power, we will assume that the scattering and
extinction contributions to 9 are negligible compared to the directly transmitted
light (the light that has had no interaction with the scatterer). The third factor rep-
resents all mechanical transduction contributions: the properties of the scatterer

and the optomechanical coupling rate G.
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Figure 6.9: Noise contributions, in electrical power in 1 Hz bandwidth
on the electronic spectrum analyzer, as a function of output power
(dots), determined as the offset values of the Lorentzian fits as shown in
Figure 6.7a and b. The three different noise sources as determined by fits
of the first factor of Equation (6.2) are also plotted (colored lines).

As we also record the transmitted DC power, we can also plot the noise spectral
density shown in Equation (6.3) as a function of Pyy. These data are shown in
Figure 6.9 (black dots). We can then calculate the magnitude of the different noise
contributions by performing a second-order polynomial fit to the noise power as
a function of P,y¢. The different noise contributions to the optical power spectral
density Spp can then be determined from the fit results. The constant term (blue
line in Figure 6.9) represents the laser-power independent electrical noise, Sglp =
2NEP?, with NEP the noise-equivalent-power. The linear term (purple line) repre-
sents the shot noise, SIS,II\,I = liwPyy, and the quadratic term (gold line) represents
the laser classical noise, Sf)lf,iss = RINZP(ZM,
noise.

As we know both Sff}\f, the absolute magnitude of the shot noise in the optical
power spectral density, and the detected light power Py, we can also calibrate
the electronic transduction of the system, Pgga = gZSpp, where Pggp is the elec-
tronic power on the spectrum analyzer, finding that g2 = 1.444 x 107 [W]/[Hz].
This matches very well with the transduction calculated from the specifications
for the photodiode, amplifier and spectrum analyzer, which predicts g% = 1.413 x
107 [W]/ [Hz].

We can now also plot the different noise terms as a function of polarizer angle.
This is shown in Figure 6.8b (crosses with dashed lines), allowing comparison of the
different noise sources to the mechanical signals (‘+” signs with solid lines). Several
interesting trends are observed. The electrical noise is independent of polarizer
angle; the laser-related shot noise and classical noise contributions decrease with
increasing angle due to the reduced light intensity on the detector.

In Figure 6.8d, we calculate the signal-to-noise ratio for the thermally-driven
mechanical signals compared to the different noise sources for the two mechani-
cal resonances. This shows that by using crossed polarizers, the effect of classical

where RIN is the laser’s relative intensity
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Figure 6.10: Detected power Poy as a function of output polarizer angle
Cout (blue dots). Afitis performed to find several parameters: Pout = Pip,
assuming that the contribution of the scatterer can be neglected. We find
Pj, = 700 pW, (i = —42.8°. We use NA = 0.45, based on the measurement
of the scattering width shown in Figure 6.4c.

noise is strongly suppressed, for increasing polarizer angle, due to the reduced
laser intensity. However, the lower total transmittance J increases the relative
contribution of the electrical noise. The optimum signal-to-noise is then observed
for polarizer angles in the range 75-80°.

Next, we calculate the total transmittance 9. As discussed earlier, we will as-
sume that due to the low scattering the transmittance is dominated by light that
has not interacted with the scatterer. We plot the power detected Py, as a function
of polarizer angle {y in Figure 6.10. From this fit, we obtain the angle for the input
polarization as (i, = —42.8° and an input power Pj, = 700 uW.

The conversion factor g2 and the known thermal occupation as given in Equa-
tion (6.1) can be used to convert the noise power at each polarizer angle to an
imprecision Si" as shown in Equation (6.2). The various noise imprecision con-
tributions, along with the total imprecision, are shown in Figure 6.11 as a function
of output polarizer angle (. We find reasonable agreement with the measured
imprecisions by using a combination of values G = 27 x 0.38 THz/nm, A = —0.78y,
Qopt = 10 and albedo < = 0.03. These values are in line with several observations:
the low albedo matches with the non-visibility of antenna scattering in Figure 6.4c,
and the detuning of the laser relative to the antenna resonance being smaller than
one linewidth agrees with the data shown in Figure 6.6.

The increasing imprecision with output angle (o for the electrical noise and
the decreasing imprecision for the classical noise are reproduced. However, the
measured shot noise imprecision decreases with angle while the calculation pre-
dicts an increase. The origin of this discrepancy is unknown. The overall trend in
the imprecision is represented by the model.

With the data currently available, and due to the unexplained low albedo, it is
not possible to determine all the transduction parameters independently. Having
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Figure 6.11: Imprecision due to electrical noise (a), shot noise (b) and
classical noise (c), and total imprecision (d) as a function of output polarizer
angle, derived from the analysis in Section 6.3.4. The lines are calculated
using parameters: G = 27 x 0.38 THz/nm, Qopt = 10, detuning A/y = -0.78,
and a very low albedo < = 0.03.

a separate measurement of the scattering spectrum of a single dimer nanoantenna
on beams would allow determination of A, Qup; and &, allowing determination of
G through the mechanical transduction measurements shown here. To improve
the overall sensitivity, improving the albedo of the antenna would be the first major
topic for future work on this experiment.

6.3.5 Vacuum optomechanical coupling rate g

So far in this thesis, we have used the optomechanical frequency shift per unit
displacement
_Ow
T ox

as a key parameter to express the optomechanical coupling strength. Another
quantity of interest is the frequency shift for a displacement equal to the zero-point
displacement fluctuations of the mechanical oscillator:

(6.4)

80=G- Xy, (6.5)
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known as the vacuum optomechanical coupling rate [143]. The oscillator’s zero-
point displacement fluctuations have an average amplitude

/ h
Xppf =\ ——————. 6.6
zpf Zmefom (6.6)

In other words, gy expresses the coupling strength between one photon and one
phonon. This definition for the coupling strength simplifies the comparison be-
tween different optomechanical experiments, as it eliminates some of the ambigu-
ities in defining G, such as at which position on the oscillator to define the displace-
ment x.

For the geometry here, we estimate a coupling rate

8o =27 x 75 MHz, (6.7)

using G = 27 x 1 THz/nm as extracted from the FDTD simulations shown in Fig-
ure 6.2a and an effective mass of 160 fg, based on the dimensions of the mechanical
oscillator. We note that this result for g is a very large number compared to current
optomechanical experiments, exceeding the strongest reported coupling rates in
photonic crystal cavities [35, 36] by more than an order of magnitude. In fact, in this
case gy is even larger than the mechanical frequency Qy, by a factor 8. Of course,
we do note that this strength is achieved in the presence of an optical loss rate many
orders of magnitude larger than the mechanical frequency Q.

6.4 Force & mass sensing

Mechanical oscillators can not only be used to detect motion, but also to detect
for instance external forces or mass changes. In this section, we will calculate the
sensitivity of the oscillators shown in this chapter for force and mass sensing, and
demonstrate that the low effective mass makes these oscillators sensitive measure-
ment devices.

6.4.1 Force sensing

One of the applications of (nano)mechanical resonators is as force sensors [9, 144—
146]. Force couples to the spectral displacement density through the mechanical
susceptibility, as shown in Section 2.2.1:

Sxx(£2)

Srr(Q) = .
| (@]

(6.8)

In a way, by measuring thermal fluctuations, we are operating our device as a
force sensor, measuring the thermal Langevin force. In Figure 6.12, we show (blue
data points) the force sensitivity as a function of frequency for the system under
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Figure 6.12: Force imprecision level. Data points: force imprecision
obtained from data shown in Figure 6.7, converted to Sy’ using
Equation (6.8). Blue line: thermal Langevin force from Equation (6.10).
Purple dashed line: shot noise force imprecision level SISJIEI (Equation (6.11)).

study in this chapter, obtaining a (single-sided) force imprecision on resonance

V/ Si™ (Qm) = 930 aN/VHz.

This approaches the fundamental limit to force sensitivity given by the stochas-
tic thermal Langevin force [146]:

ksT 1

_—, (6.9)
Q Imy(Q)

sth@=-2
which for high-Q harmonic oscillators near resonance approximates to the single-
sided force spectral density (Sx = 2Sxx)

S(Q) = 4megrkp TT . (6.10)
For our resonator, (S{:h)”2 = 420 aN/v/Hz (blue line in Figure 6.12), implying that
with 1 second of averaging, a force of 420 aN could be resolved, which is within an
order of magnitude of the best room temperature system reported [126].

In this experiment, we are limited by the electrical and classical noise contri-
butions, as discussed in Section 6.3.4, leading to the observed force sensitivity of
930 aN/v/Hz. While these noise contributions can be reduced through technical
means, the shot noise contribution is intrinsic to the light used in the measurement
and can not be reduced by increasing the power. We therefore also plot the force
imprecision due to shot noise:

SSN,imp
= 6.11)
[0 ()]

This is plotted in Figure 6.12 as the purple dashed line. Adding this imprecision
to the thermal force limit in Equation (6.9) would give the force sensitivity for a
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shot-noise-limited detection. Figure 6.12 shows that on resonance, the shot noise
imprecision is lower than the thermal Langevin force imprecision: a shot-noise
limited measurement would reach the thermal limit.

We have also calculated the force sensitivity for the high-albedo scatterer as
discussed in Section 2.5 using the mechanical parameters of the nanobeams shown
in this chapter. In this case, the force sensitivity is limited by thermal noise over a
5 MHz bandwidth around the mechanical resonance frequency Q,,. This implies
that the force sensitivity could be improved by using smaller beams with a lower
thermal occupation.

6.4.2 Mass sensing

Another application of nanomechanical oscillators is mass sensing, as reviewed by
Ekinci et al. in [1, 147]. By placing the oscillator in a flow of particles, molecules
or atoms, some of these will accrete on the oscillator. This changes the mass of
the oscillator, which changes its eigenfrequency. This frequency shift can then
be measured by monitoring the amplitude of the oscillator, while it is driven on
resonance. Very high sensitivities have been shown, with record sensitivities down
to the zeptogram [97] and recently yoctogram [148] scale, with the latter experiment
using carbon nanotubes as mechanical resonators at millikelvin temperatures.

Note that the position of accretion is important: depending on the mode shape,
this can lead to an effective mass for the object to be weighed. In this paragraph,
we will assume any mass changes are at the point of maximum mode displacement,
leading to Meft test = Mphys,test: the effective mass of any accreting mass is equal to
its physical mass.

The basic strategy for testing for mass is to drive the oscillator to improve the
signal over the (thermally driven) noise level. One way to drive our plasmonic
mechanical resonator would be to drive it using a (pump) laser beam modulated
at the mechanical frequency, using thermal heating to cause a bending moment in
the beam.

From Ekinci et al. [147], we have the following expression for the detectable

change in mass 6M:
[Em | Af
M =2 —_—1 =, 6.12
Meff £\ oom (6.12)

where the ratio of the drive energy to the thermal energy, E./Ey, is the effective
dynamic range available. The drive energy can be expressed as Ec = meQ2, (x2),
and the measurement bandwidth is Af, which must be at least smaller than I'y,.
We will assume the two beams have different frequencies, so we can restrict our
analysis to one beam. There are two factors limiting the drive amplitude: the ge-
ometrical proximity of the neighbouring beam and the onset of nonlinearities in
the mechanical restoring force at large deflections. As we assume that we can drive
the two beams independently, we can drive the beam to an amplitude x. equal to
the gap between the two beams, so max(x.) = 30 nm. To stay in the linear regime,
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Figure 6.13: (a): Sketch of PIT geometry studied in this section, indicating
relevant size parameters. (b): SEM image of PIT antennas fabricated on
freestanding beams.

Ekinci et al. derive a limit x. < 0.53t, where t is the thickness of the beam in the
direction of motion. This limit is based on a power expansion of the potential
energy of the beam, where the contributions of order higher than quadratic (the
Hooke’s law contribution) are limited to be less than 10%. As our beams have an in-
plane width of 120 nm, this condition is met. We can then determine a minimum
detectable mass change of 6M = 10 fg in a bandwidth of 1 Hz for our mechanical
resonator at room temperature.

We note is that when driving the beam over this large displacement range, the
optomechanical coupling rate G will vary with position x, resulting in a different G
when driving the beam over a large amplitude than the static G.

The mass sensitivity can be improved by using smaller beams. These have lower

effective mass and higher frequencies as 6M scales as ./ Qég . As our plasmon
m

transducer is still much smaller than the beams we currently study, using smaller
beams is a feasible option for improving mass sensitivity.

6.5 Plasmonically induced transparency for transduc-
tion of motion

The transduction model developed in Chapter 2 and the experiments shown here
are not limited to dipole-dipole coupled dimers: there are many other possible
configurations of nanoscale scatters. These can show Fano interference between
two modes, typically a high-Q subradiant and a low-Q superradiant mode [77, 149-
156].

In this section, we will discuss a scatterer with near-field coupling between a
dipolar and a quadrupolar scatterer, known as a ‘dolmen’ or ‘7’ structure, which has
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been shown to exhibit ‘plasmonically induced transparency’ (PIT) [150-152, 157,
158]. This effect bears resemblance to electromagnetically induced transparency
[159], where in this case near-field coupling between the dipole and quadrupole
modes takes the role of the strong coupling laser field in EIT, which couples two
electronic levels. In the implementation we discuss, a nonradiative quadrupole,
composed of two metal bars, is near-field coupled to a scattering dipole, composed
of one bar. A transparency dip appears in the dipole’s scattering due to interfer-
ence between the incident light and light that scatters back from the quadrupole
antenna. This geometry is sketched in Figure 6.13a.

Because the quadrupole is to first approximation nonradiative, it exhibits
strongly reduced radiation damping compared to the dipole, and therefore has a
narrower linewidth. Making the narrow linewidth of the quadrupole resonance
visible using the high cross section of the dipole resonance could potentially offer
benefits for transduction of motion.

We will study two motion transduction schemes using PIT: changing the coup-
ling strength x between the dipole and quadrupole, which changes the depth of
the PIT dip, and changing the detuning 6 between the dipole and quadrupole res-
onance frequency, leading to a change of the frequency of the dip.

6.5.1 Changing coupling strength x =k + Fx

Figure 6.13a shows a sketch of the plasmonic resonators we will use for calculations
in this section and indicates all relevant size parameters. Figure 6.13b shows an
SEM image of a PIT antenna we fabricated on freestanding beams.

The polarizability of the system can be expressed as [150, 160]

ZwQQf

a(w) = 20200 1020p0g’

(6.13)
with x the dipole-quadrupole coupling strength, and where Qp and Qq express the
properties of the dipole and quadrupolar elements respectively:

QD=w—w0+in/2 (6.14)
Qq=w-wy+06+iyq/2, (6.15)

including a possible detuning 6 between the dipole and quadrupole resonance
frequency. For x = 0, Equation (6.13) reduces to the polarizability for a single dipole.
The coupling strength can be tuned by changing S: the horizontal distance between
the centers of the dipole and quadrupole. Due to symmetry, there is no coupling at
S =0, and we expect the strongest coupling when S = L;/2, close to the geometry
sketched in Figure 6.13a.

We modeled the PIT system using FDTD simulations, sweeping S, using param-
eters as in [67, 160], L; =315 nm, Ly =355 nm, H; = H, =40 nm, W; = W, =80 nm,
d; =30nm and g = 220 nm. The resulting calculated scattering cross section Cey; is
shown in Figure 6.14, for S ranging from 0 to 130 nm in steps of 10 nm. We see that
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Figure 6.14: Finite-difference-time-domain simulations of a coupled dipole-
quadrupole antenna PIT system, showing the calculated scattering cross
section. For different curves, the offset between the dipole and quadrupole
was changed: S = 0 for the blue line, S= L1/2 = 130 nm for the red line.
The transparency dip is detuned from the dipole resonance: § = —20 THz.

the coupling at small S is indeed very small, increasing to create a 75% transparency
window when S approaches 120 nm.

Next, we performed fits of the PIT-polarizability to the simulated data, first fit-
ting center frequency wy, oscillator strength f and intrinsic loss y; p of the dipolar
scatterer for the S = 0 simulation, using the radiation damping equation

w?

YD=YiDt (6.16)

6megc3’
shown earlier as Equation (2.61), to describe the damping for the dipolar scatterer.
We find f = 0.56, wg = 27 x 228 THz and y; = 27 x 8.5 THz. Using these values,
we then perform fits to the remaining simulations, to find yqg = 27 x 18 THz and
6 =-2m x20 THz.

We now determine the dependence of x on x, to model the motion transduction
by changing the offset S between the dipole and quadrupole. We express k(x) as a
quadratic fit to the quadrupole offset S: x(x) = 277(0.2432x — 6.72 x 10~%x?), with x
in nm, with x in units of 2z THz/nm. We constrain the fit to have x(x = 0) = 0: due
to symmetry, the coupling at S = 0 must be x = 0. Note that while x is expressed
as a frequency, it actually changes the scattering amplitude and not the center
frequency, as the coupling parameter G does.

We can, using the same framework as in Chapter 2, find the Im(a) and |a/?
terms, as well as their derivatives, after which we can express the imprecision levels
for this plasmonic transducer. We will also define a ‘good’ PIT antenna, with y; =0,
Yo=2nx5THzand é =0.
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Figure 6.15: Scattering and change in scattering for PIT antennas. The left
column is for a ‘good’ PIT scatterer, the right column for a ‘bad’ PIT scatterer
(parameters in main text). Different color curves indicate changing offset S.
Red line: S =0, then in 30 nm steps to the blue line with S= 120 nm.

In Figure 6.15, the top two graphs plot the scattering cross section Cs¢, for the
‘good’ and ‘bad’ PIT scatterer, and the bottom two graphs plot d|a|? /dx, the change
in |a|?, which is proportional to Csc4. These plots are shown for five different offsets
between the dipole and quadrupole: S = 0,30,60,90,120 nm, with colors from red
to blue.

We can then find the maximum value of |d|a|? /0x|. At this frequency, the mo-
tion transduction will be the strongest. Due to the strong coupling in the good PIT
scatterer, the frequency of this maximum value is offset from the center of the dip.
In the bad PIT scattering case, the maximum value is also offset due to the detuning
6 included in the model.

Figure 6.16 shows the imprecision calculation for the calculated PIT scatterer.
The lowest imprecision found for the good scatterer is 1.5 fm/vHz , 3 times larger
than the imprecision found for the dimer scatterer discussed in Section 2.5. Inter-
estingly, the maximum sensitivity is not obtained for the quadrupole-offset posi-
tion S which has the maximum coupling, but a position much closer to the center of
the quadrupole antenna. The fact that Sgooq = 20 nm is smaller than Sp,q ~ 45 nm,
we attribute to an effective overcoupling in « for the good scatterer.

The transduction method for these PIT antennas is very different from that of
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Figure 6.16: Imprecision for motion transduction using a PIT scatterer.
Noise parameters are as given in Table 2.3. The good scatterer (solid line)
uses NA =1 and polarizer angle i, = {out = 0. The bad scatterer (dashed
line) uses NA = 0.4. and —(j, = {out = 0.27. For both scatterers, the input

power Pj, =500 pW. As in the dipole-dipole scatterer, shown in Figure 2.14,
the good scatterer has a significantly higher sensitivity.

the dipole-dipole antennas. In the latter, the coupling leads to a frequency shift,
which we probe on the side of the resonance. For the PIT antennas, the mechanical
configuration change also alters the coupling between plasmonic elements, but in
this case this leads to a change in the depth of a transparency window.

One important factor to note is that this analysis assumes that the quadrupole
antenna does not couple to plane waves, and therefore does not show radiative
damping. However, tightly focused fields created by high-NA objectives have
higher-order components. Therefore, light tightly focused onto a quadrupole
could excite this quadrupole, reducing the PIT effect.

We find that using plasmonically induced transparency in dipole-quadrupole
coupled antennas does not offer an immediate boost in sensitivity over the dipole—
dipole dimer antennas discussed earlier. However, it is interesting that a completely
different scheme can offer very similar sensitivities.

6.5.2 Changing dipole-quadrupole detuning

A higher sensitivity can be obtained by changing not the coupling strength x
but the frequency detuning é between the quadrupole resonance Qq and the
dipole resonance Qp. We will investigate the sensitivity obtainable by modulating
the quadrupole resonance frequency. We rewrite 9§, the detuning between the
quadrupole and dipole resonance, as § = § + Gdx, leading to an expression for the
quadrupole term in Equation (6.13):

Qg =w-wp+06+G8x +iyq/2. (6.17)

Changing the quadrupole resonance frequency has a stronger effect than changing
the dipole resonance frequency: the slope in Im(a) and |a|? scales not only with
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o=l

Figure 6.17: (a): Sketch of the 5-element plasmonically induced trans-
parency antenna used in this section, indicating gap x = X + 0x between
quadrupole elements. All other size parameters are the same as in
Figure 6.15, where L; is the length of one of the quadrupole elements.
(b): Artist’s impression of possible experimental geometry (image credit:
Felipe Bernal).

the frequency shift G, but also with the linewidths yp and yq. Using the narrow
resonance linewidth of the quadrupolar resonance can then boost sensitivity using
PIT by a factor proportional to yq/yp over the dipole-dipole coupling shown earlier
in this chapter.

To introduce a dependence on mechanical configuration in the quadrupole
resonance, we replace the two bars used in the previous section with two pairs of
dipole-dipole coupled bars. The two pairs then both have coupling as in the dipole-
dipole situation discussed in Chapter 2 and the earlier part of this chapter. A sketch
of this geometry is shown in Figure 6.17. We will assume, based on the dipole-
dipole calculations shown earlier, G = 27 x 1 THz/nm. We can then plot scattering
cross sections and change in scattering, using the same parameters as for the 3-
element PIT, for a ‘good’ and ‘bad’ scatterer. The results are shown in Figure 6.18.

Using the curves plotted in Figure 6.18, we can again determine the optimum
frequency for each value of § x. Using this optimum frequency, we then plot the im-
precision for the good and bad 5-element scatterers in Figure 6.19 (black lines). We
also plot an equivalent dipole-dipole coupled transducer, by setting x = 0 and using
the same value for G to change not the quadrupole resonance frequency but the
dipole resonance frequency. These imprecisions are plotted as the red lines. We see
that for the bad scatterer, the dipole-dipole coupling has lower imprecision. How-
ever, for the good scatterer, the dipole-quadrupole shows lower imprecision, with
a10.2 dB reduction in Sic? relative to the best dipole-dipole imprecision shown in
Section 2.6.

Comparing the results to those for the 3-element PIT shown in Figure 6.16, we
see that changing the quadrupole resonance improves sensitivity over changing the
PIT coupling strength, improving sensitivity by almost an order of magnitude.

We note that it should be fairly straightforward to fabricate such a 5-element
scatterer. Using the fabrication technique outlined in Section 3.3, we can fabricate
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Figure 6.18: Scattering and change in scattering for PIT antennas. The left
column is for a ‘good’ PIT scatterer, the right column for a ‘bad’ PIT scatterer
(parameters in main text). Different color curves indicate changing gap
between quadrupole elements x. Red line: § = —20 THz, then in 10 THz
steps to the blue line with § = 20 THz.

two double-length rods on a silicon nitride membrane, and then use focused ion
beam milling to separate these, creating the quadrupole antenna and releasing the
beams. The simplest solution is to redesign the geometry such that the dipole ele-
ment is placed in the same plane as the quadrupole bars, as was shown by Zhang et
al. in [150]. This geometry is sketched in Figure 6.17b.

Keeping the geometry studied in this section, the dipole bar can be fabricated
by depositing a spacer layer followed by a second EBL step, as outlined by Liu et al.
[67]. Another possibility might be to fabricate the dipole bar on the other side of the
membrane, using the silicon nitride as a spacer layer. This would require careful
optimization of the spacings, taking into account the dielectric environment of
silicon nitride beams and surrounding gaps.

In this section, we have shown a possible extension to the dipole scattering
model introduced in Chapter 2. Using narrow-linewidth quadrupolar resonances
can enhance the sensitivity of motion transduction over that of dipole-dipole coup-
led dimer dipolar resonators, if care is taken to optimize the motion transduction
geometry.
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Figure 6.19: Imprecision curves for good and bad 5-element PIT scatterers
(black lines) and for good and bad dipole-dipole scatterers (red lines). The
good scatterers (solid lines) uses NA =1 and polarizer angle i, = {out = 0.
The bad scatterers (dashed lines) uses NA = 0.4. and —(jn = {out = 0.187.
For both scatterers, the input power Pj, = 500 uW. For the dipole-dipole
scatterers, the coupling strength x = 0 and the coupling strength G changes
wp and not the detuning between the dipolar and quadrupolar resonance.
The kink at x = 0 for the good scatterer and at x = 20 nm for the bad
scatterer is due to the optimum side-of-PIT-detuning changing from the blue
side of the dip to the red side of the dip.

6.6 Conclusion

In conclusion, we have for the first time used single plasmonic antennas to probe
thermally driven mechanical motion at the nanoscale. Motion was measured with
a spectral density of 800 fm/v/Hz , approaching the thermal limit of the resonator,
which has a single-sided force sensitivity of 420 aN/v/Hz and a mass sensitivity of
10 fG in a 1 Hz bandwidth.

For further studies, the signal to noise ratio can be improved in various ways.
Much higher mechanical quality factors, up to Q,, ~ 10, have been reported
[35, 125] for similar size silicon nitride beams. It is possible that replacing the FIB
milling with dry etching of the silicon nitride beams, at the cost of introducing
another lithography step, could improve the mechanical quality factor of the
beams in our experiment.

The different modes can also have different quality factors: Sun et al. [161]
discuss how the differential mode of a doubly clamped double beam resonator
has a higher Q-factor than the common mode, where both beams move in phase,
and that the quality factors for both of these modes are higher than those for non-
coupled beams, where only one beam is moving.

At present, we are mainly limited by the low albedo of the plasmonic scatterer.
Improving this could greatly improve the sensitivity. Then, with a higher albedo,
being able to directly measure the scattering properties of the antenna would allow,
through fabrication, optimization of the detuning.
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We have shown that we can create a plasmonic transducer for mechanical mo-
tion, using deeply subwavelength antennas on nanomechanical beams. We studied
the effect of antenna length on the transduction of motion. Using a crossed polar-
izer technique, we increased the sensitivity of the measurement of motion, and by
rotating the detected polarization, we were able to quantify the noise components
that limit the sensitivity of this technique. The motion transduction calibration was
used to derive results for force and mass sensitivity, showing the benefits of the very
low effective mass of the oscillators used in this chapter.

Finally, we adapted the transduction model first shown in Chapter 2 to
include not only dipole-dipole coupling but also dipole-quadrupole coupling in a
plasmonically induced transparency geometry. We show that an optimum dipole-
quadrupole scatterer can show lower imprecision than an optimum dipole-dipole
scatterer by reducing radiation losses without compromising the optomechanical
frequency shift G, leading to a calculated 10 dB reduction in imprecision.

Using plasmonic antennas allows the use of a very simple and flexible free-
space measurement technique, and the small size of the antennas (1/3 in length,
2.5 x 10713 in volume) will allow integration into even smaller mechanical oscilla-
tors than we report here.
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Summary

In this thesis, we investigate the interaction between light, confined to the
nanoscale in the form of surface plasmon polaritons, and the motion of micro- and
nanomechanical oscillators. Taken together, these form plasmonic optomechan-
ical systems. The strong field confinement and local field enhancement around
plasmonic antennas make them extremely sensitive transducers of mechanical
motion to scattered optical fields. Due to the strong field gradients in the plasmonic
near field the optomechanical coupling constant G = a(;‘;f can exceed 1 THz/nm,
which is well beyond that of other existing mechanical transduction geometries.

Another advantage of plasmonic antennas is that they are addressable from free
space. This, together with the high G’s that are attainable, makes a plasmonic mo-
tion transducer very simple: focused light from a lens can be used to excite the reso-
nance, and the high G obviates the need for a Fabry-Pérot cavity to boost sensitivity,
while the limited optical quality factor implies a high optical bandwidth, eliminat-
ing the need for complex schemes to stabilize the laser to the optical resonance.
The high overlap between the plasmonic mode and the mechanical mode, which is
responsible for the high coupling strength, also allows integrated measurements on
truly nanoscale resonators. Finally, the small size and free-space addressability of
plasmonic antennas allows parallel transduction of multiple mechanical oscillators
with a single laser beam.

In Chapter 2, we develop a theoretical framework for analyzing plasmonic opto-
mechanics. We first derive expressions for the eigenfrequencies and thermal oc-
cupation of doubly clamped nanobeams. We give expressions for these occupa-
tions in terms of spectral densities. Next, we calculate coupling rates for spherical
metallic nanoparticles, showing that strong coupling is achievable, and derive the
radiative loss rate. To measure the motion of individual nanobeams, we will place
plasmonic particles on these beams. Addressing these plasmonic resonators opti-
cally will require tightly confined optical fields. We therefore incorporate focusing
in our model, and show how a dipolar scatterer placed at this focus will modulate
the transmittance, defining the transmittance in terms of the numerical aperture of
the focusing lens and the polarizability a of the scatterer.
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To suppress the contribution of directly transmitted light (that has not inter-
acted with the scatterer) relative to the scattered and extincted contributions, we
expand the equations for transmittance to allow different angles for input polariza-
tion and output analyzer relative to the scatterer.

A transmittance measurement will not only include modulation due to the
mechanical modulation of the beams supporting the antenna, but also various
noise contributions. We calculate the strength of these noise contributions, and
express them as contributions to the displacement imprecision. Next, we show
the resulting imprecision for several plasmonic scatterers. We also model the
transmittance of these scatterers when applied to several mechanical resonators
that have been shown in the literature.

Chapter 3 describes the vacuum microscopy setup we developed to measure
plasmonic nanomechanical transduction. We also describe the fabrication
methods used to create plasmonic antennas on nanomechanical structures,
using a combination of metal deposition, electron-beam lithography and focused
ion beam milling.

In Chapter 4, we describe a plasmonic transducer consisting of two gold-coated
silicon nitride beams. The narrow gold-coated slot between the two beams creates
a very short (100 nm length) metal-insulator-metal waveguide. The index mis-
match between this waveguide and the surrounding vacuum creates a Fabry-Pérot
cavity, introducing resonances. The resonance frequency of this MIM cavity is de-
pendent on the spacing between the beams. We show how this system transduces
motion, measuring motion with an imprecision Sy " = 40 fm/vHz . The metal
covering of the beams greatly reduces direct transmission of light, effectively form-
ing a darkfield geometry, which improves the measurement sensitivity. Finally, we
discuss the effects of input polarization, ambient pressure, and the length of the
beams on the sensitivity of the measurement.

Chapter 5 demonstrates how the transduction scheme shown in Chapter 4 can
be used to read out the motion of multiple beams, arranged in parallel arrays of
beams. In these parallel arrays, the motion of each beam is transduced by the slots
on either side of the beam. Parallel measurement of the motion of all 8 nanome-
chanical beams is obtained by tuning the width of the plasmonic slots. As the metal
also absorbs light, the beams are heated. This heating changes the mechanical
properties of the beams, which can be used to tune the resonance frequencies of
the beams. This can then be used to tune the resonance frequency of different
beams to match, leading to mechanical coupling between the beams mediated by
the substrate, which appears as avoided crossings in the thermally tuned spectra.
When studying the out-of-plane mechanical mode, the heating causes a bilayer
thermal stress in the beams. At high enough input powers, this leads to parametric
amplification of the out-of-plane motion of the beams. Finally, we show that by
reducing the metal coverage of the beams, we can improve the mechanical quality
factor of the beams from 500-1000 up to 7000.

In Chapter 6, we introduce a plasmonic resonator with extremely small plas-
monic modal volume: an antenna consisting of two dipole-dipole coupled gold
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bars. We place each element of this antenna on an individual silicon nitride beam
(10.5 pm x 120 nm x 100 nm), obtaining a low effective mass of 160 fg. Due to
low scattering, we use crossed polarizers to measure the mechanical transduction
of this plasmonic antenna with 800 fm/v/Hz imprecision. We discuss force and
mass sensing using this platform, finding that the low effective mass makes this a
sensitive geometry, with a force sensitivity of 420 aN/v/Hz and a mass sensitivity
of 10 fg/v/Hz. Finally, we model the use of a dipole-quadrupole coupled antenna,
where we use the narrow quadrupolar linewidth in a scatterer showing plasmoni-
cally induced transparency to improve sensitivity.

To conclude, we have shown that plasmonic nanostructures can be used to
transduce thermally driven nanomechanical motion to optical signals. Plasmonic
antennas show very high coupling rates, combined with small physical sizes and
sub-wavelength mode volumes. These properties make plasmonics an interesting
platform for motion transduction, allowing free space coupling and parallel trans-
duction of nanoscale mechanical motion.
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Samenvatting

Dit proefschrift onderzoekt de interactie tussen licht, gevangen op de nanoschaal
in de vorm van oppervlakteplasmonpolaritonen, en de beweging van micro- en
nanomechanische oscillatoren. De grote veldconcentratie en lokale veldverster-
king vlakbij plasmonische antennes zorgen er voor dat deze antennes ultragevoelig
mechanische beweging om kunnen zetten in (verstrooide) lichtvelden. Als gevolg
van de sterke veldgradiénten in het nabije veld van een plasmonische antenne is de
optomechanische koppelingsconstante G = a"j: (de frequentieverschuiving van de
optische resonantie per eenheid van verplaatsing) groter dan 1 THz/nm, wat veel
groter is dan die van alle tot nog toe bekende optomechanische transductiegeome-
trieén.

Een ander voordeel van plasmonische antennes is dat ze vanuit het verre veld
met een lichtbundel aangeslagen kunnen worden. Dit maakt, samen met de grote
G-waardes die bereikt kunnen worden, dat een plasmonische bewegingssensor een
relatief simpel ontwerp kan hebben. Licht kan met een lens op de antenne gefo-
cusseerd worden en door de hoge G is er geen Fabry-Pérot etalon nodig om de ge-
voeligheid te vergroten. Omdat een plasmonische resonantie een grote lijnbreedte
heeft, is de intrinsieke frequentiestabiliteit van de lasers die we gebruiken groot
genoeg om de lasers niet actief aan de resonantie te hoeven stabiliseren. De combi-
natie van kleine afmetingen en vrije-veld excitatie maken het mogelijk om met een
enkele laserbundel de beweging van meerdere mechanische oscillatoren parallel
uit te lezen.

In hoofdstuk 2 wordt een theoretisch raamwerk voor plasmonische optome-
chanica afgeleid. Als eerste worden uitdrukkingen voor de eigenfrequenties van
nanobruggen en hun beweging ten gevolge van de stochastische Langevin-kracht
afgeleid. Vervolgens berekenen we de koppelingssterktes voor bolvormige meta-
len nanodeeltjes in de dipolaire limiet, waarbij we laten zien dat sterke koppeling
mogelijk is, en bepalen we de grootte van de stralingsdemping. Om de beweging
van nanobruggen uit te lezen, hebben we plasmonische antennes op deze bruggen
geplaatst. Het uitlezen van deze antennes vereist sterk gefocusseerd licht. We reke-
nen de elektrische veldsterkte in het focus van een microscoopobjectief uit en laten
zien hoe een dipolaire verstrooier in dit focus de transmissie van licht beinvloedt,
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waarbij we de doorlaatbaarheid uitdrukken als functie van de openingshoek van de
focusserende lens en de polariseerbaarheid a van de verstrooier.

Om de hoeveelheid rechtstreeks doorgelaten licht (dat dus geen interactie met
de verstrooier heeft gehad) te verminderen, kan een polarisatiefilter voor de detec-
tor geplaatst worden. Om het effect hiervan te bepalen, brengen we in de analyse
ook de polarizatiehoek van het licht in rekening, om verschillende ingangs- en uit-
gangspolarisaties mogelijk te maken.

Een dergelijke verstrooiingsmeting zal niet alleen modulatiecomponenten be-
vatten ten gevolge van de mechanische modulatie van de nanobruggen waar de
antenne op rust, maar ook modulaties ten gevolge van een aantal verschillende
bronnen van optische en elektrische ruis. We rekenen de relatieve sterkte van deze
componenten uit en drukken deze uit als meetimprecisies. Als laatste berekenen
we de totale meetimprecisie voor een aantal mogelijke strukturen, gebruikmakend
van zowel berekende lijnbreedtes en koppelingsconstantes voor verschillende plas-
monische verstrooiers als van verschillende literatuurwaardes voor nanomechani-
sche resonatoren.

In hoofdstuk 3 beschrijven we de vacuimmicroscoop die we op AMOLF
ontwikkeld hebben om plasmonische nanomechanische resonatoren uit te lezen.
Vervolgens beschrijven we ook een aantal fabricagemethodes die we gebruiken
om de structuren te maken. Hierbij maken we gebruik van metaaldepositie,
elektronenbundel-lithografie en gefocusseerde-ionenbundel frezen.

Hoofdstuk 4 omschrijft een plasmonische sensor die bestaat uit twee met goud
bedekte nanobruggen van siliciumnitride. De smalle spleet tussen de twee goudla-
gen vormt een zeer korte (100 nm) metaal-diélectricum-metaal (MIM) golfgeleider.
Deze vormt een Fabry-Pérot trilholte, waardoor resonanties onstaan. De resonan-
tiefrequentie van deze MIM-holte hangt af van de afstand tussen de bruggen. We
laten zien hoe dit systeem thermisch aangedreven beweging van de bruggen detec-
teert met een meetimprecisie van Sy, © = 40 fm/v/Hz . Omdat de bruggen volledig
met goud bedekt zijn, is al het licht dat we in transmissie detecteren door de MIM-
holte geperst. Dit betekent dat er geen achtergrondsignaal is, wat de gevoeligheid
verbetert. Als laatste bespreekt dit hoofdstuk de effecten van de omgevingsdruk, de
lengte van de bruggen en van veranderingen in de polarisatie van het inkomende
licht op de amplitude van het signaal.

In hoofdstuk 5 demonstreren we hoe het in hoofdstuk 4 beschreven mecha-
nisme gebruikt kan worden om de beweging van vele bruggen parallel uit te le-
zen. We maken reeksen van parallele bruggen, waarin de beweging van elke brug
door de twee spleten aan weerszijden van elke brug wordt omgezet in modulaties
in het doorgelaten licht. Als de spleten precies even groot zijn, hebben ze exact
dezelfde gevoeligheid. Beweging in het vlak wordt dan niet gedetecteerd: als de
ene spleet breder wordt, wordt de andere precies evenveel kleiner en verdwijnt de
netto gevoeligheid. Door de breedte van de spleten zorgvuldig te veranderen kan
de beweging van de 8 bruggen wel parallel uitgelezen worden.

Omdat het metaal op de bruggen ook licht absorbeert, warmen de bruggen
op, waardoor de mechanische eigenschappen van de bruggen veranderen. Met
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dit effect kunnen de resonanties van de verschillende bruggen verstemd worden.
Als we twee naast elkaar gelegen bruggen naar dezelfde frequentie verstemmen,
zien we de mechanische koppeling tussen de bruggen, die door het substraat loopt,
optreden als een ‘avoided crossing. De bruggen hebben ook een mechanische
trilling uit het vlak. Omdat goud en siliciumnitride verschillende thermische uitzet-
tingscoéfficienten hebben, levert een opwarming een buigspanning uit het vlak op.
Wanneer er genoeg licht geabsorbeerd wordt, kan de uit-het-vlak beweging para-
metrisch versterkt worden, wat leidt tot zeer grote bewegingsamplitudes. Ten slotte
laten we zien dat we door bruggen te maken met alleen goud in het midden van de
brug, de mechanische kwaliteitsfactor Q toeneemt van 500-1000 tot ongeveer 7000.

In hoofdstuk 6 maken we de kleinst mogelijke plasmonische bewegingssen-
sor, bestaande uit twee dipool-dipool gekoppelde gouden staafjes, met een totale
lengte van 485 nanometer. Elk van deze staafjes plaatsen we op een losse silici-
umnitride brug (10,5 micrometer lang, met een doorsnede van 100 x 120 nanome-
ter), wat leidt tot een effectieve massa van 160 femtogram. Omdat de verstrooiing
van deze antenne heel laag is, gebruiken we twee gekruiste polarisatiefilters om
de mechanische transductie te meten, waarbij we een imprecisie van 800 fm/vHz
bereiken. Omdat de massa van het systeem zo laag is, kan de sensor gebruikt wor-
den om krachten te meten met een gevoeligheid van 420 aN/v/Hz en verande-
ringen in massa met een gevoeligheid van 10 fg/vHz. Ten slotte berekenen we
de gevoeligheid die bereikt zou kunnen worden met dipool-quadrupool anten-
nes. Omdat een quadrupoolantenne een veel lagere stralingsdemping heeft, heeft
deze een smallere lijnbreedte. We berekenen dan dat door de resonanties van de
dipool- en quadrupoolantennes zorgvuldig af te stemmen ‘plasmon-geinduceerde-
transparantie’ optreedt. Door nu de resonantiefrequentie van de quadrupoolan-
tenne geometrie-afthankelijk te maken, berekenen we een lagere imprecisie voor
het dipool-quadrupool systeem dan voor het dipool-dipool systeem.

Dit proefschrift laat zien dat oppervlakteplasmonpolaritonen gebruikt kunnen
worden om thermisch aangedreven nanomechanische beweging te detecteren. De
sterke koppeling, kleine fysieke afmetingen en sub-golflengte modevolumes ma-
ken plasmonen een interessant platform voor transductie van beweging, met een-
voudige uitlezing en de mogelijkheid tot het parallel uitlezen van meerdere oscilla-
toren.
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