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The diffusive arrival of transcription factors at the promoter sites on DNA sets a lower bound on how accurately a
cell can regulate its protein levels. Using results from the literature on diffusion-influenced reactions, we derive an
analytical expression for the lower bound on the precision of transcriptional regulation. In our theory, transcription
factors can perform multiple rounds of one-dimensional (1D) diffusion along the DNA and 3D diffusion in the
cytoplasm before binding to the promoter. Comparing our expression for the lower bound on the precision
against results from Green’s function reaction dynamics simulations shows that the theory is highly accurate
under biologically relevant conditions. Our results demonstrate that, to an excellent approximation, the promoter
switches between the transcription-factor bound and unbound state in a Markovian fashion. This remains true
even in the presence of sliding, i.e., with 1D diffusion along the DNA. This has two important implications:
(1) Minimizing the noise in the promoter state is equivalent to minimizing the search time of transcription factors
for their promoters; (2) the complicated dynamics of 3D diffusion in the cytoplasm and 1D diffusion along the
DNA can be captured in a well-stirred model by renormalizing the promoter association and dissociation rates,
making it possible to efficiently simulate the promoter dynamics using Gillespie simulations. Based on the recent
experimental observation that sliding can speed up the promoter search by a factor of 4, our theory predicts that
sliding can enhance the precision of transcriptional regulation by a factor of 2.
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I. INTRODUCTION

Living cells regulate their protein levels by stimulating
or repressing the expression of genes via the binding of
transcription factors (TFs) to regulatory sequences on DNA
called promoters. The fluctuations in the state of the promoter,
switching between “on” and “off” due to the binding and
unbinding of TFs, will propagate to the protein levels down-
stream. Because there are only very few TFs present in a cell
and because they have to find their target site via a diffusive
trajectory, these fluctuations can be substantial. Furthermore,
in contrast to what has been assumed before [1], the binding
of the TFs to their target is not diffusion limited [2]. This is
likely to enhance the fluctuations in the promoter state even
further.

The level of transcription is set by the fraction of time
the promoter is in the “on” state, which depends on the TF
concentration. However, how accurately can the cell infer
the TF concentration from the strongly fluctuating promoter
occupancy? The diffusion and the limited affinity of the TF
for the promoter puts a fundamental limit on how precise gene
expression can be regulated. In turn, this puts a lower bound
on the noise in gene expression.

Indeed, in a computational study by Van Zon et al. [3], it was
found that the diffusive arrival of TFs at the promoter is a major
source of noise in gene expression. In their model, however,
the promoter was represented as a sphere, and it was assumed
that the TFs move by normal three-dimensional (3D) diffusion
on all length scales. However, it is now commonly believed
that TFs find their promoter via the mechanism of facilitated
diffusion, which involves a combination of 1D diffusion along
the DNA and 3D diffusion in the cytoplasm [1,2,4–10].

Recently, it has been studied theoretically how deviations
of the TFs transport from classical Brownian motion affects
noise in gene expression [11–13]. On length scales larger than

the sliding distance, the transport process is essentially 3D
diffusion, but on length scales smaller than the sliding distance,
the dynamics is a complicated interplay of 3D diffusion in
the cytoplasm and 1D diffusion on the DNA. This motivated
Tkačik and Bialek to study a model in which TFs can move by
3D diffusion in the bulk and bind reversibly and nonspecifically
to DNA near the promoter. On the DNA, the TF can move
by 1D diffusion to the promoter, to which they can then
bind specifically and reversibly [11]. Tkačik and Bialek found
that the effect of the larger target size on the noise in gene
expression, provided by the 1D sliding along the DNA near
the promoter, is largely canceled by the increased temporal
correlations in 1D diffusion. As a result, sliding has, according
to their analysis, only a small effect on the physical limits to
the precision of transcriptional regulation.

Here we rederive the fundamental bound on the accuracy of
transcriptional regulation. We consider the scenario in which
gene expression is controlled by the promoter binding of a
single TF species, which could either be an activator or a
repressor of gene expression. As such, our analysis is directly
applicable to prokaryotic gene regulation. In eukaryotes, gene
expression is not only regulated via TF binding, but also by
other processes such as histone modification. Our analysis does
not take these processes into account. These processes are,
however, expected to only raise the noise in gene expression,
and since our paper concerns the fundamental lower bound
on the precision of gene regulation set by the binding of
TFs, we believe it also applies to eukaryotic gene expression.
In addition, active genes in eukaryotes are often located on
euchromatin, the more open form of DNA, where the promoter
is more directly accessible by the TFs. In this case, our analysis
would apply more directly to eukaryotic gene regulation.

We study the same model as that of Tkačik and Bialek [11],
but analyze it using the approach of Agmon, Szabo, and
co-workers to study diffusion-influenced reactions [14,15].
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Apart from one biologically motivated assumption and one
mathematical approximation, this approach makes it possible
to solve this model exactly. To test our theory, we have ex-
tended Green’s function reaction dynamics [3,16–18], which
is an exact scheme for simulating reaction-diffusion systems
at the particle level, to include 1D diffusion along cylinders.
We find excellent agreement between the predictions of our
theory and the simulation results.

Our expression for the sensing error differs qualitatively
from that of Tkačik and Bialek [11]. Our expression predicts
that, as the average promoter occupancy approaches unity, the
error diverges. This can be understood intuitively by noting
that in this limit newly arriving TFs cannot bind the promoter,
and hence no concentration measurements can be performed.
We found the same result earlier for the binding of ligand to a
spherical receptor [15].

The key ingredient that determines the lower bound on
the accuracy of transcriptional regulation is the correlation
time of the promoter state [15,19,20]. The correlation time is
a complex function of the diffusion constants of the TFs in
the cytoplasm and along the DNA, and the rates of nonspecific
DNA binding and specific promoter binding. However, we find
that, to an excellent approximation, the promoter correlation
time is that of a random telegraph process, in which the
promoter switches between the TF bound and unbound state
with effective rates that are constant in time. The reason is that
in living cells, the TF concentration is typically low, i.e., in the
nM range, while the sliding distance and sliding time are short,
≈50 bp and <50 ms, respectively [2,8]. As a result, even in the
presence of sliding along the DNA, the time a TF spends near
the promoter is short compared to the time scale on which TFs
arrive at the promoter from the bulk, which is on the order of
seconds to minutes [2]. Hence, a TF near the promoter either
rapidly binds the promoter or rapidly escapes into the bulk.
This makes it possible to integrate out the rapid promoter-TF
rebindings and the unsuccessful TF bulk arrivals, and reduce
the many-body, non-Markovian reaction-diffusion problem to
a pair problem in which the TFs associate with and dissociate
from the promoter with rates that are constant in time. These
results underscore our earlier finding that the complex TF
diffusion dynamics with its algebraic distributed waiting times
can be described in a well-stirred model by renormalizing the
association and dissociation rates. Importantly, this model can
be simulated using the Gillespie algorithm [3,15,21].

An important implication of our observation that the
promoter dynamics can be described by a random telegraph
process, is that minimizing the promoter noise (correlation
time) is equivalent to minimizing the time required for TFs
to find and bind the promoter. As pointed out by Tkačik and
Bialek, the combined system of 1D and 3D diffusion tends
to have longer correlation times than the system with only 3D
diffusion [11]. However, the dominant effect is that nonspecific
DNA binding increases the target size which speeds up the
rate by which TFs find the promoter. Our results show that this
decreases the promoter correlation time, which enhances the
precision of transcriptional regulation, and lowers the noise
in gene expression. This means that the large body of work
on how proteins find their targets on the DNA [2,5–10,22,23]
could be used to study how cells can optimize the precision
of transcriptional regulation. Our findings corroborate those of

Hammar et al. [2]: The search time and hence the promoter
noise (correlation time) can be minimized by optimizing
the sliding time. The optimal sliding time depends on the
probability that a TF which is in contact with the promoter
will actually bind the promoter rather than slide over it.

II. THEORY

Following earlier work [11,15,19,20], we imagine that
the cell infers the average TF concentration c̄ from the
promoter state n(t) integrated over an integration time T ,
nT = (1/T )

∫ T

0 n(t)dt . Here n(t) is one if at time t a TF is
bound to the promoter, and zero otherwise. When the readout
of the TF concentration is the expression of a protein, the
integration time T is the lifetime of that protein. Our analysis
applies both to the case that the TF is an activator of gene
expression and to the scenario in which it is a repressor of gene
expression. Even when a TF has been activated or deactivated
by the binding of an inducer molecule our theory applies.
In all cases, the question is how accurately the (active) TF
concentration c̄ can be inferred from the promoter occupancy
n by inverting the input-output relation n̄(c̄). The central
assumptions of our analysis are that the total number of
(induced) TFs inside the cell is fixed and that the system is
in steady state. The only sources of fluctuations in n(t) are the
3D diffusion of the TF to and from the DNA, the 1D diffusion
along the DNA, the binding and unbinding to and from the
DNA, and the binding and unbinding to and from the promoter.

In the limit that the integration time T is much longer than
the correlation time τn of n(t), the variance in our estimate nT

of the true mean occupancy n̄ is given by [15,19]

(δn)2 ≡ σ 2
n,T � 2σ 2

n τn

T

= Pn(ω = 0)

T
= 2Re[Ĉn(s = 0)]

T
, (1)

where σ 2
n = 〈n2〉 − 〈n〉2 is the variance of an instantaneous

measurement and Pn(ω) and Ĉn(s) are, respectively, the power
spectrum and the Laplace transform of the autocorrelation
function Cn(t) of n(t).

The uncertainty or expected error δc in the corresponding
estimate of the average TF concentration c̄ is related to the
error δn in the estimate of n̄ via the gain |dn̄/dc̄|,

δc =
∣∣∣∣ dc̄

dn̄

∣∣∣∣δn. (2)

Since the promoter is a binomial switch, the variance σ 2
n =

n̄(1 − n̄). Both the average occupancy 〈n〉 = n̄ and the gain
|dn̄/dc̄| are determined by the input-output relation n̄(c̄)
and the average concentration c̄, while the integration time
T is assumed to be given. Hence, to obtain the error in
the concentration estimate, we need to know the promoter
correlation time τn.

We note that the above expressions are generic: They apply
to all systems where the concentration is inferred from the
binary binding state of a protein, be it a receptor on a 2D
membrane or a promoter on a DNA molecule. How the ligand
molecules or the TFs diffuse to the receptor or the promoter
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only enters the problem via the magnitude of the receptor
(promoter) correlation time.

A. Deriving the correlation function and correlation time

To derive the uncertainty δn in our estimate of n̄, we derive
the correlation function for a binary switching process [see
Eq. (1)], following Kaizu et al. [15]. We start with the general
expression for the correlation function of a binary switch:

Cn(τ ) ≡ 〈[n(τ ) − n̄][n(0) − n̄]〉 (3)

= n̄[p∗|∗(τ ) − n̄]. (4)

In the second line we introduced the probability that the
promoter is bound at time τ , given that it started in the bound
state at t = 0. This conditional probability is equal to

p∗|∗(τ ) = 1 − Srev(τ |∗), (5)

where Srev(τ |∗) is the probability that the promoter is free
at time τ , given that it was bound initially. The promoter can
undergo multiple rounds of binding and unbinding during the
time τ . We can describe this reversible process in terms of an
irreversible one via the convolution [14]

Srev(t |∗) = k−
∫ t

0
[1 − Srev(t ′|∗)]Srad(t − t ′|z0)dt ′. (6)

The first factor under the integral gives the probability that
the promoter is occupied at time t ′. Then the TF dissociates
from the promoter with a rate k− and is placed in contact with
the promoter on the DNA at position z0. The second term
under the integral, Srad(t − t ′|z0), gives the probability that
the promoter remains unoccupied from the last dissociation up
to time time t . Integrating over all intermediate times t ′ gives
us the probability that the promoter is unoccupied at time t .

To solve Eq. (6), we need the irreversible survival probabil-
ity of the promoter, Srad(t − t ′|z0). In general, we do not know
the analytical expression for this quantity, since it depends on
the history of binding events [14,15]. Following [14,15], we
assume that after each promoter-TF dissociation event, the pro-
moter with the TF at contact is surrounded by an equilibrium
distribution of TFs. The survival probability is then given by

Srad(t |z0) � Srad(t |eq)Srad(t |z0), (7)

where Srad(t |eq) is the survival probability of a promoter
which is free initially and is surrounded by an equilibrium
solution of TFs; Srad(t |z0) is the probability that a free
promoter with only a single TF at contact z0 and no other TFs
present, is still unbound at a later time t . Below, in Secs. II C
and III B, we discuss the validity of Eq. (7) in detail.

The quantity Srad(t |eq) can be found by solving the
differential equation (Appendix A)

∂Srad(t |eq)

∂t
= −ξ̄ krad(t) Srad(t |eq). (8)

Here, krad(t) is the time-dependent rate coefficient, and,
importantly, ξ̄ is the average concentration of TFs on the DNA
and not the total concentration of TFs. The above equation
relates the rate at which TFs that were in equilibrium at time
t = 0 bind the promoter at time t , − ∂Srad(t |eq)

∂t
, to the rate at

which TFs bind the promoter at time t if it is not occupied,

ξ̄ krad(t), times the probability that the promoter is indeed
unoccupied, Srad(t |eq). Solving the equation yields

Srad(t |eq) = e−ξ̄
∫ t

0 krad(t ′)dt ′ . (9)

Because the system obeys detailed balance, we can write
krad(t) [14] as

krad(t) = k+ Srad(t |z0), (10)

where k+ is the intrinsic association rate of the TF when in
contact with the promoter.

Before deriving the correlation function Cn(τ ) in the
Laplace domain, Ĉn(s), we give a relation which will prove
useful. Namely, from Eqs. (8) and (10), it is clear that

∂Srad(t |eq)

∂t
= −ξ̄ k+ Srad(t |z0) Srad(t |eq) (11)

= −ξ̄ k+ Srad(t |z0). (12)

To derive Ĉn(s), we first Laplace transform Eq. (6) and
solve it for Ŝrev(s|∗). By using the Laplace transformed
Eqs. (4) and (12) and using that k−n̄ = k+ξ̄ (1 − n̄) and
σ 2

n = n̄(1 − n̄), we can express Ĉn(s) as a function of
Ŝrad(s|eq) only (see also [15]):

Ĉn(s) = σ 2
n

n̄Ŝrad(s|eq)

1 − (1 − n̄)sŜrad(s|eq)
. (13)

To obtain an analytically closed form for the correlation
function, we require an expression for Ŝrad(s|eq). We use

Ŝrad(s|eq) � 1

s

1

1 + ξ̄ k̂rad(s)
, (14)

which correctly captures the short- and long-time limit
of Srad(t |eq) and becomes exact for all times in the low
concentration limit [15]. Substituting this approximation into
Eq. (13), we obtain, after simplifying,

Ĉn(s) = σ 2
n

n̄

n̄s + k+ξ̄ sŜrad(s|z0)
. (15)

We can find the correlation time by taking the s → 0 limit of
the correlation function in Laplace space [see Eq. (1)]. Using
that n̄ = k+ξ̄ /(k+ξ̄ + k−), the expression for the correlation
time of the promoter state becomes

τn = lim
s→0

1

σ 2
n

Ĉn(s) = τc

Srad(∞|z0)
. (16)

Here τc = (k+ξ̄ + k−)−1 is the correlation time of the
intrinsic switching dynamics, i.e., the correlation time of the
promoter occupancy when the promoter-TF association is
reaction-limited and the effect of diffusion can be neglected.
Note that in geometries for which the particle always returns
to the starting point, such as in 1D and 2D diffusion problems,
limt→∞ Srad(t |z0) → 0, such that the correlation time in
Eq. (16) diverges. In these geometries, the particle always
remains correlated with its starting point, and we are unable
to define a correlation time. However, in the living cell, TFs
do not only diffuse along the DNA, but also in the cytoplasm
where memory is lost, yielding a finite correlation time.

In Appendix B we show that Srad(∞|z0) can be related to
the intrinsic promoter-TF binding rate k+ and the promoter-TF
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diffusion-limited association rate kD . The latter is defined as
the rate at which TFs, starting from an equilibrium distribution,
arrive at (and instantly bind) the promoter. It is a complicated
function of the diffusion speed of the TF in the cytoplasm
and along the DNA, the rate of nonspecific TF-DNA binding,
the rate of TF-DNA dissociation, and the TF-DNA binding
cross-section. In terms of kD and k+, the escape probability
can be written as

Srad(∞|z0) = kD

k+ + kD

, (17)

which yields for the correlation time

τn = k+ + kD

(k+ξ̄ + k−)kD

. (18)

In Appendix B we also show that the effective association rate
kon = krad(t → ∞) and the effective dissociation rate koff are
given by the diffusion-limited rate kD and the intrinsic binding
and unbinding rates k+ and k−,

1

kon
= 1

k+
+ 1

kD
, (19)

1

koff
= 1

k−
+ Keq

kD
, (20)

where Keq ≡ k+/k− = kon/koff is the equilibrium constant.
The correlation time can be expressed in terms of these rates
as

τn = 1

konξ̄ + koff
. (21)

To summarize, once we have kD , we can find from the
expressions above the long-time limit of Srad(t |z0), the effective
association and dissociation rates kon and koff , as well as the
correlation time τn. In Sec. II F we show how we can obtain
the diffusion-limited promoter association rate kD for a TF
that can diffuse in the cytoplasm, slide along the DNA, and
bind nonspecifically to the DNA. The above analysis pertains,
however, also to other problems in which signaling molecules
have to bind a receptor molecule, possibly involving rounds
of 3D, 2D, or 1D diffusion; the different scenarios only yield
different expressions for the diffusion-limited arrival rate of
the signaling molecules at the receptor molecule, kD .

B. The sensing error

Using the expression for the variance in our estimate of n̄,
Eq. (1), in combination with the result of Eq. (16), we find the
general expression for the fractional error in our estimate of
the promoter occupancy(

δn

n̄

)2

= 2
σ 2

n

n̄2

τn

T
= 2

σ 2
n

n̄2

τc

Srad(∞|z0)

1

T
. (22)

We combine Eqs. (17) and (22) to find a general relation for
the estimation error in terms of rate constants:(

δn

n̄

)2

= 2n̄(1 − n̄)

[
1

n̄kDT ξ̄
+ 1 − n̄

k−T n̄2

]
(23)

= 2σ 2
n

T ξ̄ n̄

1

kon
. (24)

A cell has to estimate the average TF concentration on
the DNA, ξ̄ , from the average promoter occupancy n̄. The
fluctuations in the concentration estimate are related to the
fluctuations in the promoter-occupancy estimate via

δξ =
∣∣∣∣∂ξ

∂n

∣∣∣∣δn ⇒ δξ = ξ̄

n̄(1 − n̄)
δn, (25)

and therefore the error in the concentration inferred from the
promoter state becomes(

δξ

ξ̄

)2

= 2

n̄(1 − n̄)

(
n̄

kDT ξ̄
+ 1 − n̄

k−T

)
(26)

= 2

T ξ̄ (1 − n̄)

1

kon
. (27)

This expression has an intuitive interpretation: The fractional
error in the concentration estimate decreases with the number
of binding events during the integration time T , which is
given by the number of binding events if the promoter were
always free, ξ̄ kon T , times the fraction of time it is indeed
free, 1 − n̄.

To derive the error in the estimate of the concentration in the
cytoplasm, we can exploit a detailed-balance relation for the
TF concentration on the DNA, ξ̄ , and that in the cytoplasm,
c̄: kd ξ̄ = kac̄. Here kd is the rate at which a TF dissociates
from the DNA to which it was bound nonspecifically, and ka is
the rate at which it associates with the DNA (nonspecifically).
Using this relation, the expression for the fractional error in
the cytoplasmic concentration estimate becomes(

δc

c̄

)2

= 2

n̄(1 − n̄)

(
kd

ka

n̄

kDT c̄
+ 1 − n̄

k−T

)
(28)

= 2

T c̄(1 − n̄)

kd

ka

1

kon
. (29)

Last, we point out that the first term on the right-hand side of
Eqs. (23), (26), and (28) gives the contribution to the sensing
error from the finite speed of diffusion, while the second term
gives the contribution from the intrinsic promoter switching
dynamics.

C. The assumptions of our theory

Here we discuss the assumption, Eq. (7), and the approxi-
mation of our theory, Eq. (14), in more detail.

Equation (7) states that after each TF dissociation event,
the other TFs have the equilibrium distribution. By combining
Eqs. (1) and (13), it can be seen that this assumption implies
that the correlation time of the promoter is given by

τn = n̄Ŝrad(s = 0|eq) (30)

= n̄τoff, (31)

where τoff = ∫ ∞
0 Srad(t |eq)dt = Ŝrad(s = 0|eq) is the mean

unbound time of a free promoter surrounded by TFs obeying
the equilibrium distribution. The fact that the correlation time
τn depends on the mean off time τoff and the mean occupancy
n̄ = τon/(τon + τoff) (and thus the mean on time τon), but not
on the history of binding events, is a direct consequence of
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our assumption that after each TF dissociation event, the other
TFs have the equilibrium distribution.

The mathematical approximation, Eq. (14), implies that
τoff = Ŝrad(s = 0|eq) = 1/(konξ̄ ). This is the mean waiting
time for a Markov binding process with rate konξ̄ . While
approximation Eq. (14) does not assume that binding is
Markovian for all times, it does imply that in the relevant
long-time limit binding occurs with a constant rate, yielding
Srad(t |eq) = e−kon ξ̄ t .

Our theory predicts that the promoter correlation time τn is
that of a two-state Markov-state model, in which the switching
events are independent, the waiting times are uncorrelated
and exponentially distributed, and the promoter switches in a
memoryless fashion with rates konξ̄ and koff that are constant
in time. Therefore, τn = (konξ̄ + koff)−1. Below we see that in
the relevant long-time limit the promoter indeed switches in a
Markovian fashion between the TF bound and unbound states.

D. Optimizing sensing precision by minimizing the search time

We now address the question of whether the system can
maximize the sensing precision by optimizing the strength of
nonspecific DNA binding, characterized by the equilibrium
constant Kns

eq = ka/kd . It is important to realize that the TF
concentration in the cytoplasm, c̄, and the TF concentration
on the DNA, ξ̄ , are related via the detailed-balance relation
kac̄ = kd ξ̄ . This means that if we were to fix c̄, raising the DNA
affinity ka/kd would increase ξ̄ and hence the total number of
TFs in the system. This would trivially reduce the sensing
error. The interesting question is whether there is an optimal
DNA-binding strength that minimizes the sensing error for a
fixed total number of TFs, N .

Since the TFs are either in the cytoplasm with a volume L3,
or nonspecifically bound to the DNA with a length LD, this
yields a constraint on the number of TFs,

N = c̄L3 + ξ̄LD, (32)

= c̄
(
L3 + Kns

eqLD
)
, (33)

where we have used that ξ̄ = Kns
eq c̄. Combining the above

expression with Eq. (28) yields

δc

c̄
=

√
2

T (1 − n̄)

1

kon

1

N

(
LD + L3

Kns
eq

)
. (34)

Because N = c̄(L3 + Kns
eqLD), the expression on the right-

hand side also gives the fractional error in the estimate of the
total number of TFs, δN/N , and total TF concentration.

Interestingly, Eq. (34) shows that minimizing the sensor er-
ror at fixed promoter occupancy n̄ is equivalent to minimizing
the search time τs, which is the average time for a single TF to
find the promoter starting from an equilibrium distribution:

τs = N

ξ̄ kon
= 1

kon

(
LD + L3

Kns
eq

)
. (35)

Indeed, the fractional error in the estimate of the number of
TFs as a function of the search time is

δN

N
=

√
2τs

N (1 − n̄)T
. (36)

This is one of the central results of our paper. A system with a
minimal search time achieves a maximal rate of uncorrelated
arrivals of TFs at the promoter. It is clear from our result in
Eq. (34) that the sensing error and the gene expression noise
coming from promoter-state fluctuations in such a system are
minimal. The reason why minimizing the correlation time is
equivalent to minimizing the search time is precisely that the
promoter correlation time is that of a two-state Markov model,
which is determined by the effective association rate kon and
effective dissociation rate koff , as discussed in the previous
section.

E. Summary

Before we continue with our model of promoter-TF
binding, we would like to remind the reader that we have
made only one assumption up to this point, which is that after
promoter dissociation, the dissociated TF is surrounded by an
equilibrium solution of TFs [Eq. (7)], and one approximation,
namely that the Laplace transform of Srad(t |eq) is given by
Eq. (14). We have made no assumptions on the geometry of the
system yet, such that our expression for the correlation time
and sensing precision hold for any geometry. The above theory
applies to the binding of promoter-TF binding, involving 3D
diffusion and 1D diffusion, but also to the binding of signaling
molecules to proteins on the membrane, involving 3D and 2D
diffusion. To obtain the correlation time and sensing precision
in the different geometries, we need to find the long-time limit
of the survival probability Srad(∞|z0) or the diffusion-limited
on rate for a single particle, kD , in these different scenarios.
Only one of these quantities suffices as both are related via
Eq. (17). Deriving Srad(∞|z0) and kD for promoter-TF binding
is our main goal of the next section.

F. Model

We now derive the long-time limit of Srad(t |z0), Srad(∞|z0),
for the model shown in Fig. 1. The DNA near the promoter is
described as a straight cylinder. In the cytoplasm TFs diffuse
with diffusion constant D3; as mentioned above, the TFs could
either be activators or repressors of gene expression. A TF
molecule can (nonspecifically) bind DNA with an intrinsic
association rate ka when it is in contact with it; the TF-DNA
binding cross-section is σ . On the DNA, TFs can slide with
diffusion constant D1, dissociate into the cytoplasm with
the intrinsic dissociation rate kd , or, when they arrive at the
promoter, bind the promoter with the intrinsic association rate
k+. A promoter-bound TF can dissociate from the promoter
with rate k−. We note that this model is identical to that
of Tkačik and Bialek [11]. From Srad(∞|z0), we can obtain
kD , kon, koff , τn, and the sensing error via Eqs. (17)–(21)
and (28).

To calculate Srad(∞|z0), we write the full set of diffusion
equations governing the behavior of a single TF starting on the
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promoter site:

∂P1(z,t |z0)

∂t
= D1

∂2P1(z,t |z0)

∂2z
− kdP1(z,t |z0) − k+P1(z,t |z0)δ(z − z0) + kaP3(z,|r| = σ,t |z0,r0), (37)

∂P3(z,r,t |z0,r0)

∂t
= D3∇2P3(z,r,t |z0,r0) − [kaP3(z,r,t |z0,r0) − kdP1(z,t |z0)]

δ(|r| − σ )

2πσ
. (38)

Here P1(z,t |z0) is the Green’s function describing the 1D
sliding of the TF along the DNA, starting at the promoter
positioned at z0. Excursions in the cytoplasm are described by
P3(z,r,t |z0,r0), where r0 = 0, stating that the particle starts
on the DNA. We model the DNA as an infinitely long rod
along the z axis. Because the TF-DNA cross section is σ , the
probability exchange between the DNA and bulk happens at
a distance σ from the z axis, imposed by the δ function in
the second equation. In order to solve the equations, we first
Laplace transform them with respect to time,

s P̂1(z|z0) − δ(z − z0)

= D1
∂2P̂1(z|z0)

∂2z
− k+P̂1(z|z0)δ(z − z0)

−kdP̂1(z|z0) + kaP̂3(z,|r| = σ |z0,r0),

s P̂3(z,r|z0,r0)

= D3∇2P̂3(z,r|z0,r0)

−[kaP̂3(z,r|z0,r0) − kdP̂1(z|z0)]
δ(|r| − σ )

2πσ
,

FIG. 1. (Color online) Model of TFs that can bind the promoter
via 3D diffusion in the cytoplasm and 1D diffusion along the DNA.
The DNA near the promoter is modeled as a straight cylinder. In
the cytoplasm, the TFs diffuse with diffusion constant D3. A single
TF can associate with the DNA with the intrinsic association rate
ka when it is in contact with it. On the DNA, a TF can slide with
diffusion constant D1, dissociate into the cytoplasm with the intrinsic
dissociation rate kd , or, when it arrives at the promoter, bind the
promoter with rate k+. A promoter-bound TF can dissociate from
it with rate k−. The diffusion along the DNA is described with the
Green’s function P1(z,t |z0), and the diffusion inside the cytoplasm
is described with P3(z,r,t |z0,r0). To derive Srad(t |z0), we consider
a single TF that starts at contact with the promoter, denoted by z0.
Srad(t → ∞|z0), the diffusion-limited binding rate kD , the promoter
correlation time τn, and the sensing precision can be obtained via
Eqs. (17)–(21) and (28).

where we explicitly included the initial condition of one
particle placed in contact with the promoter site on the DNA
by the Dirac δ function. We continue by Fourier transforming
with respect to space:

s P̃1(q|z0) − 1 = −D1q
2P̃1(q|z0) − k+P̂1(z0|z0)

− kdP̃1(q|z0) + kaP̃3(q|z0,r0), (39)

s P̃3(q,k|z0,r0) = −D3(q2 + k2)P̃3(q,k|z0,r0)

− [kaP̃3(q|z0,r0) − kdP̃1(q|z0)]J0(kσ ).

(40)

Here q is the spatial Fourier variable conjugate to z, and k is
conjugate to r. J0(kσ ) is the zeroth order Bessel function of
the first kind. We take both the promoter and initial position
to be at the origin: z0 = 0. We want to solve these equations
for P̃1(q|z0), from which we can extract the required survival
probability Srad(∞|z0). Please observe that the cytoplasmic
density P̃3 in Eq. (40) is a function of q only (and not of k).
In order to solve for P̃1, we need an expression for P̃3(q|z0,r0)
in terms of P̃1. We start by solving the second equation for
P̃3(q,k|z0,r0),

P̃3(q,k|z0,r0) = kdP̃1(q|z0) − kaP̃3(q|z0,r0)

s + D3(q2 + k2)
J0(kσ ). (41)

Fourier backtransforming both sides of the equation in k, and
fixing r at σ by integrating over r using the δ function, yields:

P̃3(q|z0,r0) =
∫

dν
δ(r − σ )

2πr
P̃3(q,k|z0,r0)

= kdP̃1(q|z0) − kaP̃3(q|z0,r0)

2πD3
I0(χ )K0(χ ),

(42)

where dν = d2k
(2π)2 e−i k·r, I0 and K0 are the zeroth order modi-

fied Bessel functions of the first and second kinds, respectively,
and χ = σ

√
q2 + s

D3
. Solving the above for P̃3(q|z0,r0), and

substituting the result into Eq. (40), we obtain the solution for
P̃1(q|z0). Again, back-transforming this equation in q at the
position of the promoter, z0 = 0, we find

P̂1(z0,s|z0) =
∫

d q

2π

1 − k+P̂1(z0,s|z0)

s + D1q2 + kdF−1(q,s)
, (43)

where

F (q,s) = 1 + ka

2πD3
I0(χ )K0(χ ). (44)

Finally, we can solve Eq. (43) for P̂1(z0,s|z0) to obtain the
probability density at the promoter site in Laplace space. In
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the limit s → 0, our expression becomes

lim
s→0

P̂1(z0,s|z0) = I (α,β)

πD1/σ + k+ I (α,β)
, (45)

where

I (α,β) =
∫ ∞

0

dt

t2 + β[1 + α I0(t)K0(t)]−1
, (46)

α = ka

2πD3
, (47)

β = σ 2kd

D1
. (48)

To relate this result to the large time limit of the survival
probability Srad(∞|z0), we exploit that the flux into the
promoter at any given time is k+ P1(z0,t |z0) and that the total
flux which leaks away through the promoter is equal to the
integral over all times of the flux. Since the s → 0 limit in
the Laplace transformed function P̂1(z0,s|z0) is exactly this
integral, we find the survival probability via

lim
t→∞ Srad(t |z0) = 1 − k+

∫ ∞

0
P1(z0,t |z0)dt

= 1 − k+ lim
s→0

P̂1(z0,s|z0)

=
πD1

σI (α,β)
πD1

σI (α,β) + k+
. (49)

Comparing with Eq. (17), the diffusion-limited rate constant
is

kD = πD1

σI (α,β)
. (50)

Plugging this result into Eqs. (23) and (28), the fractional error
in the promoter-occupancy estimate is(

δn

n̄

)2

= 2n̄(1 − n̄)

{[
σI (α,β)

n̄πD1T ξ̄

]
+ 1 − n̄

k−T n̄2

}
, (51)

and that in the cytoplasmic concentration c̄ is(
δc

c̄

)2

= 2

n̄(1 − n̄)

[
kd

ka

n̄σ I (α,β)

πD1T c̄
+ 1 − n̄

k−T

]
. (52)

In the limit that DNA binding is reaction limited, ka �
D3, it is very unlikely that the TF will rebind with the DNA
after falling off, and the cytoplasm becomes effectively well
mixed. In this limit, α → 0 in the integral of Eq. (46), and we
can analytically solve it. The diffusion-limited on rate to the
promoter becomes in this limit

kD =
√

4D1kd =
√

2bkd, (53)

where b = √
2D1/kd is the average length of a single

excursion along the DNA. This equation has an intuitive
interpretation. On average, a TF binding the DNA within a
distance ∼b from the promoter site will find it. The rate at
which molecules leave the DNA from this region is ∼bkd ξ̄ .
Because our system obeys detailed balance, this rate of
departure equals the rate of arrival, kDξ̄ ; hence, kD ∼ bkd .

TABLE I. Typical values of the parameters used in our simula-
tions and figures. When different values for the parameters are used,
they are given in the text or figure captions.

Parameter Value Motivation

L 1 μm Bacterium size
LD 1 mm E. coli DNA length
TF0 10 [8]
D1 5 × 10−2 μm2/s [8]
D3 3 μm2/s [8]
ka 1 μm2/s [24]
kd 1000/s [8,24]
k+ Varies
k− 100/s in Figs. 2 and 3

Varies in Figs. 4 and 5 Such that n̄ = 0.5
σ 4 nm
T 100 s [25]

III. RESULTS

A. Comparing theory with simulations

To test our theory, we have performed simulations using
the enhanced Green’s function reaction dynamics (GFRD)
algorithm [18]. Recently, we have expanded the functionality
of GFRD to simulate diffusion and reactions on a plane
(2D) and along a cylinder (1D). Particles can exchange
between the bulk and planes or cylinders via association and
dissociation. Furthermore, specific binding sites can be added
to a cylinder to which a particle diffusing along the cylinder
can bind. Importantly, GFRD is an exact scheme for simulating
reaction-diffusion problems at the particle level, making it
ideal to test theoretical predictions.

Our simulation setup consists of a box with periodic
boundary conditions. To model the DNA, the box contains
a cylinder, which crosses the box. The promoter is modeled
as a specific binding site at the middle of the cylinder. The
box contains 10 TFs. Other details, such as parameter values,
are given in Table I. We record the trajectory of the promoter,
switching between the occupied and the unoccupied state, for
a period of 3000 s.

The key quantity of our theory is the zero-frequency limit
of the power spectrum, limω→0 Pn(ω) = 2σ 2

n τn, since the
uncertainty in the promoter-occupancy and the concentration
estimate can be directly obtained from this quantity and the
gain [see Eqs. (1) and (2)]. We therefore take the power
spectrum of the promoter signal, following the procedure
described in Ref. [3].

Figure 2 shows that the agreement between theory and
simulations is very good over essentially the full frequency
range, as observed previously for the binding of ligand to a
spherical receptor [15]. In the high-frequency regime, diffusion
hardly plays any role and the receptor dynamics is dominated
by the binding of TF molecules that are essentially in contact
with the promoter; consequently, the power spectrum is well
approximated by that of a binary switching process with
uncorrelated exponentially distributed waiting times with the
intrinsic correlation time τc = (k+ξ̄ + k−)−1 (dotted line). The
theory also accurately describes the intermediate-frequency
regime, in which a dissociated TF molecule manages to diffuse
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FIG. 2. (Color online) The power spectrum of the promoter state
Pn(ω), for n̄ = 0.14. The simulation results (black solid line) agree
well with the theoretical prediction [Eq. (15), gray solid line]. At
high frequencies, the effect of diffusion is negligible and the promoter
dynamics is that of a Markovian switching process with intrinsic rates
k+ξ̄ and k− (dotted line). At low frequencies, promoter switching can
again be described by a random telegraph process, but now with
effective rates konξ̄ and koff (dash-dotted line). The association rate
k+ = 0.16 mm/s and other parameters are as given in Table I. The
inset shows a power spectrum for a higher association rate k+ =
19 mm/s where n̄ = 0.67.

away from the promoter, but then rebinds it before another
TF molecule does. The low-frequency regime of the power
spectrum corresponds to the regime in which after promoter
dissociation the TF molecule diffuses into the bulk and, most
likely, another TF molecule from the bulk binds the promoter.
In this regime, the spectrum is well approximated by that
of a memoryless switching process with the same effective
correlation time as that of our theory, τn = (konξ̄ + koff)−1

(dash-dotted line).
Figure 3 shows the zero-frequency limit of the power

spectrum, Pn(ω → 0), as a function of the the average
occupancy n̄, where we change n̄ by varying the intrinsic
association rate k+. The theory matches simulation very well
up to n̄ ∼ 0.8. For higher values of n̄, it is harder to measure the
plateau value at the low-frequency limit of the power spectrum,
as shown in the inset of Fig. 2.

B. Why the theory is accurate: Time-scale separation

The key assumption of our theory is Eq. (7), which states
that after each TF-promoter dissociation event all other TFs
have the equilibrium distribution. This assumption breaks
down when two conditions are met: (a) the rebinding of a
TF to the promoter is preempted by the binding of a second
TF from the bulk; and (b) the second TF dissociates from the
promoter before the first has diffused in the bulk [15]. We now
consider both conditions.

In E. coli, the time required for a lac repressor molecule to
bind the promoter from the bulk is on the order of seconds to
minutes [2]. The time a dissociated repressor molecule spends
near the promoter is on the order of the sliding time, which
is 1–100 ms [8,26]. This time-scale separation means that the

0
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li
m

ω
→
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n
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)
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]
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Eq. 16
Tkačik

Simulation

FIG. 3. (Color online) The low-frequency limit of the power
spectrum given by Eq. (1) as a function of the average occupancy
n̄ (solid line) is in excellent agreement with simulation results. The
dashed line shows the low-frequency limit as derived in Ref. [11],
which is symmetric in n̄. n̄ is varied by varying k+. Other parameters
are given in Table I.

likelihood that a TF from the bulk preempts the rebinding of
a dissociated TF to the promoter is negligible; the probability
of rebinding interference is thus very low and a dissociated
TF rebinds the promoter before escaping into the bulk as often
as when it would be the only TF in the system. This means
that condition (a) is not satisfied, and hence the assumption of
Eq. (7) holds.

Even if there is occasionally rebinding interference, then
Eq. (7) still probably holds because condition (b) is not met.
To determine whether a TF dissociates from the promoter
before the previously dissociated TF has escaped into the
bulk, we compare k−1

− , the time a TF is specifically bound
to the promoter, to the time a TF resides on the DNA
(bound nonspecifically) before escaping into the bulk. We can
estimate the intrinsic dissociation time k− from the specific
dissociation constant Ks

D = kdk−/(k+ka) and from kd , k+,
and ka . The microscopic nonspecific binding rate for the lac
repressor has been estimated to be ki ≈ 3 × 105 M−1 s−1 [24].
This yields ka = ki/d ≈ 1 μm2/s, where d = 0.3 nm is the
distance between DNA base pairs. The specific promoter
association rate k+ can be estimated from k+ = γD1/d,
which with γ = 0.1 [2] and the 1D diffusion constant D1 =
0.05 μm2/s [8] yields k+ ≈ 10 μm/s. The DNA dissociation
rate for the lac repressor is kd ≈ 10–1000/s [8,26]. The
dissociation constant for repressor binding to the operator
O1 is in the nM regime [27]. Taken together, these numbers
imply that the time the repressor is bound for a time k−1

− is at
least a few seconds. This is consistent with the experimental
observation of Hammar et al. that individual operator-bound
LacI molecules appear as diffraction-limited spots on a 4-s
time scale [2]. This is longer than our estimate for how
long a TF which has dissociated from the promoter resides
near the promoter before escaping into the bulk, which is
1–100 ms [8,26]. We thus conclude that also condition (b) is
not satisfied; even if rebindings occur and condition (a) is met,
the central assumption of our theory, Eq. (7), will thus hold.
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The principal reason why the key assumption Eq. (7) holds,
is thus that the time TFs spend near the promoter is very short,
both on the time scale at which TFs arrive at the promoter from
the bulk and on the time scale on which a TF is bound to the
promoter.

That TFs spend little time near the promoter as compared
to the time required to bind the promoter from the bulk is also
the reason why the mathematical approximation, Eq. (14), is
very accurate. In this approximation, Srad(t |eq) = e−ξ̄ kont at
long times. The range over which Srad(t |eq) = e−ξ̄

∫ t

0 dt ′krad(t ′)

deviates from this long-time limit is determined by how rapidly
Srad(t |z0) decays [because that determines how fast krad(t)
reaches its long-time limit kon; see Eq. (10)]. This decay is
dominated by kd , which is at least an order of magnitude
faster than the long-time decay governed by konξ̄ . Hence, after
a promoter dissociation event, the dissociated TF essentially
instantly rebinds the promoter or instantly escapes into the
bulk, and then (most likely) another TF binds the promoter in
a memoryless fashion, with a constant rate konξ̄ .

C. Comparison with Tkačik and Bialek

The sensing precision was derived earlier by Tkačik and
Bialek, but via a different method [11]. They start with
the differential equations governing the fluctuations in the
promoter state δn and relate these to changes in the free energy
due to the binding and unbinding of TFs. The fluctuations in
the occupancy are then related to the power spectrum via the
fluctuation-dissipation theorem.

Their final result for the noise in the promoter state is
(Eq. 68 in Ref. [11])

(
δn

n̄

)2

= 2n̄(1 − n̄)

[
(1 − n̄)

σI (α,β)

n̄π2D1T ξ̄
+ 1 − n̄

k−T n̄2

]
, (54)

where I (α,β) is given by

I (α,β) =
∫ ∞

0

dt

t2 + β[1 + α log(1 + t−2)]−1
, (55)

and α = ka/(4πD3) and β = kdσ
2/(πD1).

The most important difference is the extra factor (1 − n̄) in
the diffusion term, which makes Pn(ω → 0) symmetric around
n̄ = 0.5, as is shown in Fig. 3 (dotted line). Our simulation
results in Fig. 3 show, however, that the maximum is reached
when the promoter is occupied for more than half of the time.

Furthermore, in contrast to our result in Eq. (52), the
precision of the TF concentration estimate (Eq. 71 in Ref. [11])
is independent of the promoter occupancy n̄. However, since
incoming TFs cannot bind with the promoter when it is already
occupied, it becomes harder to perceive the TF concentration
as the promoter occupancy increases. In other words, the
number of independent “measurements” the promoter can
make of the TF concentration during its integration time T ,
decreases with increasing occupancy. As a result, one would
expect the noise to diverge as n̄ → 1. Kaizu et al. [15] obtained
precisely the same discrepancy for a spherical receptor. The
extra (1 − n̄) factor in Eq. (54) is most likely the result of a
linearization [11,15].

D. A coarse-grained model

In previous work, we have shown that the effect of TF
diffusion in a spatially resolved model of promoter-TF binding
can be captured in a well-stirred model by renormalizing
the association and dissociation rates [3,15]. The principal
observation is that a TF molecule near the promoter either
rapidly binds the promoter or rapidly escapes into the bulk,
as discussed in Sec. III B. As a consequence, the probability
that the binding of this molecule to the promoter is preempted
by the binding of another ligand molecule is negligible: A TF
molecule near the promoter binds the promoter or escapes into
the bulk with splitting probabilities that are the same as when
it would be the only TF molecule in the system. There is no
(re)binding interference. This makes it possible to integrate
out the rapid rebindings and the unsuccessful bulk arrivals
and reduce the complicated many-body reaction-diffusion
problem to a pair problem in which ligand molecules interact
with the receptor in a memoryless fashion, with renormalized
association and dissociation rates. However, in these previous
studies, the receptor (the promoter) was modeled as a sphere.
While in Ref. [3] we predicted that rebindings could also be
integrated out in a more detailed model of gene expression in
which TFs do not only diffuse in the cytoplasm but also slide
along the DNA, this question has so far not been answered.
Here, we show that the answer is positive.

When the probability of rebinding interference is negligible,
the effective dissociation rate koff is given by [3,15]

koff = k−
1 + Nreb

. (56)

Here Nreb is the average number of rebindings, which is defined
as the average number of rounds of rebinding and dissociation
before a dissociated TF escapes into the bulk. It is given by

Nreb =
∞∑

n=1

n(preb)npesc = 1 − pesc

pesc
, (57)

where preb and pesc = 1 − preb are the splitting probabilities
of a TF at contact for either rebinding the promoter or escaping
into the bulk. The probability of a TF escaping is given by the
t → ∞ limit of the survival probability of a particle starting
at contact

pesc = lim
t→∞ Srad(t |z0) = Srad(∞|z0). (58)

Combining the above expressions, we find that koff is precisely
the effective dissociation rate of our theory, Eq. (20).

When the probability of rebinding interference is negligible,
the effective association rate kon is the rate at which a TF
arrives from the bulk at the promoter, kD , times the probability
1 − Srad(∞|z0) = k+/(k+ + kD) = preb [see Eq. (17)] that it
subsequently binds [15]:

kon = k+kD

k+ + kD

. (59)

This indeed is the effective association rate of our theory,
Eq. (19). Again we see that the complicated dynamics of
3D diffusion, 1D sliding, and exchange between cytoplasm
and DNA, is contained in the arrival rate kD and the escape
probability Srad(∞|z0), which are related via Eq. (17).
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FIG. 4. (Color online) The sensing error [Eq. (34)] as a function
of the DNA dissociation rate kd . The lines show the sensing error
for different values of the intrinsic association rate of the promoter
k+, which are given in the legend and have units of m/s. The noise
has an optimum when the search time of a TF for its target is the
lowest. As we lower k+, the sensing error increases because the TF
has to arrive multiple times at the promoter before binding to it, which
decreases the effective on rate. We set the integration time T , which
is usually the lifetime of the expressed protein, to the lower bound of
T = 100 s [25]. As kd is varied, k− is tuned such that n̄ = 0.5. Other
parameters are fixed at typical biological values, given in Table I.

This picture yields the simple two-state model:

dn(t)

dt
= konξ̄ [1 − n(t)] − koffn(t). (60)

In this model, the promoter switches with exponentially
distributed waiting times between the on and the off states,
with a correlation time which is precisely that of our theory,
Eq. (21). As Fig. 3 shows, even in the presence of 1D diffusion
along the DNA, this two-state model accurately describes the
zero-frequency limit of the power spectrum, which determines
the promoter correlation time and hence the sensing precision.
The main reason why sliding does not change our earlier result
obtained for a spherical promoter [3] is that the nonspecific
residence time on the DNA, <50 ms [8,26], is small compared
to the time scale of seconds to minutes on which TFs bind the
promoter from the bulk [2]; see Sec. III B.

E. Optimizing the sensing precision

We now minimize the sensing error keeping the average
promoter occupancy constant at n̄ = 0.5. The volume of the
box is approximately that of a bacterium such that, L = 1 μm,
and for the length of the DNA we take the typical value LD =
1 mm.

In Fig. 4 we plot the sensing error as a function of the DNA
dissociation rate kd . Different lines correspond to different
values of the intrinsic promoter association rate k+. In these
calculations, we fix D3, D1, and ka and adjust k− such that
n̄ = 0.5. It is seen that there is an optimal dissociation rate
kd and hence an optimal affinity Kns

eq = ka/kd that minimizes
the sensing error. Tkačik and Bialek did not find an optimum,
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FIG. 5. (Color online) The fraction of time a TF spends on the
DNA as a function of the intrinsic association rate to the promoter
k+. The DNA dissociation rate kd is chosen such that it minimizes the
search time (minimum in Fig. 4). In a well-mixed cytoplasm (top solid
line), TFs spends the longest time on the DNA to minimize the search
time, with a minimum of 50% as the search becomes diffusion limited
at high rates of k+. For finite cytoplasmic diffusion constants (dotted
lines, values for D3 are given in the legend with unit μm2/s), the
DNA occupancy is always lower because the spatial correlations of
the TF with the DNA after dissociating from it require a higher DNA
dissociation rate kd for an optimal search speed. Also note that in the
diffusion-limited regime (high k+), the curves converge to a DNA
occupancy lower than 50%. Parameters: The promoter dissociation
rate k− is always tuned such that n̄ = 0.5. Other parameters are fixed
at values given in Table I.

because they did not constrain the total number of TFs to be
constant [11].

Finding the promoter involves rounds of 1D diffusion along
the DNA and 3D diffusion in the cytoplasm [1]. The optimal
search time is due to a trade-off between how long each
round takes and the number of rounds M needed to find the
promoter [1,7,23]. The total search time is τs = M(τ1D + τ3D),
where τ3D is the time a TF spends in the cytoplasm during
one round and τ1D is the time it spends on the DNA [7,23].
The latter is given by τ1D = 1/kd . Ignoring correlations
between the point of DNA dissociation and subsequent DNA
association, M ∼ LD/b, where b = √

2D1/kd is the average
length of a single excursion along the DNA. Hence, as kd is
increased, τ1D decreases as 1/kd , while M increases as

√
kd .

This interplay leads to a minimum in the search time and hence
the sensing error.

Slutsky and Mirny [23] predicted that for an optimal search
time, the TFs spend 50% of their time nonspecifically bound
to the DNA and 50% in the cytoplasm. In their model, they
assumed the cytoplasm to be well mixed (D3 → ∞ in our
model) and that the search process is diffusion limited, kon →
kD . Recent experiments [2], however, have shown that for
some TFs the search process is not diffusion limited and that
therefore the intrinsic association rate to the promoter k+ will
be similar or smaller than kD . Furthermore, they show that a
TF spends around 90% of its time nonspecifically bound to
the DNA, much larger than predicted. Figure 5 supports the
proposition of [2] that these observations are related.
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Figure 5 shows the fraction of time a TF spends on the
DNA as a function of the association rate to the promoter
k+. It is reasonable to assume that transcriptional regulation
operates in a parameter regime where the sensing error is low.
Therefore, for each point in the figure, we chose kd such that
the search time is minimal (minimum in Fig. 4). At high values
of k+, promoter binding becomes diffusion limited and thus
independent of k+. For lower values of k+, however, the rate of
promoter binding becomes increasingly limited by k+. In this
regime, the optimal fraction of time a TF spends on the DNA
increases with decreasing k+, rising to values above 50%. The
reason is that, when k+ is low, the TF needs to slide multiple
times over the promoter before it binds, and this requires a more
exhaustive search on the DNA for a minimal search time. This
redundancy is enhanced by lowering kd , which increases the
DNA occupancy. Our results thus suggest that TFs spend more
than 50% of their time on the DNA, because that minimizes
the search time when promoter association is reaction limited.

Note that only in the case of a well-mixed cytoplasm
[D3 → ∞, solid black line in Fig. 5, Eq. (53)], the time a
TF spends on the DNA converges to 50%, as predicted by
Slutsky and Mirny. For a finite cytoplasmic diffusion constant
D3, the fraction of time a TF is nonspecifically bound to the
DNA is always lower than that in the well-mixed case. As
D3 decreases, the probability that after DNA dissociation a
TF will rapidly rebind the DNA instead of diffusing into the
bulk increases. This increases the average number of times
M ′ a TF rapidly rebinds the DNA before it escapes into the
bulk. Because a TF tends to rebind the DNA close to where
it dissociated from it, rebindings increase the effective length
beff of a DNA scan: beff = √

M ′b. To counter the effect of
rebinding (increasing M ′) and to keep the effective scan length
beff close to its optimal value, the rate of DNA dissociation kd

has to be increased, so that b is decreased. This lowers the
fraction of time a TF spends on the DNA, as seen in Fig. 5.

F. Connection with promoter noise in gene expression

The fundamental bound on the precision of sensing TF
concentrations puts a lower bound on the contribution to
the noise in gene expression that comes from promoter-state
fluctuations. Our observation that even in the presence of 3D
diffusion and 1D sliding, the promoter switches to an excellent
approximation in a Markovian fashion and makes it possible to
quantify this “extrinsic” contribution. Below we describe the
case of a gene that is regulated by an activator, but, as we
indicate, our analysis also applies to the scenario in which the
gene is regulated by a repressor.

Consider a gene which is expressed with a rate β when
a TF (an activator) is bound to its promoter. The expressed
protein decays with a rate μ. Our observation above shows that
fluctuations in the promoter state n(t) decay, to an excellent
approximation, exponentially with a rate λ, corresponding to
a promoter correlation time τn = λ−1. The noise in the protein
copy number X is then given by [28,29]

σ 2
X = 〈X〉 +

(
β

μ

)2
μ

μ + λ
σ 2

n , (61)

≡ σ 2
in + σ 2

ex. (62)

Here σ 2
in = 〈X〉 = (β/μ)〈n〉 is the intrinsic noise in X, which

would be the noise in X if the state of the promoter were
constant; in the case of a repressor, 〈n〉 would have to be
replaced by (1 − 〈n〉). The second term σ 2

ex describes the
contribution to σ 2

X from the fluctuations in the promoter state n;
it has the same expression for activators and repressors. These
fluctuations are amplified by the gain g = |∂〈X〉/∂〈n〉| =
β/μ, but integrated with an integration time given by the
lifetime of the protein, T = μ−1 [28]. When T � τn, we can
rewrite the above expression as

σ 2
X = 〈X〉 +

(
β

μ

)2
τnσ

2
n

T
. (63)

This expression highlights the idea that uncertainty in the
estimate of n̄, δn = σnT

, generates fluctuations in the ex-
pression level X, which are amplified by the gain g: σ 2

ex =
g2σ 2

nT
/2. In fact, gene expression can be interpreted as a

sampling protocol, in which the history of the promoter state
n(t) is stored in X(t) [30]. In this view, the copies of X

constitute samples of n(t). This perspective reveals that the
factor 2 arises from the fact that the samples are degraded
stochastically, which effectively increases the spacing between
them [30].

IV. DISCUSSION

We have rederived the fundamental bound on the precision
of transcriptional regulation. To this end, we have developed
a theory which is based on the model of promoter-TF binding
put forward by Tkačik and Bialek [11]. In this model, the
DNA near the promoter is described as a straight cylinder.
This seems reasonable since the sliding distance as measured
experimentally, ≈50 bp [2], is less than the persistence length
of the DNA, which is on the order of 150 bp. A TF that
dissociates from the DNA goes into the bulk where it moves
by normal diffusion at all length scales. Here we thus ignore
the interplay between 3D diffusion, 1D sliding, hopping, and
intersegmental transfer [22]. However, at length scales larger
than the sliding distance and the mesh length of the DNA
polymer, the motion is essentially 3D diffusion. At these scales,
TFs move with an effective diffusion constant, which is the
result of diffusion in the cytoplasm, hopping, intersegmental
transfer, and sliding along the DNA [2,5–10,22,23]. The
diffusion constant D3 in our model is indeed this diffusion
constant.

It should be realized that even in our relatively sim-
ple model, promoter-TF binding is, in general, a compli-
cated many-body non-Markovian problem, because rounds
of promoter-TF association and dissociation can build up
spatiotemporal correlations between the positions of the
TF molecules [14,15]. Consequently, a free promoter is, in
general, not surrounded by the equilibrium distribution of TF
molecules, and the probability that a free promoter binds a TF
will depend on the history of binding events. This impedes an
exact solution of the problem.

However, following our earlier work [15], we can solve the
problem almost analytically by making one assumption and
one mathematical approximation. The assumption, Eq. (7), is
that after each TF dissociation event, the other TFs have the
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equilibrium distribution. As a result, the probability that a free
promoter binds a TF at a later time t , becomes independent
of the history of binding events. The approximation is that
the Laplace transform of Srad(t |eq) is given by Eq. (14).
The assumption and approximation together mean that in our
theory, the correlation time of the promoter is that of a random
telegraph process, where the promoter switches between the
TF bound and unbound states with rates that are constant in
time.

We have tested our theory by performing particle-based
simulations of the same model that underlies our theory.
Because the GFRD algorithm is exact and the model is the
same, all deviations between theory and simulations must be
due to the assumption and/or approximation in the theory. To
test the theory, we have computed the zero-frequency limit of
the power spectrum, Pn(ω → 0) = 2σ 2

n τn, which is essentially
a test of the correlation time τn, because the variance σ 2

n of
a binary switch is given by the mean n̄, σ 2

n = n̄(1 − n̄). We
find that Pn(ω → 0) and hence the promoter correlation time
is accurately predicted by our theory.

The success of our theory is rooted in the fact that the TF
concentrations are typically low, the promoter-TF dissociation
constant is (correspondingly) low, and the sliding time is short.
As a result, the time a TF spends near the promoter is short
on the time scale on which a TF is specifically bound to the
promoter and on the time scale on which new TFs arrive from
the bulk (see Sec. III B). A dissociated TF either rapidly rebinds
the promoter, or rapidly escapes into the bulk. This means that
the rebinding of a dissociated TF is typically not preempted by
the binding of another TF from the bulk—there is no rebinding
interference—which means that the central assumption of our
theory, Eq. (7), holds. Because TFs spend little time near
the promoter and because their concentration is low, also the
mathematical approximation, Eq. (14), is very accurate.

Because TFs spend only little time near the promoter,
promoter rebindings and unsuccessful bulk arrivals can be in-
tegrated out, and the complicated many-body non-Markovian
problem can be reduced to a Markovian pair problem, in
which TFs associate with and dissociate from the promoter
with effective rates that are constant in time. The complicated
dynamics of 3D diffusion and 1D sliding can thus be captured
in a well-stirred model by renormalizing the association and
dissociation rates. The off rate koff is simply the intrinsic
dissociation rate k− divided by the average number of bindings
before escape [Eq. (56)] and the on rate kon is the bulk arrival
rate kD times the binding probability. This probability is the
inverse of the number of bindings [Eq. (59)]. This model can
then be simulated using the Gillespie algorithm [3,15,21].
While our model does not take into account crowding, we
expect that the same approach could be used in this case: The
key observation is that inside the crowded environment of the
cell, the time a TF spends near the promoter on the DNA is
short compared to the time it is bound to the promoter and
the time it takes to arrive at the promoter from the bulk [2].
This makes it possible to study the effect of crowding on the
dynamics of gene networks using a well-stirred model [31].

An important consequence of the fact that the promoter
dynamics can, to an excellent approximation, be described
by a two-state Markov model is that the promoter correlation
time is determined by the effective association and dissociation

rates. This means that minimizing the sensing error, or the
extrinsic noise in gene expression, at fixed promoter occupancy
corresponds to minimizing the search time; see Eq. (36).

As others have found before [22,23], we find that there
exists an optimal sliding time that minimizes the search
time and hence the sensing error. Moreover, as found by
Hammar et al. [2], the optimal sliding distance depends on
the probability that a TF which is contact with the promoter,
binds the promoter instead of sliding over it or dissociating
from the DNA into the cytoplasm. In addition, the lower the
cytoplasmic diffusion constant, the more likely will the TF
rebind the DNA after a dissociation event, which increases
the effective sliding distance. To counteract this, the intrinsic
DNA dissociation rate kd should be increased to minimize the
search time.

Finally, our model is relatively simple. For example, in
our model, the intrinsic DNA association and dissociation
rates ka and kd can be changed without changing the bulk
diffusion constant D3, but in reality the effective diffusion
constant D3 depends on ka and kd [2,10,22]. Our results
indicate, however, that also in more realistic models of the
TF dynamics [2,10,22], the promoter switches between the
bound and unbound states with effective rates that are constant
in time. Also in these more complex models, minimizing
the sensing error will correspond to minimizing the search
time. This means that the huge body of literature of how
TFs find their target site on the DNA [2,5–10,22,23] can be
transposed to determine the fundamental bound to the accuracy
of transcriptional regulation. Specifically, recent experiments
indicate that sliding speeds up the search process of the lac
repressor by a factor 4, compared to a hypothetical scenario
where the repressor could bind directly to the operator [2].
Equation (36) predicts that this decreases the fractional error
in the concentration estimate by a factor of 2.
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APPENDIX A: DERIVING THE SURVIVAL PROBABILITY
OF THE PROMOTER IN EQUILIBRIUM

Here we derive the expression [Eq. (8)] for the survival
probability of a single promoter site in an equilibrated system
of TFs on the DNA and in the cytoplasm. Our system is
described by two coupled Green’s functions; P1(z,t |eq) giving
the probability density on the DNA and P3(z,r,t |eq) the
probability density in the bulk. These functions define a single
particle problem, where the particle is initially uniformly
distributed in space. The system is finite and cylindrically
shaped with a radius R and height L. Inside is a rod (the DNA),
lying along the whole length of the central axis of the cylinder.
By definition, P1(z,t |eq) and P3(z,r,t |eq) are dimensionless
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quantities with the following normalization:

1

L

∫ L/2

−L/2
dzP1(z,t |eq)

∣∣∣∣
t=0

= 1,

(A1)
2π

V

∫ L/2

−L/2
dz

∫ R

σ

rdrP3(z,r,t |eq)

∣∣∣∣
t=0

= 1.

This normalization, however, does not take into account the
time the particle spends on the DNA and in the cytoplasm.
To set the proper distribution, we introduce the dimensionless
factors P̄1 and P̄3 which give the probability of finding the
particle either on the DNA or in the cytoplasm, respec-
tively. These probabilities have to satisfy a detailed-balance
relation,

1

L
P̄1 kd = 1

V
P̄3 ka, (A2)

and have to normalize our system at t = 0,

P̄1

L

∫ L/2

−L/2
dzP1(z,0|eq) + P̄3

V

∫
dνP3(z,r,0|eq) = 1. (A3)

Here
∫

dν = 2π
∫ L/2
−L/2 dz

∫ R

σ
rdr .

We can relate this single particle problem to the survival
probability of the promoter, surrounded by an equilibrated
solution of N particles, via [32]

SN (t |eq)

=
[

1

V ′

∫
V ′

drP (r,t |eq)

]N

,

=
[
P̄1

L

∫ L/2

−L/2
dzP1(z,t |eq) + P̄3

V

∫
dνP3(z,r,t |eq)

]N

,

(A4)

where V ′ is the total volume of the system where particles
diffuse, including the DNA (1D) and the cytoplasm (3D). Thus,
the promoter survives, as long as none of the TFs in the system
have reacted. Differentiating with respect to time gives

1

NSN−1(t |eq)

dSN (t |eq)

dt

= P̄1

L

∫ L/2

−L/2
dz

dP1(z,t |eq)

dt
+ P̄3

V

∫
dν

dP3(z,r,t |eq)

dt
.

(A5)

Since particles only leave the system via the promoter site
positioned at z0, we can rewrite the time derivative of the
single particle problem as the radiative influx at the promoter
site,

1

N

dSrad,N (t |eq)

dt
= − P̄1

L
k+P1(z0,t |eq)SN−1(t |eq). (A6)

Taking the limit L,N,R → ∞ and using that P̄1
N
L

= ξ̄ we
arrive at the desired result,

dSrad(t |eq)

dt
= −ξ̄ krad(t)S (t |eq), (A7)

where ξ̄ is the concentration on the DNA when the system is
in equilibrium.

APPENDIX B: RELATING THE SINGLE PARTICLE
SURVIVAL PROBABILITY TO REACTION RATES

We can relate the Laplace transformed survival probability
of a promoter with only a single TF at contact, Ŝrad(s|z0), to
the intrinsic association rate of the promoter k+, which is the
rate at which a TF binds the promoter given that it is in contact
with it, and the (Laplace transformed) diffusion-limited on rate
k̂abs(s). The rate kabs(t) is defined as the rate at which TFs arrive
at the promoter, starting from an equilibrium distribution. This
rate depends on the diffusion constant in the cytoplasm, D3,
the diffusion constant for sliding along the DNA, D1, the rate
of binding to the DNA, ka , and the rate of unbinding from the
DNA into the cytoplasm, kd , and the DNA cross section σ .
The quantities k+ and kabs(t) do not only determine Srad(t |z0),
but also the effective rate krad(t) at which TFs arrive at the
promoter and bind it.

To derive the relationship between krad(t), Srad(t |z0), k+,
and kabs(t), we exploit the following relationships (see [14]
and [15]). First, we note that the time-dependent rate constant
krad(t) can be related to the time-dependent rate constant kabs(t)
via

krad(t) =
∫ t

0
dt ′Rrad(t − t ′|z0)kabs(t

′), (B1)

where Rrad(t |z0) is the rate at which a TF binds the promoter at
time t given that it started at contact with it. This expression can
be understood by noting that kabs(t ′)/V is the probability per
unit amount of time that promoter and TF come in contact for
the first time at time t ′, while Rrad((t − t ′)|z0) is the probability
that promoter and TF which start at contact at time t ′ associate
a time t − t ′ later. In Laplace space, the above expression reads

k̂rad(s) = R̂rad(s|z0)k̂abs(s). (B2)

Since Rrad(t |z0) = −∂Srad(t |z0)/∂t , R̂rad(s|z0) is also given by

R̂rad(s|z0) = 1 − sŜrad(s|z0). (B3)

We also know that krad(t) = k+Srad(t |z0) [14], which in
Laplace space becomes

k̂rad(s) = k+Ŝrad(s|z0). (B4)

Combining this with Eqs. (B2) and (B3) yields

k̂rad(s) = k+k̂abs(s)

k+ + sk̂abs(s)
(B5)

and

Ŝrad(s|z0) = k̂abs(s)

k+ + sk̂abs(s)
. (B6)

The long-time limit of kabs(t) is kD ≡ kabs(t → ∞) =
lims→0 sk̂abs(s). This is the rate at which TFs, which start
from an equilibrium distribution, arrive at the promoter. As
mentioned above, this rate depends on the diffusion constants
in the cytoplasm and along the DNA, D3 and D1, respectively,
and the rates ka and kd of (nonspecific) binding to the DNA.
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The long-time limit of krad(t) is kon ≡ krad(t → ∞) =
lims→0 sk̂rad(s). Using Eq. (B5), this yields

kon = k+kD

k+ + kD

. (B7)

This is the rate at which TFs, which start from the equilibrium
distribution, bind the promoter in the long-time limit. It takes
into account that not at all arrivals at the promoter lead to
promoter binding.

The long-time limit of Srad(t |z0) is Srad(t → ∞|z0) =
lims→0 sŜrad(t |z0), which, using Eq. (B6), is

Srad(∞|z0) = kD

k+ + kD

. (B8)

The equilibrium constant is Keq ≡ k+/k− = kon/koff . With
Eq. (B7) this yields the following expressions for the effective

association and dissociation rates:

1

kon
= 1

k+
+ 1

kD

, (B9)

1

koff
= 1

k−
+ Keq

kD

. (B10)

Finally, the correlation time is given by τn = τc/Srad(∞|z0)
[Eq. (20) of the main text]; here, τc = (k+ξ̄ + k−)−1, with ξ̄ the
concentration of TFs on the DNA, is the intrinsic correlation
time if diffusion were infinitely fast. This yields

τn = k+ + kD

(k+ξ̄ + k−)kD

, (B11)

= 1

konξ̄ + koff
. (B12)
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