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ABSTRACT  
 

Single-molecule tracking of membrane proteins by fluorescence microscopy is a promising method to 
investigate dynamic processes in live cells. Translating the trajectories of proteins to biological 
implications, such as protein interactions, requires the classification of protein motion within the 
trajectories. Spatial information of protein motion may reveal where the protein interacts with cellular 
structures, since binding of proteins to such structures often alters their diffusion speed. For dynamic 
diffusion systems, we provide an analytical framework to determine in which diffusion state a 
molecule is residing during the course of its trajectory. We compare different methods for the 
quantification of motion to utilize within this framework for the classification of two diffusion states 
(two populations with different diffusion speed). We found that a gyration quantification method and a 
Bayesian statistics based method are the most accurate in diffusion state classification for realistic 
experimentally obtained datasets, of which the gyration method is much less computationally 
demanding. After classification of the diffusion, the lifetime of the states can be determined, and 
images of the diffusion states can be reconstructed at high resolution. Simulations validate these 
applications. We apply the classification and its applications to experimental data to demonstrate the 
potential of this approach to obtain further insights into the dynamics of cell membrane proteins.  
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INTRODUCTION 
It remains an elusive dream to be able to follow a protein and its interactions as the protein travels 
through the cell during its lifespan. Nevertheless, single molecule tracking by fluorescence microscopy 
allows one to follow a protein in a living cell at high resolution for a short period of time and to record 
its trajectory (1–6). Tracking of proteins in live cells is a unique approach to obtain details on 
dynamical protein association and dissociation kinetics in a spatiotemporal manner, and complements 
other fluorescence microscopy techniques (7–9). Single molecule tracking techniques have given us 
valuable insight into the dynamics and biological functions of proteins (6, 10–12) and the organization 
of the plasma membrane (13–16). Despite methodological advances and the insight obtained by 
current analysis methods, there remains a need to further develop analysis tools that can translate 
experimental data into biological insights. For example, spatiotemporal information on the diffusion of 
membrane proteins would contribute to a biophysical understanding of the organization of these 
protein complexes. 

Trajectories of proteins obtained by tracking techniques contain information about the interaction and 
functional state of the protein. For example, the phosphorylation state of many membrane bound 
tyrosine kinase receptors is related to the formation of dimers or higher order aggregates (17, 18). 
Clearly, proteins associated with these aggregates are expected to show lower mobility than free 
monomeric receptor molecules, which is reflected in their trajectories. Additionally, proteins often 
transiently interact with other molecules in nanoscale compartmentalization structures in the plasma 
membrane or with cytoskeletal structures, both resulting in transient slowed diffusion or confinement 
(4–6, 19–23). Not only do interactions with molecules alter protein mobility, but the mobility of a 
protein also affects the possibility of interactions with other molecules (24–26). A detailed knowledge 
of the interactions of proteins and their dynamics is therefore important to understand the underlying 
signal transduction processes and to model the cellular signal regulatory system (24–28). 

Translating the trajectories of proteins to biological events, such as protein interactions, requires the 
classification of protein motion within the trajectories. Protein species transiently exhibit different 
types of motion. The motion of membrane proteins can often be described by two dynamic 
populations of pure Brownian diffusion (6, 19, 23), which we refer to as the diffusion states (Fig. 1A). 
It is however nontrivial to accurately determine in which diffusion state the protein is residing during 
the measured trajectory. Several issues hamper faultless state classification. Proteins exhibiting 
different diffusion states often have overlapping distributions of step sizes (Fig. 1B). Furthermore, the 
localization of proteins has a limited accuracy, and the switching between the diffusion states is a 
stochastic process. Diffusion state classification methods are needed to determine when, and in what 
regions, the protein exhibited distinct diffusion behavior. These regions might point towards a role of 
certain cellular structures in the function of the studied protein species. Also the lifetimes of these 
diffusion states (the inverse kinetic rate) can be directly derived from the diffusion state durations, and 
are useful parameters to comprehend the role of the studied protein in complexes associated with 
cellular regulatory systems. The combined insight may eventually reveal the spatiotemporal design 
principles of cell decision-making (27).  

A widely used analysis method for single molecule tracking data considers complete trajectories using 
mean squared displacement (MSD) curves (3, 29–32). For homogenous motion, the shape of the MSD 
curve contains information about the nature of the diffusion, e.g. pure, confined, or hop diffusion (3, 
13, 33, 34). Since the MSD curve is composed of averages of all distances, transient diffusion states 
cannot be resolved by these full-trajectory MSD analysis (Fig. S1 in the Supporting Material). When it 
was realized that protein motion is not homogeneous, but show transient effects (1, 4, 10, 22, 35), 
local methods were developed that considered subtrajectories (segments) of a trajectory (4, 34, 36, 37). 
These methods are however hampered by the limited number of positions within one segment to 
obtain accurate diffusion coefficients or confinement strengths. An alternative Monte Carlo based 
method (38) is particularly useful to find the kinetic rates between well-differentiated diffusion 
populations. This method finds diffusion coefficients, their fractions, and the switching rates for the 
whole set of trajectories, but does not spatially resolve the states. Therefore, we propose a new 
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approach which uses a global method (analyzing all trajectories obtained) to determine the different 
diffusion states of the protein studied, whereas local methods are used to classify short segments of a 
trajectory to one of the diffusion states found. We compare several local methods to classify parts of 
trajectories (segments) to a diffusion state. 

Proposed scheme for diffusion state classification 
For pure diffusion systems, the multiple diffusion states can be accurately determined using a fit of the 
cumulative distribution function (CDF) of the squared displacements (20). In this paper we assume 
that the motion of membrane proteins can be described by two states of Brownian diffusion, termed 
the fast and the slow population. Whether this assumption is correct can be checked beforehand by 
looking at the residuals of a fit of the cumulative distribution function (CDF) of step sizes in two-
population diffusion (detailed later). After obtaining accurate diffusion parameters by this fit, local 
methods are used only to classify short segments of a trajectory to one of the diffusion states found. 
Existing local diffusion or confinement detection methods (34, 36, 37) can be expanded to yield a 
local quantification measure which can be used for classification. Subsequently, the classification to a 
diffusion state is based on a threshold for the quantification measures. This threshold is objectively set 
using the parameters describing the diffusion states (determined by the fit), and the threshold is 
therefore based on the experimental data. Thereby we eliminate the subjective manual thresholding of 
earlier confinement methods to detect transitions between motion states. The need for manual 
thresholding was earlier mentioned as a disadvantage of using window (segments) based methods 
(39). 

We emphasize that there is no need to determine local diffusion values of segments, since the CDF fit 
has already accurately provided the diffusion values present within the trajectories. The segments only 
need to be classified to one of the diffusion states. The length of the segments should be carefully 
chosen such that the corresponding duration is shorter than the typical switching time between states, 
whereas the duration must be long enough to obtain an accurate measure for the classification. We test 
different local methods and the influence of different segment lengths for diffusion classification using 
two state Brownian dynamics simulations (Fig. Error! Reference source not found.C), and compare 
this approach to a recently developed Bayesian method (40).  

Existing motion classification schemes 
Several schemes have been proposed to differentiate between the supposed motion types of single 
proteins found in (sub)trajectories, such as directed, confined and normal diffusion (33, 39, 41, 42). 
Three of these schemes consider classification of pure diffusion states (40, 43, 44). Two of these 
schemes were based on maximum likelihood estimation (MLE). The scheme devised by Ott et al. (44) 
employs an MLE approach to classify between diffusive states (also included in our comparison), and 
uses Hidden Markov Models (HMM) to find the diffusion coefficients of these states. The other 
scheme relies on a large number of localizations and a prior defined number of diffusion state 
switching occurrences (43). With current fluorescence microscopy techniques, it is still impossible to 
accurately localize many positions to find the current state before the protein switches between states. 
Furthermore, the amount of diffusion state switching occurrences is not known beforehand, since this 
switching is a stochastic process. Very recently another scheme has been proposed which uses 
Bayesian statistics (45) to discriminate between slow and fast Brownian motion in a spatiotemporal 
fashion without prior knowledge (40). This scheme combines information from thousands of short 
trajectories to identify the number of diffusive states and the state transition rates, and is included in 
our comparison.  

The classification of confined motion, i.e. motion hindered by transient confinement zones, has been 
discussed elsewhere (3, 20, 22, 38, 39). We emphasize that our approach is not in contrast to the idea 
of transient confinement zones. In fact, whether the slow diffusion state originates from pure 
Brownian motion, a transient confinement, or an immobilization of the protein, cannot be revealed 
from the limited number of typically acquired positions, and requires other experimental and analysis 
methods. Although transient confinement or slowed diffusion are closely related, confinement is 
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actually defined as pure diffusive motion restricted by boundaries which cannot be crossed. The 
confinement area should be of reasonable size such that normal diffusion within this area can still 
occur. There is no consensus yet on the exact type of motion proteins exhibit.  

MATERIALS AND METHODS 

Classification scheme 
We provide an overview of our approach to test classification of segments to dynamic two-population 
diffusion states (Fig. 1C), followed by a more detailed description of the individual steps. First, the 
two diffusion coefficients and their fractional contribution to the trajectories are determined using a 
cumulative distribution function (CDF) fit of the squared displacements (20). Next we use one of the 
different local quantification methods, listed in the section “Quantification measures” in the 
Supporting Material, which assigns a value to each position in the trajectory. All these methods yield a 
higher value for a higher diffusion speed. Subsequently, thresholding of these values for the 
classification is done by taking the α-th percentile value of all values found (with α the percentage of 
step sizes fitted to the first population). For example, when the fraction size of fast diffusion is 0.30, 
we set the threshold value such that 30% of the values are higher than the threshold value. By taking 
this threshold we perform the classification objectively since the fraction percentage is already 
accurately determined beforehand from the experimental data itself. To compare the different 
detection methods in this framework, we tested them using simulated trajectories, where we know the 
actual diffusion state at each position. The final step in testing the framework is a one-to-one 
comparison of the found state to the actual (simulated) diffusion state, yielding the classification 
correctness. We define the classification correctness as the percentage of positions that are correctly 
classified divided by the total number of classified positions. The state lifetimes τ1 and τ2 found by the 
analysis are compared with the actual lifetimes for the most promising method. 

Generation of synthetic trajectories 
Two-population diffusion trajectories were generated using MatLAB (The MathWorks, Natick, MA) 
with the GPUmat toolbox [8]. Each set contained 1,000 trajectories composed of 1,000 frames 
(positions) in two dimensions with Brownian diffusion steps in between points. The molecule is 
allowed to change between diffusion states within a trajectory. In more detail, the positions are given 
by: 

𝑥!!! = 𝑥! +   𝑅 ∙ 2𝐷!∆𝑡 (1) 

𝑦!!! = 𝑦! +   𝑅 ∙ 2𝐷!∆𝑡 (2) 

 

where 𝑖 is the frame number, 𝑅 is a random number from a standard normal distribution, 𝐷! is the 
diffusion coefficient of the diffusion state j, and ∆𝑡 is the time between frames (∆𝑡 = 40 ms unless 
otherwise stated). The dynamical switching behavior between the two diffusion states (e.g. j = 1, also 
called fast, and j = 2, also called slow) is provided by generating subsequent state durations. The 
duration of the state is determined by taking a random number from an exponential distribution (a 
Poisson process) with a given characteristic time τ1 and τ2. The diffusion state of all steps in the set is 
stored, to be able to verify the classification method. Each position (xi, yi) is given a localization 
inaccuracy error by adding a random number from a normally distributed pool with standard deviation 
σxy in each dimension. The localization error in the x-plane σx is equal to the error in the y-plane σy, 
therefore σxy = σx = σy.  

Cumulative distribution function of squared displacements 
To find the diffusion constants D1 and D2 and the fraction α of the first population, we calculate the 
cumulative distribution function of squared displacements for the complete set of trajectories (20). 
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Using the complete distribution yields insights into the behavior of the entire population of single 
molecules, without ensemble averaging effects. As long as there is a large dataset of displacements to 
build a reliable CDF, it is a straightforward and reliable method to find the global diffusion 
coefficients and their fractions. For the two dimensional case, the cumulative distribution function 
(CDF) for the squared displacements (∆𝑅)! for a time lag 𝜏 = 𝑛 ∙ ∆𝑡 for two diffusion components is 
given by: 

𝐶𝐷𝐹 ∆𝑅! 𝜏    =   1 − 𝛼 ∙ exp −
∆𝑅 !

4  𝐷!𝜏 + 2 𝜎!! + 𝜎!!
− (1 − 𝛼)

∙ exp −
(∆𝑅)!

4  𝐷!𝜏 + 2 𝜎!! + 𝜎!!
 

(3) 

 
where α is the fraction corresponding to the motion with diffusion coefficient D1. To deal with the 
localization inaccuracy in the exponent, we determine D1, D2 and α for the time lags corresponding to 
1 and 2 frames, and fit the exponential terms: 

𝐶𝐷𝐹 ∆𝑅! 1 =   1 − 𝛼!!! ∙ exp −
∆𝑅 !

4  𝐷!,!!!
− (1 − 𝛼!!!) ∙ exp −

(∆𝑅)!

4  𝐷!,!!!
 (4) 

 

𝐶𝐷𝐹 ∆𝑅! 2 =   1 − 𝛼!!! ∙ exp −
∆𝑅 !

4 ∙ 2  𝐷!,!!!
− (1 − 𝛼!!!) ∙ exp −

(∆𝑅)!

4 ∙ 2  𝐷!,!!!
 (5) 

 
which yield the uncorrected diffusion coefficients for each timelag, for example 𝐷!,!!! = 𝐷!,!!! +
𝜎!"! since 𝜎!! + 𝜎!! = 2  𝜎!"!, and similarly 2  𝐷!,!!! = 2 ∙ 𝐷!,!!! + 𝜎!"!. Now the estimated 
diffusion coefficient for the first (and similarly for the second) population corrected for the 
localization error is: 

𝐷! = 2  𝐷!,!!! − 𝐷!,!!! = 2  𝐷!,!!! + 𝜎!"! − 𝐷!,!!! + 𝜎!"! = 2  𝐷!,!!! − 𝐷!,!!! (6) 
 
For the fraction 𝛼 we take the average of the values 𝛼!!! and 𝛼!!!. In the simulations these two 
values did not differ by more than a few percent. We have used linear least squares to fit the CDF to 
the data. Fig. S11 shows an example of a CDF fit for motion with two clearly separated diffusion 
populations. 

Quantification measures 
The next step is to quantify the motion of a molecule for each frame in its trajectory. To this end the 
trajectories are split in small segments, containing a total number of N subsequent positions (the 
segment length), and these segments are given a value W by one of the tested quantification measures. 
Many methods could serve as a measure for slow or fast diffusion. This measure can be, but is not 
limited to, an estimated diffusion coefficient or confinement index. We have tested the following 
methods: windowed MSD (34), relative confinement (35, 36), the gyration radius (37), and maximum 
likelihood estimation (MLE). Besides these windowed measures, we also tested a Bayesian statistics 
approach (40) using software made available by these authors. A detailed discussion of the measures 
used can be found in the section “Quantification measures” in the Supporting Material.  

State classification 
When the motion within a segment is quantified, it can be classified as state 1 (corresponding to fast 
diffusion with coefficient D1) or as state 2 (corresponding to slow diffusion with coefficient D2). We 
allocate the classification of the segment to the center position of that segment, so that a state duration 
can still be shorter than the segment length. For the maximum likelihood estimation, the classification 
is performed intrinsically. For the relative confinement and gyration radius methods, the classification 
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is provided by comparing the value W to a threshold value T. A segment is classified as state 1 if W is 
larger than a threshold value T, and as state 2 otherwise. The threshold value T is determined by taking 
all found values W, and calculating the α-th percentile of these values (with α the percentage of step 
sizes fitted to the first population). Hence the already known fraction of the diffusion population is 
used to define the threshold value for the measure to perform the classification.  

In the case of the windowed MSD, we slightly altered the way to determine the threshold T, due to 
reasons described in the Results section below. We used a likelihood approach to calculate the chance 
that a single value W (calculated for a segment) originates from diffusion with D1 or originates from 
diffusion with D2. In more detail, a probability density function (PDF) of W is composed for each 
diffusion constant given the values of the diffusion coefficients D1 and D2. Examples of such PDFs are 
shown in Fig. S12A. The threshold value T is chosen as that value of W where the PDF of W from D1 
intersects the PDF of W from D2 (such that L1(T) = L2(T)). In this way the segment is classified to the 
most likely state. The PDF of W for the windowed MSD method for a given diffusion coefficient is 
calculated as follows. Using a one-population Brownian simulation a trajectory (containing 106 
positions) is calculated. From this we calculated the values W for all segments in the trajectory. Next 
the PDF of the found values W is composed. This procedure is performed for both D1 and D2 . Finally, 
the intersection of these two PDFs is determined.  

Visualization 
After the state classification has been performed, either in simulations or in experimental data, the 
information obtained can be used for subsequent analysis such as visualization. All the positions of all 
the molecules in one video recording are used to reconstruct an image, such that one can visualize the 
areas where the molecules have travelled. Each individual position (localization) is represented by a 
color coded dot. The color of the dot depends on the state found at that position and time: red for the 
slow state, and green for the fast state. This results in diffusion state images at high resolution showing 
the areas of slow and fast diffusion. We removed immobile trajectories because these were typically 
found on the glass substrate and not in cells. The filter for immobile trajectories was based on the 
gyration method applied on a complete trajectory, with the threshold for the reached area defined by a 
gyration radius of 40nm, as this corresponded to the apparent area travelled by an immobile molecule 
due to the localization accuracy. This means that only those molecules are displayed that at least once 
exhibit motion. 

Live cell experiments 
The live cell experiments methodology is described in the corresponding section in the Supporting 
Material. 

RESULTS 

Performance of different quantification measures  
First we validated our approach by simulating the extreme case of well-separated diffusion constants 
with 𝐷! = 40 ∙ 𝐷! and long state durations. We obtained a correctness of over 95% for windowed 
MSD, and over 99% for the other methods, as expected for clearly distinct motion. Next we tested the 
different quantification measure methods for diffusion classification, and studied the influence of 
different segment lengths therein. Therefore we simulated (at 25 fps) four cases with two diffusion 
states with different state lifetimes and localization accuracy. The cases were chosen to provide a 
challenging and realistic situation for discrimination of the two diffusion constants from 
experimentally obtained single molecule trajectories. The diffusion constants were chosen to reflect 
relatively slow membrane receptors (unpublished observations): D1 = 0.06 µm2/s, and D2 = 0.015 
µm2/s. For other ratios of diffusion coefficients, see Fig. S4. We chose our switching settings close to 
the values found for the EGF receptor (4): τ = 300-900 ms. The localization accuracy depends on the 
number of photons recorded from a molecule per frame. The chosen localization accuracies are typical 
values observed for quantum dot labels (σxy = 20 nm) or fluorescent protein labels (σxy = 40 nm), 
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whereas organic dyes will often be somewhere in between these values. The accuracy does not only 
depend on the number of photons acquired for localization, but also on the labeling strategy. For 
instance, antibodies are large macromolecules and their flexibility leads to a lower localization 
accuracy.  

Fig. Error! Reference source not found. shows the performance of diffusion state classification for 
different quantification measures of local diffusion together with the influence of the segment length 
chosen. For the windowed MSD method, we display the correctness when using the first three points 
of the MSD curve in the fit, as this gave the best correctness in all the simulation cases. For the first 
simulation (case A) we chose the localization accuracy σxy = 40 nm and the state lifetimes were both 
set to 300 ms. To study the influence of the localization accuracy σxy alone, in simulation case B this 
parameter was lowered to 20 nm. In simulation cases C and D, only the switching behavior was 
altered compared to case A to be able to test the influence of the state lifetimes. When the two 
lifetimes are not equal (case C), this clearly changes the diffusion fractions, such that there are an 
unequal number of molecules in each state on average. The two diffusion coefficients and their 
fractions were not assumed to be known beforehand, analogous to experimental data. These state 
parameters are found for each simulation by a fit to the cumulative distribution function (CDF) of 
squared displacements. The results show that an optimal choice of the segment length is needed to 
yield the best classification correctness. The optimal segment length depends to a large extent on the 
state lifetimes and also on the particular quantification measure used in the state classification.  

We find that the non-diffusion based gyration evolution method is the most accurate measure for 
diffusion state classification in the simulation cases with localization accuracy of 40 nm (cases A, C 
and D). In these cases, for equally sized diffusion populations (case A and D), the gyration based 
classification scores better than classification using any other method. When the diffusion populations 
are not equally sized (case C), the gyration based classification scores almost as well as the 
computationally much more expensive Bayesian method. In simulation case B with a localization 
accuracy of 20 nm, the Bayesian method and MLE based classification score better than the other 
methods. This trend continues when there is no localization inaccuracy; simulations for this case 
showed the MLE method then scores 81% correct compared to 74% for the gyration based 
classification. In practice however, the localization will rarely be better than 20 nm, due to the limited 
number of photons and labeling biochemistry related issues. In the case of slow state switching 
behavior (case D), the gyration based classification is at these state-switching rates already close to its 
best possible performance with these diffusion coefficients and localization inaccuracy; increasing the 
average state duration to infinity only resulted in 3% improvement in correctness. The classification 
correctness for the windowed MSD achieved when another number of points in the MSD curve is 
taken to perform the fit can be found in Fig. S2. The classification correctness when we set a minimum 
state duration for a number of frames can be found in Fig. S3.  

After classification of the diffusion inside trajectories, the lifetime of the states can be determined by 
composing a histogram of state durations and fitting the lifetime. We determined the distribution of the 
slow and the fast state lifetime found by the gyration based classification in trajectories of simulation 
case A (Fig. S5). We found that the state lifetimes fitted are shorter than the actual (simulated) 
lifetimes, especially for longer state lifetimes. More simulations showed that a trend of changing the 
state lifetimes in the simulation is reflected in the lifetimes found, although larger lifetimes (as in case 
D) are significantly underestimated, especially when the correctness is below 85%. 

Although the correctness percentages provide a measure of the classification performance, the exact 
number might not give a feeling for how useful such a classification is. We will return to this point in 
the section on identifying the zones of slow diffusion. Clearly the percentage must be higher than 50% 
to have any relevance, since this percentage would also be obtained by a completely random state 
allocation. 
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Optimized threshold 
The windowed MSD, relative confinement, and gyration measures use a threshold for classification. 
We noticed that for the windowed MSD, the classification correctness was not around its maximum 
with the threshold at the α-th percentile, especially for unequally sized diffusion populations (Fig. 
Error! Reference source not found.A). In the case of simulation case C (i.e. with unequally sized 
diffusion populations), the best result when using the windowed MSD as the quantification measure 
would be to classify every position as fast diffusion, and thereby scoring around 75% correct (i.e. the 
fast fraction size), however such classifications would not provide any information. The other methods 
score the same correctness at the 100th percentile threshold by definition, but these methods score a 
higher correctness with a threshold at the α-th percentile. For the windowed MSD method, we 
therefore used another threshold. We instead compared the likelihoods that a value W for a segment 
originates from diffusion with diffusion coefficient D1 or from diffusion with diffusion coefficient D2. 
In other words, the threshold was set at the intersection of the probability density functions of the 
values obtained with the windowed MSD for diffusion from each diffusion state separately (detailed in 
the methods section). We verified that the windowed MSD using likelihoods for state classification 
indeed performed with a higher correctness compared to when window MSD values are compared to a 
threshold using the α-th percentile. Likelihood methods do not regard the fraction size α to determine 
the most likely state for a segment, therefore the MLE and the Bayesian methods are not included in 
Fig. 3A.  

Classification robustness 
The values for the classification performance in Fig. Error! Reference source not found. and Fig. 
Error! Reference source not found.A are average values that are obtained for many classifications. 
Since one simulation entailed 1,000 trajectories of 1,000 frames, the statistical noise averaged out 
between simulations with the same diffusion parameters. However, analyzing the results of one 
simulation is not sufficient to predict the robustness of the method, since the robustness in the 
correctness also depends on other aspects of the classification framework. For example, the 
correctness depends in large extent on the fitted diffusion constants and fractions obtained from the 
CDF fit. Therefore we tested whether small perturbations in the CDF fit influenced the obtained 
correctness for the MLE and gyration method. We used a segment length of 7 frames to classify 100 
simulations to obtain the distribution of the correctness. In each simulation we used the simulation 
settings of case A, except for the number of trajectories in the simulations, which was lowered to 100 
trajectories (a realistic number of molecules in a tracking experiment). In this way, fewer 
displacements are available for the CDF fit, and therefore the fitted values have a larger spread in 
subsequent simulations. The resulting correctness distributions (Fig. 3B) shows that neither of the two 
methods is influenced dramatically by slightly perturbed CDF fits, except for the case where both 
fractions are not equally distributed (case C). The spread in that case is especially large in the MLE 
method.  

Identifying the zones of slow diffusion 
After state classification of the diffusion, super-resolution like images of the diffusion states can be 
reconstructed. When the distribution of slow diffusion zones is not randomly distributed, the proposed 
approach for diffusion state classification should be able to detect these zones. To validate this 
application, we performed simulations of 200 trajectories where the diffusion state was spatially 
defined. The regions with slow diffusion were defined 1 pixel wide (corresponding to 120 nm), and 
were separated by 5 pixels. The separations were the regions of fast diffusion. The diffusion value in 
the fast region was chosen D1 = 0.10 µm2/s, and in the slow regions it was chosen D2 = 0.01 µm2/s, 
with the localization accuracy σxy = 20 nm. These settings were chosen to represent a typical 
membrane protein imaged utilizing bright fluorophores. The resulting state lifetimes were around 
300ms. We performed the diffusion state classification using the gyration quantification measure with 
a segment length of 4 frames (Fig. Error! Reference source not found. and Video 1). Simulations 
with the diffusion state parameters mentioned showed that this is the optimal segment length. The 
correctness of gyration based classification was 85%. The figure shows that the performance is more 
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than adequate to visualize the spatial diffusion state organization described. The actual states of the 
simulation and the same reconstruction image using MLE based classification are shown in Fig. S7. 
For comparison, when the motion and the state switching is completely random, such as in simulation 
case A, the reconstruction map also shows apparent zones (Fig. S6). However, these zones are only 
caused by the randomness of Brownian movement. 

Example of classification applied to EGF receptor 
The advantage of spatiotemporal resolved state classification is the possibility to observe where the 
molecules have travelled in which diffusion state. Reconstructed videos may also reveal whether 
multiple diffusion populations are originating from a pool of molecules exhibiting either diffusion 
state, or a pool of molecules transiently making transitions between the states. The lifetimes of the 
states can be determined as well from the histogram of state durations.  

To demonstrate the potential of the application of diffusion state classification, we performed a 
gyration based classification on experimental single molecule tracking data. We recorded fluorescence 
images of fluorescently labeled EGF receptor in MCF7 cells by utilizing SNAP-tag (Video 2). In this 
video recording we detected on average 210 fluorescent molecules per frame (Fig. S8D). The 
localization accuracy in our video is close to 40 nm. The diffusion constants D1 and D2 and the 
fraction size α of the fast state from all displacements are determined using a fit to the CDF of squared 
displacements (Fig. S8). We obtained D1 = 0.112 ± 0.001 µm2/s, and D2 = 0.008 ± 0.001 µm2/s with α 
= 0.69±0.03 (the given errors are 5-95% confidence intervals of the fit). Intercellular differences are 
larger than the errors of fitting the CDF. We used a segment length of 7 frames, which performs best 
according to simulations for the given diffusion parameters (classification correctness of 86%). State 
lifetimes (or kinetic rates, the inverse lifetime) were obtained by combining the state durations from 
five recordings of EGF receptor (unliganded) to get enough statistics (Fig. S9).  

After diffusion state classification, we reconstructed the diffusion state video (Video 3) and diffusion 
state images at high resolution (Fig. Error! Reference source not found. and Fig. S10). In these 
image we clearly see distinct zones of slowed diffusion. Furthermore we see cellular structures such as 
filopodia at the boundaries of the cell, and possibly collapsed filopodial structures on the lower 
membrane. The presence of EGF receptor in filopodia was expected, since EGF receptor undergoes 
retrograde transport in filopodia (46, 47).  

DISCUSSION 

The optimal segment length 
The optimal segment length correlated to the state lifetime in our simulations. For example, the 
optimal 7 frames in simulation case A and B corresponds to the average state lifetime of 300 ms (7.5 
frames), and when the state lifetimes increase (simulation case C and D), the optimal segment length 
also increases. The optimal segment length also varies for the different quantification measures, 
especially when the state lifetimes increase (simulation case C and D). Since the state lifetimes are not 
known before the classification, it would be preferable when the results do not vary much for different 
segment lengths. We can see that the gyration method with a segment length of 7 frames scores near 
optimal in almost all the cases simulated. Therefore, a good strategy would be to perform the 
classification first with the gyration method and a segment length of 5-7 frames. This might provide a 
good first classification with an adequate correctness. Later, the classification may be repeated with a 
different segment length more suitable to the state lifetimes found to obtain an optimized classification 
or a verification of the reconstructed diffusion state images.  

Diffusion state classification 
We noticed that the gyration method has higher correctness and is more robust compared to the other 
tested methods, especially in situations with higher localization errors (σxy = 40nm). The reason may be 
found in the fact that more information is used to determine the gyration radius compared to the value 
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calculated with the windowed MSD or the MLE method. In the calculation of the gyration, the 
information of the distances between all the segments positions is taken into account unlike in MLE. 
Therefore the gyration method not only considers the distance between points, but also the relative 
locations of the positions. For example, for pure diffusion it is unlikely that a particle would move in 
only one direction; the MLE would however not detect this as it only considers subsequent distances, 
whereas the gyration method will. The spatial information of relative location of the positions is only 
considered in the gyration and confinement methods, which might be the reason why these methods 
scored higher in classification of the two diffusion states. In the windowed MSD method, the optimum 
result is obtained when the fit to find the diffusion value is obtained from information only up to a 
time lag of 3 frames. This means that in the case of the windowed MSD calculation the distance 
information from the first to the last point is not considered, whereas this is taken into account in the 
gyration method. However, when the positions are more precisely known (i.e. low localization error), 
the MLE and Bayesian based methods start to outperform the gyration method. An explanation for this 
might lie in the fact that these methods make use of averaged distances of single steps. The average 
value of single steps in a segment is apparently precise enough to find the most likely underlying 
diffusion coefficient. Without localization errors, the (windowed) MSD also scores best when only 
single steps (corresponding to a time lag of 1 frame) are considered. Our approach with the windowed 
MSD is then in fact equivalent to the MLE method (43). Another reason why the windowed MSD 
scores lower than other methods might be because MSD values can be negative, especially with higher 
localization errors. It is not clear what the chance is that negative values represent a slow or a fast state 
(we classified these values as slow), such that negative values cannot be adequately classified.  

Interestingly, it remains an open question whether the gyration based classification method is the 
optimal quantification measure for the cases simulated, or that another quantification measure can be 
invented that outperforms gyration based classification. We saw that classification based on the 
maximum likelihood of the average of single step sizes is outperformed by gyration based 
classification, hence MLE does not yield the optimal performance to this problem. How to best 
combine all the positional information of a segment remains an open question. 

Although we demonstrated the state classification for a two population system, the framework and the 
methods can also be used for more than two populations. The CDF fit should then be adjusted for 
multiple populations, and thresholds can similarly be set at the found α-th percentile. This expansion 
can be benchmarked using similar simulations situations as we have presented here. Other 
quantification methods can also use this framework for benchmarking the method in a realistic context 
of single molecule experiment on plasma membrane receptors. In this paper we have tested prevalent 
analysis methods for quantification of the local diffusion. Although the confinement and gyration 
methods have been developed in the context of confinement, they had never been applied for 
quantification of pure Brownian motion, whereas we showed that these methods outperform classical 
methods to classify segments to a diffusion state. 

Michalet (34) has discussed the practicality of using an windowed MSD. He argued that the segment 
length must be chosen small enough so as to measure local behavior and not averaged global behavior, 
yet large enough to be sufficiently accurate as too small windows have a broad distribution in output 
values. He therefore concluded that this method can rarely provide reliable estimates of the diffusion 
coefficients, and can only show a difference in multiple orders of magnitude, even for windows of 100 
points. Although this conclusion is valid in the case of exceedingly low diffusion coefficients, such as 
D = 10-4 µm2/s in his example, we showed that a windowed MSD can still be useful in diffusion state 
classification. However it is indeed not as powerful as the other methods tested.  

We chose to use the CDF fit approach to find the global diffusion values. Another approach to obtain 
the diffusion coefficients has been described using Bayesian statistics (45) and a hidden Markov 
model. This method finds the different (and hidden number of) diffusion states with their diffusion 
coefficients (40). Although this method yields accurate results, it also requires about a thousand fold 
more computational time on our computer, whereas a CDF fit is comparably accurate. Concerning the 
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accuracy of the quantification measure, we neglected the influence of the exposure time on these 
values. While this leads to underestimation of the value of the diffusion coefficient due to the 
averaging blur during exposure (1, 48), we only used the values to classify states; the exposure time 
effect should not have much influence on this classification. 

In this paper we only regarded spatiotemporal analysis methods, as especially the spatial information 
may yield important information, such as where a molecule is interacting. Therefore we have excluded 
image correlation spectroscopy methods, such as PICS (49, 50), which do not require tracking, and a 
Monte Carlo approach (38). Also, we only looked at alternating diffusion states, and not at active 
transport or confinement, as explained before.  

Application in live cells 
The application of the gyration based diffusion state classification approach demonstrated that the 
correctness achieved is sufficient to identify spatial zones of slowed diffusion within cellular 
structures. Such zones are perticularly important as they reflect the regions where the protein interacts 
with other proteins or cellular compounds. The physiological meaning of the slow diffusion zones in 
our example of EGF receptor remains an open question at the moment. They could be related to 
cytoskeletal structures or regions where the receptor exhibits internalisation. For other proteins we 
might find another distribution of membrane patches of slowed diffusion, and specific diffusion states 
near other cellular structures such as actin or microtubuli might be seen. In that case, single molecule 
trajectories may indicate a role of such cellular structures in the signaling of a protein studied when 
analyzed by diffusion state classification. 

Diffusion state lifetimes obtained by this classification framework seem less informative, as they tend 
to be underestimated due to short periods of incorrect state classification (Fig. S5). To reliably obtain 
changes in state lifetimes, a high classification correctness (> 85%) seems essential. State lifetimes can 
however be used as a test to confirm that the diffusive populations found (using the CDF fit) are 
lasting longer than the timescale of the sampling rate (time between frames). States with extremely 
short lifetimes are probably caused due to issues with multiple intermixed diffusive states, and further 
diffusion classification is unreliable in that case.	
  

CONCLUSION 
In summary, we have introduced a new strategy for spatiotemporal classification of two-population 
diffusion, and compared methods to be used for this classification. We have validated our proposed 
diffusion state classification approach by testing with simulations and showed possible applications, 
such as determining diffusion state lifetimes and composing diffusion state images. The key feature of 
the proposed framework is that a diffusion estimator is the logical choice but not necessarily the best 
way to discriminate and classify segments to two diffusion states. When we have determined the 
diffusion coefficients and their fractions present in the motion of all the molecules (e.g. using a CDF 
fit of the squared displacements (20)), there is no need to find a local diffusion coefficient. What 
remains is the need to classify the local motion to one of the found diffusion states. The found fraction 
size α can be used to perform objective thresholding of the local quantification measures. This avoids 
relying on subjective manual thresholding in segment based methods to detect transitions between 
motion patterns (39), such as relative confinement (4, 36).  

We have found that the gyration method is best used for diffusion state classification when the 
localization error (due to photon shot noise and the finite proximity of the fluorescent dye to the 
protein) is on the order of 40 nm, whereas MLE or Bayesian methods are preferred in the case of 
localization errors of 20 nm or less. Although the differences in the resulting classification correctness 
are small, the robustness of the gyration method is higher than the MLE method, especially when a 
limited number of displacements are available for the CDF fit. Furthermore, the Bayesian method was 
about a thousand fold slower on our computer, while it outperforms the gyration based classification 
only marginally. For realistic plasma membrane receptor motion, the optimal setting of the gyration 
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method requires a segment window of 4 to 7 frames; the method then classifies 70% to 90% correct, 
depending on the exact characteristics of the motion. Simulations with spatially organized diffusion 
states demonstrated that this is adequate to observe spatial organization of diffusion states. The 
estimated correctness for experimental data may be determined by performing simulations as 
demonstrated. When the diffusion states are visualized at high resolution at their position in live cells, 
such diffusion state images may aid in identifying spatially separated zones of the occurring states on 
the membrane of the cell. Zones of slowed diffusion are an indication of interactions with the protein 
studied. We showed that such zones exist for EGF receptors within cellular structures. The image also 
showed static or slowly dynamic cellular structures, such as filopodia. 

In conclusion, new biophysical insights could be acquired from spatiotemporal information of protein 
mobility. Such information can be obtained through the proposed diffusion state classification 
approach. We expect that the visualization of zones of altered diffusion of proteins on top of other 
cellular structures will help in providing a better understanding in the organization of the plasma 
membrane and the role of the cytoskeleton in protein signaling. Spatial diffusion classification will be 
a valuable tool for obtaining more insight in the complex protein interactions in live cells.  
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FIGURE CAPTIONS 
	
  

FIGURE 1   Proposed framework for state classification and problem statement. (A) Schematic to 
illustrate a typical trajectory of a single protein on a plasma cell membrane, displaying switching 
behavior between two states with different diffusion coefficients. (B) Distributions of observed 
squared displacements (SD) resulting from different diffusion coefficients show large overlap. A 
measured step size value (an example is indicated with an arrow) cannot be classified with high 
certainty to unambiguously originate from a particular state, which demonstrates one of the problems 
to be solved for diffusion state classification. To compose this histogram, a localization inaccuracy σxy 
of 40 nm was added to the positions in the simulations. (C) Scheme of the methodology followed to 
test the various classification methods on correctness of state classification. After generation of 
simulated trajectories with dynamic state allocation, we determine the diffusion constants (D1 and D2) 
and the fraction (α) of the fast state from all displacements using a CDF fit. The track is divided in 
segments of a certain window length (N), and for each segment the tested quantification methods 
provide a value W using only the positions in that segment. For each segment the motion is classified 
as fast or slow diffusion. The threshold (T) for classification is determined from all values W and the 
fraction α. The center position of the segment is classified as slow diffusion when W is smaller than 
the threshold T, and as fast diffusion otherwise. The found state is compared with the actual 
(remembered) state to yield the classification correctness. The same scheme is followed for the 
diffusion state classification of experimental data. Although the correctness clearly cannot be 
determined in that case, an estimation of the correctness can be determined by performing simulations 
at the parameters found by the CDF fit. 

FIGURE 2   Correctness of the two-population classification by different quantification measures for 
different simulated cases (A-D in the corresponding panels). The correctness of the different 
quantification measures is plotted against the segment lengths used in the classification. The Bayesian 
method does not use segments, and its result is shown with a dashed line. In all simulation cases D1 = 
0.06 µm2/s and D2 = 0.015 µm2/s. (A) Simulation case A has a localization inaccuracy σxy of 40nm and 
short state lifetimes (τ1 and τ2). (B) This simulation case differs from case A only by a lowered 
localization inaccuracy σxy. (C) This simulation case differs from case A only by having a longer fast 
state lifetime τ1. (D) This simulation case also has a longer slow state lifetime τ2.  

FIGURE 3   (A) The correctness dependence on the choice of the state classification threshold for 
simulation case A (left curves) and case C (right curves). The threshold varied with the α-th percentile 
value of calculated quantification measure values W. In these simulation cases the fraction size for fast 
diffusion α = 0.5 and α = 0.75 (case A and C respectively), and the classification was performed with a 
segment length of 7 frames. The windowed MSD method does not yield optimal correctness with a 
threshold using the α-th percentile, yet the optimal threshold does not provide any information either. 
Therefore the threshold selection for this method was altered to using the likelihood that the found 
value for a segment corresponds to either of the two diffusion states. (B) Robustness of the MLE and 
gyration based classification. When simulations with 100 trajectories and 1,000 frames are repeated 
100 times, variations can come from the accuracy of the CDF fit. The boxplot show the resulting 
distribution (5,25,50,75,95 %) of the obtained classification correctness using MLE and gyration (Gyr) 
method for all simulation cases (A-D, left to right) due to this effect.  

FIGURE 4   Diffusion states classified by the gyration method visualized at high resolution images 
displaying the regions in the fast state (A) and slow state (B) . The simulation was designed with 
spatially defined zones (vertical lines) for diffusion states. Here the slow state regions were 120 nm 
wide and are separated by 600nm wide fast state regions. The regions of the slow diffusion state are 
suitably classified and clearly visible. The dimension of the image is 15x15µm, and the image is 
reconstructed at a resolution of 30 nm/pixel.  



19	
  
	
  
	
  

FIGURE 5   The spatial distribution of the diffusion states exhibited by EGF receptors in an MCF7 
cell. The reconstructed image shows the areas where receptors were classified in the fast diffusion 
state as green, and areas where receptors were classified in the slow diffusion state as red. For a region 
at the periphery of the cell a zoomed image (inset) shows clear regions of slow diffusion. The image 
also shows that the receptor is associated with certain cellular structures such as filopodia. The 
classification is performed using the gyration method with a segment length of 7 frames. The 
resolution of the reconstructed image is 30 nm/pixel. 
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FIGURE	
  S1:	
  A	
  conventional	
  full-­‐trajectory	
  MSD	
  analysis	
  of	
  	
  a	
  two-­‐population	
  diffusion	
  systems	
  leads	
  
to	
   an	
   apparent	
   distribution	
   of	
   diffusion	
   values,	
   easily	
   resulting	
   in	
   erroneous	
   conclusions	
   for	
   this	
  
motion	
   system.	
   The	
   true	
   motion	
   system	
   is	
   a	
   two-­‐population	
   diffusion	
   system	
   with	
   diffusion	
  
coefficients	
   	
  of	
  0.15	
  and	
  0.01	
  µm2/s,	
  as	
   indicated	
  by	
   the	
  arrows	
   in	
   the	
  graph.	
  For	
   this	
  graph,	
  1000	
  
trajectories	
   consisting	
   of	
   500	
   frames	
   	
   (hence	
   relatively	
   long	
   trajectories)	
   were	
   simulated.	
   The	
  
trajectories	
  are	
  analyzed	
  using	
  the	
  conventional	
  full-­‐trajectory	
  MSD	
  method,	
  where	
  the	
  first	
  4	
  points	
  
of	
   the	
  MSD	
   curve	
  were	
   used	
   following	
   the	
   “rule	
   of	
   thumb”	
   rule	
   to	
   fit	
   the	
   diffusion	
   constant.	
   The	
  
found	
   diffusion	
   constants	
   and	
   the	
   apparent	
   spread	
   both	
   incorrectly	
   describe	
   this	
   two-­‐population	
  
situation.	
   The	
   MSD	
   analysis	
   should	
   therefore	
   only	
   be	
   used	
   for	
   homogeneous	
   (one-­‐population)	
  
motion.	
  The	
  discussion	
  further	
  in	
  the	
  supplementary	
  material	
  discusses	
  the	
  accuracy	
  of	
  determining	
  
the	
  diffusion	
  constant	
  for	
  a	
  one-­‐population	
  system	
  using	
  the	
  full-­‐trajectory	
  MSD	
  method.	
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FIGURE	
  S2:	
  Correctness	
  dependence	
  of	
  window	
  length	
  and	
  of	
  the	
  number	
  of	
  points	
  in	
  the	
  MSD	
  curve	
  used	
  to	
  fit	
  
the	
  diffusion	
  value.	
  (A)	
  Simulation	
  case	
  A	
  has	
  a	
  localization	
  inaccuracy	
  σxy	
  of	
  40nm	
  and	
  short	
  state	
  lifetimes	
  (τ1	
  =	
  
τ2	
  =	
  300	
  ms).	
  (B)	
  This	
  simulation	
  case	
  differs	
  from	
  case	
  A	
  only	
  by	
  a	
  lowered	
  localization	
  inaccuracy	
  σxy	
  =	
  20nm.	
  (C)	
  
This	
  simulation	
  case	
  differs	
  from	
  case	
  A	
  only	
  by	
  having	
  longer	
  fast	
  state	
  lifetimes	
  (τ1	
  =	
  900	
  ms;	
  τ2	
  =	
  300	
  ms;	
  σxy	
  =	
  
40nm).	
  (D)	
  This	
  simulation	
  case	
  also	
  has	
  longer	
  slow	
  state	
  lifetimes	
  (τ1	
  =	
  900	
  ms;	
  τ2	
  =	
  900	
  ms;	
  σxy	
  =	
  40nm).	
  The	
  
color	
  bar	
  aids	
  in	
  reading	
  the	
  classification	
  correctness	
  percentage.	
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FIGURE	
   S3:	
   Effect	
   of	
   a	
   minimum	
   state	
   duration	
   filter	
   on	
   classification	
   correctness.	
   Since	
   all	
   the	
   above	
  
methods	
  make	
  use	
  of	
  segments,	
  the	
  state	
  classification	
  does	
  not	
  allocate	
  exact	
  time	
  points	
  of	
  a	
  trajectory	
  to	
  
a	
   state,	
  but	
   to	
  a	
  window	
  of	
   several	
   time	
  points.	
   The	
   state	
  of	
   this	
  window	
   is	
   classified	
  at	
   the	
   center	
   time	
  
point	
   of	
   the	
   window,	
   and	
   thereby	
   each	
   time	
   point	
   has	
   its	
   own	
   state	
   allocation	
   based	
   on	
   different	
   but	
  
correlated	
  data	
  sets.	
  Now	
  the	
  state	
  classification	
   is	
  defined	
  at	
  all	
   timepoints	
  except	
  for	
  the	
  beginning	
  and	
  
end	
  of	
  a	
  (sub)trajectory.	
  Since	
  the	
  window	
  is	
  several	
  frames	
  long,	
  state	
  durations	
  shorter	
  than	
  the	
  segment	
  
length	
   (window	
   size)	
  may	
  appear	
   illogical,	
   and	
   therefore	
  we	
  also	
   tested	
  whether	
   filtering	
  out	
   short	
   state	
  
durations	
   leads	
   to	
   better	
   correctness	
   for	
   different	
   classification	
   methods.	
   In	
   most	
   simulation	
   cases	
   (as	
  
described	
   in	
   the	
  main	
   text)	
   this	
  was	
  not	
   the	
   case,	
   and	
  we	
  have	
   therefore	
   looked	
  only	
   at	
  unfiltered	
   state	
  
classifications	
  in	
  the	
  main	
  text.	
  (A-­‐D)	
  Classification	
  correctness	
  for	
  simulation	
  case	
  A-­‐D.	
  The	
  color	
  bar	
  aids	
  in	
  
reading	
  the	
  classification	
  correctness	
  percentage.	
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FIGURE	
  S4:	
  Correctness	
  of	
  the	
  two-­‐population	
  classification	
  for	
  different	
  ratios	
  for	
  D1	
  and	
  D2.	
  D2	
  was	
  
kept	
   fixed	
   at	
   0.015	
   µm2/s.	
   Shown	
   are	
   the	
   results	
   for	
   a	
   gyration	
   and	
  MLE	
   based	
   classification	
   for	
  
simulations	
  of	
  cases	
  A	
  and	
  D	
  (with	
  changing	
  D1).	
  We	
  find	
  that	
  ratio	
  of	
  4	
  in	
  our	
  simulation	
  cases	
  was	
  
indeed	
  a	
  challenging	
  situation,	
  and	
  that	
  with	
  ratios	
   larger	
  than	
  10	
  the	
  best	
  achievable	
  classification	
  
are	
  obtained.	
  The	
  classification	
  also	
  depends	
  on	
  other	
   factors	
  as	
  shown	
  by	
  the	
  different	
  results	
   for	
  
the	
  two	
  cases	
  shown.	
  

 

FIGURE	
  S5:	
  The	
  distribution	
  of	
  lifetimes	
  found	
  by	
  the	
  gyration	
  based	
  classification	
  method	
  simulation	
  
case	
   A.	
   The	
   simulation	
   consisted	
   of	
   20	
   trajectories	
   and	
   was	
   repeated	
   1,000	
   times	
   to	
   yield	
   the	
  
distribution	
   of	
   lifetimes	
   of	
   the	
   slow	
   state	
   (A)	
   and	
   the	
   fast	
   state	
   (B).	
   The	
   gyration	
  method	
   used	
   a	
  
segment	
   length	
  of	
  7	
   frames.	
  The	
  arrows	
   indicate	
   the	
   true	
   lifetime	
  of	
  both	
   states.	
   (C)	
  Example	
  of	
  a	
  
lifetime	
  fit	
  of	
  the	
  fast	
  state	
  from	
  one	
  simulation.	
  This	
   fit	
   is	
  only	
  performed	
  over	
  state	
  events	
   larger	
  
than	
   5	
   frames.	
   (D)	
   Example	
   of	
   a	
   fit	
   of	
   the	
   slow	
   state.	
   This	
   fit	
   is	
   only	
   performed	
   over	
   state	
   events	
  
larger	
  than	
  5	
  frames.	
  Although	
  the	
  lifetimes	
  found	
  are	
  not	
  too	
  far	
  off	
  in	
  this	
  case,	
  in	
  cases	
  with	
  longer	
  
state	
  durations	
  (such	
  as	
  case	
  D),	
  the	
  lifetimes	
  found	
  are	
  significantly	
  underestimated.	
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FIGURE	
  S6:	
   Image	
  reconstruction	
  of	
  the	
  state	
  classification	
  distribution	
  of	
  simulation	
  case	
  A.	
  In	
  this	
  
case	
  there	
  were	
  as	
  many	
  slow	
  as	
  fast	
  states.	
  The	
  dimension	
  of	
  the	
  image	
  is	
  55x55µm,	
  and	
  the	
  image	
  
is	
  reconstructed	
  at	
  60nm/pixel.	
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FIGURE	
  S7:	
  Image	
  reconstructions	
  of	
  the	
  state	
  classification	
  distribution	
  of	
  a	
  simulation	
  with	
  spatially	
  
defined	
  diffusion	
  states.	
  (A)	
  Simulation	
  (actual)	
   image	
  of	
  fast	
  state.	
  (B)	
  Simulation	
  (actual)	
   image	
  of	
  
slow	
  state.	
  (C)	
  Fast	
  state	
  image	
  found	
  by	
  MLE	
  method.	
  (D)	
  Slow	
  state	
  image	
  found	
  by	
  MLE	
  method.	
  
(E)	
  Colour	
   image	
  of	
   states	
  map	
  as	
   found	
  by	
   the	
  MLE	
  method.	
  Green	
  represents	
   fast	
   state,	
  and	
  red	
  
represents	
   slow	
   state.	
   (F)	
   Colour	
   image	
   of	
   states	
   map	
   as	
   found	
   by	
   the	
   gyration	
   method.	
   Green	
  
represents	
  fast	
  state,	
  and	
  red	
  represents	
  slow	
  state.	
  A	
  segment	
  length	
  of	
  4	
  frames	
  was	
  used	
  in	
  both	
  
classification	
  methods	
   (this	
   value	
   yielded	
   the	
   highest	
   correctness).	
   The	
   dimension	
   of	
   the	
   image	
   is	
  
15x15µm,	
  and	
  the	
  image	
  is	
  reconstructed	
  at	
  30nm/pixel.	
   	
  

A B 

C D 

E F 
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FIGURE	
  S8:	
  The	
  proposed	
  approach	
  for	
  diffusion	
  state	
  classification	
  applied	
  to	
  experimental	
  data.	
  (A)	
  The	
  CDF	
  
fit,	
  with	
  corresponding	
  PDF	
  (B)	
  and	
  residuals	
  (C),	
  for	
  the	
  motion	
  of	
  EGF	
  receptor	
  in	
  an	
  MCF7	
  cell	
  shows	
  that	
  the	
  
model	
  of	
   two-­‐population	
  Brownian	
  diffusion	
   is	
  a	
   suitable	
  motion	
  model.	
   (D)	
  An	
  example	
  of	
  a	
   single	
  molecule	
  
fluorescence	
  frame	
  recording	
  of	
  EGF	
  receptor	
  in	
  an	
  MCF7	
  cell.	
  The	
  image	
  has	
  not	
  been	
  modified	
  or	
  filtered.	
  
 
 
  

D 
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FIGURE	
  S9:	
  Histograms	
  of	
  unliganded	
  EGF	
  receptor	
  state	
  lifetimes	
  for	
  the	
  fast	
  state	
  (upper)	
  and	
  the	
  
slow	
   state	
   (lower)	
   in	
   frames	
   (video	
  was	
   recorded	
   at	
   25	
   fps),	
   determined	
   by	
   gyration	
   analysis.	
   The	
  
characteristic	
  lifetime	
  is	
  determined	
  from	
  an	
  exponential	
  fit	
  of	
  state	
  durations	
  longer	
  than	
  5	
  frames,	
  
since	
  the	
  use	
  of	
  a	
  segment	
  length	
  of	
  7	
  frames	
  does	
  not	
  correctly	
  resolve	
  shorter	
  lifetimes.	
  The	
  state	
  
duration	
  will	
  be	
  underestimated	
  because	
  of	
  random	
  incorrect	
  state	
  classification.	
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FIGURE	
  S10:	
   Image	
  reconstructions	
  of	
  the	
  distribution	
  of	
  states	
  exhibited	
  by	
   liganded	
  EGF	
  receptor	
  
proteins	
   in	
   an	
   MCF7	
   cell.	
   The	
   resolution	
   of	
   the	
   reconstructed	
   images	
   is	
   30nm/pixel.	
   (A)	
   Image	
  
showing	
   the	
   areas	
   travelled	
   by	
   receptors	
   in	
   the	
   fast	
   diffusion	
   state	
   (green),	
   and	
   areas	
   where	
  
receptors	
   in	
   the	
   slow	
  diffusion	
   state	
  were	
  detected	
   (red).	
   (B)	
   Zoomed	
   image	
  of	
   the	
   indicated	
  area	
  
(white	
  box)	
  in	
  A.	
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Supporting Sections 

Quantification measures 

 

Mean squared displacement (MSD) 
The most straightforward way to determine the diffusion coefficient is by using the mean squared 
displacement (MSD) versus time lag curve (1). This provides an estimate of the diffusion coefficient, 
and also confinement (2), but the method requires that within the complete trajectory there is only one 
type of homogeneous motion. In short, the MSD is usually defined as the average of all squared 
distances between points within a certain lag time 𝜏 = 𝑛 ∙ ∆𝑡, with ∆𝑡 the time-delay between 
consecutive frames, and 𝑛 the interval of frames over which the distance is measured and averaged. 
For intervals larger than 1 frame, usually all available distances of a given duration 𝑛 ∙ ∆𝑡 are included, 
such that the distances are not statistically independent. Yet this way of averaging gives less variance 
to the average squared displacement value compared to taking only the independent distances (3). For 
pure Brownian motion, the relation between squared displacements (∆𝑅)! and the diffusion 
coefficient is a linear relation:  

MSD 𝜏 = ∆𝑅! !   = 4  𝐷  𝜏 + 2 𝜎!! + 𝜎!! =   4  𝐷  𝜏  +  4  𝜎!"! (1) 
 
where 𝜎!" is the standard deviation of the localization inaccuracy in one dimension, which is 
independent of the time lag. The estimated diffusion coefficient 𝐷 is found from fitting a line through 
the points at the different lag times in the MSD curve. We emphasize that it is not straight forward 

 
FIGURE	
   S11:	
   Illustrations	
   of	
   	
   various	
   segment	
   analysis	
  methods	
   as	
   quantification	
  measures	
   for	
   the	
  
proposed	
   diffusion	
   state	
   classification	
   approach.	
   (A)	
   Simulated	
   two-­‐population	
   diffusion	
   trajectory	
  
and	
   examples	
   of	
   selected	
   information	
   for	
   the	
   relative	
   confinement	
   and	
   the	
   gyration	
  method	
   on	
   a	
  
trajectory	
  segment.	
  Relative	
  confinement	
  detection	
  takes	
  the	
  variance	
  of	
  distances	
  from	
  the	
  center	
  
of	
   the	
   segment	
   (indicated	
   by	
   the	
   grey	
   arrows).	
   The	
   gyration	
   radius	
   depends	
   on	
   the	
   variance	
   and	
  
covariance	
   of	
   the	
   coordinates	
   (segment	
   indicated	
   in	
   grey	
   with	
   a	
   dashed	
   line).	
   (B)	
   Cumulative	
  
distribution	
  function	
  (CDF)	
  values	
  and	
  fit	
  of	
  squared	
  displacements	
  from	
  a	
  set	
  of	
  trajectories	
  with	
  two	
  
diffusion	
   coefficients	
   (upper),	
   and	
   the	
   corresponding	
   probability	
   density	
   function	
   which	
   is	
   the	
  
derivative	
   of	
   the	
   CDF	
   (lower).	
   The	
   simulated	
   values	
   are	
   in	
   grey,	
   the	
   fit	
   is	
   drawn	
   in	
   black.	
   (C)	
   A	
  
conventional	
  full	
  trajectory	
  MSD	
  curve	
  from	
  pure	
  one-­‐population	
  diffusion	
  (first	
  500	
  frames	
  shown).	
  
(D)	
  A	
  windowed	
  MSD	
  provides	
  an	
  instantaneous	
  diffusion	
  coefficient	
  for	
  all	
  timepoints	
  of	
  a	
  trajectory	
  
by	
  performing	
  an	
  MSD	
  analysis	
  only	
  on	
  a	
  segment	
  (the	
  window,	
  as	
  indicated	
  with	
  dashed	
  grey	
  lines	
  in	
  
panel	
  A)	
  of	
  the	
  trajectory,	
  and	
  sliding	
  this	
  window	
  through	
  the	
  whole	
  trajectory.	
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how to perform the fitting of the MSD curve to obtain diffusion values. A more detailed insight on this 
is given in the section “Accuracy of MSD methods and CDF fitting to obtain a one population 
diffusion coefficient” in the Supporting Materials. Moreover, conclusions from MSD curves must 
always be tested against unconstrained diffusion, as the randomness of normal diffusion may result in 
apparent anomalous diffusion (4). 

A recurring question is which points in the MSD curve can still be considered reliable. Certainly the 
variance of larger time lags gets increasingly larger, such that the points of larger time lags do not 
provide any reliable information. In the literature the first 10% points of the curve are often assumed 
to have not too much variance in their values (5). However, the analytical expression for one 
population Brownian motion for the variances has been derived (3, 6). Following this expression, 
Michalet discussed what the optimal number of points is to be taken into the fit for determining the 
diffusion coefficient (7). The optimal number of points depends on the ratio 𝛽 = 𝜎! 𝐷  ∆𝑡 , with σ 
the standard deviation of the localization inaccuracy. In the limit of no (or relatively small) 
localization inaccuracy, i.e. for small 𝛽, it was shown that the most accurate value for D is obtained by 
fitting with only the first two points of the MSD curve. This result was already noted earlier (2). 
However, since we consider two population diffusion systems which have both high and low diffusion 
constants and correspondingly both low and high 𝛽 values, we do not readily know the optimal 
number of points of the MSD curve that should be used in the fit. We have checked how the 
correctness of the fit depends on the number points of the MSD curve used using simulations (Fig. 
S2).  

Windowed MSD 
Typically, the MSD curve is made up from all positions in a trajectory, which cannot resolve local 
changes in the diffusion coefficient. Windowed MSD tries to give the local or instantaneous diffusion 
coefficient at each timepoint of a trajectory by performing the MSD analysis on small segments of the 
trajectory. First an MSD curve is composed for w subsequent positions in a trajectory, and the 
estimated D value is obtained from the first three points in the curve for this segment. This value is 
taken as the measure W. Then the MSD curve is made for the next subsequent positions, until the full 
trajectory has been slid through, and D values have been obtained for each segment, see also Fig. 
S11D. The use of a moving window makes it possible to detect temporal changes in the mode of 
motion on the order of the segment length (window size). The resolution is limited by the averaging 
nature of the method, since reducing the segment length means that the MSD curve is made up from 
fewer points, therefore increasing the statistical uncertainty of the fitted diffusion coefficient. 

Maximum Likelihood Estimation 
We have used a likelihood estimation approach here by comparing a window of measured squared 
displacements, a set of a few single steps ∆𝑅 ! , to the expectation value thereof given the 
distribution function of squared displacements originating from motion with a diffusion constant D. 
For one step of length ∆𝑅, we use 𝑃 ∆𝑅 ! 𝐷  to express the chance to find a certain squared 
displacement given Brownian motion with diffusion coefficient D. Since the expectation value of one 
squared displacement is independent of its predecessors, the chances for a tested D can be multiplied 
for each squared displacement ∆𝑅 !

!, hence the likelihood is given by: 

𝐿 ∆𝑅 !   |  𝐷 =   
1

4𝜋 𝐷𝜏 + 𝜎!"!
∙ exp −

∆𝑅 !
!

4 𝐷𝜏 + 𝜎!"!

!

!!!

 (2) 

 
where τ is the time lag, which is 1 frame, and N is the total number of steps in the window. The values 
for D are taken from the earlier CDF fit. In practice, the localization inaccuracy 𝜎!" must be 



14 
Supporting Material  

determined by other means first. Here we assumed that this value can be precisely obtained, and we 
used the true value as used in the generation of the trajectories. Here we determine the likelihood of 
both states, 𝐿! ∆𝑅 !   |  𝐷!  and 𝐿! ∆𝑅 !   |  𝐷! , and if 𝐿! > 𝐿!, the segment is classified as state 1.  
We could write this as a measure W by: 

𝑊 𝑡𝑟𝑎𝑐𝑘, 𝑓𝑟𝑎𝑚𝑒 =
𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 
(3) 

 
We have not taken exposure blur into account (8). Note that the MLE can also be used to estimate the 
value of the diffusion constant itself, by maximizing the expectation value by varying the tested D 
value; the maximum gives the most likely D value (9).  

Relative confinement 
Inspired by the confinement detection method of Simson (10), Meilhac used a slightly altered way to 
detect confinement (11), which we also use here. The relative confinement is defined by the parameter 
L as: 

𝐿 𝑡! +
!
!𝛿𝑡 =   𝛿𝑡 variance 𝑠  (4) 

 
𝑠 = 𝑟 𝑡 − 𝑟 𝑡! +

!
!𝛿𝑡   on  interval  𝑡 =    𝑡!. . 𝑡! + 𝛿𝑡  (5) 

 
An illustration of the distances s is given by arrows in Fig. S11A. Here we use the inverse of the value 
𝐿 for the motion quantification measure. 

Radius of gyration evolution 
The use of the radius of gyration has been first proposed by Saxton to measure asymmetry in single 
molecule trajectories (4), and it was demonstrated by Elliott et al. that it could also be used to detect 
confinement (12). The gyration radius is a measure of the space that is explored (defined by radius Rg) 
by the molecule within the segment, hence the radius will have a lower value for slow diffusion than 
for fast diffusion. Therefore the gyration radius is a local measure of the diffusion of a molecule, and 
can be used as a differentiation criterion in classification. We note that the expression in reference 12 
contains a typographical error, as the radius of gyration is defined as the square root of the non-
squared sum of the eigenvalues of the covariance matrix. However we followed Elliot et al. in an 
alternative measure, also called Rg. This alternative gyration radius Rg is defined as:  

 𝑅!! = 𝑅!! + 𝑅!! (6) 

where R1 and R2 are the eigenvalues of the gyration tensor T: 

𝑻 =

1
𝑁

𝑥! − 𝑥 !
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑦! − 𝑦 !
!

!!!

 (7) 

  
with i enumerating all subsequent positions (𝑥! , 𝑦!) in a segment of length N. We will use the value 𝑅! 
as a motion quantification measure. 	
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Table	
  S1:	
  Motion	
  quantification	
  measures	
  

Method Quantification measure W 

Windowed MSD fit of a MSD curve of a segment using first two points in curve 

Confinement 1
𝐿 𝑡! + !

!𝛿𝑡
 

Gyration Rg 

MLE 𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 

 

 

FIGURE	
  S12	
  	
  	
  Distribution	
  of	
  found	
  quantification	
  measure	
  values	
  for	
  pure	
  one-­‐population	
  diffusion.	
  
The	
  histograms	
  of	
  three	
  different	
  diffusion	
  constants	
  are	
  shown,	
  where	
  in	
  all	
  cases	
  we	
  added	
  a	
  
localization	
  inaccuracy	
  σxy	
  of	
  40	
  nm	
  to	
  the	
  positions	
  in	
  the	
  simulations.	
  (A)	
  Histograms	
  of	
  values	
  
found	
  using	
  a	
  windowed	
  MSD.	
  	
  The	
  broadening	
  in	
  the	
  slower	
  diffusion	
  distributions	
  are	
  due	
  to	
  the	
  
convolution	
  with	
  the	
  localization	
  inaccuracy.	
  (B)	
  Histogram	
  of	
  values	
  found	
  using	
  relative	
  
confinement.	
  (C)	
  Histogram	
  of	
  values	
  found	
  using	
  gyration.	
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Live cell experiments methodology 

Cell culture 
All cell culture materials were obtained from PAA Laboratories (Pasching, Austria) unless stated 
otherwise. MCF7 cells, a human breast cancer cell line, and plasmid coding for SNAP-EGFR were a 
gift from Jenny Ibach (Max Planck Institute in Dortmund, Germany). Cells were cultured in 
Dulbecco’s Modified Eagle’s medium supplemented with 10% FBS and penicillin/streptomycin at 
37°C with 5% CO2.  Before measurements, the cells were transferred to CellView dishes product 
#627870  (Greiner Bio-one, Alphen aan den Rijn, The Netherlands), grown overnight, transfected with 
SNAP-EGFR using Effectene (Qiagen, Venlo, The Netherlands), and then starved overnight the day 
after transfection in medium without FBS. Labeling of the SNAP-EGFR proteins was done by 
incubating the cells for 1 minute with 400nM of SNAP-Surface 549 (New England BioLabs, Ipswich, 
MA, USA) in 0.5% BSA. Measurements were performed in PBS buffer with added magnesium and 
calcium (PAA Laboratories, product H15-001). 

Microscopy 
Measurements were performed on a microscope with an Olympus PlanApo 100x/1,45 Oil TIRF 
objective using TIRF illumination. For excitation a 532nm laser (400mW) from Pegasus Shanghai 
Optical Systems (Pegasus Lasersysteme, Wallenhorst, Germany ) was used. All the light filters were 
obtained from SemRock (Rochester, NY). The infrared light produced by the laser was not sufficiently 
suppressed, therefore the green laser light passed an FF01-543/22 filter. The excitation and emission is 
split by an FF494/540/650-Di01 dichroic mirror. The emission light is filtered with an NF03-
532/1064E notch filter and an FF01-580/60 bandpass filter. Fluorescence images were acquired using 
an Andor iXon EM+ DU-897 back illuminated EMCCD with an acquisition time of 9ms and a kinetic 
cycle time of 38ms (25.8 fps). The microscope stage was heated with a sample heating plate and the 
objective was heated with a ring heater to 35-37°C. 

Tracking 
To obtain the trajectories from the raw videos, we used tracking software developed by others (13, 
14). The settings used for the cost matrices in this software can be found at the end of the Supporting 
Materials.  
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Accuracy of MSD methods and CDF fitting to obtain a one 
population diffusion coefficient 
 

It might seem, and it is often stated, that the CDF method is more accurate in determining the diffusion 
coefficient for a one population diffusion system compared to simply averaging the stepsizes as in 
MSD methods (15), as it considers the whole distribution of stepsizes. In practice however, this is not 
always correct. Also the number of points from an MSD curve taken into the fit to determine the 
diffusion coefficient are often based on a “rule of thumb” concept, such as taking the first three or four 
or the first 10% of the curve. However the accuracy to find the diffusion coefficient can simply be 
found by simulation and also by calculation (3). We show a simulation approach here to determine the 
spread of found diffusion coefficients from CDF and MSD methods.  

We simulated one-population unconstrained diffusion for 100 trajectories of various lengths, with a 
relatively small localization error compared to the diffusion coefficient, so for  𝛽 = 𝜎! 𝐷  ∆𝑡  ratio 
smaller than 1, see (7). We found that, for all lengths of trajectories, a CDF fit with only 1 stepsize is 
indeed, but only slightly, more accurate compared to the best MSD based fit; the value is of course 
wrong when not corrected for the added localization inaccuracy to the real diffusion coefficient. In 
practice this means we have to use the CDF of 2 steps too, and use the difference for CDF 2 steps and 
CDF 1 step to determine the diffusion coefficient. This 2 steps CDF methods has been described in 
detail in the methods section. Using this last method however, we found to be less accurate compared 
to the best MSD based fit where we take only the first two points in the curve (also the 1-steps and 2-
steps). Using only the first two points in the MSD curve was the best MSD based fit for this ratio of β. 
Therefore the CDF was not taken as a method for classification, as the MSD is preferred for one 
population diffusion therefore. Nevertheless, the CDF method has a known PDF for a distribution with 
multiple diffusion constants unlike the windowed MSD distribution, so this is still a straight forward 
method to find the global diffusion constant values and fractions when there are enough datapoints to 
build a reliable CDF.  
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A 

 

B 

 
C 

 

D 

 
FIGURE	
  S13	
  	
  	
  	
  Error	
  and	
  standard	
  deviation	
  of	
  MSD	
  methods	
  to	
  obtain	
  a	
  one	
  population	
  diffusion	
  coefficient.	
  
For	
  100	
  simulated	
  trajectories	
  exhibiting	
  one-­‐population	
  Brownian	
  motion	
  	
  (D=0.1	
  um2/s,	
  25fps)	
  of	
  various	
  
lengths	
  (3,5,8,..,100	
  steps)	
  as	
  plotted	
  on	
  the	
  x-­‐axis,	
  the	
  diffusion	
  value	
  was	
  determined	
  from	
  fitting	
  the	
  MSD	
  
curves	
  of	
  all	
  trajectories.	
  We	
  added	
  localization	
  inaccuracy	
  of	
  σxy	
  =	
  40nm	
  to	
  the	
  simulated	
  trajectories	
  (C,D).	
  
This	
  fit	
  was	
  done	
  using:	
  the	
  full	
  curve	
  (a),	
  full	
  curve	
  weighted	
  using	
  the	
  variance	
  of	
  each	
  point	
  (b),	
  the	
  first	
  10%	
  
(c),	
  only	
  the	
  first	
  two	
  points	
  (d),	
  and	
  using	
  cumulative	
  distribution	
  function	
  (CDF)	
  fitting	
  of	
  steps	
  (e),	
  and	
  using	
  
CDF	
  of	
  one-­‐step	
  and	
  two-­‐step	
  distances	
  (f).	
  We	
  repeated	
  this	
  1,000	
  times,	
  and	
  looked	
  at	
  the	
  standard	
  
deviation	
  σ	
  (A,C),	
  and	
  the	
  average	
  mismatch	
  <ε>	
  (B,D)	
  in	
  the	
  fitted	
  diffusion	
  values.	
  The	
  1	
  step	
  CDF	
  method	
  
has	
  the	
  lowest	
  standard	
  deviation	
  in	
  the	
  fitted	
  values,	
  but	
  gives	
  the	
  wrong	
  value	
  when	
  there	
  is	
  a	
  localization	
  
inaccuracy	
  as	
  in	
  practice.	
  The	
  most	
  accurate	
  way	
  of	
  using	
  the	
  points	
  in	
  the	
  MSD	
  curve,	
  is	
  to	
  only	
  use	
  the	
  first	
  
two	
  points	
  of	
  the	
  MSD	
  curve.	
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Settings file for SPT tracking software 
 
Dat.PixelSize = .119;  
Dat.TimeStep = 0.03868; 
Dat.ch_bin = [1];  
Params.verbose = 1;  
Params.frames = []; 
Params.psf = [0.84034 0.84034]; 
Params.imMask = []; 
Params.wvMask = [];  
Params.CCDGain = 63.8298; 
Params.CCDOffset = 0; 
Params.Intensity = 1.90; 
Params.FitBoxSize = [7];  
Params.Iterations = 10;  
Params.MaxCudaFits = 30000;  
Params.MinCRLBSigma = 0.5;  
Params.MinPValue = 0.01;  
Params.MinPhotons = [10];  
Params.ConnectParams.costMatF2Fparams = costMatFrame2FrameSetOptions; 
Params.ConnectParams.costMatGCparams = costMatCloseGapsSetOptions; 
%%% set parameters for frame 2 frame connections %%% 
Params.ConnectParams.costMatF2Fparams.funcName = 
'costMatFrame2FrameDensity'; 
Params.ConnectParams.costMatF2Fparams.density = []; 
Params.ConnectParams.costMatF2Fparams.D = 
[0.06*Dat.TimeStep/Dat.PixelSize^2 0.06*Dat.TimeStep/Dat.PixelSize^2 ]; 
Params.ConnectParams.costMatF2Fparams.maxSearchDist = [4 4]; 
Params.ConnectParams.costMatF2Fparams.kon = 0.1; 
Params.ConnectParams.costMatF2Fparams.koff = 0.0001; 
Params.ConnectParams.costMatF2Fparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatF2Fparams.wvJump = []; 
%%% set parameters for gap closing %%% 
Params.ConnectParams.costMatGCparams.timeWindow = 10; 
Params.ConnectParams.costMatGCparams.funcName = 'costMatCloseGapsDensityM'; 
Params.ConnectParams.costMatGCparams.density = []; 
Params.ConnectParams.costMatGCparams.D = [0.01 0.01]; 
Params.ConnectParams.costMatGCparams.maxSearchDistPerFrame = [3 3]; 
Params.ConnectParams.costMatGCparams.maxSearchDist = [10 10];  
Params.ConnectParams.costMatGCparams.minTrackLen = 2; 
Params.ConnectParams.costMatGCparams.kon = 0.1; 
Params.ConnectParams.costMatGCparams.koff = 0.0001; 
Params.ConnectParams.costMatGCparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatGCparams.wvJump = []; 
Params.TrackFunction = 'obj.makeTrack'; % standard two stage tracking call. 
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