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Abstract: Metallic nano-antennas provide strong field confinement
and intensity enhancement in hotspots and thus can ultimately enhance
fluorescence detection and provide ultra small detection volumes. In
solution-based fluorescence measurements, the diffraction limited focus
driving the nano-antenna can outshine the fluorescence originating from
the hotspot and thus render the benefits of the hotspot negligible. We
introduce a model to calculate the effect of a nano-antenna, or any other
object creating a nontrivial intensity distribution, for fluorescence fluctu-
ation measurements. Approximating the local field enhancement of the
nano-antenna by a 3D Gaussian profile, we show which hotspot sizes and
intensities are the most beneficial for an FCS measurement and compare it
to realistic antenna parameters from literature.
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1. Introduction

One of the promises of plasmonics is the improvement of sensing schemes to the single
molecule level. Impressive advances have been made towards this goal utilizing different phys-
ical properties, such as refractive index changes [1], Surface enhanced Raman Spectroscopy [2]
or fluorescence spectroscopy [3–5]. Especially the detection of fluorescently labeled specimens
can profit threefold from properly designed plasmonic antennas: first, the plasmonic antenna
can increase the excitation rate by enhancing the local pump-field, secondly, the antenna can
funnel the fluorescence emission into a certain direction or polarization state and thirdly, for
fluorophores with low intrinsic quantum efficiency the offered additional photonic states of the
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antenna can greatly improve the quantum yield [6, 7].
Fluorescence correlation spectroscopy [8] (FCS) is widely used to investigate locally the dif-

fusion coefficient of single molecules. FCS exploits random fluorescence intensity fluctuations
that occur as individual molecules diffuse into and out of focus in a confocal measurement
configuration. These random fluctuations are correlated on a time scale given by the diffusion
constant. By its very nature, diffusion measuremens via FCS require the number of detected
molecules (fluorophores in the diffraction limited focus) to fluctuate significantly due to brow-
nian motion, which limits the maximal concentration at which FCS measurements can be per-
formed with a standard diffraction limited excitation volume. This limitation can be overcome
by employing plasmonic antennas for light and two quintessential geometries have emerged for
plasmon enhanced FCS: nano-apertures and nano-antennas. Small nano-apertures in a metal
film [9,10], effectively block the background signal by an optically thick metal layer. They have
proven to be very useful for FCS measurements [11–14] by shifting the limit of the highest con-
centration at which measurements are possible by 2-3 orders towards physiologically relevant
concentrations [15]. This improvement is mostly due to geometric confinement of the detection
volume. Nano-antennas [16,17] also localize fields in deep-sub-wavelength volumes but do not
provide an effective suppression of the excitation focus in the solute, which reduces the benefits
of the strong field confinement around the antenna in fluorescence fluctuation measurements
unless the intensity enhancement at the antenna is very large. Several reports have recently
claimed FCS enhancement in plasmon antennas, notably including the bow tie antenna [18]
famous for its large field enhancement, as well as simple colloidal metal nanoparticles [19–22]
or self assembled silver nano-islands [23].

In this article, we model the effect of nano-antennas, or any other object causing a non-
gaussian intensity distribution, on fluorescence fluctuation measurements and identify which
configurations actually improve an FCS measurement. In the first section we revisit the estab-
lished standard FCS theory [4, 5] for Molecular Detection Functions (MDF) of single gaussian
shape and recollect the mathematical formalism describing how information is extracted from
fluctuating fluorescence intensities and how they are related to the diffusion process in the an-
alyte. Then, we derive expressions which allow to calculate the autocorrelation functions for
arbitrary detection volumes and find similarities to expressions derived in dual focus fluores-
cence cross correlation spectroscopy [29]. In section 3, we apply our model to nano-antenna
enhanced FCS experiment by constructing a simplified MDF of only two Gaussian constituent,
one representing the diffraction limited ‘background focus’, as in standard FCS and addition-
ally we superimpose a second smaller Gaussian ‘hotspot’ which represents the confined and
enhanced nearfield intensity created by the nano-antenna. Exemplified by this model system,
we quantify the benefit for a FCS measurement, that can be obtained depending on intensity
enhancements and sizes of the hotspot. We predict the suitability of realistic nano-antennas for
improving an FCS measurement by locating their nearfield parameters, extracted from liter-
ature, into our parameter phase space diagram. In the last section we discuss in which cases
the total correlation function can be used to extract information about the hotspot size and or
intensity. Finally we identify in which limits it is valid to interpret a nano-antenna enhanced
FCS measurement by a simple single focus FCS model.

2. Fluorescence fluctuation correlation

In a typical Fluorescence Correlation Spectroscopy measurement [8], a collimated laser is fo-
cused by a microscope objective in a solution of fluorophores which undergo brownian motion.
The fluorescence signal is picked up through the same objective, passes a spectral filter to block
the scattered laser light and the fluorescence is then detected on a sensitive detector and stored
as a function of time F(t). The temporal fluctuations in the fluorescence intensity originate
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Fig. 1. Schematic of a non-Gaussian MDF: a focused laser beam (green) illuminates a
metallic nano-particle (center) which gives rise to field enhancement in its vicinity (orange).

from single molecules randomly entering and leaving the focus. The stochastic trajectories are
reflected in temporal correlations in the fluorescence signal. Those correlations are extracted
by autocorrelating the fluorescence intensity G(τ) = 〈F(t)F(t + τ)〉/(〈F(t)〉〈F(t)〉) where the
angle brackets denote the average of the signal over time 〈F(t)〉 = T−1 ∫ T

0 F(t) dt. For conve-
nience in notation we define G′(τ) = G(τ)− 1. The fluorescence intensity F(t) is linked to
the spatial distribution of fluorophores C(r, t) by the MDF: F(t) = B

∫
MDF(r)C(r, t)d3r [4].

The MDF(r) = Iexc(r)CEF(r) describes the spatial dependence of the detection efficiency of a
fluorophore at certain position r and is defined as the product of the focused excitation beam
Iexc(r) and the probability to detect fluorescence originating from the same position, quantified
by the collection efficiency function CEF(r). The product of all factors independent from po-
sition yields the prefactor B: the excitation power, a setup detection efficiency, the absorption
cross-section of the fluorophore and its quantum yield. In an inhomogeneous optical environ-
ment (e.g. in the vicinity of a plasmonic antenna) the quantum efficiency is in general also
dependent on position [24, 25] and then has to be included as a third factor η(r) in the MDF.
With this information we can derive a generic expression for the autocorrelation of F(t), given
a fluctuating C(r, t)

G′(τ) =
B2 ∫ MDF(r)

∫
MDF(r′)〈δC(r,0)δC(r′,τ)〉d3r′d3r[
B〈C〉

∫
MDF(r)d3r

]2
where 〈δC(r,0)δC(r′,τ)〉 is the probability to find a fluorophore at time t + τ on position
r′, when it was located at r at time t. This expression needs a physical model for the mo-
tion of the fluorophores in the sample. In the case of free translational diffusion, which we
will assume throughout this paper, this term is given by the solution of the diffusion equation
〈δC(r,0)δC(r′,τ)〉 = 〈C〉(4πDτ)−

3
2 exp

[
−(r− r′)2 /(4 D τ)

]
where D is the diffusion coef-

ficient and 〈C〉 the average concentration of the fluorophores. Substituting this expression into
G′(τ) yields

G′(τ) =

∫
MDF(r)

{
MDF(r′)∗ (4πDτ)−

3
2 exp

[
−(r− r′)2/(4 D τ)

]}
d3r

〈C〉
[∫

MDF(r)d3r
]2 , (1)

where ∗ denotes convolution. The expression in curly brackets can be intuitively seen as the
MDF blurred by the diffusion process with a Gaussian of width 4 D τ . The volume integrated
product of the blurred MDF with the original one quantifies the time evolution of the probability
to detect the particle at a time t + τ again after it has been detected at t.

In standard FCS applications, the MDF is approximated as a single 3D Gaussian determined
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by its strength S, center position R and width in each dimension σ

Γ(r,S,R,σ) =

(
2
π

) 3
2 S

σ1 σ2 σ3
exp

[
−2 ∑

k=1,2,3

(
rk−Rk

σk

)2
]

.

This allows an analytical solution of Eq. (1) which then reads [4, 5]

G′(τ) =

[
〈C〉 ∏

k=1,2,3

√
π

√
4 D τ +σ2

k

]−1

.

The correlation contrast is defined as G′(0) =
[
〈C〉 π3/2 σ1 σ2 σ3

]−1
. The contrast is the inverse

of the average number of fluorophores which contribute to the fluorescence signal 〈N〉, given
the effective detection volume V ∗ of π

3
2 σ1 σ2 σ3. The peak value is given by the ratio of the

volume integral S divided by the effective volume P = S/V ∗. Assuming a rotation symmetric
Gaussian with σ1 = σ2 = s; σ3 = u yields the forms of G(τ), 〈N〉 and V ∗ known from FCS
literature [4, 5].

2.1. MDF of arbitrary shape

In a nano-antenna enhanced FCS experiment, an antenna is positioned in the focus of a tightly
focused laser beam to locally enhance the pump field as well as the detection probability [9–
12, 14, 21, 26, 27]. Generally the presence of the antenna results in a MDF that is not simply
gaussian. We now introduce a framework to calculate the autocorrelation G′(τ) for such an
MDF. Since a single Gaussian MDF allowed an easy mathematical treatment, we propose to
describe any MDF as a sum of Gaussians

MDF(r) =
N

∑
i=1

Γi (r) =
N

∑
i=1

Γ(r,Si,Ri,σi) . (2)

It is evident that such a Gaussian expansion can approximate any MDF with arbitrary precision,
since in the limit of σ → 0 the Gaussians tend to δ -functions, which form a complete set.

In a plasmon enhanced FCS experiment, we would choose the first Gaussian Γ1 to correspond
to the diffraction limited pump spot as in standard FCS. We add the local pump field enhance-
ment of the nano-antenna with one narrower Gaussian Γ2. More Gaussians can be added to map
the pump field distribution more accurately or to account for the suppression of fluorescence
emission by quenching in close proximity to the metal surface. Inserting a sum of Gaussians
(Eq. (2)) into the general definition of the normalized autocorrelation function (Eq. (1)) yields:

G′(τ) =
1

〈C〉S2
MDF

[
ΣnAn,n(τ)+Σn6=mAn,m(τ)

]
(3)

with (n,m = 1 . . .N).
The square brackets consists of N2 summands, each of them a volume integral of the prod-

uct of two Gaussians An,m(τ) =
∫

Γn(r) ·ΓD
m(r,τ) d3r. As in Eq. (1), the second Gaussian Γm

is broadened by the convolution with the diffusion kernel. Since the diffusion kernel is also
gaussian with a τ-dependent width, the convolution yields again a Gaussian

Γ
D
m(r,τ) = Γ

(
r,Sm,Rm,σ

D
m (τ)

)
= Γm(r)∗ (4πDτ)−

3
2 exp

[
−
(
r− r′

)2
/(4 D τ)

]
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with a τ-dependent width of σD
m,k(τ) =

√
σm,k

2 +8D τ . The volume integral An,m(τ) is then
given by

An,m(τ) = Sn Sm ∏
k=1,2,3


√

2
√

π

√[
σn,k
]2
+
[
σD

m,k(τ)
]2

exp

−2
(Rn,k−Rm,k)

2

[σn,k]
2 +
[
σD

m,k(τ)
]2


 . (4)

The overall normalization factor in Eq. (3) is given, as in the normal single focus
FCS, by the square of the volume integral of the entire MDF times the concentration
〈C〉 S2

MDF = 〈C〉
[
ΣN

n=1Sn
]2

= 〈C〉
[
ΣN

n=1
∫

Γn(r) d3r
]2

. Equation (4) can be applied to a vast
variety of FCS experiments with nontrivial intensity distributions, e.g. standard single focus
FCS at intensities where fluorescence saturates in the focus [28], multifocus FCS [29, 30] or
FCS experiment with a complex intensity distribution for instance occurring at nano-antennas.
The decomposition into Gaussians allows calculating the autocorrelation for any Molecular
Detection Function.

We recognize two different types of contributions: An,n terms correspond to the standard
single focus FCS measurements in each Gaussian, whereas the An,m (m 6= n) correspond to
contributions of diffusion from one Gaussian to another, as it is established in dual-focus
cross correlation FCS experiments [29]. In the case of pure diffusive transport it can be rig-
orously shown that An,m(τ) = Am,n(τ), thus the number of independent summands reduces to
1
2 N(N +1). While the ACF obtained from an FCS measurement of multiple species in a sin-
gle focus [4, 31] shows strong similarities to Eq. (3), it lacks the crossterms An,m(n6=m). As we
will see in Fig. 3(a) in the following section, the crossterm can have a higher contribution to
the correlation function than an associated diagonal term. Therefore employing a multi-species
model for a multi-gaussian detection experiment as done in [20, 21] to explain the ACF for a
plasmonic structure can lead to erroneous results. The cross-terms are well known in dual focus
FCS [30], where one creates two spatially separated diffraction limited foci from which auto-
correlations An,n and cross correlations An,m can be separately measured. For plasmon-antenna
enhanced FCS, however, only the sum of all terms can be measured.

3. Two coinciding Gaussians

We now apply our formalism to the case of plasmon enhanced FCS. In particular we consider
a scenario where a plasmonic antenna is illuminated by a focused laser beam, as illustrated
in Fig. 1. If the excitation wavelength overlaps with an antenna resonance, the electric field
intensity |E2|2 will be locally enhanced close to the antenna compared to the intensity in absence
of the antenna |E1|2.

We show in section 3.2 how the field enhancement contributes to the total correlation con-
trast. In particular we calculate how one should optimally design the enhancement and volume
of a plasmonic hotspot to obtain the highest G′(τ = 0) at a given concentration, which is of
large importance in the quest to apply FCS at physiological concentrations [15]. Afterwards
we investigate (section 3.3) how the antenna affects the roll-off time of G′(τ) for τ > 0. This
question is relevant from two distinct viewpoints: on the one hand, given a known solution of
fluorophores, one can ask how trustworthy an FCS measurement is to determine the hotspot
size and volume. On the other hand, one can ask how suited a given plasmon antenna is to
determine the concentration and diffusion constant of a given solute accurately.

In order to answer these questions we consider a very simple model of plasmon-enhanced
FCS. For the sake of simplicity we compose the MDF as the superposition of only two coin-
ciding spherical Gaussians (R1 = R2; σn,1 = σn,2 = σn,3), one representing a diffraction lim-
ited focus Γ1 and another representing the locally enhanced near-field Γ2 with smaller extent
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(σ2 < σ1). Figure 2(a) shows a typical example of such a scenario. Superimposed in the cen-
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Fig. 2. a) crosscut though a MDF (red line) constructed of two Gaussians: a wide Gaussian
(blue dashed line, width: σ1 = 500 nm; peak height: P1 = 1; integral: S1 = 0.7µm3), repre-
senting a diffraction limited focus and a narrow Gaussian (green dashed line; σ2 = 50nm;
P2 = 31; S2 = 0.023µm3) mimicking a ‘hot spot’ of a plasmonic nanoparticle. b) Calcu-
lated autocorrelation function for the entire MDF (red solid line) and its constituents: the
autocorrelation of background focus A1,1 (blue dashed line), the hotspot A2,2 (green dashed
line) and the sum of the identical cross-terms 2 A1,2 (magenta dashed line).

ter of a focus of 500 nm width we consider a hot spot 50 nm across, reaching an intensity
enhancement of ≈ 30 in its peak position, a typical value for a metal nano-sphere. By that
we assume that the increase of the MDF is only caused by near-field intensity enhancement
P2/P1 = |E2|2/|E1|2. Quenching could be easily incorporated into the model by including an
additional even narrower Gaussian with negative peak height to the sum. Calculations (not
shown) with a third Gaussian accounting for quenching have shown negligible influence of the
quenching on the total correlation function in a scenario presented in Fig. 2. The calculated
G′(τ) (Fig. 2(b), red solid line) clearly shows an enhanced contrast (the diffraction limited
Gaussian only (not shown) would show a contrast of 1) and consists of three contributions:
A1,1 (blue dashed line) the contribution of the background focus and A2,2 (green dashed line)
from the hotspot are the main contributions to c, but in addition the contribution of the two
identical cross-terms A1,2 and A2,1 is not negligible (magenta dashed line). Furthermore we see
that the influence of the hotspot reduces the roll-off time. The width ratio σ2/σ1 = 10−1 trans-
lates into a ratio of effective volumes of V ∗2 /V ∗1 = 10−3. The hotspot alone would therefore
exhibit a correlation contrast 1000× higher than the focus volume, whereas the superposition
illustrated in Fig. 2(a) shows a correlation contrast only twice as large as from the bare focus.
This shows the importance to properly account for the background focus when conducting an
antenna-enhanced FCS measurement.

3.1. Different contributions to the total correlation contrast

We now proceed to find the ideal parameters for the hotspot to enhance the total correlation
contrast. Because the total correlation contrast is always inversely proportional to the concen-
tration of the fluorophores, increasing the contrast by utilizing a hotspot allows to measure at
higher concentrations. To understand when the correlation contrast is maximum, we extract
the relative contributions of the hot spot and the background focus. To compare the relative
contributions, we calculate An,m at τ = 0 for n = m = 1,2. With R1 = R2 Eq. (4) simplifies to
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An,m(0) = Sn Sm ∏
k=1,2,3

√
2

√
π

√
σ2

n,k +σ2
m,k

. (5)

For summands with n = m the expression further reduces to

An,n(0) =
S2

n

π3/2 σn,1 σn,2 σn,3
=

S2
n

V ∗n
. (6)

This shows that a hotspot of 10× smaller extent (1000× smaller volume) than the background
focus, contributes as much to the total correlation contrast as the background focus, if the hot
spot shows a peak intensity of

√
1000 ≈ 30 higher than the background focus. This is exactly

the case we have illustrated in Fig. 2.
As can be seen in Fig. 3(a) (red curves), the cross terms A1,2(0) (dash-dotted line) clearly

exceed the background focus contribution A1,1(0) (dashed line) for σ2/σ1 > 0.2, although they
remain below the diagonal hot spot contribution A2,2(0) (dotted line). Generally the cross term
never exceeds the largest diagonal term, but it can significantly exceed the smaller of the two
diagonal contributions. Throughout all figures subsequent to 3(a) we plot the complete G′, that
is the sum of all contributions.

3.2. Total correlation contrast

While in Fig. 2(b) we calculated G′(τ) for all time differences, we now analyze the contrast
at zero time as a function of the hot spot parameters. Figure 3 shows how the total correlation
contrast G′(τ = 0) depends on the width and peak intensity of the hotspot. All calculations
shown in this article were performed with a background focus of σ1 = 500nm width, a peak
height of P1 = 1 and a diffusion coefficient D = 10−11 m2s−1.

Figure 3(a) displays the total correlation contrast (solid lines) for hot spots with three differ-
ent peak intensities P2 = 1, 10 and 32 in dependency of the relative width σ2/σ1. As expected,
the higher the field enhancement, the higher the contrast boost that can be achieved. For a
hotspot with ten-fold peak enhancement (solid green line) we see that the total correlation con-
trast can be increased from 1 to 4 when the hotspot is a third of the size of the diffraction limited
spot (σ2 = 150 nm). For a peak enhancement of 32 (solid red curve) the correlation contrast can
exceed 9 for a hotspot width of σ2 = 100 nm (σ2/σ1 = 1/5). Maybe more surprisingly, we find
that there is an optimum size at which the highest correlation contrast is achieved. This opti-
mum shifts with increasing enhancement factors to smaller hotspot sizes. If a hotspot is too
small its contribution to the total fluorescence signal is too small to influence G′(τ). If on the
other hand the hotspot is too big (about the size of the focus field), there is no reduction in
effective volume, thus no increased correlation contrast.

Figure 3(b) provides an overview of G′(0) in a larger parameter space in a color plot with
logarithmic color scale and the width ratio σ2/σ1 on the horizontal and the peak ratio P2/P1
on the vertical axis. We now explore the content of this phase diagram by means of a few
limiting cases. At the right side of the diagram at σ2/σ1 = 1, the hotspot has the same width as
the Gaussian, which is equivalent to just increasing the amplitude of the MDF but leaving its
shape unaltered. The ACF is not affected by scaling of the MDF, thus G′(0) = 1, independent
of P2/P1. In other words, there is no point offering any field enhancement, unless it is confined
to a fraction of the focus. A horizontal cut at P2/P1 = 1 (blue line) corresponds to a hotspot
with the same amplitude as the big Gaussian. Walking on a line from right to left corresponds
to reducing the size of this hotspot, keeping its amplitude constant at 1. As can be seen in Fig.
3(a) (blue solid line) this improves the total contrast merely from 1 to ≈ 1.3 at σ2/σ1 ≈ 0.6.
Reducing σ2/σ1 further makes the contribution of the hotspot vanish: while offering the desired
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Fig. 3. The background focus is kept constant at σ1 = 500 nm and P1 = 1 whereas the
parameters of the hotspot are varied. a) The total correlation contrast G′(0) (solid lines) for
three different peak to peak ratios. For the red curve (P2/P1 = 32) we additionally show
its constituents: A1,1 (dashed line), A2,2 (dotted line) and 2 A1,2 (dash-dotted line). In the
range of ideal correlation contrast enhancement for a given peak intensity enhancement,
the cross term A1,2 can have a stronger influence on the total correlation function than the
background focus A1,1 itself. The time dependence of the red curves at σ2/σ1 = 10−1 is
shown in Fig. 2(b).
b) Shows how the total correlation contrast depends on the relative width σ2/σ1 and relative
peak intensities P2/P1. The cyan line indicates where the total correlation contrast is 10×
enhanced compared to the bare background focus. Crosscuts along the blue, green and red
lines corresponds to the solids lines in Fig. 3 of the same colors. The gray dashed line
shows which relative width yields the maximum contrast for given peak intensities. The
labels A,B,C denote realistic antenna parameters from literature listed in Table 1.

confinement -which is a prerequisite for high FCS contrast- the fewer molecules in the hot
spot generate strong relative fluctuations in the hotspot fluorescence but they simply provide
insufficient photon counts compared to those in the background focus. If we now consider a
vertical cross section at σ2/σ1 = 10−1, increasing the field intensity enhancement, at first the
contrast barely increases. When crossing the horizontal red line at P2/P1 = 32 the contrast
has doubled to G′(0) ≈ 2, meaning that the hotspot has gained enough intensity to contribute
the same amplitude to the total correlation function as the background focus (as in Fig. 2).
Increasing the peak height of the hotspot further greatly improves the total correlation contrast
until it saturates at P2/P1 ≈ 104 approaching G′(0) ≈ 1000 associated with the 1000 times
smaller volume of the hotspot. For higher enhancements the G′(τ) is fully determined by the
signal from the hotspot and the background focus is not relevant anymore.

We notice that on horizontal cross sections, at any given peak enhancement, there is an op-
timal size of hotspot to maximally increase the total correlation contrast, exactly as seen in
the cross cuts in Fig. 3(a). The gray dashed line in Fig. 3(b) indicates the optimum hotspot
size for each enhancement. The optimum shifts to smaller hot spot sizes for larger enhance-
ments. Having mapped the influence on the total correlation contrast of certain hotspots for
FCS, we wonder where actual plasmonic antennas reside in this diagram. Indeed, fluorescence
fluctuation measurements have recently been reported for Au-spheres, bow-ties antennas and
nano-rods [16, 18, 21]. For the bow-tie and nano-rod antennas we have estimated the field en-
hancement and their extents from literature calculations. For gold nano-spheres we have calcu-
lated field enhancements and extents using analytical Mie theory [32]. The hotspot parameters
extracted or calculated for three realistic antennas we have compiled in Table 1. The labels A, B
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Table 1. Properties of gold nano-antennas in literature: A) Gold Mie sphere (∅100 nm);
near field intensity enhancement was calculated and σ2 was approximated by the cubic
root of the calculated effective mode volume; B) single nanorod ( [33], Fig. 2(b) inset),
hotspot diameter approximated by rod diameter; C) Bow tie antenna [18], hotspot diameter
approximated by the gap size. All hotspot diameters were put into ratio to the extend of the
background focus given by a diffraction limited focus of σ1 = λ/(2NA) assuming a NA=1
objective.

Structure σ2 (E2/E1)
2

λ0 σ1 = λ0/2 σ2/σ1
A Au sphere 20nm 32 580nm 290nm 1/15
B single nanorod 80nm 100 620nm 310nm 1/4
C Bow Tie antenna 20nm 1000 780nm 390nm 1/20

and C in Fig. 3(b) show where these antennas reside in our hotspot parameter space. Evidently
Mie spheres (label A) supply poor intensity enhancement and are too confined to yield optimal
FCS enhancement. This is compatible with the experimental findings of a total correlation con-
trast enhancement of ≈ 2× and ≈ 12× for gold colloids in [20] and [21], taking into account
the different quantum efficiencies used in the experiments.

Estrada et al. have shown measurable correlation contrast assisted by a gold colloid
(∅80 nm) in a 150µM dye-solution, ‘104 times the concentration used in standard experi-
ments’ [19]. The reported experiment could not pinpoint the origin of the enhanced correlation,
and an equal contribution of altered molecule kinetics by sticking at interfaces and reduced
diffusion volume is suggested by the authors. Our model suggests that the reduced volume for
freely diffusing particles is unlikely to have such a strong effect in the described system.

Nano-rods (label B) perform much better due to their higher intensity enhancement. The bow
tie antenna (label C) seems ideal and our model predicts a 1000-fold increase in correlation con-
trast might be reached. It should be noted that in the experimental realizations of the latter two
antennas [16, 18], the fluorescence fluctuations signal was afflicted by ‘sticking’ dynamics of
the fluorophores to the particle or substrate surface, thus those experimental correlation func-
tions can not be compared with our model which only includes diffusion. A recent experiment
by Punj et al. [27] has quantified the correlation enhancement for a so called ‘antenna in a
box’, a particle dimer antenna enclosed in a rectangular void in a gold film. They established
detection volumes down to 60 zl, meaning a factor 30 contrast enhancement compared to a ref-
erence measurement that utilized the same rectangular void but without bow tie. This reference
measurement in itself already implied a 100-fold reduced detection volume compared to a free
focus.

3.3. τ dependence of G′(τ)

The correlation contrast at zero time is important because it directly determines the maximal
concentration at which fluctuations measurements can be performed. However measuring a
diffusion constant requires the measurement of the roll off time of G′(τ). On the one hand one
can ask how suited a given plasmon antenna is to determine the concentration and diffusion
constant of a given solute accurately. On the other hand, given a known solution, it is interesting
to check how trustworthy an FCS measurement is to determine the hot spot volume from a
measured diffusion time. We define the effective diffusion time τ∗ as the time when G′(τ)
has dropped to half its maximum value G′(τ∗)/G′(0) = 1/2. Figure 4(a) shows the effective
diffusion time as a function of the hot spot parameters.

We explore the meaning of Fig. 4 by again walking along limiting cases. The different
limits in this diagram are as follows: When the hotspot is the size of the background focus
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Fig. 4. a) Shows how the effective diffusion time τ∗ of the total correlation function depends
on the hotspot size and amplitude. The apparent diffusion coefficient D∗ was extracted from
G′(0), τ∗ and known concentration assuming a single focus FCS experiment. b) Shows the
ratio D∗/D0 of the apparent divided by the real diffusion coefficient, showing a possible
misjudging of 1000× in the calculated parameter range. The cyan lines (from Fig. 3(b))
shows the parameters for which the total correlation contrast in enhanced 10×.

(σ2/σ1 = 1), the diffusion time is unaffected because the shape of the MDF is unchanged.
When the enhancement is very low (e.g. P2/P1 = 1), the diffusion time is dominated by the
background focus and shrinking the hotspot further does not change τ∗. Whenever the enhance-
ment is high (e.g. P2/P1 = 104), the total correlation function G′(τ) is dominated by the hotspot
and τ∗ then scales like ∝ (σ2)

2. Now assume we increase the hotspot intensity for a given size
(e.g. σ2/σ1 = 0.1) starting from P2/P1 = 1: for a weak hot spot the diffusion time is determined
by the background focus but increasing hotspot intensities to ≈ 30 we see a steep transition for
τ∗ at the point when hotspot and background focus contribute equally to the G′(τ) (close to
label A). When we further increase the hotspot intensity the τ∗ saturates at the diffusion time of
the bare hot spot.

3.4. Retrieval of the information about the hotspot

Having explored how the parameters G′(0) and τ∗, which characterize G′(τ), behave for dif-
ferent hotspots, we now investigate in which cases we can safely deduce information about the
hotspot from the total correlation function G′(τ). Because fitting a closed expression of G(τ)
for a given number of Gaussian to experimental data is expected to be error-prone, we now
attempt to retrieve information from parameters which can be extracted robustly: first, the total
correlation contrast G(0) and second the effective diffusion time τ∗.

We assume to have a calibrated solution of known diffusion coefficient and concentration
which could for instance be measured via a standard single focus FCS measurement in the
same solution without the antenna. Performing a measurement on the antenna yields a different
correlation contrast G′(0) and diffusion time τ∗. If the concentration is known, the correlation
contrast G′(0) allows to retrieve the effective volume V ∗. If the correlation contrast is more than
10× enhanced (above the cyan contour line in Fig. 3(b) and Fig. 4(a,b) the measured diffusion
time τ∗ is in good approximation determined by the hotspot. This can be seen in Fig. 4(a) as τ∗

does not change with changing field enhancement anymore. Thus in this case one can deduce
the extent σ2 of the hotspot by the measured diffusion time and the known diffusion coefficient
D, and neglecting the background focus. Having determined σ2 from the effective diffusion
time one has essentially fixed the position on the horizontal axis in our color plots. If the boost
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in correlation contrast is not at the limit of the bare hotspot of (σ2/σ1)
−3, meaning the contour

lines in Fig. 3(b) are not vertical yet, then this value of G′(0) corresponds to an unique peak
enhancement P2/P1 for the antenna. In other words, a FCS measurement at an antenna in a
calibrated solution allows to retrieve the size and the peak enhancement of the hotspot just by
extracting G′(0) and τ∗, if the temporal shape of G′(τ) is dominated by the hot spot.

3.5. Retrieval of the Diffusion coefficient

We just have examined in which cases the total correlation function allows reading off hot
spot properties. Now we ask in which conditions the antenna enhanced FCS can be used to
measure the diffusion coefficient of an unknown solution. If the very same antenna was cali-
brated in reference measurement (with known diffusion coefficient D0 and concentration C0)
the measurement of the unknown solution can be compared to the reference and hence the dif-
fusion time and total contrast can be related to the diffusion constant and concentration of the
reference. It should be noted, that due to the dispersive character of a plasmonic antenna the
calibration has to be carried out within the same dielectric environment (refractive index of the
solvent) with a fluorophore showing the same absorption and emission spectrum as well as the
same quantum efficiency as the target solution. Moreover we expect that one should use ex-
actly the same antenna as field enhancements may vary strongly between nominally identical
antennas.

If a full calibration of the nano-antenna is not possible but either the diffusion constant or
the concentration of the solution is known, one might be tempted to extract too much infor-
mation from G′(τ). As an example we assume that the average concentration C0 is known
and calculate the diffusion coefficient from G′(0) and τ∗. From the total correlation contrast
G′(0) and a known concentration C0 we calculate the effective volume Ve f f = (G′(0)C0)

−1

and assume spherical symmetry to get the effective width of the Gaussian σe f f = π−1/2 V 1/3
e f f .

Next we take the effective diffusion time τ∗ to then calculate the theoretical diffusion constant
D∗ = (σ∗)2/(4 τ∗). Figure 4(b) shows the ratio D∗/D0 of the calculated diffusion coefficient
divided by the real diffusion constant used in the calculations. We see that the diffusion co-
efficient maybe misjudged by a factor of 1000 when interpreting the correlation curve as in a
single focus FCS experiment. Only in two limits does this retrieval yield a correct diffusion
coefficient. These two cases are on the one hand, when the hot spot does not affect the G′(τ)
at all, namely at low peak enhancements, or on the other hand at very high peak enhancements
when the hotspots totally dominate G′(τ), which is the case at regions where the contour lines
in Fig. 3(b) and Fig. 4(a) are vertical. Unfortunately, especially the regions in parameter space
of realistic plasmonic antennas yields diffusion coefficients up to a factor 100 higher than the
real value.

4. Conclusion

We have presented a mathematical framework to treat fluorescence correlation measurements
of systems with a non-gaussian Molecular Detection Function, as in the case of nano-antenna
enhanced FCS measurement. In a plasmonic environment the MDF is the product of the pump
field intensity, the detection efficiency and the quantum efficiency, where all quantities are
dependent on position and require the spatial mapping of electromagnetic field at the excitation
wavelength, at the emission wavelength and the local density of optical states at the emission
frequency. Once obtained, the MDF can be decomposed into Gaussians and the expressions we
derived allow an analytical treatment of simple problems or efficient numerical handling for
MDFs of arbitrary complexity.

For the example of a plasmon enhanced FCS experiment approximated by two Gaussians,
mimicking the diffraction limited background focus and the nano-antenna hotspot, we dis-
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cussed how the hotspot affects the total correlation function. Marking realistic values for plas-
monic hotspot sizes and peak amplitudes in our calculations allows the prediction of their ben-
efit for FCS applications. We found that a bow tie antenna can outperform a Mie sphere by
two orders of magnitude in terms of increasing the total correlation contrast, due to its field en-
hancement being 30× higher than the Mie sphere. Further we showed that for a given hotspot
peak intensity, there is an optimal size at which the total correlation contrast becomes maximal.
Characteristic parameters of the correlation function like total contrast and diffusion time scale
differently with the hotspot width or peak height. This has severe implications: even if the total
correlation function seems to be dominated by the hotspot –exhibiting strongly increased con-
trast or significant reduction of the diffusion time– this does in general not allow to interpret the
total correlation function as in a single focus FCS experiment and leads to diffusion coefficients
orders of magnitudes different from the real value. We identify hotspot parameter regimes in
which an interpretation of the correlation curve as in a single focus experiment is tolerable
and yields correct results. Our model is a versatile tool to efficiently predict how non-gaussian
intensity distributions alter fluorescence fluctuation measurements. As such it allows to bench-
mark proposed antenna designs for FCS against the requirements that MDF enhancements of at
least around 102 are obtained and that the antenna sustains such a high MDF over a sufficiently
large volume to maximally improve FCS contrast. This is by no means an easy challenge, as
large MDF enhancements typically involve narrow gaps.
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