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Abstract
Living cells constitute an extraordinary state of matter since they are inher-
ently out of thermal equilibrium due to internal metabolic processes. Indeed,
measurements of particle motion in the cytoplasm of animal cells have
revealed clear signatures of nonthermal fluctuations superposed on passive
thermal motion. However, it has been difficult to pinpoint the exact molecular
origin of this activity. Here, we employ time-resolved microrheology based on
particle tracking to measure nonequilibrium fluctuations produced by myosin
motor proteins in a minimal model system composed of purified actin fila-
ments and myosin motors. We show that the motors generate spatially het-
erogeneous contractile fluctuations, which become less frequent with time as a
consequence of motor-driven network remodeling. We analyze the particle
tracking data on different length scales, combining particle image veloci-
metry, an ensemble analysis of the particle trajectories, and finally a
kymograph analysis of individual particle trajectories to quantify the length
and time scales associated with active particle displacements. All analyses
show clear signatures of nonequilibrium activity: the particles exhibit random
motion with an enhanced amplitude compared to passive samples, and they
exhibit sporadic contractile fluctuations with ballistic motion over large (up to
30 μm) distances. This nonequilibrium activity diminishes with sample age,
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even though the adenosine triphosphate level is held constant. We propose
that network coarsening concentrates motors in large clusters and depletes
them from the network, thus reducing the occurrence of contractile fluctua-
tions. Our data provide valuable insight into the physical processes underlying
stress generation within motor-driven actin networks and the analysis fra-
mework may prove useful for future microrheology studies in cells and model
organisms.

S Online supplementary data available from stacks.iop.org/NJP/16/075010/
mmedia

Keywords: cytoskeleton, active soft matter, molecular motors

1. Introduction

Living cells are complex fluids that are constantly out of thermodynamic equilibrium as a result
of dissipative processes in the cytoplasm [1–3], plasma membrane [4, 5] and nucleus [6, 7]
fueled by metabolic energy. An important contributor to this internal activity in the cytoplasm
of animal cells is the cytoskeleton, which is constantly remodeled by active (de-)
polymerization of filamentous actin and microtubules and by motor proteins that slide these
filaments or move cargo across them [8]. These processes cause active transport of cellular
components that add to the ubiquitous thermal fluctuations that all cellular components are
subject to due to their nano- to micro-scale dimensions [9]. Multiple studies have sought to
quantify the departure of the cellular interior from thermal equilibrium by microrheometry [10].
Microrheometry is a miniaturized version of conventional rheometry that relies on tracking of
colloidal probe particles. In studies of cells, the particles can either be embedded inside the
cytoplasm or attached on the cell surface [11, 12]. The cytoplasm can be probed using
endogenous particles, such as mitochondria or lipid granules, or using exogenous probes
imported by microinjection or phagocytosis [13, 14]. Microspheres attached on the cell surface
can be physically coupled to the intracellular actin cytoskeleton via transmembrane integrin
receptors. There are two complementary microrheology methods [15]. Active microrheology
probes the viscoelastic properties of a material by measuring the displacement of probe particles
in response to an external force applied with optical or magnetic tweezers [16]. In contrast,
passive microrheology probes the spontaneous displacements of beads embedded in a material
in the absence of an external force [17, 18]. In thermal equilibrium, beads are subject only to
thermal fluctuations, so the fluctuation-dissipation theorem (FDT) applies and passive
microrheology measures the same response function as active microrheology [19]. The FDT
is a generalization of Einstein’s description of Brownian motion of probe particles in a viscous
liquid [20]. Any discrepancy between the response function measured by active versus passive
microrheology provides evidence of nonequilibrium activity [21]. A few studies of cells
combining passive and active microrheology have indeed demonstrated violations of the FDT
due to intracellular activity at frequencies below a few Hz [22–25].

The exact microscopic origin of the observed nonequilibrium dynamics in cells is difficult
to pinpoint due to their complex molecular composition and the complex architecture of the
cytoskeleton [3, 26–31]. To circumvent this complexity, several studies have addressed
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dynamics in minimal cytoskeletal model systems. Active (nonthermal) fluctuations have been
observed both for actin networks activated by skeletal muscle myosin II motors [32–36] and in
one recent study for nematic microtubule solutions activated by kinesins [37]. Myosin II is a
motor protein with two heads that bind to actin filaments and uses chemical energy derived
from hydrolysis of adenosine triphosphate (ATP) to generate pN-forces [38]. Individual myosin
motors are non-processive, with a duty ratio of only a few per cent at saturating ATP levels.
Nevertheless, single-headed myosin II subfragments have been shown to increase the effective
temperature of actin networks [39]. Bipolar myosin II filaments, which resemble myosin
minifilaments in cells, are more processive and can cause actin network contraction [40–43]. A
combined active and passive microrheology study revealed clear violations of the FDT at low
frequencies for active actin–myosin networks [33, 34]. Passive microrheology of these
networks using video particle tracking revealed clear signatures of nonequilibrium activity in
the particle fluctuations. Specifically, the distribution of displacements (or Van Hove
correlations) showed a markedly non-Gaussian shape for spherical as well as rod-shaped
probe particles [35, 36]. In spatially homogeneous networks, non-Gaussianity is indeed a
signature of nonthermal activity [44, 45]. In crosslinked networks, myosin contractility can
generate substantial contractile tension, which can stiffen actin networks by up to 100-fold
[33, 46]. Recently, these nonequilibrium properties were successfully mimicked using
noncytoskeletal components, in DNA gels activated by motors with processive DNA
contraction activity [47]. All these experimental observations are well-accounted for by
theoretical models that represent the myosin motor filaments as force dipoles in a homogeneous
elastic medium [32, 48–50]. These models predict that the FDT is violated at frequencies below
the inverse of the characteristic time scale of motor unbinding. The physical picture is that
motors actively build up tension while bound to the actin network, which abruptly relaxes when
the motors stochastically unbind [51]. This simple physical model inspired by experimental
findings for in vitro actomyosin networks can, at least qualitatively, explain observations of
nonequilibrium fluctuations observed in the cytoplasm of animal cells, although the exact
contribution of myosin likely depends on cell type and on the location within the cytoplasm
where fluctuations are probed [30].

An important complication in microrheology analysis of active networks is that myosin
motors tend to cause substantial network remodeling. In vitro studies have shown that the length
scale on which this remodeling occurs strongly depends on the presence of crosslinkers
[40, 42, 43, 52, 53]. We recently showed that contractility in entangled actin networks containing
myosin II motors is governed by a connectivity percolation criterion [54]. Above a threshold
crosslink density corresponding to the percolation transition, the motors either macroscopically
contract the network or they rupture it into disjoint clusters. In this regime, the motors remodel the
network on a macroscopic length scale, hampering standard microrheology measurements. Below
the percolation transition (i.e. below a threshold motor density), the myosin motors self-organize in
dense clusters that contract only the adjacent actin network [41, 55]. In this regime, remodeling
occurs only at a micrometer-length scale, so microrheology measurements are more straightfor-
ward [32, 33, 35, 36]. Nevertheless, one may anticipate time-dependent changes in the
nonequilibrium fluctuations of embedded probe particles. In a recent study, we indeed obtained
preliminary experimental evidence that myosin contractility causes network coarsening
accompanied by a time-dependent reduction of nonequilibrium fluctuations [56].

Here, we employ time-resolved microrheology of actin–myosin networks at a crosslink density
below the connectivity percolation threshold to investigate how nonequilibrium fluctuations evolve
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during motor-driven network remodeling. We examine active networks in two distinct limits of
motor density: at low motor density, the networks coarsen slowly and at small (μm) scales, whereas
at high motor density the networks coarsen fast and at larger (∼10μm) scales. We find that
contractile network coarsening causes the dynamics of the probe particles to be spatially
heterogeneous, which complicates a standard particle tracking analysis. To address this challenge, we
propose a multi-scale analysis of the data, combining particle image velocimetry (PIV), an ensemble
analysis of the particle trajectories and finally a kymograph analysis of individual particle trajectories
to quantify the time and length scales associated with active particle displacements. We find clear
signatures of nonequilibrium activity in the ensemble-averaged dynamics, specifically enhanced (but
still sub-diffusive) mean square displacements compared to passive control networks and strongly
non-Gaussian displacement distributions. We show that these features reflect temporally
heterogeneous particle motions, characterized by episodes of active, directed motion superposed
on random motion. Our data provide valuable insight into the physical processes underlying stress
generation within motor-driven actin networks and the analysis framework may prove useful for
future microrheology studies in live cells and model organisms.

2. Materials and methods

2.1. Materials

Monomeric actin (G-actin) was purified from rabbit psoas skeletal muscle without column
purification [57]. G-actin was stored at −80 °C in G-buffer (2mM Tris-HCl, 0.2mM Na2ATP,
0.2mM CaCl2, 0.2mM dithiothreitol (DTT), 0.5mM NaN3, pH 8.0). The actin concentration
was determined by absorbance measurements at 290 nm using an extinction coefficient of
1.1 cm2mg−1 [57]. Myosin II was also obtained from rabbit muscle and stored at −20 °C in a
high salt buffer (0.6mM KCl, 1mM DTT, 50mM phosphate, pH 6.3, 50% v/v glycerol) that
prevents bipolar filament formation. Before experiments, myosin aliquots were dialyzed against
300mM KCl, 4mM MgCl2, 1mM DDT, 25mM imidazole at pH 7.4. (±)Blebbistatin was
obtained from Merck Chemicals (Nottingham, UK) and creatine phosphate and creatine kinase
were from Roche Diagnostics (Almere, The Netherlands). Other chemicals were purchased
from Sigma Aldrich. ATP was prepared as a 100mM MgATP stock solution using equimolar
amounts of Na2ATP and MgCl2 in a 10mM imidazole-HCl buffer (pH 7.4). Glass cells were
assembled with a standard microscope slide and a 24 × 24mm2 #1 coverslip (Menzel,
Braunschweig, Germany) separated by two glass spacers (150 μm height, cut from #1
coverslips), using optical adhesive Norland #81 (Edmund Optics, York, UK). We used
polystyrene microspheres lot#GK0470701B (G Kisker Steinfurt, Germany), with a diameter of
2 μm. To prevent protein adsorption, the probe particles were passivated by adsorption of
2 × 10−8mg PLL-PEG (PLL(20)-g[3.5]-PEG, SuSos, Switzerland) per μm2 of particle surface.
The positively charged PLL block adsorbs to the negatively charged microsphere surface, while
the PEG block forms a brush layer that presents a steric barrier against protein adsorption.

2.2. Actomyosin network reconstitution

Actomyosin networks were prepared by mixing the proteins on ice in an assembly buffer of
pH 7.4 with final concentrations of 25mM imidazole-HCl, 50mM KCl, 0.1mMMgATP, 2mM
MgCl2, 1mM DTT, 2mM trolox and an ATP regeneration mixture of 1.25mM creatine
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phosphate and 26 units mL−1 creatine kinase. The actin concentration was always 1mgmL−1

(23.8 μM). We included crosslink points into the actin filaments by co-polymerizing
biotinylated G-actin with unlabeled G-actin in a molar ratio of 1 : 1000. Excess streptavidin
(streptavidin : actin molar ratio of 1 : 25) was included to form crosslinks between the
biotinylated actin filaments. Streptavidin, combined with biotinylated G-actin monomers, forms
a virtually permanent connection between actin filaments. Processive myosin bipolar filaments
composed of ≈100 motors were pre-formed by fast dilution on ice of the myosin stock solution
(in 300mM KCl, 25mM imidazole, 4mM MgCl2, pH 7.4) with 25mM imidazole buffer
(pH 7.4) to low-salt (70mM KCl). Myosin filaments were allowed to assemble for 5min at
room temperature. The molar ratio between myosin and actin was either 1 : 200 (low motor
density regime) or 1 : 65 (high motor density regime). Polystyrene microspheres were added to
actomyosin samples in a volume ratio of 1 to 2. Actomyosin network formation was initiated by
adding monomeric G-actin and transferring the samples to glass flow cells and warming to
room temperature. The flow cell surface was passivated with 0.1mgmL−1 κ-casein in assembly
buffer to avoid non-specific interactions with the networks. The chambers were sealed with
silicone grease to prevent solvent evaporation.

2.3. Particle tracking and data analysis

Particles embedded in actin–myosin or passive actin control networks were imaged in bright
field on a Ti-Eclipse Nikon inverted microscope using a 40× oil immersion objective. Movies of
27 000 frames were recorded at a frame rate of 5 fps s−1 and 12-bit starting 2min after initiation
of actin polymerization, using a Photometrics Coolsnap HQ2 digital CCD camera
(Photometrics, Tucson, AZ, USA) controlled by NIS Elements AR 3.0 software (Nikon
Instruments Europe BV, Amsterdam, The Netherlands). The exposure time was always 1ms.
The field of view was either 696 × 1040 pixels (half of the camera chip area) or
1392 × 1040 pixels (full size of the camera chip). Frames taken at reduced fields of view
were not binned in space (pixel size 0.16 μm), while frames taken at larger field of view were 2×
binned to reduce file size (pixel size 0.32 μm). Binning did not influence the accuracy of particle
tracking, which was close to 20 nm, as checked by tracking beads immobilized on a coverslip.
Raw data were stored as.nd2 files (Nikon format) and later converted to 16-bit tiff files for
image processing. We imaged particles in the middle of the flow cell, to avoid any influence
from the walls.

For PIV analysis, we used the MATLAB-based freeware PIVlab 1.32 written by William
Thielicke (http://pivlab.blogspot.nl/). To create displacements between frames that are easily
detectable, only every fifth image was utilized for PIV analysis, thus working with an effective
frame rate of 1 s−1. All images were pre-processed using PIVlab’s contrast-limited adaptive
histogram equalization with a window size of 6.4 μm and a subsequent highpass filter with a
window size of 2.9 μm. To retrieve frame-to-frame patch displacements we used PIVlab’s direct
cross-correlation algorithm with an interrogation window of 15 μm and an overlap between
adjacent windows of 7.5 μm. Vectors with x or y component exceeding 1 μms−1 were found to
persistently originate from erroneous detection and were hence discarded. We take for a given
pair of frames the average of the magnitudes of all detected velocity vectors. We call this
measure of coarse-grained network fluctuations the frame-averaged velocity magnitude, Vf.
Before calculation of Vf, we de-drift the data by subtracting from each displacement vector the
sum of all vectors of this frame. De-drifting eliminates overall network translation on the scale
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of the field of view and thereby removes most of the externally induced fluctuations (albeit
neither rotation nor divergence) as well as stage drift. We smoothed the time development of Vf

using a box-car average with a time window of 100 s. In addition to Vf, velocity histograms
were calculated at time intervals of 5min by pooling all vector magnitudes detected within
1min at the beginning of a 5min period.

For ensemble mean square displacement analysis, individual particles were tracked using a
custom-written algorithm implemented in C# (Microsoft.Net Framework 4.0, Redmond, USA) (see
supplementary methods for details, available from stacks.iop.org/NJP/16/075010/mmedia). Dis-
placement data were de-drifted as described above for the PIV data. Ensemble mean square
displacements at time intervals of 5min were calculated using custom-built MATLAB routines,
pooling all displacement values detected within a full 5min period. Kymographs were made with the
Kymograph plugin for ImageJ (http://rsweb.nih.gov/ij/) written by J Rietdorf (FMI Basel,
Switzerland) and A Seitz (EMBL, Heidelberg, Germany).

3. Results

3.1. Coarse-grained analysis of network dynamics by PIV

Active polymer networks were reconstituted by polymerizing globular (G-)actin in the presence
of bipolar myosin II motor filaments. The networks had a constant (initial) mesh size of
approximately 300 nm (corresponding to a fixed actin concentration of 1mgml−1) and constant
average filament length (6 μm) [41]. Under these conditions, the actin filaments form an
entangled meshwork with the rheological response of a soft viscoelastic solid with an elastic
modulus of 0.4 Pa that is five-fold larger than the viscous modulus (supplementary figure S1
(a)). We crosslinked the networks with a low density of permanent biotin–streptavidin
crosslinks (on average two crosslinks per actin filament) that did not significantly change the
shear modulus compared to that of uncrosslinked meshworks (figure S1(b)). Myosin was
assembled into bipolar filaments with a mean length of 0.69 μm, corresponding to about 100
myosin molecules per filament [41]. We tuned the contractile activity by varying the molar ratio
between myosin and actin (RM) while keeping the ATP concentration fixed at 0.1mM. At low
myosin concentration (RM=1 : 200), the networks slowly coarsened over a period of 60min.
The system evolved from an initially homogeneous meshwork with randomly dispersed myosin
filaments to an inhomogeneous meshwork with dense myosin clusters surrounded by compact
pockets of actin (figure S2(a)). The typical size of the actomyosin clusters was on the order of
1 μm. In contrast, at high motor density (RM=1 : 65), the myosin motors clustered together
within 5min and these clusters coalesced into larger superclusters within 15min (figure S2(b)).
These superclusters were tens of microns in size. We found by bulk rheometry that the motors
increased the network stiffness by less than a factor of 2 (figure S1(b)), consistent with earlier
findings showing that motors only generate substantial network stiffening at ultralow (μM) ATP
concentration [33] or at higher crosslink densities [46].

To probe the dynamics of the active networks, we co-polymerized actin and myosin in the
presence of inert polystyrene microspheres with a diameter of 2 μm. We found that a particle
diameter 2 μm was optimal for microrheology because the particles tended to stay uniformly
distributed without excessive clustering (figure S3(a)). Smaller microspheres (1 μm) were
instead incorporated in clusters due to active network condensation, while larger particles
(5 μm) were insensitive to motor-driven network fluctuations. The particles are physically
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trapped in the network and act as passive reporters of its dynamics. Even at 2 h after assembly,
confocal fluorescence microscopy showed that there was no accumulation of either myosin or
actin on the surface of the particles (figure S3(b)), confirming that the probes are inert reporters
of the network dynamics. We observed the particles by bright field microscopy and recorded
movies with a total duration of 90min. We recorded four movies of independently prepared
samples at RM= 1 : 200 and, in view of the larger spatial heterogeneity at higher motor density,
six movies of independently prepared samples at RM= 1 : 65. All movies are included in the
analysis, but only a few representative movies are shown in the supplementary information.

At low motor density, the probe particles were homogeneously distributed in the network
throughout the entire duration of the movies (figure 1(a) and movie S1). This is consistent with
direct imaging of the network structure by confocal fluorescence microscopy, which showed
that these networks coarsen only on ∼1 μm length scales (figure S2(a)). In contrast, at high
motor density we observed two different types of behavior. In three samples (coded s2a, s2g,
s2h), the particles coalesced within 5min into large clusters with sizes of 10–100 μm
(figure 1(b) labeled ‘fast’ and example movies S4 and S5). The time scale of this process is
comparable to the time scale of myosin clustering observed by confocal microscopy (figure S2
(b)). It is therefore likely that the particles cluster because they are entrained with the network as
it contracts. In the other three samples (s2b, s2c, s2d), we did not observe particle clustering
(figure 1(b) labeled ‘slow’, example movies S2 and S3). This apparent sample-to-sample
variability probably reflects spatial heterogeneity of the networks, given that for each sample we
can only record a movie of one single field of view, which is limited to an area measuring
225 × 165 μm2 to ensure accurate particle tracking. Since high motor density samples exhibit
motor-driven network coarsening on a scale of tens of μm, it is reasonable to expect different
dynamics in different areas of the networks.

Given the difficulty of particle tracking in actively contracting networks, we decided to
first analyze the contractile activity in a coarse-grained manner using PIV. PIV extracts the
movements of features in the image on the spatial scale of an interrogation window. We chose
an interrogation window of 15 μm, corresponding to the typical distance between beads, with an
overlap between adjacent windows of 7.5 μm. In figure 1, velocity vectors from PIV analysis
are overlaid on the still images taken near the beginning (2min) and end (80min) of the movies.
The graphs show the corresponding distributions of the magnitudes of all detected velocity
vectors, comparing active samples (blue symbols in figure 1(a) and red symbols in figure 1(b))
with passive samples (crossed circles in figures 1(a) and (b)). At early times, the active samples
(open triangles in figures 1(a) and (b)) clearly exhibit larger velocities than passive samples
(dark crossed circles). With increasing sample age, the velocity distribution measured for
passive samples shifts somewhat to the left, perhaps because in the first 5min the sample is still
polymerizing (light crossed circles). For the active samples, the velocity distributions also shift
to the left with increasing sample age. We observe two distinct types of dynamics. For samples
that we will henceforth denote as slow samples, the velocity distribution shifts only slightly to
the left, and the velocities measured after 90min are still higher than in passive samples. This
behavior is observed for the majority of samples at low motor density (three out of four data
sets), and for three out of six data sets at high motor density. The velocity distributions
measured for slow samples at low and high motor density are rather similar, but the late-time
velocity distribution for the high motor density sample exhibits a pronounced shoulder,
indicative of occasional large particle displacements. For samples that we will henceforth
denote as fast samples, the velocities are larger than in slow samples at early times, but at late
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times the velocities are smaller, and comparable to those measured in passive samples. In this
case, no shoulder is present on the velocity histogram. Again, the velocity distributions at low
and high motor densities are similar. The fast samples tend to show rapid clustering of the probe
particles in the first 5min as a consequence of network contraction (see movie S4), whereas the
slow samples tend to have well-dispersed probe particles that do not significantly cluster
(movies S1 and S2). It is important to note that the ATP concentration is maintained at a
constant level by means of an enzymatic regeneration mixture. The apparent reduction of
fluctuation activity with time is thus not due to depletion of ATP, but to motor-driven network
remodeling.

Figure 1. Particle image velocimetry (PIV) analysis of the contractile dynamics of
actin–myosin networks seeded with spherical probe particles (visible as black dots), for
(a) low motor density samples and (b) high motor density samples. Left: example bright
field micrographs at early (t= 2min) and late (t= 80min) times, for samples classified as
either fast or slow based on PIV analysis. Superposed in green are velocity vectors
extracted with PIV. Scale: the height of each micrograph is 170 μm. Right:
corresponding velocity histograms (dark colored triangles: t = 2min; bright colored
triangles: t= 80min). Crossed circles: passive sample without motors (dark gray:
t= 2min; light gray: t = 80min). Solid circles: beads immobilized on a coverslip (dark
gray: t = 2min; light gray: t = 80min). Datasets are averages of multiple data sets (see
figure S4 for individual data sets).

8

New J. Phys. 16 (2014) 075010 M Soares e Silva et al



The velocity distributions obtained from PIV analysis exhibit a marked dependence on
sample age. To quantify this effect more systematically for all data sets (see figure S4 for complete
overview), we calculate the average value of the magnitudes of all velocity vectors between
sequential frames, which we denote as the frame-averaged velocity magnitude, Vf. As shown in
figure 2(a), Vf for all samples decreases monotonically with sample age, reaching a steady state
value after 20min (determined as the time point where 90% of the Vf drop has occurred, mean of
all samples). Interestingly, samples that have an initially high Vf have a small final Vf, whereas
samples that have an initially low Vf have a larger final Vf. This inverse correlation between early-
and late-time velocity is summarized in figure 2(b), where the diagonal line indicates a ratio of the
velocities at t=2min and t=80min corresponding to Vt=2/Vt=80 = 2.75. Samples below the

Figure 2. Time evolution of network dynamics according to PIV analysis. (a) Time
evolution of frame-averaged velocity magnitude for each data set. Color code: red
curves correspond to high motor density samples and blue curves to low motor density
samples (see legend). (b) Correlation between early-time (t = 2min) and late-time
(t = 80min) frame-averaged velocity magnitudes plotted for all individual movies. Blue
solid triangles (samples s1b, s1c, s1d, s1e): RM= 1 : 200. Red solid triangles (samples
s2a, s2b, s2c): RM= 1 : 65, slow coarsening. Red open triangles (samples s2d, s2g, s2h):
RM= 1 : 65, fast coarsening. Insets: bright field micrographs show typical late-time bead
distributions of slow samples (above horizontal dashed line) and fast samples (below
horizontal dashed line).
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diagonal line are the ones that we denote as fast samples, since they display fast dynamics in the
first few minutes of sample evolution. In this category, we find three data sets of high motor
density samples and one movie of a low motor density sample. The particle distribution in these
samples at late times tends to be inhomogeneous with large clusters (inset of figure 2(b) and figure
S3(c)). Samples above the diagonal line show a moderate decline of Vf and correspond to the ones
that we term slow samples. In this category, we find three data sets of high motor density samples
and three data sets of low motor density samples. Nearly all slow samples (except for sample s2a)
display homogeneous late-time bead distributions (see inset of figure 2(b)). The horizontal line in
figure 2(b) distinguishes the samples by their late-time (t=80min) Vf, creating the same
classification as the diagonal line into fast samples (low Vf) and slow samples (higher Vf).

3.2. Microscopic analysis of network dynamics by ensemble-averaged particle trajectories

To examine network dynamics on a smaller length scale, corresponding to the scale of the
embedded probe particles, we tracked the particle centroid positions with sub-pixel accuracy
[58]. Tracking of fast samples with initially high Vf was possible only after t= 7min, because of
the rapid particle clustering and accompanying rapid changes in pixel intensities of the particles
at early times. Tracking of slow samples was possible for the entire experiment duration. To
resolve the time evolution of the dynamics, we divided the entire 90min of each movie into bins
of 5min.

Figure 3(a) shows ensemble-averaged distributions of particle displacements (left; at a lag
time τ= 10 s), while figure 3(b) shows the corresponding distributions for high motor
concentration samples. In both cases, we separated data sets measured for fast versus slow
samples (see legend on the left). For reference, the displacement distributions measured for
passive samples are shown as small crossed circles. For the passive samples, the displacement
distributions are well-described by Gaussian functions (dashed lines), indicating that the
networks are homogeneous [44]. In contrast, the active samples exhibit displacement
distributions with pronounced non-Gaussian tails. The central part of the distributions can
still be fitted by a Gaussian function (solid lines), but the width of the Gaussian is larger than for
the passive samples. Similar distributions have been observed previously by Toyota and
coworkers [35] for 1 μm silica particles embedded in crosslinked actin–myosin networks. It was
argued there that the central Gaussian part of the distribution represents a superposition of
random thermal motion and of active fluctuations caused by many independent motors far from
the probe particles, whereas the tails of the distribution reflect rare events associated with force
generation by only a few (or even a single) motors in close proximity to the probe particles. As
the sample age increases from 10 to 80min, we observe that both the width of the central
Gaussian portion and the contribution of the non-Gaussian tails decrease. Consistent with PIV
analysis, the displacement distributions thus also indicate an apparent reduction of activity over
time. The time evolution is similar for all samples, independent of motor density. Slow samples
exhibit somewhat larger tails in the displacement distributions than fast samples (further
quantified below).

The ensemble-averaged mean square displacements for samples of low motor density
(figure 3(a), right) and high motor density (figure 3(b), right) reveal a similar evolution with
sample age: in young samples (t= 10min) the mean square displacement is large and increases
almost linearly with lag time, whereas at t= 30min the mean square displacement has dropped
substantially and increases with a smaller power law in lag time. At low motor density, there is
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no immediately apparent difference between slow and fast samples. At high motor density,
however, slow samples apparently take a longer time to ‘age’, showing a larger mean square
displacement up to t = 55min and also larger tails in the displacement distributions compared to
fast samples.

To summarize the evolution of the dynamics with sample age, we extract several dynamic
parameters from the ensemble-averaged displacement distributions and mean square
displacements for each movie (see figure S5). The first parameter is the apparent diffusive
exponent, α, which we obtain as the slope of a power-law fit to the mean square displacement
for lag times τ between 1 and 8 s (indicated by solid lines in figures 3(a), (b)). In all samples,
irrespective of motor concentration or dynamic regime, α is initially close to 0.9 and then
decreases to a steady state value of around 0.25 (figure 4, panel labeled ‘α’). The time scale for
α to drop by 90% is 45min (mean of all samples). Once the samples reach a steady state, α is
comparable for active and passive (crossed circles) samples. The second parameter is the
Gaussian broadening, β, which we define as the width of the central portion of the displacement

Figure 3. Ensemble particle trajectory analysis for (a) low motor density samples and
(b) high motor density samples. Left: step width distributions (Van Hove correlations)
at a lag time τ= 10 s for different sample ages (see legend on top of the graphs), shown
separately for fast samples versus slow samples (see legend on the left). Small crossed
circles: passive sample without motors. Solid (dashed) line: Gaussian fit to active
(passive) data. Right: corresponding mean square displacements in the x-direction, with
sample ages indicated as numbers (in minutes) next to the curves. The solid lines with
slope α show examples of power-law fits to the curves measured at t = 0, which are used
to determine the diffusive exponent α.
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distribution of active samples divided by the width of the Gaussian distribution of passive
samples. As shown in figure 4 (panel labeled ‘β’), β decreases monotonically with sample age
over a time period of about 45min. The third parameter is the non-Gaussian parameter [35],

ξ
Δ τ

Δ τ
= −

x

x

( )

3 ( )
1, (1)

4

2 2

which quantifies the degree of non-Gaussianity of the displacement distributions, taking a value
of zero for a perfectly Gaussian distribution. For passive control samples (crossed circles in
figure 4, panel labeled ‘ξ’), ξ is initially 0.15 and decreases to a steady state value of 0.05 within
15min, close to zero, as expected for a homogeneous polymer network [44]. For the slow
samples (solid triangles), both at low and high motor density, ξ is substantially larger than for
the passive control samples and exhibits large fluctuations, taking values between 0.2 and 200.
At low motor density, these large fluctuations continue until t= 45min, while at high motor
density the large fluctuations persist until t= 60min. In steady state, ξ is close to 0.2 at both low
and high motor density, which is still substantially higher than ξ of passive samples. The large
fluctuations in ξ reflect the fact that the non-Gaussian tails represent rare events associated with
force generation by single motors close to the probe particles [35, 56]. For the fast samples
(open triangles), both at low and at high motor density, ξ fluctuates less than for slow samples
and does not show a clear dependence on sample age. Over the entire time window, ξ is about
an order of magnitude larger than for passive samples.

Figure 4. Different measures of nonequilibrium activity extracted from particle tracking
analysis plotted as a function of sample age. Measures (see legends in the corner of each
panel) are the diffusive coefficient α, the Gaussian standard deviation ratio β, the non-
Gaussian parameter ξ at a lag time of 10 s and the probability for a particle to undergo
directed motion pdir. As indicated in the legend on the right, data have been pooled
according to motor concentration (red symbols = high, blue = low) and dynamics regime
(bright filled symbols = slow samples, dark open symbols = fast samples). Crossed
circles: passive control sample. The corresponding individual data sets are shown in
figure S4.
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We have shown previously that the non-Gaussian tails in the displacement distributions for
probe particles embedded in actomyosin networks originate from sporadic, large-amplitude
contractile fluctuations [56]. In order to distinguish these directed motion events from the
otherwise apparently random motion, we used a segmentation algorithm that provides the
probability of a particle (per unit of time) to show directed motion, pdir [56] (figure S6 and
movie S6). As shown in figure 4 (panel labeled ‘pdir’), this fourth dynamic parameter also
decreases with sample age for all samples, from an initial value of ∼0.04 to a final value of
∼0.003 (average over all samples). Surprisingly, pdir is largest in the fast sample at low motor
density.

3.3. Microscopic analysis of network dynamics by single-particle trajectory analysis

Single particle trajectories in active networks were characterized by long periods of small-
amplitude random motion interrupted by short episodes of large-amplitude directed motion
(figure 5(d)). This motion is clearly distinct from the small-amplitude random motion seen in
passive control networks (red trajectory shown as an inset in figure 5(d)). To characterize the
time and length scales associated with directed motion, we analyzed individual events by

Figure 5. Kymograph analysis of active contractile fluctuations of individual probe
particles in active networks. (a) Time sequence showing a particle exhibiting a
contractile fluctuation consisting of a translocation followed by reversal. Scale bar is
2 μm. (b) Corresponding kymograph projection along the direction of particle
translocation. The contractile fluctuation is clearly distinguishable from the baseline
random fluctuations. (c) The contractile fluctuation can be dissected into a translocation
(in red) over a distance DT with velocity νT; a reversal (in blue) over a distance DR with
velocity νR; and a stationary period (in yellow) of duration S. (d) x–y trajectory of a
probe particle showing a combination of random motion (dense part of the trajectory
within the yellow circle) and large-amplitude motor-driven fluctuations (red and blue
guiding lines). Inset (in red): trajectory of a probe particle in a passive control network.
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producing kymographs, which are space–time plots along the direction of motion (see image
sequence in figure 5(a) and corresponding kymograph in figure 5(b)). The kymographs reveal
directed displacements, which are clearly distinguishable in amplitude from the baseline
random motion. The example shows a particle that suddenly moves in a ballistic manner
(indicated by red lines), experiencing a short stationary period (indicated by yellow line), and
then abruptly moves back towards its original position (indicated by blue line). To quantify the
distances and velocities associated with particle motion, we divide the kymographs into
translocation events (over a distance DT and with velocity νT) and reversal events (over a
distance DR and with velocity νR), as shown in figure 5(c). Some particles exhibited repeated
contractile fluctuations separated by pauses, both at low motor density (figure S7(a)) and high
motor density (figure S7(b)). We also noticed that pairs of particles sometimes exhibited anti-
correlated motion, likely caused by a motor located inbetween the two particles (figure S7(c)).
In some cases, multiple particles exhibited simultaneous fluctuations in the same direction
(figure S7(d)). Since these events were rare, we did not attempt to quantify them.

As shown in figure 6(a) (low motor density) and (b) (high motor density), the
displacements of particles during translocation events (DT) ranged from a few hundred nm to
30 μm. Since both PIV analysis and the ensemble-averaged dynamics showed an evolution of
apparent activity with sample age, we analyzed the time dependence of translocation distances.
Large displacements (>7 μm) occurred only at early times, up to t= 10min in low motor density
samples and up to t= 20min in high motor density samples. At later times, the displacements
were limited to at most 7 μm. The average translocation distance was similar at low and high
motor density, 3.8 μm (N= 71) and 4.6 μm (N= 192), respectively. The translocation speeds
showed a broad range of values, from 0.2 to 4 μms−1. On average, the translocation speed was
somewhat lower in low motor density samples (0.8 μms−1 (N= 142), figure S8(a)) compared to

Figure 6. Sample-age dependence of the distance (DT in figure 5(c)) over which
individual particles are translocated during contractile fluctuation events at (a) low
motor density and (b) at high motor density. Graphs show individual data points, and
colored box plots represent 25th–75th percentile of data with sample age incrementing
towards hot colors. Histograms on the right hand side of the graphs show lumped
distributions of translocation distances.
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high motor density samples (1.1 μms−1 (N= 187), figure S8(b)). The order of magnitude of the
velocities is consistent with the unloaded translocation speed of ∼5 μms−1 observed for actin
filaments on myosin-coated substrates in motility assays [59]. The speeds are also comparable
to the velocity magnitudes obtained by PIV analysis (figure 1). The speed during reversals was
also broadly distributed, and was on average slightly higher than the speed during translocations
(1 μms−1 at low motor density (N= 103), figure S8(a); 1.7 μms−1 at high motor density
(N= 157), figure S8(d)).

Given that the translocation distances are often many times larger than the mesh size
(300 nm), the question arises how reversible the particle displacements are. To quantify
reversibility, we determined the distance covered during translocation (DT) and reversal (DR) in
kymographs (see figure 6(a)) and define the percentage of return of a probe to its initial position
after a translocation as DR/DT × 100%. As shown in the histograms in figures 7(b) and (c), only
a small percentage (10–15%) of particles returned to their original position, while about 50%
made an incomplete recovery and a small percentage (15% at low motor density, 20% at high
motor density) did not recover at all. On average, reversibility was somewhat higher in low
motor density samples than high density samples (average per cent return 71% at low motor
density (N= 72) and 56% at high motor density (N= 188)). Interestingly, a significant fraction
(14%) of the particles moved back further than their original translocated distance. These events
are suggestive of reversals by an active, motor-dependent mechanism. In the case of passive
network relaxation, one expects either full recovery (for a purely elastic deformation) or
incomplete recovery (in case of plastic network deformation).

Since we observed clear evidence of network plasticity in the form of irreversible
translocations, we tested whether the per cent recovery was correlated with the distance over
which probe particles moved during a translocation event. As shown in figures 7(b) (low motor
density) and (c) (high motor density), the percentage of return of the probes to their initial
position indeed showed a significant inverse correlation with translocation distance (correlation
coefficient R=−0.6, p= 4 × 10−7). Large particle displacements, which occur mostly during the
first 10min after sample preparation, thus tend to be more irreversible.

4. Discussion

We used time-resolved microrheology of an in vitro model system based on purified actin and
myosin II to resolve how motor-driven network remodeling influences the athermal fluctuations
of embedded probe particles. We examined active networks of entangled actin filaments at a
crosslink density below the connectivity percolation threshold. In this regime, the myosin
motors self-organize in dense clusters that contract the adjacent actin network on a local
(micrometer) length scale [41, 54]. We investigated two limits of motor density, which differ in
the time and length scale associated with network remodeling. Confocal imaging showed that at
high motor density (RM= 1 : 65), the motors cause fast network coarsening (5–10min) into
clusters with sizes of tens of μm, whereas at low motor density (RM= 1 : 200), the networks
coarsen more slowly (30min) and at a smaller (micrometer) scale. We find that network
coarsening causes the dynamics of the embedded probe particles to be spatially and temporally
heterogeneous, complicating a standard particle tracking analysis. To address this challenge, we
performed a multi-scale analysis of the data.
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A coarse-grained analysis by PIV with an interrogation window size of 15 μm revealed that
all samples display a drop in the amplitude of large-scale active fluctuations within 20min.
Furthermore, PIV analysis demonstrated variable dynamics among independently prepared
samples of the same composition. This heterogeneity was particularly pronounced at high motor
density. In slow samples, the beads remained homogeneously distributed and the frame-
averaged velocity decreased only moderately (approximately two-fold). In contrast, fast
samples exhibited rapid particle clustering indicative of network contraction within 5–10min

(a)

(b) (c)

Figure 7. Reversibility of particle translations. (a) Examples of a probe particle
exhibiting a single translocation-reversal event with either complete (i), (ii) or
incomplete (iii), (iv) reversal. (b) Correlation between the degree of reversibility and the
distance of particle translocation in samples of low motor density. (c) Correlation
between the degree of reversibility and the distance of particle translocation in samples
of high motor density. The colors correspond to different sample ages (see legend), with
gradient from cold (2.5 min) to warm (27.5min) color. The largest (>5 μm) and more
irreversible displacements take place during the first 10 min. Irreversibility is greater at
high motor density than at low motor density. Histograms on the right hand side of the
graphs show lumped distributions of percentage of return. A return percentage (DT/
DT × 100%) of 100% corresponds to full reversibility, 0% to irreversibility and >100%
to overshoot beyond the original position.
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and the frame-averaged velocity started higher but ended lower than in slow samples
(approximately four-fold decrease of Vf). We suspect that this variability reflects not so much a
difference between samples, but rather the spatial heterogeneity of the samples, which is
especially pronounced for high motor density samples. To ensure accurate particle tracking, we
had to record movies of relatively small fields of view (225 × 165 μm2), and because the
samples evolved over time we could only record one movie for each sample. This is an inherent
technical limitation of particle tracking microrheology of spatially heterogeneous samples. In
future, it will be interesting to combine particle tracking with concurrent confocal imaging of
the network structure. Instead of tracer particles, it should also be possible to directly track
either actin structures [60, 61] or myosin foci [62].

To quantity network fluctuations on a smaller spatial scale (2 μm), we performed a
complementary analysis of the individual particle trajectories. The trajectories exhibited clear
signatures of nonequilibrium activity, with sporadic contractile fluctuations. These fluctuations
comprised directed motion over a large (up to 30 μm) distance followed by (usually partial)
reversal. The ensemble-averaged displacement distributions of the particles exhibited prominent
non-Gaussian tails, which originate from these sporadic athermal fluctuations caused by motors
in close proximity of the particles. Additionally, the displacement distributions had a Gaussian
central portion with a width that was larger than the width of the Gaussian displacement
distributions observed for passive samples. This widening reflects active force generation by
many independent motors far from the probe particles [35].

Consistent with the PIV analysis, the particle trajectories also showed a clear reduction of
athermal fluctuations with increasing sample age: the diffusive exponent decreased, the non-
Gaussian parameter decreased, the width of the Gaussian central part of the displacement
distributions decreased and kymograph analysis revealed smaller translocation distances during
contractile fluctuations. Automated trajectory segmentation showed that active fluctuations are
more and more infrequent at late times. The decay time for the reduction of apparent activity
was 20min according to the frame-averaged velocity determined by coarse-grained PIV
analysis, which is shorter than the decay time observed for the dynamic parameters measured
with particle tracking (α, β, ξ, Pdir). This difference in decay times indicates that PIV is less
sensitive to residual active fluctuations than particle tracking, which is reasonable since PIV
averages over all image features and also has a smaller spatial resolution.

In steady state, the samples did retain clear signs of residual activity: the non-Gaussian
parameter was still about ten-fold larger than for passive samples and we still detected active
contractile fluctuations. Indeed, the ATP concentration in the samples was kept at a constant
level by an enzymatic regeneration mixture. Thus, the apparent reduction of activity over time is
not due to ATP depletion. Instead, confocal imaging of the network structure over time
indicates that the reduction of activity is caused by contractile coarsening. We speculate that
motor filament clustering and local network contraction concentrate motors within dense
clusters that are shielded from the surrounding network by a dense actin shell. At the same time,
myosin motors are depleted from the network, resulting in low residual active fluctuations in the
network once the network structure has reached a steady state. Both PIV analysis and particle
tracking analysis indicated that slow samples (or sample regions) have larger residual activity in
steady state than fast samples. We speculate that the residual activity in fast samples is lower
because they show more rapid and extensive motor clustering. At high motor density,
contractile coarsening was more rapid and occurred on a larger scale than in slow samples,
explaining why the dynamics was more heterogeneous. Contractile fluctuations in the first
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10min, which network remodeling occurred, involved large (up to 30 μm) particle
displacements, accompanied by irreversible network remodeling.

Previous experimental [33–35] and theoretical studies [48, 50] interpreted probe particle
dynamics in contractile actin–myosin networks based on the assumption of a homogeneous
elastic medium. Our findings demonstrate that active networks are spatially and temporally
heterogeneous and exhibit plastic deformation. Video particle tracking microrheology can
provide insight into the length and time scales associated with network remodeling. Previous
in vitro studies of myosin-driven remodeling of actin networks have revealed a rich phase space
tuned by motor activity (i.e. by motor density, ATP concentration and ionic strength) and
network connectivity (i.e. by crosslink density, actin filament density and actin filament length).
Low crosslink densities as used in this study promote micrometer-scale network contraction and
transient build-up of stress. In the absence of crosslinks, motor activity has instead been shown
to cause network fluidization [63]. In dilute solutions of bundled actin filaments (below
0.3mgml−1 actin), motor activity has been shown to cause superdiffusive motion of the bundles
[60, 61], as opposed to the sub-diffusive dynamics observed in the entangled networks studied
here. At high enough crosslink and motor density, motor activity can cause large-scale
formation of ordered patterns [52], large-scale network contraction [40, 42, 43, 54], or strong
network stiffening [33, 46]. It will be interesting to apply the microrheology analysis developed
in this paper to different regimes in this complex phase space, to elucidate the role of motor
activity and network connectivity in controlling nonequilibrium fluctuations.

5. Conclusion

We used time-resolved microrheology to investigate the dynamics of active actin–myosin
networks at low crosslink density. We showed that the motors generate spatially heterogeneous
network fluctuations that evolve over time due to motor-driven contractile coarsening. At larger
motor density (RM= 1 : 65) the dynamics was more heterogeneous than at lower motor density
(RM= 1 : 200). Since the inhomogeneous dynamics hampers a standard single-particle tracking
analysis, we analyzed the particle tracking data on different scales. A coarse-grained analysis by
PIV revealed that motors locally compact the actin network, which is accompanied by
decreasing apparent activity over time. We propose that network coarsening, which
concentrates motors in large clusters, depletes motors from the network and thus reduces the
occurrence of contractile fluctuations. If a network region evades excessive coarsening, it will
retain a larger residual activity. An ensemble analysis of the particle displacements revealed that
motor activity causes a strongly enhanced mean square displacement compared to that in
passive samples. Moreover, motor activity resulted in a non-Gaussian displacement distribution.
Consistent with the PIV analysis, the particle trajectory analysis also revealed reduced activity
with increasing sample age. Finally, a kymograph analysis of individual particle trajectories
revealed that the particles exhibit intermittent contractile fluctuations. The particles exhibited
rather large displacements of up to 30 μm, especially during the first phase of network
remodeling. There was clear evidence of network plasticity, since particle translocations were
usually not completely reversible. Our findings show that networks of entangled actin filaments
with embedded myosin motors are spatially and temporally heterogeneous. It will be interesting
to compare these findings to the dynamics of actin–myosin networks in the cortex of living cells
and embryos, where pulsatile network contractions have been observed [64].
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