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Abstract

A central idea in plasmonics and metamaterials is to interpret scattering resonances as re-

sulting from hybridization of electric dipoles. Recent developments in metamaterials as well

as in plasmonic Fano systems have further included magnetic dipoles and electric quadrupoles

in this reasoning. We derive a method to retrieve dipole and quadrupole polarizability ten-

sors of nano scatterers from full-wave simulations, which allows us to underpin this intuitive

reasoning by quantifying the existent modes and their strengths in complex nano antennas.

By application to a dolmen plasmon structure, we show how the retrieval sheds new light on

plasmon induced transparency. Further, we show how to implement radiative corrections to a

dipole-quadrupole model applicable when scatterers are placed near a surface, sphere, or strat-

ified medium, similar to the known correction of dipole polarizabilities by the local density of
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optical states. We demonstrate how this model allows us to interpret near field excitation data

taken on plasmon antennas deposited on a high-index substrate.

April 28, 2014 The fields of plasmonic antennas, metasurfaces, and metamaterials revolve

around the idea that very strong scattering resonances in deeply subwavelength objects can be

used to tailor the strength of optical near fields, scattering, and radiative processes.1–3 Indeed great

strides have been reported in using engineered clusters of nanoparticles to enhance solar cell ab-

sorption,4,5 LED light emission,6,7 single molecule emission brightness and directivity,3,8–13 op-

tical sensing of very dilute analytes,14–16 and the development of metasurfaces.17,18 A workhorse

interpretative tool to understand complex clusters of antennas is to reason in terms of coupled in-

duced dipole moments that hybridize.19–21 Surprisingly, once retardation and radiative corrections

are taken into account accurate results can be obtained for far-field observables such as extinction

and scattering spectra, describing very well the essential physics of hallmark structures such as

Yagi-Uda phased array antennas10,11,22 as well as oligomers with plasmon induced transparency

(PIT) features.23–28 In fact, viewing a complex plasmon antenna as a collection of electric point

dipoles has been employed not just as qualitative, but also as quantitative tool known as the “Dis-

crete Dipole Approximation” (DDA) that is recognized to be valid as long as field gradients are

small on the scale of the discretization.29

More recently, efforts in metasurfaces as well as in plasmonically induced transparency have

underlined that, rather than separating a structure into a set of discrete constituent electric dipoles,

intuition may be advantageously developed by assigning to a given structure not just an electric

dipole response, but also a magnetic dipole and electric quadrupole moment. While it is evident

that both the DDA (taking many dipoles) and a full multipole expansion by definition can always

capture the complete physics, the important notion here is that intuition benefits from reasoning

with just few terms, and that for moderately sized antennas the response is usually assumed to

derive from at most three leading multipoles. The first is the electric dipole response to incident

electric field that is key to plasmonic hybridization. The second is a resonant response to curls of

the electric field that embody magnetism in metamaterials and is implicitly assumed whenever a
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metamaterial object is viewed as an LC resonator. The third is the resonant response of a structure

to symmetric gradients of the electric field, i.e., the electric quadrupole response. In recent works

this response has been invoked as responsible for the occurrence of sharp features in extinction of

antennas such as dolmens.

Generally, when using the multipolar classification of modes for nano antennas, one fits opti-

cal responses of antennas to a coupled oscillator model, where one interprets the fitted coupling

constants, damping rates and resonance frequencies to represent properties of assumed quadrupole

resonances (often coined ‘dark mode’) electric and magnetic dipolar modes (often coined ‘bright’).

We believe that rather than relying on intuition for attributing oscillators to multipole modes, it

would be desirable to have a quantitative method to establish whether the intuition is correct that

magnetic dipoles, electric dipoles and electric quadrupoles are at play, with which amplitude ratio

and phase moments they are excited, and how they each contribute in terms of scattering strength,

resonance frequency, and width. One should realize that the common underpinning of intuition

by examination of snapshots of field or charge distributions from full-wave simulations at distinct

frequencies is problematic, since snapshots represent unseparated superpositions of excited modes.

For particular structures medium several authors have sought to overcome this problem.28,30 Here

we propose a method to retrieve and visualize electric and magnetic dipolar polarizabilities as well

as quadrupolar polarizabilities, that generically allows us to underpin the intuition of what modes

are involved in the scattering processes. As a useful byproduct this model can be used not just as

an a posteriori interpretative tool. In a predictive manner, the output of our polarizability retrieval

can be used as input for self-consistent multiple scattering calculations20,21,31 for point particles

to which the retrieved responses are assigned. This predictive power allows us first to design new

structures, and secondly to put the intuitive reasoning to the test and find out until what point it

remains valid.

Retrieval of quadrupoles and reduction of terms The starting point of our work is chapter 9

in the book of Jackson32 and recent work by Mühlig et al.33 To recapitulate this starting point,
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we assume that a full-wave solution for the near field of the scatterer of interest in a homogeneous

medium upon plane wave excitation is available. While any method may be used, we employ a

surface integral equation method (SIE)34 that we implemented previously.35 To derive induced

multipole moments, we use the fact that the vector spherical harmonic functions Nnm(r,θ ,ϕ) and

Mnm(r,θ ,ϕ) form a complete and orthonormal set.36 Therefore the scattered near field E(r,θ ,ϕ)

has a unique expansion

E(r,θ ,ϕ) =
∞
∑
n=1

n
∑

m=−n
[anmNnm(r,θ ,ϕ)+bnmMnm(r,θ ,ϕ)], (1)

where the expansion coefficients anm and bnm can be simply found by projecting the calculated

E(r,θ ,ϕ) on the vector spherical harmonic functions. The expansion coefficients are linearly re-

lated to the multipole moments. As explained by Bernal Arango et al.,35 one can very efficiently

calculate the coefficients with excellent accuracy using numerical integration on just very few

sampling points with points and weights chosen consistent with Legendre quadratures,37 owing to

special properties for discrete Fourier transforms on the unit sphere.

Having summarized the established starting point, we turn to the key question, i.e., how to re-

construct and analyze polarizabilities given that it is possible to calculate multipole moments for

any illumination condition. The polarizability is the central quantity that summarizes the possible

responses of a scattering unit to arbitrary incident fields, and can be used as input for predictive

modeling of complicated arrangements of such units. For electric and magnetic dipoles deriving

the polarizability from calculations of induced moments is completely resolved in Ref.35 There-

fore, the key ingredient in this work is to revisit the quadrupole tensor. The quadrupole moment is

defined as a symmetric traceless tensor32

Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Qxx Qxy Qxz

Qxy Qyy Qyz

Qxz Qyz Qzz

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2)
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In a deeply subwavelength object the quadrupole moments are generally set up by the symmetric

part of the gradients of an incident electric field through a fourth rank ‘quadrupolarizability’38

tensor39,40 αQ
i jmn

Qi j = αQ
i jmn(∂mEn+∂nEm)/2 (3)

Here we use the Einstein summation notation and abbreviate the spatial derivatives ∂ /∂xm as ∂m

(m = 1,2,3 for x,y,z). If we use the fact that both the traceless tensor Qi j and the tensor (∂mEn +

∂nEm)/2 are symmetric, we can eliminate some redundancy in eq. (3) and obtain a much simpler

matrix equation Qi = αQ
i j ◇E j. Here the vectors

Q = {2Qxy,2Qxz,2Qyz,Qxx,Qyy,Qzz} and (4)

◇E = {(∂xEy+∂yEx)/2,(∂xEz+∂zEx)/2,(∂yEz+∂zEy)/2,∂xEx,∂yEy,∂zEz} (5)

represent complete information on the quadrupolarizability tensor and the Diamond operator ◇ is

introduced to ease the handling of the symmetric gradient operations.

We now combine this insight for quadrupoles with the insight we reported in Ref.31,35 for

electric and magnetic dipole polarizability. We define the combination of dipole and quadrupole

response as a ‘superpolarizability’ αS tensor of the form:

⎛
⎜⎜⎜⎜⎜⎜
⎝

p

m

Q

⎞
⎟⎟⎟⎟⎟⎟
⎠

= αS

⎛
⎜⎜⎜⎜⎜⎜
⎝

E

H

◇E

⎞
⎟⎟⎟⎟⎟⎟
⎠

(6)

An important practical merit of this definition over the use of the rank 4 quadrupolarizability ten-

sor is that the rank 2 superpolarizability tensor can be immediately plotted as a 2D color image,

allowing direct comparison of dipolar and quadrupolar contributions. The superpolarizability fur-

thermore leaves open the possibility that a scatterer or scattering cluster is strongly plasmonic

(electric dipole polarizability is dominant), a metamaterial object (magnetic dipole polarizability

is strong), bi-anisotropic (cross-polarizability in which magnetic (electric) driving begets an elec-
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tric (magnetic) dipolar response, as in an LC-resonator), and quadrupolar. The quadrupole could be

driven by the 6 components of◇E, as appropriate for a deeply subwavelength object, or by E or H

through an equivalent of “bi-anisotropic cross-coupling", as we will see below for the well-known

dolmen plasmon antenna.

To find the 12×12 superpolarizability of an arbitrarily shaped object it is necessary to supply

sufficient linearly independent incident conditions, retrieve the induced moments, and then per-

form matrix inversion. A subtle point is that invertibility requires to remove one more degree of

redundancy, which owes to the facts that the quadrupole tensor is traceless Qxx +Qyy +Qzz, and

that E is divergence free i.e. ∂xEx+∂yEy+∂zEz = 0. Throughout this work we plot the full 12×12

superpolarizability, while for calculations that require matrix inversion we cast to and from the

equivalent 11×11 form as listed in the Methods section. A sketch of the 11 required driving con-

ditions is presented in Figure 1. First, to construct three incidence conditions that only provide

an electric field at the origin without any magnetic field or electric-field gradient, we take coun-

terpropagating co-polarized plane waves along the three cartesian axes. Figure 1a shows such a

driving for the y axis. Next, to provide no electric field but a magnetic field at the origin, we shift

the three standing waves by λ /4. Figure 1b also shows such a driving for the y axes. It should be

noted that this condition is not, in fact, free of electric field gradient at the origin. To form the 5

required electric field gradients without any admixing of E and H we use 2 orthogonal pair sets of

counterpropagating plane waves with antiparallel polarization of the E field. Figure 1c shows the

combination of these 4 plane waves in the xy plane, which generates the required◇Exy driving. We

create 3 of the 5 required excitations with zero E and H field but a strong field gradient at the origin

by combinations along the cartesian axes. In addition 2 excitations are created by using diagonals

of the cartesian cube. The superpolarizability simply follows from matrix inversion and is in fact

entirely independent of the actual choice of linearly independent input fields. Finally we note two

important facts. Firstly it is important to realize that the simplification to a superpolarizability

tensor does not involve an electrostatic approximation. Indeed, we use vector spherical harmonic

projection of the full field solution to obtain the generalized Mie coefficients anm and bnm, i.e.,
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Figure 1: Sketches of the plane waves we combine to obtain linearly independent driving for
retrieving superpolarizability tensors. a) A pure electric field E at the origin is obtained from
counterpropagating plane waves. b) The same plane waves, but shifted in phase provide H at the
origin, with a null in E. As shown in c), a combination of four plane waves in a plane can be
combined to obtain a pure “symmetric gradient” in E without admixture of asymmetric gradient
terms. It should be noted that the condition in b) is not pure in the sense that it contains not only H
but also a contribution from ◇E.

the electrodynamic multipole coefficients that include all retardation effects. Secondly, while it

is the sole purpose of this paper to derive an interpretative tool to underpin prior works that have

invoked electric dipole, magnetic dipole and electric quadrupole responses only, the method can be

extended also to include higher order moments. In particular, we note that while sofar it has often

been taken at face value that orders beyond the electric quadrupole are not relevant, the important

question whether taking only the selected multipole terms indeed suffices at all is easily answered

for any structure simply by calculating the higher order expansion coefficients of the scattered field

using eq. 1.

Dolmen αS-tensor

To demonstrate the utility of the multipole polarizability retrieval for the rigorous underpinning

of hybridization intuition, we apply it to retrieve the αS-tensor of a silver dolmen structure. This

structure is composed of a single x-oriented rod closely coupled to a y-oriented dimer of rods, and

is well known because it exhibits PIT24,26,30,41–44 when measuring extinction for x-polarized light
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incident along z. The structure used in our calculations is shown in Figure 2a with the correspond-
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Figure 2: a) Sketch of the dolmen structure with the dimensions used. b) Total scattering cross
section of the silver dolmen structure. The thickness is 20 nm.

ing dimensions. For the silver material we use the tabulated data in ref.45 In Figure 2b we show

the total scattering cross section of the structure as a function of optical wavelength. The resonant

scattering cross section has two distinct features. The dominant feature is a maximum cross section

at 687 nm, with a minimum close by at 665 nm. The spectral features are in good agreement with

literature reports.41 The proposed physics in those reports is that a Fano resonance occurs upon

direct driving of the x-oriented dipolar resonance, which in turn through near field coupling drives

a dark quadrupolar resonance of the dimer.41

We retrieve the 12x12 superpolarizability of the entire dolmen and visualize its element in

Figure 3a. Figure 3a shows αS at a wavelength of 665 nm as a color plot, where we present the

logarithm of the magnitude of the elements of αS. The logarithmic scale has the merit that it allows

us to quickly identify the entries that dominate the optical response as the red/orange color (see

Methods). Since the logarithmic scale unfortunately obscures small relative differences between

elements (differences smaller than a factor 2) as well as phase information, we also report quanti-

tative values for all non-negligible tensor elements in the Supplementary Information, and plot the

amplitude and phase for select elements in Figure 4. While all the equations in the main body of

this paper are stated in SI units, for visualization it is convenient to scale the entries on basis of a
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Figure 3: Graphical representation of the dolmen superpolarizability at the Fano resonance, i.e.,
at λ = 665 nm. The color scale maps the logarithm log10(∣αS∣) where αS is expressed in units of
µm3 (see Methods).

CGS-based unit system explained in the "Methods" section that ensures that all superpolarizability

tensor elements have units of volume, with numerically equal entries (i.e., identical color in Fig-

ure 3a ) corresponding to equal scattering power.

To understand the structure of the reported tensor the αS tensor can be divided in 9 block

matrices: four 3x3 matrices, two 3x6 matrices, two 6x3 matrices and one 6x6 matrix. Throughout

its diagonal we find that the first block matrix (αE
p ) is related to the purely electric dipolar response

of the object, meaning that it quantifies the electric dipole created by an electric field. For the

dolmen structure at 665 nm one finds a strong electric dipole polarizability αEx
px = 7.8×10−3 µm3

along x, attributable to the resonance of the top rod. The two y-oriented rods are responsible for a

sizeable electric dipole polarizability αEy
py = 7×10−3 µm3 along y. While their resonance is shifted

away from that of the x-oriented rod towards the blue to 625 nm, their large joint volume still

ensures a significant polarizability comparable to that of the single x-rod. Finally, due to the small
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height of the rods the electric dipole polarizability along z is only αEz
pz = 3.4×10−4 µm3.

The second diagonal block (αH
m) of the αS tensor can be likewise interpreted as the purely

magnetic dipolar response due to incident magnetic fields, while the third diagonal block is the

quadrupolar response of the object due to symmetric gradients of the electric field (α◇E
Q ), also

called “quadrupolarizability” tensor.39 The blocks outside the diagonal quantify cross-coupling

terms. In particular the 3x3 off-diagonal blocks quantify bi-anisotropy, i.e., the generation of a

magnetic dipole response upon driving by electric fields (αE
m) and vice versa. Finally, we also find

quadrupoles induced directly by an electric or magnetic field (αE
Q, αH

Q ), which we define here as

“hyperpolarizability” tensors. In terms of polarizability contributions that stand out for the dolmen

in terms of magnitude (apart from the electric dipole polarizability), we find that a strong z-oriented

magnetic dipole as well as a strong Qxy can be induced by driving simply with an x−oriented E-

field (first column of αS, discussed at length below) , while driving by y-oriented E-fields (second

column) sets up a strong linear quadrupole moment along y (since Qyy = −2Qxx = −2Qzz [phase not

shown in plot], with all other quadrupole moments negligible) . We further note the approximate

symmetry of αS which for purely dipolar magnetoelectric scatterers (top 6x6 block) is rigorous

and a consequence of Onsager reciprocity.31,46

Evidently, the entire αS tensor contains very rich physics that will allow one to pinpoint for

each excitation condition exactly which moments are induced. Such insights may then be further

cast into a microscopic analysis by examining how particular incident field distributions set up,

for instance, particular charge oscillations inside the cluster. To illustrate how such an analysis can

enrich insights in important optical phenomena, we focus on the dolmen response to an x-polarized

plane wave, i.e, the first column of αS only. The retrieved polarizability shows that the dominant

responses driven by an x-polarized plane wave as used in all reported experiments involve px, and

the expected ‘dark’ quadrupole Qxy. More unexpectedly an out-of-plane magnetic response mz also

is significant. These three response contributions are cross coupled in the sense that driving any of

the three ‘directly’ via the diagonal of αS also excites the others. For instance, in the original de-

scription of PIT experiments it is understood that one drives px directly by Ex, which then induces
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the expected in-plane quadrupole response Qxy (as well as the associated magnetic response mz).

Conversely, the quadrupole can also be directly driven via application of the symmetric E-field

gradient◇Exy, in which case also an electric dipole moment px is induced. Thus, the polarizability

tensor directly evidences the suspected hybridization of an x-oriented electric dipole with the Qxy

dipole moment. Furthermore our results point at an accompanying magnetic response that was not

invoked in previously reported discussions on PIT in dolmens.
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Figure 4: Magnitude and phase as function of wavelength of salient superpolarizability tensor
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report on the degree to which the magnetic dipole mz and electric quadrupole Qxy can be driven
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As regards microscopic analysis of their origin, out of these three contributions the px and

Qxy were already assigned in literature to the fundamental dipole mode of the top rod and the

antisymmetrically oscillating dimer, respectively. This assignment can be further underpinned by

examining separately the superpolarizabilities of the isolated particles that compose the dolmen,

i.e., the x-oriented rod on one hand and the dimer on the other hand. As shown in Figure 4a

the isolated top particle has a strong electric dipole polarizability αEx
px = 14.4×10−3 µm3 that is

resonant at 687 nm with a width of 89 nm. The top particle alone is responsible for essentially

the complete response of the x-oriented electric polarizability of the entire dolmen. The isolated

dimer in contrast (Figure 4b ) shows a resonance that carries both the expected quadrupolar α◇Exy
Qxy

that PIT literature has focused on, and the magnetic dipole αHz
mz that was hitherto disregarded in

PIT literature but emphasized in literature on metamaterial applications for cut wire pairs.47 These

moments are associated with the same asymmetric current distribution mode of the bare dimer,

centered at 665 nm with a width of 50 nm. Clearly, the magnetic dipole and electric quadrupole

belong to the same resonance, and share cross polarizabilities. This feature is generally found for

antennas constructed by two separated electric dipoles such as in cut-wire pairs.47,48 Meyrath et

al.49 in a critical appraisal of the law of electromagnetic induction have argued that in absence of

closed conduction loops and given the non-electrostatic nature of the system, a strict separation

can not be made between magnetic and electric responses. We note that the induced moments can

through eq. 1, be separated clearly either mathematically on basis of projection on vector spheri-

cal harmonics, or in an experimental observable such as the far-field angular radiation pattern that

differs markedly for magnetic dipoles and electric quadrupoles50. The ambiguity that Meyrath et

al.49 point out, however, is evident in the fact that the asymmetric resonance can not be uniquely

assigned either to a response to magnetic field Hz or to a response to nonuniformities in electric

field. Indeed, the asymmetric mode of the cut-wire pair is simply driven by ∂xEy, which is con-

tained equally in the curl of E (i.e., in Hz = ∂xEy − ∂yEx) and in the symmetric gradient (i.e. in

◇Exy = 1
2[∂xEy+∂yEx]).

Returning to the superpolarizability for the entire dimer we consider the frequency dependence
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of select components in Figure 4c to trace the emergence of PIT. For αEx
px the dipolar polariz-

ability of the rod gains a dispersive Fano resonance at 665 nm, demonstrating that hybridization

occurs. As complementary information Figure 4d demonstrates that the resonances of the strong

cross polarizabilities αEx
mz and αEx

Qxy
likewise are a product of the hybridization of the composing

elements, where the quadrupole contribution broadens as a consequence of coupling to the bright

dipolar resonance of the rod. Thus the simple superpolarizability retrieval presented here provides

important underpinning for the physical picture proposed in literature. Rather than resorting to

quasi-electrostatics or visually inspecting snapshots of simulated charge distributions, the super-

polarizability tensor quantitatively reports which multipole moments are involved.

As a further insight that is provided by the superpolarizability analysis, we find that it allows us

to quantify the common assumption that the dimer resonance with its combined electric quadrupole

and magnetic dipole moment is a dark resonance. As we see from the plotted amplitudes of αS, the

magnetic and quadrupolar moments induced through the incident electric field scatter comparable

amounts, and the total power radiated by the asymmetric mode is within a factor 3 from that

radiated by the induced electric dipole. To summarize, while the term ‘dark’ adequately describes

the lack of direct coupling between an incident x-polarized plane wave incident along z and the

asymmetric mode, the radiation pattern of a dolmen actually contains significant contribution from

the asymmetric mode in apparent contradiction to the terminology ‘dark’ resonance.

A third observation is that the Fano line shape is ultimately determined not only by the ampli-

tude but also by the phase of the cross-polarizability, as motivated from a coupled oscillator model

by Zhang et al.41 In principle the superpolarizability tensor provides a direct method to read off

and microscopically understand the phase. Finally we note that as in any optical Fano system, a

challenge is to ultimately identify the true normal, i.e., uncoupled eigenmodes, as was recently

reported for the Fano resonance in plasmonic heptamers,28 and investigated by Gallinet et al.30

We propose that such an analysis can be realized by examining poles of the superpolarizability as

one sweeps frequency into the complex frequency plane.20,51,52
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Backaction correction for hybridization with environments

In nano-optics one frequently relies on first developing intuition for the functioning of antennas

or Fano-resonant structures when they are in isolation, to then explore the functioning of these

structures in more complex geometries. Examples are the placement of antennas in arrays or the

placement of antennas on dielectric interfaces or stratified media. For instance, plasmon antennas

are used on dielectric interfaces such as glass cover slips in microscopy experiments8,9,11,53 and

sensing applications, or on high-index semiconductors in LEDs and solar cell applications.4,5 Here

we ask if an extracted superpolarizability for a complex antenna in isolation can be used as input

for a predictive model where the antenna is placed in a complicated environment. In the dipole

approximation the enviroment can be taken into account in the electric dipole polarizability by

including radiation damping and a reactive shift in the polarizability as a self interaction term that

is essentially the scattered Green function of the embedding medium.22,28,54,55 This correction is of

large use, since with this correction it is possible to quantitatively predict the response of arbitrary

antenna geometries in complex backgrounds using as input single building blocks for which the

free space superpolarizability is already tabulated. Here we derive a similar correction for the

superpolarizability. In
⎛
⎜⎜⎜⎜⎜⎜
⎝

p

m

Q

⎞
⎟⎟⎟⎟⎟⎟
⎠

= αS

⎛
⎜⎜⎜⎜⎜⎜
⎝

E

H

◇E

⎞
⎟⎟⎟⎟⎟⎟
⎠

(7)

one should take into account that the driving field (E,H,◇E) should not just be the incident field,

but also the field that comes back via interaction with the background to the scatterer, as quantified
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by the scattered part of the Green’s function of the background system. Thus the total field reads

⎛
⎜⎜⎜⎜⎜⎜
⎝

E

H

◇E

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

E0

H0

◇E0

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1GE ⋅p+a2∇×GH ⋅m+a3(◇′G
T
E)T ⋅Q

a1
iωµµ0

∇×GE ⋅p+a4GH ⋅m+ a3
iωµµ0

∇×(◇′GT
E)T ⋅Q

a1◇GE ⋅p+a2◇(∇×GH) ⋅m+a3◇(◇′G
T
E)T ⋅Q

⎞
⎟⎟⎟⎟⎟⎟
⎠

(8)

where in the SI unit system a1 = ω2µµ0, a2 = iω , a3 = a1/6, a4 = ω2εε0. This result combines

the magnetoelectric Green dyadic31 with the electric field radiated by a quadrupole56,57 Q that

is given by E(r) = (1/6)ω2µ0µ(◇′GT
E(r,r′))T ⋅Q. Equation 7 is of the form P = αS[E0 +GP],

where P is the generalized induced moment, E0 is the driving field, and G is a generalized field

propagator which includes the Green’s function, the curl of the Green’s function as well as its

symmetric gradients. Hence the corrected polarizability defined through P = αS
correctedE0 must be

of the familiar form αS
corrected

−1
=αS−1

−G. Explicitly, we define the corrected αS
corrected tensor as

αS
corrected

−1
= αS−1

− ...

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1GE a2∇×GH a3(◇̂
′G

T
E)T

a1
iωµµ0

∇×GE a4GH
a3

iωµµ0
∇×(◇̂′GT

E)T

a1◇̂GE a2◇̂(∇×GH) a3◇̂(◇̂
′G

T
E)T

⎞
⎟⎟⎟⎟⎟⎟
⎠

(9)

where the actual inversion again requires casting to and from 11x11 form as outlined in the Meth-

ods section. In absence of quadrupolar contributions, this correction reduces to the magnetoelectric

radiation damping correction derived for metamaterials by Belov58 and Sersic,31 which in itself

is a generalization of the Sipe-Kranendonk formalism.59 Note that owing to the required matrix

inversion, a nontrivial environment such as a nearby surface can induce magnetoelectric cross-

coupling,60 as well as mixing of dipolar and quadrupolar excitations.
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Single particle on a Si substrate as directional antenna

We apply the correction to the superpolarizability tensor of Au disks fabricated on a Si substrate

which were recently used in a simple cathodoluminescence experiment.61 We take a pillbox as

particle shape with a diameter of 180 nm and a height of 80 nm. We retrieve the superpolarizability

for the particle in vacuum, and subsequently correct with the backaction correction (evaluated at

mid-height, i.e., 40 nm above the silicon substrate).

Figure 5b and c summarizes αS as color plots before and after the correction, taking as wave-

length 565 nm and again scaling the superpolarizability tensor elements (Methods section) such

that equal value means equal scattered power. We present a logarithmic color plot to facilitate

quick identification of relevant entries (Supplemental Information provides numerical values). In

absence of the substrate the particle response is dominated by a strong electric polarizability along

the three principal particle axes. Here x and y are strictly degenerate by symmetry, while the polar-

izability along z is somewhat lower with a ratio of 0.34 owing to the smaller height. The isolated

disk also allows a significant magnetic dipole response and quadrupolar response owing to the

big disk size. The particle symmetry, however, implies absence of bianisotropy. Once the disk

is brought close to the substrate, the substrate induces cross-coupling between different elements,

namely bianisotropy linking electric and magnetic dipoles (px and my), and coupling of dipolar

and quadrupolar responses.

To gain more insight we highlight the polarizability tensor elements that are relevant in a typical

normal incidence scattering experiment, i.e., when impinging with an ‘x’ polarized plane wave.

The most important elements in the superpolarizability tensor that play a role, i.e., αEx
px , αEx

my , αHy
my ,

and αEx
Qxz

are plotted as function of wavelength in Figure 5d. For the particle in free space the

strongest contribution to the scattering is simply the purely electric dipolar response αEx
px , with

a maximum of 1.8× 10−2 µm3 at a wavelength of 680 nm. The next-important terms, i.e., the

magnetic dipole response αHy
my and electric quadrupole α◇Exz

Qxz
are 10 to 100 times smaller, while the

off-diagonal cross polarizability is another factor of 100 to 1000 smaller still.

Once the scatterer is placed on the substrate, the back action correction modifies this ordering.
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Figure 5: a) Sketch of a gold disk on silicon. b) and c) Graphical representation of the superpolar-
izability tensor at λ = 565 nm of an isolated disk (panel b) and the same disk on silicon (panel d).
As in figure 3 the color scale represents log10(∣αS∣) where αS is expressed in µm3. Panels d) and
e) show the wavelength dependence of salient superpolarizability components for the isolated disk
d), and the disk on the Si substrate e).

Figure 5e reveals that the electric polarizability is enhanced and shifted in frequency due to its

interaction with the silicon substrate. Remarkably, the crosspolarizability αEx
my and hyperpolariz-

ability αEx
Qxz

are enhanced by 3 to 4 orders of magnitude, thus allowing electric fields to much more

efficiently excite magnetic dipoles and quadrupoles. An intuitive picture for this process is that if

initially an electric dipole is induced in the scatterer, its image dipole has sufficient gradient for
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driving quadrupoles and the magnetic dipole.
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Figure 6: a) Four field emission patterns for a gold cylinder antenna excited with a dipolar emitter
located 40 nm above the point dipole-quadrupole and 60 nm off axis. The three graphs present
different wavelengths 550, 600 and 700 nm. The white dashed circles display the angles 30, 60
and 90 degrees. b) cross cuts of the ∣E ∣2 emission patterns of figure a). c) Polar plots of the
radiated intensity by the cylindrical antennas when excited with a electrical dipolar emitter located
at different positions from the center of the antenna.

On basis of recent experiments and theoretical proposals, it is expected that if one actually man-

ages to excite magnetic dipole moments and electric quadrupoles as strongly as the fundamental

electric dipole term, one can engineer complicated and directional radiation patterns.53,62–64 Here

we predict that if the Au antenna on silicon that we analyzed is excited with a localized source, as

in cathodoluminescence, strongly directional radiation patterns indeed emerge. We predict these

radiation patterns simply from two ingredients: the free-space superpolarizability and the known

interface Green’s function,65 without any recourse to a full-wave solution beyond extraction of the

superpolarizability of the disk in free space. To obtain a prediction we simply take as driving field
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(i.e., E,H and ◇E) the field of an electric dipole emitter as given by the known interface Green

function. Next, we calculate the induced moments by multiplication of the driving field with the

substrate-corrected superpolarizability tensor. Finally we find the far-field radiation pattern by co-

herent addition of the known far fields of the induced moments, for which asymptotic expansions

are likewise textbook material.65

In Figure 6a we show the total field intensity squared (∣E ∣2) for the cylindrical Au antenna ex-

cited with a dipolar emitter with strength p0, located 60 nm off axis from the center of the cylinder

and 40 nm above the center of the multipolar scatterer antenna. Figure 6a shows results for three

driving wavelengths, namely 550 nm, 600 nm and 700 nm, which are the resonant wavelengths of

the quadrupoles, in-plane electric dipole and out of plane electric dipole respectively. These figures

together with the cross-cuts shown in Figure 6b show how we can achieve a very strong directional

emission with only one single particle. The strong directionality results from coherent superposi-

tion of the electric dipole, magnetic dipole, and electric quadrupole terms that are excited in such

a ratio as to yield comparable far-field flux. For instance, in the first panel of Figure 6a the an-

tenna acquires an electric dipole of ∣px∣=1.69p0, ∣pz∣=1.56p0 and a magnetic dipole of ∣my∣=1.17p0

while the dominating acquired quadrupoles have a magnitude of ∣Qxx∣=3.86p0, ∣Qyy∣=3.61p0, and

∣Qxz∣=2.09p0.

Finally, we sweep the position of the dipole over the antenna, starting from the center moving

in steps of only 5 nm. We find (Figure 6c) that the angular emission changes drastically with the

position of the emitter with respect to the antenna. For instance, viewing emission under a 70○

angle relative to the substrate, it is possible to acquire a signal that changes up to 15% between two

given points per nm of lateral position shift of the excitation source. This effect could allow using

simple gold antennas on a substrate as sensitive position detectors of fluorescent molecules with

resolutions better than those of STORM66 and PALM67 microscopy. This ultra-high sensitivity

to position of a source relative to an antenna is similar in concept to a recent proposal to use

a notched high-index dielectric sphere with an overlapping electric and magnetic resonance.63

However, practically fabricating an Au cylinder on a Si substrate is far simpler than preparing

19



notched high-index Mie spheres.

Conclusions

To summarize our work, we have presented a straightforward method to retrieve dipolar but also

quadrupolar polarizabilities αQ for arbitrary scatterers in order to provide substantiation for hy-

bridization intuition, and input for quantitative hybridization reasoning for plasmonic antenna

structures. A key simplification is to handle quadrupolar terms through the ◇ operator to avoid

redundancy and ease visualization. As an example we have analyzed the plasmonic dolmen struc-

ture, providing a quantitative underpinning for reported hybridization intuition in terms of electric

dipole-to-quadrupole coupling. In addition to quantifying the strength of the induced moments, the

retrieval also evidenced a commonly disregarded but equally important magnetic dipole moment.

This example clearly shows very large potential of superpolarizability retrieval for the quantitative

understanding of many complex plasmon and dielectric antenna phenomena. In addition we have

shown how to predict the scattering properties of a building block in a complex environment on

basis of on one hand the free space building block polarizability and on the other hand the environ-

ment Green function. This will have a large impact on the quantitative modeling of plasmon and

dielectric antennas in typical applications for solar cells, LEDs and sensors, where antennas al-

ways function in a complicated dielectric environment. Importantly, the complex environment can

induce or enhance particular multipolar moments, yielding new methods to control directionality

of scattering and emission.

Methods

Units

In order to be able to compare the magnitudes of driving field components, polarizabilities, and

induced moments directly, we use a non-SI scaling of quantities based on the CGS unit system.
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Here we provide the unit conversion to SI. The rationale is that equal entries in the polarizability

tensor correspond to equal scattered power.

First we scale the electric field, magnetic field, and electric field gradient to share as com-

mon unit [V/m], scaled such that a simple plane wave represents unit strength for all its nonzero

components. The conversion reads

E =ESI, H = Z0HSI and ◇E = k◇ESI, (10)

where Z0 is the free space impedance. Next we scale all the induced moments from their SI

definition so as to obtain as common unit [C m] (Coulomb meter), and such that any moment of

unit strength radiates exactly the same power into the far-field. The conversion reads

p = pSI, m = 1/cmSI and Q = k√
60

QSI. (11)

The factor k/
√

60 results from the quadrupolar equivalent of Larmor’s formula. For a dipole, Lar-

mor’s formula states that the radiated power is P = c2Z0k4/(12π)∣pSI∣2, while for a quadrupole

P = c2Z0k6/(1440π)∑α,β ∣QSI,α,β ∣2. Finally, with this choice of units the superpolarizability ten-

sor is automatically cast to have units ε0m3 for all entries, where comparable entries necessarily

contribute comparably to the scattered power. We tabulate the complete conversion. For the block

diagonals the conversion reads:

αE
p = αSI

E
p , αH

m =
1

Z0c
αSI

H
m, and α◇E

Q = k2
√

60
αSI
◇E
Q . (12)

For the off-diagonal blocks the conversion reads

αE
m =

1
c

αSI
E
m, αH

p =
1
Z0

αSI
H
p , αE

Q =
k√
60

αSI
E
Q,

αH
Q =

k

Z0
√

60
αSI

H
Q, α◇E

p = kαSI
◇E
p , α◇E

m = k
c

αSI
◇E
p . (13)
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Due to our definition of the vector Q the rows 7,8 and 9 in αS are divided by 2. In Figure 3 and 5

we further take out the factor ε0 so that the plotted quantity has units of volume and can be directly

compared to particle volume.

Casting 12×12 αS to non-redundant subspace and back

That the quadrupole tensor is traceless Qxx +Qyy +Qzz = 0, and E is divergence free, i.e. ∂xEx +

∂yEy+∂zEz = 0, implies that the 12×12 superpolarizability tensor is not invertible as it has a matrix

rank 11. The redundancy can be removed by replacing Q by Q̂ = {2Qxy,2Qxz,2Qyz,Qxx,Qyy}

and◇E by ◇̂E = {(∂xEy+∂yEx)/2,(∂xEz+∂zEx)/2,(∂yEz+∂zEy)/2,(∂xEx−∂zEz),(∂yEy−∂zEz)}.

To cast the 12×12 tensor αS in 11×11 form α̂S requires simply dropping the last column and

row. Procedurally we first find the 11×11 α̂S tensor from the moments(p,m,Q̂) induced by 11

incidence conditions, and then expand to 12×12 form. To this end we define the 11×12 matrix M

which has the 11×11 identity matrix as upper diagonal block, and which as last column has zeros

except for its last two entries M11,11 =M11,12 =−1. With this definition, the expanded polarizability

is retrieved as αS =MT α̂SM. The backaction correction in eq. (9) is implemented by taking the

uncorrected 11×11 superpolarizability α̂S, calculating the Green function term replacing ◇ by ◇̂,

and finally casting the corrected α̂S to 12×12 form. We note that casting into 12×12 form is not

strictly necessary since the 11×11 form contains all information. However, the 12×12 form is

easier to interpret.

Acknowledgement

This work is part of the research program of the “Foundation for Fundamental Research on Mat-

ter (FOM)”, which is financially supported by the “The Netherlands Organization for Scientific

Research (NWO)”. This work is supported by NanoNextNL, a micro and nanotechnology consor-

tium of the Government of the Netherlands and 130 partners. AFK gratefully acknowledges an

NWO-Vidi grant for financial support.

22



References

1. Novotny, L.; van Hulst, N. Antennas for Light. Nat. Photon. 2011, 5, 83–90.

2. Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics

for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193–204.

3. Agio, M., Alú, A., Eds. Optical Antennas; Cambridge University Press, 2013.

4. Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. Surface plasmon enhanced silicon solar

cells. J. Appl. Phys. 2007, 101, 093105.

5. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010,

9, 205–213.

6. Lozano, G.; Louwers, D. J.; Rodriguez, S. R. K.; Murai, S.; Jansen, O. T.; Verschuuren, M. A.;

Gómez Rivas, J. Plasmonics for solid-state lighting: enhanced excitation and directional emis-

sion of highly efficient light sources. Light Sci. Appl. 2013, 2, e66.

7. Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic Nanoantennas:

Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem.

Rev. 2011, 111, 3888–3912.

8. Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single-Molecule Fluo-

rescence. Phys. Rev. Lett. 2006, 96, 113002.

9. Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of Single-Molecule Flu-

orescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett. 2006, 97,

017402.

10. Koenderink, A. F. Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plas-

mon Sources. Nano Lett. 2009, 9, 4228–4233.

23



11. Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Unidi-

rectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science 2010, 329, 930–933.

12. Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K.; E., M. Large single-molecule

fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–

657.

13. Punj, D.; Mivelle, M.; Moparthi, S. B.; van Zanten, T. S.; Rigneault, H.; van Hulst, N. F.;

Garcia-Parajo, M. F.; Wenger, J. A plasmonic /‘antenna-in-box/’ platform for enhanced single-

molecule analysis at micromolar concentrations. Nat. Nanotechnol. 2013, 8, 512–516.

14. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing

with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

15. Escobedo, C.; Brolo, A. G.; Gordon, R.; Sinton, D. Optofluidic Concentration: Plasmonic

Nanostructure as Concentrator and Sensor. Nano Lett. 2012, 12, 1592–1596.

16. Ferreira, J.; Santos, M. J. L.; Rahman, M. M.; Brolo, A. G.; Gordon, R.; Sinton, D.;

Girotto, E. M. Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance. J.

Am. Chem. Soc. 2009, 131, 436–437.

17. Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Prop-

agation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science

2011, 334, 333–337.

18. Ni, X.; Emani, N. K.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Broadband Light Bend-

ing with Plasmonic Nanoantennas. Science 2012, 335, 427.

19. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A Hybridization Model for the Plasmon

Response of Complex Nanostructures. Science 2003, 302, 419–422.

20. Weber, W. H.; Ford, G. W. Propagation of optical excitations by dipolar interactions in metal

nanoparticle chains. Phys. Rev. B 2004, 70, 125429.

24



21. García de Abajo, F. J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod.

Phys. 2007, 79, 1267–1290.

22. Bernal Arango, F.; Kwadrin, A.; Koenderink, A. F. Plasmonic Antennas Hybridized with Di-

electric Waveguides. ACS Nano 2012, 6, 10156–10167.

23. Luk´yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.;

Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater.

2010, 9, 707–715.

24. Liu, N.; Langguth, L.; Weiss, T.; Kastel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic

analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater.

2009, 8, 758–762.

25. Hao, F.; Sonnefraud, Y.; Dorpe, P. V.; Maier, S. A.; Halas, N. J.; Nordlander, P. Symmetry

Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Reso-

nance. Nano Lett. 2008, 8, 3983–3988.

26. Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V. V.; Dorpe, P. V.; Nordlan-

der, P.; Maier, S. A. Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano

Lett. 2009, 9, 1663–1667.

27. Mirin, N. A.; Bao, K.; Nordlander, P. Fano Resonances in Plasmonic Nanoparticle Aggregates.

J. Phys. Chem. A 2009, 113, 4028–4034.

28. Frimmer, M.; Coenen, T.; Koenderink, A. F. Signature of a Fano Resonance in a Plasmonic

Metamolecule’s Local Density of Optical States. Phys. Rev. Lett. 2012, 108, 077404.

29. Park, S. Y.; Stroud, D. Surface-plasmon dispersion relations in chains of metallic nanoparti-

cles: An exact quasistatic calculation. Phys. Rev. B 2004, 69, 125418.

30. Gallinet, B.; Martin, O. J. F. Relation between near–field and far–field properties of plasmonic

Fano resonances. Opt. Express 2011, 19, 22167–22175.

25



31. Sersic, I.; Tuambilangana, C.; Kampfrath, T.; Koenderink, A. F. Magnetoelectric point scat-

tering theory for metamaterial scatterers. Phys. Rev. B 2011, 83, 245102.

32. Jackson, J. D. Classical Electrodynamics, 3rd ed.; Wiley: New York, 1999.

33. Mühlig, S.; Menzel, C.; Rockstuhl, C.; Lederer, F. Multipole analysis of meta-atoms. Meta-

materials 2011, 5, 64 – 73.

34. Kern, A. M.; Martin, O. J. F. Surface integral formulation for 3D simulations of plasmonic and

high permittivity nanostructures. J. Opt. Soc. Am. A 2009, 26, 732–740.

35. Bernal Arango, F.; Koenderink, A. F. Polarizability tensor retrieval for magnetic and plasmonic

antenna design. New. J. Phys. 2013, 15, 073023.

36. Tai, C. T. Dyadic Green’s Functions in Electromagnetic Theory, 2nd ed.; IEEE Press: New

York, 1993.

37. Mohlenkamp, M. J. A fast transform for spherical harmonics. Journal of Fourier Analysis and

Applications 1999, 5, 159–184.

38. Satten, R. A. Effects of Atomic Quadrupole Moments upon the Index of Refraction. J. Chem.

Phys. 1957, 26, 766–772.

39. Alù, A.; Engheta, N. Guided propagation along quadrupolar chains of plasmonic nanoparti-

cles. Phys. Rev. B 2009, 79, 235412.

40. Evlyukhin, A. B.; Reinhardt, C.; Zywietz, U.; Chichkov, B. N. Collective resonances in metal

nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 2012, 85, 245411.

41. Zhang, S.; Genov, D. A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-Induced Transparency in

Metamaterials. Phys. Rev. Lett. 2008, 101, 047401.

26



42. Liu, N.; Weiss, T.; Mesch, M.; Langguth, L.; Eigenthaler, U.; Hirscher, M.; Sonnichsen, C.;

Giessen, H. Planar Metamaterial Analogue of Electromagnetically Induced Transparency for

Plasmonic Sensing. Nano Lett. 2010, 10, 1103–1107.

43. Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A. P.; Giessen, H. Three-Dimensional Plasmon

Rulers. Science 2011, 332, 1407–1410.

44. Ye, Z.; Zhang, S.; Wang, Y.; Park, Y.-S.; Zentgraf, T.; Bartal, G.; Yin, X.; Zhang, X. Mapping

the near-field dynamics in plasmon-induced transparency. Phys. Rev. B 2012, 86, 155148.

45. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press, Boston, 1985.

46. Serdyukov, A.; Semchenko, I.; Tretyakov, S.; Sihvola, A. In Electromagnetics of Bi-

anisotropic Materials: Theory and Applications, 1st ed.; de Cogan, D., Ed.; Electrocomponent

science monographs; Gordon and Breach Science: Amsterdam, The Netherlands, 2001.

47. Dolling, G.; Enkrich, C.; Wegener, M.; Zhou, J. F.; Soukoulis, C. M.; Linden, S. Cut-wire pairs

and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 2005, 30, 3198–3200.

48. Lam, V. D.; Kim, J. B.; Lee, S. J.; Lee, Y. P.; Rhee, J. Y. Dependence of the magnetic-

resonance frequency on the cut-wire width ofcut-wire pair medium. Opt. Express 2007, 15,

16651–16656.

49. Meyrath, T. P.; Zentgraf, T.; Rockstuhl, C.; Giessen, H. Electromagnetic Induction in Meta-

materials. Appl. Phys. B 2008, 93, 107–110.

50. Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic nature of

light emission. Nat. Commun. 2012, 3, 979.

51. Koenderink, A. F.; Polman, A. Complex response and polariton-like dispersion splitting in

periodic metal nanoparticle chains. Phys. Rev. B 2006, 74, 033402.

27



52. Zheng, X.; Volskiy, V.; Valev, V.; Vandenbosch, G.; Moshchalkov, V. Line Position and Quality

Factor of Plasmonic Resonances Beyond the Quasi-Static Limit: A Full-Wave Eigenmode

Analysis Route. J. Sel. Top. Quant. Electron. 2013, 19, 4600908–4600908.

53. Curto, A. G.; Taminiau, T. H.; Volpe, G.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Mul-

tipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 2013, 4,

1750:1–7.

54. Buchler, B. C.; Kalkbrenner, T.; Hettich, C.; Sandoghdar, V. Measuring the Quantum Effi-

ciency of the Optical Emission of Single Radiating Dipoles Using a Scanning Mirror. Phys.

Rev. Lett. 2005, 95, 063003.

55. Frimmer, M.; Koenderink, A. F. Superemitters in hybrid photonic systems: A simple lumping

rule for the local density of optical states and its breakdown at the unitary limit. Phys. Rev. B

2012, 86, 235428.

56. Klimov, V. V.; Ducloy, M. Quadrupole transitions near an interface: General theory and appli-

cation to an atom inside a planar cavity. Phys. Rev. A 2005, 72, 043809.

57. Ribaric, M.; Sustersic, L. Expansion in Terms of Moments of Time-Dependent, Moving

Charges and Currents. SIAM J. Appl. Math. 1995, 55, 593–624.

58. Belov, A.; Maslovski, S. I.; Simovski, K. R.; Tretyakov, S. A. A condition imposed on the

electromagnetic polarizability of a bianisotropic lossless scatterer. Tech. Phys. Lett. 2003, 29,

718–720.

59. Sipe, J. E.; Kranendonk, J. V. Macroscopic electromagnetic theory of resonant dielectrics.

Phys. Rev. A 1974, 9, 1806–1822.

60. Kwadrin, A.; Koenderink, A. F. Probing the electrodynamic local density of states with

magneto-electric point scatterers. Phys. Rev. B 2013, 86, 125123.

28



61. Coenen, T.; Bernal Arango, F.; Koenderink, A. F.; Polman, A. Nanoscale Excitation and Emis-

sion Control of Individual Plasmonic Scatterers. Nat. Commun. 2013,

62. Rolly, B.; Stout, B.; Bonod, N. Boosting the directivity of optical antennas with magnetic and

electric dipolar resonant particles. Opt. Express 2012, 20, 20376–20386.

63. Krasnok, A.; Filonov, D.; Slobozhanyuk, A.; Simovski, C.; Belov, P.; Kivshar, Y. Superdirec-

tive dielectric nanoantennas with effect of light steering. arXiv:1307.4601v1 2013, 8.

64. Hancu, I. M.; Curto, A. G.; Castro-López, M.; Kuttge, M.; van Hulst, N. F. Multipolar Inter-

ference for Directed Light Emission. Nano Lett. 2014, 14, 166–171.

65. Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge,

2006.

66. Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical recon-

struction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

67. Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.;

Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Pro-

teins at Nanometer Resolution. Science 2006, 313, 1642–1645.

29


