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Living cells deploy many resources to sense their environments,
including receptors, downstream signaling molecules, time, and
fuel. However, it is not known which resources fundamentally
limit the precision of sensing, like weak links in a chain, and which
can compensate each other, leading to trade-offs between them.
We present a theory for the optimal design of the large class of
sensing systems in which a receptor drives a push–pull network.
The theory identifies three classes of resources that are required
for sensing: receptors and their integration time, readout mole-
cules, and energy (fuel turnover). Each resource class sets a funda-
mental sensing limit, which means that the sensing precision is
bounded by the limiting resource class and cannot be enhanced
by increasing another class—the different classes cannot compen-
sate each other. This result yields a previously unidentified design
principle, namely that of optimal resource allocation in cellular
sensing. It states that, in an optimally designed sensing system,
each class of resources is equally limiting so that no resource is
wasted. We apply our theory to what is arguably the best-charac-
terized sensing system in biology, the chemotaxis network of
Escherichia coli. Our analysis reveals that this system obeys the
principle of optimal resource allocation, indicating a selective pres-
sure for the efficient design of cellular sensing systems.
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Biochemical networks are the information-processing devices
of life. Like any device, they require resources to be built and

run. Components are needed to construct the network, space is
required to accommodate the components, time is needed to
process the information, and energy is required to make the
components and operate the network. These resources constrain
the design and performance of any biochemical network. How-
ever, it is not clear which resources are indispensable, thus
fundamentally limiting the performance of the network, and
which resources might trade-off against each other. Here, we
consider the interplay among cellular resources, network design,
and performance in a canonical biochemical function, namely
sensing the environment.
Living cells can measure chemical concentrations with extra-

ordinary precision (1–3), raising the question what sets the funda-
mental limit to the accuracy of chemical sensing (1). Cells measure
chemical concentrations via receptors on their surface. These
measurements are inevitably corrupted by noise that arises from the
stochastic arrival of ligand molecules by diffusion and from the
stochastic binding of the ligand to the receptor. Berg and Purcell
pointed out that the sensing error is fundamentally bounded by this
noise extrinsic to the cell, but that cells can reduce the error by
taking multiple independent measurements (1). One way to in-
crease the number of measurements is to add more receptors (1, 4).
Another is to take more measurements per receptor over time;
here, the cell infers the concentration not from the instantaneous
number of ligand-bound receptors, but rather from the average
receptor occupancy over an integration time T (1, 4–11).
This time integration has to be performed by the signaling

networks that transmit the information from the surface of the
cell to its interior (10). Although the work of Berg and Purcell
and subsequent studies identify time and the number of receptors

as resources that limit the accuracy of sensing, the fundamental
limits that have emerged ignore the cost of making and operating
the signaling network. Making proteins is costly; producing
proteins that confer no benefit to the cell can slow down bac-
terial growth (12). Moreover, many networks are driven out of
thermodynamic equilibrium by the continuous turnover of fuel
molecules such as ATP, leading to the dissipation of heat (13–
17). In fact, one can estimate that the fuel needed to operate
a sensory network is comparable to that to make new com-
ponents after cell division (SI Text).
In this manuscript, we present a theory for the optimal design

of sensing systems, which maximizes sensing precision given the
available cellular resources. The theory applies to the large
class of sensing systems in which a receptor drives a Goldbeter–
Koshland push–pull network (18). These systems are ubiquitous in
prokaryotic and eukaryotic cell signaling (19): examples include
GTPase cycles, as in the Ras system, phosphorylation cycles, as in
MAPK cascades, and two-component systems like the chemotaxis
system of Escherichia coli.
We derive for this class of systems how the sensing accuracy

depends on not only the number of receptors and their integra-
tion time, but also on the resources required to build and operate
the downstream signaling network: the copies of signaling mole-
cules and fuel. This allows us to address the following questions:
How do the sensing limits set by the latter resources compare with
the canonical limit of Berg and Purcell, which is set by the
resources time and the number of receptors? How does the limit
set by one resource depend on the levels of the other resources?
Can resources compensate each other to achieve a desired sensing
precision, leading to trade-offs between them, or are the limits set
by the respective resources fundamental, i.e., independent of the
levels of the other resources? In addition, what do these rela-
tionships imply for the optimal design of a system that maximizes
sensing precision?

Significance

Cells continually have to sense their environments to make
decisions—to stay put or move, to differentiate or proliferate,
or even to live or die. However, they are thwarted by noise at
the cellular scale. Cells use signaling networks to filter this
noise as much as possible and sense accurately. To operate
these networks, resources are required: time, protein copies,
and energy. We present a theory for the optimal design of
cellular sensing systems that maximize sensing precision given
these resources. It reveals a new design principle, namely that
of optimal resource allocation. It describes how these resources
must be allocated so that none are wasted. We show that the
chemotaxis network of Escherichia coli obeys this principle.
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We find that the resource limitations of these systems emerge
naturally when the signaling networks are viewed as devices that
discretely, rather than continuously, sample the receptor state via
collisions of the signaling molecules with the receptor proteins.
This analysis reveals that three classes of resources are required:
(i) receptors and their integration time, (ii) copies of down-
stream molecules, and (iii) energy (fuel). Indeed, these classes
cannot compensate each other: each imposes a sensing limit, and
it is the limiting class that imposes the fundamental limit on the
accuracy of sensing. However, there can be trade-offs within
each class of resources. Receptors and integration time trade-off
against each other in achieving a desired sensing accuracy, and
power and response time trade-off against each other to meet
the energy requirement for taking a measurement.
Our theory makes a strong prediction for the optimal design of

sensing systems. Because the fundamental resource classes can-
not compensate each other in achieving a desired sensing pre-
cision, any class that is not limiting the sensing precision is in
excess and thus wasted. This naturally leads to a previously un-
identified design principle, namely that of optimal resource al-
location. It states that in an optimally designed sensing system
each fundamental class of resources is equally limiting so that no
resource is wasted. We test this prediction for the chemotaxis
system of Escherichia coli, which is a specific example of the class
of push–pull sensing systems (Fig. 1). Our analysis reveals that
this network obeys the principle of optimal resource allocation.
This indicates that there is a selective pressure on not only the
topology of sensing networks that enhances robustness of ad-
aptation (20–22), but also on the efficient allocation of cel-
lular resources for precise sensing.

Results
Sensing at the Molecular Level.We consider a cell with RT receptor
proteins that independently bind ligand L, R+L⇌RL (Fig. 2A).
The receptor drives a push–pull network, which is a canonical
nonequilibrium motif in prokaryotic and eukaryotic cell signaling

(19). In these systems, the receptor itself or the enzyme associ-
ated with it, such as CheA in E. coli (Fig. 1), catalyzes the
chemical modification of a readout protein x, such as CheY.
Active readout molecules xp can decay spontaneously or be
deactivated by an enzyme, like the phosphatase CheZ in E. coli.
The cell infers the ligand concentration c from the instantaneous

concentration of the output xp, by inverting the mean input–output
relation xpðcÞ. Linearizing xpðcÞ and using error propagation, the
expected fractional error in the concentration estimate is then as
follows (1, 5, 11):

�
δc
c

�2

=
1
c2

σ2x p�
dxp

dc

�2: [1]

The error is low if the readout responds sensitively to changes in
ligand concentration, as measured by the gain dxp=dc, but is not
noisy, as quantified by the variance σ2xp.
We can compute σ2xp from the linear-noise approximation (SI

Text), and using Eq. 1, this yields Eq. S8 for the sensing error. It is
a complicated expression in terms of the eight fundamental vari-
ables in the system: the six rate constants describing the forward
and reverse rates of the three reactions (including ligand–receptor
binding), and the total copy numbers XT and RT (Fig. 2A).
Inspired by the analysis of a simpler system, we can arrive at a

much more illuminating expression for the sensing error, by viewing
the signaling network as a device that samples the receptor state

A B

Fig. 1. The chemotaxis network of E. coli obeys the principle of optimal
resource allocation, which states that in an optimally designed system each
cellular resource is equally limiting. (A) Cartoon of the sensing system. The
receptor is via the adaptor protein CheW associated with the kinase CheA.
This complex, coarse-grained as R in our model, can bind extracellular ligand
L and activate the intracellular messenger protein CheY (x in our model) by
phosphorylating it; phosphorylated CheY controls the rotation direction of
the motor. Deactivation, i.e., dephosphorylation, of CheY is catalyzed by the
phosphatase CheZ; the effect of CheZ is coarse-grained into the deactivation
rate. The proteins CheR and CheB, which implement adaptation, have been
omitted, because we are interested in the lower bound on the accuracy of
sensing in static environments. (B) The principle of optimal resource alloca-
tion, Eq. 5, predicts that the number of CheY proteins, XT , scales linearly
with the number of receptor–CheA complexes, RT , with a slope given by the
relaxation time of the signaling network, τr , over the correlation time of the
receptor ligand-binding state, τc . Plotted are data from ref. 23 for two E. coli
strains under two different growth conditions; the number of CheA dimers is
a proxy for the number of receptor–CheA complexes. The line is a best fit to
the data, having a slope of ≈ 3. The resource allocation principle, Eq. 5, thus
predicts that τr=τc ≈ 3. This is on the same order of magnitude as that given
by the relaxation time, τr ≈ 100 ms (24), and correlation time τc ≈ 10 ms, es-
timated from the measured receptor–ligand dissociation constant (25) and
association rate (26).

A B D E

C

Fig. 2. Sensing at the molecular level. The sensing precision in terms of the
rate constants fkig (A) does not reveal the resource requirements (Eq. S8). To
reveal these, the signaling network is viewed as a device that discretely
samples the ligand-binding state of the receptor. The accuracy of sensing
depends on how the samples are taken (B and C), erased (D), and on how
reliable they are (E). (B) The ligand-bound receptor drives the modification
of a downstream readout (i.e., the push–pull network RL+ x→RL+ x*). (C)
The signaling network in B discretely samples the receptor state, illustrated
for one receptor. The states of the receptor over time are encoded in the
states of the N molecules that collided with it: the readout is modified if the
receptor is bound; otherwise, it is unmodified. Molecules that collide with
the unbound receptor are indistinguishable from those that have never
collided, leading to an additional error. (D) Active molecules can be de-
graded, erasing samples. (E) All reactions are in principle reversible, com-
promising the encoding of the receptor state into the readout. The sensing
error is determined by collective variables that reveal the resource require-
ments for sensing: the probability p that the receptor is bound to ligand, the
receptor–ligand correlation time τc , the flux _n, the relaxation time τr , and
the free-energy drops Δμ1 and Δμ2 across the activation and deactivation
reactions of the readout, respectively.
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(SI Text). The general principle is that the activation reaction,
x+RL�!kf xp +RL generates samples of the ligand-binding state
of the receptor by storing the receptor state in the stable modi-
fication states of the readout molecules (Fig. 2 B and C).
Readout molecules that collide with a ligand-bound receptor are
activated, whereas those that collide with an unbound receptor
remain inactive. In this way, each readout molecule that has
interacted with the receptor provides a memory or sample of the
ligand-occupation state of that receptor molecule; collectively,
the readout molecules encode the history of the receptor states.
Intuitively, we expect that if there are N receptor–readout
interactions, then the cell has N samples of the receptor state
and the error in the concentration estimate, δc=c, is reduced by
a factor of

ffiffiffiffi
N

p
, or less if the samples are not independent. To

derive the effective number of independent samples, we need to
consider not only the creation of samples, but also the erasure of
samples and the quality of the samples (Fig. 2 D and E). The
decay of the readout, xp�!kr x (Fig. 2D), is equivalent to discarding
or erasing samples. Additionally, reactions are microscopically
reversible, which means that readout activation can occur in-
dependently of the receptor, x�!k−r xp, and receptor-mediated
modifications can occur in the wrong direction, xp +RL�!k−f x+RL
(Fig. 2E). These reverse reactions compromise the encoding of the
receptor state into the readout: an active xp molecule no longer
encodes the ligand-bound state of the receptor at a previous time
with 100% fidelity, because it could have been activated inde-
pendently of the receptor; similarly, x, rather than xp, may reflect
a modification by a ligand-bound receptor. These reverse reactions
thus reduce the reliability of a receptor sample. Energy is needed to
break time reversibility and to protect the coding.
How receptor samples are taken (Fig. 2 B and C), erased (Fig.

2D), and how they are stored in the readout x (Fig. 2E), determine
the number of receptor samples, their independence, and their
accuracy, which together set the sensing precision (SI Text):

�
δc
c

�2

=
1

pð1− pÞ
1
NI

+
1

ð1− pÞ2
1
N
: [2]

Here, p is the probability that a receptor is bound to ligand, and
1=ðpð1− pÞÞ is the “instantaneous error,” i.e., the sensing error
based on a single concentration estimate via a single receptor.
The quantity NI , discussed below, is the average number of sam-
ples that are independent. The second term, with N the total
number of samples, accounts for the fact that the cell cannot
distinguish between those molecules x that have collided with
an unbound receptor (and hence provide information on the
receptor occupancy), and those that have not collided with the
receptor at all (Fig. 2C; SI Text). However, when p is small and/or
N is large, the second term is small compared with the first. Eq. 2
then shows that the sensing error has a form that one would expect
for a sampling protocol: the sensing error is that of an estimate
based on a single concentration measurement, 1=ðpð1− pÞÞ, di-
vided by the average number of independent measurements, NI .
The number of independent measurements NI can be expressed

in terms of collective variables that, as we will show, describe the
resource limitations of the cell (Fig. 2E):

NI =
1

ð1+ 2τc=ΔÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fI

ðeΔμ1 − 1ÞðeΔμ2 − 1Þ
eΔμ − 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{q

_nτr
p

z}|{N

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Neff

: [3]

This expression has a clear interpretation. Cells count only those
samples created less than a relaxation time τr in the past; nothing
that happened earlier can influence the current state, including
its ability to sense. Hence, τr is the effective integration time. The

quantity _n is the flux of x across the cycle of activation by the
receptor and deactivation; it is given by _n= kfxRTp− k−fxpRTp,
where x and xp are the average number of x and xp in steady state.
The product _nτr is thus the number of cycles of readout mole-
cules involving collisions with ligand-bound receptor molecules
during the system’s relaxation time τr . The quantity _nτr=p is the
total number of readout cycles involving collisions with receptor
molecules, be they ligand bound or not. It is thus the total num-
ber of receptor samples taken during τr , N.
Not all of these samples are reliable. The effective number of

samples taken during τr is Neff = qN, where 0≤ q≤ 1 measures
the quality of each sample. Here, Δμ1 and Δμ2 are the average
free-energy drops across the activation and deactivation pathway
respectively, in units of kBT (Fig. 2E); Δμ=Δμ1 +Δμ2 is the total
free-energy drop across the cycle. When Δμ=Δμ1 =Δμ2 = 0, an
active readout molecule is as likely to be created by the ligand-
bound receptor as it is created spontaneously and there is no
coding and no sensing; indeed, in this limit, q= 0 and Neff = 0. In
contrast, when Δμ1;Δμ2 →∞, q→ 1 and Neff →N.
The factor fI denotes the fraction of samples that are in-

dependent. It depends on the correlation time τc of receptor–
ligand binding and on the time interval Δ= 2τr=ðNeff=RTÞ
between samples of the same receptor. Samples farther apart are
more independent.

Fundamental Resources and Trade-Offs.We can use Eqs. 2 and 3 to
understand how cellular resources limit the precision of sensing.
A resource or combination of resources that fundamentally limits
sensing is a (collective) variable Qi that, when fixed, puts a non-
zero lower bound on the sensing error, no matter how the other
variables are varied. A fundamental resource class Qi is thus
mathematically defined by the following: MINQi=constðδc=cÞ2 =
f ðconstÞ> 0. To find these classes, we numerically or analytically
minimized the sensing error, constraining (combinations of)
variables yet optimizing over the other variables. As we show in
SI Text, when only RTτr=τc is constrained, ðδc=cÞ2 ≥ 4=ðRTτr=τcÞ;
when only XT is fixed, ðδc=cÞ2 ≥ 4=XT ; when only _wτr is limiting,
ðδc=cÞ2 ≥ 4=ð _wτrÞ. When all resources are present in finite amounts,
the minimum sensing error is set by the highest lower bound:

�
δc
c

�2

≥MAX
�

4
RTτr=τc

;
4
XT

;
4
_wτr

�
: [4]

Fig. 3 A–C shows that the resource classes RTτr=τc, XT , and _wτr
are indeed fundamental: the minimum sensing error is bounded
by the limiting class and cannot be reduced by increasing another
resource. Clearly, increasing a single resource, e.g., XT , cannot
reduce the sensing error indefinitely. The sensing error will even-
tually plateau, namely when it becomes limited by another re-
source, e.g., RTτr=τc. These fundamental resource classes thus
cannot compensate for each other in achieving a required sens-
ing precision and hence do not trade-off against each other.
However, within these classes, trade-offs are possible. We now
elucidate why the fundamental classes cannot compensate each
other, whereas resources within a given class can, leading to
trade-offs between them.

Time/Receptor Copy Numbers, RTτr=τc. An independent sample of
the same receptor can be taken roughly every 2τc. Naturally,
samples can be taken more frequently. In fact, cells can time-
integrate as in the theory of Berg and Purcell (1): if XT →∞, the
receptors are sampled infinitely fast and Δ→ 0 and Neff →∞.
However, increasing XT cannot reduce the sensing error ad
infinitum, because the number of receptor samples that are in-
dependent will saturate at the Berg–Purcell factor, RTτr=τc, and
the sensing error ðδc=cÞ2 will plateau at 4=ðRTτr=τcÞ. Indeed,
RTτr=τc is the maximum number of independent concentration
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measurements—the total number of receptors RT times the
maximum number of independent measurements per receptor
τr=τc. This shows that there is no fundamental relationship be-
tween sensing and receptor copy number: the latter can be
traded against time to reach a desired sensing precision. Essen-
tially, the error is determined by the total number of samples and
it does not matter, as long as the samples are independent,
whether these samples are from the same receptor over time or
from many receptors at the same time.

Downstream Readout Molecules, XT . The concentration measure-
ments need to be stored in the readout molecules. Each readout

molecule provides at most one sample, because at any given time
it exists in only one modification state, regardless of how many
times it has collided with the receptor or how long the in-
tegration time τr is. There is no mechanistic sense in which
a single molecule “integrates” the receptor state. As a conse-
quence, no matter how the network is designed, how much time
or energy it uses, or how many receptors it has, cells are fun-
damentally limited by the pool of readout molecules: the sensing
error ðδc=cÞ2 ≥ 4=XT .

Energy, _wτr. The free-energy drop across a cycle, Δμ, must be
provided by a fuel molecule such as ATP. The power, the rate at
which the fuel molecules do work, is _w= _nΔμ, and the total work
performed during τr is w≡ _wτr . This work is spent on taking
samples of receptor molecules that are bound to ligand, because
only they can modify downstream readout molecules. Hence, the
work needed to take one effective sample of a ligand-bound
receptor is w=ðpNeffÞ, with Neff given by Eq. 3. Fig. 3D shows
this quantity as a function of Δμ. While w=ðpNeffÞ=Δμ=q increases
continuously with Δμ, two limiting regimes can be observed.
When Δμ> 4kBT, the work to take one effective sample of

a ligand-bound receptor becomes simply w=ðpNeffÞ=Δμ. In this
regime, the readout reactions are essentially irreversible, q→ 1,
and each sample requires the turnover of one fuel molecule,
using Δμ of energy. Energy limits the accuracy of sensing, not
because it limits the reliability q of each sample, but because it
limits the total number of samples Neff = _nτr=p by limiting the
receptor sampling frequency _n: ðδc=cÞ2 ≥ 1=ð _nτrÞ=Δμ=ð _wτrÞ.
Intriguingly, this bound suggests that for a fixed amount of en-
ergy, w= _wτr , spent during the relaxation time τr , the sensing error
can be reduced to zero by reducing Δμ to zero. However, this lower
bound only applies when q→ 1, i.e., when Δμ> 4kBT.
When Δμ< 4kBT, the system transitions to a quasiequilibrium

regime in which each fuel molecule provides a small but nonzero
amount of energy. In this regime, the system can still consume
significant amounts of energy when the fuel molecules are con-
sumed at a rapid rate _n by many distinct readout molecules. In
the limit that _n→∞ and Δμ→ 0 at fixed _w= _nΔμ, the effective
number of samples given by Eq. 3 reduces to Neff → _wτr=ð4pÞ.
Each readout–receptor interaction corresponds to an in-
creasingly noisy measurement of the receptor state ðq→ 0Þ, but
many noisy measurements ðN = _nτr=p→∞Þ contain the same
information as 1 perfect measurement—provided that collec-
tively at least 4kBT was spent on them. Indeed, as Fig. 3D shows,
4kBT is the fundamental lower bound on the work needed to
take one accurate sample of a ligand-bound receptor. It puts
another bound on the sensing error: ðδc=cÞ2 ≥ 4=ð _wτrÞ. The
bound can be reached when RTτr=τc and XT are not limiting, and
Δμ→ 0.
Eq. 4 shows that the sensing precision depends on the work

done in the past relaxation time, w= _wτr , setting up a trade-off
among speed, power, and accuracy, as found in adaptation (13).
When the response needs to be rapid, τr needs to be small and
the power demand is high: the samples, which require energy,
must be taken close together in time. However, when the cell can
wait a long time τr before responding, the power _w required to
make w large can be infinitesimal: the samples can be created far
apart in time. There is no minimum power requirement for sensing.

Optimal Resource Allocation. Because the fundamental resource
classes cannot compensate each other in achieving a desired
sensing precision, any class that is in excess of the minimum
amount necessary to achieve that precision is wasted. For ex-
ample, the benefit of sampling the receptor faster by increasing
XT in reducing the sensing error saturates, whereas the total
protein and energetic costs continue to rise with XT (Fig. 3E). To
the extent that all resources affect growth, evolutionary pressure
should tend to drive systems so that no resource is wasted, which

A

B

E

C

D

Fig. 3. Trade-offs in nonequilibrium sensing. (A) When two resources A and
B compensate each other, one resource can always be decreased without
affecting the sensing error, by increasing the other resource; concomitantly,
increasing a resource will always reduce the sensing error. When both
resources are instead fundamental, the sensing error is bounded by the
limiting resource and cannot be reduced by increasing the other. (B and C)
The three classes time/receptor copies, copies of downstream molecules, and
energy are all required for sensing, with no trade-offs among them (Fig. 4).
The minimum sensing error obtained by minimizing Eq. 2 is plotted for
different combinations of (B) XT and w, and (C) RT ð1+ τr=τcÞ and w (SI Text).
The curves track the bound for the limiting resource indicated by the gray
lines, showing that the resources do not compensate each other. The plot for
the minimum sensing error as a function of RT ð1+ τr=τcÞ and XT is identical
to that of (C) with w replaced by XT . (D) The energy requirements for
sensing. In the irreversible regime ðΔμ→∞Þ, the work to take one sample
of a ligand-bound receptor, w=ðpNeffÞ, equals Δμ, because each sample
requires the turnover of one fuel molecule, consuming Δμ of energy. In the
quasiequilibrium regime ðΔμ→0Þ, each effective sample of the bound re-
ceptor requires 4kBT , which defines the fundamental lower bound on the
energy requirement for taking a sample. When Δμ= 0, the network is in
equilibrium and both w and Neff are 0. ATP hydrolysis provides 20kBT ,
showing that phosphorylation of readout molecules makes it possible to
store the receptor state reliably. The results are obtained from Eq. 3 with
Δμ1 =Δμ2 =Δμ=2. (E) Sampling more than once per correlation time requires
more resources, although the benefit is marginal. As the sampling rate is
increased by increasing the readout copy number XT , the number of in-
dependent measurements NI saturates at the Berg–Purcell limit RT τr=τc , but
the energy consumption and protein cost ð∝XT Þ continue to rise.
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occurs when all are equally limiting. Resource-optimal systems
sample the receptor about once per correlation time and use just
enough fuel and downstream molecules to do so. Quantitatively,
from Eq. 4, all resources are equally limiting when

RTτr=τc ≈XT ≈w: [5]

In an optimal sensing system, the number of independent concen-
tration measurements RTτr=τc equals the number of readout mol-
ecules XT that store these measurements and equals the work (in
units of kBT) to create the samples.

Comparison with Experiment. Eq. 5 makes a strong prediction for
the optimal design of the large class of sensing systems that are
based on the push–pull motif. We can test this prediction for the
chemotaxis system of E. coli (Fig. 1), which has been well char-
acterized experimentally. In this system, the receptor forms
a complex with the kinase CheA. This complex, which is coarse-
grained into R, can bind the ligand L and activate the in-
tracellular messenger protein CheY (x) by phosphorylating it.
Deactivation of CheY is catalyzed by CheZ, the effect of which is
coarse-grained into the deactivation rate (SI Text).
The number of chemotaxis proteins depends on the growth

rate: the number of receptors and CheY proteins varies as much
as 10-fold as a function of strain and growth medium (23). In-
terestingly, however, these variations occur in concert for all
components and thus hardly change their relative amounts (23).
This is the scaling behavior predicted by Eq. 5, assuming that τr is
robust to variations in the growth rate.
Not only the scaling of the number of CheY proteins, XT , with

the number of receptor–CheA complexes, RT , can be tested, but
also the magnitude of their ratio. A fit of the data of Li and
Hazelbauer, shown in Fig. 1B, shows that XT=RT ≈ 3 for different
strains and growth media (23). Eq. 5 thus predicts that τr=τc ≈ 3.
The relaxation rate τ−1r is ≈ 2 s−1 for the attractant response and
≈ 20 s−1 for the repellent response (24), yielding τr ≈ 100 ms.
Hence, Eq. 5 predicts that τc ≈ 30 ms. This prediction can be
tested, assuming that the correlation time τc of the receptor–
CheA complex is that of receptor–ligand binding. Specifically, we
can estimate τc from the receptor–ligand dissociation rate koff
as τc ’ 1=ð2koffÞ, ðp≈ 0:5Þ. The dissociation constant of Tar-
aspartate (receptor–ligand) binding KD ≈ 0:1  μM (25), and with an
association rate kon ≈ 109M−1 · s−1 (26), this yields koff ≈ 100 s−1
and an estimated correlation time τc ≈ 10 ms, in line with the
prediction of Eq. 5.
Eq. 5 also predicts that the total number of CheY molecules

XT equals the chemical work w= _nΔμτr (in units of kBT) to
phosphorylate CheY during τr . In steady state, the flux _n of
CheY phosphorylation balances the flux of CheYp dephos-
phorylation. The latter equals the inverse lifetime τ−1l ≈ τ−1r times
the number of CheYp molecules in steady state, αXT , where α is the
fraction of CheY that is phosphorylated. This yields w≈ αΔμXT .
The fraction α≈ 0:16 (24). CheY phosphorylation is driven by ATP
hydrolysis, which means that Δμ= 20kBT. Hence w≈ 3XT , thus on
the order of XT , as Eq. 5 predicts. We thus argue that in the che-
motaxis system of E. coli, the resources are optimally allocated, i.e.,
according to Eq. 5.

Discussion
Fig. 4 summarizes our analysis. The sensing precision is limited
by three classes of resources. The resource class time/receptors
RTτr=τc determines the maximum total number of independent
concentration measurements that can be taken. However, these
measurements need to be stored in downstream molecules.
Moreover, energy is needed to store the samples reliably and to
protect the coding. These three classes of resources are indeed
fundamental. The sensing error is bounded by the limiting class
like the weakest link in a chain, and other classes cannot compensate

for it. For example, adding receptors and readout molecules does
not improve sensing if not enough energy is used to take the
samples (Fig. 3B); similarly, waiting more time to take another
sample is not beneficial if the cell has no more readout molecules
left to write the sample to, or cannot expend energy fast enough
to accomplish the writing (Fig. 3C). However, within the funda-
mental resource classes, trade-offs are possible: time can be traded
against the number of receptors to reach a required number of
measurements, whereas power can be traded against speed to
meet the energy requirement for a desired sensing accuracy.
These design principles are in marked contrast to those of
equilibrium sensing systems, which are not driven out of equi-
librium via fuel turnover: the sensing precision of these systems is
limited by the number of receptors; downstream networks can
never improve the accuracy of sensing (27).
We find that at least 4kBT is needed for reliably encoding

a measurement. One of the most widely used coding strategies is
phosphorylation, which requires ATP. In vivo, ATP hydrolysis
provides about 20kBT. This is sufficient to take one receptor
sample essentially irreversibly (Fig. 3D), which means that q
reaches unity. Readout phosphorylation thus makes it possible to
store the receptor state reliably.
Nonequilibrium networks can exhibit more complicated fea-

tures than those of the simple push–pull motif, as in the MAPK
cascade. The molecular picture for time integration suggests that
our results hold generally, even in these more complicated sys-
tems. Indeed, we find the same or more severe resource limi-
tations in signaling cascades and in networks with simple
negative or positive feedback (SI Text). Although cascades can
increase the response time (10), which increases information
transfer, they do not make sensing more efficient in terms of
energy or readout molecules.
In an optimally designed system, each fundamental resource is

equally limiting. This leads to a specific prediction for the design
of an optimal sensing system: the integration time, energy, and
copy numbers of receptor and readout should satisfy Eq. 5.
Importantly, this design principle of optimal resource allocation
is independent of the resource costs. This is because the sensing
precision is bounded by the limiting resource class; resources
that are in excess cannot improve sensing and are thus wasted, no
matter how cheap they are. Fig. 3 C and D show that, even close
to the optimum where all resources are equally limiting, the
minimum error closely follows the lower bound of Eq. 4 (SI
Text), supporting the idea that Eq. 5 is indeed fairly insensitive to
the resource costs. It explains perhaps why Eq. 5 so successfully
predicts the design of the E. coli chemotaxis system.
The optimal trade-off between nonfundamental resources

within the fundamental resource classes will depend on their

Fig. 4. The relationship between resources and the precision of biochemical
sensing. The sensing precision is fundamentally limited by time and receptor
copies, energy, and copies of downstream readouts. These three classes of
resources cannot compensate each other, and it is the limiting resource that
sets the fundamental limit to the precision of sensing. Within each class,
however, trade-offs are possible: Power can be traded against speed to meet
the energy requirement for reaching a desired sensing accuracy, whereas
time can be traded against the number of receptors.
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fitness costs and benefits. For example, how receptors are traded
against time in reaching a desired sensing precision will depend
on the benefit of a fast response time and the cost of making the
receptor proteins.
To understand how E. coli moves in a concentration gradient,

we have to understand not only how the sensing system filters
high-frequency ligand-binding noise by time averaging the re-
ceptor state—the topic of this study—but also how, on much
longer timescales, the adaptation system computes the change in
the concentration and filters low-frequency noise induced by the
cell’s random motion in the concentration gradient (28). Re-
cently, Lan et al. (13) found a trade-off between the speed,
power, and accuracy of adaptation, which mirrors the trade-off
between power, speed, and precision of sensing observed here.
Interestingly, the adaptation and sensing system share the re-
ceptor. In fact, the adaptation system continually performs work
to keep the receptor activity close to 0.5. There is thus an ener-
getic adaptation cost associated with the receptors, in addition
to the energetic cost of synthesizing them. This adaptation cost
will affect the trade-off between the nonfundamental resources
receptors and time. It will not, however, affect the design prin-
ciple of optimal resource allocation, which is based on the fun-
damental resource classes and hence insensitive to resource costs.
Whether other sensing systems satisfy the design principle of

Eq. 5 remains an interesting question. Two-component systems
are ideal for testing this once kinetic data and protein expression
levels become available (29). Eq. 5 not only makes predictions
for individual systems but also predicts that the fundamental

resources should vary proportionally to each other across different
systems. For example, the relation predicts that the lifetime τr of the
modified readout should increase, ceteris parabus, with its expression
level XT . The design principle of Eq. 5 can also be used to construct
optimal synthetic networks that minimize resource consumption.
Finally, the process of sampling a time series, like the receptor

state over time, defines a specific, familiar computation that
could be conducted by any machine; it is instantiated in the
biochemical system by the readout–receptor pair. We find that
the free-energy drops across the “measurement” and “erasure”
steps, Δμ1 and Δμ2, should be identical to minimize the energetic
cost, even though the fuel molecule need only be involved in one
of the reactions, preparing a nonequilibrium state that relaxes via
the other. This allocation of energy differs from that typically
considered in the computational literature, in which only the
erasure step requires energy (30). In the cellular system, both
steps are computational erasures: although only the erasure step
erases memory of the receptor state, both steps erase the state
of the molecule involved in the collision. Interestingly, when
p= 0:5, the average work to measure the state of the receptor is
2kBT, which is perhaps surprisingly close to the Landauer bound,
kBT lnð2Þ (30).
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The Fuel Needed to Drive the Escherichia coli Chemotaxis
Network Is Comparable to That to Make New Components
After Cell Division
Below, we address the question: How does the ATP cost of driving
the E. coli chemotaxis sensing system compare with the energetic
cost of making the components of this system?

Estimating Energetic Cost of Protein Production. The number of
ATP molecules required to make a protein is approximately five
per amino acid [BioNumbers ID 106158 (1)]. Table S1 reports
the copy number ranges for key chemotaxis proteins and their
molecular weight. These proteins need to be synthesized during
the cell cycle to balance the loss upon cell division. Assembling
these numbers, about 2–8 × 107 ATP are required to produce
chemotaxis proteins over the cell cycle.

Estimating Energetic Cost of Driving the Chemotaxis Network. The
chemotaxis network of E. coli is modeled as follows (2):

A�!kA Ap; [S1]

Ap+Y�!kf A+Yp; [S2]

Yp�!kr Y ; [S3]

where A and Ap denote the unphosphorylated and phosphory-
lated forms of CheA, and Y and Yp the unphosphorylated and
phosphorylated forms of CheY.
The reactions imply that in steady state:

kA
�½AT �− ½Ap��= kf ½Ap�

�½YT �− ½Yp��= kr½Yp�= _n: [S4]

The second and third terms in this equation (and thus the first) are
expressions for the flux of CheY, _n, in steady state. The lifetime of
CheYp is τl ≈ 100 ms (2), which is the inverse of kr in our model:
kr ≈ 10=s. A similar estimate for kr can be obtained by noting that
the deactivation is mediated by CheZ and calculating kr from
Michaelis–Menten kinetics as kr = ðkcat½Z�½Yp�Þ=ðKm + ½Z�Þ us-
ing parameters in ref. 2. The total turnover rate _n is thus 10=s
times the number of CheYp molecules. About a sixth of the
1,000–8,000 CheY molecules are phosphorylated in the steady
state (2). Then the number of CheYp is roughly 200–1,500. The
total turnover rate _n is thus 2,000–15,000 molecules per second,
which is also the ATP turnover rate, because the phosphoryla-
tion reaction is essentially irreversible. If the cell cycle time is
about an hour (3,600 s), the turnover of ATP is about 1–5 × 107

ATP per cell cycle.
From these calculations, we see that the ATP cost of driving the

chemotaxis sensing machinery (≈1–5 × 107 ATP per cell cycle) is
comparable to the energetic cost of making the components of
the sensing machinery (≈2–8 × 107). This comparison depends
critically on the growth rate of the cell and protein expression
levels, which can vary in different media. Furthermore, it does
not account for the energy to drive or build other components of
the chemotaxis pathway, such as the flagella or the adaptation
machinery. However, it provides an order-of-magnitude compari-
son, which suggests that the energy to drive a signaling pathway can

be comparable to the cost of making the components of that
pathway.

Calculating the Sensing Error for a Biochemical Network
From Eq. 1 in the main text, the sensing error for a biochemical
network depends on the gain and the variance of the readout.
We have calculated the gains using a mean-field approximation
for the steady-state level of the readout. We have calculated all
variances using a linear-noise approximation (3). For nonlinear
networks, the quality of the approximation improves with system
size; it can already be quite good for systems with only 10 copies
of each molecule (4).
The linear-noise approximation gives the covariance matrix Σ

for stationary fluctuations in species’ levels as the solution to the
Lyapunov equation:

AΣ+ΣAT +B= 0; [S5]

where A= ST∇ν and B= STDiagðνÞS in terms of the stoichiomet-
ric matrix S and the reaction propensity vector ν. The stoichio-
metric matrix describes how many molecules of each species are
consumed or produced in each reaction, and the propensity
vector describes the propensity (rate) of each reaction. For a
network out of steady state (as in Base Model: Taking Samples
via Readout Activation below), a nonstationary version must be
used (3).

Langevin Approximation to the Dynamics of a Biochemical
Network
The Langevin approximation to the dynamics of a biochemical
network draws on the same framework as the linear-noise ap-
proximation (3). It expresses the fluctuations in species copy
numbers N as follows:

dN
dt

=AN + ηðtÞ; [S6]

where N is a vector containing the copy numbers of all species
and ηðtÞ are Gaussian noises, uncorrelated in time, with co-
variance B. A and B are the matrices defined in Calculating
the Sensing Error for a Biochemical Network. The equation can
be solved [e.g., by integrating factors (3)], yielding the result
in the main text, Eq. 3, for the biochemical network consid-
ered there.

Derivation of Eqs. 2 and 3 of the Main Text
The principle is that the cell infers the concentration c from the
instantaneous output xp, by inverting the input–output relation
xpðcÞ. Linearizing the input–output relation, and using error
propagation, the fractional error of the concentration estimate is
given by the following (5–7):

�
δc
c

�2

=
1
c2

σ2x p�
dxp

dc

�2: [S7]

We can compute the variance of the output xp, σ2xp , using the
linear-noise approximation to the master equation (see above,
Calculating the Sensing Error for a Biochemical Network). Using
the above expression, this yields the following:
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c
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kf + k−f
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k1 + k2

��

×
��

k−r +
k1kfRT

k1 + k2

��
kr +

k1k−fRT

k1 + k2
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k−r + kr +

k1
�
kf + k−f

�
RT

k1 + k2

�

+
k1k2

�
k−fk−r − kfkr

�2RTXT

ðk1 + k2Þ
�ðk1 + k2Þðk1 + k2 + k−r + krÞ+ k1

�
kf + k−f

�
RT
���	

�
k21k

2
2

�
k−fk−r − kfkr

�2R2
TXT

��
: [S8]

Here, k1 = ek1L (with L the ligand concentration) and k2 are the
rate constants for ligand binding and unbinding from the re-
ceptor, respectively, kf is the rate of receptor-mediated phos-
phorylation, k−f is the microscopically reverse reaction, kr is the
rate of dephosphorylation, k−r is the microscopically reverse
reaction, and RT and XT are the number of receptor and read-
out molecules, respectively. Clearly, the above expression is not
very illuminating.
Eqs. 2 and 3 of the main text are much more illuminating. They

describe the sensing error not in terms of the rate constants, but
in terms of the collective variables p; τc; τr; _n;Δμ1;Δμ2;Δ that
describe the resource limitations of the cell. The inspiration
for the form of these expressions came from an analysis of a
simpler network. We describe this analysis in the subsection
below. Here, we first repeat Eqs. 2 and 3 for completeness,
and then describe how it can be verified that they indeed cor-
respond to Eq. S8.
Eqs. 2 and 3 of the main text are as follows:

�
δc
c

�2
=

1
pð1− pÞ

1
NI

+
1

ð1− pÞ2
1
N

[S9]

and

NI =
1

ð1+ 2τc=ΔÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fI

�
eΔμ1 − 1

��
eΔμ2 − 1

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{q

eΔμ − 1
_nτr
z}|{N

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Neff

: [S10]

To see the correspondence between Eqs. S9 and S10 (i.e., Eqs. 2
and 3 of the main text) and Eq. S8, note that variables in Eqs.
S9 and S10 can be expressed in terms of the rate constants as
follows:

p=
ek1Lek1L+ k2

=
k1

k1 + k2
; [S11]

τc =
1ek1L+ k2

=
1

k1 + k2
; [S12]

τr =
1

k−r + kr + kf pRT + k−f pRT
; [S13]

_n= kfRLx− k−fRL xp =

�
kfkr − k−fk−r

�
pRTXT

k−r + kr +
�
kf + k−f

�
pRT

; [S14]

Δμ1 = log
kfx
k−fxp

= log
kf
�
kr + k−f pRT

�
k−f
�
k−r + kf pRT

�; [S15]

Δμ2 = log
krxp

k−rx
= log

kr
�
k−r + kf pRT

�
k−r
�
kr + k−f pRT

�; [S16]

Δ= 2τr
��

Neff
�
RT
�
=

2
�
k−fk−r − kfkr

�
xxp�

kfx− k−fx p
�2�

k−rx− krxp
�

=
2
�
k−r + kf pRT

��
kr + k−f pRT

��
k−r + kr +

�
kf + k−f

�
pRT

�
�
k−fk−r − kfkr

�2pRTXT

:

[S17]

The relaxation time τr is calculated from the eigenvalues of the A
matrix defined in Calculating the Sensing Error for a Biochemical
Network. The free-energy drops are calculated following ref. 8.
Substituting the expressions for these variables into Eqs. S9 and
S10 (i.e., Eqs. 2 and 3 of the main text) yields Eq. S8 in terms of
the rate constants.

The Inspiration for Eqs. 2 and 3 of the Main Text: The Signaling
Network Viewed as a Sampling Device. The inspiration for Eq. 2
of the main text (Eq. S9) came from an analysis of a simpler
system. For this simpler system, we can analytically obtain the
sensing error by viewing the signaling network as a device that
samples the receptor state. As we will show below, the expression
for the sensing error in this simpler model (Eq. S18) has exactly
the same form as Eq. 2 of the main text (Eq. S9), corresponding
to the full system. Indeed, Eq. S18 provided the motivation to
cast the expression for the sensing error of the full system (Eq.
S8) in the form of Eq. 2 of the main text (Eq. S9).
We introduce this simpler model step by step: we first describe

how samples are taken, and then how samples are erased. The
derivation of the sensing error using the perspective of sampling is
relegated to the appendices; below, we give the results. We then
extend the model to discuss the effect of the finite pool of readout
molecules and the reliability of the samples. In doing so, we will
arrive at the full model of the main text.

Base Model: Taking Samples via Readout Activation. We consider
a cell that responds at time T to a change in ligand concentration
at an earlier time t= 0, based on the output xp of the simple
reaction network x+RL!kf xp +RL (Fig. 2B of the main text).
We assume that the cell starts with a large pool of inactive
readout molecules x and that activated molecules xp are never
deactivated. For descriptive ease, we assume the reaction is
diffusion-limited, so that each collision between an inactive
molecule x and a ligand-bound receptor leads to activation of x.
Readout molecules that collide with the receptor over time are

modified depending on the ligand-occupation state of the re-
ceptor. The total rate at which inactive molecules collide with
receptor molecules in any state (be they ligand bound or not) is
r= kfxRT ≈ kfXTRT for a large readout pool, and the total
number of such collisions after time T is N, with N = rT on av-
erage. If a receptor molecule is bound to ligand at the time of
a collision, the readout molecule is converted to its active form,
whereas if it is not the readout remains unchanged. In this way,
the state of the receptor at the time of a collision is encoded in
the state of the readout molecule that collided with it, and the
history of the receptor states is encoded in the states of the
readout molecules at the time T (Fig. 2C). The readout mole-
cules that collided with the receptor thus constitute samples of
the receptor state. The average number of samples after time T
is N = rT = kfXTRTT—the product of the total number of re-
ceptors RT and the number of samples per receptor kfXTT
during the integration time T.
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The resulting sensing error can be derived via Eq. 1 of the main
text (i.e., Eq. S7) from the chemical master equation, which
describes fluctuations in the network (see Calculating the Sensing
Error for a Biochemical Network, noting that the linear-noise
approximation is exact for linear networks). The same expression
can also be derived independently by viewing the signaling net-
work as a system that samples the receptor state and using tools
from discrete stochastic processes. This supports the idea that
the signaling network truly samples the ligand-binding state
of the receptor. This analysis is given in Appendix A. Here, we
give the result. Interestingly, the sensing error for the base model
has exactly the same form as Eq. 2 of the main text (Eq. S9) for
the full model:

�
δc
c

�2
=

1
pð1− pÞ

1
NI

+
1

ð1− pÞ2
1
N
: [S18]

Here, as in the main text, N is the total number of samples and
NI is the number of samples that are independent. The latter is
given by the following:

NI = fIN =
1

1+
2τc
Δ

N; [S19]

when T � τc. Here, fI = 1=ð1+ ð2τc=ΔÞÞ is the fraction of samples
that is independent, which depends on the receptor–ligand correla-
tion time τc and the time interval Δ≡T=ðN=RTÞ= 1=ðkfXTÞ be-
tween samples of the same receptor. This expression shows that the
finite sampling rate r reduces the number of independent samples
below the Berg–Purcell factor RTT=ð2τcÞ, the maximum number of
independent samples that can be taken during T. The latter is
reached only when the sampling rate is infinite (e.g., the number
of downstream molecules XT →∞), so that N→∞ and Δ→ 0.

Erasing Samples via Readout Deactivation. The error in Eq. S18
decreases with the time T, suggesting that the cell can sense
perfectly if it waits long enough before responding to a change in
its environment. However, modification states of molecules de-
cay, and their finite lifetime, τl, limits sensing, regardless of how
long the cell waits. To explore this at the molecular level, we
consider the network in the previous paragraph augmented
with the deactivation reaction, xp�!kr x, kr = 1=τℓ (Fig. 2D of the
main text). We consider the sensing error after long times ðT � τℓÞ,
in steady state, again for a large pool of inactive readout molecules.
For pedagogical clarity, we imagine the deactivation is mediated by
a phosphatase and that the reaction is diffusion-limited.
We can calculate the sensing error by solving the master

equation or by viewing the system as one that discretely
samples the receptor state, as described in Appendix A. It
shows that the sensing error is again given by Eq. S18. How-
ever, the number of samples is lower than that in the case
without deactivation, N = rτℓ < rT, and they are spaced effec-
tively farther apart, Δ= 2τℓ=ðN=RTÞ= 2=ðkfXTÞ> 1=ðkfXTÞ. The
molecular picture of sampling provides a clear interpretation. As
before, the readout molecules encode the state of a receptor and
serve as samples of the receptor state. With deactivation, however,
only those readout molecules that have collided with the receptor
more recently than with the phosphatase reflect the receptor state.
At any given time, the average number of such readout molecules,
and hence samples, is N = rτℓ; the lifetime τℓ thus sets an effective
integration time. As without deactivation, the fraction fI of sam-
ples that are independent is determined by the effective spacing Δ
between them. Although the time between the creation of samples
is still 1=ðkfXTÞ, i.e., the spacing without readout deactivation,
some of the samples are erased via collision with the phosphatase.
We therefore expect that the spacing between remaining samples

is larger. Indeed, calculating the effective spacing between samples
taking this effect into account yields Δ= 2=ðkfXTÞ, which is twice
that without decay (Appendix B).

Beyond the Simple Model: Finite Pool of Readout Molecules. The
copy numbers of signaling molecules are often small. To take this
into account, we compute the sensing error from Eq. 1 of the main
text for a finite number of readout molecules XT using the linear-
noise approximation to the master equation describing the bio-
chemical fluctuations (see Calculating the Sensing Error for a Bio-
chemical Network). Again, the sensing error can be written in the
form given by Eqs. S18 and S19. This defines an effective number of
samples, N = rτr , where r is, as before, the receptor sampling rate,
and τr is the relaxation time of the network. The sampling rate
r= kfxRT , whereas τr = 1=ðkf pRT + krÞ. In essence, cells count
only those samples created less than a relaxation time in the past;
nothing that happened earlier can influence the current state,
including its ability to sense. The fraction of samples that is in-
dependent is given by Eq. S19 with Δ= 2τr=ðN=RTÞ= 2=ðkfxÞ,
analogously to the previous paragraph.

Reliability of the Samples: The Full Model. All reactions are in
principle microscopically reversible. Taking this into account, we
recognize that active molecules that collide with the bound re-
ceptor sometimes become inactive, xp +RL�!k−f x+RL, and that
inactive molecules that collide with the phosphatase are some-
times activated, x→

k−r xp (Fig. 2E of the main text). These reverse
reactions compromise the encoding of the receptor state into the
readout, as described in the main text: an active xp molecule no
longer encodes the ligand-bound state of the receptor at a pre-
vious time with 100% reliability, because it can also result from
a collision with the phosphatase; similarly, x, rather than xp, may
reflect a collision with the ligand-bound receptor.
Taking the reverse reactions into account, the full model of the

main text is given by the following reactions:

R+L�
k1

k2
RL; [S20]

RL+ x�
kf

k−f
RL+ xp; [S21]

xp�kr

k−r
x: [S22]

From Eqs. 2 and 3 of the main text (Eqs. S9 and S10), it is seen
that the error in the full model with reversible reactions has the
same form as Eq. S18 above, but with the effective number of
independent samples NI given by Eq. S10: NI = fIqN, where q is
the quality factor of the sample. The quality factor q is zero when
the network is not driven out of equilibrium and reaches unity
when the network is driven far out of equilibrium. In the latter
case, when q→ 1, this model reduces to that of the previous
paragraph. Indeed, in this irreversible limit, the effective number
of samples Neff as defined by Eq. 3 of the main text is Neff =
N = _n  τr=p= rτr = kfxRTτr , with the flux _n in Eq. 3 of the main text
reducing to rp, with p, the probability that a receptor is bound to
ligand, and r= kfxRT , the rate at which the receptor is sampled in
the irreversible model of the previous paragraph.

Derivation of Eq. 4 of the Main Text
Resources or combinations of resources that fundamentally
limit sensing, are those (collective) variables Qi that, when
fixed, set a lower nonzero bound on the sensing error, no
matter how the other variables in the system are varied.
If we denote all of the eight variables in the system by
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k=fk1; k2; kf ; k−f ; kr; k−r;RT ;XTg, then the fundamental variables
Qi are defined by the following:

MINk:Qi=constðδc=cÞ2 = f ðconstÞ> 0: [S23]

To find these fundamental collective variables, we numerically or
analytically minimized the sensing error, constraining combina-
tions of variables yet allowing the other variables not to be lim-
iting. This procedure identified three fundamental resource
classes: Q1 =RTτR=τc, Q2 =XT , and Q3 = _wτr . Each class puts a
fundamental lower bound on the sensing error, which means that
the sensing error is limited by the value of Qi and cannot be
reduced to zero by increasing another variable. We now derive
the sensing limits for the respective resource classes.

Receptors and Their Integration Time, RTτr=τc, Limiting. When only
RTτr=τc is constrained, the other resources can be optimized.
The sensing error is minimized when the system is strongly
driven out of equilibrium, Δμ1;Δμ2 � 0. The receptor samples
are then stored in the readout x with 100% fidelity and the quality
factor reaches unity, q→ 1 (see Eq. 3 of the main text or Eq. S10
above). In this limit, we can ignore the microscopically reverse
reactions, and the readout flux _n= kfxRTp− k−fxpRTp reduces to
_n= kfxRTp. This is indeed the rate at which the readout x is ac-
tivated by ligand-bound receptor; it is thus the rate at which
samples of the ligand-bound receptor are taken. The total number
of samples of the receptor N = _nτr=p obtained during the inte-
gration time τr therefore reduces to N = kfxRTτr . Because q= 1,
this is also the effective number of samples:Neff =N = kfxRTτr . The
sensing error is minimized when XT and x become infinite. The
number of samples Neff then becomes infinite, but the spacing
between the samples Δ= 2τr=ðNeff=RTÞ= 2=ðkfxÞ becomes zero.
Consequently, the number of independent samples becomes
NI =RTτr=τc (see Eq. 3 or Eq. S10). Indeed, in the limit that the
receptors and their integration time are limiting, the number of
independent measurements NI reaches the Berg–Purcell factor, i.e.,
the number of receptors RT times the number of independent
measurements per receptor τr=τc. The bound on the sensing error is
given by the first term of Eq. 2 of the main text or Eq. S9 above,
which with NI =RTτr=τc yields the following:

�
δc
c

�2
RT τr=τc

≥
1

pð1− pÞRTτr=τc
≥

4
RTτr=τc

; [S24]

because the maximum of pð1− pÞ is 0.25, obtained when p= 0:5.

Number of Readout Molecules XT Limiting. The bound associated
with the second resource class XT can be derived from Eqs. 2 and
3 of the main text (Eqs. S9 and S10 above), but perhaps the most
straightforward derivation is directly from Eq. 1 of the main text
(i.e., Eq. S7 above). When XT becomes limiting, the variance of x
is dominated by the intrinsic binomial switching noise—the ex-
trinsic contribution from the receptor becomes vanishingly
small. This gives σ2xp = f ð1− f ÞXT , where f = pkfRT=ðpkfRT + krÞ is
the fraction of XT that is phosphorylated. The gain ∂xp=∂c=
XTf ð1− f Þð1− pÞ=c. Together, this yields from Eq. 1 of the main
text (Eq. S7 above):

�
δc
c

�2
XT

=
1

f ð1− f Þð1− pÞ2XT
≥

4
XT

: [S25]

Energyw Is Limiting. In the scenario that w= _wτr = _nΔμτr is limiting
and the other resources are in abundance, fI = 1 and NI =
Neff = q _nτr=p= qw=ðpΔμÞ (see Eq. 3 of the main text and Eq. S10
above). The number of samples of ligand-bound receptor per
amount of work w is pNeff=w= q=Δμ. It is maximized when

Δμ1 =Δμ2 =Δμ=2 and Δμ→ 0. In this limit, the work to take one
effective sample of a ligand-bound receptor reaches its lower
bound of 4kBT: w=ðpNeffÞ= 4, as described in the main text. The
number of independent measurements in this limit is NI =w=ð4pÞ.
Together with Eq. 2 of the main text (Eq. S9 above), this yields the
following:

�
δc
c

�2
w
≥

4
ð1− pÞw≥

4
w
: [S26]

When all resources are present in finite amounts, the minimum
sensing error is given by the highest of the above lower bounds.
This yields Eq. 4 of the main text:

�
δc
c

�2
≥MAX

�
4

RTτr=τc
;
4
XT

;
4
w_ τr

�
: [S27]

The resource classes RTτr=τc, XT , and _wτr are indeed fundamen-
tal. They each set a fundamental lower bound on the sensing
error, which cannot be beaten by increasing another resource.
For example, when RTτr=τc is constrained, the minimum sensing
error can never be lower than the bound given by Eq. S24, no
matter how much XT is increased or no matter how much the
power _w is raised. In contrast, RT is not fundamental: for a given
RT , the sensing error can be reduced to zero by increasing τr .
Similarly, the work w is fundamental: for a given w, the sensing
error can never be lower than the bound set by Eq. S26. The
power _w, however, is not fundamental: for a given _w, the error
can be reduced to zero by increasing the integration time. Finally,
we note that the factors 4 in Eqs. S24–S26 have a common origin:
for each resource class, the optimal consumption of the resource
occurs when it is equally partitioned into two pools: optimal allo-
cation of energy occurs when the total energy drop is equally
partitioned into the energy drops of activation and deactivation;
the receptors are optimally allocated when one-half of them is
ligand bound; and the readout pool is optimally allocated when
it is equally partitioned between active and inactive molecules.

Connection with Optimal Resource Allocation Principle of
Eq. 5 of the Main Text
Eq. 4 of the main text (Eq. S27) indentifies the fundamental re-
source classes in cellular sensing systems. These resource classes
cannot compensate each other in achieving a desired sensing pre-
cision, which is illustrated in Fig. 3 of the main text (how this figure
is generated is described in the section below). Fig. 3 shows that the
minimum sensing error tracks the highest of the lower bounds of
Eqs. S24–S26: the minimum sensing error is set by the limiting
resource class. This observation leads to the design principle of
optimal resource allocation embedded in Eq. 5 of the main text,
which states that, in an optimally designed system, all fundamental
resource classes are equally limiting so that none is wasted. Im-
portantly, this design principle does not depend on the relative costs
of the resources. The reason is that fundamental resources that are
in excess, cannot improve sensing and are thus wasted, no matter
how cheap they are. Close to the optimum where all resources are
equally limiting, the precise costs of the resources may become
important, because, as Fig. 3 shows, close to the optimum there is,
e.g., via the receptor, cross talk between the fundamental resource
classes in setting the sensing precision: at the intersection of the
dashed gray lines corresponding to the lower bounds of the re-
spective resource classes, the minimum error (red line) is higher
than the lower bound given by Eq. S27—as expected, the minimum
sensing error crosses over smoothly from one bound to another, and
not discontinuously. However, as Fig. 3 shows, even in the crossover
regime the minimum error (red line) is never much higher than the
lower bound of Eq. S27 (the dashed-gray lines). Even close to the
optimum, the mutual dependence between the resource classes is
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thus small. It is probably for this reason that the optimal resource
allocation principle of Eq. 5, which does not rely on resource costs,
gives such a surprisingly accurate prediction of the quantitative re-
lationship between the number of receptors, readout molecules,
integration time, receptor correlation time, and energy in the E. coli
chemotaxis system.

Fig. 3 of the Main Text: No Trade-Offs Among Resource
Classes
In Fig. 3B of the main text, we show how the sensing error depends
on the pair of resources (readout copy number XT , energy w).
These results were obtained via numerical minimization of Eqs. 2
and 3 of the main text subject to constraints on XT and w.
In Fig. 3C of the main text, we show how the sensing error

depends the pair of resources (time/receptor copy number, en-
ergy). The plot for (time/receptor copy number, readout copy
number) is the same. In this section, we describe the derivation
of the results shown in this figure. To consider τr=τc not neces-
sarily large, we need to use a form of the Berg–Purcell bound
that is valid for short integration times (9):

�
δc
c

�2
min

>
1

pð1− pÞ
1

RT

�
1+

τr
τc

�; [S28]

which identifies RTð1+ τr=τcÞ as a limiting resource, rather than
the result of the main text, RTτr=τc, which only holds in the limit
τr � τc.
To elucidate how the sensing error depends on (time/receptor

copy number, energy) and (time/receptor copy number, readout
copy number), we calculate the minimum sensing error by op-
timizing over all parameters while fixing RTð1+ τr=τcÞ and either
w or XT , respectively. For a fixed RTð1+ τr=τcÞ and a fixed work
w, the minimum sensing error is as follows:
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[S29]

The equation for the dependence of the sensing error on (time/
receptor copy number, readout copy number) is the same, with w
replaced by XT . The minimum is plotted in Fig. 3C. The mini-
mum tracks the worst bound, again showing that the resources
do not compensate each other.
Additional constraints on the values of rate constants will

generally prevent the network from achieving these bounds. In
particular, it is common to consider that the binding of ligand to
receptor is diffusion-limited, so that the bound 4=ðRTð1+ τr=τcÞÞ is
never achieved. Of course, additional constraints cannot improve
the performance of the network beyond the bounds required
here, nor can they alter the fact that all of the resources are
needed for sensing.

Additional Networks
Networks are often more complicated than a simple one-level
push–pull cascade. We investigate some common motifs to

understand whether they relax the trade-offs faced by sensory
networks.

Multilevel Cascades.Often the signaling molecule activated by the
receptor is not taken as the final readout; rather that molecule
catalyzes the activation of another molecule, and so on in
a signaling cascade. All of the molecules are reversibly de-
graded. Using the same approach as for the one-level cascade,
we find that the sensing error is bounded by the work done
driving just the last step of the cascade: Neff ≤ _wiτr=ð4pÞ, where
_wi = _niΔμi is the product of the flux of the last molecule
through its cycle and the free-energy drop across that cycle,
and τr is the slowest relaxation time in the cascade (i.e., the
reciprocal of the largest eigenvalue of the relaxation matrix).
Even more work is done at other levels of the cascade. The
results suggest that cascades do not enable more energy effi-
cient sensing. Additionally, each sample of an active state
(bound receptor or active molecule upstream) still requires
a molecule to store it.

Positive and Negative Feedback. A simple model of positive feed-
back is autocatalysis, in which the receptor-catalyzed activa-
tion of the readout is enhanced by the activated form of the
readout, xp: x+ xp +RL⇌ 2xp +RL. A simple model of negative
feedback can be implemented by requiring inactive x for the
activation: 2x+RL⇌ x+ xp +RL. In both cases, xp degrades ac-
cording to xp ⇌ x. Neither positive feedback nor negative feed-
back changes the energetic requirements for sensing: Neff =
ð _nτr=pÞðeΔμ1 − 1ÞðeΔμ2 − 1Þ=ðeΔμ−1Þ. As before, the free-energy
drops across the reactions were calculated as the ratio of mass–
action propensities.

Cooperative Activation of the Readout. If the catalytic activation of
the readout is mediated cooperatively by the receptors (i.e.,
x+ nRL⇌ xp + nRL), then the error is reduced by a factor n2 for
the same amount of energy. One way to interpret the result is
that each sample requires the same amount of energy as before,
but the samples are individually more informative because they
reflect n ligand bindings, instead of one—indeed, the instantaneous
error is lower.

Appendix A: Discretely Sampling the Receptor State
In this appendix, we show for the simple model consisting of
x+RL→

kf xp +RL and xp →
kr x, how the sensing error can be

calculated by viewing the network as a discrete sampling de-
vice. The important quantities in a sampling protocol are the
number of samples taken and the spacing between them,
in addition to the properties of the sampled signal. By viewing the
biochemical process as a sampling process, we mean that
the underlying parameters of the biochemical network affect
the sensing error only insofar as they affect these quantities,
or the stochasticity in these quantities. The benefit of viewing
the network as a sampling process is that the number of samples
and the spacing between them have intuitive, and well-known,
effects on the sensing error: the more samples, the lower the
error; the further apart the samples are, the more independent
they are. Perhaps less well known are the effects on the sensing
error of stochasticity in the number of samples or the spacing
between samples; these effects emerge in the process of de-
termining the error for a discrete sampling protocol, which we
do below.
We consider the base model of readout activation, x+

RL→
kf xp +RL, and the base model of readout activation plus

readout deactivation, x+RL→
kf xp +RL and xp →

kr x. For the base
model, we indentify the molecules that have collided with the
receptors as samples, because these molecules’ states reflect the
receptor states at the times of their collisions with the receptor.
For the model with deactivation, we identify the molecules that
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collided with the receptor more recently than with the phos-
phatase as samples. When we refer to the number of samples, we
mean the number of these molecules; when we refer to the times
of the samples, we mean the times at which these molecules
collided with the receptor.
We begin by rewriting the equation for the sensing error in

a form that makes the connection to discrete sampling explicit,
Eq. S33 below. The cell senses its environment through the level
of its readout xp. However, this is no different from estimating
the ligand concentration from p̂ = xp=N:�

δc
c

�2
=

σ2p̂�
dp̂
dμL

�2 = σ2x p�
dx p

dμL

�2; [S30]

because N is a constant, independent of μL. Note that the gain
dp=dμL is dp=dμL = pð1− pÞ.
We first consider the effect of the stochasticity in the total

number of samples, N. The law of total variance allows us to
decompose the variance in the estimate p̂ into terms arising from
different sources:

σ2p̂ =E


varð p̂jNÞ�+ var



Eð p̂jNÞ�: [S31]

The first term of Eq. S31 reflects the mean of the variance in p̂
given the number of samples N; the second term reflects the
variance of the mean of p̂ given the number of samples N.
The mean and variance of p̂ given the number of samples N are

more familiar quantities than their unconditioned counterparts, as
we see below. Because, by definition, the samples reflect the state
of the receptor at the times ti of their collisions with the receptor,
we can write the number of xp at the final time as follows:

xp =
XN
i=1

niðtiÞ; [S32]

where niðtiÞ denotes the value of the ith sample—the state of the
receptor involved in the ith collision at the time ti of that colli-
sion, 1, if bound to ligand, and 0, otherwise. In the following, we
consider a single receptor, RT = 1 and n= ni. The results gener-
alize to multiple receptors.
We can then rewrite Eq. S31 as follows:

σ2p̂ =E

"
N2

N
2 var

 PN
i=1nðtiÞ
N

�����N
!#

+ var

"
N
N
E

 PN
i=1nðtiÞ
N

�����N
!#

:

[S33]

The equation is a bit complicated, but what is important is that
it fully specifies the sensing error in terms of the number of
samples, the spacings between them, and the stochasticity in these
quantities. That is, this equation shows that the sensing error is the
error of a sampling process. We can use it to calculate the sensing
error independently from, for example, the master equation or
the linear-noise approximation.
The first term describes the error of a very standard sampling

process, one with a fixed number of samples. We recognize the
variance,

var

 PN
i=1nðtiÞ
N

�����N
!
; [S34]

as the error of a statistical sampling protocol in which exactly N
samples are taken at random times ti. This is shown explicitly
in Appendix B. In that appendix, it is shown that the error for
such a sampling protocol is as follows:

var

 PN
i=1nðtiÞ
N

�����N
!
= pð1− pÞ 1

fIN
; [S35]

where fI is the fraction of the samples that are independent, as
given by Eq. S19. Then the first term in Eq. S33 is just the following:

E

"
N2

N
2 var

 PN
i=1nðtiÞ
N

�����N
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=E
�
N2

N
2 pð1− pÞ 1

fIN

�
= pð1− pÞ 1

fIN
:

[S36]

That is, the first term in Eq. S33 is the error of a discrete sam-
pling protocol with exactly N samples, as stated in the main text.
The only effect of the expectation in the first term is to swap N
for N. Dividing by the squared gain (Eq. S30), dp=dμL = pð1− pÞ,
gives the first term in Eq. 2 in the main text and Eq. S18 above.
We now turn to the second term in Eq. S33. From the law of total

variance, this term describes how stochasticity in the number of
samples, N, contributes to the sensing error. Because the number
of samples N is Poisson with mean and variance equal to N:

var

"
N
N
E

 PN
i=1nðtiÞ
N

�����N
!#

= var
�
N
N
p
�
; [S37]

=
p2

N
2 var½N�; [S38]

=
p2

N
; [S39]

where the probability a receptor is bound is E½nðtiÞ�= p. Dividing
by the squared gain gives the second term in Eq. 2 in the main
text and Eq. S9 above. Thus, we have derived Eq. 2 in the main
text as the result of a discrete sampling protocol.
The second term in Eq. 2 in the main text (i.e., Eq. S9) emerges

in the derivations above as a consequence of the stochasticity in
the number of samples N. However, it is more fundamentally
a consequence of the fact that the cell does not distinguish be-
tween samples of the unbound receptor from blank samples that
do not represent a receptor state—i.e., it does not distinguish x
molecules that collided with the unbound receptor from those that
never collided with the receptor in any state. A more standard
sampling procedure would distinguish between these, and so
would estimate p̂ as p̂= xp=N, not p̂= xp=N, as above. As we show
in Appendix C, this procedure gives rise to only the first term of
Eq. 2 in the main text, allowing us to interpret the second term as
the price the cell pays for not distinguishing readout molecules
that collide with the unbound receptor from those that have
never collided with the receptor in any state.
The derivations leading to Eq. S33 show that the sampling

error for the sampling protocol must be the same as the sensing
error for the biochemical network. To check this, we can cal-
culate the sensing error for the biochemical network, Eq. 2 in the
main text, in a more standard way, determining the gain and the
variance of the output xp and using Eq. 1 in the main text. This
indeed gives exactly the same result.

Appendix B: Error of Discrete Sampling Protocols with
a Fixed Number of Samples
In this section, we derive the first term of Eqs. S31 and S33,
corresponding to the first term of Eq. 2 in the main text (Eq.
S18), as the error of a discrete sampling protocol with a fixed
number of samples N taken of receptor states over time. The
average receptor occupancy is estimated as the following:
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p̂=
1
N

X
niðtiÞ; [S40]

where niðtiÞ is the state of the receptor involved in the ith sample at
the time of that sample, 1, if the receptor was bound at time ti, and
0, otherwise. In what follows, we consider a single receptor, RT = 1
and nðtiÞ= niðtiÞ. The results generalize to multiple receptors. The
times ti of the samples represent the times at which the molecules
that store the samples of the receptor collided with the receptor.
Therefore, we choose the distribution of times between the samples
to match the distribution of times between those collisions, which
depends on the particular network under consideration, described
below. We count time backward from the present time, t= 0. The
number of samples N and the distribution of times at which they
were taken specify a sampling protocol, independent of the chem-
ical implementation.
The variance in the estimate of receptor occupancy is as follows:

σ2p̂ = var

 PN
i=1nðtiÞ
N

!
; [S41]

=
var
�PN

i=1nðtiÞ
�

N2 ; [S42]

=
σ2

N
+
NðN − 1Þ

N2 E


cov
�
nðtiÞ; n

�
tj
���

; [S43]

because N is fixed, where σ2 = pð1− pÞ is the variance of the
instantaneous occupancy of a single receptor.

Base Model with Activation Only, x+ RL→
kf xp + RL. We first consider

a statistical sampling protocol that matches the distribution of
receptor-collision times of samples in the base model. The
collisions occur at random times in the interval [0,T], so we
model N randomly placed samples. The time ~Δ between a ran-
domly chosen pair of uniformly distributed samples, not necessarily
consecutive, is distributed as follows:

p
�
~Δ
�
=
2
T
−
2~Δ
T 2: [S44]

Changing variables from ti and tj to ~Δ= jtj − tij, we have
covðnðtiÞ; nðtjÞÞ= σ2e−~Δ=τc . The expectation of the covariance is
then the following:

E


cov
�
nðtiÞ; n

�
tj
���

= σ2
Z

e−~Δ=τc p
�
~Δ
�
d~Δ: [S45]

Assembling the equations above yields the first term in Eq. 2 in
the main text (Eq. S18) with Δ=T=N ðRT = 1Þ, where we have
simplified the result with the standard assumption that T � τc
and N � 1 (it does not make sense to discuss the spacing be-
tween a single sample).

Base Model with Activation Plus Deactivation, x+ RL→
kf xp + RL and

xp →
kr x. To take into account deactivation, we consider sampling

times which match the distribution of the receptor collisions of
only those N molecules storing samples. We thus have to take
into account that some of the samples that have been taken are
thrown away due to the deactivation process. We begin with an
alternative expression for the expected covariance:

E


cov
�
nðtiÞ; n

�
tj
���

= σ2
ZZ

e−jtj−tij=τc p
�
ti; tj
�
dtidtj: [S46]

To match the biochemical network, the sample times ti; tj of
two samples must be independent from each other, because the
collisions of different molecules with the receptor and phos-
phatase are uncoupled. Therefore, pðti; tjÞ= pðtiÞ pðtjÞ. The mar-
ginal probability pðtiÞ is the probability that the collision time
with the receptor of a given molecule storing a sample was ti, i.e.,
pðtijsampleÞ. This can be written in terms of pðsamplejtiÞ, the
probability that there was a collision with the receptor at the
time ti times the probability that, given a collision at that time,
the associated molecule did not subsequently collide with the
phosphatase:

pðsamplejtiÞdt= rdte−ti=τℓ : [S47]

Then:

pðtijsampleÞ= pðsamplejtiÞ pðtiÞZ
pðsamplejtiÞ pðtiÞdti

=
1
τℓ
e−ti=τℓ ; [S48]

because pðtiÞ is uniform.
Assembling results:

E


cov
�
nðtiÞ; n

�
tj
���

= σ2
ZZ

e−jtj−tij=τc
e−ti=τℓ

τℓ

e−tj=τℓ

τℓ
dtidtj: [S49]

It is instructive to change variables, defining ~Δ= jtj − tij, as
before. Then:

E


cov
�
n
�
tj
�
; nðtiÞ

��
= σ2

Z∞
0

e−~Δ=τc e
−~Δ=τℓ

τℓ
d~Δ: [S50]

From this expression we can identify pð~ΔÞ= e−~Δ=τℓ=τℓ as the dis-
tribution of times between two randomly chosen (not necessarily
consecutive) samples, when molecules can decay. Simulations
confirm this distribution.
Completing the integral and using it in the expression for the

sensing error gives the first term in Eq. 2 in the main text (Eq.
S18) for the effective spacing Δ= 2τℓ=N (here, RT = 1). We have
made the simplifying assumptions that N � 1 (it does not make
sense to talk of the spacing between just one sample) and
τℓ � τc, a standard assumption. The effective spacing is not the
mean nearest-neighbor spacing, but it is qualitatively similar and
serves to summarize the fact that samples taken further apart in
time are more independent. Clearly, from Eq. S50, the error
depends on the distribution of all-pairs spacings, not necessarily
nearest-neighbor spacings, and it depends on the full distribution,
not just the mean.
Finally, we iterate that we can perform an independent check

on the derivation in this section by computing the sensing error
using the linear-noise approximation, which is exact for this linear
network. As mentioned, this gives exactly the same result.

Appendix C: The Origin of the Second Term in Eq. 2 in the
Main Text
The origin of the second term in Eq. 2 of the main text (i.e., Eq.
S18) is that the cell cannot distinguish between those readout
molecules that have collided with ligand-unbound receptors and
readout molecules that have not collided with the receptors at all.
One way to arrive at this conclusion is to imagine that all collisions
with the receptor lead to modifications of x. However, although
the ligand-bound receptor modifies x into state xp, the unbound
receptor modifies x into another state x†. Hence, in addition
to the reaction x+RL→ xp +RL, we consider the reaction
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x+R→ x† +R. Then, N = xp + x†. Analogously to Eq. 1 in the
main text, we can then estimate the variance of p̂= xp=N = xp=
ðxp + x†Þ by expanding to first order:

δp̂≈ gp̂;x p δxp + gp̂;x†δx
†; [S51]

where the gains are the following:

gp̂;x p =
dp̂
dxp

=
xp�

x p + x†
�2; [S52]

gp̂;x† =
dp̂
dx†

=−
x†�

x p + x†
�2: [S53]

The variance is then the following:

σ2p̂ = g2p̂;x p σ
2
x p + g2p̂;x†σ

2
x† + 2gp̂;x p gp̂;x†σ

2
x p;x† ; [S54]

where the last term accounts for the covariance. The variances can
be calculated in many ways because the system is linear. For ex-
ample, they can be calculated exactly via the linear-noise approx-
imation. The result is the first term of Eq. 2 in the main text (Eq.
S18), as claimed. Indeed, there is no second term for the model
described here. This is precisely because with this scheme the
number of samples N is known. Although in the scheme of the
main text (Fig. 2), the system cannot discriminate between
the molecules that have collided with an unbound receptor
and the molecules that have not collided with the receptor at
all, in this scheme the system knows exactly how many collisions
there have been with the receptor: xp + x†.
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