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Diffractive stacks of metamaterial lattices with a complex unit cell: Self-consistent long-range
bianisotropic interactions in experiment and theory
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Metasurfaces and metamaterials promise arbitrary rerouting of light using two-dimensional (2D) planar
arrangements of electric and magnetic scatterers, respectively, 3D stacks built out of such 2D planes. An important
problem is how to self-consistently model the response of these systems in a manner that retains dipole intuition yet
does full justice to the self-consistent multiple scattering via near-field and far-field retarded interactions. We set
up such a general model for metamaterial lattices of complex 2D unit cells of poly-atomic basis as well as allowing
for stacking in a third dimension. In particular, each scatterer is quantified by a magnetoelectric polarizability
tensor and Ewald lattice summation deals with all near-field and long-range retarded electric, magnetic, and
magnetoelectric couplings self-consistently. We show in theory and experiment that grating diffraction orders of
dilute split ring lattices with complex unit cells show a background-free signature of magnetic dipole response. For
denser lattices experiment and theory show that complex unit cells can reduce the apparent effect of bianisotropy,
i.e., the strong oblique-incidence handed response that was reported for simple split ring lattices. Finally, the
method is applied to calculate transmission of finite stacks of lattices. Thereby our simple methodology allows
us to trace the emergence of effective material constants when building a 3D metamaterial layer by layer, as well
as facilitating the design of metasurfaces.
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I. INTRODUCTION

In the field of metamaterials, there is a growing interest
in metasurfaces [1,2]: two-dimensional (2D) arrangements of
subwavelength scatterers which combine a strong electric and
magnetic response to electromagnetic fields, both of which
may contribute equally to scattering [1,3,4]. These lattice
arrangements offer an unprecedented level of control over
the reflection, transmission, and refraction of light as seen
in state-of-the-art phase mask [5] and phased array antenna
designs [6,7]. While metasurfaces are typically 2D sheets of
nonidentical scatterers forming a complex repeated unit cell,
metamaterials, in turn, can be conceptually viewed as a 3D
stack of 2D lattices of identical meta-atoms [8,9]. Exactly
how the collective response of a metasurface or metamaterial
comes about is a function, first, of the scattering properties
of individual building blocks and, second, how a multitude of
possibly nonidentical building blocks are arranged to cover
a surface [10,11]. Exactly how the magnetic and electric
scattering of single building blocks comes about has been a
topic of intense discussion, centering mainly on electric dipole
models for plasmonics and LC-circuit models [9,12–15] for
metamaterial atoms such as split rings. LC-circuit intuition
directly implies electric and magnetic dipole-dipole interac-
tion, as well as “bianisotropic” magnetoelectric cross-coupling
terms [14–16]. Given this single-building-block understand-
ing, an important question currently faced by designers of
metasurfaces and metamaterials is how to deal with complex
2D lattices and lattice stacks, while accounting for both electric
and magnetic interactions between such building blocks.

In this article, we set up an analytical theory based on
Ewald lattice summation [17] that can predict the response of
diffractive as well as nondiffractive 2D periodic lattices with
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complex unit cells, as well as stacks of such gratings that form a
3D structure, taking as input the magnetoelectric polarization
tensors of the magnetoelectric scatterers that form the unit
cell. In order to test this model, we experimentally verify the
optical response of 2D lattices of split rings, since for split rings
the single-object polarizability is well known [14,18–20]. In
particular, we examine both dilute and dense lattices of two
symmetries, i.e., square lattices in which all single split rings
are arranged with their slits pointing in the same direction
(A lattice; Fig. 1, left), respectively, in which slit orientations
(B lattice) alternate. This choice is motivated by experimental
studies on low-symmetry planar arrays initiated by Decker
et al. [21]. The dilute lattices are designed to show grating
diffraction orders which we examine for magnetic signatures.
In particular, we predict and observe additional diffraction
orders for the B lattice compared to the A lattice that directly
reflect purely magnetic dipole contributions. As the second
test we examine the transmission of dense, i.e., nondiffractive
lattices, focusing, in particular, on oblique-incidence circularly
polarized input and detection. This geometry provides a
measure of bianisotropy or “pseudochirality.” We observe
cancellation of the bianisotropy present in each building
block for the collective response of the B lattice. Finally,
we demonstrate that our calculation methodology has great
potential for resolving the fundamental question of how
effective medium parameters emerge from the stacking of
building blocks into 3D slabs, by demonstrating that one
can self-consistently calculate reflection and transmission
amplitudes that can be used as input for retrieval algorithms.
The unique property of our approach is that it is very simple,
and allows arbitrary magnetoelectric response per building
block, yet accounts for all the complex self-consistent retarded
interactions, both in the plane of periodicity and transverse
to the stacked planes, that define the debate on how to
deal with spatial dispersion and bianisotropy in the resulting
effective medium.
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FIG. 1. (Color online) Nonprimitive unit cells with equal (A) and
alternating (B) split ring orientation. An x-polarized electric driving
field sets an electric dipole moment p for each individual split ring.
Depending on the orientation of the respective split ring, a magnetic
dipole moment m will be acquired. The electric dipole orientation
will be the same for unit cells A and B, namely, in the +x direction.
However, the magnetic dipoles, while being uniformly +z-oriented
for unit cell A, will be alternating in the +z and −z orientations for
unit cell B.

This article is structured as follows. Sections II and III
describe the theory. Section IV reports grating diffraction
calculations for the two lattice symmetries. Section V covers
the Fourier microscopy setup that was utilized to gather
diffraction patterns discussed in Sec. VI. Angle-resolved
transmission experiments conducted on nondiffractive lattices
are described and compared to analytical point dipole (lattice
sum) calculations in Sec. VII. In Sec. VIII, we apply our point
dipole model to calculate transmission and reflection for finite
stacks of 2D metamaterial layers.

II. STARTING POINT: 2D LATTICE SUM THEORY

The main point of this paper is to take the point dipole model
reported in Ref. [14] and show how to extend it to arbitrary
stacks and supercells of 2D lattices. In a point scattering
model [22], the induced electric and magnetic point dipole
moments p and m, in response to incident electric and magnetic
fields Ein and Hin, are set by the point scatterer’s polarizability
α according to

(
p
m

)
= α

(
Ein

H in

)
. (1)

For completeness, we briefly recapitulate how one can deal
with an arrangement of such scatterers in a simple 2D lattice,
defined by lattice vectors Rmn = ma1 + na2 with integer m

and n and real-space basis vectors a1,2. The response of a
point scatterer at position Rmn is self-consistently set by the
incident field, plus the field of all other dipoles in the lattice,
according to

(
pmn

mmn

)
= α

⎡
⎣

(
Ein(Rmn)
H in(Rmn)

)

+
∑

m′ �=m,n′ �=n

G0(Rmn − Rm′n′)

(
pm′n′

mm′n′

)⎤
⎦ . (2)

If we take a plane wave incident with parallel wave vector k||
(in the first Brillouin zone) and use the translation invariance of
the lattice, we can substitute a Bloch wave form ( pmn,mmn)T =
eik|| ·Rmn ( p00,m00)T to obtain(

p00

m00

)
= [α−1 − G �=(k||,0)]−1

(
Ein(R00)
H in(R00)

)
. (3)

Here, G �=(k||,0) is a summation of the free-space 6 × 6 dyadic
Green function G0 over all positions on the 2D periodic real-
space lattice barring the origin:

G �=(k||,r) =
∑

m,n�=0

G0(Rmn − r)eik||·Rmn . (4)

We refer to the summation without exclusion of m = n = 0 as
G(k||,r). The necessary steps for 6 × 6 dyadic Green functions
are easily derived from the known scalar Green function lattice
sum. We refer to the Appendix and our recent report [23,24]
for implementation details. As a subtle point we note that
throughout this work Rmn represent reciprocal lattice vectors
strictly in the z = 0 plane, while the “observation point”
r = (x,y,z) = (r||,z) at which the lattice sum is evaluated
is anywhere in three dimensions, i.e., at any z. Since each
G0(Rmn − r) is essentially a spherical wave, the lattice sum
contains retardation both in the plane and perpendicular to the
plane, even though only a phase factor depending on k|| is
explicitly visible in Eq. (4).

Once one has obtained the induced dipole moments given
the incident field, it is straightforward to calculate the near-
field distribution at any point inside or outside the lattice, i.e.,
at any r: (

E(r)
H(r)

)
=

(
Ein

Hin

)
eik·r + G(k||,r)

(
p00

m00

)
. (5)

Similarly, one can calculate the intensity and polarization of
the diffracted, reflected, and transmitted waves. Using the
completeness relation of the lattice, one retrieves diffracted
orders in the far field of the form [17](

E(r)
H(r)

)
=

∑
g,|kg|�k

(
Eg

Hg

)
eikg·r, (6)

where the diffracted wave vectors are kg =
(k|| + g,±√

k2 − |k|| + g|2), which can be identified
with polar diffraction angles θ,φ through kg =
k(cos φ sin θ, sin φ sin θ, cos θ ). Note that the diffracted
orders are simply set by parallel wave vector conservation
modulo the addition of any vector g from the reciprocal
lattice. The fields associated with each order are(

Eg

Hg

)
= 2πki

A cos θ
M(θ,φ)

(
p0

m0

)
. (7)

Here A is the unit cell area, and the orientation matrix M(θ,φ)
can be written as

M =
(

D O

−O D

)
, (8)

where

D =
⎛
⎝1 − x2 −xy −xz

−xy 1 − y2 −yz

−xz −yz 1 − z2

⎞
⎠ (9)
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and

O =
⎛
⎝ 0 −z y

z 0 −x

−y x 0

⎞
⎠, (10)

using as short hand x = cos φ sin θ , y = sin φ sin θ , and z =
cos θ . Since these are only scattered fields, one still needs
to add the incident field to obtain the zero-order transmitted
beam.

III. COMPLEX BASE AND STACKS OF 2D LAYERS

Having defined our starting point, we now turn to setting
up a theory that can deal with almost arbitrary stacks of 2D
lattices. To define the class of problems for which our approach
is applicable more clearly, we outline how to deal with an
arbitrarily large but finite set of N lattices where each lattice
has the same reciprocal lattice vectors but can have its base
point arbitrarily shifted both in the plane of periodicity and
transverse to it. Furthermore, each lattice can contain a differ-
ent type of scatterer. Thereby, our theory as outlined in this
section can directly deal with a rich variety of problems. These
include the physics of planar structures with complicated
supercells of many different scatterers, such as metasurfaces
or stacks of metamaterial planes that form a 3D structure.

Suppose we have m = 1 . . . N lattices of the same symme-
try, each shifted by an arbitrary spatial offset rm

0,0 sideways, and
zm perpendicular to the plane, and potentially each containing a
different type of scatterer of polarizability αm. As an example,
lattice type B (Fig. 1, right) can be represented by two lattices
(one for each split ring orientation) with a relative offset
of

√
2/2 in the (x,y) plane. Since under our assumption

Bloch’s theorem still holds, the problem of N infinite periodic
lattices reduces to finding just the N dipole moments on
the central lattice sites in each lattice, i.e., the sites (rm

0 ,zm).
Indeed, Bloch’s theorem asserts that at any other lattice site
in the same layer m, the moment is simply pm(rm

0 + R,zm) =
eik|| ·Rpm(rm

0 ,zm). The N independent dipole moments are once
again set by a self-consistent equation. For the dipole moment
at (rm

0 ,zm) in layer m, the self-consistent equation reads

(
pm

mm

)
= αm

⎡
⎣(

Ein

H in

)
eik·(rm

0 ,zm) + G �=(k||,0)

(
pm

mm

)

+
N∑

m′=1,m′ �=m

G
(
k||,

(
rm′

0 − rm
0 ,zm′ − zm

))( pm′

mm′

)⎤
⎦ .

(11)

Here, the interpretation is that any dipole is driven by the
external incident field (first term on the right-hand side),
by all the dipoles except itself in the same layer [second
term on the right-hand side, which also occurs in Eq. (3)],
and, moreover, by all the dipoles in all the other layers. In
this third term a full lattice summation, including the (0,0)
term, occurs. It should be noted that in the first term, i.e.,
the direct driving, the retardation of the driving across the
structure is directly explicit both transverse to the plane and
in the plane, as the term k · (rm

0 ,z) explicitly contains the full
3D wave vector and 3D lattice base point coordinate. What

is less obvious upon inspection is that the third term, i.e.,
G(k||,(rm′

0 − rm
0 ,zm′ − zm)), also accounts for retardation both

in plane (evident through the explicit argument k||) and out of
plane, i.e., for phase increments across the distances zm′ − zm

between planes. Note from the definition, Eq. (4), that this
retardation is in fact accounted for in the lattice sum not
through the explicit Bloch phase term eik|| ·Rmn but through
the fact that one coherently sums spherical waves G0 at a
given overall k. In the actual implementation of the lattice sum
(see the Appendix), the retardation transverse to each plane
appears explicitly [cf. Eq. (A3), in particular], as the different
real and evanescent diffracted orders kg that couple lattices
each involve different phase slips k

g
z |zm′ − zm| with transverse

wave vector k
g
z = √

k2 − |k|| + g|2.
Returning to the overall solution strategy, we note that the

summation in the new, third term in Eq. (11) is no more difficult
to deal with than the original lattice sum in Eq. (3) and Eq. (4).
In terms of its overall structure, Eq. (11) is almost identical to
the usual multiple scattering problem for just N scatterers and
is a simple set of 6N linear equations for 6N unknowns once
one has calculated the required lattice summations that couple
the lattices. However, while usually the coupling matrix would
simply have α−1

m on the diagonal, now the block diagonal
reads α−1

m − G �=(k||,0). In other words, the polarizability of
each scatterer is renormalized by the lattice sum of the
layer in which it is embedded. The off-diagonal terms for
a standard multiple scattering problem would simply be the
Green function G(rm,rm′ ) that quantifies the dipole field at rm

due to a dipole at rm′ . Here, the off-diagonal terms are given by
the lattice-summed Green function G(k||,rm′

0 − rm
0 ,zm′ − zm)

that quantifies the field strength exerted by lattice m′ on
lattice m.

Once the dipole moments in each layer are retrieved, one
can once again find the far-field intensity in each diffracted
order, taking into account the fact that different layers are
shifted to have the base point away from the origin, giving rise
to a phase shift. The fields associated with each order are

(
Eg

Hg

)
= 2πki

A cos θ
M(θ,φ)

N∑
m=1

(
pm

mm

)
e−ikg·(rm

0 ,zm). (12)

While exactly the same diffracted orders appear as for a single
lattice, their amplitude is now a coherent summation of the
diffracted fields from each layer separately. The coherence
involves both the phase in (pm,mm) that arises from the self-
consistent interactions and an additional phase slip owing to
the displacement (rm

0 ,zm).

IV. DIFFRACTIVE CALCULATION

Our calculation method can be applied to 2D lattices that
have more than one scatterer per unit cell (complex basis for
the lattice) [1,10,11], as well as stacks of such 2D lattices that
form a 3D structure. In this section we show calculations for
2D lattices with more than one scatterer per unit cell. As the
first demonstration, we have calculated the grating diffraction
efficiencies of comparatively dilute split ring lattices for
two types of lattices. Lattice A is a simple square lattice
(periodicity, 1500 nm), while lattice B has every second split
ring rotated by 180◦ in checkerboard geometry [10]. These two
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lattices have an identical number of scatterers per unit area but
have differently sized unit cells. In particular, the B lattice has a
larger unit cell, thereby giving rise to extra allowed diffraction
orders. These orders have nonzero amplitude only when the
scatterers have an induced magnetic dipole and, hence, can
be viewed as direct and background-free quantification of the
magnetic SRR response. As split ring polarizability we include
radiation damping according to

α−1 = α−1
LC − i 2

3k3I (13)

in the static LC-circuit polarizability

αLC = ω2
0V

ω2
0 − ω2 − iωγ

⎛
⎜⎜⎜⎜⎝

ηE 0 ... 0 iηC

0 0
...

. . .
...

0 0
−iηC 0 ... 0 ηH

⎞
⎟⎟⎟⎟⎠ (14)

exactly as argued in Ref. [14]. This formulation ensures a scat-
tering theory that satisfies reciprocity and the optical theorem
in the limit of no Ohmic damping, while γ introduces absorp-
tion loss. We assume the LC resonance to be described by a
resonance frequency ω0 = 1.26 × 1015 s−1 (the corresponding
free-space wavelength λ = 1500 nm), a damping rate γ equal
to the Ohmic damping rate of gold (γ = 1.25 × 1014 s−1), and
parameters {ηE,ηH ,ηC} = {0.7,0.3,0.4}, where V is the split
ring volume (150 × 150 × 30 nm3). As the environment we
assume a homogeneous medium of index n = 1.0. Figure 2
reports the calculated zero-order transmission coefficient
and the efficiencies for transmitted grating orders, assuming
normal incidence and plotting only the intensity copolarized
with the incident beam. A polarization analysis is presented
below in the framework of our experiments. The zero-order
transmission shows a broad minimum punctuated by a narrow
grating anomaly around 6700 cm−1 (wavelength equal to

the grating pitch). The transmission depth is around 20%,
commensurate with the very dilute nature of the grating and the
per-split ring cross section [18] of around 0.3 μm2. The grating
anomaly is coincident with the emergence of the first-order
grating diffraction at the grazing exit angle. The first-order
grating diffractions reach efficiency values of around 0.5 to 1%
at λ−1 = 7100 cm−1. For a simple lattice of electric dipoles
polarized along the x axis, one would expect the highest
grating efficiency to occur for the (0,±1) order, owing to the
fact that the single-dipole emission pattern is peaked away
from the dipole orientation. For instance, for a frequency of
λ−1 = 7100 cm−1, the grating orders appear circa 80◦ from
the plane normal. For this angle, the expected intensity ratio
assuming purely electric dipole scatterers is sin2 θ :cos2 θ =
8:1 for the (0,±1) orders compared to the (±1,0) orders.
Reference [25] verifies that this reasoning for estimation of
the grating diffraction efficiency from single-dipole radiation
patterns indeed quantitatively holds for dilute lattices of
plasmonic rod dipole antennas. The fact that the actual ratio
calculated for the split ring lattice is closer to 2:1 than the
estimated 8:1 is a direct consequence of the magnetic dipole
radiation.

Next we turn to the superlattice. If the base lattice A has re-
ciprocal lattice vectors b1 = 2π/d(1,0) and b2 = 2π/d(0,1),
the superlattice can be classified as having a two-atomic
basis with reciprocal lattice vectors b1 = 2π/d(1/2,1/2) and
b2 = 2π/d(1/2,−1/2). Consequently, a set of extra diffraction
orders appears. We label the extra orders with half-integer
number pairs obtained by normalizing the G vector added
to k|| in the diffraction process to 2π/d. It should be noted
that the extra orders will not correspond to all combinations
of half-integers. Indeed, the first set is at (±1/2,±1/2) [and
not at (±1/2,0) resp. (0,±1/2)]. The calculated diffraction
efficiencies contain two independent measures of the magnetic
dipole component of SRR scattering. First, the amplitude in the
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FIG. 2. (Color online) Calculated transmission for diffracted orders for SRR lattices of type A (left) and type B (right) assuming a lattice
of 1500-nm pitch, in an environment of n = 1. As SRR parameters we use ω0 = 1.26 × 1015 s−1, γ = 1.25 × 1014 s−1, and {ηE,ηH ,ηC} =
{0.7,0.3,0.4}. Note the emergence of half-integer diffraction orders for lattice type B, with their cutoff being outside of the presented frequency
range.
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half-integer orders can be viewed as direct and background-
free quantification of the magnetic SRR response, since they
would not appear for ηH = ηC = 0. As Fig. 2 shows, the
half-integer orders appear at frequencies 1/

√
2 × 6700 cm−1

onwards and, indeed, contain significant amplitude (up to
2.5% total diffraction efficiency spread over four beams). The
second measure of the magnetic dipole strength is evident
in the (±1,0) and (0,±1) orders. As soon as the condition
for emergence of the (±1,0) and (0,±1) is crossed, the
(±1/2,±1/2) orders diminish in amplitude. Remarkably, the
contrast between the (0,±1) and the (±1,0) orders is much
stronger than in the A lattice, reaching up to 10:1 rather
than 2:1. This higher ratio is a direct consequence of the fact
that, in the superlattice, the magnetic dipoles are aligned in
antiphase in the two sublattices, while the electric dipoles
are aligned in phase. Since the (±1,0) intensity for the A
lattice is mainly from the z-oriented magnetic dipoles, the
diminished (1,0) diffraction strength is due to cancellation
of the magnetic dipole contributions in the antiparallel
arrangement [10].

V. SETUP FOR EXPERIMENT

In order to verify the predictions for diffraction by the A
and B lattices, we perform a diffraction experiment in the
near infrared on Au split ring resonator arrays fabricated
using e-beam lithography and liftoff [26]. The dimensions
are 150 × 150 × 30 nm, with gaps of 50 × 80 nm. The setup
(shown in Fig. 3) is essentially built as an infrared-range copy
of the setup reported in Ref. [25] with achromatic lenses
specified for 1050–1620 nm. Light from a supercontinuum
source (Fianium) is frequency selected by passing through
an acousto-optical tunable filter (Crystal Technology PCAOM
NIR 2) that allows us to select any wavelength from 1100
to 2000 nm, with a spectral selection FWHM bandwidth of
around 12 nm at 1550 nm. After passing a linear polarizer
(Thorlabs LPNIR100) the beam is weakly focused to a
spot of ≈20-μm diameter, smaller than an individual lattice,
which covers an area of 50 × 50 μm2. This illumination
approximates a plane wave, as it has an angular spread
	k||/k = 0.02. Light passing through the sample is collected
by a 100× oil objective (Olympus UPLSAPO; NA = 1.4). To
retrieve k-space information, we image the back aperture of

θ
100x
NA1.4 CCD

tube lensFourier lens

telescope

iris

sample lin. pol.λ/4

λ/4lin. pol.

0-order
beam blockx

y

z

y
x

Ø2.5mm

FIG. 3. (Color online) In our Fourier microscopy setup, light
from a filtered supercontinuum light source is incident from the left at
an angle θ from the lattice plane normal. A 100× immersion objective
collects transmitted light. The iris provides real-space filtering prior to
Fourier imaging. The beamstop is shown by the circle-within-square
(blue) symbol.

the objective onto an InGaAs CCD (Vosskühler NIR 300-PGE)
via a 4f imaging system (ftelescope = 50 mm, fFourier = ftube =
200 mm). An iris placed in the real-space image plane in
between the 1:1 telescope lens pair blocks light stemming
from the edges of an illuminated lattice, which would cause
additional features in the k-space image. Our aim is to study
the intensity and polarization for nonzero diffracted orders.
However, the sparse arrangement of scatterers will result in
back focal plane images that are dominated by the zero-order
transmitted beam. Indeed, the calculations in Fig. 2 indicate
an intensity ratio of the order of 103:1, making acquisition of
diffraction orders well above the noise, without oversaturation
of the zeroth-order problematic on a CCD of limited dynamic
range of 12 bits. We overcome this limitation by placing a
zero-order beam block at the back aperture of the objective.
The beam block is a metal sheet disk of 2.5-mm diameter
supported by a cross of thin wires (200-μm width), made by
electrical discharge machining in a 200-μm-thick metal foil.
The size of the disk should be compared to the back aperture
size of our Olympus UPLSAPO 100× objective, which is
7.1 mm in diameter. For cross-polarized excitation/analysis
configurations the beam block may be omitted.

VI. DIFFRACTION MEASUREMENT

First, we compare the diffraction patterns of the type
A versus type B lattices (sketch in Fig. 4) under plane-
wave illumination at 1550 nm. We use lattices immersed in
index matching oil to obtain a completely symmetric optical
environment and use a pitch of 1250 nm. The measurements
are hence done well to the blue of the diffraction condition.
Data in the copolarized channel, i.e., with input polarization
and detection polarization along the split ring base x, clearly
evidence the (±1,0) and (0,±1) diffraction orders. The
efficiency in these four orders stands at an almost 1:1 ratio,
in apparent contradiction to Fig. 2. However, it should be
noted that at the wavelength used, the grating diffraction
angle of about 55◦ is much closer to the sample normal
than in the calculation example. Consequently, the expected
intensity ratio on the basis of electric dipoles alone is around
2:1, further reduced by magnetic contributions. The magnetic
contribution to diffraction should appear much more clearly in
cross-polarized detection, since the electric dipole should be
x-polarized for all orders, while the magnetic dipole should
give rise to y-polarized light for the orders on the kx axis (and
vice versa). Indeed, in cross-polarized detection the (0,±1)
orders almost vanish compared to the orders on the x axis
(±1,0) diffraction orders, yielding a 7:1 ratio.

For the B lattice, the diffraction pattern in copolarized
excitation and detection is dominated by the (±1,0) and (0,±1)
orders, as in the A lattice. This similarity, which is also
apparent in Fig. 2, is indicative of the fact that actual split rings
do not have equally electric, magnetic, and magnetoelectric po-
larizability but, in fact, are expected [19] to have αE :αH :αC =
4:1:2. Nonetheless, the extra half-integer orders are faintly
visible in the copolarized Fourier image. The magnetic nature
of the SRR scatterers is much more clearly evident in the cross-
polarized Fourier image. In cross-polarization, all the integer
orders almost vanish. For the (0,±1) orders such vanishing
is expected since both the electric and the magnetic dipole
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FIG. 4. (Color online) Diffraction pattern analysis for lattice type A (a, c) and lattice type B (b, d) for plane-wave illumination with
x-polarized light at 1550 nm. For the cross-polarized analyzer orientation (y direction) the diffraction patterns for lattice types A and B
(c, d) are clearly distinct. For A, diffracted light is found in orders (blue) close to the maximum collection angle of the system (dashed circle).
In contrast, lattice B also shows half-integer orders (red). Cross-polarized detection brings out these orders more clearly. Histograms (e, f)
quantify the cross-polarized intensity. Low-diffraction-order intensities at positions indicated in green are attributed to minute deviations of
SRR center positions from a perfect square lattice introduced during the manufacturing process.

contributions are x-polarized for wave vectors in the (y,z)
plane. For the (±1,0) orders, all y-polarized light must result
from the magnetic dipole radiation. However, in strong contrast
to the A lattice, where the magnetic dipoles are all aligned and
give a clear (±1,0) diffraction, in the B-lattice cancellation
occurs owing to the fact that the two distinct sublattices have
magnetic moments in antiphase. Remarkably, in the cross-
polarized data the half-integer diffraction orders clearly stand
out at the (±1/2,±1/2) nodes, providing a background-free
measure for the presence of magnetic polarizability in the sin-

gle SRR polarizability. Strictly, no intensity is expected at the
(±1/2,0) and (0,±1/2) nodes if the split rings can be consid-
ered points located exactly on a square lattice. Careful inspec-
tion points to a very faint diffraction intensity at these angles,
which we attribute to a minute deviation in split ring position-
ing introduced by the RAITH lithography pattern generator.

Next we turn to a more comprehensive polarization analysis
of the half-integer orders. We study a lattice of higher split
ring density (900-nm pitch), so that the diffraction orders
move outwards in the Fourier image. In fact, at this pitch, the
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FIG. 5. (Color online) Experimental polarization analysis for lattice type B. For a lattice pitch of 900 nm, only the half-integer orders are
propagating. Fourier images for different analyzing polarizer settings (white arrow) reveal that the orders are tangentially polarized.

conditions for integer order diffraction (±1,0) are not yet met,
while the half-integer orders occur at large NA, conveniently
far from the zero-order transmitted beam. According to
point scattering theory, if the split rings had no magnetic
polarizability and no bianisotropy, they would all carry
identical electric dipole moments and no magnetic moment,
and the half-integer orders would have strictly zero intensity.
From symmetry it is apparent that even in the presence of
bianisotropy and split ring coupling, at normal incidence the
induced electric dipole moments in each sublattice will still
be equal. Consequently, the half-integer diffraction orders are
solely due to the induced magnetic dipoles. Since in high-NA
Fourier imaging of an out-of-plane magnetic dipole, the back
focal plane image must contain a radially polarized magnetic
field, polarization analysis of the Fourier image must reveal
tangential polarization. Figure 5 shows Fourier images with
excitation polarization along the split ring base x and the
detection polarizer set at 0, 90◦, and ±45◦ relative to the x axis.
The four orders indeed are dominantly tangentially polarized,
commensurate with radiation of out-of-plane magnetic dipole
moments.

VII. ANGLE-RESOLVED TRANSMISSION
AND PSEUDOCHIRALITY

Recent reports indicate that dense split ring lattices that
have square symmetry and all split rings aligned show a
strongly handed response when illuminated under an angle.
This handed response was first noted for split ring lattices by
Plum et al. [27–29], who proved that an asymmetric response
is allowed under oblique incidence even for a geometrically
nonchiral structure. The key to their argument is that the
illumination geometry should be included in the symmetry
considerations. A different interpretation is that the handed
response is intrinsic to the single-split-ring polarizability
tensor and directly results from the off-diagonal bianisotropy.
This form of “pseudochirality” was discussed in 1997 by
Tretyakov [30] in the framework of current carrying cut wires,
� particles, and helices. Recently, this pseudochirality was
measured to be exceptionally strong in split rings by Sersic
et al. [19]. A shortcoming of that work was that, while the
asymmetric response was attributed to the single building
block, in fact the observation was made on lattices without
mapping the influence of the lattice symmetry. Here, we
present calculations as well as experiments on superlattices
of different symmetry, i.e., the A lattice, with all split rings

aligned, and the B lattice, in which bianisotropy should cancel
in the zero-order transmission.

Figure 6 (left) shows calculations for the A lattice, as-
suming split rings in a square lattice of pitch 300 nm, in
surroundings index-matched to glass (n = 1.5). As parameters
we take {ηE,ηH ,ηC} = {0.7,0.3,0.4}, γ = 1.25 × 1014 s−1,
and ω = 1.108 × 1015 s−1 in order to match the resonance
wavelength to the wavelength with the lowest normal incidence
transmission dip. As also reported by Sersic et al. [19] and
Lunnemann et al. [23] lattice A shows a strongly asymmetric
handed response when rotating the sample in the incident
beam around the split ring symmetry axis and collecting
the total transmitted signal without analyzer. The asymmetry
consists of a sharp decrease in transmission when going
from normal incidence to positive angles at handed incidence
light and an almost-vanishing of the transmission resonance
when either rotating the sample in the opposite direction or
collecting in the opposite helicity channel. For rotation around
the x axis, the asymmetry vanishes entirely. Here we have
measured and calculated transmission for both the helicity
conserving [T±±(θ )] channels and the helicity nonconserving
channels [T±∓(θ )]. Calculations of transmission resolved for
the output polarization shows that the handed transmission
contrast is not associated with polarization conversion. Indeed,
our calculation predicts a large contrast between T++ and
T−− but no amplitude in the helicity nonconserving channel
(T+− = 0 and T−+ = 0).

Our transmission measurement is effectuated in the same
setup used for diffraction experiments. The detection path
again uses an N = 1.4 oil immersion objective and InGaAs
CCD detector. Oblique illumination is provided by fiber
coupling the spectrally filtered supercontinuum light and
mounting the output fiber coupler, collimation and focusing
optics, and polarization optics on a manually adjustable
goniometer arm. We can select the transmitted beam from just
the patterned sample area using real-space and Fourier-space
filtering in the detection path. A reference for the transmission
measurement is obtained by shifting the sample to image an
unpatterned region.

Measurements of transmission for two handednesses for
an index-matched lattice with 300-nm pitch of split rings
(150 × 150 × 30 nm, with gaps of 50 × 80 nm) indeed
show strong asymmetry in oblique incidence transmission
for the A lattice. Compared to the previous report by
Sersic et al. [19], the measured transmission asymmetry
is clearly evident, yet less pronounced, which we attribute
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FIG. 6. (Color online) Calculated and experimentally retrieved transmission spectra for SRR lattices of type A (a, c) and type B (b, d) with
lattice pitch 300 nm. Right-handed (+) and left-handed (−) circularly polarized light is incident at 0◦ (blue) and 50◦ (red) from the lattice
normal. Insets: Histograms for transmission at 1600 nm and a 50◦ angle of incidence. The contrast in copolarized transmission channels T++
and T−− for lattice type A (insets in a and c) vanishes for lattice type B (insets in b and d). Transmission for cross-polarized polarization
channels T+− and T−+ is considerably smaller for both lattice types compared to the copolarized case.

to the fact that in that measurement the substrate was not
index matched. The presence of a dielectric substrate can
significantly affect the magnetic polarizability and increase
the bianisotropy as reported for split rings on substrates [31]
as well as fishnet metamaterials [32]. Polarization analysis of
the transmitted light at resonance λ0 = 1600 nm quantifies
that the transmitted light does not show strong polarization
conversion.

Figure 6 (top and bottom right) show transmission
calculations and measured data for the B lattice. The handed-
dependent difference in angle-dependent transmission van-
ishes entirely, showing that in this particular type of structure
it is the single building block that determines the asymmetric
response, as opposed to spatial dispersion, which was recently
proposed to mimic chirality [33]. A viable solution to reduce
the apparent bianisotropy in metamaterials is hence to create
superlattices with rotated copies of the same bianisotropic
building block. However, the price is that the increased
unit cell size causes diffractive effects already at lower
frequencies.

VIII. STACKED LATTICES

Finally, we discuss the application of our multi-stack-point
scattering theory to a problem of great interest in metamaterials
research, i.e., the emergence of properties such as transmission,
ε and μ, as a function of the number of lattices that one stacks
to obtain a truly 3D structure. The second context in which
stacking is relevant is in the formation of stereometamaterials,
in which identical lattices are stacked with split rings rotated
from layer to layer, and in which retardation between layers
may also occur [15]. We refer to Ref. [34] for a treatment of
this model in electrostatic circuit theory amended to include
a retardation phase. We suppose one could stack layers of
split rings resonant at 1.5 μm that are in 2D square lattices of
300-nm pitch, with a spacing between layers of 300 nm, so
that a finite crystal of simple cubic symmetry is formed. As
parameters we use ηE = ηH = ηC = 1, γ = 8.3 × 1013 s−1,
and ω = 1.256 × 1015 s−1, which emulates the case of maxi-
mally magneto-electric cross-coupled SRRs, with a damping
rate comparable to that of silver. Stacked fabrication of split
ring lattices was reported by Liu et al. [15]. Figure 7 (left)
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shows the calculated transmission coefficient as a function
of the number of layers. As one expects from reported data,
a single layer already presents a significant suppression of
transmission, to below 15%, owing to the large cross section
per split ring. The reflection coefficient of around 45% (Fig. 7)
shows a peak complementary to the transmission, leaving a
significant residual 40% absorption. As the number of layers
is increased, the transmission stop gap significantly deepens
and widens, as would be expected for an increasingly thick
slab with a strong absorption resonance. At the same time, the
reflection resonance decreases in strength, stays comparable in
width to the single-layer reflection peak, and gains a significant
number of fringes with increasing structure thickness. Since
the multi-stack-point scattering theory returns full amplitude
and phase information for reflection and transmission, one
could continue to pursue a number of interesting studies on
the convergence of ε and μ as retrieved from the reflection
and transmission, as a function of the thickness, density, and
single-dipole polarizability. Moreover, one could explore how
multiple scattering interactions become apparent as spatial
dispersion in the retrieved material constants.

IX. CONCLUSION

In this work, we have successfully described experimentally
retrieved grating order intensities and transmission spectra
for diffractive and nondiffractive SRR lattices with a mag-
netoelectric point dipole model extended for stacks of 2D
lattices applying Ewald’s summation technique. The role of
the magnetic dipole response for SRR lattices was revealed by
comparing the diffraction order intensities of a lattice formed
by a trivial unit cell (single-atomic base) to a lattice formed
by a complex unit cell (two-atomic base) with alternating
SRR orientation. The alternating SRR orientation in the
complex unit cell case led to the absence of transmission
contrast for right- and left-handed incident light for off-normal
illumination as predicted by our model. Finally, we explored
the influence of the finite number of 2D metamaterial layers
forming a 3D stack on the stack’s total transmission and
reflection.
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APPENDIX: LATTICE SUM

The 6 × 6 dyadic Green function of free space can be
obtained by applying the operator

(
Ik2 + ∇ ⊗ ∇ −ik∇×

ik∇× Ik2 + ∇ ⊗ ∇
)

(A1)

to the Green function of the scalar-wave equation. Hence also
the 6 × 6 dyadic lattice sum follows from the lattice sum for
the scalar Green function, i.e., from

∑
m,n

eik|Rmn−r|

|Rmn − r|e
ik||·Rmn = (1) + (2). (A2)

Note that in this defintion, Rmn are real-space lattice vectors
strictly in the x,y plane, while the observation point r =
(x,y,z) = (r||,z) may be outside the lattice plane, i.e., away
from z = 0. On the right-hand side we have split the scalar
lattice sum into a real-space and a reciprocal-space part that
read as reported by Linton [24] as follows:

(1) = π

A

∑
g

{
ei(k||+g)·r||

k
g
z

·
[
eik

g
z |z|erfc

(
k

g
z

2η
+ |z|η

)

+ e−ik
g
z |z|erfc

(
k

g
z

2η
− |z|η

)]}
, (A3)

(2) =
∑

R

{
eik|| ·R

2ρmn

·
[
eikρmnerfc

(
ρmnη + ik

2η

)

+ e−ikρmnerfc

(
ρmnη − ik

2η

) ]}
. (A4)
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The first term sums over all reciprocal lattice vectors g and, in
terms of its dependence on the “observation” coordinate r at
which it is evaluated explicitly, splits into in-plane and trans-
verse coordinates (r||,z). All retardation effects in the plane
appear explicitly through k|| · r||, while retardation transverse
to the plane appears explicitly through k

g
z = √

k2 − |k|| + g|2.
The second part (2) sums over real-space lattice vectors R. In
terms of the observation coordinate r at which it is evaluated,
each summand is essentially in a spherical coordinate, with

dependence only on the radius ρmn = |Rmn − r|. Note that
since r = (r||,z) has not only a component parallel to the
plane but also one transverse to it, the kρmn terms account
for retardation both in and transverse to the plane. As regards
numerical implementation, the formulation holds for any
choice of η; however, optimal convergence requires η around√

π/a, where a is the lattice constant. Pointers as to how to
apply the operator, Eq. (A1), and how many terms to sum are
given in Ref. [23].
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