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1. Introduction

Cells exert and resist mechanical forces. This ability allows them to 
perform many essential tasks. Some cells can crawl across surfaces and 
through small pores, pulling themselves forward while pushing against 
their environment. Some cells swim by beating long appendages which 
push the surrounding fluid. Most cells proliferate by dividing into two 
daughter cells, which is accomplished by pinching the cell membrane 
at (most often) the mother cell’s equator. Many cells maintain their 
internal components organized by a combination of internal pushing 
and pulling forces. Cell growth, division, and changes in shape allow 
fast-growing embryos to properly develop into organisms with a well-
defined anatomy. But how can cells exert and withstand such forces?

In order to accomplish force-related tasks, cells rely on a variety of 
biological polymers. The kind of biological polymer used depends on cell 
type. Most plant, yeast, and bacterial cells maintain relatively constant, 
rod-like shapes. These cells possess an outer cell wall composed of rigid 
polymers, which provide robust mechanical stability. In contrast, many 
animal cells are soft and deformable. This allows them to move and 
change shape. Rather than possessing a static, rigid cell wall, animal 
cells rely on the cytoskeleton to provide resistance to external forces. 
However, at the same time the cytoskeleton itself also actively generates 
forces. These dynamic, adaptable proteins greatly contribute to the 
structural complexity of cells. Understanding the physical properties of 
biological polymers like cytoskeletal filaments is thus crucial in order to 
resolve the role of forces in cell mechanics.

In order to resolve how biological polymers regulate cell shape 
and mechanics, researchers in recent years have turned to quantitative 
experiments on purified biological polymers in a simplified, cell-free 
environment (Bausch and Kroy, 2006; Fletcher and Geissler, 2009). 
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The advantage of such biomimetic systems is that their molecular 
and structural complexity can be precisely controlled. The reduced 
complexity compared to living cells makes it easier to develop physical 
theories that predict the macroscopic physical properties in terms of the 
molecular properties of the components. 

Yet our current knowledge of the mechanical properties of 
cytoskeletal polymers does not suffice in providing a complete 
mechanical description of how cells resist and exert forces. So far, much 
research has focused on the mechanical properties of single polymers, 
entangled networks and liquid crystals, crosslinked networks, and motor-
driven systems. Yet there are many aspects of these polymer systems 
that remain poorly understood. Experiments so far have addressed the 
properties of macroscopic networks of biological polymers, yet we know 
little about how these networks are affected when spatially restricted to 
cellular dimensions. Furthermore, the formation of constricting rings 
is essential for cell division, yet how biological polymers form rings 
remains a mystery. Finally, the ability of biological polymers to exert 
forces is well understood at the microscopic level of single molecules, 
but how these forces can be integrated over long distances to give rise to 
larger forces remains poorly understood.

In this thesis, we aim to better understand the properties of the 
organization and force-generating capabilities of biological polymers. 
In order to achieve this goal, we investigate how biological polymers 
organize in cell-size confinement, how they can be bent into rings by 
crosslinks, and how they can actively exert forces over long distances. 
In all these cases, we present experimental results which current 
physical models fail to predict. A better theoretical understanding of 
our findings should lead to a more quantitative understanding of how 
forces influence cell behavior.

In this chapter, we present the state of the art in our understanding 
of biological polymers. First, we shall look at examples of biological 
polymers in living systems. Next, we shall investigate the properties of 
individual polymers, networks of polymers, crosslinked polymers, and 
actively driven polymers. Finally, the chapter will end with an outline of 
this thesis.
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1.1 The cytoskeleton

The cytoskeleton is a network of biological polymers which provides 
cells with mechanical strength and the ability to generate active forces. 
Cytoskeletal polymers associate with a variety of accessory proteins to 
form different structures which execute distinct tasks. Despite the large 
number of possible cytoskeletal structures, the cytoskeleton primarily 
comprises only three types of polymers. In this section, we will introduce 
these cytoskeletal polymers and highlight some of the structures which 
they form. In later sections, we will investigate the properties of these 
polymers and some of their accessory proteins in more detail.

Microtubules are stiff polymers which help organize the interior of 
the cell. Microtubules act as tracks for accessory proteins called molecular 
motors, which move along microtubules to transport intracellular cargo. 
In interphase animal cells, microtubules usually radiate from the nucleus 
and extend toward the cell membrane, enabling transport between 
different parts of the cell (Barlan et al., 2013; Vale, 2003). For example, 
many amphibians and fish possess cells called melanophores which allow 
them to change color (Tuma and Gelfand, 1999). This is accomplished 
by molecular motors, which spatially rearrange vesicles containing the 
pigment melanin across microtubules. Before cell division, microtubules 
reorganize to form the mitotic spindle, an assembly of microtubules, 
molecular motors, and other accessory proteins which reliably separates 
chromosomes to the two daughter cells (Walczak and Heald, 2008). 
Fission yeast cells similarly use microtubules and molecular motors to 
separate chromosomes and transport cargo (Hagan, 1998). However, 
unlike in animal cells, interphase microtubules only extend to the 
two ends of the rod-shaped yeast cell. This allows molecular motors 
to deliver growth factors specifically to these two ends, maintaining 
yeast cells’ rod-like shape (Chang and Martin, 2009). Some eukaryotic 
cells swim by beating flagella or cilia. These are long appendages which 
comprise an ordered arrangement of microtubules which slide past one 
another, causing the entire appendage to lash back and forth (Brokaw, 
1994). In many plant cells, microtubules form an ordered cortex, or thin 
layer underneath the cell membrane. These microtubules help guide the 
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ordered production of the cell wall, which is essential in maintaining 
plant cells’ elongated shape (Bringmann et al., 2012).

Actin filaments are more flexible polymers which can form either 
fine meshworks, branched networks, or stiff bundles. The most well-
known example of actin filaments in organisms is found in muscle cells 
(Rayment et al., 1993). A well-organized array of actin filaments and 
molecular motors can exert contractile forces, allowing organisms to 
move, change shape, and drive essential functions like heartbeats and 
breathing. But non-muscle cells also possess an actin cytoskeleton, 
which can be used to exert forces, both internally and externally. In 
many animal cells, actin filaments form a thin cortex meshwork. This 
actin cortex allows molecular motors to exert forces which control 
cell shape (Salbreux et al., 2012). Furthermore, the actin cortex allows 
tissues of epithelial cells to exert forces on each other, maintaining tissue 
integrity (Cavey and Lecuit, 2009) and determining tissue shape (Rauzi 
and Lenne, 2011). The actin cortex also assists yeast and animal cells 
during endocytosis, the process whereby cells internalize foreign objects 
or fluids (Engqvist-Goldstein and Drubin, 2003). One example is 
phagocytosis, where immune cells engulf and destroy invasive pathogens 
like bacteria (May and Machesky, 2001). During eukaryotic cell division, 
cortical actin filaments and molecular motors organize into a contractile 
ring, which constricts to pinch off the mother cell into two daughter 
cells (Guertin et al., 2002). Apart from a thin cortex, some large cells 
such as oocytes additionally have a three-dimensional, cytoplasmic 
network of actin filaments (Field and Lénárt, 2011) which can be used 
for transporting chromosomes (Lénárt et al., 2005). Crawling cells like 
fish keratocytes, amoebas, and metastatic cancer cells can move across 
surfaces using a combination of actin-based structures (Abercrombie, 
1980; Ananthakrishnan and Ehrlicher, 2007; Rafelski and Theriot, 2004). 
At the front of crawling cells, a thin, two-dimensional array of actin 
filaments called the lamellipodium pushes the cell membrane forward. 
Actin bundles called filopodia often accompany the lamellipodium, 
which can sense environmental cues that guide the direction of cell 
motion (Davenport et al., 1993). At the back of crawling cells, a network 
of actin filaments and molecular motors exerts retraction forces which 
allows the cell body to move forward. Inside the ear, inner hair cells 
project stereocilia, bundles of actin which participate in the transduction 
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of sound waves to neuronal impulses (Manor and Kachar, 2008). 
Interestingly, most plant cells lack an actin cortex. Rather, actin bundles 
usually radiate from the nucleus towards the cell membrane (Hussey et 
al., 2013) and assist in properly positioning the nucleus (Starr and Han, 
2003).

Intermediate filaments provide animal cells with mechanical 
strength. They are encoded by 70 genes in the human genome, which 
are divided into six groups based on sequence homology (Szeverenyi 
et al., 2008). Different intermediate filaments are expressed in different 
cell types (Helfand et al., 2003; Herrmann et al., 2007). For example, 
epithelial cells such as skin cells resist deformation by a network of keratin 
filaments (Omary et al., 2009). Eukaryotic cells use lamin filaments to 
not only provide the nucleus with with mechanical strength, but also to 
regulate nuclear events such as chromosome replication and cell death 
(Gruenbaum et al., 2000). Fiber cells of the vertebrate eye lens contain 
beaded filaments which not only provide the lens with mechanical 
strength, but also maintain its transparency (Song et al., 2009).

Septin filaments have only recently begun to gain recognition as 
a fourth component of the cytoskeleton (Mostowy and Cossart, 2012). 
In budding yeast cells, septins form rings at the bud neck which separate 
the membranes of the mother and daughter cells (Byers, 1976; Hartwell, 
1971). In animal cells, septins are core components of the contractile 
ring that are essential for proper cell division (Glotzer, 2005). However, 
their role in cytokinesis remains poorly understood.

1.2 Single filaments

So far we have seen many examples of cytoskeletal polymers and the 
structures they form inside living cells. In this section, we will introduce 
the properties of polymer filaments. We will see that cytoskeletal 
polymers possess unique properties that distinguish them from other 
biological polymers as well as synthetic polymers.
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Macromolecular polymers. Many materials nowadays are made 
of plastics, which are polymers (Rubinstein and Colby, 2003), such as 
polyethylene, polystyrene, and polyvinyl chloride (PVC). The word 
“poly” in these names refers to a fundamental property of polymers: 
they comprise many copies of the same building block. These subunits 
assemble into long, linear chains. Polymer subunits within a chain are 
held together by strong covalent bonds. Individual polymer chains are 
thus large molecules, and often referred to as macromolecules.

Cells also produce macromolecular polymers, using sugars, 
nucleic acids and amino acids as building blocks. Plant cells produce 
cellulose fibers, built from linked glucose chains, which form a strong 
cell wall (Somerville, 2006). Bacterial colonies secrete extracellular 
polysaccharide chains which maintain cohesion and contribute to the 
formation of biofilms such as dental plaque (Costerton et al., 1999). 
Cells store their genetic information in the form of deoxyribonucleic 
acid (DNA), which are chains built from four different types of 
interchangeable nucleic acids (Alberts, 2008). Cells express DNA to 
produce proteins, which are macromolecules composed of one or more 
polypeptide chains, which themselves are long chains of up to twenty 
interchangeable amino acids (Alberts, 2008).

Supramolecular polymers. Many types of biological polymers 
are built up from many protein subunits. Unlike man-made plastics, 
these supramolecular polymers are formed via weak interactions such 
as electrostatic interactions, hydrophobic interactions, and hydrogen-
bonding. The specificity of these interactions results in highly ordered 
structures. The non-covalent nature of these interactions lead to dynamic, 
regulatable structures. Collagen proteins assemble into thick fibrils that 
form the connective tissues of animals (Prockop and Kivirikko, 1995). 
Fibrinogen proteins also assemble into thick fibrils that form clots at 
wounds which stop bleeding (Weisel, 2008). Both of these fibril types 
are stabilized by covalent crosslinks, forming stable structures that often 
span far beyond cellular length scales.

Cytoskeletal polymers are also supramolecular polymers, but 
unlike collagen and fibrin polymers they are not covalently crosslinked. 
Because the subunits are held together by many weak, non-covalent 
interactions, cytoskeletal polymers can assemble and disassemble 
in response to biochemical signals. They can form dynamic and 
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adaptable structures that can allow cells to quickly respond to changing 
environments.

Polymer and subunit structure. Actin filaments comprise 
globular actin protein monomers. Actin monomers comprise two 
domains separated by a cleft, which binds a divalent cation as well as 
either adenosine triphosphate (ATP) or adenosine diphosphate (ADP). 
Monomers assemble head-to-tail to form linear polymer filaments. The 
ligand-binding cleft is directed toward the so-called “minus end” or 
“pointed end” of the filament. The opposite side is directed toward the 
“plus end” or “barbed end”. Apart from assembling head-to-tail, actin 

… …

… …

a b c

d e f

Polyvinyl
Chloride (PVC)

Deoxyribonucleic
Acid (DNA)

Figure 1. Common examples of polymers. a. A duck made of synthetic 
polymers. b. Polymers are long, linear chains. c. The structure of 
polyvinyl chloride (PVC), which comprises a long chain of vinyl 
chloride molecules. d. A duck made of biological polymers (among 
other materials). e. The nucleus of a dividing cell. f. The structure of 
an example strand of deoxyribonucleic acid (DNA), one of the most 
prevalent biological polymers. (Panels a, d © Wikimedia Commons. 
Panels e, f © Garland Science.)
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monomers associate via side-by-side contacts, forming a two-stranded 
helical structure with a 37-nm pitch.

Microtubules comprise α- and β-tubulin proteins, which form 
stable heterodimers. β-tubulin proteins bind guanine triphosphate 
(GTP) or guanine diphosphate (GDP). Although α-tubulin proteins 
bind guanine triphosphate (GTP), this binding site is buried at the 
dimer interface. Dimers of α-β-tubulin assemble head-to-tail to form 
linear protofilaments, with α-tubulin at the “plus end” and β-tubulin at 
the “minus end”. Thirteen protofilaments associate side-by-side to form 
a hollow, cylindrical microtubule. This stable, tubular structure makes 
microtubules stiffer than actin filaments by a factor of approximately 
300 (Gittes et al., 1993).

b

a

Microtubules

Actin �laments

Figure 2. Actin and microtubules. a. Molecular structure of actin 
monomers, which assemble into actin filaments. b. Molecular structure 
of α- and β-tubulin, which form dimers that assemble into microtubules. 
(Panels a, b © Garland Science.)
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The notion of head-to-tail assembly indicates a special property 
of actin filaments and microtubules. Structural polarity refers to the fact 
that the two ends of the filament can be distinguished from each other. 
Other examples of polymers with structural polarity are DNA (5’ and 
3’ ends) and protein polypeptide chains (N- and C-termini). This is in 
strong contrast to many other synthetic and biological polymers, which 
exhibit structural symmetry. In structurally symmetric filaments, both 
ends of the filament are identical and indistinguishable. Intermediate 
filaments and septin filaments are structurally symmetric.

The amino acid sequences of actin and tubulin proteins are 
surprisingly well conserved across many eukaryotic species (Mitchison, 
1995; Sheterline and Sparrow, 1994). Intermediate filaments and septin 
filaments also maintain a large degree of evolutionary conservation, 
although species-specific variation is greater than with actin and tubulin. 
Even in prokaryotes, various actin, tubulin, and intermediate-filament 
homologues been identified which can also assemble into polymers to 
perform a variety of tasks (Shih and Rothfield, 2006).

Polymerization and enzymatic activity. The process by which 
monomer subunits join a polymer is called polymerization. For 
supramolecular polymers such as actin, this process is characterized 
by the rate of monomer addition, kon, as well as the rate of monomer 
dissociation, koff. In equilibrium, these rates are identical. For structurally 
polar filaments, the on/off rates vary for the two different ends. The end 
with the higher rate is conventionally called the “plus end”, while “minus 
end” refers to the end with the slower rate. Structurally symmetric 
filaments have identical on/off rates at both ends.

Actin and microtubules, apart from possessing structural polarity, 
also possess enzymatic activity. These proteins bind the nucleoside 
triphosphates ATP or GTP. Shortly after subunits join polymers, 
hydrolysis occurs. Continuous addition of fresh ATP- or GTP-bound 
monomers therefore results in a so-called ATP cap or GTP cap at the 
plus end, while the rest of the filament contains ADP- or GDP-bound 
monomers. The presence of such a cap allows for faster polymerization 
kinetics at the plus end, which can lead to dynamic, non-equilibrium 
processes such as treadmilling (Pollard and Borisy, 2003) and dynamic 
instability (Gardner et al., 2011). Specialized tip-tracking molecules 
can selectively bind at the plus end of microtubules, though it remains 
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unclear whether they bind specifically to the GTP cap or to other 
nucleotide-bound states (Bowne-Anderson et al., 2013; Maurer et al., 
2012; Seetapun et al., 2012). These dynamic properties allow cytoskeletal 
filaments to exert polymerization and depolymerization forces, which 
we will discuss later in this chapter.

Although intermediate filaments lack structural polarity and 
enzymatic activity, evidence suggests that intermediate filaments exhibit 
fast polymerization and depolymerization kinetics (Helfand et al., 2003). 
Septin filaments lack structural polarity but exhibit enzymatic activity 
(Weirich et al., 2008). Septin subunits bind and slowly hydrolyze GTP, 
and septin subunits can form filaments via the GTP-binding domain 
(or also at an interface containing N- and C-termini). However, the role 
of enzymatic activity in regulating filament formation remains poorly 
understood.

Worm-like chain model. So far we have seen how molecular 
structure can determine many of the special properties of cytoskeletal 
filaments. Yet physical theories accounting for the mechanical properties 
of polymer filaments often ignore fine structural detail. The worm-like 
chain model is the most common theoretical model used to describe the 
mechanics of cytoskeletal polymers. This model was originally developed 
by Kratky and Porod (Kratky and Porod, 2010). It approximates polymers 
by a smooth linear contour which resists bending with a bending 
modulus κ. In the absence of thermal fluctuations, polymers assume a 
linear shape. But at finite temperatures, random forces from thermal 
fluctuations can cause the polymer to bend. These thermal bending 
undulations have been observed experimentally for actin filaments by 
fluorescence microscopy (Gittes et al., 1993; Isambert et al., 1995; Ott 
et al., 1993) and have been used to measure κ. This was achieved by 
measuring a length scale lp called the persistence length, which is defined 
as the decay length of angular correlations along the polymer contour. 
Roughly speaking, the persistence length is the distance over which the 
polymer contour appears straight. In equilibrium, the persistence length 
is related to the bending modulus by the relation κ = kT lp, where k is 
Boltzmann’s constant and T is temperature. 

Using the persistence length lp and the contour length L, we can 
distinguish between three classes of polymers. If the polymer backbone 
offers little resistance to bending (lp  ≪  L), thermal fluctuations 
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dominate, bending the polymer so strongly that it crumples to a highly 
bent conformation well described by a fractal contour (de Gennes, 
1979). Such polymers are called flexible polymers, and are suitable for 
describing many synthetic macromolecular polymers. In the opposite 
scenario (lp ≫ L), stiff polymers strongly resist thermal fluctuations and 
can be modeled as rigid rods (Landau et al., 1986). A third intermediate 
regime occurs when lp ~ L. In this regime, thermal fluctuations cannot 
be neglected, though the polymer retains a well-defined, mostly straight 
shape with long, wavelike undulations. Polymers in this intermediate 
regime are called semiflexible polymers. Many biological polymers are 
semiflexible. Double-stranded DNA has a persistence length of 50 nm 
(Hagerman, 1988). Cytoskeletal filaments have a much larger persistence 
length ranging from 0.5-1 µm for intermediate filaments, to 8 µm for 
actin filaments and 5 mm for microtubules (Kasza et al., 2007).

Response to pulling forces. So far we have seen that the 
mechanical properties of semiflexible filaments can be characterized by 
the persistence length. This quantity describes how filaments respond to 
thermal forces. But how do semiflexible polymers respond to external 
pulling forces? Given an infinitely strong force, we should expect the 
polymer to assume a straight shape: such a taut filament would not 
bend due to thermal forces. Theoretical models have accounted for the 
reduction of thermally-induced bends due to external pulling forces 
(MacKintosh et al., 1995). The amplitude of thermally induced bends in 
the polymer depends on wavelength, given by the wave vector q = n π / L, 
where n = 1, 2, 3… If the polymer experiences tension due to an external 
pulling force f, the amplitude uq of bending mode q is given by

DØØuq
ØØ2

E
= 2kT

L
°
∑q4 + f q2

¢

Long-wavelength bends (lower q) have the largest bending amplitudes 
in equilibrium. Short-wavelength bends (higher q) decay quickly, as q-4. 
This formula also shows that applying a pulling force f to the polymer 
reduces bending amplitudes uq. This reduction in thermal modes results 
in an effective restoring force:

f ª
lp∑

L4 x
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where x denotes the displacement of the end-to-end-distance vector of 
the polymer contour from its equilibrium position. The effective spring 
constant is thus lp κ L-4. Because semiflexible polymers bend in response 
to thermal forces, their response to a pulling forces is entropic in origin. 
This effect is often called the entropic spring. The force-extension relation 
was experimentally verified with DNA in optical tweezers (Bustamante 
et al., 1994), as well as for actin and microtubules (van Mameren et al., 
2009).

So far we have considered how pulling forces decrease the bending 
amplitudes of polymer fluctuations. Note that this expression only takes 
into account the bending response of the polymer. Interestingly, this 
result is valid even though we have completely neglected the enthalpic 
response of the polymer chain itself to stretch deformations. However, 
the above equations are only valid under the assumption of small forces 
and linear responses. For strong pulling forces the thermal undulations 
are pulled out, and this assumption breaks down. In this case, we must 
account for stretch deformations of the polymer chain, which slightly 
elongates their contour. This has been accomplished by introducing a 
stretch modulus μ in the worm-like chain model (Odijk, 1995; Storm 
et al., 2005). The result is the emergence of two different force-response 
regimes with distinct spring constants. For low deformations, the effective 
spring constant is dominated by the bending modulus κ according to the 
entropic spring. For high deformations, the effective spring constant is 
dominated by the stretching modulus μ, corresponding to the enthalpic 
stretch of the polymer contour.

Response to pushing forces. We have investigated how individual 
semiflexible polymers respond to pulling forces. But how do they 
respond to pushing forces? Given small forces and linear responses, the 
stretch modulus μ determines the compressive deformation of elastic 
rods. Long, semiflexible rods can readily undergo a buckling instability 
when pushing forces exceed the critical Euler force fc (Landau et al., 
1986):

fc ~ κ L-2

This force is the maximal protrusive force that a rod can exert. 
Increased external pushing forces do not result in further compressive 
deformations. Rather, the rod bends and gives way, ultimately resulting 
in its collapse.
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 Microtubules are stiff polymers and can withstand rather high 
compressive forces. Actin filaments buckle at forces 300 times smaller, 
owing to their reduced bending stiffness (Gittes et al., 1993). This 
results in an asymmetry in mechanical response: single actin filaments 
can withstand and propagate pulling forces but not pushing forces. Yet 
despite this asymmetry, we will later see that cells can overcome this 
limitation and use actin filaments to exert substantial pushing forces 
(see “Force generation”, below)

1.3 Filament networks

In cells, biological polymers are generally present at high density. So 
far we have encountered mechanical descriptions of single filaments. 
In this section, we will describe the collective properties of materials 
composed of many filaments. In order to accomplish this, we shall first 
investigate the phase behavior of suspensions of rigid rods. These model 
systems have been theoretically well characterized, and form the basis of 
understanding the properties of filament networks.

Rigid rods: dilute, entangled, and nematic regime. Consider a 
molecular rod of length L and thickness d diffusing freely in solution. 
As it translates and rotates, it sweeps out a volume ~L3. Thus, for a 
suspension of rods with concentration c ≪ L–3, neighboring rods are 
spaced far enough apart that they do not significantly interfere with each 
other’s motions. In this dilute regime, the rotational diffusion constant 
D↺ scales with rod length (with a prefactor that depends on temperature 
and viscosity) (Riseman and Kirkwood, 1950):

D↺,dilute ~ L-3 ln(L/d)
 If the rod concentration c increases beyond L–3, rods interact via steric 
repulsion: two rods cannot overlap in space, and therefore repel each 
other upon contact. In this entangled regime, the diffusion of a rod is 
constrained by its neighbors. Early theory by Doi and Edwards modeled 
the effect of entanglements for concentrated suspensions of rods by 
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proposing the tube model (Doi and Edwards, 1978). In this model, a rod 
of interest cannot diffuse freely in a volume ~L3, but is rather confined to 
an elongated virtual tube formed by the presence of neighboring rods. 
This results in a drastically reduced rotational diffusion constant for the 
entangled regime:

D↺,entangled ~ L-6 D↺,dilute
If the rod concentration c increases further towards d-1L-2 (where 
d  L2 is the volume of a single rod), the packing of rods cannot be 
neglected. Early theory by Onsager in this dense limit found that rods 
self-align to decrease their mutual excluded volume (Onsager, 1945). 
At concentrations below a critical concentration c*, rod orientations 
are isotropically distributed to maximize rotational entropy. At 
concentrations above c*, rod orientations are distributed about a 
preferred direction. Although this orientational alignment decreases 
rotational entropy, it is compensated by an increase in translational 
entropy due to a decrease in the mutual excluded volume. In the limit 
of infinitely long rods, the critical concentration c* depends only on the 
inverse of the rod aspect ratio D  / L. This phase of matter is called a 
nematic phase. The orientational anisotropy of rods in the nematic phase 
results in an anisotropy in optical properties, giving the appearance 
of a crystal. Hence, materials in the nematic phase form one of many 
possible liquid-crystalline phases.

Polymer networks. So far, we have considered theories which treat 
suspensions of diffusing rigid rods of uniform length. These theories 
have successfully predicted the phase behavior of suspensions of rod-
shaped colloidal objects, including the rodlike viruses tobacco-mosaic 
virus (Graf and Löwen, 1999) and bacteriophage fd (Dogic and Fraden, 
2006). However, polymers are usually neither rigid nor uniform in length. 
Theories have been developed to predict the changes in phase behavior 
arising from these deviations. In particular, the critical concentration 
c* needed to form a nematic phase increases for both flexible filaments 
(Khokhlov, 1982) as well as filaments with nonuniform lengths (Odijk, 
1986; Odijk and Lekkerkerker, 1985).

Yet despite these quantitative differences, the overall phase 
behavior predicted by theories on uniform, rigid rods provides a good 
description of the phase behavior of networks of rigid polymers such 
as actin and microtubules. For entangled actin filament networks with 
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actin concentrations between 0.1 to 2 mg  mL-1, the tube model was 
confirmed experimentally (Käs et al., 1996): labeled filaments were 
observed to fluctuate within a virtual, confining tube formed by the 
unlabeled surrounding filaments. Above concentrations of ~2 mg mL-1, 
networks of actin filaments can form nematic phases (Käs et al., 1996; 
Suzuki et al., 1991). Shortening actin filaments by adding the capping 
protein gelsolin increases c*, consistent with Onsager’s theory (Suzuki 
et al., 1991).

Mechanical properties of entangled polymer networks. 
Entangled networks of polymer filaments form viscoelastic gels, which 
exhibit behavior characteristic of both solids and fluids. Rheology 
experiments quantify the mechanical properties of such viscoelastic 
materials. In these experiments, gels are grown between two large 
surfaces, which are moved relative to one another to apply shear stresses 
on the material. The response of a viscoelastic material to these shear 
stresses is given by two quantities (Meyers and Chawla, 2009): the 
storage modulus G’, which measures elastic, or solid-like behavior; and 
the loss modulus G”, which measures viscous, or fluid-like behavior. 
These two quantities can be expressed as a single complex shear modulus 
G = G’ + i G”.

For entangled actin networks, the primary determinant of the 
mechanical properties is the filament density. The storage modulus 
scales with concentration according to G ~ φ7/5, where φ is the polymer 
volume fraction (Gisler and Weitz, 1999; Hinner et al., 1998). Theoretical 
scaling arguments, which consider two length scales, can account 
for this experimental result. The first length scale is the mesh size ξ, 
which is defined as the typical spacing between filaments. It scales as 
ξ ~ φ–1/2 a, where a is the thickness of a single filament (Schmidt et al., 
1989). The second relevant length scale is the entanglement length le, 
which describes the typical length over which filament entanglements 
restrict thermal fluctuations. It scales as le  ~  (a4  lp)1/5  φ–2/5, where lp 
is the persistence length (Hinner et al., 1998; Isambert and Maggs, 
1996). These two length scales determine the properties of networks of 
semiflexible filaments, with G ~ kT / (ξ2 le). Substituting this expression 
with ξ and le yields the experimentally determined scaling relation 
G ~ φ7/5. Interestingly, the two length scales, and thus the shear modulus 
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G, do not depend strongly on the stiffness of single filaments, given by 
lp. 

Entropic forces. So far we have explored how steric repulsion 
between filaments can account for different material phases, including 
entangled networks and nematic liquid crystals. In cells, the organization 
of actin filaments is further affected by steric interactions with other 
cytoplasmic components and with the cell membrane.

First, adding inert globular polymers can cause filaments to 
aggregate into bundles via the so-called depletion attraction. Globular 
polymers can be thought of as diffusing, impenetrable spheres. 
They interact with filaments mainly via steric repulsion. At a low 
concentration c of the globular polymer, filaments and polymers diffuse 
without significantly affecting each other. However, above a critical 
concentration c* of polymer, filaments bundle together in order to 
maximize the free volume available to the globular polymers, thereby 
maximizing translational entropy (Lekkerkerker and Tuinier, 2011). 
Experiments have shown that actin filament networks indeed become 
bundled when sufficient amounts of inert polyethylene glycol (PEG) 
polymers are added (Hosek and Tang, 2004).

Second, filament organization can be strongly affected by the 
presence of external boundaries, leading to confinement effects. Initial 
theoretical work has addressed confinement effects by studying 
suspensions of rigid rods in the isotropic phase near an impenetrable 
planar surface. Rods were found to align along the surface, forming a 
so-called orientational wetting layer (van Roij et al., 2000). This effect 
only occurs for rods close to the surface, with an effective layer depth 
on the order of one rod length. In the case of semiflexible polymer 
networks, experiments investigated the effect of actin filament networks 
grown close to a rigid planar surface. The density of the network was 
found to decrease close to surfaces, forming a depletion layer whose 
thickness compares with the average filament length (Fisher and Kuo, 
2009). Interestingly, the opposite effect was found when filaments 
were confined in three dimensions. Actin filaments grown in emulsion 
droplets were found to accumulate at the droplet surface, forming a 
cortex-like layer when droplets were smaller than the persistence length 
of actin filaments (Claessens et al., 2006b). Similarly, microtubules 
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grown in confining microchambers were found to coil and wrap around 
the chamber edges (Cosentino Lagomarsino et al., 2007). 

Note that the depletion attraction and confinement effects induce 
only effective interactions between filaments. These interactions are 
mediated by the maximization of entropy of the entire system, similarly 
to the alignment of filaments in the nematic phase. For this reason, these 
indirect effects are referred to as entropic forces.

Entropic forces likely contribute to the organization of cytoskeletal 
structures inside cells. The environment inside most cells is crowded 
with soluble proteins which comprise 20–30% of the cell’s volume (Ellis, 
2001). For this reason, the depletion interaction has been suggested 
to contribute to actin filament bundling, amyloid fibril formation, 
and DNA looping (Marenduzzo et al., 2006). Similarly, confinement 
effects should also play a significant role in cytoskeletal organization. 
Cytoskeletal filaments have contours and persistence lengths that often 
compare with cellular dimensions, especially in thin compartments 
such as lamellipodia and filopodia. However, the extent to which these 
entropic forces determine intracellular organization remains poorly 
understood.

1.4 Crosslinks

So far, we have investigated how steric interactions affect the structure 
and mechanical properties of biological polymer networks. We 
neglected the effect of other important physical forces that can strongly 
affect phase behavior, including electrostatic attraction and repulsion, 
van der Waals interactions, and the free energy of hydration (Leckband 
and Israelachvili, 2001). In addition, cells possess crosslink proteins 
which specifically connect filaments to each other as well as to other 
cellular structures such as the plasma membrane. By tightly regulating 
the density and activity of these crosslink proteins, cells can create 
different cytoskeletal structures without significantly affecting the 
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physical properties of the filaments themselves. In this section, we will 
focus on actin-binding proteins, accessory proteins which crosslink actin 
filaments. We will describe their structural properties and consequences 
for the organization and mechanical properties of actin filament 
networks.

Crosslink structure. Most crosslink proteins contain at least two 
actin-binding domains. Each domain can independently bind a separate 
filament, thereby creating a mechanical link between filament pairs. 
Different types of actin-binding domains have been identified. The most 
common kind is the calponin-homology domain, which is found across 
a broad class of crosslink proteins, including spectrin, filamin, fimbrin, 
and α-actinin (Korenbaum, 2002). Fascin proteins bind actin filaments 
through β-trefoil domains (Jansen et al., 2011). Some crosslinks such 
as fascin and fimbrin can only bind pairs of parallel filaments, whereas 
other crosslinks such as α-actinin and filamin can bind actin filaments 
over a wide range of angles, forming isotropic rigid networks (Courson 
and Rock, 2010; Stossel et al., 2001).

Crosslink binding. Crosslinks bind with typical dissociation 
constants of 0.1–3 µM (Chen et al., 1999; Goldmann and Isenberg, 1993; 
Meyer and Aebi, 1990; Ono et al., 1997; Skau et al., 2011; Wachsstock et 
al., 1993; Yamakita et al., 1996). This corresponds to binding free energies 
of 32–42 kJ mol-1, or 13–17 kT at room temperature. In equilibrium, 
crosslinks also unbind, with typical timescales of 10  s (Courson and 
Rock, 2010). Stresses acting on crosslinks usually accelerate crosslink 
unbinding (Evans and Ritchie, 1997). Such crosslinks are known as 
slip bonds. However, thecrosslink α-actinin 4 exhibits different stable 
conformations (Galkin et al., 2010a), which can expose additional actin 
binding domains buried inside the crosslink (Volkmer Ward et al., 2008) 
when subject to stress (Yao et al., 2011). Remarkably, these crosslinks 
therefore bind more tightly under tension, and are known as catch bonds 
(Thomas et al., 2008).

Crosslinked meshworks and bundles. Adding crosslinks to 
entangled actin networks can result in a variety of structures, including 
fine crosslinked meshworks, pure bundle networks, bundle cluster 
networks, and composite meshwork-bundle networks (Lieleg et al., 
2010). However, predicting network structure given the local crosslink 
structure and binding mechanism remains elusive. 
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Mechanical properties of crosslinked networks. Introducing 
crosslinks in an actin filament network introduces a new length scale, 
called the crosslink distance lc. This distance is the average separation 
between crosslinks. Similar to the entanglement le, this length scale 
determines the mechanical properties of crosslinked polymer networks. 
In particular, lc determines whether a network deformation results 
in predominantly filament stretching or filament bending. WWhen a 
macroscopic shear strain results predominantly in filament stretching, 
the network experiences affine deformations (or uniformly). For affine 
thermal deformations, the shear modulus of the network depends on 
the concentration cx of crosslinks (Gardel et al., 2004):

Gaffine ~ cx κ lp lc
-3

When filaments are very stiff, or when the network connectivity is 
low, filaments or bundles significantly bend when a macroscopic shear 
stress is applied, resulting in nonaffine deformations. In this case, the 
shear modulus of the network is insensitive to the concentration of 
crosslinks and instead depends strongly on the concentration of actin 
filaments c (Kroy and Frey, 1996):

Gnonaffine ~ κ ξ4 ~ c2

1.5 Force Generation

So far we have encountered passive physical forces that determine the 
organization and mechanical properties of biological polymers. But 
unlike many polymers, actin filaments and microtubules are out of 
equilibrium because of consumption of chemical energy in the form of 
the nucleotides ATP and GTP. We have already seen that these polymers 
exhibit enzymatic activity, which leads to polarized polymerization, 
treadmilling, and dynamic instability. These non-equilibrium properties 
allow actin filaments and microtubules to exert forces as they grow 
or shrink. Furthermore, motor proteins can slide filaments past one 
another, leading to generation of pushing and pulling forces. In this 



30

section, we review the mechanisms whereby biological polymers can 
actively exert force.

Polymerization and depolymerization forces. Actin filaments 
and microtubules polymerize asymmetrically due to differences in the 
free energy of monomer binding between the plus-end and the minus-
end. This free energy difference can be harnessed as filaments grow 
against a barrier to exert pushing forces (Hill, 1981; Theriot, 2000). 
Single microtubules are stiff and can exert forces of up to 3–4 pN as they 
polymerize (Dogterom and Yurke, 1997), though forces of up to ~50 pN 
should be possible (Dogterom et al., 2005). These forces are essential 
for maintaining the internal organization of the cell (Tolić-Nørrelykke, 
2008), including the proper positioning of the kinetochore and 
chromosomes in the mitotic spindle in animal cells (Inoué and Salmon, 
1995). Actin, too, exerts pushing forces. Despite the fact that single actin 
filaments alone are more flexible than microtubules and should buckle 
readily under compression at forces of ~0.1 pN (Landau et al., 1986), 
actin filaments have been measured to exert polymerization forces of 
up to 1 pN (Footer et al., 2007). Furthermore, actin-based structures 
can exert larger forces when organized by accessory proteins. Filopodia 
in the growth cones of migrating neurons, which contain actin bundles 
crosslinked by the protein fascin, can exert pushing forces of up to 3 pN 
(Cojoc et al., 2007). Such weak force generation may potentially serve 
to sense mechanical cues and preferentially grow along soft substrates 
(Betz et al., 2011). In the lamellipodium of crawling fish keratocytes, a 
dense array of short actin filaments branched by the Arp2/3 complex 
at the leading edge polymerize against the membrane and push it 
forward (Mogilner and Oster, 1996; 2003), exerting forces of about 100 
pN (Roure et al., 2005). A similar mechanism is used by the bacterium 
Listeria monocytogenes (Cameron et al., 2001; Tilney and Portnoy, 
1989). This pathogen uses the actin machinery of infected cells to propel 
itself with forces of 10–100 pN (McGrath et al., 2003; Wiesner, 2003). 
More dramatically, during the acrosomal process of the horseshoe crab 
Limulus polyphemus, a stiff bundle of actin filaments crosslinked by the 
protein scruin extends from sperm cells to break open the egg cell wall 
with a force of 2 nN (Shin et al., 2003; 2007).

Other biological polymers are similarly capable of exerting pushing 
forces. Sperm cells of the nematode Ascaris suum migrate using major 
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sperm protein (MSP) polymers, which elongate and pack in a similar 
fashion to the actin cytoskeleton in the lamellipodium (Miao et al., 
2008; Roberts and Stewart, 2000). In Escherichia coli bacteria, the actin 
homologue ParM (Bork et al., 1992) polymerizes to push chromosomes 
apart to cell poles before division (Garner et al., 2007).

Apart from exerting pushing forces during polymerization, 
actin filaments and microtubules can exert pulling forces during 
depolymerization. In the case of microtubules, these forces are 
transmitted through tip-tracking proteins, which selectively bind 
the plus end of microtubules (Schuyler and Pellman, 2001). As 
microtubules shrink, tip-tracking proteins can remain bound to the 
retreating plus end (Lombillo et al., 1995). These forces are believed to 
underlie some of the pulling forces necessary for proper positioning of 
chromosomes during cell division (Dickinson et al., 2004; Hill, 1981; 
Joglekar et al., 2010; McIntosh et al., 2010). In the case of actin, filament 
depolymerization is essential during the constriction of the actomyosin 
ring during cytokinesis in the budding yeast Saccharomyces cerevisiae 
(Mendes Pinto et al., 2012).

Molecular motors. In addition to the ability of actin filaments and 
microtubules to exert polymerization and depolymerization forces, cells 
also possess specialized proteins called molecular motors. These proteins 
can exert forces by again coupling the free energy of ATP hydrolysis to 
mechanical work. This mechanical work can be harnessed for a wide 
variety of tasks, including DNA replication and expression, protein 
translocation, cell migration, chromosome separation, and cytokinesis 
(Bustamante et al., 2004).

Here we focus on the cytoskeletal motor proteins, which can exert 
forces while moving along cytoskeletal filaments. There are three classes 
of cytoskeletal motor proteins (Howard, 1997). Myosin motors bind 
actin filaments and most of the ca. 20 types of myosins move towards 
the plus-end. Kinesin and dynein motors bind microtubules and move 
towards the plus- and minus-end, respectively. Although there can be 
considerable variation among molecular motor types (Goodson et al., 
1994; Thompson and Langford, 2002), cytoskeletal motor proteins share 
a few common design principles (Howard, 1997; Schliwa and Woehlke, 
2003). They possess one or two head domains which bind filaments as 
well as ATP or ADP. Upon ATP hydrolysis, motor proteins undergo 
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conformational changes, manifested in a “power stroke” that results in 
step-wise motion of the motor along the filament. Step sizes typically 
vary between 8 and 30 nm, generating forces of up to ~10 pN (Burgess 
et al., 2003; Finer et al., 1994; Ishijima et al., 1998; La Cruz et al., 1999; 
Mehta et al., 1999; Visscher et al., 2000). Motor proteins also possess 
tail domains, which can bind to the tail domains of other motors to 
form oligomeric motor complexes (Bresnick, 1999), or to the cell cortex 
(Dujardin and Vallee, 2002), or to intracellular cargo (Hirokawa, 1998).

Many cells and organisms rely on molecular motors to exert forces 
that are stronger than by polymerization or depolymerization alone. 
Unicellular organisms such as the alga Chlamydomonas reinhardtii beat 
two long flagella composed of microtubules and dynein and kinesin 
motors (Bernstein and Rosenbaum, 1994), allowing the cell to propel 
itself with a force of 30 pN (McCord et al., 2005). Fish keratocytes glide 
on surfaces powered by myosin contraction, exerting traction forces of 
45 nN (Harris et al., 1980; Oliver et al., 1995). Similar traction forces 
between kidney epithelial cells maintain tissue integrity and reach 100 
nN (Maruthamuthu et al., 2011). Even higher forces can be achieved 
with dedicated muscle cells, which organize actin filaments and myosin 
motors in a sarcomeric structure dedicated to integrating the power 
strokes of many myosin motors (Gautel, 2011; Huxley and Niedergerke, 
1954; Huxley and Hanson, 1954). Individual cardiac muscle cells have 
been measured to exert forces of 10 µN (Lin et al., 2000; Tarr et al., 1983; 
Yin et al., 2005).

Motor activity and spatial organization. Apart from exerting 
forces on their surroundings, cells use molecular motors to organize 
transient internal structures such as the mitotic spindle (Dumont and 
Mitchison, 2009; Tolić-Nørrelykke, 2008). Understanding how forces 
produced by single motors translate into cell-scale forces and cell-scale 
spatial organization remains an enormous challenge. Forces re-organize 
the cytoskeleton, but the spatial organization of the cytoskeleton in 
turn influences force generation. Addressing this feedback in living 
cells is hindered by their inherent complexity. Recent experiments with 
reconstituted cytoskeletal networks driven by molecular motors have 
started to address how spatial organization and force generation can 
affect each other.
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Microtubules driven by kinesin and dynein motors exhibit 
fascinating structural patterns in solution, including vortices and asters 
(Nédélec et al., 1997). Similar asters have also been reported in the case 
of actin bundles driven by myosin motors (Backouche et al., 2006). 
In confined geometries, microtubule asters can be reliably centered 
by either pushing forces from microtubule polymerization (Holy et 
al., 1997) or pulling forces from dynein motors (Laan et al., 2012). In 
all these cases, self-organization arises from a feedback between force 
generation and the motion of stiff filaments. Meanwhile, single actin 
filaments are relatively flexible and readily buckle under compressive 
forces. This property is likely the reason why actin filament meshworks 
driven by myosin motors have not been reported to exhibit the same 
pattern formation as microtubules (Soares e Silva et al., 2011b). Buckling 
of actin filaments under compressive loads leads to an asymmetry in the 
response of actin networks to local internal forces generated by motors, 
biasing towards motor pulling forces and leading to contraction (Lenz 
et al., 2012b; Liverpool et al., 2009; Murrell and Gardel, 2012; Vogel et 
al., 2013).

Material properties of motor-driven systems. Apart from 
exerting forces and affecting spatial organization, molecular motors 
can also strongly affect the material properties of the polymer systems 
with which they interact. Myosin activity enhances fluctuations of 
crosslinked actin networks at frequencies below 10 Hz which violate the 
fluctuation-dissipation theorem (Mizuno et al., 2007) and cause strong 
non-Gaussian displacements of embedded probe particles (Stuhrmann 
et al., 2012). In suspensions of clusters of actin bundles, myosin motors 
can regulate cluster size (Köhler et al., 2011a) and lead to superdiffusive 
behavior (Köhler et al., 2011b). Stresses resulting from myosin activity 
stiffen crosslinked actin networks by a factor of 100 or more in a manner 
consistent with the response to an externally applied stress (Koenderink 
et al., 2009; Mizuno et al., 2008). The ability of force-generating 
elements to bring systems out of equilibrium has led to a lot of recent 
theoretical effort in predicting the phase behavior of actively driven 
matter using generalized statistical-mechanical frameworks (Marchetti 
et al., 2012). Moreover, theoretical studies of actin network mechanics 
have shown that these networks stiffen in response to internal, motor-
induced stresses in a manner similar to the response to an external 
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stress (Sheinman et al., 2012a), unless these networks are poised near 
the rigidity percolation threshold (Sheinman et al., 2012b).

1.6 Thesis Outline

The goal of this thesis is to establish experimental systems which address 
major shortcomings in our current understanding of the properties of 
assemblies of biological polymers. A better grasp of the physical forces 
which organize biological polymers is necessary to account for the mutual 
interplay between cellular organization and force generation. In order to 
address these shortcomings, we perform experiments on model systems 
of reconstituted biological polymers which are 1. confined to cellular 
dimensions, 2. curved by crosslinks, and 3. driven by molecular motors. 
In all these cases, we lack a comprehensive theoretical understanding of 
the underlying physical mechanisms. The results we present should help 
advance our understanding of the role of the cytoskeleton in generating 
forces that underlie cellular organization.

In Chapters 2 and 3, we confine biopolymer systems to micrometer-
sized spaces that mimic the spatial confinement that the cytoskeleton 
experiences within cells. Little is known about how polymers collectively 
organize when packed into a confined space with length scales similar 
to the contour length of the polymers themselves. In order to investigate 
the effect of an external geometry on polymer organization, we confine 
biopolymer systems in customized microchambers. In Chapter 2, 
we report experiments on nematic suspensions of the rod-like virus 
bacteriophage fd confined to shallow, donut-shaped microchambers. We 
quantify the nematic director field patterns and compare to predictions 
of Monte Carlo simulations accounting for the finite particle size. We 
find two patterns which are expected on the basis of continuum theory, 
but one pattern—with a striking three-fold-symmetry—is predicted to 
occur only for rods of finite length. In Chapter 3 we report experiments 
of actin networks confined to shallow, rectangular microchambers. We 
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quantify the nematic director field and find that nematic and bundled 
networks preferentially align along either the diagonal axis of the 
chambers, or parallel to chamber walls.

In Chapter 4, we investigate the actin-organizing capabilities of 
septins. A close interplay between septins and the actin cytoskeleton has 
been previously suggested, but little is known about the nature of this 
interaction. We report experiments which show that septins directly 
bind and bundle actin filaments, overthrowing prevailing assumptions 
that they do not interact directly. Surprisingly, we also find rings of actin 
bundles. Our observations demonstrate that septins alone are sufficient 
for actin ring formation, which may explain recent in-vivo experiments 
showing that septins are necessary for proper contractile ring formation 
in Drosophila embryos undergoing cellularization.

In Chapters 5 and 6, we investigate how myosin motors exert 
contractile forces on crosslinked actin filament networks. Little is 
known about the mechanisms whereby crosslinks transmit forces 
generated by molecular motors over macroscopic length scales. In 
Chapter 5, we show experimentally that myosin motors contract 
actin networks crosslinked by fascin to clusters with a scale-free size 
distribution. This critical behavior occurs over an unexpectedly broad 
range of crosslink concentrations. To understand this robustness, we 
compare our experimental results to a quantitative model of contractile 
networks. This model takes into account network restructuring: motors 
reduce connectivity by forcing crosslinks to unbind. Paradoxically, to 
coordinate global contractions, motor activity should be low. Otherwise, 
motors drive initially well-connected networks to a critical state where 
ruptures form across the entire network. In Chapter 6, we extend the 
results in Chapter 5 by comparing the effect of different crosslink 
proteins (fascin, fimbrin, and α-actinin). We furthermore vary motor 
activity by varying ATP and salt concentrations in the buffer, and vary 
network connectivity by varying actin filament density and length. We 
propose a phase-space diagram of connectivity-governed contractile 
active gels.
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2. Tunable symmetry in confined colloidal 
liquid crystals

Modern display technology relies on molecular liquid crystals, often 
confined to cells with boundaries that orientationally “anchor” the 
mesogenic molecules and control the optical properties of the cell. 
Biological molecules like virus rods and cytoskeletal polymers also 
exhibit liquid crystalline phases that are spatially confined. But in 
contrast to the liquid crystals used in displays, the sizes of these 
biopolymers are often on a similar length scale as the confinement. This 
raises the question how the finite length of the polymers influences the 
competition between bulk liquid crystalline ordering and boundary 
ordering. To answer this question, we confine nematic liquid crystals of 
monodisperse bacteriophage fd-virus rods inside shallow, donut-shaped 
microchambers. The doughnut geometry allows us to specifically address 
the question how colloidal nematics resolve topological constraints 
when singularities are no longer negligible in size. We quantify the 
nematic director fields by fluorescence time-lapse microscopy and 
custom-written image analysis software and compare the patterns with 
predictions of continuum theory as well as Monte Carlo simulations 
accounting for the finite particle size. We observe patterns that can be 
classified into categories based on their symmetries and defect patterns. 
Two of these patterns are expected on the basis of continuum theory, 
but one pattern—with a striking three-fold-symmetry—is predicted 
to occur only for rods of finite length. The remaining patterns may 
represent metastable states. At the end of the chapter, we also report 
first tests of packing of fd-rods in square chambers, where we find 
diagonal alignment of the rods, consistent with continuum theory. We 
propose that the interplay between bulk and surface ordering under 
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ultra-confined conditions can lead to novel liquid crystals with tunable 
symmetry.

2.1 Introduction

Modern display technology would be unthinkable without nematic 
liquid crystals (Castellano, 2005). This fluid phase of matter differs 
from typical liquids by exhibiting orientational molecular order, which 
affects the polarization of light (Sluckin et al., 2003). Liquid crystalline 
materials may have various types of molecular structure, but they have 
in common that the molecules interact via anisotropic attractive and 
repulsive forces. Often, the molecules are rod-shaped. Liquid crystalline 
phase transitions can be well-modeled by continuum theories such as 
the phenomenological theory of Landau and de Gennes (de Gennes 
and Prost, 1995), which account for the system’s change in symmetry. 
However, isotropic-nematic phase transitions have also been modeled 
by microscopic models (Singh and Dunmur, 2002), including the 
Maier-Saupe theory (Maier and Saupe, 1958) that attributes nematic 
ordering to anisotropic attractive interactions and the Onsager theory 
that considers exclusively repulsive interactions (Onsager, 1949).

Most applications of liquid crystals require these materials to be 
confined to cells with boundaries specifically treated to orientationally 
“anchor” the mesogenic molecules, allowing the optical properties of the 
cell to be controlled. The equilibrium director field is now determined 
by a competition between the mutual packing of the molecules and the 
surface anchoring conditions. This competition can lead to an interesting 
range of defect patterns when thermotropic nematics are confined in 
thin spherical shells (Fernandez-Nieves et al., 2007; Lopez-Leon et 
al., 2011; 2012). In shallow, square microchambers and in channels, 
molecular liquid crystals can adopt bi-stabile director fields, with two 
distinct, stable alignment states (Davidson et al., 2010; Tsakonas et al., 
2007). Such bistability is advantageous for display applications, since it 
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allows one to use simply a pulse voltage to switch between “on” and “off ” 
states. 

Confinement-mediated ordering of molecular liquid crystals is 
commonly described by Frank elastic theory and Landau-de Gennes 
theory (de Gennes and Prost, 1995; Majumdar et al., 2007; Tsakonas 
et al., 2007). These are continuum theories, which account for the 
competition between the elastic free energy of the liquid crystal and 
the surface anchoring imposed by the confinement. For low molecular 
weight mesogens, continuum descriptions are indeed well-suited, since 
the lengths of these molecules are in the nm-range, well below the 
micron-sized dimensions of typical confining geometries (for reference, 
current state-of-the-art in displays employ ~70 μm pixels).

Nature, however, provides us with many examples of large-
molecular weight mesogens that measure several microns in length, 
such as actin and microtubules (Bras et al., 1998; Buxbaum et al., 1987; 
Coppin and Leavis, 1992; Furukawa et al., 1993; Suzuki et al., 1991), 
DNA (Strzelecka et al., 1988), and rod-like viruses (Bawden et al., 1936; 
Bernal and Fankuchen, 1941; Dogic and Fraden, 2006; Fraden et al., 
1989; Lapointe and Marvin, 1973). Often, these rod-like polymers 
are confined in cellular (sub)volumes with micron-sized dimensions, 
comparable to the contour length and persistence length of the particles 
themselves. Actin and microtubules are for instance packed within 
cellular compartments such as lamellipodia and filopodia (Medalia 
et al., 2002) and DNA is packed at high density inside virus capsules 
(Speir and Johnson, 2012). These strongly confined conditions raise the 
question how the competition between mutual packing interactions and 
confinement play out when both effects share the same length scale.

Mutual packing interactions in bulk liquid crystals of colloidal 
rods are well-understood experimentally and theoretically. For rods 
interacting exclusively through hard-core repulsive interactions, the 
isotropic-nematic phase transition is usually described by models based 
on seminal theory by Onsager (Onsager, 1949). For hard rods, the free 
energy of the system consists only of entropic terms, in particular the 
orientational and translational entropy of the molecules. These two 
terms compete, since orientational entropy is maximized when the 
rods point in all directions with equal probability, whereas translational 
entropy is maximized when rods are aligned, since alignment maximizes 
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the total free volume in which rods can diffuse. At low rod volume 
fractions, rotational entropy dominates and the suspension is isotropic, 
but above a critical volume fraction, excluded-volume (or packing) 
entropy dominates and the orientations of the rods are distributed about 
a preferred direction. Onsager considered the limiting case where the 
ratio of rod length L over diameter D tends to infinity. In this case, the 
I-N phase transition may be treated with a virial expansion of the free 
energy truncated at the second virial coefficient. The entropic transition 
from an isotropic to a nematic state is predicted to take place at a critical 
volume fraction φcrit = 3.340 D / L. This prediction is exact in the limit of 
infinite aspect ratio, but remains surprisingly accurate for aspect ratios 
down to about 100 (Frenkel, 1987). For shorter rods, high-order virial 
coefficients become increasingly important (Bolhuis and Frenkel, 1997). 
Modifications of the Onsager theory exist, for instance to account for 
rod semi-flexibility (Chen, 1993; Khokhlov, 1982), the soft repulsive 
interactions between charged rods (Stroobants et al., 1986), attractive 
van der Waals interactions (van der Schoot and Odijk, 1992), and 
polydispersity in rod length and diameter (Odijk, 1986; Vroege and 
Lekkerkerker, 1992). 

The Onsager theory describes orientational ordering in bulk 
(unconfined) liquid crystals. It is much less well understood what 
happens when confining walls pose additional packing constraints on 
liquid crystals of finite-sized particles. Continuum theories have been 
applied, but these do not account for the finite size of the rods (Galanis 
et al., 2006; 2010b; Vitelli and Nelson, 2006). Numerical Monte-Carlo 
simulations have been reported to describe ordering of nematic fluids of 
colloidal rods in spherical cavities and shells (Dzubiella et al., 2000) and 
wetting of these suspensions at planar or curved hard walls (Dijkstra et 
al., 2001; Holyst and Poniewierski, 1987; Poniewierski and Holyst, 1988; 
van Roij et al., 2000). However, these simulations again did not directly 
address the question of how finite rod size influences the competition 
between bulk and surface ordering. 

Meanwhile, experiments on confined colloidal rods have mostly 
addressed dilute suspensions. Individual biopolymers have been 
shown to orient along the longest axis of microchambers (Cosentino 
Lagomarsino et al., 2007) due to a competition between configurational 
entropy and bending enthalpy. For the same reason, isotropic entangled 
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networks of actin filaments organize into peripheral shells when 
confined in spherical droplets and vesicles (Claessens et al., 2006a; 
Limozin et al., 2003). Confinement of nematic phases has been reported 
for actin filaments in microchambers (Deshpande and Pfohl, 2012; 
Soares e Silva et al., 2011a) and fd-virus rods in wedges (Dammone 
et al., 2012). However, these studies again did not directly address the 
question how finite rod size influences the competition between bulk 
and surface ordering. 

Here we investigate the director fields of colloidal nematic liquid 
crystals in shallow, circular microwells whose diameters are comparable 
to the rod length. We use rod-shaped bacteriophage fd-virus as a 
model liquid crystal system, since these rods are monodisperse, their 
interactions are hard-core like when the charges are screened, and their 
phase behavior in bulk is well-known (Dogic and Fraden, 2000; Dogic 
et al., 2004; Purdy and Fraden, 2004; Purdy et al., 2003; Tombolato et 
al., 2006). We use standard photolithography to produce non-adhesive 
doughnut-shaped SU-8 chambers whose overall diameter and width 
of the annulus is varied. This doughnut shape allows us to specifically 
address the question how colloidal nematics resolve topological 
constraints when singularities are no longer negligible in size. 

In Section 2, we briefly summarize theoretical results of numerical 
simulations performed by Pieter Mulder, Ioana Garlea, and Bela Mulder 
(Mulder, 2012). These simulations predict liquid crystals with special 
symmetries that emerge as a consequence of the finite-size of the rods. 
In Section 3, we present director fields obtained experimentally by 
performing confocal time-lapse imaging of a low density of fluorescently 
labeled rods in the nematic background of unlabeled rods. Since fd-
rods have a length of 0.88 µm, diameter of 6.6 nm (L / D ~ 130), and 
persistence length of 2.2 µm, we can observe individual virus particles 
and their anisotropic (mostly axial) diffusion in the nematic background 
(Lettinga et al., 2007). To compute director fields, we analyze the time-
averaged orientations of the rods by custom-written software. We 
confirm the existence of the special symmetries predicted by numerical 
simulations, in particular the occurrence of a liquid crystal pattern 
with three-fold symmetry that is a direct result of the finite length of 
the rods. We propose that the interplay between optimal packing and 
confinement could lead to novel liquid crystals with tunable symmetry.
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2.2 Theory

In order to investigate the optimal packing of colloidal rods in confined 
spaces, we examine the following problem: consider a suspension of stiff, 
thermally agitated rods of length L in a nematic liquid crystal phase (Fig. 
1a). The rod orientations are distributed around one preferred direction 
known as the nematic director, but the rod positions are disordered. 
Next, consider these rods in a two-dimensional, annular chamber 
of outer diameter do and inner (or hole) diameter di. Wall-anchoring 
results in rods aligning parallel to the circular contours of the edges of 
the chamber. As long as the rod length L is much smaller than both 
the chamber and the hole diameter, this boundary condition establishes 
a nematic field devoid of defects, exhibiting infinite-fold rotational 
symmetry which we will denote as U(1) (see Fig. 1b). However, when the 
hole is removed (di = 0), a topological problem arises in the center of the 
chamber: although wall-anchoring should dictate that rods follow the 
circular contour, this would result in a thermodynamically unfavorable 
+1 singularity at the center (Fig. 1c). Instead, the system tends towards a 
configuration with two +1⁄2 singularities located at polar opposites of the 
chamber (Fig. 1d). The director field thus exhibits two-fold rotational 
symmetry denoted as D(2).

These two problems can be mapped to each other by taking the 
limit di → 0. But in order to realize this limit, di must eventually compare 
to the length L of the rods. In such a regime, the small-rod assumption 
breaks down and continuum theory does not apply. We hypothesize 
that when transitioning from the infinite-fold symmetry state to the 
two-fold symmetry state, intermediate states occur which are somehow 
determined by the length scale L. Such intermediate states might possess 
symmetries of intermediate order, considering that an abrupt break in 
symmetry order (from infinite-fold to two-fold) occurs only when di = 0 
is realized under the small rod assumption.

This hypothesis was tested in numerical Monte-Carlo simulations 
performed by Ioana Garlea and Pieter Mulder in the group of Bela 
Mulder (AMOLF). In these simulations, rigid spherocylinders of length 
L and thickness D  diffuse in quasi-two-dimensional chambers of outer 
diameter do, inner (hole) diameter di, and vertical height dz (Fig. 2). 
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Rods interact with other rods and with chamber boundaries via hard-
core steric repulsions.

Rods align to form higher-order symmetric states. For disk-
shaped chambers without a hole, the simulations produce a two-fold 
symmetric state identical to that predicted by continuum theory (Fig. 
2a, compare to Fig. 1d). Strikingly, introducing a hole with diameter di 
results in higher-order symmetries. The smallest holes result in a liquid 
crystal with three-fold symmetry (Fig. 2b). Increasing the hole diameter 

a c

db

two-fold symmetry∞-fold symmetry

di

L

do

unstable

stable

di → 0

point
defects
+1⁄2

point
defect
+1

Figure 1. Prediction of continuum theory of the effect of boundary 
conditions on orientational ordering of a two-dimensional nematic 
liquid crystal. a. Schematic of rod-shaped molecules of length L in a 
nematic liquid-crystalline phase. b. The nematic liquid crystal organizes 
to follow boundaries and exhibit infinite-fold symmetry when confined to 
a donut-shaped chamber of outer diameter do and inner (hole) diameter 
di. c. Removing the hole reveals a thermodynamically unfavorable +1 
defect. d. Instead, the stable configuration in the disk-shaped chamber 
contains two +½ defects, resulting in two-fold rotational symmetry.
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results in four-fold symmetry (Fig. 2c). Five-, six-, seven-, and eight-
fold symmetries can also occur, depending on the hole diameter di and 
vertical chamber height dz (see Fig. 4). These higher-order symmetries 
are not predicted to be thermodynamically favorable according to 
continuum theory, which neglects rod length. Because the simulations 
explicitly account for finite rod length, these higher-order symmetries 
are a direct consequence of the optimal packing of finite-sized rods in a 
confined, annular geometry.

Geometric correspondence occurs in 2D chambers. Thin 
chambers whose vertical height dz equals the rod thickness D exhibit 
particularly interesting behavior. These shallow chambers confine rods to 
a two-dimensional environment by completely suppressing out-of-plane 
rotations. In this case, the relationship between hole diameter di and rod 
length L controls the symmetry order. For size ratios di / L = 3-1/2 = 0.58, 
rods can form an equilateral triangle around the hole; concomitantly, 
a three-fold symmetric pattern emerges for di / L ≈ 0.58 (Fig. 3a). For 

di / L
0

two-fold symmetry

1

three-fold symmetry

2

four-fold symmetry

a b c
θ

0º

180º

90º

Figure 2. Monte-Carlo simulations of finite-length rods in annular 
confinement predict two-fold symmetric patterns consistent with 
continuum theory but also higher-order symmetries emerging from the 
finite size of the rods compared to the chamber dimensions. Snapshots 
of equilibrated suspensions of rods in disk-shaped chambers. a. Two-
fold symmetry occurs in chambers without a hole (inner hole diameter 
di  /  L  = 0), b. three-fold symmetric patterns occur in chambers with 
di / L = 1, and c. four-fold symmetry occurs in chambers with di / L = 2. 
Chamber vertical height dz = 6 D. Rod color corresponds to orientation 
θ (calibration bar, left). Figure courtesy of P. Mulder, I. Garlea, and B. 
Mulder.
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di / L = 1, rods can form a square around the hole; concomitantly, a four-
fold symmetric pattern emerges for di / L ≈ 1 (Fig. 3b). More generally, 
the number n of rods that can form a regular polygon around the hole, 
given rod length L and inner diameter di, is given by the formula

di

L
= cot

≥º
n

¥

.
We use the term geometric correspondence to refer to situations 

where the number of rods n is equal to the symmetry order of the 
resulting nematic texture. As shown in Fig. 4, simulations (yellow 
circles) show that geometric correspondence (blue lines) also holds for 
higher-order symmetries.

Thicker chambers result in lower-order symmetry. Chambers 
with a larger vertical height relative to the rod diameter (dz / D = 3 and 
6) were also investigated by numerical simulations. As shown in Fig. 4, 
already at dz = 3 D, the symmetry order (green circles) is greatly reduced 
compared to values expected from geometric correspondence (blue 
lines). Increasing chamber thickness to dz  =  6  D (red circles) further 
decreases symmetry order. These results show that thicker chambers 
which do not fully prohibit out-of-plane rod orientations result in 
symmetries whose order can be far lower than that expected from 
geometric correspondence.

a b

Figure 3. Geometric correspondence occurs if the polygon that is 
accommodated by rods of length L packing around a hole of diameter 
di   has the same symmetry as the resulting liquid crystal. a. For 
di / L = 3–1/2, the innermost rods (red) can arrange around the inner hole 
in a triangle. If geometric correspondence holds, a three-fold-symmetric 
liquid crystal should emerge. b. For di / L = 3–1/2, the innermost rods can 
arrange around the inner hole in a square. If geometric correspondence 
holds, a four-fold-symmetric liquid crystal should emerge. 
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Figure 4. Dependence of observed symmetry order on chamber inner 
diameter, di  /  L (where rod length L is 15× rod diameter D). Circles 
denote simulations performed with different chamber heights (dz / D) 
and rod volume fraction (φ), as indicated in the legend. Blue lines 
denote expected symmetry order based on geometric correspondence. 
Figure courtesy of P. Mulder, I. Garlea, and B. Mulder.

2.3 Results

Two-, three-, and infinite-fold symmetries occur depending on 
chamber shape. Based on the simulations, we anticipate that liquid 
crystals of finite-sized rods in annular geometries should exhibit 
symmetries that cannot be accounted for by continuum theory. In order 
to test this hypothesis, we prepare non-adhesive microchambers with 
a donut shape and fill them with suspensions of rod-like fd-virus in 
the nematic phase (Fig. 5). We systematically varied the chamber outer 
diameter do (from 10 µm to 100 µm) and the diameter of the inner hole 
di (from 0 to 0.7 times the outer diameter do). The chambers have vertical 
heights in the range of dz  =  1–3  µm, which is the minimal thickness 
that was experimentally attainable. We note that this chamber thickness 
is still much larger than the diameter of the fd-rods, 6.6 nm (Dogic 
and Fraden, 2006). Nevertheless, time-lapse imaging of fluorescently 
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labeled particles in the otherwise unlabeled background nematic phase 
showed that particles diffused mostly in-plane. Additionally, 3D z-scans 
confirmed that the cholesteric twist normally observed in bulk nematic 
phases of fd-rods (Dogic and Fraden, 2000; Grelet and Fraden, 2003; 
Purdy and Fraden, 2004; Tang and Fraden, 1995) was suppressed. To 
examine the nematic patterning, we acquired time-lapse image series 
of chambers containing fd-rods with a small tracer fraction that was 
fluorescently labeled. We developed a customized image analysis 
program (see Image Analysis) to quantify the orientation of the nematic 
director for each image pixel. By visual inspection of the rotational 
symmetry of the resulting nematic director fields and the location and 
number of defects, we categorize the patterns into 7 different types.

One commonly observed pattern is a nematic pattern with 
infinite-fold rotational symmetry that does not exhibit any obvious 
singularities (Fig. 6a). A second pattern is one with three-fold rotational 
symmetry, showing three +½ singularities (Fig. 6b). A third pattern is 
one with two-fold rotational symmetry, showing two +½ singularities at 

a

b

c d

Figure 5. The experimental model system. a. Image of a glass substrate 
patterned with SU-8 microchambers, acquired by scanning-electron 
microscopy. Scale bar 200 µm. b. Close up of the region indicated by 
the black box in panel a. Scale bar 20 µm. c. Fluorescence confocal 
image of an annular microchamber (do  =  20  µm, di  =  0.4  µm) filled 
with a suspension of partially labeled fd-virus rods (inverted grayscale 
lookup-table). Scale bar 5 µm. d. Image of a single fd-virus rod, acquired 
by transmission electron microscopy (reprinted from (Dogic and 
Fraden, 2006)). The rod length is 0.88 µm and the diameter is 6.6 nm 
(L / D ~ 130).
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a b c

∞-fold symmetry two-fold symmetrythree-fold symmetry

Figure 6. Three types of experimentally observed nematic patterns. 
Top row: Representative instances of the three patterns. Brightness 
corresponds to a maximum intensity projection of 2000 frames. Color 
corresponds to the average orientation <θ> of the nematic director 
(calibration wheel, right). Bottom row: Schematic diagrams of the 
nematic pattern types, showing singularities as black points, further 
indicated by the arrows. a. A pattern of infinite-fold symmetry in narrow 
annular chambers exhibiting no singularities. b. A pattern of three-fold 
symmetry in wider annular chambers exhibiting three singularities. c. A 
pattern of two-fold symmetry in disc-shaped chambers exhibiting two 
singularities.

two opposite poles (Fig. 6c). The first and third patterns agree well with 
continuum theory (cf. Figs 6a,c and 1b,d). The second pattern is not 
predicted by continuum theory, but is consistent with the three-fold-
symmetrical state predicted by the simulations (cf. Figs 6b and 2b). The 
simulated pattern arose from the finite size of diffusing rods, suggesting 
that the three-fold symmetric pattern we observe in experiment is a 
direct consequence of the finite length of the fd-rods. The occurrence 
of the observed nematic patterns depends strongly on the shape and 
dimensions of the confining chambers, as shown in Fig. 7, where the 
probability of occurrence of the three nematic patterns (see Methods) is 
plotted against the inner hole diameter di (in units of outer diameter do). 

The pattern with infinite-fold symmetry is most likely to occur 
in narrow ring-shaped chambers with a large hole in the middle with 
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di / do = 0.7 (blue circles in Fig. 7, see also Fig. 8c). We denote this pattern 
with the symbol U(1), which corresponds to the infinite-fold rotational 
symmetry of the unit circle given by the unitary group of degree 1 
(Cornwell, 1984) (Fig. 8a). Two typical examples of the U(1) pattern 
are shown in Fig. 8b. The pattern occurs exclusively in the smallest 
chambers with diameters up to 50 µm (Fig. 8d).

The two-fold symmetric pattern with two +½ singularities on 
opposite ends of the chamber is most probable in disk-shaped chambers 
without a central hole (di / do = 0, see green diamonds in Fig. 7, see also 
Fig. 9b). We denote this pattern with the symbol D2, which corresponds 
to the two-fold rotational symmetry of the dihedral group of order 
two (Atkins and de Paula, 2009) (Fig. 9a). D2 patterns do form also in 
chambers with a hole (di / do > 0), but with a probability that decreases 
sharply with increasing hole size (Fig. 9c). The occurrence of the D2 
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Figure 7. Comparison of the probability of occurrence of the three 
patterns shown in Figure 6 as a function of the ratio of inner (hole) 
diameter di to outer diameter (d0) Blue circles correspond to the infinite-
fold symmetric pattern, green diamonds correspond to the three-
fold symmetric pattern, and red triangles correspond to the two-fold 
symmetric pattern. Lines are guides to the eye.
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Figure 8. Pattern U(1). a. Schematic. b. Representative instances of 
U(1). Brightness corresponds to  maximum intensity projection of 2000 
frames. Color corresponds to the average orientation <θ> of the nematic 
director (calibration wheel, right). Scale bars 5 µm. c-d. Probability of 
occurrence of U(1), given inner diameter di (c) and outer diameter do 
(d).

Figure 9. Pattern D2. a. Schematic. b. Representative instances of D2. 
Brightness corresponds to maximum intensity projection of 2000 
frames. Color corresponds to the average orientation <θ> of the nematic 
director (calibration wheel, right). Scale bars 5 µm. c-d. Probability of 
occurrence of D2, given inner diameter di (c) and outer diameter do (d).

pattern also depends on the chamber size, decreasing with increasing do 
and being zero for the largest chambers of 100 μm (Fig. 9d). 

The three-fold symmetric pattern only occurs for chambers with a 
small but finite hole size (di / do = 0.2, red triangles in Fig. 7, see also Fig. 
10c). This pattern has three evenly spaced +½ singularities (Fig. 10a). 
Two examples are shown in Fig. 10b. We denote this pattern D3, which 
corresponds to the three-fold rotational symmetry of the dihedral group 
of order three. Hole sizes di for chambers with D3 patterns varied in the 
range 2–6 µm, corresponding to 1 to 3 fd-rod lengths. Furthermore, D3 
occurred mainly for smaller chambers up to 30 µm (Fig. 10d). 

Alternative nematic patterns. So far we focused on only three 
out of the seven different nematic patterns we observed for confined 
fd-rod liquid crystals. The additional four nematic patterns, which we 
will describe below, are not predicted by either the continuum theory 
(which predicts 2 patterns) or the simulations (which predict only three 
patterns in the parameter range that we used). Here we describe each 
pattern type and quantify their probability of occurrence as a function 
of both outer diameter and inner (hole) diameter.

N occurs for small chambers. In the smallest chambers (outer 
diameter do  =  10  µm) we observed nematic liquid crystals where 
rods aligned with each other but not along the circular contour of the 
chamber (Fig. 11a,b). We denote this pattern, which resembles a bulk 
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nematic state, with the symbol N. These patterns occur over a broad 
range of hole sizes (Fig. 11c), but occur only when do = 10 µm (Fig. 11d). 
N patterns may be related to the D2 patterns, in that we anticipate that 
there are two opposite singularities displaced at a distance x beyond the 
chamber edge (Fig. 11e).

Asymmetric S patterns. Asymmetric patterns were also observed. 
Some chambers exhibited only one singularity (Fig. 12a,b). Because of 
the lack of non-trivial rotational symmetry, we denote this pattern S1 
for “one singularity”. This pattern was mostly observed in thin, ring-like 
chambers (di / do = 0.5 and 0.7, Fig. 12c). The probability of finding S1 
increases somewhat with increasing chamber size, but is observed over 
the entire range of chamber sizes (10-100 µm) (Fig. 12d).

Another asymmetric pattern exhibited two singularities, similar to 
D2, but unlike in the D2 pattern, the defects were not positioned at polar 
opposites (Fig. 13a,b) We call this pattern S2, which denotes a pattern 
with two singularities exhibiting no particular rotational symmetry. 
This pattern occurred over a wide range of hole and chamber sizes with 
no particular preference (Fig. 13c,d). We quantify the relative angular 
positions of the two singularities for S2 patterns by the angle β (Fig. 13e), 
and find a broad angle distribution ranging from 90 to 160°, with a peak 

Figure 10. Pattern D3. a. Schematic. b. Representative instances of 
D3. Brightness corresponds to maximum intensity projection of 2000 
frames. Color corresponds to the average orientation <θ> of the nematic 
director (calibration wheel, right). Scale bars 5 µm. c-d. Probability of 
occurrence of D3, given inner diameter di (c) and outer diameter do (d).

Figure 11. Pattern N. a. Schematic. b. Representative instances of N. 
Brightness corresponds to maximum intensity projection of 30 frames. 
Color corresponds to the average orientation <θ> of the nematic director 
(calibration wheel, right). Scale bars 5 µm. c-d. Probability of occurrence 
of N, given inner diameter di (c) and outer diameter do (d). e. Schematic 
of hypothetical point defects displaced beyond the chamber edge by a 
distance x. 
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Figure 12. Pattern S1. a. Schematic. b. Representative instances of S1. 
Brightness corresponds to maximum intensity projection of 2000 
frames (left) and 30 frames (right). Color corresponds to the average 
orientation <θ> of the nematic director (calibration wheel, right). Scale 
bars 5 µm. c-d. Probability of occurrence of S1, given inner diameter di 
(c) and outer diameter do (d).

at β = 140° (Fig. 13f). (Note that this distribution excludes chambers 
which have been classified D2 and therefore exhibit β = 180°.)

Disordered B patterns occur in large chambers. Sometimes, 
multiple singularities were scattered across the interior of the chamber, 
and the nematic director field exhibited chaotic-looking patterns (Fig. 
14a,b). We denote such structures with the symbol B. This type of 
pattern was mostly observed in chambers with small holes (di / do = 0.1, 
Fig. 14c) and in large chambers with d0 > 50 µm (Fig. 14d).
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Figure 13. Pattern S2. a. Schematic. b. Representative instances of S2. 
Brightness corresponds to maximum intensity projection of 2000 
frames. Color corresponds to the average orientation <θ> of the nematic 
director (calibration wheel, right). Scale bars 5 µm. c-d. Probability of 
occurrence of S2, given inner diameter di (c) and outer diameter do (d). 
e. Schematic representing the angle β formed by the two point defects 
and the center of the circle. f. Histogram of observed values of β for S2 
patterns. 
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2.4 Discussion

We confined nematic suspensions of fd-virus rods in shallow donut-
shaped chambers and reported experimental evidence of a three-fold 
rotationally symmetric pattern which we denote D3. We propose that 
this pattern arises from the optimal packing of confined, colloidal rods, 
whose sizes cannot be neglected. The main argument to support this 
interpretation is that the D3 pattern is identified as a thermodynamically 
favorable configuration in simulations accounting for finite particle size, 
whereas it is not predicted by continuum theory. Moreover, the pattern 
exhibits intermediate properties that suggest it occurs in a transition 
from U(1) to D2. First, the three-fold symmetry of D3 is of an order that 
lies between the two-fold symmetry of D2 and the infinite-fold symmetry 
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Figure 14. Pattern B. a. Schematic. b. Representative instances of B. 
Brightness corresponds to maximum intensity projection of 30 frames. 
Color corresponds to the average orientation <θ> of the nematic 
director (calibration wheel, right). Scale bars 10 µm. c-d. Probability of 
occurrence of S1, given inner diameter di (c) and outer diameter do (d).
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of U(1). Second, D3 was most likely in chambers with intermediate hole 
diameters di / do = 0.2, in between the hole diameters where D2 (di / do = 
0) and U(1) (di / do = 0.7) patterns were observed (cf. Fig. 7). 

Although the existence of D3 in experiment and simulation 
indicates consistency, experiment and simulation could not be 
performed with identical parameters, as detailed in Figure 15. In 
particular, the confinement in the z-direction was much less stringent in 
the experiments (1.1–3.4 rod lengths) than in the simulations (1-6 rod 
diameters). This likely explains why D3 patterns occurred for different 
values of di / L: in experiment, D3 occurred for di / L = 2.5–7.5. These 
values are greater than expected from geometric correspondence (cf. 
Fig. 3), where we should expect di / L ≈ 3–1/2 = 0.58. Experimentally, we 
cannot rule out that D3 is not a thermodynamically favorable condition 
based solely on consistency with simulation data. However, simulation 
found that thicker (more three-dimensional) chambers exhibited 
lower-order symmetries (cf. Fig. 4). In particular, D3 occurred over a 
broad range of parameters, up to di  /  L  ≈  1.7, which approaches the 
experimentally observed interval of 2.5–7.5. The chambers investigated 
in simulation had vertical height dz that were at most equal to about 
half a rod length L, while in experiment the chamber height was 1.1–3.4 
times the rod length L. It will be interesting to extend the computational 
work with calculations over a broader region of parameter space, to 
identify when D3 is a thermodynamically favorable state. Furthermore, 
experiments on thicker colloidal rods such as microtubules may lead to 
the direct observation of higher-order symmetry states.

Despite differences in parameters, simulation and experiment 
furthermore agreed on the occurrence of N patterns. In experiment, we 
found patterns that resembled D2, but with expelled singularities (cf. 
Fig. 11). This N pattern also occurred in simulation when rod length 
L or density φ were increased (Mulder, 2012) (results not shown here). 
Prior theoretical work on colloidal rods in tactoidal droplets, where two 
virtual defects occur outside the droplet, similarly observed a transition 
to a bipolar state where defects approached the droplet surface to become 
true defects as droplet size increased (Prinsen and van der Schoot, 2004). 
These predictions agree well with experiment, where we find tactoid-
like N patterns for small outer diameters do. This agreement suggests 



62

that the control parameter do  /  L determines a crossover between D2 
and N.

Further agreement between experiment and simulation occurred 
with the asymmetric pattern S2. This pattern was also observed in 
simulation, albeit as a transient state while simulated systems were 
approaching equilibrium (Garlea and Mulder, 2013). Simulated systems 
that exhibited transient S2 patterns ultimately equilibrated to D3 
symmetries. The two singularities in S2 occurred at two vertices of an 
equilateral triangle. This observation roughly agrees with experiment: 
we found a wide distribution of angles β with a peak at β = 140°. This 
experimental value is in reasonable agreement with the value of β = 120°, 
which corresponds to the intermediate state observed in simulations. 
This suggests that experimental S patterns may represent a metastable 
precursor to D-type symmetries.
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Figure 15. Comparison of length scales probed in simulations and 
experiments. a. Schematic of an annular chamber with outer diameter 
do, inner diameter di, and vertical height dz. b. Schematic of rods with 
thickness D and length L. c. Table comparing values of do, di, dz, D, and 
L between simulation and experiment.
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This hypothesis raises the important question whether 
the experimentally observed patterns represent thermodynamic 
equilibrium. Although we cannot strictly rule out the possibility of 
nonequilibrium behavior, the nematic patterns we observed were 
stable over the course of 1–24 h after sample assembly and were 
reproducible over a large number of chambers. Furthermore, many 
of the experimental patterns correspond to predicted equilibrium 
configurations by simulations. Interestingly, U(1), D, N, and S2 patterns 
were most likely in small chambers (do ≤ 30 µm, cf. panel d of Figs 8, 
9, 10, 11, and 13), whereas the potentially metastable B and S1 patterns 
were most likely in large chambers (do ≥ 50 µm, cf. panel d of Figs 12 and 
14). This observation suggests that smaller chambers may be more likely 
to produce equilibrium structures.

2.5 Outlook: Square Chambers

So far we investigated the breakdown of continuum theory arising from 
the optimal packing of hard rods of finite size in annular geometries. 
Previous experiments with actin filaments (Soares e Silva et al., 2011a) 
and vibrofluidized rods (Galanis et al., 2006; 2010a) suggest that finite-
size effects also influence packing of rods in microchambers with a 
different shape, such as square chambers. Here we report first tests of 
packing of fd-rods in square chambers and examine how finite-rod-size 
effects could manifest in these geometries. Continuum theory predicts 
that rods close to the chamber edges align along the walls, while rods 
at the center align along the long axis of the chamber, which is one of 
the two diagonals (Fig. 15a). The competition between bulk and surface 
ordering leads to diagonal alignment, with splay deformations in two 
diagonally opposing corners, and bend deformations in the other two 
opposing corners.

Recent simulations by Ioana Garlea and Bela Mulder address the 
limit of finite rod size. Similar to the simulations summarized in Section 
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2, hard rods diffuse in boxes with dimensions dz = 3 D and dx = dy = 
73 D, where D is the rod diameter. As before, box vertical height dz was 
chosen such that rods cannot freely rotate out of the xy-plane. In sharp 
contrast to continuum theory, the simulations predict that the liquid 
crystal adopts a line in place of a bend deformation, since the rods are 
unable to bend. At the line defect, the orientations of the rods change in 
a discontinuous manner (Fig. 16b). 

To test whether such line defects can be observed experimentally, 
we confined nematic liquid crystals of fd-virus rods in shallow square- 
and rectangular-shaped chambers. As in Section 3, we acquire time-lapse 
image series of chambers containing fd-rods with a small tracer fraction 
that was fluorescently labeled. Again, we quantify the orientation of the 
nematic director using the customized image analysis routine described 
in Section 7. The nematic field director closely resembles predictions 
from continuum theory, with parallel alignment of rods near the walls 
and diagonal alignment in the chamber center (Fig. 16c). This alignment 
also resembles the patterning we find for nematic liquid crystals of actin 
filaments (Chapter 2). However, the data do not clearly reveal a sharp 
discontinuity in rod orientation at the corners, as predicted by the finite 
rod simulations. Because the line defect in simulation was predicted to 
have a size on the order of the rod length L, the discontinuity should 
manifest itself on length scales of 0.88 µm for fd-virus rods. In principle, 
a discontinuity of this length scale should be detectable. However, the 
square chambers in simulation have perfectly sharp corners, whereas 
the edges of the experimental chambers are rounded due to the limited 
(~1 µm) resolution of the photolithographic techniques used to produce 
them. The rounded edges may assist in the formation of a continuous bend 
structure rather than a discontinuous line defect. Future experiments 
which employ either chambers with sharper corners (for instance 
made by electron beam lithography), or suspensions of longer rods (for 
instance actin or microtubules), should be capable of experimentally 
verifying the line defect predicted by simulations of diffusing rods in 
square chambers.
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2.6 Methods

Bacteriophage fd-virus preparation. fd-virus rods were grown using 
a standard protocol (Dogic and Fraden, 2005) and stored in fd-buffer 
(20 mM tris pH 8.15, 100 mM sodium chloride, 15% ethanol). Assay 
suspensions were prepared at concentrations of 24 mg mL-1, slightly 
above the bulk isotropic-nematic biphasic region, which occurs at ~20 
mg mL-1, in agreement with Onsager theory (Tang and Fraden, 1995). 
Suspensions were biphasic, as evidenced by visual inspection through 
crossed polarizers. fd-rods have a molecular weight of 1.64  ·  107 Da 
(Zimmermann et al., 1986). We chose the lowest possible nematic 
concentration, in order to minimize the energy cost to re-arrange from 
one director field to another and thus reduce the probability of getting 
stuck in high energy metastable states. Fluorescently labeled rods were 
prepared by incubation with Alexa-488 succinimidyl ester (Dammone 
et al., 2012) (Invitrogen). A small amount of labeled rods (2–4% v/v) 
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Figure 16. Nematic director fields of nematic liquid crystals of 
rods confined in square microwells. a. Schematic depicting a 
thermodynamically favorable configuration as predicted by continuum 
theory. b. Thermodynamically favorable configuration predicted by 
simulations of finite-length rods. Color denotes average rod orientation 
<θ> (see color calibration bar). c. Experimentally determined director 
field for fd-virus rods confined in a square microchamber (width dx = 
height dy = 10 µm, thickness dz = 3 µm). Scale bar 5 µm. Color denotes 
average rod orientation <θ> (see color calibration wheel).
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was mixed with unlabeled rods in order to make individual labeled rods 
distinguishable by fluorescence microscopy.

Microchamber preparation. Microchambers were assembled 
using a standard photolithographic technique. In short, glass cover 
slips were spin-coated with a layer of photoresist and exposed to UV 
light patterned by a customized mask. Before spin-coating, cover slips 
(thickness #1, Menzel Gläser) were cleaned with base piranha (water, 
30% ammonium hydroxide, 30% hydrogen peroxide at a ratio of 5:1:1; 
75  °C for 15  min), followed by rinsing with water and baking (200 
°C, 5 min). Cover slips were spin-coated (Delta 80 GYRSET, SUSS 
MicroTec; spin speed 3000 rpm) with a negative photoresist (SU-8 2005, 
MicroChem). Layer thickness was adjusted by diluting photoresist 
with cyclopentanone by approximately 10–20% and measured by a 
profilometer (Alpha-Step 500, KLA-Tencor). Coated cover slips were 
then baked (95 °C, 5 min) before exposure to ultraviolet light (only 
wavelengths above 365 nm, BG-12 bandpass filter, Schott) in a mask 
aligner (MJB, Karl Süss; typical dosage: 50–100 mJ cm-2). Patterning was 
achieved through custom-designed mask of chromium features printed 
on soda-lime glass (DeltaMask). The mask design included circular and 
annular geometries with outer diameters do of 10, 20, 30, 50, 70, and 
100 µm. For each outer diameter, geometries with inner diameters di 
of 0, 0.1, 0.2, 0.3, 0.5, and 0.7 times the outer diameter do were made, 
resulting in 36 different geometries. 

Exposed cover slips were baked (95 °C, 5 min), developed 
(2-methoxy-1-methylethyl acetate, MicroChem; 1–2 min), rinsed 
with isopropanol, and ultimately hard-baked (150°C, 2h). This process 
results in a glass substrate with a layer of photoresist patterns that form 
the basis of microchambers. Next, microscope slides (Menzel Gläser) 
were coated with a layer (~1 mm thick) of polydimethylsiloxane rubber 
(Sylgard 184, Dow Corning; 10:1 base:curing-agent w/w ratio; 120 °C, 5 
min). Rubber-coated glass was rendered hydrophilic by corona discharge 
(BD-20V high-frequency generator, Electro-Technic Products) and 
soaked overnight in fd-buffer containing 0.1 wt% of the amphiphilic 
block copolymer Pluronic F-127 (Sigma-Aldrich), which effectively 
blocked nonspecific adsorption of fd-rods as confirmed by time-lapse 
imaging of rod diffusion. Saturation of the PDMS with buffer prevented 
drying of the sample for at least 24 hours.
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We used the same lithography technique to prepare rectangular 
microwells with short edges of length 2–50 µm and aspect ratios of 1 to 
18. We used chamber heights of 0.7, 3 and 5 µm. However, the cells of 
height 0.7 µm were difficult to fill, thus we used 3 µm for the majority of 
the experiments.

Confinement assay. A drop of fd-virus suspensions was placed 
on a glass-photoresist substrate and pressed against rubber-coated glass 
to form microchambers. After hermetically sealing glass edges with 
VALAP (equal parts vaseline, lanolin, and paraffin wax), samples were 
left to equilibrate for at least 30 mins and subsequently visualized by 
fluorescence microscopy. Only chambers that were well-sealed were 
considered, amounting to approximately 40% of all chambers. Chambers 
that were not well-sealed were evident by diffusion of fluorescently 
labeled rods escaping from the chamber (Fig. 17). The rods rapidly 
organized in steady-state nematic patterns within 30 minutes after 
filling the chambers. When we filled the chambers with the isotropic 
phase below the biphasic region, a nematic was not formed and the 
sample remained isotropic. This observation implies that the filling (and 
confinement) were not sufficient to induce a nematic.

Fluorescence microscopy. Microchambers were visualized using 
two microscope setups: (1) a spinning disk confocal scanner (CSU 22, 
Yokogawa) on an inverted microscope (DMIRB, Leica) with a cooled, 
electron-multiplying charged-coupled device (C9100, Hamamatsu) and 
(2) a Nikon C1 confocal point scanner on an inverted microscope (Ti, 
Nikon) with a photomultiplier tube detector (A1, Nikon). Labeled rods 
were excited with 488 nm laser light (Coherent). A series of images were 
recorded over a long enough time interval such that viruses diffused 
across the entire chamber. The average diffusion constant of virus rods 
in the nematic phase is D‖ ≈ 1 µm2 / s along the nematic director and 
D⟂ ≈ 0.1 µm2 / s perpendicular to the nematic director (Lettinga et al., 
2007). These diffusion constants result in diffusion timescales of tens of 
seconds for diffusion by one particle length and minutes for diffusing 
over inter-particle distances between fluorescently labeled rods (~ a 
few µm). The anisotropy in diffusion constants is apparent in Figure 18, 
where tracks of fluorescently labeled rods are clearly elongated along the 
direction of the nematic director. For spinning disk data, ~ten movies 
of 200 frames each were acquired at a fast imaging rate (0.1 frames per 
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second), which were separated by 2 minutes to allow rods to diffuse 
completely across the chamber (Fig. 18). For point-scanning confocal 
data, ~15–30 frames were acquired at a slower rate (1 frame per ~1–2 
minutes) over several fields of view which were automatically acquired 
and stitched (NIS Elements, Nikon). A customized image analysis 
technique was developed to determine the average nematic director 
orientation <θ> given average orientations θ of labeled fd-rods across 
all images acquired (see Image Analysis).

Identification of nematic patterns. Rods formed a variety of 
liquid crystal patterns. Pattern type was determined by visual inspection 
of the nematic director fields of all well-filled chambers on the chip. 
Figure 19 summarizes the pattern frequency as a function of do and 
di  /  do. We define the probability that a pattern P occurs in a given 
chamber geometry G as the number of observed instances of P given G 
divided by the total number of well-sealed chambers with geometry G 
(Fig. 20). A total of 243 chambers were analyzed: 80, 27, 26, 36, 43, and 
31 chambers for di / do = 0, 0.1, 0.2, 0.3, 0.5, and 0.7 respectively; 77, 
75, 55, 25, 9, and 2 chambers for do / µm = 10, 20, 30, 50, 70, and 100, 
respectively; 23, 113, 5, 21, 33, 32, and 16 chambers for patterns U(1), 
C2, C3, N, S1, S2, and B, respectively.

improperly sealed

Figure 17. Improperly sealed chambers are clearly evident by rods 
escaping chambers at the interface between the chip and the lid. Image 
represents a maximum time projection over 50 s. Escape events are 
visible as tracks of fluorescence that extend past chamber boundaries 
(white arrows). Scale bar 5 µm.
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 2.7 Image Analysis

We developed an algorithm where we quantify the orientation of the 
nematic director for each image pixel, given an image series (with N 
frames) of fluorescently labeled rods. In short, we determine rod 
orientation θ for each frame, and average over frames to get the mean 
orientation <θ> per pixel.

Step 1: Given an image of fluorescent rods (Fig. 21a), we compute 
their orientation θ (Fig. 21b) and the gradient energy, which quantifies 
the contrast between bright and dark pixels (Fig. 21c). This step is 
implemented using OrientationJ, which is a freely-available ImageJ 
plugin originally developed to track collagen and elastin fibers (Fonck 
et al., 2009; Rezakhaniha et al., 2012). This routine computes structure 
tensors constructed of the spatial gradients of fluorescence intensity 
around each pixel (x,y). Determining the eigenvectors of a structure 
tensor yields the characteristic orientation θ of the fluorescence 
intensity of a small region (x±σ, y±σ) around each pixel (x,y). We set the 
parameter σ = 3 px, which corresponds to the typical length scale of a 

one set: 20 s one set: 20 s combine ten sets

wait 
2 min

wait 
2 min

…

Figure 18. Optimal acquisition technique. Left and center panels: 
Maximum time projections of spinning-disk confocal data over 200 
frames, corresponding to 20 s for each set of images. Each set exhibits 
elongates streaks of fluorescence owing to the anisotropy in rod 
diffusion in the nematic phase. Right panel: Maximum time projection 
over all sets of images, totaling 2000 frames. Over long enough time 
periods, viruses will have diffused across the entire chamber, resulting 
in virtually every pixel of the chamber having imaged at least one rod 
across all frames.
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rod. Furthermore, the trace of the structure tensor yields the gradient 
energy Note that this quantity should not be confused with a physical 
energy. Rather, it is related to the notion of signal energy (Mitra and 
Kaiser, 1993).

Step 2: The energy image from Step 1 is thresholded (Fig. 
21d) using Otsu’s method (Otsu, 1975). This yields a binary image 
comprising connected components of bright pixels (1) against a dark 
background (0). Bright pixels in this image correspond to points at or 
near a fluorescently labeled virus particle.

Step 3: The orientation image from Step 1 is masked using the 
threshold from Step 2 (Fig. 21e). The result is a set of orientation 
measurements θ only for pixels at or near a fluorescently labeled virus 
particle. We thus discard orientation measurements of background 
pixels.

Step 4: Steps 1–3 are repeated for the N frames of the dataset (Fig. 
21f,g). The result is a series of N images produced by Step 3 (Fig. 21h,i).

Step 5: The average orientation <θ> per pixel is determined 
given the N images from Step 4 (Fig. 21j,k). Each pixel can have up to 
N orientation measurements, depending on how often it passes the 

Figure 21. Algorithm for determining average orientation <θ> of 
the nematic director given many measurements of rod orientation θ 
in each pixel. a. First frame of original data. b. Orientation output of 
OrientationJ. Color corresponds to orientation θ around each pixel 
(calibration wheel, below). c. Energy output of OrientationJ. Note that 
energy is highest where changes in fluorescence intensity are largest. 
d. Otsu threshold of the energy image (c). e. Masking the orientation 
image (b) with the threshold image (d). Note that color corresponds 
to orientation of virus rods in original image (a). f–i. Looping over all 
frames of a set of images. f,g: original data for frames 200 and 2000. h,i: 
Masked orientation images for frames 200 and 2000. j: Maximum time 
projection of the original data for all frames. k: Average orientation of 
all rods, <θ>, which gives the local direction of the nematic director in 
each image pixel.
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Figure 23. Determining mean orientation <θ> from distributions of 
individual measurements θ. a. Mean orientation <θ>, as in Figure 21, 
panel k. b. Concentration κ for each pixel corresponding to panel a, 
where color corresponds to values of κ as indicated in the calibration 
bar on the right. c. Number of orientation measurements n per pixel, 
as determined by the number of frames that a given pixel passes the 
threshold in Step 2. d. Histogram of orientation measurements for three 
pixels indicated by triangles, diamonds, and pentagons in panels a–c.
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threshold from Step 2. Usually, background pixels never pass the threshold 
from Step 2 and therefore do not have orientation measurements.

 The von Mises distribution. Computing the arithmetic mean is 
not a suitable method to determine average orientation <θ> since the 
orientation θ is a circular quantity, which takes on values over a finite 
range (between –90° and 90°) that is periodic (–90° = 90°). Computing 
the arithmetic mean can give incorrect average orientations: we should 
expect the two measurements –89° and 89° to average out to 90°, 
but the arithmetic mean yields 0°. In order to accurately determine 
average orientation <θ>, we first consider the von Mises distribution 
(a.k.a. circular normal distribution), which is the circular analog of the 
Gaussian distribution (Jammalamadaka and Sengupta, 2001) (Fig. 22):

p(Æ) = e∑cos(Æ°hÆi)

2ºI0(∑) ,
where α is a circular quantity that varies in the range [-π, π) and 
usually corresponds to an angle or phase. The von Mises distribution 
is parametrized by two parameters: the expectation value <α> and the 
concentration κ. These two parameters are analogous to the expectation 
value µ and the inverse of the standard deviation σ–1 of a Gaussian 
distribution. Note that orientation θ varies in the range [–π⁄2, 

π⁄2), whereas 
angle α varies in the range [-π, π). Although most circular quantities are 
measured by an angle α (wind direction, phase of a wave), some physical 
quantities are rather measured by an orientation θ (polarization of 
light, orientation of apolar rods). In order to relate θ to the von Mises 
distribution, orientation measurements are multiplied by a factor of 2 to 
recover angles α. The average angle <α> is computed, and then divided 
by a factor of 2 to recover the average orientation <θ>. The concentration 
κ remains unchanged when converting between orientation θ and angle 
α.

In Step 5, we use the “CircStat” MATLAB toolbox (Berens, 2009) 
to compute <θ> for each pixel (Fig. 23a), which yields the orientation 
of the nematic director. We also compute the concentration κ of the 
distribution for each pixel (Fig. 23b). In principle, κ could act as a 
measure of the order parameter of the liquid crystal: higher values of 
κ indicate a more sharply peaked distribution. Finally, Fig. 23c shows 
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the number of orientation measurements per pixel. Most areas are well-
sampled (N ~ 102), but a few restricted sites are under-represented.
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3. Alignment in confined semiflexible polymer 
networks

The finite size of cells poses a spatial constraint on the cytoskeleton. 
At the same time, the high packing density of cytoskeletal filaments 
poses mutual packing constraints. Here, we investigate the competition 
between bulk and surface packing constraints on the orientational 
ordering of confined networks of actin filaments in nematic and 
bundled phases. We fabricate shallow, rectangular microchambers 
of different sizes and aspect ratios, and grow networks of actin inside 
them. We determine the director field by fluorescence microscopy 
and custom-written image analysis software. We find that isotropic 
networks are insensitive to confinement, whereas nematic and bundled 
networks preferentially align along the diagonal axis of the chambers. 
The chapter ends with a section in which we present two additional 
image analysis techniques, one to determine the presence of bundles 
and one to determine the dependence of actin concentration on radial 
position inside microchambers. Our pixel-based methods have the 
advantage of being able to extract density and orientation information 
even when the length scales of the filamentous networks are below the 
diffraction limit. Our method could thus be applied also to images of 
the actin cytoskeleton in confined regions of cells such as the protrusive 
lamellipodium of migrating cells.
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3.1 Introduction

 The mechanical properties of eukaryotic cells are largely determined 
by the cytoskeleton, a meshwork of filamentous proteins with 
unique mechanical properties (Storm et al., 2005). Three cytoskeletal 
components are known to significantly contribute to cell stiffness, 
cell shape (Paluch and Heisenberg, 2009) and internal organization 
(Mullins, 2010).

The finite size of cells poses a spatial constraint on the 
cytoskeleton. In plants, the cytoplasm, and hence the cytoskeleton, is 
confined to thin layers pressed between the rigid cellulose cell wall and 
the vacuole, which occupies 90% of the cell volume (Gunning and Steer, 
1996). In animal cells, large, three-dimensional cytoplasms prevail, 
though anchoring to the plasma membrane often results in a thin actin 
cytoskeletal cortex (Salbreux et al., 2012). The plasma membrane of 
animal cells is in principle soft and deformable, but still cell shape in 
many tissues is strongly constrained, either due to the anchoring of a 
rigid pericellular coat on the membrane exterior (Nijenhuis et al., 2009; 
Tanaka et al., 2005), or due to close packing of cells within epithelial 
layers (Fernandez-Gonzalez et al., 2009). Recent biophysical research 
has begun to address the effect of spatial confinement on intracellular 
organization by culturing individual cells or confluent cell monolayers 
on micropatterned substrates (Vedula et al., 2012; Vignaud et al., 2012). 
External confinement has been shown to strongly affect the spatial 
organization of the cytokinetic contractile ring (Théry et al., 2005), 
mitotic spindle (Fink et al., 2011), and nucleus (Versaevel et al., 2012), 
and thereby strongly affect cell fate (Chen et al., 1997). In addition to 
global cell shape confinement, a variety of thin cellular extensions locally 
constrain the cytoskeleton to confined geometries. On flat substrates and 
in some tissues, cells migrate using a protrusive flat sheet-like array of 
actively treadmilling actin filaments called the lamellipodium (Mogilner 
and Oster, 2003; Small et al., 1995; Verkhovsky et al., 2003). Cells also 
extend actin filaments and microtubules into linear protrusions, such as 
filopodia (Bryant, 1999; Davenport et al., 1993; Mogilner and Rubinstein, 
2005; Svitkina et al., 2003), stereocilia (Manor and Kachar, 2008; Tilney 
et al., 1989; Zheng et al., 2000), flagella (Luck, 1984; Nicastro et al., 2006), 
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and neurite processes (Dehmelt and Halpain, 2003). A mechanistic 
understanding of the effect of geometrical confinement on the spatial 
organization of cytoskeletal networks remains elusive.

In-vitro experiments with reconstituted cytoskeletal polymer 
networks provide a convenient way to study the role of confinement in 
cytoskeletal organization in the absence of complicating factors such as 
active processes and biochemical regulation. In dilute suspensions of 
actin filaments and microtubules, confinement to small geometries with 
rigid boundaries forces filaments to align along the walls to minimize 
bending energy (Cosentino Lagomarsino et al., 2007). Narrow channels 
have been shown to elongate filaments of actin (Choi et al., 2005; Hirst et 
al., 2005; Köster et al., 2005) and DNA (Bonthuis et al., 2008; Tegenfeldt 
et al., 2004) by constraining thermal bending undulations. Specific 
geometries of actin or microtubule filament nucleation imposed by 
micropatterned substrates can result in bundle formation in the absence 
of crosslinks (Portran et al., 2013; Reymann et al., 2010). 

But in addition to external confining geometries, mutual packing 
interactions between filaments at high packing densities can also affect 
the organization of polymer networks. At low densities, filaments form 
an isotropic phase which lacks a preferred orientation. Above a critical 
density, filaments spontaneously align to reduce their excluded volume 
and form a nematic liquid-crystalline phase. Initial theoretical work by 
Onsager showed that the critical density depends solely on the aspect 
ratio of filaments if the filaments interact exclusively by steric repulsion 
(Onsager, 1949). Both filament flexibility (Chen, 1993; Khokhlov, 1982; 
Odijk, 1986) and filament length polydispersity (Flory and Abe, 1978; 
Odijk, 1986) have been theoretically shown to increase the critical 
density compared to the Onsager transition. Onsager’s theory and 
modifications thereof have been highly successful in predicting the 
phase behavior of rod-shaped filamentous viruses like tobacco mosaic 
virus (Bawden et al., 1936) and fd-virus (see Chapter 1) as well as actin 
filaments (Helfer et al., 2005; Käs et al., 1996). For instance, reducing 
actin filament length with the capping protein gelsolin has been shown 
to increase the critical density for nematic liquid crystalline ordering 
in close agreement with the Onsager theory (Coppin and Leavis, 1992; 
Furukawa et al., 1993; Oda et al., 1998; Suzuki et al., 1991; Viamontes 
and Tang, 2003). 
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The combination of packing constraints from mutual filament 
interactions and external confinement has been little explored. Isotropic 
actin networks in emulsion droplets and vesicles form peripheral shells 
to minimize bending energy (Claessens et al., 2006a; Limozin et al., 
2003), similar to individual confined filaments. Confinement of actin 
networks in microchambers was shown to cause nematic alignment at 
densities below the bulk isotropic-nematic (Onsager) transition (Soares 
e Silva et al., 2011a).

In contrast to in-vitro systems, living cells do not appear to exhibit 
networks of cytoskeletal filaments in the nematic phase despite the rather 
high concentrations of actin in the cytoplasm (Koestler et al., 2009). 
Rather, cells actively regulate filament organization by orchestrating a 
wide array of accessory proteins which specifically interact with actin 
filaments to produce networks, bundles, and higher-order cytoskeletal 
structures (Chhabra and Higgs, 2007; Vignjevic et al., 2003). Bundling 
likely acts together with spatial confinement to form functional 
cell structures such as filopodia (Atilgan et al., 2006; Mogilner and 
Rubinstein, 2005). In-vitro, the combination of packing constraints 
from cross-linker-mediated interactions and external confinement has 
again been little explored. In reconstituted actin networks confined to 
microchambers or emulsion droplets, interesting organized patterns of 
bundles were observed when the solvent was allowed to slowly evaporate 
(Deshpande and Pfohl, 2012; Huber et al., 2012; Vonna et al., 2005). In 
narrow microchannels, actin bundles are efficiently aligned along the 
channel (Hirst et al., 2005).

In this chapter, we seek to quantify the effect of spatial confinement 
on the spatial organization of semiflexible polymer networks that form 
either isotropic, nematic, or bundled phases in bulk solution. We 
model external confining geometries by fabricating shallow, square 
microchambers with a systematically varied size and in-plane aspect 
ratio. Inside these chambers, we grow networks of actin filaments 
prepared in an isotropic or nematic phase, as well as networks of actin 
filaments bundled by various agents. We visualize these networks by 
fluorescence microscopy and quantify the spatial evolution of filament 
orientation using a pixel-based method related to previous methods 
which quantified filament orientation in the lamellipodium of migrating 
cells (Weichsel et al., 2009; 2012). We find that isotropic networks 
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remain isotropic in the microchambers, independent of chamber 
aspect ratio, whereas nematic liquid crystals of actin filaments adopt 
preferential alignment along the diagonal axis of the chambers. Further, 
we show that the spatial organization of bundle networks responds to 
the imposed confinement in a similar manner to nematic liquid crystals 
of actin filaments, preferentially aligning with the chamber’s longest 
axis. The chapter ends with a section in which we present two additional 
image analysis techniques, one to determine the presence of bundles 
and one to determine the dependence of actin concentration on radial 
position inside microchambers.

3.2 Results

In order to quantify the effect of confinement on the spatial organization 
of semiflexible filament networks, we prepare microchambers with a 
well-controlled rectangular geometry (Fig. 1a; see Methods). Chambers 
were designed with lengths dy in the range 3–100  µm and widths dx 
such that the aspect ratio dx  /  dy varied in the range  1–10 (Fig. 1b). 
Chamber thickness dz remains constant across all experiments at 3 µm. 
Inside these chambers, we grow networks of fluorescently labeled actin 
filaments under various conditions (Fig. 1c). We investigate the effect of 
chamber thickness on the spatial pattern of local orientations θ of actin 
filaments, based on anisotropy of fluorescence intensity (see Methods). 
From these orientation measurements, we determine the preferred 
orientation <θ> and the order-parameter S of the nematic director from 
the second-order tensor order-parameter S2 (see Methods). 

Confined nematic liquid crystals of actin filaments. In order to 
investigate the effect of external geometry on the spatial organization of 
confined suspensions of semiflexible filaments in the nematic phase, we 
grow actin filaments at concentrations of 4 mg mL-1 in microchambers. 
At these high concentrations, actin filaments self-organize to form 
a nematic liquid crystal (Furukawa et al., 1993; Käs et al., 1996). We 
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a

b

c

dy

dx

Figure 1. Experimental model system of actin filament networks confined 
to microchambers. a. Snapshot of chip patterned with microchambers, 
acquired by scanning electron microscopy. Scale bar 500 µm. b. Closeup 
of the area in the black box in panel a. Scale bar 50 µm. White arrows 
denote the chamber length dy and width, dx, from which we compute the 
chamber aspect ratio as dx / dy. The chamber height is 3 µm. c. Confocal 
fluorescence image of square microchamber (dy = 50 µm, dx / dy = 1) 
filled with a suspension of fluorescently labeled actin filaments in the 
nematic phase ([actin] = 4 mg mL-1). Scale bar 10 µm.

a

b 90º

–90º

0º θ

Nematic networks

aspect ratio dx / dy

Figure 2. Nematic liquid crystals of actin filaments confined to 
microchambers. [actin] = 4 mg mL-1, dy = 15 µm. a. Snapshots of actin 
filaments in microchambers. Outlined text denotes chamber aspect 
ratios dx / dy from 1 (square) to 10 (long rectangle). Scale bar 20 µm. b. 
Maps of the orientations of fluorescence intensity in each pixel. Color 
corresponds to orientation θ of fluorescence intensity distribution (see 
calibration wheel, right). Dashed black boxes denote manually selected 
regions of interest. These regions were selected to avoid edge effects 
related to the sudden decrease in fluorescence intensity at the chamber 
boundaries.
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Figure 3. Quantitative analysis of confined nematic networks over 
multiple chambers with dy = 30 µm. a. Probability distribution function 
of pixel orientations θ. Color corresponds to different aspect ratios 
(see legend, right; also see Figure 2a). Note that pixel orientations were 
multiplied by a factor of ±1 to account for the rectangular symmetry 
of the chambers (see Methods). b. Expected orientation α (green 
squares) and preferred orientation µ (black points) as a function of 
aspect ratio. Gray boxes denote standard deviation (SD) of values of μ 
across multiple chambers. Orange boxes denote standard error of the 
mean (SEM). Black lines denote arithmetic means. c. Order parameter 
S (black points) as a function of aspect ratio. Gray boxes denote SDs. 
Red boxes denote SEMs. Black lines denote arithmetic means. Two 
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distributions are statistically significantly different (p  ≲  0.01) if their 
orange bars (SEM) do not overlap (Cumming et al., 2007). Number of 
chambers N = 24, 23, 22, 18, 17, 16, 16 for aspect ratio = 1, 1.5, 2, 3, 5, 7, 
and 10, respectively.

visualize these confined networks by fluorescence microscopy, which 
reveals a fine aligned texture indicating nematic alignment (Fig. 2a). 
For all chamber sizes and aspect ratios, the networks appear rather 
homogeneous. However, due to the small mesh size (~ 150 nm) and small 
diameter of the filaments (~ 7 nm), we are unable to resolve and track 
individual actin filaments. Instead, we quantify the mean orientation of 
filaments per image pixel, which measures the local orientation θ of the 
nematic director (Fig. 2b, see Methods).

Initially, we would expect filaments to align along the long axis 
of the chamber, which is one of the two diagonals. This is the case for 
the chambers depicted in Figure 2b. For square geometries (aspect ratio 
dx / dy = 1), pixels in the center of the chamber report an orientation θ 
of approximately –45º along the diagonal of the chamber. This is evident 
in Fig. 2b (bottom-left), where green pixels correspond to –45°. As 
chamber aspect ratio increases to 10, the orientation θ of pixels shifts 
gradually to 0°. This is evident in a shift from green pixels to cyan pixels, 
which report orientations of 0°.

In order to quantify the effect of chamber geometry on the 
orientation of the nematic director, we plot histograms of orientation 
measurements for many identical chambers with chamber lengths 
dy = 30 µm (Fig. 3a).  Indeed, the distribution of orientations θ in square 
chambers (aspect ratio 1, light blue curve), is peaked around 45°. As 
aspect ratio increases, the peaks shift towards 0°. This gradual shift 
from 45° to 0° is also evident in Fig 3b. This panel shows the preferred 
orientation μ of several chambers (represented as black points) as well 
as the angle α of the chamber diagonal (represented as green squares), 
given by

α = arctan(dy / dx).
The mean preferred orientation <μ>chambers averaged across all chambers 
(represented as black horizontal lines) decreases towards 0° in a manner 
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Figure 4. Quantitative analysis of confined nematic networks for 
chambers of all dimensions, as in Figure 3a. Plots show the probability 
distribution function of pixel orientations θ. Distributions are shown for 
different chamber lengths dy (separate plots) and different aspect ratios 
dx / dy (color).
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Figure 5. Quantitative analysis of confined nematic networks for 
chambers of all dimensions, as in Figure 3b. a. Expected orientation α 
(green squares) and preferred orientation µ (black points) for different 
chamber lengths dy (separate plots) and different aspect ratios dx  / dy 
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(x-axis). b. Phase space of the deviation from expected angle, given 
by the difference between the expected orientation α and the mean 
preferred orientation <μ>chambers averaged over many chambers. The 
x-axis corresponds to chamber aspect ratio, y-axis to chamber length. 
Color corresponds to deviation (calibration bar, below). For number N 
of chambers, see Methods.

consistent with α. (Note that orientations are multiplied by a factor of 
±1 to account for the rectangular symmetry of chambers, see Methods.) 
Furthermore, Figure 3c shows the order parameter S (represented as 
black points) of individual chambers. This quantity measures the 
dispersion of orientations θ across a single chamber (see Methods). The 
mean order parameter <S>chambers averaged across all chambers slightly 
increases with increasing aspect ratio, although not in a statistically 
significant manner.

So far we have presented chambers where confined liquid crystals 
appear to closely follow the chamber diagonal. However, this is not 
satisfied for all chamber geometries. Many chambers appear to contain 
networks that rather align to the parallel edges of the chamber in the 
x-direction. This is shown in Figures 4 and 5. Figure 4 shows histograms 
of orientation measurements for all chamber geometries. Figure 5 
shows the preferred orientation μ and the expected orientation α for 
all chamber geometries. We find that for small rectangular chambers 
(dy  <  30  µm, dx  /  dy  >  1), networks prefer to orient along the x-axis 
(μ = 0°) rather than the chamber diagonal (μ = α). This is evident in 
panel a, where <μ>chambers (represented as black horizontal lines) do not 
agree with the angle α of the chamber diagonal (represented as green 
squares). Many of these differences are statistically significant. (When 
orange bars do not overlap with green squares, p ≲ 0.01.)  Interestingly, 
networks in square chambers (dx  /  dy  =  1) appear to align along the 
chamber diagonal for virtually all chamber lengths dy. These results show 
that a slight anisotropy in chamber shape causes nematic networks to 
align along the longest parallel walls, rather than the chamber diagonal. 

Apart from the preferred orientation μ, chamber dimensions 
strongly affect the mean order parameter <S>chambers (represented as 
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chambers of all dimensions, as in Figure 3c. a. Order parameter (black 
points) for different chamber lengths dy (separate plots) and different 
aspect ratios dx / dy (x-axis). b. Phase space of the mean order parameter 
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<S>chambers averaged over many chambers. The x-axis corresponds to 
chamber aspect ratio, y-axis to chamber length. Color corresponds 
to mean order parameter (calibration bar, below). For number N of 
chambers, see Methods.

black horizontal lines, Fig. 6). Smaller chambers exhibit a higher order 
parameter. For dy < 20, the order parameter increases with increasing 
aspect ratio. Many of these increases are statistically significant. However, 
for larger chambers, the order parameter is not significantly affected by 
the aspect ratio. These results show that nematic networks exhibit a more 
well-defined preferred direction as the confining geometry decreases in 
length scale and increases in anisotropy.

Interestingly, the networks appear to be rather homogeneous 
for all chamber sizes (down to 5 µm) and aspect ratios (cf. Figure 2). 
This result is surprising in light of prior studies of networks confined 
in spherical confinement (vesicles (Limozin et al., 2003) and emulsion 
droplets (Claessens et al., 2006a)), where networks formed peripheral 
shells below 10-15 µm, which coincided with the persistence length of 
actin filaments.

Confined networks of bundled actin filaments. So far we 
investigated the effect of an external confining geometry on entangled 
networks of actin filaments in the nematic phase. However, actin 
filaments in living systems are often assembled into bundles by a variety 
of actin-binding proteins. In order to investigate the combined effect of 
crosslink-induced organization and confinement-induced organization, 
we grow bundles of actin filaments in microchambers. We prepare 
bundles of actin using two different techniques.

We first prepared bundles of actin by polymerizing filaments at 
concentrations of 0.5 mg mL-1 in the presence of 20 mM magnesium 
chloride (MgCl2). The positive, divalent magnesium ions accumulate 
around negatively-charged actin filaments to form a cloud of counterions; 
above a critical concentration of counterions, filaments share counterion 
clouds, which establishes attractive interactions between filaments and 
drives bundling (Tang et al., 1996) and raft formation (Wong et al., 
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Figure 7. Networks of actin filaments bundled by counterion 
condensation and confined to microchambers: [actin] = 0.5 mg mL-1, 
[MgCl2] = 20 mM a. Snapshots of actin filaments in microchambers. 
Outlined text denotes chamber aspect ratios dx  /  dy from 1 (square) 
to 10 (long rectangle). Scale bar 20 µm. b. Maps of the orientations of 
fluorescence intensity in each pixel. Color corresponds to orientation 
θ of fluorescence intensity distribution (see calibration wheel, right). 
Orientation image was masked by an Otsu threshold of panel a.

90º
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0º θ
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Bundled networks (Fascin)

aspect ratio dx / dy

Figure 8. Networks of actin filaments bundled by fascin crosslinks and 
confined to microchambers: [actin] = 0.5 mg mL-1, [fascin] = 1.2 µM a. 
Snapshots of actin filaments in microchambers. Outlined text denotes 
chamber aspect ratios dx  /  dy from 1 (square) to 10 (long rectangle). 
Scale bar 20 µm. b. Maps of the orientations of fluorescence intensity in 
each pixel. Color corresponds to orientation θ of fluorescence intensity 
distribution (see calibration wheel, right). Orientation image was 
masked by an Otsu threshold of panel a. 
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Figure 9. Quantitative analysis of confined bundled networks for 
chambers of all dimensions, as in Figure 3a. Plots show the probability 
distribution function of pixel orientations θ. Distributions are shown for 
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chambers of all dimensions, as in Figure 3b. a. Expected orientation α 
(green squares) and preferred orientation µ (black points) for different 
chamber lengths dy (separate plots) and different aspect ratios dx  / dy 
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2003). Figure 7a depicts networks of actin bundled by MgCl2 confined 
to microchambers. The bundle orientations are shown in Figure 7b. 

We also formed bundles with the crosslink protein fascin. Fascin 
is enriched in cellular structures called filopodia (Svitkina et al., 2003): 
linear extensions that protrude the plasma membrane in migrating 
cells. Fascin proteins simultaneously bind two actin filaments via two 
actin-binding sites (Jansen et al., 2011), forming bundles with a well-
controlled maximum number of 19 filaments (Claessens et al., 2008). 
We polymerize actin filaments at 0.5  mg  mL-1 in the presence of 1.2 
µM fascin crosslinks. We find that fascin bundles organize similarly to 
magnesium-chloride bundles (Fig. 8 a,b).

In order to quantify the effect of chamber geometry on the 
distribution of bundle orientation, we plot histograms of orientation 
measurements (Fig. 9), the preferred direction (Fig. 10), and the order 
parameter (Fig. 11). Bundled networks appear to more closely follow 
the chamber diagonal than nematic networks. Figure 10b shows that the 
mean preferred direction <μ>chambers does not deviate from α by more 
than ~10° (compared to up to ~30° for the nematic case), except for 
large chambers (dy > 50 µm). These results show that bundled networks 
organize preferentially along the long axis of a rectangular confining 
geometry. These results are also consistent with a prior study of actin 
networks bundled in the presence of α-actinin  and  confined  within 
long, narrow microchannels (Hirst et al., 2005).

The mean order parameter <S>chambers attains values slightly lower 
than those for nematic networks (Fig. 11). The dependence of the order 
parameter on chamber aspect ratio is also less pronounced. These results 
show that bundled networks do not attain the same orientational state 
as nematic networks. The bundle patterns may represent equilibrium 

(x-axis). b. Phase space of the deviation from expected angle, given 
by the difference between the expected orientation α and the mean 
preferred orientation <μ>chambers averaged over many chambers. The 
x-axis corresponds to chamber aspect ratio, y-axis to chamber length. 
Color corresponds to deviation (calibration bar, below). For number N 
of chambers, see Methods.
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structures resulting from a balance of boundary effects and linker-
assisted filament aggregation (Borukhov et al., 2005), but may also be 
influenced by kinetic trapping, depending on the balance of the kinetics 
of actin filament polymerization and bundling (Falzone et al., 2012; 
Huber et al., 2012; Kiemes et al., 2011; Schmoller et al., 2008).

3.3 Discussion

We have shown that an external geometry can strongly influence the 
spatial organization of semiflexible polymer networks. Actin filaments 
were found to align preferentially along the long axis of microchambers, 
provided the filaments were either in a nematic liquid crystalline 
network or bundled by counterion condensation or the physiological 
crosslink protein fascin. In contrast, filament orientations in isotropic 
networks were insensitive to confinement.

We measured an order parameters S of over 0.9 for confined 
nematic liquid crystals (cf. Fig. 3c). This value is higher than previously 
measured order parameters, which vary in the range 0.4–0.75, as 
measured by optical birefringence and x-ray scattering (Helfer et al., 
2005) and single filament dynamics (Viamontes et al., 2006a). Similar 
values of the order parameter were measured for suspensions of 
tobacco-mosaic virus (Fraden et al., 1993), bacteriophage fd (Purdy 
et al., 2003), and microtubules (Bras et al., 1998). However, the order 
parameter we measured here is not equivalent to the order parameter 
measured by these techniques, which are sensitive to the differences 

<S>chambers averaged over many chambers. The x-axis corresponds to 
chamber aspect ratio, y-axis to chamber length. Color corresponds 
to mean order parameter (calibration bar, below). For number N of 
chambers, see Methods.
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in filament orientation on microscopic length scales. In contrast, 
the orientation measurements θ reported here were determined by 
computing the average orientation of a window of 3 px radius around 
each pixel, corresponding to a window of approximately 1 µm in 
diameter. Therefore, our order parameter S does not directly report the 
microscopic arrangements of filaments. Rather, it measures the variance 
of measurements of θ across all pixels investigated. However, the order 
parameter thus determined does give at least a quantitative measure of 
the variation of orientation measurements across an entire chamber. 
Furthermore, our method allows for the quantitative measurement of 
the preferred orientation <θ> of the nematic director of liquid crystals. 
In particular, we were able to determine the effect of microchamber 
dimensions on the preferred orientation.

An important advantage of our technique is that it can be generally 
applied to confocal microscopy images of any filamentous network, 
including in-vitro cytoskeletal networks but also networks of synthetic 
fibers like carbon nanotubes (Islam et al., 2004; Puech et al., 2010). 
Thus, alignment and nematic ordering can be determined without a 
need for sophisticated techniques such as the PolScope (Gentry et al., 
2009; Viamontes and Tang, 2003; Viamontes et al., 2006b) or polarized 
fluorescence (Coppin and Leavis, 1992), which may be especially 
difficult to combine with confinement in microchambers. Importantly, 
the technique is applicable to a broad range of different images, being 
able to extract orientation information even when the length scales of 
the filaments or the network mesh size are below the diffraction limit. 
Our method could be applied also to images of the cytoskeleton in cells. 
This would for instance be interesting in the context of the orientation 
distribution of actin filaments in the lamellipodium of migrating 
cells, which protrude by directed polymerization of a branched actin 
network (Mogilner and Oster, 2003; Quint and Schwarz, 2011; Schaus 
et al., 2007; Weichsel and Schwarz, 2010), where our analysis could 
provide information complementary to more labor-intensive filament 
reconstruction of electron tomography data (Maly and Borisy, 2001; 
Urban et al., 2010; Verkhovsky et al., 2003; Weichsel et al., 2012; Yang 
and Svitkina, 2011).

The effect of a confining boundary on the spatial organization of 
the actin cytoskeleton of living cells remains an open question. Based on 
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our in-vitro results, we expect the cell boundary to play a significant role. 
Although cells regulate actin-based structures via specific interactions 
with accessory proteins, more general physical mechanisms such as the 
effect of depletion (Marenduzzo et al., 2006) or confinement could assist 
such organization. Our results demonstrate the need for better physical 
models that so far cannot account for the effect of spatial confinement 
on entangled and nematic semiflexible polymer networks. A better 
theoretical understanding is necessary in determining the extent of 
physical forces in determining cytoskeletal organization.

3.4 Methods

Protein preparation. Lyophilized monomeric G-actin was 
purchased from Cytoskeleton (via Tebu-Bio). Resuspended G-actin was 
stored in G-buffer (2 mM Tris, 0.2 mM sodium adenosine-triphosphate, 
0.2 mM calcium chloride, 0.2 mM dithiothreitol, pH 8.0), stored at 0 °C, 
and used within one week. Actin monomers were labeled with Alexa 
Fluor 594 (Invitrogen) and mixed with unlabeled monomers to yield 
a 10% molar ratio of dye to protein. Recombinant mouse fascin was 
prepared from T7 pGEX E. coli, as described elsewhere (Gentry et al., 
2012). The fascin plasmid was a kind gift from Scott Hansen and R. Dyche 
Mullins (UC, San Francisco). Protein concentrations were determined 
by measuring the solution absorbance at 280 nm with a NanoDrop 
2000 (ThermoScientific, Wilmington, DE, USA), using extinction 
coefficients, in M-1 cm-1, of 26600 (actin (Pardee and Spudich, 1982)), 
and 66280 (fascin, computed from amino acid sequence (Artimo et al., 
2012)). 

Microchamber preparation. Microchambers were assembled 
using a standard photolithographic technique. In short, glass cover 
slips were spin-coated with a layer of photoresist and exposed to UV 
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light patterned by a customized mask. Before spin-coating, cover slips 
(thickness #1, Menzel Gläser) were cleaned with base piranha (water, 
30% ammonium hydroxide, 30% hydrogen peroxide at a ratio of 5:1:1; 
75 °C for 15 min), followed by rinsing with water and baking (200 °C, 5 
min). Cover slips were coated (Delta 80 GYRSET, SUSS MicroTec; spin 
speed 3000 rpm) with a negative photoresist (SU-8 2005, MicroChem). 
Layer thickness was adjusted by diluting photoresist with cyclopentanone 
by approximately 10–20% and measured by a profilometer (Alpha-
Step 500, KLA-Tencor). Coated cover slips were then baked (95 °C, 5 
min) before exposure to ultraviolet light (only wavelengths above 365 
nm, BG-12 bandpass filter, Schott) in a mask aligner (MJB, Karl Süss; 
typical dosage: 50–100 mJ cm-2). Patterning was achieved through 
custom-designed mask of chromium features printed on soda-lime 
glass (DeltaMask). Mask design included square and rectangular 
geometries with various dimensions. Chamber lengths dy were 3, 5, 10, 
15, 20, 30, 50, 70, and 100 µm. For each length dy, various aspect ratios 
dx / dy were designed, ranging from 1, 1.5, 2, 3, 5, 7, and 10. This results 
in 56 possible geometries. However, an upper bound of resolution of 
~1–3  µm prevents the smallest and thinnest patterns from properly 
forming. Exposed cover slips were baked (95 °C, 5 min), developed 
(2-methoxy-1-methylethyl acetate, MicroChem; 1–2 min), rinsed with 
isopropanol, and ultimately hard-baked (150°C, 2h). This process results 
in a glass substrate with photoresist microchambers. Next, lids were 
created by coating microscope slides (Menzel Gläser) with a layer (~1 
mm thick) of polydimethylsiloxane rubber (Sylgard 184, Dow Corning; 
10:1 base:curing-agent w/w ratio; 120 °C, 5 min). Rubber-coated glass 
was rendered hydrophilic by corona discharge (BD-20V high-frequency 
generator, Electro-Technic Products) and soaked overnight in G-buffer 
+ 0.1% amphiphilic block copolymer Pluronic F-127 (Sigma-Aldrich) 
to block nonspecific adsorption of actin filaments to the surface of the 
chambers. Saturation of the PDMS with buffer prevented drying of the 
sample.

Confinement Assay. To polymerize actin filaments, we added a 
solution containing salts and buffer to a tube containing monomeric 
G-actin (10% label-to-monomer molar ratio). Samples were mixed to 
yield a final buffer composition of 20 mM imidazole pH 7.4, 50 mM 
potassium chloride, 1 mM dithiothreitol, and 0.1 mM adenosine 
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triphosphate. In addition, 1 mM trolox, 2 mM protocatechuic acid, 
and 0.1 µM protocatechuate 3,4-dioxygenase were added to minimize 
photobleaching. Furthermore, actin filaments were stabilized with 
phalloidin in all cases. Freshly mixed samples were immediately mixed 
with phalloidin (in an amount equimolar to actin monomers) dried on 
a patterned glass slide, and pressed against the rubber-coated glass to 
form closed microchambers. After hermetically sealing glass edges with 
VALAP (equal parts vaseline, lanolin, and paraffin wax), samples were 
left to equilibrate for 30 mins and subsequently visualized by fluorescence 
microscopy. Only chambers that were well-sealed were considered, 
amounting to approximately 40% of all chambers. Chambers that were 
not well-sealed were evident by the presence of fluorescently labeled 
actin between chambers at the interface between patterned glass and 
rubber lid.

Fluorescence microscopy. Microchambers were visualized 
with a confocal point scanner (Nikon) on an inverted microscope (Ti, 
Nikon) with a photomultiplier tube detector (A1, Nikon). Labeled actin 
filaments were excited with 561 nm laser light (Coherent). Images were 
acquired over several fields of view which were automatically acquired 
and stitched (NIS Elements, Nikon). The orientations θ of all image 
pixels were determined by image analysis with the freely-available 
plugin OrientationJ (http://bigwww.epfl.ch/demo/orientation/), 
using a Gaussian window with radius σ  =  3  px (see Image Analysis). 
The orientation distributions serve as input for calculating the order 
parameter and preferred orientation (see below).

Scalar order parameter. Given a collection of orientation 
measurements θ of pixels of a chamber in the range [-90°, 90°), we first 
compute the second-order tensor order-parameter S2 (Hess and Köhler, 
1980):

S2 =
∑

hcos2µi hsin2µi
hsin2µi °hcos2µi

∏

.
Angle brackets <·> denote arithmetic means over all measurements. The 
tensor S2 is symmetric and traceless. Solving the eigenvalue problem for 
S2 yields two eigenvalues

∏± =±
q

hcos2µi2 + hsin2µi2 =±S ,
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which are equal to the scalar order-parameter S. This order parameter 
quantifies the width of the distribution of orientation measurements. It 
is zero for a uniform distribution of orientations, and approaches one 
for a sharply-peaked distribution. The eigenvector λ+ corresponding to 
the eigenvalue λ+ points in the preferred orientation, which we denote by 
<θ>S and compute with the following formula:

hµiS = arctan

µ
∏+,x

∏+,y

∂

,
where λ+,x and λ+,y denote the x- and y-components of the eigenvector 
λ+. Angle brackets <·>S do not denote an arithmetic mean, but rather 
computation of the preferred direction given the tensor S2. Note that 
this value does not make any assumptions about the distribution of 
measured values of θ.

Rectangular symmetry. Square and rectangular chambers exhibit 
two identical diagonals with angles ±α. This arises from the two-fold 
symmetry of rectangles. We therefore do not distinguish chambers with 
preferred orientations ±<θ>S. In order to account for this symmetry, we 
multiply all pixel orientation measurements θ of a chamber by a factor 
of sgn(<θ>S) = ±1. For this reason, the distributions shown in Figure 
4 and Figure 9 are unimodal, centered around a positive angle, rather 
than bimodal. We use the symbol μ = abs(<θ>S) to refer to the preferred 
orientation of a chamber after accounting for the absolute value. Note 
that μ only varies in the range (0°, 90°], rather than (-90°, 90°] for <θ>S.

Chamber-ensemble averages. In order to quantify the preferred 
direction given a chamber geometry, we compute the arithmetic mean 
of values of μ across identical chambers. Similarly, we quantify the 
average order parameter of a chamber geometry by computing the 
arithmetic mean of values of S across identical chambers. We denote 
these ensemble averages with angle brackets <·>chambers.

Number of chambers analyzed. A total of 3075 chambers were 
analyzed: 1470 nematic chambers, and 1605 bundled chambers (800 
fascin, 805 MgCl2). Number of chambers N for aspect ratios dx / dy = [1, 
1.5, 2, 3, 5, 7, 10] are as follows. Isotropic: dy = 5: [53, 46, 55, 55, 39, 58, 
71]. dy = 10: [30, 44, 51, 53, 48, 53, 54]. dy = 15: [47, 45, 45, 43, 37, 48, 
39]. dy = 20: [33, 31, 33, 32, 28, 24, 23]. dy = 30: [24, 23, 22, 18, 17, 16, 
16]. dy = 50: [15, 15, 16, 14, 3, 11, 1]. dy ≥ 70: [9, 9, 8, 7, 5, 2, 1]. Bundled: 
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dy = 5: [43, 67, 74, 75, 68, 86, 75]. dy = 10: [66, 67, 65, 59, 58, 66, 60]. dy 
= 15: [50, 47, 45, 43, 38, 43, 37]. dy = 20: [31, 28, 27, 30, 26, 29, 29]. dy = 
30: [21, 21, 20, 14, 13, 17, 11]. dy ≥ 50: [13, 13, 9, 8, 5, 5, 3].

3.5 Image Analysis

The confined actin networks studied so far are homogeneous. These 
results were all obtained with gel-filtered actin. In earlier experiments in 
collaboration with Marina Soares e Silva and Jeanette Nguyen, we studied 
networks of non-gel-filtered actin in microchambers and observed 
besides alignment also confinement-induced bundling (Soares e Silva, 
2011; Soares e Silva et al., 2011a). A typical example is shown in Fig. 12a. 
Actin filaments prepared from non-gel-filtered actin are shorter than 
filaments prepared from gel-filtered actin, since gel-filtration removes 
oligomers, which may act as seeds, and capping proteins. Potentially, 
depletion attractions promoted by short actin filaments in combination 
with quasi-2D confinement may bundle the longest filaments in the 
polydisperse distribution of filament lengths (Soares e Silva, 2011; 
Soares e Silva et al., 2011a). In addition, gel filtration may remove 
residual crosslinker proteins such as α-actinin, which may potentially 
also account for the bundling seen for non-gel-filtered actin. However, 
we note that bundling was only observed in confinement. 

To quantify the degree of filament bundling, we developed an 
extension of the orientation analysis, which we will outline in this section. 
We constructed a bundling parameter B, where B = 0 corresponds to 
unbundled networks and B = 1 corresponds to purely bundled networks. 
We also developed a technique for determining the radial distribution of 
actin filaments in microchambers. These techniques use a combination 
of MATLAB and ImageJ commands, including the plugin OrientationJ. 
First, we shall introduce OrientationJ and briefly describe its outputs 
before describing our analysis techniques.



106

0

1 C D

B

0°

90°

-90°

A

�λmin

�λmax

Figure 12. OrientationJ. a: Example input image I(x,y) of a fluorescently 
labeled actin network confined to a circular microchamber, 
[actin] = 5 mg mL-1, [gelsolin] / [actin] = 1⁄370, chamber diameter = 40 µm 
and depth = 5 µm. Scale bar 10 µm. Inset: Close-up of dashed box, with 
the eigenvectors λmin and λmax of the center pixel’s structure tensor J. 
Note that λmin points in the direction of the bundle. b: Orientation 
θ(x,y) of panel a. Pixel hues correspond to θ according to the legend 
(right). Dashed box denotes same area as in panel a. Note that it encloses 
magenta pixels, which correspond to approximately 60°. c: Coherency 
c(x,y) of panel a. Pixel intensities correspond to c according to the 
calibration bar, left. Dashed box same as panel a. Note that it encloses 
higher coherency values than the low-coherency, isotropic region right. 
d: Color survey of panel a. Dashed box same as panel a. Note that hue 
matches that of panel b and grey (low-saturation) values match locally 
isotropic areas.

OrientationJ. This plugin was written by Daniel Sage at the 
Biomedical Imaging Group, EPFL, Switzerland and originally designed 
to quantify the orientation of elastin (Fonck et al., 2009) and collagen 
(Rezakhaniha et al., 2012) fibers. OrientationJ quantifies the anisotropy 
of features found in an image of pixel intensities I(x,y) (Fig. 12a). Among 



107

its several outputs, we use the coherency c(x,y) and orientation θ(x,y) 
for our analysis. These quantities derive from the structure tensor J(x,y), 
defined by the spatial gradients of I(x,y):

J(x, y) =
∑ R

ROI d x d y rx I (x, y) ·rx I (x, y)
R

ROI d x d y rx I (x, y) ·ry I (x, y)R
ROI d x d y rx I (x, y) ·ry I (x, y)

R
ROI d x d y ry I (x, y) ·ry I (x, y)

∏

.
The region of interest (ROI) around each pixel (x,y) is a Gaussian 
window with a user-defined width σ. This is the only freely-variable 
input parameter, which should match the desired feature size.

Diagonalizing the structure tensor J yields two eigenvalues λmin 
and λmax whose eigenvectors λmin and λmax point in the direction of 
the minimum and maximum changes in pixel intensity, respectively 
(Fig. 12a, inset). The dominant orientation θ of a region is given by the 
direction of λmin (Fig. 12b). The relative difference between λmin and 
λmax, called the coherency c, serves as a measure of a region’s anisotropy 
(Fig. 12c):

c = ∏max °∏min

∏max +∏min.
We rely on the coherency to quantify the presence of bundles. 
OrientationJ furthermore produces a so-called “color survey” (Fig. 
12d): an RGB image where the orientation θ(x,y) determines its hue, the 
coherency c(x,y) determines its saturation, and the original image I(x,y) 
determines its brightness.

Bundle Parameter. Fluorescence microscopy is well suited to 
detect the presence of bundles in a labeled filamentous network. Bundles 
are detectable because (i) they are brighter than the surrounding 
unbundled network, owing to the spatial condensation of filaments and 
(ii) they are long and thin, owing to the linear structure of the component 
filaments. In order to automatically detect the presence of bundles in 
an image, we developed an algorithm based on these two properties. 
For a pixel to belong to a bundle, we require that (i) it is brighter than 
background pixels and (ii) neighboring pixels’ intensities vary slowly 
along the direction of the bundle but quickly in the orthogonal direction. 
Standard thresholds satisfy requirement (i), and the coherency output 
from OrientationJ satisfies requirement (ii). We combine these methods 
in a six-step process (Fig. 13) comprising ImageJ and MATLAB scripts. 
By processing images of many different chambers, we produce an 
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Figure 13. Bundle parameter. a: Example input image, [actin] = 5 mg mL-

1, [gelsolin]  /  [actin]  =  1⁄370, chamber diameter  =  30  µm, chamber 
depth  =  5  µm. Scale bar 10  µm. b: Six-step algorithm for processing 
images. Step 1: crop to the largest rectangle fitting the chamber 
(panel a, dashed box). Step 2: bandpass filter. Step 3: threshold with 
Kapur’s method. Step 4: coherency of cropped image from Step 1. 
Pixel intensities vary with calibration bar, left. Step 5: multiply images 
from Steps 3 & 4. Pixel intensities vary with calibration bar, left. Step 
6: mean of intensity distribution of nonzero pixels from Step 5. Red 
bar denotes mean intensity, which determines the bundle parameter B. 
For the image in panel a, the bundle parameter is 0.79. Calibration bar, 
below, corresponds to Step 5. c: Determining the bundle parameter for 



109

ensemble-averaged bundle parameter B for every chamber geometry 
and biochemical condition investigated.

Briefly, we threshold images to find the brightest pixels, and use 
this to mask the coherency image. Bright pixels in this masked image 
satisfy both requirements for bundling. We now present each step, 
followed by a discussion of the parameter choices.

Step 1: Crop. We manually crop each image (Fig. 13a) to the 
largest rectangle fitting inside the chamber (Fig. 13b.1). This step avoids 
artifactual coherencies arising at the chamber edges (cf. Fig. 12c).

Step 2: Bandpass Filter. We apply the ImageJ “FFT Bandpass 
Filter” routine (Fig. 13b.2). This step introduces two freely variable 
parameters that determine which spatial frequencies to preserve. We 
choose to remove features below 2px (camera noise) and above 30px 
(uneven illumination, blooming). Because bundles are typically ~5px 
thick, their structure is preserved in the filter. The choice of 30px is 
discussed below.

Step 3: Threshold. We apply Kapur’s threshold method (Fig. 
13b.3), known in ImageJ as “Maximum Entropy”, discussed below.

Step 4: Coherency. We apply OrientationJ to the cropped image 
from the first step and extract the coherency image (Fig. 13b.4). This 
step introduces another variable input parameter which determines 
the width of the ROI around each pixel. We choose the typical bundle 
thickness of 5px for this value.

Step 5: Multiply. We multiply the images from the second 
and fourth steps, effectively masking the coherency image with the 
thresholded image (Fig. 13b.5).

Step 6: Average. We calculate the mean pixel intensity, averaged 
over nonzero pixels (Fig. 13b.6). This mean defines the bundle parameter 
B.

If we eliminate the high-pass cutoff of 30  px in step 2 or make 
it too high, the resulting thresholds become inaccurate, passing more 

a chamber lacking bundles. [actin] = 1 mg mL-1. Note that the bundle 
parameter decreases to 0.27 due to the lack of bundles in the original 
image.
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Figure 14. Dependence of the bundle parameter on threshold. a: A 
sample input image, [actin] = 5 mg mL-1, [gelsolin] / [actin] = 1⁄740, pill-
shaped chamber with xy-dimensions = 60 µm x 30 µm and depth = 5 µm. 
b: Cropped version of panel a along dashed box. c-e: Threshold of panel 
b after bandpass filter, according to the method of Otsu (c), Kapur (d), 
and Yen (e). f: Dependence of threshold on bundle parameter for four 
conditions of constant actin concentration (5 mg mL-1) and of increasing 
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background pixels next to regions with many bundles that appear 
brighter due to blooming. Setting the high-pass cutoff too low results 
in thresholds that may more closely resemble bundles, but include too 
many dark pixels of the original image, contrary to requirement (i). The 
choice of 30px represents a trade-off between these two limits, though 
this value does not significantly affect the bundle parameter.

The threshold in the third step has no variable input parameters, 
but the choice in algorithm requires discussion. Figure 14a,b show 
an extreme example of a chamber where the bundle parameter is 
very sensitive to the choice in threshold algorithm. In this image, the 
boundary between bundle and background is unclear. Here, a permissive 
threshold allows more low-coherency background pixels to pass (Fig. 
14c). A more restrictive threshold allows only the brightest pixels to 
pass (Fig. 14d,e), producing a more accurate mask in accordance with 
requirement (i).

By comparing different threshold methods on different types of 
images, we found that Otsu’s method, a widely-used threshold algorithm, 
is fairly permissive and allows many background pixels to pass (Fig. 
14c). More recent methods based on information theory seem to more 
accurately separate bundles from their background. Kapur’s method 
(Fig. 14d), known as “Maximum Entropy” in ImageJ, maximizes the 
combined entropy of the pixel intensity distributions of the foreground 
and background, defined as (Kapur et al., 1985)

S =°
1X

I=0
p(I ) log2 p(I )

gelsolin concentration. Black crosses denote no threshold, gray circles 
Otsu’s method, red squares Kapur’s method, yellow triangles Yen’s 
method. Error bars indicate standard deviations of ensemble averages 
over N = 177, 43, 70, and 48 chambers for [gelsolin] / [actin] = 0, 1⁄740, 
1⁄370, and 1⁄185, respectively. Below: unprocessed representative images of 
each condition. Every chamber has diameter = 40 µm and depth = 5 µm. 
Scale bar 10 µm.
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Yen’s method (Fig. 14e) minimizes a cost function that considers the 
discrepancy between thresholded and original images along with the 
number of bits needed to represent the original image (Yen et al., 1995).

Fig. 14f shows how these thresholding algorithms affect the bundle 
parameter. In the absence of a threshold (black crosses), the bundle 
parameter does not change with gelsolin concentration, even though 
bundles are clearly visible in the original images (Fig. 14f, below). Otsu’s 
method (gray circles) yields an increase in the bundle parameter but, 
because it averages over more background pixels and hence over more 
low-coherency pixels, yields a lower bundle parameter than Kapur’s (red 
squares) and Yen’s (yellow triangles) methods, especially for [gelsolin] : 
[actin] = 1:740, which produce more accurate thresholds.

The need for an accurate threshold reflects a conscious design 
principle behind the bundle parameter: we consider only the coherency 
of pixels that pass the threshold, but do not normalize against chamber 
volume. Rather than characterizing volume fractions of bundles, we 
only seek to quantify the degree of bundling, reflected in requirements 
(i) and (ii) given above.

Edge Accumulation. Besides bundling, we also observed 
inhomogeneous distributions of non-gel-filtered actin in microchambers. 
Prior studies of actin networks in spherical confinement (vesicles 
and emulsion droplets) showed that actin filaments tend to adopt a 
peripheral localization in order to minimize filament bending. To 
test whether such edge accumulation also occurs in microchambers, 
we developed an image analysis routine to quantify the dependence 
of fluorescence intensity in each chamber as a function of the radial 
distance from the chamber center. To this end, we developed a five-step 
process comprising a MATLAB script (the “onion peel” algorithm). 

Briefly, we threshold the complete image of a chamber to find 
its boundary and then “peel” away layers from this threshold. Pixels of 
the same peel are equidistant from the chamber boundary/center. We 
then separate the original image into a series of peels and plot the mean 
intensity of each peel against the distance from the chamber center. We 
now present each step in more detail:

Step 1: Median filter. We median filter the original image (Fig. 
15a) with a circular kernel of radius 10px (Fig. 15b.i). We choose 
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this filter because it smoothes the image but preserves edges. This is 
necessary to accurately detect chamber boundaries.

Step 2: Threshold. We apply Otsu’s threshold method, which 
in this case accurately captures chamber boundaries (Fig. 15b.ii). 
Kapur’s and Yen’s methods (Fig. 15b.iii and iv, respectively), being more 
restrictive as discussed previously, capture details inside the chamber 
but not its boundary. Applying Otsu’s method to the original image, 
without median-filtering, also results in an inaccurate threshold (Fig. 
15b.v).

Step 3: “Peel-the-onion: loop”. We erode the threshold by one 
pixel and subtract the result to recover a ring of pixels corresponding to 
the chamber’s boundary (Fig. 15b.vi, “onion skin”). We loop this process, 
where each iteration j yields a series of images (Fig. 15b.vii,viii, “peels”) 
and continues until the final iteration which corresponds to the center 
of the chamber (Fig. 15b.ix, “onion core”). Eroding this image would 
yield a dark image with no white pixels. We furthermore convert loop 
iteration j into a unitless distance from boundary by dividing j by the total 
number of iterations jtot (58 total iterations for Fig. 15). Transforming by 
x → 1-x yields a unitless distance from center r / rc, where r is a distance, 
normalized by the chamber’s “radius” rc. Note that r and rc correspond 
to real radii for circular chambers, though for pill-shaped chambers, r 
corresponds to a minimum distance from the “onion core” (Fig. 15b.ix).

Step 4: Multiply. We multiply each peel with the original image. 
This yields a series of images (Fig. 15b.x-xiii) which chop the original 
image into component peels. Because each pixel corresponds to one 
and only one onion peel, the original image is faithfully decomposed 
according to equivalence classes based on distance from boundary.

Step 5. Mean. We compute the mean I of the intensity distribution 
of every peel (Fig. 15b.xiv-xvii), averaged over nonzero pixels, as in Fig. 
15b.1. Because most peels comprise hundreds of pixels (see caption, Fig. 
15b.xiv-xvii), we do not require spatial filtering to become insensitive 
to camera noise. However, because inner peels comprise fewer pixels, 
noise increases as r approaches 0.

We furthermore compute the chamber median Im, defined as the 
median of the product image between the original image (Fig. 15a) 
and the threshold (Fig. 15b,ii), and normalize I by Im. We choose to 
normalize against the median as opposed to the mean because of a 
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Figure 15. Edge accumulation analysis (“onion peel algorithm”). a: 
Example input image, [actin] = 5 mg mL-1, [gelsolin] / [actin] = 1⁄740, pull-
shaped chamber with xy-dimensions = 60 µm x 30 µm and depth = 5 µm. 
Scale bar 10 µm. b: Five-step algorithm for processing images. i: Step 
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1: median filter. ii-iv: Step 2: threshold with the method of Otsu (ii), 
Kapur (iii), and Yen (iv). v: Otsu threshold of the original image (panel 
a). vi-ix: Step 3: “onion peels” corresponding to loop iteration j=1 (vi, 
“onion skin”), 20 (vii), 40 (viii), and 58 (ix, “onion core”). x-xiii: Step 
4: multiply with original image (panel a). xiv-xvii: Step 5: normalized 
intensity distribution of nonzero pixels of (x-xiii). x-axes denote pixel 
intensity. Calibration bars correspond to (x-xiii). Ordinates denote 
normalized frequency with maximum frequencies 44, 17 , 12, and 6 (xiv-
xvii, respectively). Red bars denote mean intensity I, ensemble-averaged 
over total number of pixels 551, 467, 356, 162 (xiv-xvii, respectively). c: 
Plot of I / Im versus r / rc. Calibration bar at x-axis roughly corresponds 
to label color in (b.vi-ix). Sampling frequency of x-axis is 58-1 = 0.017. 
Inset: combining all 58 images from step 3 and shading according to 
iteration j yields a level set. Pixel color map corresponds to calibration 
bar, below, and to x-axis in main panel.

systematic decrease in intensity as r  /  rc approaches 1. This decrease 
corresponds to a diffuse, diffraction-limited boundary between 
chamber and background. The median is insensitive to this systematic 
decrease. We then plot I / Im as a function of r / rc, yielding the desired 
fluorescence intensity as a function of distance from center (Fig. 15c). 
In the example shown, there is no obvious radial dependence of the 
fluorescence intensity.
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4. Septins bundle and curve actin filaments

Actin filaments and myosin motors form a contractile ring during 
cytokinesis, which physically divides the cytoplasm of mitotic cells 
into two daughter cells. Despite the essential role played by actin and 
myosin in this process, the molecular mechanisms that determine their 
organization into a contractile ring remain poorly understood. Here we 
investigate the actin-organizing capabilities of septins, a conserved and 
essential component of the cytokinetic ring. A close interplay between 
septins and the actin cytoskeleton has been previously suggested, but the 
nature of this interaction has remained unclear. In order to investigate 
this interaction, we performed fluorescence microscopy experiments 
on an in-vitro model system of actin filaments crosslinked by fly or 
human septin hexamers. We find that septins directly bind and bundle 
actin filaments. Surprisingly, we also find rings of actin bundles. We 
implement a novel image analysis algorithm to analyze in detail the 
curvature of these rings and correlate this to actin bundle thickness and 
septin binding. We find the same bundling and curving activity for fly 
and human septins, suggesting a conserved function. Our observations 
demonstrate that septins alone are sufficient for actin ring formation, 
which may explain recent in-vivo experiments showing that septins are 
necessary for proper contractile ring formation in Drosophila embryos 
undergoing cellularization.
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4.1 Introduction

Multicellular organisms typically grow by increasing cell number rather 
than cell size. To establish this kind of growth, cells can divide into two 
daughter cells in a process called cytokinesis (Alberts, 2008). During 
cytokinesis, a contractile ring forms at the cell equator, which constricts 
the plasma membrane and ultimately divides the cytoplasm. Despite 
the fundamental importance of cytokinesis in cell proliferation, tissue 
growth, and differentiation, the mechanisms that allow the contractile 
ring to constrict the membrane remain poorly understood (Eggert et 
al., 2006). A core set of approximately 20 conserved proteins is known 
to be needed for cytokinesis, yet their functions in enabling constriction 
remain unclear (Glotzer, 2005).

Septins are among the set of conserved core proteins that are 
necessary for cytokinesis. Septins were originally identified as genes 
that control cytokinesis in the budding yeast Saccharomyces cerevisiae 
(Hartwell, 1971), where septins form a ring of filaments at the bud neck 
(Byers, 1976) and compartmentalize the plasma membrane by acting 
as diffusion barriers (Dobbelaere and Barral, 2004; Takizawa et al., 
2000). Later, septins were also found to localize at the contractile ring in 
higher eukaryotes (Kinoshita and Noda, 2001). Perturbations in septin 
expression are known to lead to defects in cytokinesis, which result in 
aneuploidy and various pathological disorders (Hall and Russell, 2004; 
Lacroix and Maddox, 2011). Yet although septins are known to play an 
essential role in cell division, a molecular understanding of how septins 
contribute to the organization of the contractile ring remains elusive.

Septins are evolutionarily conserved across a wide variety of species 
from yeast to humans (Nishihama et al., 2011; Pan et al., 2007). Septin 
isoforms share several conserved domains: a polybasic domain that binds 
phospholipids on the plasma membrane, a GTP-binding domain, an 
evolutionarily conserved domain of unknown function called the septin 
unique element (Mostowy and Cossart, 2012) (Fig. 1a). Additional, 
less conserved domains also occur. Near the N-terminus, some septin 
isoforms exhibit proline-rich stretches. Near the C-terminus, many 
septin isoforms exhibit coiled-coil domains. Many different septin genes 
and splice variants are known to exist. The number of septin isoforms 
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per organism depends on species: the green alga Chlamydomonas 
reinhardtii encodes 1 septin, Caenorhabditis elegans and Xenopus laevis 
have 2 septins each, Drosophila melanogaster has 5, Saccharomyces 
cerevisiae has 7 septins and Homo sapiens has 13 (Beise and Trimble, 
2011; Weirich et al., 2008). Animal septin genes can be classified into 
four groups—commonly denoted as 2, 3, 6, and 7—based on sequence 
homology (Nishihama et al., 2011; Pan et al., 2007). Endogenous septins 
commonly exist as hetero-oligomeric complexes comprising different 
septins. Human septins assemble in hexamers of groups 7-6-2-2-6-7, or 
in octamers which also include septins from group 3 (Sellin et al., 2011) 
(Fig. 1b). Hexamer formation is mediated by the GTP-binding domain 

a   Septin domain structure

b   Septin hexamer structure

c   Septin �lament structure

N C

Pro-rich
Polybasic

GTP-Binding

Septin-unique element
Coiled-coil

SEPT7
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Figure 1. Schematic of septin architecture. a. Domain structure of 
septin proteins. b. Human septin hexamer structure. Color denotes 
septin isoform. Labels refer to nomenclature from human septins. 
Black spirals represent coiled-coil domains. Circles labeled “G” denote 
GTPase domains located at the interface between septin subunits. c. 
Septin filament structure, which is axially apolar but has a top-down 
asymmetry with membrane-binding domains on one side and coiled-
coil domains on the other side.
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and the N- and C-terminal regions between monomers (Sirajuddin 
et al., 2007). Septin hexamers can further assemble end-to-end into 
filaments, which are symmetric along the filament axis (Bertin et al., 
2008; Sirajuddin et al., 2007) (Fig. 1c). Septin filaments, in turn, can 
further associate to form higher-order structures, such as laterally-
associated bundles which are likely mediated by interactions between 
coiled-coil domains (Bertin et al., 2008). Septin bundles can form ring-
like assemblies or flat, gauze-like structures (Bertin et al., 2010; Garcia 
et al., 2011). Given that septins readily assemble to form a rich variety of 
filamentous structures, septins are gaining recognition as a component 
of the cytoskeleton distinct from actin filaments, microtubules, and 
intermediate filaments (Mostowy and Cossart, 2012).

Previous studies have established a number of interactions between 
septins and various molecular partners. Septins bind cell membranes 
through specific recognition of acidic phospholipids (Bertin et al., 2010; 
Casamayor and Snyder, 2003; Tanaka-Takiguchi et al., 2009; Zhang et 
al., 1999) and stiffen the plasma membrane to facilitate bleb retraction 
in T-cells (Gilden et al., 2012; Tooley et al., 2009). Septins have also been 
shown to significantly contribute to the cortical rigidity of interphase 
human carcinoma cells (Mostowy et al., 2011). Septins furthermore 
bind the actin-binding protein anillin (D’Avino et al., 2008; Field, 2005; 
Kinoshita et al., 2002; Oegema et al., 2000; Silverman-Gavrila et al., 
2008) as well as non-muscle myosin II motors (Joo et al., 2007; Mostowy 
et al., 2010). Septins have also been shown to regulate the contractility 
of the actomyosin ring during cytokinesis in developing Drosophila 
epithelia (Founounou et al., 2013; Guillot and Lecuit, 2013). A close 
interplay between septins, the plasma membrane, and the actomyosin 
network is likely essential for many cortical biological processes 
including cytokinesis (Gilden and Krummel, 2010). But understanding 
how these interactions allow septins to organize the contractile ring 
remains elusive.

In this chapter, we present results that show that Drosophila and 
human septins alone are sufficient to organize actin filaments into 
bundles and bundle rings, which may be necessary for proper contractile 
ring assembly. In Section 2, we briefly introduce in-vivo experiments, 
performed by Manos Mavrakis, which demonstrate that septins are 
necessary for proper actomyosin ring formation in Drosophila embryos 
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undergoing cellularization, a process driven by constriction of an 
actomyosin ring in a process resembling cytokinesis. In Section 3, 
we report fluorescence microscopy experiments on an in-vitro model 
system of actin filaments crosslinked by Drosophila septin hexamers. We 
find that septins directly bind and bundle actin filaments. Surprisingly, 
we also find rings of actin bundles, which have a characteristic radius of 
curvature of ~1 µm. This observation shows that septins are sufficient 
for proper actin bundle and bundle ring formation. We find the same 
bundling and curving activity for human septin hexamers, suggesting 
a conserved function. We implement a novel image analysis algorithm 
to analyze the curvature of actin rings and bundles and correlate this to 
actin bundle thickness and septin binding. In Section 4, we discuss the 
mechanisms that may be responsible for the ability of septins to readily 
form curved bundles and rings. This property makes septins unique 
among the actin-binding proteins currently known.

4.2 Motivation

In order to investigate the role of septins in organizing the actin 
cytoskeleton, we consider Drosophila melanogaster (fruit fly) embryos 
undergoing cellularization. We briefly introduce the main findings of 
experiments performed by our collaborator Manos Mavrakis (CNRS/
Aix-Marseille U) that elucidate the physiological role of septins, which 
have been found necessary to organize the actomyosin contractile ring 
during cellularization.

At 2h  10min after fertilization, Drosophila embryos undergo a 
process called cellularization (Fig. 2a). During this phase of development, 
the syncytial embryo, which consists of a single cell (~500 µm in 
length) with thousands of nuclei, undergoes a drastic morphogenetic 
change. The plasma membrane invaginates to separate each nucleus and 
eventually form a closed epithelium of individual cells in roughly two 
steps. During the first step a membrane front called the furrow canal 
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invaginates from the apical side (Fig. 2b). During invagination, proteins 
at the furrow canal assemble into circular contractile rings (Fig. 2c). In 
the second step, the contractile rings constrict (from a diameter of ca. 5 
µm to 2 µm) to form thousands of distinct, polarized epithelial cells. The 
constriction of the furrow canal is reminiscent of cytokinesis (Lecuit, 
2004). The contractile ring at the furrow canal contains actin filaments, 
non-muscle myosin-II motors, anillin, and septins (Pnut/hSep7, DSep1, 
and DSep2). This cytoskeletal structure is thought to stabilize the tips of 
invaginating membranes and drive constriction (Field, 2005).

When septins are absent, cellularization and the associated 
cytoskeletal structures are markedly changed, as demonstrated by live 
cell imaging of fly knock-out mutants lacking Pnut/hSep7 and DSep1. 
During the first step of cellularization, the membrane front invaginated 
more slowly and accumulated less myosin and actin compared to wild 
type embryos (data not shown). During the second step, the furrow 
canal failed to form circular rings. Rather, actin accumulated in linear 
structures along polygonal segments (Fig. 2d). Polygon vertices were 
largely devoid of actin. Myosin foci were unevenly distributed in 
polygonal arrays (data not shown). Furrow canals showed defects in 

a c d

b
WT Septin mutant

Figure 2. Drosophila embryos lacking septins fail to form circular 
contractile rings. a. A wild-type embryo during cellularization. Scale 
bar 50 µm. b. Closeup of a, acquired by two-photon fluorescence 
microscopy. Fluorescence signal corresponds to the location of myosin 
at the membrane front, which migrates away from the apical surface. c. 
Top view of actin signal at the membrane front during the slow phase. 
Actin forms uniform rings. d. Top view of actin signal at the membrane 
front during the slow phase for embryos lacking septins. Note that actin 
filaments arrange in linear bundles which form disconnected polygonal 
arrays. Scale bars 5 µm.
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constriction: some constricted poorly, some constricted prematurely, 
and some constricted normally.

During both invagination and constriction, anillin was present 
at the furrow canal, consistent with previous findings (Adam et al., 
2000). In septin knock-outs, anillin co-localized with actin and myosin 
at polygonal arrays. This result suggests that anillin is not necessary to 
form ring-like structures. Indeed, anillin point mutations that interfere 
with septin binding to the furrow canal result in the same phenotypes 
as observed for the septin knock-outs (Field, 2005). Together, this 
evidence shows that septins are necessary for the proper assembly of 
the contractile ring during cellularization in Drosophila embryos. 
Furthermore, this evidence suggests that septins directly interact with 
the actin cytoskeleton.

However, septins are commonly believed to not interact directly 
with actin. A previous in-vitro study showed that human septins (Sep2-
Sep6-Sep7 hexamers) do not interact directly with actin filaments, but 
instead interact indirectly through the protein anillin (Kinoshita et 
al., 2002). Yet this study is difficult to reconcile with growing in-vivo 
evidence suggesting a strong interplay between septins and the actin 
cytoskeleton. Septins decorate interphase stress fibers (Surka et al., 
2002), and septin-depleted fibroblasts lack stress fibers (Kinoshita et 
al., 2002). Septin depletion in human carcinoma cells decreases cortical 
stiffness in a manner consistent with actin disruption (Mostowy et al., 
2011). Since anillin is sequestered within the nucleus during interphase 
(Field and Alberts, 1995; Oegema et al., 2000), this stiffness modulation 
is independent of anillin. We therefore set out to test whether septins 
and actin can directly interact by systematically combining purified 
proteins at a range of different protein concentrations.
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4.3 Results

In order to investigate whether septins can organize the cytoskeleton 
into higher-order structures, we perform experiments with a minimal 
in-vitro model system of fluorescently labeled, reconstituted proteins 
imaged by TIRF microscopy (see Methods). We polymerize purified 
rabbit skeletal muscle actin at low concentration (1 µM), where filaments 
are largely non-overlapping, in the presence of recombinant Drosophila 
melanogaster (fly) septin complexes (DSep1-DSep2-Pnut).

Morphology of septin-actin structures. Polymerizing actin 
filaments in the presence of septin hexamers yields a variety of bundled 
structures, as depicted in Figure 3. The septin concentration sensitively 
determines bundle morphology. For low concentrations of septins (up 
to 0.02 µM), we find single actin filaments that do not appear to interact. 
Increasing the septin concentration to 0.05 µM results in long, thick 
bundles. Bundles also exhibit a frayed brush of single actin filaments, 
both at bundle ends as well as along the bundle contour (see insets, 
black arrows). Single filaments are visible adjacent to these bundles. 
Increasing the septin concentration further to 0.1 µM again results 
in long, thick bundles. These bundles interconnect to form a sparse 
bundle network. Bundles sometimes form curved, looped structures. 
Increasing the septin concentration to 0.2 or 0.3 µM results in a drastic 
change: rather than straight bundles, actin filaments form highly curved 
structures. The most common structures found are closed rings. Straight 
bundles also occur. Rather than a frayed brush, bundle ends often 
exhibit lasso shapes. Further increasing the septin concentration to 0.5 
and 1 µM similarly results in closed rings, but with a lower probability. 
Straight bundles and lassos occur more commonly than rings. Further 
increasing the septin concentration to 2 and 3.8 µM results in fewer 
rings and lassos, and a prevalence of thick, straight bundles. Strikingly, 
bundles exhibit sharp kinks and zigzags. These results show that bundle 
morphology is sensitively controlled by septin concentration.

In order to determine septin localization on actin structures, we 
polymerize actin filaments in the presence of fluorescently labeled Alexa-
Fluor-488 fly septins. Figure 4 shows that fluorescently labeled septins 
are also capable of promoting the formation of actin filament rings, 
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consistent with the activity of unlabeled septins. For low concentrations 
(0.1 µM), bright septin puncta decorate long actin bundles. Increasing 
the septin concentration to 0.2 µM produces actin rings with septins still 
binding often as isolated puncta, though septins can also accumulate 
along the entire circumference of some rings. Increasing septins to 0.5 
µM yields rings as well as linear bundles. The strongest septin signals 
occur on thick, straight segments, indicating strong bundling.

So far we have shown that Drosophila septins organize actin 
filaments into straight and curved bundle structures. In order to test if 
this ability is not restricted to a single set of species-specific septins, we 
repeat the above assays with recombinant human septins. Polymerizing 
actin filaments in the presence of human septin hexamers (hSep2-
hSep6-hSep7) indeed yields similar behavior to fly septins (Fig. 5). Single 
actin filaments prevail up to 0.02 µM; thick bundles prevail at 0.05 µM; 
thick bundles and occasional rings prevail at 0.1 µM; loops and lassos 
prevail at 0.2, 0.3, and 0.5 µM; and finally straight and kinked bundles 
prevail at 1 µM and above. The morphologies of bundles formed with 
human septins do differ slightly from those of the fly-septin structures. 

0.02 0.05 0.1 0.2 0.3

0.5 1 2 3 3.8

Fly Septins

[septin] / µM

Figure 3. Dependence of F-actin bundle morphology on fly septin 
concentration. Snapshots are represented with an inverted lookup table. 
[actin] = 1 µM. Scale bar 20 µm.
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In particular, closed rings appear less frequently at 0.2–0.3 µM, though 
lassos remain common. Yet the concentrations of human septins that 
determine the onset of these different bundle morphologies agree well 
with fly septins. These results show that human septins organize actin 
similarly to fly septins, suggesting that the actin-organizing capabilities 
of septin complexes are evolutionarily conserved.

0.1 0.2 0.5

Alexa-Fluor-488 Fly Septins

[septin] / µM

actin

septin

actin
septin

Figure 4. Localization of fly septins on F-actin bundles for different 
septin concentrations. Top row: snapshots of fluorescently labeled 
actin filaments, represented with an inverted lookup table. Middle row. 
snapshots of fluorescently labeled septins, represented with an inverted 
lookup table. Bottom row. merge of images from top and middle rows. 
Actin is shown in red, and septins are shown in cyan, both with linear 
lookup tables. [actin] = 1 µM. Scale bar 20 µm.
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Curving actin bundles into rings and lassos entails a high energy 
penalty associated with bending of the semiflexible actin filaments. 
Bundle curvature should reflect a balance between adhesion energy 
provided by septins and bending energy associated with the actin 
filaments (Cēbers et al., 2006; Tang et al., 2001). To test this hypothesis, 
we repeated the TIRF experiments in the presence of the actin-binding 
drug phalloidin, which increases the persistence length of actin filaments 
from 9 to 18 µm (Isambert et al., 1995). Qualitatively, we find similar 
phase behavior of bundling for both fly septins (Fig. 6) and human 
septins (Fig. 7). However, the range of septin concentrations where 
rings and lassos form narrows slightly: for fly septins the concentration 
range is 0.2–1 µM with phalloidin versus 0.1–3 µM without phalloidin, 
and for human septins the concentration range is 0.3–0.5 µM with 
phalloidin versus 0.1–0.5 µM without phalloidin. Thus, loops and lassos 
appear qualitatively less frequently when phalloidin is present. This 
is particularly apparent at 0.2–0.5 µM, where long, straight bundles 
prevail instead of rings and lassos. These results indicate that phalloidin-
induced filament stiffening partially inhibits ring and lasso formation.

0.05 0.1 0.2 0.3

0.5 1 1.7 2.2
[septin] / µM

Human Septins

Figure 5. Dependence of F-actin bundle morphology on human septin 
concentration. Snapshots are represented with an inverted lookup table. 
[actin] = 1 µM. Scale bar 20 µm.
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Fly Septins, with Phalloidin

0.02 0.05 0.1 0.2 0.3

0.5 1 2 3 3.8
[septin] / µM

Figure 6. Effect of phalloidin on fly-septin-mediated F-actin bundling. 
Snapshots are represented with an inverted lookup table. [actin] = 1 µM, 
[phalloidin] = 1 µM. Scale bar 20 µm.

0.05 0.1 0.2 0.3

0.5 1 1.7 2.2
[septin] / µM

Human Septins, with Phalloidin

Figure 7. Effect of phalloidin on human-septin-mediated F-actin 
bundling. Snapshots are represented with an inverted lookup table. 
[actin] = 1 µM, [phalloidin] = 1 µM. Scale bar 20 µm.
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So far we have presented results of actin filaments that co-
polymerize in the presence of septins. For co-polymerization 
experiments, the morphology of bundled structures may strongly 
depend on the kinetics of actin filament assembly (Falzone et al., 2012). 
In some cases, kinetic trapping has been shown to induce residual 
stresses evident from increased bundle curvature (Schmoller et al., 
2008). In order to determine the effect of assembly kinetics on septin-
mediated actin bundle formation, we perform two experiments. First, 
we pre-polymerize actin in the absence of septins, and then add septins 
(Fig. 8). For 0.1 µM septins, straight or curved bundles prevail. Rings 
and lassos only occur after increasing the septin concentration to 0.2 
and 0.5 µM. Rings and lassos do occur less frequently compared to co-
polymerization experiments. However, their appearance depends on 
septin concentration in a manner consistent with co-polymerization 
experiments. This result indicates that kinetic effects alone cannot fully 
account for ring and lasso formation. Second, we ablate septin bundles 
using a pulsed infrared laser (see Methods). By recording images of 
septin bundles before and after ablation, we can determine whether 
relaxation occurred. Many ablation experiments appear to result in 
no relaxation (Fig. 9a, top row), likely because illumination caused 
photobleaching but not severing. However, we were able to clearly 
identify seven severing and relaxation events (Fig. 9a, bottom row; 

0.1 0.2 0.5

Fly Septins, Prepolymerized Actin

[septin] / µM

Figure 8. Effect of pre-polymerized actin filaments on fly-septin-
mediated bundling. Snapshots are represented with an inverted lookup 
table. [actin] = 1 µM. Scale bar 20 µm.
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Fig. 9b). In these events, bundles became slightly straighter, indicating 
relaxation of internal stresses likely caused by kinetic effects.

Quantification of bundle curvature. The TIRF images shown so 
far present qualitative evidence that actin-septin bundles can exhibit 
a wide range of curved morphologies. In order to quantify these 
morphologies, we developed an algorithm to measure the curvature 
C(s) of a point s on a bundle (see Image Analysis). Higher values of 
C(s) denote regions that are more highly curved. Because samples yield 
a variety of different structures, here we restrict our analysis to over 
4000 manually identified rings and lassos (see Methods). Figure 10a 
depicts representative examples of rings and lassos of various sizes, as 
well as the measured curvature along bundle contours. We represent an 
individual ring or lasso by the distribution of measurements C(s) over 
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Figure 9. Cutting actin-fly septin bundles by localized laser ablation 
results in relaxation of bundle shape. [actin] = 1 µM, [septin] = 0.5 µM. 
Snapshots are represented with a linear lookup table. a. Left column. 
Snapshot of fluorescently labeled actin bundles before ablation. Middle 
column. After ablation. Right column. Merge of before (magenta) and 
after (cyan) images. Top row. Attempted laser ablation does not result 
in a significant reorganization of bundles, probably because bundles 
are not successfully severed. Bottom row. Bundles clearly relax after a 
successful laser ablation attempt. Arrows indicate location of ablation 
attempt. b. Merged snapshots of six successful ablation attempts. Scale 
bars 10 µm.
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Figure 10. Representative images of manually selected rings and 
lassos, together with their measured curvatures. a. Top. Snapshots of 
fluorescently labeled actin filaments bundled by fly septins. Bottom. 
Result of curvature algorithm. Pixel color corresponds to the local 
curvature (calibration bar, below). Note that color changes from blue-
green to red at positions along the bundle contour which are more highly 
curved. Actual features in curvature images are 1-px-thick. A maximum 
filter (1 px radius) was applied to make features thicker and more 
readily visible. Black lines pointing to calibration bar represent mean 
curvature, averaged over all pixels in the curvature image. b. Histogram 
of curvature measurements for the two loops pictured. Distribution is 
represented by the mean C (dashed black line) and standard deviation 
Cσ. Note that the kinked ring (right) exhibits a wider distribution of 
curvatures than the convex ring (left). [actin] = 1 µM.
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Figure 11. Effect of septin concentration on the curvature of rings and 
lassos for the different conditions as denoted in the graph titles. Box 
plots depict the distribution of mean curvatures C. Blue boxes denote 
interquartile ranges (IQR). Pink boxes denote 95% confidence intervals 
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all points s along its contour, and extract the mean curvature C and the 
standard deviation Cσ (Fig. 10b). Rings and loops can be approximated 
by a circle with radius rC = C-1. The value Cσ measures the deviation 
from a perfectly circular shape: circular rings yield relatively low values 
(Fig. 10b, left), while kinked and irregularly-shaped rings yield higher 
values (Fig. 10b, right).

We now quantify the effect of septin concentration on the curvature 
C. For example, Figure 11 represents the curvature C of individual loops 
and lassos, separated across different sample conditions. We characterize 
distributions with their medians (red lines), 95% confidence intervals 
(pink bars), and interquartile ranges (blue bars). We find that the septin 
concentration strongly affects curvature of rings and loops, C being 
always roughly maximized in the range of 0.2–0.5  µM septin. Lower 
and higher concentrations of septins tend to result in lower curvatures. 
However, the absolute value of C in this septin concentration range is 
dependent on the sample conditions. For fly septins, we find median 
values of curvature C  / µm-1 = [1.19, 1.22, 1.08] for [0.2, 0.3, 0.5] µM 
septins, respectively. These values decrease by a factor of 1.1–1.4× 
to  [0.87, 1.06, 0.98] µm-1 in the presence of phalloidin. For human 
septins, the values of C are lower than for fly septins: In the absence of 
phalloidin, C  / µm-1 = [0.92, 0.98, 0.88] for [0.2, 0.3, 0.5] µM septins, 
respectively. Adding phalloidin further decreases curvature by a factor 
of 1.0–1.3× to C  /  µm-1  =  [0.84, 0.75, 0.90]. For pre-polymerization 
experiments, we observe drastically smaller median curvature values, 
where C  /  µm-1  =  [0.50, 0.63] for [0.2, 0.5] µM septins, respectively. 

(CI), computed using the bootstrap method (see Methods). Red lines 
denote sample medians. Two datasets are statistically significantly 
different from each other (p ≲ 0.01) if their CIs do not overlap. Number 
N of data points (each representing an individual ring or lasso) for the 
different distributions, from left to right: Fly Septins: 134, 1042, 88, 570, 
717, 108, 27. Fly Septins +Phalloidin: 26, 78, 27, 85, 75, 77, 44. Human 
Septins: 156, 198, 108, 53, 7. Human Septins +Phalloidin: 1, 30, 5, 5. Fly 
Septins +Pre-polymerization: 1, 9, 47. Alexa-Fluor-488 Fly Septins: 32, 
273, 139. [actin] = 1 µM.
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Figure 12. Effect of septin type as well as phalloidin on the curvature of 
rings and lassos in samples prepared at septin concentrations between 
0.2 and 0.5 µM. Box plots depict the distribution of mean curvatures C, 
as in Figure 11. Number N of data points for the different distributions, 
from left to right: 1700, 412, 359; 190, 40. [actin] = 1 µM.
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Figure 13. Effect of pre-polymerized actin on the curvature of rings and 
lassos for samples prepared at fly-septin concentrations between 0.2 and 
0.5 µM in the absence of phalloidin. Box plots depict the distribution 
of mean curvatures C, as in Figure 11. Number N of data points for the 
different distributions, from left to right: 1700, 56. [actin] = 1 µM.
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However, Alexa-Fluor-488-labeled fly septins show strikingly similar 
maximum values of C as unlabeled fly septins: [1.23, 1.08] µm-1 for [0.2, 
0.5] µM septins, respectively.

In order to directly compare how different sample conditions 
affect the curvature C, we now restrict our attention to samples prepared 
with septin concentrations in the range 0.2–0.5 µM. Figure 12, left panel 
shows that fly septins yield significantly higher C than human septins 
(C  / µm-1 = 1.15 vs. 0.93), while fluorescently labeled fly septins yield 
curvatures that are comparable to unlabeled fly septins (C  /  µm-1  = 
1.18 vs. 1.15). This result indicates that labeling by Alexa-Fluor-488 
does not interfere with ring formation. Meanwhile, the right panel 
shows that phalloidin reduces curvature of rings and lassos for both fly 
and human septins by factors of 1.2 and 1.1x to C  / µm-1 = 0.93 and 
0.84. This decrease of curvature indicates that phalloidin-treated actin 
filaments incur a higher energetic penalty due to bending. Figure 13 
shows that curvature is drastically reduced by a factor of 1.9x in pre-
polymerization experiments compared to co-polymerization assays 
(C / µm-1 = 0.59 vs. 1.15). This result indicates that assembly kinetics play 
a non-negligible role in filament formation. In Figure 14, we separately 
show the curvature of rings and lassos, for the pooled data (left panel) 
and separated by sample conditions (right panels). Lassos have lower 
curvatures than rings when pooling all data (C / µm-1 = 1.19 vs. 1.00), 
as well as individually for most sample conditions. These lower average 
curvatures stem from the mostly straight segments close to the lasso 
neck.

We hypothesized that bundle curvature arises from a balance 
between septin binding and actin-filament bending. So far, we have tested 
this hypothesis by varying actin filament stiffness with phalloidin. But 
in addition, we can estimate the number of bound septin hexamers per 
ring by averaging the fluorescence intensity of Alexa-Fluor-488 septins 
along bundle contours (see Methods). Figure 15 (left panel) shows the 
distributions of mean septin fluorescence on rings and lassos (pooled) 
as a function of the septin concentration. The fluorescence intensity 
of bound septins does not depend significantly on the concentration 
of septins in solution. Despite a five-fold increase in total septin 
concentration in solution, rings and lassos appear to exhibit roughly 
the same number of bound septins. Furthermore, rings that have more 
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Figure 14. Differences between rings and lassos in samples prepared 
at septin concentrations between 0.2 and 0.5 µM, across all conditions 
(left panel) and broken down by condition (right panels). Box plots 
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bound septins tend to exhibit slightly lower curvatures (Fig. 15, right). 
This result is surprising. According to our hypothesis, we should expect 
higher curvatures.

In order to further investigate the interplay between septin binding 
and filament bending, we estimate the number of actin filaments in rings 
and lassos by averaging the actin fluorescence intensity along bundle 
contours (see Methods). Across all samples, curvature does not depend 
significantly on the number of actin filaments per ring or lasso (Fig. 
16, pooled data). This result indicates that bundle curvature remains 
constant for bundles of varying thickness. However, the number of 
actin filaments in a ring or lasso does depend on septin concentration. 
Surprisingly, at higher septin concentrations, rings and lassos contain 
fewer actin filaments. This trend is not always visible when plotting all 
experimental trials together (Fig. 17, left panels). But comparing data 
within individual trials shows that the number of actin filaments tends 
to decrease for septin concentrations at or above 1 µM (right panels 
of Fig. 17). Indeed, the number of actin filaments between trials can 
vary considerably (Fig. 18, left column). Meanwhile, curvature does 
not vary among different trials as strongly (Fig. 18, right column). The 
large variation of the number of actin filaments between samples could 
indicate sensitivity to kinetic effects. However, the number of actin 
filaments in a ring or lasso does not appear to significantly affect bundle 
curvature.

 We found kinked bundles and zigzags at higher septin 
concentrations (cf. Figs 3, 5–7). In order to quantify this finding, we plot 
the standard deviation of curvatures Cσ, normalized by curvature C, as a 
function of septin concentration (Fig. 19). This dimensionless quantity 
attains maximal values for septin concentrations above 1 µM, both 

down by experimental trial. Box plots as in Figure 11. Number N of data 
points for the different distributions, from left to right: Top row: All 
trials: 135, 1051, 88, 617 717, 108, 27. Trial A: 33, 142, 88, 200, 151, 32, 
27. Trial B: 54, 422, 370, 544. Trial C: 47, 478, 22, 76. Bottom row: All 
trials: 26, 78, 27, 85, 75, 77, 44. Trial A: 4, 42, 27, 16, 50, 44. Trial B: 21, 
16, 9. Trial C: 1, 20, 60, 75, 27. [actin] = 1 µM.
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Figure 18. Number of actin filaments, but not curvature, depends 
strongly on experimental trial. Left column. Number of actin filaments 
plotted against experimental trial. Right column. Mean curvature C 
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in the absence (left) and presence (right) of phalloidin. Kinked rings 
have higher values of Cσ / C (cf. Fig. 10) and the increase of Cσ / C with 
increasing septin concentration agrees with the emergence of kinked 
rings at high septin concentrations (cf. Fig. 3).

Septins organize entangled actin solutions into networks of 
curved bundles. So far we have investigated the effect of septins at low 
actin concentrations (1  µM). We found that septins organize dilute 
suspensions of actin filaments into straight, as well as ring- and lasso-
shaped bundles. At higher actin concentrations, actin filaments form 
entangled networks. Adding crosslinks to such entangled networks 
results in networks of bundles which may or may not coexist with a 
random meshwork of crosslinked filaments. Under these conditions, 
crosslinks strongly affect the mechanical properties of actin networks, 
which is evident in an increased storage modulus G’ (Lieleg et al., 2010).
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Figure 19. The dispersion of the distribution of curvatures of loops 
and lassos for samples is smaller for samples prepared with fly septin 
concentrations of 0.2–0.5 µM in the absence of phalloidin. Coefficient 
of variation (standard deviation Cσ of curvature measurements, 
normalized by mean curvature C), as a function of septin concentration. 
For reference, values of Cσ / C of the two rings from Figure 10, panel b are 
shown in thin black horizontal lines. Box plots as in Figure 11. Number 
N of data points for the different distributions, from left to right: 134, 
1042, 88, 570, 717, 108, 27; 26, 78, 27, 85, 75, 77, 44. [actin] = 1 µM.
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Figure 20. Effect of fly septins on entangled networks of actin filaments. 
[actin] = 12 µM. Snapshots depict maximum-z-projections over 10 µm. 
Snapshots are represented with an inverted lookup table. Scale bar 20 
µm.
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Figure 21. Effect of human septins on entangled networks of actin 
filaments. [actin] = 12 µM. Snapshots depict maximum-z-projections 
over 10 µm. Snapshots are represented with an inverted lookup table. 
Scale bar 20 µm.
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In order to determine how septins contribute to the morphology 
of entangled actin networks, we polymerize higher concentrations of 
actin (12 µM) in the presence of varying amounts of fly and human 
septins as well as phalloidin. We acquire snapshots of these networks by 
confocal microscopy (see Methods) and represent them by maximum-
intensity projections along the z-direction. Figure 20 shows that for 
low concentrations of fly septins (up to 0.1 µM), actin networks form a 
fine meshwork with a homogeneous fluorescence signal across the field 
of view. Increasing the septin concentration to 0.2 µM produces short 
bundles surrounded by a fine meshwork of actin filaments. Further 
increasing the septin concentration results in longer, thicker bundles, 
while the surrounding actin meshwork decreases in fluorescence 
intensity. Human septins show similar behavior as fly septins, as shown 
in Figure 21.

 In order to quantify the effect of septin bundling on the 
mechanical properties of these entangled networks, we measure the 
storage modulus G’ and loss modulus G” of networks of actin filaments 
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polymerized in the presence of fly septins in a cone-plate rheometer 
(see Methods). For comparison, we also perform experiments with 
networks bundled by fascin, a well-characterized bundling protein that 
is known to increase the stiffness of actin networks (Lieleg et al., 2007). 
The storage modulus G’ is a measure of a material’s stiffness (solid-like 
component), whereas the loss modulus G” is a measure of a material’s 
viscosity (fluid-like component) (Macosko, 1994). Figure 22 (left panel) 
shows the effect of septin concentration on G’ and G”. For actin-only 
networks ([septin] = 0 µM), we find G’ ≈ 1 Pa, while G” is about 4-fold 
lower. The proportion of G’ to G” remains essentially unchanged when 
adding septins to 1 µM. But increasing septin concentration results in 
stiffer networks, as evidenced by an increase in G’. At 2 µM septins, we 
find that stiffness increases to a maximal value of G’ ≈ 4 Pa. The network 
stiffness is comparable to the stiffness of actin networks bundled with 
fascin (square symbols). These results indicate that septins can stiffen 
entangled actin networks in a manner consistent with other crosslink 
proteins.

4.4 Discussion

We performed experiments characterizing the ability of septins to bind, 
bundle, and curve actin filaments. The ability of septins to bind and 
bundle actin filaments overthrows previous assumptions that septins do 
not directly interact with actin filaments. These assumptions were based 
on previous in-vitro experiments with recombinant septins (Kinoshita 
et al., 2002). In these experiments, septin complexes were assembled 
from human Sept6-Sept7 and mouse Sept2 (which is 99% identical 
to human Sept2) purified from Sf9 cells (as opposed to our bacteria-
purified septins). These septin complexes only bound to actin bundles 
when anillin was present. Here we expressed septin complexes of human 
Sept2-Sept6-Sept7, as well as fly Pnut-DSep2-DSep1 and found that both 
septin complexes bundle actin in the absence of anillin. Furthermore, 
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we were able to investigate a wide range of septin concentrations, up to 
the micromolar range. In Kinoshita et al. (2002), the concentration of 
septin complex assayed was 0.3 µM. Our results indicate that human 
septins only cause bundling at concentrations above ~0.1 µM. The 
discrepancy between our results and those in Kinoshita et al. may arise 
from variability in the minimum concentration of septins needed to 
organize actin filaments into rings. Additionally, all our experiments 
were performed at 50 mM potassium chloride (KCl). When increasing 
KCl to 200 mM, septin-induced bundles disappeared (Tsai, 2013). The 
final KCl concentration used in Kinoshita et al. was likely above 100 
mM.

The ring and lasso morphologies formed with septin are strikingly 
different from the straighter bundle morphologies observed with well-
known actin bundlers, such as fimbrin (Glenney et al., 1981), fascin 
(Claessens et al., 2008; Edwards et al., 1995; Lieleg et al., 2007), α-actinin 
(Meyer and Aebi, 1990; Wachsstock et al., 1993), and filamin (Schmoller 
et al., 2009; Stossel et al., 2001). However, rings and lassos have been 
observed under non-physiological conditions, when actin was bundled 
by polyvalent cations (such as magnesium (Cēbers et al., 2006; Tang et 
al., 2001) or copper (Kaur et al., 2011)), depletion interactions (Cēbers 
et al., 2006; Lau et al., 2009; Sanchez et al., 2010), or biotin-streptavidin 
(Tang et al., 2001). Here it was proposed that actin curvature arises from 
a balance between adhesion energy provided by the attractive interaction 
between filaments and the energy penalty associated with bending the 
actin filaments (Cēbers et al., 2006). Typical ring diameters varied in 
the range of 3–10 µm for counterion-induced rings, while biotin-
streptavidin crosslinks formed rings of 2–3  µm diameters. Smooth 
contours have been reported for depletion-induced rings (Cēbers et 
al., 2006), while kinked contours occur for counterion-induced and 
streptavidin-mediated rings (Cēbers et al., 2006; Kaur et al., 2011; Tang 
et al., 2001). Notably, the likelihood of encountering actin rings was 
not directly addressed in prior reports. Thus, ring formation in those 
reports may have been a rare event, perhaps occurring alongside more 
common linear bundles.

We showed that septins readily form actin rings and lasso 
structures. This surprising property of septins allowed us to quantify the 
effect of various conditions on the curvature C of over 4000 manually 
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identified rings and lassos. Median curvatures ranged from 0.5–1.3 
µm−1, which corresponds to ring diameters of 1.4–4 µm. These diameters 
are comparable to the diameters of rings formed by biotin-streptavidin 
links, and smaller than the rings formed by counterions and depletion 
agents. The ability of biotin-streptavidin crosslinks to promote smaller 
rings (higher curvature) than counterions and depletion agents was 
rationalized in terms of its extremely high binding affinity, with a 
dissociation constant Kd on the order of 10-14  M (Green, 1990). The 
binding affinity of septins for actin is orders of magnitude less, with 
values of Kd for Drosophila septins on the order of 10-6 M, as measured 
by co-sedimentation assays (Tsai, 2013). This affinity is comparable to 
that of other actin-binding proteins (Chen et al., 1999; Goldmann and 
Isenberg, 1993; Meyer and Aebi, 1990; Ono et al., 1997; Skau et al., 2011; 
Wachsstock et al., 1993; Yamakita et al., 1996). Surprisingly, we found that 
the number of actin filaments does not seem to strongly correlate with 
curvature (cf. Fig. 16). This is in strong contrast to previous qualitative 
observations that straight segments have a larger actin fluorescence 
intensity than kinks, suggesting an inverse relationship between bundle 
thickness and curvature (Tang et al., 2001). 

The surprisingly high curvature of the rings and the lack 
of correlation with actin bundle thickness are inconsistent with a 
simple equilibrium model based on the balance of the two energetic 
contributions of actin filament bending (which depends on the number 
of filaments in the ring) and septin binding. One alternative scenario is 
that once a “nucleating” actin ring is formed by the complete bending 
of a single filament, subsequent filament growth and/or annealing of 
neighboring filaments can wrap around this initial ring, mediated by 
the addition of more septins. In this scenario, septins act as molecular 
“stickers”, which have enough binding energy to pin actin filaments into 
curved geometries. Assuming such a scenario, we estimate the number 
n of septin crosslinks needed to bend a single actin filament into a ring. 
We consider the following formula, which was originally derived to 
estimate n for biotin-streptavidin crosslinks (Tang et al., 2001):

n =
4º`p

R lnKa ,
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where lp is the persistence length of F-actin, R is the radius of the ring, and 
Ka is the association constant of the linker bond. For biotin-streptavidin 
links, Tang et al. (Tang et al., 2001) measured n = 5.8, given lp = 17 µm 
for phalloidin stabilized actin filaments, R = 1.2 µm, and 2.5 x 1015 M-1 
for the association constant of biotin-streptavidin crosslinks. Replacing 
the above value of Ka with the value of 106 M-1 for septins results in a 
value of n = 12.9, which could represent a plausible value. Yet, several 
observations argue against the molecular sticker hypothesis. First, n is 
expected to depend linearly on persistence length lp. However, when 
we added phalloidin, which increases the persistence length by a factor 
of two, the median curvature only changed modestly, by factors of 1.0–
1.4x. Second, based on the above formula, we expect higher curvatures 
when more septins are bound. In contrast, we observed that rings which 
contained more septins exhibited lower curvatures (cf. Fig. 15). Based 
on these observations, we rule out the molecular sticker hypothesis.

 Another alternative hypothesis is that septin binding decreases the 
persistence length of actin filaments. Such behavior has been reported for 
some other actin-binding proteins, most notably cofilin (Fan et al., 2013). 
Cofilin stabilizes a polymorphic form of actin that has a lower bending 
rigidity than the canonical form (Galkin et al., 2011; Pfaendtner et al., 
2010). This hypothesis may be tested by measuring the bending rigidity 
of septin-decorated single filaments by video microscopy or optical 
tweezers (Brangwynne et al., 2008; Schnurr et al., 1997; van Mameren 
et al., 2009). However, this hypothesis is difficult to reconcile with our 
observations. We found that the number of fluorescent septins bound to 
rings did not vary significantly with the total concentration of septins 
in solution (cf. Fig. 15). However, the probability of ring formation 
did depend strongly on septin concentration, with rings forming in an 
optimum window of septin concentrations (cf. Fig. 3). When the total 
concentration of labeled septins was higher than this optimum window, 
we found a strong accumulation of labeled septins on straight bundles 
(cf. Fig. 4, right column). Furthermore, we found two other interesting 
changes in bundle morphology for high septin concentrations. First, 
kinked rings and zigzags occurred above 1 µM fly septins (cf. Figs 3 & 
19). Second, the number of actin filaments in rings and lassos decreased 
with increasing septin concentration (despite variations between 
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experimental trials) (cf. Fig. 17). These results demonstrate that an 
abundance of septins frustrate proper ring formation.

Another possible hypothesis is that septin binding could induce 
a spontaneous curvature of actin filaments. Such a mechanism would 
be reminiscent of proteins which curve lipid bilayer membranes upon 
binding (Zimmerberg and Kozlov, 2005). In fact, fractions of brain-
tissue extracts which contain septins can curve membranes when added 
to giant unilamellar vesicles (Tanaka-Takiguchi et al., 2009). Such 
curvature control could originate from the regulation of actin filament 
twist. Experiments on colloidal membranes composed of fd-virus rods 
have found that the interplay between frustrated molecular chirality and 
interfacial tension can manifest itself on larger length scales, leading 
to multiple conformational states (Gibaud et al., 2012). In the case of 
actin, fascin crosslinks have been shown to over-twist actin filaments, 
resulting in tight bundles with a well-defined composition (Claessens 
et al., 2008). This hypothesis could be readily tested by X-ray scattering 
experiments on actin-septin bundles.

Kinetic effects likely play a role in ring formation. Kinetic effects 
have been found to significantly affect the morphology of actin bundles 
in simulations (Nguyen et al., 2009), as well as experiments of actin 
networks bundled by filamin (Schmoller et al., 2008) and α-actinin 
(Falzone et al., 2012). We observed that rings have a nearly 2-fold lower 
curvature when septins interact with pre-polymerized actin filaments 
compared to co-polymerization (cf. Fig. 13). Curved septin bundles also 
relaxed their shape when ablated (cf. Fig. 9). However, kinetic effects 
alone cannot account for ring and lasso formation. In pre-polymerization 
experiments, rings only appeared when septins were present.

Our results raise several interesting questions. The first key 
question is which domain of septin hexamers binds to actin filaments. 
Elucidating the actin-septin binding mechanism should lead to a better 
understanding of how septins differ from other actin-binding proteins. 
The second key question is whether this actin-binding still occurs when 
septin is immobilized on a lipid membrane or bound to myosin, or if 
it competes with membrane and/or myosin interactions. If this is the 
case, then septin is likely to play a direct role in stabilizing a curved 
actin-myosin ring underneath the membrane during cytokinesis and fly 
cellularization. The fact that we found similar behavior for fly and human 
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septins suggests that septin’s unique property of promoting bundling 
and, in particular, bundle ring formation could be evolutionarily 
conserved.

4.5 Methods

Protein purification. Monomeric G-actin was purified from rabbit psoas 
skeletal muscle (Soares e Silva et al., 2011b). G-actin was purified with a 
Superdex 200 column (GE Healthcare, Waukesha, WI, USA). Aliquots 
were stored at −80 °C in G-buffer (2 mM tris-hydrochloride pH 8.0, 0.2 
mM disodium adenosine triphosphate, 0.2 mM calcium chloride, 0.2 
mM dithiothreitol). Freshly thawed aliquots were treated with 5 mM 
dithiothreitol, centrifuged at 30 psi (120,000 g) for 30 min in a Beckman 
airfuge, and sonicated for 5 min to remove actin dimers. G-actin was 
labeled with either Alexa-Fluor-488 or Alexa-Fluor-594 carboxylic acid, 
succinimidyl ester (Soares e Silva et al., 2011b). Recombinant Drosophila 
and human septin hexamers were provided by Manos Mavrakis. Protein 
concentrations were determined by measuring absorbance at 280 
nm with a NanoDrop 2000 (ThermoScientific) and using extinction 
coefficients, in M-1 cm-1, of 26600 (actin (Pardee and Spudich, 1982)), 
249000 (myosin (Margossian and Lowey, 1982)), 167320 (Drosophila 
septin hexamer, predicted from amino acid sequence (Artimo et al., 
2012)), and 161360 (human septin hexamer, predicted from amino acid 
sequence (Artimo et al., 2012)).

Flow cell preparation. Microscope slides and cover slips were 
cleaned for 30 min in base-piranha solution (5% hydrogen peroxide, 5% 
ammonium hydroxide, heated to 70°C) and stored in 100% isopropanol. 
Flow cells were assembled by sandwiching strips of Parafilm between 
clean glass substrates and melting at 120°C. Resulting cavities were 
then passivated by incubating for 5 min with 1 M potassium hydroxide, 
rinsing with Milli-Q water, blow-drying with nitrogen gas, incubating 
for 30 min with 0.2 mg/mL poly-L-lysine-polyethylene-glycol (Surface 
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Solutions), rinsing with Milli-Q water, and blow-drying with nitrogen 
gas. Passivated flow cells were then used immediately. Actin solutions 
were loaded into flow cells and hermetically sealed with VALAP (equal 
parts petrolium jelly, lanolin, and paraffin wax).

Sample preparation. Samples were mixed to yield a final 
buffer composition of 20 mM imidazole pH 7.4, 50 mM potassium 
chloride, 1 mM dithiothreitol, and 0.1 mM magnesium-adenosine 
triphosphate. Furthermore, 1 mM trolox, 2 mM protocatechuic acid, 
and 0.1 µM protocatechuate 3,4-dioxygenase were added to minimize 
photobleaching. TIRF microscopy samples additionally contained 
0.1 % (w/v) methylcellulose. For phalloidin-treated samples, a drop of 
phalloidin (in equimolar amounts to actin) was left to evaporate in a 
separate tube; freshly mixed samples were pipetted in the phalloidin-
containing tube before loading into flowcells. For pre-polymerization 
samples, a stock of actin filaments (10  µM) was prepared and mixed 
with septins at least 45 min after initiating polymerization. Fluorescently 
labeled G-actin monomers were mixed with unlabeled monomers to 
yield a 10% molar ratio of dye to protein.

Fluorescence microscopy. For TIRF experiments, samples were 
imaged with a Nikon Apo TIRF 100x/1.49 NA oil objective mounted on 
an Eclipse Ti microscope (Nikon) using 491 nm and 561 nm laser lines 
and imaged with a QuantEM 512SC EMCCD camera (Photometrics). 
For confocal experiments, samples were imaged with a Nikon Apo 
TIRF 100x/1.49 NA oil objective mounted on an Eclipse Ti microscope 
(Nikon) using 488 nm and 561 nm laser lines and imaged with an A1 
PMT detector unit (Nikon). All TIRF images were acquired under the 
same illumination and detection settings.

Ablations. For ablation experiments, samples were prepared 
as described above and imaged with an A1 R-MP confocal point 
scanner (Nikon) on an inverted microscope (Eclipse Ti, Nikon) with a 
photomultiplier tube detector (A1, Nikon). Samples were imaged and 
ablated with a pulsed infrared laser (Mai Tai DeepSee, SpectraPhysics) 
tuned to 760 nm. Ablations were performed by scanning a line 
perpendicular to the bundle long axis for a total exposure of 45 s. 

Rheology. Networks were sheared by a stress-controlled rheometer 
(Physica MCR 501, Anton Paar). Samples were polymerized at room 
temperature between a top cone plate (CP-20-1) and a bottom planar 
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plate. A wet tissue was placed around the sample and a surrounding hood 
was lowered to maintain humidity. Network evolution was monitored 
by probing samples at low strains (0.5 %, 0.5 Hz) for 5 min, followed by 
a idle period of 25 min, repeated over the course of 1.5 h. Next, network 
mechanical properties were probed by a frequency sweep (frequencies 
1–0.01 Hz) using a small strain amplitude of 5%, which was still within 
the linear viscoelastic regime.

Rings and lassos. A total of 2097 rings and 2065 lassos were 
manually identified across 1770 images. Rings are defined as bright 
structures that form a closed loop and do not contact other structures 
of comparable brightness. Lassos are defined as bright structures that 
either (i) form a closed loop which contact the end of a single bundle of 
comparable brightness or (ii) double over to form a closed loop. Rings 
and lassos were analyzed using a custom-built algorithm for detecting 
curvature.

Statistics. Curvature, actin fluorescence, and septin fluorescence 
distributions were characterized by sample medians and the 95% 
confidence intervals (CI) of the median. CIs were computed from 105 
bootstrap samples (Davison and Hinkley, 1997) with the MATLAB 
function “bootci”, using the bias corrected and accelerated percentile 
method (Efron, 1987).

4.6 Image Analysis

We developed an algorithm to compute the curvature C(s) of a point s 
from images of fluorescently labeled actin-septin bundles. In short, this 
method determines bundle contours and computes the change in angle 
θ along these contours.

Step 1: The original image (Fig. 23a) is bandpass filtered to 
accentuate bundle contours (Fig. 23b). Bandpass filters remove spatial 
frequencies below νlow (usually detection noise) and above νhigh (usually 
uneven illumination). Bandpass filtering was performed with ImageJ, 
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Figure 23. Algorithm to compute curvature C from images of 
fluorescently labeled actin-septin bundles. a. Original image of 
fluorescently labeled actin (1 µM) in the presence of fly septins (1 
µM) obtained by TIRF microscopy. Right: 4x magnified closeup (blue 
dashed box) b. Bandpass-filtered image. c. Bundle orientation θ, 
resulting from OrientationJ analysis. Image hue denotes θ (calibration 
wheel, bottom), image brightness is given by the original image (panel 
a). d. Bundle contour. e. Interior of bundle contour, which consists of 
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which calculates νlow and νhigh in the frequency domain given input 
values in the spatial domain. Here, values of 2 px (corresponding to νhigh) 
and 4 px (corresponding to νlow) were chosen. The result is a modified 
image where structures of 3 px, which corresponds to the typical width 
of a bundle, are accentuated.

Step 2: The filtered image from Step 1 is used to determine 
the local orientation θ of intensity around each pixel (Fig. 23c). This 
step implements OrientationJ, a freely-available ImageJ plugin that 
was developed to track collagen and elastin fibers (Fonck et al., 2009; 
Rezakhaniha et al., 2012). This routine computes the eigenvectors of 
a structure tensor constructed of the spatial gradients of fluorescence 
intensity around each pixel. The result is an image where each pixel 
(x,y) reports the orientation θ of the eigenvectors corresponding to a 
small region (x±σ, y±σ) in the original image. The parameter σ, in pixels, 
should match the typical length scale of the desired features.

Step 3: The filtered image from Step 1 is used to determine 
bundle contours (Fig. 23d). First, the image is thresholded using Otsu’s 
method (Otsu, 1975). This yields a binary image comprising connected 
components of bright pixels (1) against a dark background (0). Next, the 
thresholded image is skeletonized. This converts connected components 
to lines that are one pixel thick. These lines define the contour of the 
bundle. Finally, contours that are smaller than ten pixels are removed. 
This removes short contours that correspond to stray fluorescence 
intensity fluctuations of the background. The result is a binary image 
with connected components that are one pixel thick which correspond 
to bundle contours.

Step 4: Bright pixels from Step 3 that correspond to junctions or 
endpoints are removed (Fig. 23e). At junction points, curvature is ill-

bright pixels with exactly two neighboring bright pixels (white). Pixels 
at endpoints or at junctions (red) are discarded. f. Curvature C of the 
pixels corresponding to bundle interiors (panel e). A maximum filter of 
1 px was applied to the image for clarity. Dark blues and purples denote 
areas of low curvature; light yellows and whites denote areas of high 
curvature (calibration bar, below). Scale bars 10 µm.
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defined. At endpoints, orientation measurements are noisy, particularly 
for lower values of σ. To remove these points, the image of bundle 
contours is first filtered with a kernel of [1, 1, 1; 1, 0, 1; 1, 1, 1]. This 
yields an image where each pixel value corresponds to the number 
of neighboring bright pixels. Endpoints yield 1, pixels along a bundle 
contour yield 2, and junctions yield 3 or more. Next, pixels with a value 
of 2 were then selected. Finally, the resulting image was masked with the 
contour image from Step 3 with a bitwise AND operation. Repeating 
this step iteratively increases the number of pixels removed. Here we 
perform N  =  2σ iterations. Given a skeletonized binary image I, the 
following line of code implements an iteration of Step 4: 

imfilter(I, [1 1 1;1 0 1;1 1 1]) == 2 & I)
Step 5: Curvature is calculated for each bright pixel from Step 4 

(Fig. 23f). First, the orientation image from Step 2 is masked with the 
result of Step 4. Second, for each pixel i, the change in orientation is 
computed by considering the orientations of neighboring pixels j1 and j2. 
The change in orientation is given by ¢µk =

ØØµi °µ jk

ØØ (Fig. 24a), where k 
= 1,2. Dividing this by the distance ¢sk =

ØØ~ri °~r jk

ØØ between neighboring 
pixels (which can equal either 1 or √2) yields the curvature C(s) 
(henceforth denoted by C in the remainder of this section). Curvature 
C is defined as the derivative of orientation along the bundle contour:

C = dµ

d s
= lim

¢s!0

¢µ

¢s
= 1

2

µ
¢µ1

¢s1
+ ¢µ2

¢s2

∂

.

θi 

Δθ2 = | θi – θj2 | 

Δθ1 = | θi – θj1 | 
θj1 

θj2 

Δs1 
Δs2 

Figure 24. Determining curvature by computing changes in orientation 
Δθ (white arrowheads) along bundle contour, given a bright pixel i and 
neighboring bright pixels j1 and j2 separated by distances Δs1 and Δs2 
(black arrowheads), respectively.
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Finally, we recover the radius of curvature rC by inverting:

rC = 1

C .
Both curvature C and radius of curvature rC are appropriate 

measures of contour curvature. rC corresponds to the radius of the 
circle that best fits a point s along a contour (Spiegel, 1968). But because 
low rC denotes highly curved regions, C is sometimes a more intuitive 
measure: higher C denotes more highly curved contour sections, and the 
curvature C scales linearly with bending energy (Landau et al., 1986).

Validation against synthetic data. We validate this algorithm by 
producing test images of circles with a known radius of curvature rC. 16-
bit test images were produced in Adobe Photoshop CS4 by drawing 1-px 
wide, anti-aliased, circular white strokes on a black background. The 
images were then Gaussian blurred by 1 px, and noise was introduced 
with the ImageJ “Add specified noise” plugin (standard deviation = 
2000). These values were chosen to produce test images that mimic our 
microscopy data. Separate test images were created for rC / px = 3, 5, 10, 
20, 50, 100, 200, and 500 (rC = 20 px is shown in Fig. 25a,b). Each test 
image was processed using the algorithm described above (Fig. 25c). 
Computed radii of curvature (Fig. 25d) were averaged across the entire 
image. Accuracy of the algorithm can be demonstrated by plotting 
measured rC resulting from image analysis versus the known values of 
rC (Fig. 25e). Accurate results fall on the rC,known = rC,measured line. For a 
local window of size σ = 1, the analysis has an accuracy range of rC,known 
= 3–20 px. (For our microscopy setup, this corresponds to rC,known = 0.5–
3.2 µm). Above 20 px, the algorithm underestimates radii of curvature: 
for straight features with low curvature (high rC), the change in angle 
between neighboring pixels is too small to detect. This can be overcome 
by increasing σ to higher values. For instance, for sigma = 5 px, large radii 
of curvature are accurately detected, yielding an accuracy range of rC,known 
= 20–500 px (Fig. 25f). (For our microscopy setup, this corresponds to 
rC,known = 3.2–79 µm). Below 10 px, the algorithm overestimates radii of 
curvature: OrientationJ (Step 2) is insensitive to image features smaller 
than σ, so loops with a radius of curvature approaching σ or smaller are 
not resolved. The choice of σ therefore determines the curvatures that 
can be accurately detected (Fig. 25g).
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Figure 25. Validation of algorithm to circles of known curvature. a. 
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px. b. Close-up of panel a, dashed box. Scale bar 20 px. c. Curvature 
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map, as measured by analysis (σ = 1 px). Brighter colors indicate higher 
measured curvature (calibration bar, panel d). Scale bar 20 px. d. 
Histogram of measured curvature for the entire image (panel a). The 
average curvature, <C> / px-1 = 0.049 ± 0.009, corresponds to an average 
radius of curvature of <rC> / px = 20.5 ± 4.0 and agrees well with the 
known value of 20 px. (Uncertainty bounds for measured <C> denote 
standard deviation; for <rC>, propagated uncertainty). e. Accuracy 
plot. Measured curvatures are plotted against known curvatures. Note 
that performing the analysis with σ = 1 produces accurate measured 
values of rC only for lower values of rC,known. Color denotes inaccuracy 
(calibration bar, panel g). f. Accuracy plot, as in panel e, for σ = 5. Note 
that the range of accuracy (green symbols) shifts towards higher values 
of rC,known. g. Map of inaccuracy of rC,measured, given by

 |rC,measured - rC,known| / (rC,measured + rC,known),
and plotted as a function of σ and rC,known. Note that the range of accuracy 
(green zones) shifts towards higher values of rC,known as σ increases.

Estimating true rC given rC,measured. For actual microscopy data 
where rC is not known a priori, estimating the true rC given rC,measured 
is not immediately straightforward. Results from analyzing images of 
synthetically generated circles reveal that rC,known and rC,measured are not 
always related by a one-to-one mapping. This is shown in the accuracy 
plots depicted in Fig. 26. For example, the accuracy plot for σ  =  5 
shows that rC,measured = 1000 px could correspond to either rC = 3 px or 
rC = 1000 px. This one-to-many mapping introduces substantial error 
in estimating rC given rC,measured. In order to minimize these errors, we 
consider only values of rC,measured which are related to rC,known by a one-
to-one mapping. Such values of rC,measured appear as striped regions in 
Fig. 26. Often, these regions are narrow in rC,measured, which limits the 
range of rC we can reliably estimate. However, as σ increases, the range 
of precision of rC,measured shifts to higher values. We exploit this upward 
shift to extend the range of precision. We iterate the algorithm four 
times using different values of σ (1, 2, 3, and 5). For each iteration, we 
only record values of rC,measured which fall within the range specified by 
Figure 26.
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Validation against microscopy data. We test the above 
modification by considering a microscopy image of actin-septin 
bundles and rings (Fig. 27a). We visually inspect the resulting curvatures 
produced by the algorithm (Fig. 27b). Reported curvatures should 
produce circles with radii that visibly fit the bundle contour. This is 
shown in Fig. 27c–f.

Discussion. Several methods have been proposed in the 
biophysical literature to determine the curvature of linear contours. 
For example, the curvature of crawling Dictyostelium discoideum cell 
boundaries was determined by fitting circles to boundary points along 
the cell exterior (Driscoll et al., 2012). The technique for determining cell 
boundary was based on the minimization of an energy computed from 
pixel intensities (Xu and Prince, 1998), which has also been adapted 
to track cytoskeletal structures (Smith et al., 2010). These methods 
track linear contours to subpixel precision. However, attaining reliable 
contours requires tuning various parameters and supervising results. A 
different method for quantifying the curvature of cell boundaries (for 
mouse melanoma and buffalo rat liver cells) uses least-squares fitting 
of circular arcs between pairs of points (Bischofs et al., 2008). However, 
this method requires the user to select pairs of points between which 
the boundary exhibits a constant curvature. Here, we instead determine 
curvature without knowledge of bundle contours, without fitting circles, 
and without manual user input. We use the plugin OrientationJ to 
compute orientation θ to floating-point precision. Because OrientationJ 
requires only one parameter, σ, the algorithm described here requires 
less supervision and can thus be easily automated.

Determination of the number of filaments. The number of actin 
filaments was estimated based on the fluorescence intensity of the actin 
signal (Fig. 28a). The fluorescence intensity of a single filament was 
estimated by acquiring a series of 600 images (Fig. 28b) and determining 
the filament contour for each image (Fig. 28c). The mean fluorescence of 
filament contours was found to be 296 ± 109 pixel intensity units.
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Figure 27. Validation of algorithm to experimental data. a. Image of 
fluorescently labeled actin filaments (1 µM) bundled by fly septins (0.2 
µM). Small rings (high curvature) and long bundles (low curvature) 
are visible. Scale bar 20 µm. b. Result of curvature analysis. Color 
corresponds to curvature C, or equivalently, radius of curvature rC (see 
calibration bar, right). A maximum filter (1 px radius) was applied to 
thicken bundle contours (nominally 1  px thin). Scale bar 20 µm. c. 
Closeup of small ring (panel b). Note that red pixels report rC ~ 0.5 
µm, which agrees with the bold section of the dashed, white circle (rC = 
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0.5 µm). Scale bar 2 µm. d. Closeup of larger ring (panel b). Note that 
magenta pixels report rC ~ 1.0 µm, which agrees with the bold section of 
the dashed, white circle (rC = 1.0 µm). Scale bar 2 µm. e. Closeup of large 
loop (panel b). Note that cyan pixels report rC ~ 3.3 µm, which agrees 
with the bold section of the dashed, white circle (rC = 3.3 µm). Scale 
bar 2 µm. f. Closeup of curved bundle (panel b). Note that green pixels 
report rC ~ 10 µm, which agrees with the bold section of the dashed, 
white circle (rC = 10 µm). Scale bar 2 µm.
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Figure 28. Determining the intensity of a single-actin filament. a. TIRF 
image of single actin filaments. b. Maximum time projection over 600 
frames. Cloudy white regions correspond to the areas occupied by single 
filaments as they fluctuate over time. c. Filament contours. A maximum 
filter (radius 1 px) was applied to make 1-px-thick contours visible. 
d. Histogram of background-subtracted fluorescence intensities of 
filament contours. The average filament intensity <Ifilament> is 296 ± 109 
(uncertainty denotes standard deviation). Scale bars 20 µm.
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5. Molecular motors robustly drive active gels 
to a critically connected state

Living systems often exhibit internal driving: active, molecular processes 
drive nonequilibrium phenomena such as metabolism or migration. 
Active gels constitute a fascinating class of internally driven matter, 
where molecular motors exert localized stresses inside polymer 
networks. There is evidence that network crosslinking is required to 
allow motors to induce macroscopic contraction. Yet a quantitative 
understanding of how network connectivity enables contraction is 
lacking. Here we show experimentally that myosin motors contract 
crosslinked actin polymer networks to clusters with a scale-free size 
distribution. This critical behavior occurs over an unexpectedly broad 
range of crosslink concentrations. To understand this robustness, we 
develop a quantitative model of contractile networks that takes into 
account network restructuring: motors reduce connectivity by forcing 
crosslinks to unbind. Paradoxically, to coordinate global contractions, 
motor activity should be low. Otherwise, motors drive initially well-
connected networks to a critical state where ruptures form across the 
entire network.
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5.1 Introduction

One of the defining qualities of soft matter is that it is readily driven far 
from thermodynamic equilibrium by external stress. Driving forces such 
as those due to an electric field or shear can drive colloidal suspensions 
and polymer networks into fascinating non-equilibrium patterns, 
including banded (Fielding et al., 2009; Vissers et al., 2011), jammed 
(Weeks et al., 2000), and randomized steady states (Corté et al., 2008). 
Much progress has been made in understanding such externally driven 
systems (van Hecke, 2009). By contrast, living soft matter systems such 
as cells and tissues naturally exhibit a unique form of internal driving 
in the form of mechanochemical activity (Jülicher et al., 2007; Zemel 
et al., 2011). A prominent example is the cytoskeleton, a meshwork of 
protein polymers and force-generating motor proteins that constitutes 
the scaffold of cells. In solutions of purified cytoskeletal filaments 
and motors, remarkable self-organized patterns have been observed 
(Nédélec et al., 1997; Sanchez et al., 2012), inspiring theoretical work of 
these so-called active gels (Marchetti et al., 2012).

More recently, attention has shifted to the important role of 
network connectivity in active gels, which can be controlled by the 
number of crosslinks between filaments. In weakly connected systems, 
motors slide filaments to form static or dynamic clusters (Backouche 
et al., 2006; Köhler et al., 2011a; Smith et al., 2007; Soares e Silva et 
al., 2011b). In the opposite limit of a well-connected, elastic network, 
motors generate contractile stresses as they pull against crosslinks, 
which can dramatically change the elastic properties of the network 
(Koenderink et al., 2009; Mizuno et al., 2007) or lead to contraction 
(Bendix et al., 2008; Köhler et al., 2012). The existence of a threshold 
connectivity that separates these two behaviors has been proposed, since 
macroscopic contractions are known to occur above certain minimum 
values of crosslink or actin concentration (Bendix et al., 2008; Köhler 
et al., 2011a; Wang and Wolynes, 2012a; 2012b). We should expect 
remarkable critical behavior at the threshold of contraction. Recent 
theoretical models predict diverging correlation length-scales and a 
strong response to external fields (Broedersz et al., 2011; Sheinman 
et al., 2012a; 2012b; Wyart et al., 2008) at the threshold of rigidity. In 
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suspensions of self-propelled patches, critical slowing was predicted at 
the threshold of alignment (Weber et al., 2012). Yet the threshold of 
contraction still remains poorly understood, and experimental evidence 
of criticality in active gels remains lacking.

Here, we experimentally study model cytoskeletal systems 
composed of actin filaments and myosin motors. We vary network 
connectivity over a broad range by adding controlled amounts of 
crosslink protein. We show that the motors can actively contract the 
networks into disjoint clusters that exhibit a power-law size distribution. 
This behavior is reminiscent of classical conductivity percolation 
(Stauffer and Aharony, 1994), for which a power-law size distribution 
of clusters occurs close to a critical point. However, in sharp contrast to 
this equilibrium phenomenon, we observe critical behavior over a wide 
range of initial network connectivities. To understand this robustness, 
we develop a general theoretical model of contractile gels that can 
quantitatively account for our observations. In this model, motors not 
only contract the network, but also reduce the connectivity of initially 
stable networks down to a marginal structure by promoting crosslink 
unbinding. Below this marginal connectivity, the network no longer 
supports stress and the system rapidly devolves to disjoint clusters 
which reflect the critical behavior of the marginal structure. Our model 
predicts cluster size distributions that agree well with experiment. 
Moreover, it predicts an inverse relationship between cluster size and 
motor activity, which we also confirm experimentally.

5.2 Experiments

In order to resolve the interplay between motor activity and network 
connectivity in active cytoskeletal networks, we develop a biomimetic 
model system with a well-controlled composition (Fig. 1a). Networks 
are formed by initiating actin filament polymerization, which results 
in a semiflexible polymer meshwork with a pore size of ~0.3 µm. We 
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Figure 1: Experiments with motor-driven networks show that initial 
connectivity controls the length scale of contraction. a: Schematic 
representation of the experiment. Actin filaments (black lines) are 
connected by crosslinks (purple circles), and myosin motors (green 
dumbbells) exert force dipoles (orange arrows) on actin filaments. 
b–d: Temporal evolution of three networks with varying amounts 
of fascin crosslinks (a. RC = 0.01; b. RC = 0.05; c. RC = 0.1). Actin and 
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control the motor activity by adding different amounts of myosin 
motors, expressed in terms of the myosin-to-actin molar ratio, 
RM = [myosin] / [actin]. We control the network connectivity by adding 
different amounts of the crosslink fascin, which can simultaneously 
bind to two neighboring actin filaments (see Methods). We express 
the crosslink density in terms of the fascin-to-actin molar ratio, 
RC  =  [fascin]  /  [actin]. To ensure that we can observe motor-driven 
contraction on all scales, from microscopic to macroscopic, we prepare 
networks in customized flow-cells, which fit entirely in the field-of-view 
of the 4× objective of a confocal microscope (see Methods). To track 
the temporal evolution of the networks, we acquire time-lapse movies 
starting from 1 minute after the initiation of actin polymerization, where 
the solution is still homogeneous, until 2 hours afterwards.

To resolve the influence of network connectivity, we first prepare 
a series of networks with constant myosin activity (RM  =  0.01) and 
gradually increasing crosslink density (RC). Even at low RC, the motors 
can contract actin networks. However, contraction occurs only on 
a small length scale, as seen in the time projection image in Fig. 1b. 
However, when we increase RC, contraction occurs on a larger length 
scale (Fig. 1c). The motors break the network up into multiple disjoint 

motor concentrations are constant: [actin] = 12 µM; RM = 0.01. Color 
corresponds to time according to calibration bar (b, left). Times (tstart, tend) 
in minutes after initiation of actin polymerization: b. (2, 20); c. (2,120); 
d. (1,5). Scale bar 1 mm. e–g: Decomposition into clusters, delimited 
by black lines. Color indicates the largest (blue) and the second-largest 
(pink) cluster, whose sizes correspond to ξ1 and ξ2 respectively. Note 
that (g) does not have a second-largest cluster because we exclude 
long edge domains from our analysis (see Figure A6 in Appendix). h: 
Dependence of ξ1 (blue circles) and ξ2 (pink triangles) on crosslink 
concentration (RC). Error bars denote standard errors of the mean for 
repeat experiments: 1, 6, 13, 14, 9, and 5 experiments for RC = 0.002, 
0.005, 0.01, 0.02, 0.05, and 0.1, respectively. Inset: Predicted dependence 
of ξ1 and ξ2 on connection probability p according to percolation theory, 
given experimental parameters (see Appendix).
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clusters. At still higher RC, motor activity contracts the entire network 
into a single dense cluster which often retains the square shape of the 
assay chamber (Fig. 1d).

To quantify the effect of connectivity on the length scale of 
network contraction, we developed an image processing algorithm 
which identifies the clusters in the final image and traces their origin 
back in time. As shown in Fig. 1, the initial areas of each cluster are 
small in weakly crosslinked networks (panel d). The smallest clusters 
are ~30 µm in size, which corresponds to the typical distance between 
myosin motor clusters in the absence of cross-links (Figure A1 in 
Appendix). However, the clusters increase in size when the crosslink 
density is increased (panel f). In strongly crosslinked networks, the 
entire network forms one cluster (panel g).

Qualitatively, the transition from local to macroscopic contraction 
is reminiscent of a classical conductivity percolation transition. 
Below this transition, a system is only locally correlated and cannot 
establish connections over long distances. Only above a certain critical 
connectivity can the system establish global correlations. In order to 
determine the extent of agreement between our experimental results 
and percolation theory, we investigate three key predictions (Stauffer 
and Aharony, 1994).

First, conductivity percolation theory predicts how connectivity 
determines the size of the largest and second-largest connected clusters. 
Connectivity is quantified by the probability p of creating a connection. 
The largest cluster (of size ξ1) is predicted to increase monotonically 
with p, while the second-largest cluster (of size ξ2) should exhibit a peak 
right at the conductivity percolation threshold, where ξ1 and ξ2 both 
approach the system size, L (Fig. 1h, inset). Our experiments agree with 
this prediction: the measured cluster sizes, ξ1 and ξ2, are both small at low 
crosslink density and increase monotonically with increasing crosslink 
concentration until they approach the system size, L ≈ 2.5 mm, around 
RC ~ 0.01 (Fig. 1h). Above this threshold connectivity, ξ1 remains close 
to L whereas ξ2 decreases towards zero as the entire network contracts 
to one large cluster. 

Second, percolation theory predicts how cluster sizes are 
distributed: around the critical point, we should find a power law with an 
exponent of −2. To test this prediction, we begin by looking for networks 
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which satisfy ξ1 ~ ξ2 ~ L. We replot all measurements separately in ξ1-
ξ2-space (Fig. 2a). Because ξ2 < ξ1 by definition, all samples are located 
within a triangle in ξ1-ξ2-space. We can clearly identify the samples at 
the triangle’s peak, where ξ1 ~ ξ2 ~ L. We denote this peak as the critically 
connected regime. To the left of the peak are samples with low RC, which 
we denote the local contraction regime. To the right of the peak are 
samples with high RC, the global contraction regime.

Do the samples in the critically connected regime really 
exhibit critical behavior? To test this more rigorously, we plot 
the entire distribution of cluster sizes (Fig. 2b). We represent the 
observed distribution as a histogram (open circles), where power-law 
distributions appear as straight lines on a log-log plot. We additionally 
plot complementary cumulative probability distributions (solid lines), 
whose visual form does not depend on bin size. We find that our 
experiments are again consistent with percolation theory: the critically-
connected regime indeed exhibits a cluster-size distribution that is 
statistically consistent with a power-law across more than two orders 
of magnitude in measured area (Clauset et al., 2009). The power-law 
exponent is −1.9, close to the exponent of −2 predicted by percolation 
theory. The distributions of the other two regimes furthermore agree 
with percolation theory. The local contraction regime exhibits a short-
tail distribution with a sharp cut-off. The global contraction regime 
exhibits a bimodal distribution with two well-separated length scales: 
the percolating cluster with size ξ1 ~ L and other small disjointed clusters 
with a typical size of ξ2 << L.

Third, percolation theory predicts that only systems that are close 
to the critical point should exhibit a power law. But this prediction is 
difficult to reconcile with our data: the critically connected regime in 
ξ1-ξ2-space (Fig. 2a) is populated by samples which span a wide range 
of cross-link densities (from RC = 0.01 to RC = 0.1). This is also reflected 
in Fig. 1h, which shows a broad ξ2-peak that is over half an order of 
magnitude wide in RC, in sharp contrast with the narrow ξ2-peak 
expected from percolation theory (inset of Fig. 1h). We can therefore 
conclude that classical conductivity percolation theory cannot provide a 
complete description of the physics of active, contractile networks.
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5.3 Simulations

Percolation theory describes a network with a fixed connectivity. This 
can be appropriate for equilibrium fiber networks without internal 
driving. However, in motor-driven networks, the total connectivity can 
change significantly (Haviv et al., 2008; Murrell and Gardel, 2012; Vogel 
et al., 2013). When we image our networks at high resolution, we found 
that motors actively pull on network strands and disconnect them, 
thereby reducing connectivity (Alvarado et al., 2013). Crosslinks bind 
only transiently (~10 s in case of fascin (Courson and Rock, 2010)), and 
their binding kinetics are typically stress-dependent (Evans and Ritchie, 
1997). There is strong evidence that unbinding of fascin crosslinks is 
promoted under stress. For instance, in gliding assays where actin-fascin 
bundles move over immobilized myosin motors, the motors actively 
zipped open the bundles (Ishikawa et al., 2003). We hypothesize that 
such stress-dependent binding kinetics allow motor activity to drive 
initially well-connected networks down towards a critically connected 
state.

To test this hypothesis, we develop a computational model 
of contractile actin-myosin networks using molecular dynamics. 
We model actin filaments with a planar triangular lattice of nodes 

connected (ξ1 ≥ 300 µm and ξ2 ≥ 300 µm), and global contraction (ξ1 ≥ 
1500 µm and ξ2 < 300 µm). Two data points with ξ2 = 0 are depicted here 
with ξ2 = 30 µm. b: Histogram (circles) and complementary cumulative 
probability distribution (solid lines) of cluster areas, a / µm2, for the 
three regimes. For the critically connected regime, data across more 
than two orders of magnitude (red circles) are statistically consistent 
with a power-law distribution (solid red lines) with an exponent of 
–1.91 ± 0.06, p = 0.52, where p > 0.1 indicates plausible agreement with 
a power law (see Appendix). Note that the slope of the complementary 
cumulative probability distribution is equal to one plus the slope of the 
histogram because the histogram is the absolute value of the derivative 
of the complementary cumulative probability distribution.
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connected by line segments of length l0 (Fig. 3a). Filaments possess 
stretching modulus k and can strain-stiffen (Storm et al., 2005) and 
buckle (Chaudhuri et al., 2007). We set the average number z of line 
segments connected to a node (i.e. coordination number) to 4.0. Point-
like crosslinks are randomly placed on nodes with probability p, which 
depends on crosslink concentration c. We assume first-order kinetics 
of crosslink (un)binding, which yields p  =  c/(1+c). We model the 
crosslinks by freely-hinged constraints, which prevent relative sliding 
of connected filaments. Motor activity results in contractile stresses 
(Lenz et al., 2012b; Mizuno et al., 2008; Soares e Silva et al., 2011b), 
which we model by pairs of forces f between nodes. Every node has 
mobility µ and experiences an effective, free-draining viscosity, η. The 
network evolves over time to achieve force balance at the nodes (Fig. 
3b). For fixed crosslinks, network connectivity remains unchanged 
and ξ1 and ξ2 remain constant. We now introduce into the model the 
important ingredient of network restructuring: connectivity can change 
via crosslink unbinding and rebinding. The unbinding rate of a crosslink 
koff increases exponentially with the tension T according to Bell’s law 
(Evans and Ritchie, 1997): koff = koff,0 exp(T  / T0), where koff,0 denotes 
the off-rate in the absence of tension, and T0 a characteristic tension 
(Fig. 3c). To account for rebinding, we consider the probability that an 
unbinding event is followed by a rebinding event at the same location 
before filaments are separated, which is given by exp(-c kon  d  /  T  µ), 
where d is an effective distance on the order of the mesh size over which 
filaments can move with velocity equal to T μ and kon is the binding rate 
of a crosslink. The effective unbinding rate is thus given by
 koff = koff,0 exp(T / T0) exp(-c kon d/ T µ).

By varying c across many simulations (keeping f constant), we 
recover the three regimes found in experiment: the local contraction 
(Fig. 3d,e), critically connected (Fig. 3f,g), and global contraction 
regimes (Fig. 3h,i). The crosslink-dependence of ξ1 and ξ2 versus c (Fig. 
3j) as well as the cluster size distributions (Figure A2 in Appendix) 
are fully consistent with experiment. The model clearly reveals that 
motor activity broadens the ξ2-peak: in the absence of active network 
restructuring (panel j, open symbols), only a narrow region (yellow 
stripes) around the critical point exhibits critical behavior. In the 
presence of network restructuring (panel j, closed symbols), this region 
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broadens (solid yellow box). Motor-driven network restructuring can 
therefore account for the surprising robustness of critical behavior we 
found in experiment.

5.4 Motors promote network restructuring 

So far we have investigated the effect of connectivity in experiment 
and simulation (RC and N), but kept motor activity constant (RM and 
f). Network restructuring breaks networks into clusters because motor 
stresses unbind crosslinks. Increased motor activity should therefore 
increase tension on crosslinks, enhance their unbinding, and lead to 
smaller clusters. To test this hypothesis, we simulate well-connected 
networks with constant c but varying motor activity (modeled through 
changes in the force f). Increased force indeed leads to smaller clusters 
(Fig. 4a-d). At low force (f / k < 0.1), the networks contract macroscopically 
(ξ1 >> ξ2), while at higher force levels ξ1 sharply decreases as f increases 
(Fig. 4e). Increasing f allows networks that would otherwise contract 
globally to exhibit clusters with a power-law size distribution.

In order to validate these predictions, we perform experiments in 
well-connected networks (RC = 0.02) where we change motor activity 
by varying the myosin-to-actin molar ratio RM. In agreement with the 
model’s prediction, the length scale of contraction strongly depends on 
myosin concentration. For low motor concentrations up to RM = 0.002, 
the networks appear stationary for the entire duration of the experiment. 
Large-scale collective breathing fluctuations are visible, indicative of 
a strongly connected network, but the motors exert insufficient force 
to contract the network (Alvarado et al., 2013). Increasing the motor 
concentration to RM  =  0.005 results in a drastic change: the entire 
network collapses into one large cluster mediated by a uniform global 
contraction (Fig. 4f,h). However, a further increase of RM results in 
smaller clusters (Fig. 4g,i). At high motor densities, ξ1 decreases in a 
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manner consistent with the model’s prediction (Fig. 4j) and we again 
recover scale-free cluster size distributions (Figure A3 in Appendix.)

These results lead to a counterintuitive consequence: in order 
to coordinate contractions over macroscopic length scales, less motor 
activity is needed. Increasing motor activity only yields small clusters.

5.5 Motors nucleate concurrent ruptures

In order to better understand the effect of force on cluster size, we 
consider the opposing limits of local and global contraction in our 
simulations. These two regimes are clearly separated by the critically 
connected regime, as evident in the schematic phase space diagram 
in Fig. 5. The global contraction regime is located at the bottom-right 
corner, where motor forces are low and network connectivity is high. In 
this limit, networks are rigid, filaments remain straight, and the network 
deforms affinely (Broedersz et al., 2011). On the opposite corner of the 
phase diagram, where connectivity is low and force is high, we find 
the local contraction regime. Such weakly connected, loose networks 
deform nonaffinely, and filaments are significantly bent.

We can interpret these limits by considering two relevant 
timescales, τoff and τrelax. The first timescale is the characteristic crosslink 
unbinding time τoff  =  koff

-1. The tension T experienced by a crosslink 
depends on both the motor force f and the network configuration, 
which can change over time. Although the full dependence of crosslink 
tension on motor force is complex, the qualitative behavior is clear: when 
filaments are straight, motor stress does not greatly induce crosslink 
tension; when filaments are bent, crosslinks experience tension (Figure 
A4 in Appendix).

The second timescale, τrelax, is the time it takes for filaments in the 
network to relax in response to a crosslink unbinding event. We estimate 
the values of τoff and τrelax from previous work (Courson and Rock, 2010; 
Gisler and Weitz, 1999):
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  τoff,0 ~ 1–10s τrelax ~ 0.1–1s.
The above value for τrelax is set by the thermal equilibration of individual 
filaments. It acts as an upper bound: forces can cause faster relaxation. 
Therefore in the absence of tension, τoff > τrelax.

We now consider how these timescales respond to the two limits 
of local and global contraction. In the global contraction limit, f and T 
are small, and τoff > τrelax holds: once a crosslink unbinds, the network 
fully relaxes before the next crosslink unbinds. This well-known limit 
corresponds to a quasistatic process (Heussinger, 2012). Boundary 
conditions determine how the network evolves in this limit: networks 
fixed at rigid boundaries build up stress and rupture via the nucleation 
of a large crack at a microscopic flaw, reminiscent of Griffith’s criterion 
(Griffith, 1921). Unanchored networks contract affinely, or drive shape 
changes when coupled to deformable boundaries (Martin et al., 2009).

In the opposite limit of local contraction, f and T are large, and 
the network satisfies τoff < τrelax: strong internal driving causes crosslinks 
to unbind quickly. Many cracks that rupture the network into clusters 
form across the whole network, rather than nucleating at a single flaw. 
The presence of a finite viscosity in our model is essential for this 
behavior. Neglecting viscosity leads to τrelax = 0, and networks fail only 
via quasistatic crack propagation (Heussinger, 2012). 

In between the two limits of global and local contractions, we find 
critically connected networks with a scale-free distribution of clusters. 
For zero force, this regime is narrow and centered around the critical 
point. As forces increase, this regime broadens and shifts to higher 
connectivities. This rightward shift reflects an asymmetry where motor 
activity reduces connectivity, rather than increasing it. The broadening 
shows that increased motor activity drives networks more robustly to a 
critical state.

Intriguingly, robust critical behavior has been demonstrated 
in many biological systems (Bialek et al., 2012; Camalet et al., 2000; 
Mora and Bialek, 2011; Veatch et al., 2008; Zhang et al., 2010). Internal 
driving could underlie robust criticality (Furusawa and Kaneko, 2012), 
but so could other mechanisms, including natural selection (Halley 
and Winkler, 2008; Torres-Sosa et al., 2012). Disentangling these 
mechanisms cannot be addressed by studying living systems alone. Here 
we report robust criticality in a minimal model system and show that 
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internal driving is directly responsible. These results may help explain 
criticality in other biological contexts and may prove useful in designing 
the physical properties of synthetic active materials, which have recently 
become available (Bertrand et al., 2012).

Our framework offers a minimal microscopic mechanism that 
should help in modeling contractile systems in biology. Recent studies 
in live cells suggest that motor myosin-driven cytoskeletal ruptures 
play an important functional role in cell division, (Sedzinski et al., 
2011), whereas they contribute to developmental defects in developing 
embryos (Martin et al., 2010). Consistent with our findings, decreased 
connectivity caused dramatic rupture of the ventral furrow into clusters 
of cells in developing fly embryos. We anticipate that our framework 
applies more generally to tissues of interconnected cells (Schwarz 
and Safran, 2002; Schwarz and Gardel, 2012), where a supracellular 
actomyosin network transmits forces over tissue length scales.

5.6 Appendix
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Figure A1: Confocal image of actin (red) and myosin (cyan) in the 
absence of crosslinks ([actin] = 12 µM, RM = 0.01, t ~ 2 h after the 
initiation of actin polymerization). Myosin motors form small foci, 
which are separated approximately 30 µm apart.
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Algorithm for determining cluster size. We developed a MATLAB 
algorithm to determine sizes of contracting clusters from time-lapse 
images of contractile actomyosin networks. Actin filaments and myosin 
motors were fluorescently labeled to appear in separate channels. In 
short, this technique begins with the final frame of acquisition (Fig. A5a), 
determines clusters, and tracks the expansion of these clusters back in 
time until the first frame of acquisition. The result is a decomposition of 
the initial network into clusters.

Step 1: the final acquired image from the actin channel (Fig. A5b) 
was median-filtered with a radius of 1px (Fig. A5c). This step filters out 
noise.

Step 2: the median-filtered image was thresholded using Otsu’s 
method (Otsu, 1975) (Fig. A5d). The result of this step is a binary image 
of only black or white pixels. Contiguous groups of white pixels are 
called connected components. Each connected component corresponds 
to a cluster of actin and myosin.

Step 3: the final acquired image from the myosin channel (Fig. 
A5e) was also median filtered with a radius of 1px (Fig. A5f).

Step 4: the median-filtered image was thresholded using Otsu’s 
method (Fig. A5g), again yielding a black-and-white image of connected 
components that correspond to clusters of actin and myosin.

Step 5: the thresholded image was morphologically opened 
(successive dilation and erosion) using a 1-px-radius-disk as a 
structuring element (Fig. A5h). This step serves as an additional filter, 
removing connected components smaller than the structuring element.

Step 6: connected components from step 5 were assigned to 
connected components from step 2 (Fig. A5i). Note that the connected 
components from step 2 (actin) are usually large, and contain many 
smaller connected components from step 5 (myosin). Without this step, 
the disjoint connected components from step 5 could be erroneously 
treated as separate clusters.

Step 7: domains were defined around each cluster, using the 
MATLAB function bwdist, which performs a distance transform 
(Fig. A5j). This step decomposes the entire image into a Voronoi-like 
diagram, where domain boundaries occur halfway between connected 
components.
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Figure A5. Cluster-size algorithm. a: Final image of a time-lapse 
acquisition of a contractile actomyosin network (t = 80 min). Alexa-594-
actin is shown in red, DyLight-488-myosin in green. [actin] = 12 μM, 
RF = 0.02, RM = 0.02. b: Close-up of the actin channel, corresponding 
to dashed box, a. c: Median filter of b. d: Otsu threshold of c. e: Close-
up of the myosin channel, corresponding to dashed box, a. f: Median 
threshold of e. g: Otsu threshold of f. h: Morphological opening of g. i: 
Superposition of d (red) and h (green). Note that some disjoint green 
clusters are contained within one large red cluster. In this case, they are 
treated as one large cluster. j: Superposition of original myosin signal 
(white) with domains (shades of beige), which result from a distance 
transform, implemented in MATLAB as the bwdist function. k: Myosin 
signal (white) and domains (shades of beige) for the entire sample 
before looping the algorithm, beginning with the final frame (t = 80 
min). l: Close-up of k (dashed box) at three representative stages of loop 
progression as clusters expand in -t (from left to right: t = 20 min, 8 min, 
4 min). m: Myosin signal and resulting clusters for the first acquired 
frame (t = 2 min). Note that myosin is distributed homogeneously 
across the entire network at the beginning of acquisition, and is fully 
decomposed into clusters. n: Clusters (outlined in black) after cropping 
to dashed box, k, with largest and second-largest clusters denoted in 
blue and pink, respectively. Scale bars: a: 1 mm, b-j: 200 μm, k: 1 mm, l: 
500 μm, m: 1 mm.

Step 8: steps 3-7 were repeated for the myosin channel, starting 
with the final acquired frame (Fig. A5k), looping through successive 
acquired images backwards in time (Fig. A5l), and finally arriving at 
the first acquired frame (Fig. A5m). The end result is the first acquired 
frame, where the actin and myosin signals are uniformly distributed, and 
decomposed into clusters. During the loop, steps 3-7 were unchanged, 
except for step 6: myosin connected components were joined not by 
using actin connected components, but by the domains from the 
previous iteration of step 7.

Step 9: finally, the image of domains produced from step 7 of the 
final loop was cropped to the largest rectangle contained by the network.
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Figure A6. Two modifications of the cluster-size algorithm. a-e: First 
modification: skipping step 2 when it erroneously yields large, system-
spanning connected clusters. a: Actin channel of original image (RF 
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= 0.01, RM = 0.01, local contraction regime). b: Result of step 2. Note 
that the thresholded image does not resemble the individual clusters 
visible in the original image. c: Result of continuing the algorithm, 
which erroneously represents the sample as one large cluster. d: Result 
of the algorithm, skipping steps 1 and 2. Note that this image correctly 
represents individual clusters. e: Overlay of acquired data, where color 
corresponds to time (calibration bar, top right). tstart = 1 min; tend = 20 
min. Note that this image qualitatively captures cluster evolution, and 
is obtained independently of the cluster-size algorithm. Comparing 
to panels c and d shows that panel d more accurately represents true 
cluster size. f-l: Second modification: skipping step 5 when it removes 
small, dim myosin clusters. f: Result of step 4 (RF = 0.01, RM = 0.01, local 
contraction regime). g: Close-up of f, green dashed box. h: Result of step 
5. i: Close-up of h, green dashed box. Note that morphological opening 
removes very small clusters. j: Result of continuing the algorithm, which 
erroneously joins together many small clusters in one large cluster. k: 
Result of the algorithm, skipping step 5. Note that this image correctly 
represents individual clusters. l: Time overlay, as in e. tstart = 2 min; tend = 
30 min. Comparing to panels j and k shows that panel k more accurately 
represents true cluster size.

In two cases, adjustments to this routine were necessary. In one 
case, during step 2, Otsu’s threshold sometimes yielded large connected 
components that spanned the image (Fig. A6a). This resulted in the 
network being erroneously represented as one large cluster (Fig. A6b). 
This artifact was eliminated by choosing a more restrictive threshold 
(Fig. A6c), which resulted in accurate domains (compare panels d and 
e). In another case, during step 5, morphological opening sometimes 
filtered out small, dim clusters (Fig. A6f). This led to their corresponding 
domains to disappear, and small, neighboring clusters were reported as 
bigger clusters (Fig. A6g). This artifact was eliminated by omitting step 
5 (Fig. A6h), yielding accurate domains (compare panels i and j).

Adjustment of domains. We performed two types of adjustments 
to the cluster decompositions produced by our algorithm. First, we 
removed long edge domains from our analysis. These domains could 
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Figure A7: Manual correction of five experiments. True sample 
dynamics is depicted in the time overlay (first column). For these five 
experiments, the algorithm produces excessively large domains (second 
column). Upon careful visual inspection of the original data, erroneous 
domains were manually corrected to their apparent true size (third 
column). Scale bar 1 mm.

be the result of enhanced interactions with the edge of the confining 
geometry, in addition to internal driving by myosin activity. We first 
search for domains that touch the border of the cropping rectangle (Fig. 
A5m, dashed line). We next compute the major and minor axis of the 
ellipse that has the same normalized second central moment of each 
domain, as well as the orientation of the major axis. Finally, we consider 
edge domains which satisfy the following two conditions: (i) the major-
axis-to-minor-axis ratio is greater than two; (ii) the major axis is oriented 
along the edge that the domain touches to within 45°. (Condition ii is 
dispensed for corner domains that touch two edges.) Edge domains 
that satisfy these two conditions are then omitted from the sums in the 
definition of ξ1 and ξ2, as well as when plotting distributions.

Second, we compensated for fast clusters. Sometimes the 
displacement of a cluster between two successive frames was greater 
than the half-way distance to a neighboring cluster. Clusters would then 
leave their own domain and erroneously enter neighboring domains. 
This artifact mostly affected networks in the global contraction regime, 
where the global build-up of stress led to fast relaxation events. This 
artifact cannot be addressed by modifying the algorithm. We therefore 
manually corrected contraction domains to accurately reflect network 
evolution. A total of five corrections were performed, all of which are 
reported in Fig. A7.

These two adjustments to domain size affect our results for the 
global contraction regime. This is evident by inspecting the effect of the 
two adjustments on cluster size distributions (Fig. A8a). However, the 
local contraction and critically connected regimes are largely unaffected. 
The power-law exponents determined from experiment are robust to 
the two adjustments described above (Fig. A8b).
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Figure A8: Results from modifying algorithm output. a: Distributions 
of cluster sizes (RM = 0.01) that result when either removing long 
edge domains (rows) or manually correcting domains (columns). 
Distributions are divided according to global contraction (top), 
critically connected (center), and local contraction (bottom) (see main 
text, Figure 2).

Statistical analysis of domain sizes. In order to determine whether 
cluster size distributions were consistent with a power law, we employed 
a recently developed, rigorous statistical analysis (Clauset et al., 2009). 
This technique first fits observed data to a power law, determining 
both the best exponent and best lower cut-off. The lower cut-off is the 
minimum value above which the power law is fitted. It then compares 
the observed dataset with multiple synthetic datasets (generated from a 
power-law distribution using the best fit parameters) by computing the 
Kolmogorov-Smirnov statistic, which quantifies the “distance” between 
a dataset and the true power-law distribution. Finally, it computes a 
p-value, which is defined as the fraction of synthetic datasets whose 
distance is greater than the observed dataset. Therefore, larger p-values 
correspond to an increased likelihood that the observed dataset is 
consistent with a power law. A power law can be ruled out for p < 0.1.

Percolation model. Our model is based on three-dimensional 
network of N straight filaments of length L placed in a W x W x W 
box. The filaments are placed such that their position and orientation is 
uniformly distributed. Two filaments are considered to be intersecting 
if the shortest distance between them is less than a certain value which 
is taken to be of the order of size of the cross link. At this intersection 
these two filaments can be connected by a freely hinging crosslink. 
The probability that such a crosslink exists is denoted by p. Periodic 
boundary conditions are assumed in all directions. The line density 
NL / W3 is obtained from the experiments, and estimated to be ~20 µm-

2. Our simulations show that the connectivity percolation occurs in the 
vicinity of p=0.33.
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5.7 Methods

Protein Preparation. Monomeric (G-) actin and myosin II were purified 
from rabbit psoas skeletal muscle (Soares e Silva et al., 2011b). G-actin 
was purified with a Superdex 200 column (GE Healthcare, Waukesha, 
WI, USA) and stored at −80 °C in G-buffer (2 mM tris-hydrochloride pH 
8.0, 0.2 mM disodium adenosine triphosphate, 0.2 mM calcium chloride, 
0.2 mM dithiothreitol). Myosin II was stored at −20 °C in a high-salt 
storage buffer with glycerol (25 mM monopotassium phosphate pH 6.5, 
600 mM potassium chloride, 10 mM ethylenediaminetetraacetic acid, 1 
mM dithiothreitol, 50% w∕w glycerol). Creatine phosphate disodium and 
creatine kinase were purchased from Roche Diagnostics (Indianapolis, 
IN, USA), all other chemicals from Sigma Aldrich (St. Louis, MO, USA). 
Magnesium adenosine triphosphate was prepared as a 100 mM stock 
solution using equimolar amounts of disodium adenosine triphosphate 
and magnesium chloride in 10 mM imidazole pH 7.4. Myosin II was 
labeled with Alexa Fluor 488 NHS ester (Invitrogen, Paisley, UK); actin 
was labeled with Alexa Fluor 594 carboxylic acid, succinimidyl ester 
(Soares e Silva et al., 2011b). Recombinant mouse fascin was prepared 
from T7 pGEX E. coli (Gentry et al., 2012).

Sample Preparation. Fresh myosin solutions were prepared by 
overnight dialysis into myosin buffer (20 mM imidazole pH 7.4, 300 mM 
potassium chloride, 4 mM magnesium chloride, 1 mM dithiothreitol) 
and used within four days. All frozen protein stocks (actin, myosin, 
fascin) were clarified of aggregated proteins upon thawing at 120,000 g for 
at least 5 min and used within four days. The proteins’ concentrations in 
the supernatant were determined by measuring the solution absorbance 
at 280 nm with a NanoDrop 2000 (ThermoScientific, Wilmington, 
DE, USA) and using extinction coefficients, in M-1 cm, of 26600 (actin 
(Pardee and Spudich, 1982)), 249000 (myosin (Margossian and Lowey, 
1982)) and 66280 (fascin, computed from amino acid sequence (Artimo 
et al., 2012)). Fluorescently labeled proteins were mixed with unlabeled 
proteins to yield a 10% molar ratio of dye to protein. During sample 
preparation, myosin and Alexa-488-myosin were mixed at high salt 
and then mixed into a tube containing fascin and buffer. This solution 
was mixed into a second tube containing actin and Alexa-594-actin to 
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initiate polymerization and immediately inserted into glass flowcells 
passivated by poly-L-lysine-polyethylene-glycol (Surface Solutions AG, 
Dübendorf, Switzerland).

Samples were mixed to yield a final buffer composition of 20 
mM imidazole pH 7.4, 50 mM potassium chloride, 2 mM magnesium 
chloride, 1 mM dithiothreitol, and 0.1 mM adenosine triphosphate 
(ATP). Furthermore, 1 mM trolox, 2 mM protocatechuic acid, and 
0.1 µM protocatechuate 3,4-dioxygenase were added to minimize 
photobleaching. The ATP level was held constant by addition of 10 mM 
creatine phosphate disodium and 0.1 mg mL-1 creatine kinase. The actin 
concentration was held constant at 12 µM (0.5 mg mL-1). Freshly mixed 
actoymyosin solutions were loaded onto polyethylene-glycol-passivated 
flowcells with a geometry of 2.5 x 2.5 x 0.1-mm3 and sealed with either 
Baysilone silicone grease (Bayer, Leverkusen, Germany) or uncured 
PDMS (Dow Chemicals, Midland, MI, USA). The time evolution of the 
network structure was observed with a Nikon PlanFluor 4x objective 
(NA 0.13), which allows the network to fit entirely within the objective’s 
field of view.

Image Analysis. Cluster sizes were determined by a customized 
algorithm, implemented in MATLAB. Time-lapse images of contracting 
actomyosin networks were analyzed, starting from the final acquired 
frame. Cluster evolution, determined from Voronoi diagrams of myosin 
foci, was tracked by looping the algorithm backwards in time (see 
Appendix).

Definition of ξ1 and ξ2. For experimental results, we measure the 
areas ai of the initial network that contract together, which we define 
as clusters. We define ξ1 as the weighted mean of cluster sizes li (square 
root of area), in analogy to the definition of the correlation length from 
percolation theory (Stauffer and Aharony, 1994):

ξ1 := ∑i li ai
2 / ∑i ai

2.
This length scale is dominated by the largest cluster. We furthermore 
define ξ2 in analogy to percolation theory:

ξ2 := ∑’i li ai
2 / ∑’i ai

2,
where ∑’i denotes summation over all clusters except for the largest 
cluster, as well as long edge clusters (see Appendix). This length scale is 
dominated by the second-largest cluster.
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For simulation results, ξ1 and ξ2 are given by the square root of 
the harmonic-averaged area of the largest and second largest clusters, 
respectively, over 10-100 disorder realizations for each set of parameters.

Preparation of flow cells. Glass flow cells were assembled by 
sandwiching strips of ParaFilm between a long cover slip (24 mm x 60 
mm) and 2.5-mm-narrow glass strips which were manually cut from 
40-mm-long cover slips. This yielded 2.5 x 2.5 x 0.1-mm3-large chambers 
(corresponding to ~0.6 µL). All glass was cleaned with piranha solution, 
rinsed in MilliQ water, and stored in isopropanol. Assembled flow 
cells were then passivated by applying 1 M potassium hydroxide for 5 
min, rinsing with MilliQ, drying with nitrogen, applying 0.2 mg mL-1 
poly-L-lysine-polyethylene-glycol (Surface Solutions AG, Dübendorf, 
Switzerland) for 30 min, rinsing with MilliQ, and drying with N2.

Simulation. The values taken for the simulations are: the system 
size W=100, koff,0 = 10, T0 = 1, kon d / µ = 10, k = 1. Buckling is implemented 
by vanishing force of a bond for a compression strain below 0.1. The 
stiffening is implemented by increase of the stretching constant by 100-
fold for extension strain above 0.2.
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6. Phase behavior of contractile active gels

Cells and tissues can undergo remarkable shape changes which are 
driven by actively generated forces, such as pulling forces in the actin 
cytoskeleton generated by myosin motors. External biochemical signals 
are known to regulate the length scales over which these pulling forces 
act, but less is understood about how physical properties of the actin 
cytoskeleton affect these length scales. In order to provide insights 
into this question, we measure the length scale of contraction in 
reconstituted active gels composed of actin, skeletal muscle myosin 
II, and different crosslink proteins (fascin, fimbrin, and α-actinin). 
We vary motor activity by varying ATP and salt concentrations in 
the buffer, and vary network connectivity by varying actin filament 
density and length. Consistent with the results presented in Chapter 5, 
we find three contraction regimes: local, critical, and global. Increased 
network connectivity promotes larger-scale contraction, whereas 
increased myosin activity promotes rupture of contracting networks 
into many clusters. We summarize our data by proposing a phase-
space diagram of connectivity-governed contractile active gels. At the 
end of the chapter, we report first data obtained with space- and time-
resolved dynamic light scattering, probing the sample-age-dependent 
dynamics of contractile active gels. We simultaneously measure at 
four different scattering vectors and show that actomyosin networks 
exhibit a length-scale-dependent relaxation timescale. Furthermore, 
we find sudden bursts of microscopic de-correlation which occur just 
moments before contraction. Our data obtained for minimal active 
gels may help to interpret in vivo studies showing evidence of physical 
regulation of actomyosin contraction, for instance during cortical flows 
and cytokinesis.
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6.1 Introduction

Cells and tissues can undergo remarkable shape changes which are 
driven by actively generated, internal forces. In order to accomplish 
this, cells rely on their cytoskeleton, an internal network of protein 
filaments which actively generates pushing and pulling forces. Pulling 
forces often result from myosin motor filaments, which harness 
chemical energy derived from ATP hydrolysis to pull actin filaments 
towards one another (Levayer and Lecuit, 2012). Although individual 
myosin motors are only ~0.1 µm in size and exert only ~pN forces 
(Finer et al., 1994; Howard, 2001), cells integrate the activity of many 
motors to produce nN contractile forces on cellular length scales. The 
most efficient example of this sort of force integration occurs in striated 
muscle cells, where contraction occurs on length scales that approach 
the length scale of the host organism. These contractions are mediated 
by a sarcomeric organization whose highly regular architecture allows 
efficient force transmission (Gautel, 2011; Huxley and Niedergerke, 
1954; Huxley and Hanson, 1954).

Non-muscle cells lack sarcomeric organization, and have a much 
more dynamic and adaptive actin-myosin cytoskeleton than muscle 
cells (Vicente-Manzanares et al., 2009). Depending on cell state, 
nonmuscle cells generate contractile forces on varying scales. Myosin 
motors exert localized, short-length-scale pulling forces at the equator 
of dividing cells (Vavylonis et al., 2008) or in the rear of migrating cells 
(Kolega, 1998; Svitkina et al., 1997; Vicente-Manzanares et al., 2007). 
Cellular-length-scale pulling forces facilitate cytoplasmic chromosomal 
transport (Lénárt et al., 2005) or cortical polarizing flows in developing 
oocytes (Bray and White, 1988; Mayer et al., 2010). Epithelial sheets 
of myosin-rich cells coordinate contractions that drive shape changes 
over tissue length scales in developing embryos (Lye and Sanson, 2011; 
Martin et al., 2009; Rauzi et al., 2008) and healing wounds (Mandato 
and Bement, 2001; Sonnemann and Bement, 2013).

How is the length scale of contraction regulated? Cells exert tight 
control on myosin activity via regulatory enzymes and ligands coupled to 
reaction-diffusion networks, which establish spatial activation patterns 
(Bement et al., 2006; Goehring et al., 2011; Hall, 2012). Phosphorylation 



213

of the regulatory light chain by multiple kinases induces a conformational 
change of nonmuscle myosin II from a folded inactive state to an opened 
active state, allowing binding to F-actin, ATPase activity, and assembly 
into filaments (Bresnick, 1999; Korn and Hammer, 1988). Single myosin 
motors are non-processive and cannot produce actin filament sliding 
or contraction (Kovács et al., 2003; Wang et al., 2003). However, they 
can assemble into filaments composed of typically 10-30 tail-to-tail 
associated myosins (Verkhovsky, 1993; Verkhovsky et al., 1995). These 
filaments are bipolar and processive, and thus capable of pulling on actin 
filaments of opposite polarity. Myosin assembly into filaments is further 
regulated through phosphorylation of the heavy chain. There are many 
additional regulatory mechanisms involving noncovalent interactions 
of myosins with other proteins such as tropomyosin (Bresnick, 1999; 
Gunning et al., 2005). 

In addition to biochemical regulation, physical interactions 
can also contribute to regulation of the length scale of contraction, as 
evident from experiments on model systems reconstituted from purified 
proteins. Usually, these assays are based on three protein components: 
purified actin, purified myosin (generally skeletal muscle myosin II), 
and crosslink proteins to establish network connectivity. Together, these 
assays have established two minimal requirements for macroscopic 
contraction: a minimal motor activity and a minimal network 
connectivity (Bendix et al., 2008; Janson et al., 1991; Köhler et al., 
2011a). Network connectivity depends on the concentration of crosslink 
molecules, which simultaneously bind two or more actin filaments, 
as well on the actin filament density and length. Minimum values of 
actin filament density (Köhler et al., 2011a) as well as crosslink density 
(Bendix et al., 2008; Köhler et al., 2011a) are required for contraction 
to occur. Several mechanisms may account for network contraction 
mediated by myosin motor activity. As shown experimentally (Murrell 
and Gardel, 2012; Soares e Silva et al., 2011b; Vogel et al., 2013) as well 
as theoretically (Dasanayake et al., 2011; Lenz et al., 2012b; 2012a), 
contraction can proceed via actin filament buckling. Alternatively, 
alignment or rearrangement of bundles and mobility of myosin II motor 
filaments may promote contraction (Dasanayake et al., 2011; Köhler et 
al., 2012). There is evidence that network contraction occurs only in 
an optimum window of crosslink density: in the absence of crosslinks, 
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myosin motors generate sliding forces which do not result in pulling 
(Humphrey et al., 2002; Le Goff et al., 2002b), yet, excessive crosslinks 
can inhibit contraction (Bendix et al., 2008; Janson et al., 1991; Köhler 
et al., 2012). 

In vivo, the crosslink proteins that transmit myosin pulling forces 
are highly dynamic. They usually have dissociation rate constants in the 
µM-range and on-times of a few seconds (Courson and Rock, 2010). 
Moreover, their binding kinetics are responsive to forces. Usually, 
off-rates increase when a force is applied (Evans and Ritchie, 1997). 
However, some crosslink molecules such as filamin and α-actinin 
exhibit catch-bond behavior, with an off-rate that decreases when a 
force is applied (Ferrer et al., 2008; Yao et al., 2011; 2013). This raises 
the question how force-responsive binding kinetics of crosslinks will 
influence the contractile behavior of actomyosin networks as a function 
of motor activity and underlying network connectivity.

In order to answer this question, we investigated contractility 
of reconstituted actin-myosin networks crosslinked with fascin in 
Chapter 5 of this thesis. We showed that myosin motors contract and 
rupture these networks into clusters whose sizes are determined by an 
interplay between force-responsive binding kinetics of fascin crosslinks 
and motor activity. In the limit of low fascin concentration, networks 
show local contraction, with clusters whose typical sizes are far smaller 
than the system size. In the opposite limit of high fascin concentration, 
networks show global contraction, contracting entirely into one large 
cluster whose size approaches the system size. At intermediate crosslink 
densities, we observed an unexpectedly wide regime where networks 
contract into large clusters, characterized by a combination of small and 
large clusters with a scale-free size distribution. We proposed that this 
intermediate regime arises because above a critical network connectivity, 
motors not only contract the network but also reduce the connectivity 
of initially stable networks by promoting unbinding of fascin crosslinks. 
In combination with numerical simulations, our results suggested that 
the length scale of contraction is controlled by two main parameters: 
motor activity and network connectivity. However, we only varied two 
experimental parameters, motor density and crosslink density. Motor 
activity is also dependent on other factors such as motor processivity, 
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and network connectivity is also dependent on other factors such as 
actin filament density and length. 

In this chapter, we experimentally test the generality of the 
proposed mapping of contractile “phase behavior” onto a phase space 
controlled by motor activity and network connectivity. We reconstitute 
minimal active gels from purified actin, skeletal muscle myosin II, and the 
crosslinks fascin, fimbrin, and α-actinin. We use different means to vary 
motor activity (by varying the level of ATP and the salt concentration) 
as well as different means to vary network connectivity (by varying 
actin filament density and length, and also by using different crosslink 
proteins). We measure the resulting length scales of motor-driven 
contraction by performing confocal microscopy of networks enclosed 
in customized flow-cells, which fit entirely in the field-of-view of a 4× 
microscope objective. We track the temporal evolution of the networks 
by time-lapse imaging and perform quantitative image analysis of 
cluster sizes. In Section 2, we present experimental results obtained for 
these reconstituted contractile active gels. In Section 3, we summarize 
our data by proposing a phase-space diagram of connectivity-governed 
contractile active gels.

6.2 Results

Modulating motor activity. In Chapter 5, we modulated the motor-
generated forces in crosslinked actin-fascin networks by varying the 
concentration of motors. Here, we instead modulate the motor activity 
at constant motor density, by varying the monovalent potassium 
chloride (KCl) concentration. Increasing [KCl] is expected to weaken 
motor forces, since the binding affinity of myosin II for actin is reduced 
with increasing ionic strength (Brenner et al., 1982; Takiguchi et al., 
1990), thus reducing motor processivity. The KCl concentration has 
also been reported to influence the size of myosin filaments (Davis, 
1988; Kaminer and Bell, 1966; Katsura and Noda, 1973; Koretz, 1979; 
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Pinset-Härström and Truffy, 1979; Pollard, 1982; Reisler et al., 1980). 
Myosin is generally stored in non-filamentous form in high-salt buffers 
(at least 300 mM KCl) and assembly is triggered by lowering the KCl 
concentration. The myosin filament size depends on [KCl] as well as 

[KCl] = 50 mM
[ATP] = 0.1 mM

[KCl] = 75 mM

[KCl] = 100 mM [ATP] = 1 mM

a b

c d

tstart

tend

Figure 1. Lower motor activity increases the length scale of contraction. 
All images are time-overlay images where color corresponds to time (see 
calibration bar, below). Assays are performed at fixed initial network 
connectivity ([actin] = 12 µM and [fascin] = 260 nM) and motor density 
([myosin] = 340 nM). a. Under reference conditions ([KCl] = 50 mM, 
[ATP] = 0.1 mM), networks contract into many clusters with a scale-
free size distribution (see Chapter 4). b. Increasing [KCl] to 75 mM 
promotes larger-scale contraction. Moreover, we observe a second 
wave of contraction (reddish color). c. Increasing [KCl] further to 100 
mM promotes macroscopic contraction. d. Increasing [ATP] to 1 mM 
increases the scale of contraction. For all panels, scale bars are 1 mm. 
Times (tstart, tend) of color overlays, given as time after initiating actin 
polymerization: a: (30 sec, 6 min) b: (40 sec, 4 min) c: (11 min, 14 min) 
d: (40 sec, 6 min).
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other buffer components, temperature, and the method of preparation 
(rapid dilution, gradual dilution, or dialysis). Here, we prepared myosin 
filaments by rapid dilution into a standard imidazole-based buffer, in 
which the filaments have an average length of 0.85 µm when formed at 
50 mM KCl and 0.63 µm when formed at 150 mM KCl (Soares e Silva, 
2011).

Figure 1 shows time-projections of movies of three different 
contractile networks, which all have the same initial network connectivity 
([actin] = 12 µM, [fascin] = 260 nM). In the standard buffer with 50 mM 
KCl that is used throughout Chapter 5, motors rupture the network into 
many small clusters (Fig. 1a). In Chapter 5, we attributed this rupture to 
myosin activity. When we increase [KCl] to 75 mM, we again observe 
rupture into multiple clusters (Fig. 1b), but the clusters are larger than 
at 50 mM KCl. Strikingly, a further increase of [KCl] to 100 mM results 
in the entire network contracting to one large cluster (Fig. 1c). This 
observation is consistent with the model presented in Chapter 5, which 
predicts that reduced motor forces should reduce the ability of motors 
to break down network connectivity. 

 To independently test this interpretation, we performed 
an additional contraction assay in which we kept [KCl] = 50 mM as 
in the standard buffer, but increased the adenosine triphosphate 
(ATP) concentration to 1 mM. According to single molecule force 
measurements (Debold et al., 2005; Finer et al., 1994), the duty ratio 
of skeletal muscle myosin II is about 4% at mM levels of ATP, and ca. 
4-fold larger at 0.1 mM ATP, which was used in the standard buffer used 
in Chapter 5. When we increase [ATP] to 1 mM, we again observe a 
marked increase in the sizes of contracting clusters (Fig. 1d) compared 
to the standard buffer conditions, consistent with a weaker influence of 
myosin motor forces on network connectivity.

To further investigate the effect of weakening motor activity, we also 
varied the KCl concentrations in networks that contract macroscopically 
in the standard buffer (Fig. 2a). This condition is attained by increasing 
the fascin concentration (from 260 nM in Fig. 1 to 1.2 µM in Fig. 2). 
When we increase [KCl] to 75 mM, we observe macroscopic network 
contraction, resembling the contraction at 50 mM KCl (Fig. 2b, top). 
However, increasing [KCl] further to 100 mM prevents contraction: 
the network remains static on macroscopic length scales (Fig. 2c, top). 
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Figure 2. Degree of actin bundling around myosin foci depends on 
monovalent salt concentration. a. [KCl] = 50 mM. b. [KCl] = 75 mM. c. 
[KCl] = 100 mM. Top row. Time-overlay images of network contractions 
based on actin fluorescence. Color corresponds to time (calibration 
bar, left) and scale bars are 1 mm. Times (tstart, tend) of color overlays, 
given as time after initiating actin polymerization: a: (45 sec, 6 min) b: 
(30 sec, 3 min) c: (1 min, 13 min). Middle row. Close-up of network 
structures corresponding to the areas indicated by the black squares 
in the top row. Actin is shown in red, myosin in cyan. Snapshots were 
acquired 2  hr after initiating actin polymerization. Scale bars 30  µm. 
Bottom row. Further close-up of network structures corresponding 
to the areas indicated by the white squares in the middle row. Note in 
panel C the presence of small myosin puncta, likely corresponding to 
individual myosin filaments (white arrows). Scale bars 5 µm. For all 
panels, [actin] = 12 µM, [myosin] = 120 nM, [fascin] = 100 nM.
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Apparently, the motors are not sufficiently processive to cause network 
contraction.

To investigate how the network microstructure is influenced 
by variations in KCl concentration, we acquire confocal snapshots of 
the actomyosin networks 2 hr after initiating actin polymerization by 
a high-NA microscopy objective (middle and bottom row). For the 
standard KCl concentration of 50 mM, we find a heterogeneous network 
of clearly distinguishable actin bundles in the contracted network (Fig. 
2a). This network is decorated with myosin foci of variable size, which 
appear alongside actin bundles but do not appear to be integrated in 
the network. Increasing [KCl] to 75 mM results in a finer meshwork of 
actin without pronounced actin bundles (Fig. 2b). Myosin foci appear 
to be integrated in the actin network, often surrounded by shell of 
locally enhanced actin fluorescence intensity indicative of local network 
condensation. The foci have similar sizes as at [KCl] = 50 mM, but 
they exhibit more irregular and non-convex shapes. Further increasing 
[KCl] to 100 mM, where the network does not contract, results in a 
homogeneous network of actin bundles (Fig. 2c). Large myosin foci 
seldom occur in these networks, although small puncta of myosin 
fluorescence (potentially single myosin filaments) are present all across 
the network (Fig. 2c, bottom, white arrows).

Rotating foci of myosin in dense actomyosin networks. During 
high-resolution imaging, we observed a striking phenomenon in 
strongly crosslinked contractile active gels (RF = 0.1): about 5% of the 
myosin motor foci exhibited rotations within the dense actin networks 
formed after macroscopic contraction. Typical rotation speeds varied 
from 2–9 rotations per minute. With foci sizes varying from 2–6 µm (Fig. 
3a), these rotation speeds correspond to linear speeds of approximately 
0.1–1 µm s-1 at the surface, which is lower than the velocities of 3–4 µm 
s-1 reported for motor-driven sliding of actin filaments in gliding assays 
(Kron and Spudich, 1986). Some rotations continued uninterrupted 
with a well-defined rotational velocity, as shown in the first two and the 
last kymograph in Fig. 3b. These kymographs reveal regular patterns in 
foci trajectories. However, other foci exhibited pauses during rotation, 
as shown in the kymographs in columns 3–7, which reveal patches 
of regular patterns interspersed with straight sections indicating 
lack of movement. Foci were found to rotate both clockwise as well 
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Figure 3. Rotating myosin foci. a. Snapshots of foci. Color images depict 
actin signal in red, myosin in cyan. Grayscale images depict myosin 
signal. Time, in minutes, after initiating actin polymerization, from left 
to right: 39, 25, 100, 46, 63, 70, 30, 3. Scale bars 5 µm. b. Kymographs. 
Horizontal direction: Fluorescence intensity of myosin along a line 
running through foci (between dashed yellow lines, panel a). Myosin 
intensity is shown in a “Fire” lookup table. Vertical direction: Time. 
Scale bars 5 µm x 10 s. Note that the first two columns were acquired at 
a 10x faster frame-rate.
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as counterclockwise. However, foci were never observed to change 
rotation direction. The lack of preferred directionality is expected 
due to the apparent lack of an external axis from which left and right 
can be defined. Such an axis exists in developing embryos, where it is 
required to establish chiral symmetry breaking (Brown and Wolpert, 
1990). Interestingly, we observed that preparing contractile networks in 
thin flow cells with a thickness of ~20 µm (see Methods) increased the 
likelihood of finding rotating foci.

Two potential scenarios could contribute to the rotation of myosin 
foci (Fig. 3 c). In one scenario, the actin filaments surrounding myosin 
foci are perfectly ordered, allowing motors on the surface of these foci 
to rotate processively along circular tracks of actin. In such a scenario, 
chiral symmetry breaking could arise from the inherent chiral pitch of 
actin filaments (Claessens et al., 2008; Shin et al., 2009). In a second 
scenario, actin filaments are disordered around myosin foci. Motors at 
the surface of the cluster would exert random forces, which could still 
give rise to rotations in the absence of actin filament chirality. This kind 
of behavior has been reported in suspensions of Escherichia coli bacteria 
in the presence of high concentrations of non-adsorbing polymers. 
Depletion interactions drive aggregation of bacteria into clusters, which 
were surprisingly observed to rotate around a single axis (Schwarz-Linek 
et al., 2012). Such rotations are understood to arise by hydrodynamics: 
bacterial flagella on the surface of the cluster exert randomly directed 
force dipoles on the surrounding fluid, which can give rise to uniaxial 
rotations. Whether such a mechanism could apply to rotating myosin 
clusters is not yet known.

Recent continuum models have begun to address the emergence 
of global chiral flows from local chiral activity (Fürthauer et al., 2012a; 
2012b). Current evidence clearly points to the existence of a microscopic 
chirality arising from cytoskeletal components. Actin filaments exhibit a 
variable chiral pitch along the filament axis (Egelman et al., 1982; Galkin 
et al., 2010b), while fascin crosslinks appear to overtwist actin filaments 
by 1° per monomer (Claessens et al., 2008). Meanwhile, myosin motors 
have been shown to exhibit torques on actin filaments, evident from 
twirls with a left-handed pitch of ~1  µm in gliding assays (Beausang 
et al., 2008). A thorough understanding of how these effects can give 
rise to the rotations of myosin foci we report here currently remains 
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lacking. But such an understanding could help address the currently 
unanswered question of the origin of chiral symmetry breaking in 
developing embryos (Spéder et al., 2007). Mouse embryos have been 
shown to break symmetry by a leftward nodal flow (Nonaka et al., 
2002), plausibly established by cilia pointed towards the posterior axis 
(Cartwright et al., 2004). Meanwhile, evidence from Xenopus (Adams 
et al., 2006; Levin et al., 2002) and chick (Adams et al., 2006) embryos 
demonstrate that ion pumps and channels are asymmetrically expressed, 
possibly resulting in L/R gradients in pH and membrane potential. 
The origin of this polarized expression remains elusive, though actin 
filaments or microtubules are thought to be essential (Qiu et al., 2005; 
Shibazaki et al., 2004). Perhaps most strikingly, myosin motors have 
been directly implicated in establishing chiral rotations in the genital 
disc of developing Drosophila embryos (Spéder et al., 2006). Mutants 
lacking myosin 1D surprisingly reverse the direction of rotation. 
Understanding how motor activity establishes such rotations remains 
poorly understood.

Modulating network connectivity. In Chapter 5, we modulated 
the network connectivity solely by varying the concentration of 
fascin crosslinks. However, network connectivity also depends on the 
concentration of actin filaments as well as their length. In semidilute 
solutions of long actin filaments, above the overlap concentration, steric 
entanglements can effectively act as crosslinks (MacKintosh et al., 1995). 
To test how actin concentration influences connectivity, we perform 
contraction assays at three different actin concentrations, keeping the 
myosin concentration and fascin concentration constant ([myosin] = 
120 nM, [fascin] = 500 nM). At the largest actin concentration (12 µM), 
we observe macroscopic contraction, consistent with the high crosslink 
concentration and low motor density used (Fig. 4a). When we decrease 
the actin concentration to 6 µM, the network is instead ruptured into 
multiple large clusters, indicative of lower network connectivity (Fig. 
4b). Further decreasing actin concentration to 3 µM results in the 
formation of many more, much smaller clusters (Fig. 4c), indicative of a 
further reduction of network connectivity. 

To test the influence of filament length, which also influences 
connectivity, on network contraction, we polymerize actin in the 
presence of the protein gelsolin, which caps actin filaments at the barbed 
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end. We use 120 nM gelsolin, which is expected to result in an average 
filament length of ~300 nm (Janmey et al., 1986). This drastic reduction 
in filament length abolishes network connectivity. Instead of a connected 
network, we observe isolated foci of myosin motors surrounded by a 
halo of actin filaments/bundles (Fig. 5a). The foci freely diffusive and 
coalesce to form larger foci when they collide, as demonstrated in 
the kymograph in Fig. 5b, where the arrow points to the coalescence 
event. The coalescence events are irreversible (Fig. 5c). This coalescence 
behavior is in marked contrast to the coalescence of actomyosin foci in 
the absence of gelsolin, where the actin filaments are sufficiently long to 
form a connected network (Fig. 5d). In connected networks, coalescing 
foci do not diffuse, but move in a directed manner towards one another 
at typical velocities of ~ 2 µm min-1 (Fig. 5e). In this case, coalescence is 
also irreversible (Fig. 5f).

Onset of network contraction in weakly-crosslinked contractile 
active gels. So far, we have investigated the effect of myosin-mediated 
network structure on large (mm) scales and identified the onset of 
large-scale network contraction as a function of motor and crosslink 
density. However, even at lower crosslink densities, we observe local 

a b c

[actin] = 12 µM [actin] = 6 µM [actin] = 3 µM
tstart

tend

Figure 4. Reducing the network connectivity by decreasing the actin 
concentration causes network contraction into smaller clusters. 
a. Time-overlay image of a macroscopically contracting network 
([actin] = 12 µM). Color corresponds to time (calibration bar, left. b. 
Decreasing [actin] to 6 µM. c. Decreasing [actin] further to 3 µM. For all 
panels, [myosin] = 120 nM, [fascin] = 500 nM. Times (tstart, tend) of color 
overlays, given as time after initiating actin polymerization: a: (40 sec, 
20 min) b: (1 min, 14 min) c: (1 min, 1.5 hr).
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contraction into clusters that are only a few micrometers in size. This 
observation raises the question what is the minimum crosslink density 
required to initiate micron-scale contraction. To identify this onset, 
we perform confocal imaging of weakly crosslinked networks with a 
high-NA objective, 1  hr after initiating actin polymerization. In the 
absence of fascin crosslinks, we observe many small myosin foci (shown 
in blue) with sizes of a few µm (Fig. 6a, left). These foci are isolated 
and surrounded by an actin background network (shown in red) of 
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Figure 5. Shortening actin filament length by co-polymerizing with 
gelsolin results in disconnected actomyosin foci which freely diffuse 
and coalescence when they collide. a. In the presence of 120  nM 
gelsolin, foci of actin and myosin are freely diffusing in solution. [actin] 
= 12 µM, [myosin] = 120 nM, [fascin] = 260 nM. Scale bar 10 µm. b. 
Kymograph, as in b. Scale bar 10 µm x 20 sec. c. Snapshot of actomyosin 
foci after coalescence. d. In dense networks of long filaments ([actin] = 
12 µM, no gelsolin, [myosin] = 120 nM, [fascin] = 120 nM), foci of actin 
and myosin are connected by a background meshwork of crosslinked 
actin filaments. Actin is shown in red, myosin in cyan. Scale bar 10 
µm. e. Kymograph showing time along the horizontal direction and 
fluorescence intensity along the dashed yellow line from panel a along 
the vertical direction. Scale bar 10 µm x 20 sec. f. Maximum-z-projection 
over 17 µm of actomyosin foci after coalescence.
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homogeneous density. Line scans across the foci show that the actin 
and myosin fluorescence intensity co-localize, but there is no obvious 
enrichment of actin around the myosin foci (Fig. 6a, right). When we 
add a small amount of fascin (RF = [fascin] / [actin] = 0.001 and 0.002), 
we still observe small myosin foci without an obvious actin coat (see 
snapshots and line scans in Fig. 6b and c). However, when we increase 
RF further to 0.005, the myosin foci are surrounded by a coat of actin 
(Fig. 6d, left), which is especially evident from the increasing width of 
the actin fluorescence signal in line scans (Figure 6d, right). Apparently, 
the threshold fascin crosslink density required to initiate local network 
contraction is around RF = 0.005 for networks composed of [actin] = 12 
μM and [myosin] = 120 nM. Increasing RF to 0.01 results in foci with 
even thicker coats of accumulated actin (Fig. 6e). 

In order to pinpoint the onset of local contraction, we plot the 
average thickness of the actin coat of myosin foci in each sample 
condition as a function of crosslink density. We quantify the coat 
thickness by fitting Gaussian peaks to line-scans of the actin and myosin 
fluorescence intensity, and taking the ratio of the standard deviations 
(peak widths) σa and σm of the actin and myosin peaks, respectively. 
Figure 6f summarizes the dependence of the width ratio σa / σm on fascin 
crosslink concentration. Up until RF = 0.002, the width ratio is around 
1, indicating that there is no network contraction. Above RF = 0.002, 
the width ratio starts to increase above 1, indicating the onset of local 
contraction. 

At the highest crosslink density in Fig. 6f (RF = 0.01), we start 
to observe contractile coalescence of myosin foci. Time-lapse imaging 
reveals that contractile motions sometimes result in permanent 
coalescence (Fig. 7a), whereas at other times, foci initially move towards 
one another in a directed manner but ultimately do not succeed in 
joining (Fig. 7b). Close inspection of kymographs shows periods of 
unidirectional motion, as well as reversal events (see arrows in Fig. 7b).

Since weakly crosslinked networks (RF ≤ 0.01) contract only on a 
microscopic scale, we can measure their global viscoelastic properties 
by shear rheology. In the absence of motors and crosslinks, the actin 
networks have a low elastic modulus G’ of ~0.1 Pa (Fig. 8), in agreement 
with previous studies (Xu et al., 1998). When we add motors but no 
crosslinks, G’ is increased by a factor of 20, suggesting that the motors 
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Figure 6. Accumulation of an actin coat onto myosin foci depends 
on fascin concentration. Left Column. Snapshots of actomyosin foci 
taken 1 hr after initiating actin polymerization. Scale bars 20 µm. Right 
Column. Fluorescence intensity of actin (red points) and myosin (cyan 
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themselves act as (transient) crosslinks. Adding a small number 
of crosslinks (RF  =  0.001) in the presence of motors results does not 
appreciably change G’. Interestingly, when we further increase the 
crosslink concentration, we observe a marked reduction of G’, which 
decreases approximately as RF

-0.5. The reduced stiffness may originate 
from local condensation of the actin network around actomyosin foci, 
which reduces the actin (and myosin) concentrations in the background 
network. 

Different crosslinks can affect the phase behavior of contractile 
active gels. So far we characterized the contractile behavior of active 
actin-myosin networks crosslinked by the actin-binding protein fascin. 
To test the generality of our results, we also test the ability of other 
physiological crosslink proteins to assist motor-driven contraction. 
When we crosslink networks with human α-actinin 2, we observe only 
local contraction over a broad range of α-actinin concentrations, up to 
260 nM (Fig. 9a). However, increasing [α-actinin] to 560 nM results 
in a drastic change: the entire network contracts to one large cluster 
in a macroscopic contraction. This behavior is strikingly different 
from contractile active gels crosslinked by fascin, which exhibit a wide 
distribution of cluster sizes for intermediate crosslink concentrations. 

points) along a line running through foci (between dashed yellow lines, 
left column). When foci are elongated (as in panel e), the line was chosen 
to run perpendicularly to focus axis. Solid lines denote fits of median-
subtracted fluorescence data to Gaussian peaks. Text labels indicate 
values of the peak-width ratio σa / σm, defined as the ratio of the standard 
deviations σa and σm (given in pixels) from fitting actin and myosin line 
profiles, respectively. A value greater than one indicates the actin peak 
is wider than the myosin peak. a. RF = 0. b. RF = 0.001. c. RF = 0.002. 
d. RF = 0.005. e. RF = 0.01. f. Box-plot of peak-width ratios σa / σm as a 
function of RF. Points indicate individual foci (N = 32, 25, 30, 32, and 32 
for RF = 0, 0.001, 0.002, 0.005, and 0.01, respectively). Red lines denote 
mean ratio. Pink boxes denote 95% confidence interval (CI). Blue boxes 
denote interquartile range. Two datasets are statistically significantly 
different from each other (p < 0.01) if their CIs do not overlap.



228

When we crosslink networks with Arabidopsis fimbrin 2, we find local 
contraction at low concentrations of fimbrin (120 nM), larger clusters at 
260 nM fimbrin, and macroscopic contraction at 560 nM fimbrin (Fig. 
9b). These three contractile regimes qualitatively resemble the phase 
behavior we observed for contractile active gels crosslinked with fascin. 
When we crosslink actin networks with Drosophila septin complexes, 
we observe only local contraction, even at the highest concentration of 
septins we could attain in our assay (500 mM) (Fig. 9c). Furthermore, 
we crosslinked networks with 10 mM magnesium chloride (MgCl2), 
which is known to drive attractive interactions between actin filaments 
by counterion condensation (Tang et al., 1996). Interestingly networks 
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Figure 7. Fluctuation and coalescence of actomyosin foci showing 
snapshots of foci 50 sec after initiating actin polymerization (left column, 
scale bars 30 µm), kymographs with time along the horizontal direction 
and fluorescence intensity along the vertical direction (middle column, 
scale bars 30 µm x 20 sec), and snapshots of foci 18 min after initiating 
actin polymerization (right column, scale bars 30 µm). Kymographs are 
taken along the yellow dashed lines shown on the left. a. Fluctuation 
event showing motion of foci towards each other followed by relaxation. 
b. A coalescence event, where multiple foci merge to form a larger focus. 
In both cases, [actin] = 12 µM, [myosin] = 120 nM, [fascin] = 120 nM. 
Actin is shown in red, myosin in cyan.
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contracted macroscopically in the presence of magnesium chloride in a 
manner similar to physiological crosslinks.

In order to quantify the effect of α-actinin on the macroscopic 
phase behavior of contractile active gels, we determine cluster size using 
the techniques developed in Chapter 5. Figure 10a shows the result of 
this analysis for the four contractions shown in Figure 9a. For crosslink 
concentration ratios up to Rα = [α-actinin] / [actin], we find only small 
clusters. Increasing Rα to 0.05 results in one large cluster, with smaller 
clusters occurring at the boundary of the chamber. Figure 10b shows 
the average sizes of the largest (ξ1) and second-largest (ξ2) clusters 
as a function of Rα for twelve experiments. Plotting the results of all 
twelve experiments in ξ1-ξ2-space shows that most experiments occupy 
either the local-contraction or global-contraction regime (Fig. 10c). As 
expected, samples in the local-contraction regime exhibit short-tailed 
cluster size distributions, while samples in the global-contraction regime 
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Figure 8. Apparent network stiffness decreases with increasing fascin 
concentration. Elastic shear modulus G’ at 0.1 Hz is plotted against 
RF = [fascin] / [actin] for experiments in the presence of motors 
([myosin] = 120 nM) at a fixed actin concentration, [actin] = 12 µM. 
For comparison, one experiment in the absence of motors and fascin is 
plotted (“no motors”, [actin] = 12 µM). For reference, dashed lines show 
G’ ~ RF

0 and G’ ~ RF
-1/2 scaling.
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Figure 9. Contractions with different crosslinks. Time-overlays of 
contractile active gels with a. human α-actinin 2, b. Arabidopsis fimbrin 
2, c. Drosophila septin hexameric complexes, and d. fascin with added 
MgCl2. Color corresponds to time (calibration bar, below). Times (tstart, 
tend) of color overlays, given as time after initiating actin polymerization, 
from top to bottom: a: (1 min, 27 min); (1 min, 20 min); (1 min, 17 min); 
(1 min, 12 min) b: (1 min, 12 min); (1 min, 19 min); (1 min, 8 min) c: 
(9 min, 44 min) d: (35 sec, 8 min). Scale bar 1 mm.
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Figure 10. Contractions of networks crosslinked with α-actinin are 
characterized by a sharp boundary between local contraction for weakly 
crosslinked networks and global contraction for highly crosslinked 
networks. a. Result of cluster-size analysis for the four contractions 
shown in panel a of Figure 8. The largest cluster is shown in blue, the 
second-largest cluster is shown in pink. Scale bar 1 mm. b. Mean values 
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exhibit a bimodal cluster-size distribution with two well-separated 
length scales (Fig. 10d).

However, one sample prepared at Rα = 0.05 did appear to exhibit 
clusters with a wide size distribution (Fig. 10e). This network was the 
only experiment performed with α-actinin that yielded ξ1  ~  ξ2  ~  L, 
where L is the system size. (see “Large Clusters”, Fig. 10c). Its cluster 
size distribution is shown in Fig. 10d (“Large Clusters”), which shows a 
long-tailed distribution.

In order to investigate further the difference in macroscopic 
contractile phase behavior between fascin and α-actinin, we investigate 
its microscopic behavior. We perform experiments where we observe 
actomyosin-foci crosslinked with α-actinin in the presence of gelsolin. 
Surprisingly, α-actinin foci appear to exhibit foci where an actin core is 
surrounded by a myosin coat. This is in strong contrast to fascin foci, 
which exhibit a myosin core surrounded by an actin coat (Fig. 11).

of the sizes of the largest and second largest clusters, ξ1 and ξ2 respectively, 
as a function of Rα = [α-actinin] / [actin]. Error bars denote standard 
error of the mean for N = 1, 2, 3, and 5 experiments for Rα = 0.005, 0.01, 
0.02, and 0.05, respectively. Dashed lines are guides to the eye. c. ξ1-ξ2-
space with three regimes: local contraction, large clusters, and global 
contraction. Symbol color and shape corresponds to Rα (legend, top-
left). Note that we observed a network with large clusters only once, in 
sharp contrast with fascin-crosslinked networks (Chapter 4). d. Cluster 
size distributions for the three regimes from panel c, represented 
as histograms (circles) and complementary cumulative probability 
distribution functions (lines).
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6.3 Discussion

Motor-driven patterning of actin-fascin networks. Our results for 
motor-driven actin-fascin networks complement a growing body of in-
vitro work on this system.

First, a set of experiments by Backouche et al. (2006) focusing on 
well-connected (1 mg/ml) actin networks reported strikingly ordered 
patterns consisting of asters of actin-fascin bundles. These ordered 
patterns resemble previously reported asters and vortices of microtubules 

fascin α-actinin
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Figure 11. The organization of actin and myosin in freely-diffusing 
actomyosin foci formed in solutions of actin ([actin] = 12 µM) shortened 
with gelsolin ([gelsolin] = 120 nM) depend on the nature of the crosslink 
protein. a. Snapshot of actomyosin-gelsolin foci crosslinked by fascin 
(260 nM), acquired 40 min after initiation of actin polymerization. Scale 
bar 30 µm. Note that actin (in red) is on the outside of myosin (in cyan) 
foci. b. Close-up of the area indicated by the white box in panel a. Scale bar 
5 µm. c. Snapshot of actomyosin-gelsolin foci crosslinked by α-actinin 
(560 nM), acquired 40 min after initiation of actin polymerization. Scale 
bar 30 µm. d. Close-up of the area indicated by the white box in panel 
c. Note that actin (in red) is sometimes on the inside. Scale bar 5 µm.
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driven by kinesin and dynein motor proteins (Nédélec et al., 1997), but 
are completely different from the disordered contractions reported in 
this thesis. This difference is likely a consequence of a difference in ionic 
strength of the buffers used in the two cases: Backouche et al. used a high 
KCl concentration (130 mM), whereas we used a low KCl concentration 
(50 mM). We showed in this chapter that the KCl concentration has a 
strong influence on the microstructure of actin-myosin-fascin networks 
as well as on the ability of motors to contract these networks. At low 
KCl concentration (50 or 70 mM), the actin networks are only partially 
bundled (in contrast to control samples with fascin but without myosin) 
and motors can efficiently contract the networks. At the highest KCl 
concentration studied here (100 mM), we observed that networks were 
more bundled, resembling control samples without myosin. Moreover, 
we found that contraction was inhibited (cf. Fig. 2). We propose that 
this KCl dependence is a consequence of changes in the binding affinity 
of myosin for F-actin, which determines the motor processivity. At 
low ionic strength, the motors are more processive and cause (more) 
forced-unbinding of fascin crosslinks, which inhibits actin bundling 
but promotes network contraction. At high ionic strength, the motors 
are less processive and leave actin bundles more intact (though at high 
myosin concentration, they are still capable of bundle disruption (Haviv 
et al., 2008)).

Second, a set of experiments on dilute (< 0.3 mg mL–1) suspensions 
of actin-fascin bundles in a low-salt buffer by Köhler et al. (2011a) showed 
that driving by myosin motors can give rise to a dynamic steady state. 
Specifically, they observed clusters of bundles that continuously grow 
and shrink. Furthermore, they showed that these dynamic steady states 
can give rise to pulsatile collective transport modes (Köhler et al., 2011b). 
They ascribed this fascinating behavior to an interplay between motor-
activity and forced crosslink unbinding, somewhat reminiscent of the 
mechanism we propose for rupture and contraction in highly connected 
(0.5 mg/ml) active contractile gels. At actin concentrations higher than 
0.3 mg mL-1, Kohler et al. observed network contraction instead of 
dynamic steady states (Köhler et al., 2011a; 2012), consistent with our 
observations. In a third set of experiments, by Schaller et al. (2011), 
quasi-2D layers of actin filaments were transported by nonprocessive 
myosin motors immobilized on a glass coverslip. This assay is a high-
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density version of a conventional gliding assay. These authors were 
able to demonstrate the emergence of a frozen active steady state that 
consisted either of constantly rotating rings or collectively moving 
elongated fibers. This assay is different from our assay in different ways. 
First, the geometry is 2D, in contrast to our 3D conditions. Second, 
the motors are immobilized, whereas in our assay myosin filaments 
substantially reorganize in the course of network contraction, forming 
large foci. Prior work showed that myosin foci are particularly effective 
in driving network contraction by generating large compressive forces 
that cause actin filament buckling (Soares e Silva et al., 2011b).

Phase behavior of active contractile gels. In this chapter as well 
as Chapter 5, we performed experiments on contractile active gels in 
which we systematically varied network connectivity and motor activity. 
In Chapter 5, we focused on actin-fascin networks in which we varied 
fascin and myosin concentration but held other parameters (actin 
density and filament length, buffer conditions, ATP concentration) 
fixed. We discovered that the length scale of network reorganization 
due to motor-driven contraction depends sensitively on the physical 
properties of the network, in particular the network connectivity and 
motor activity. Based on the distribution of contracting cluster sizes, 
we identified three contraction regimes, which we indicate as local, 
critical, and global contraction regions. In this chapter, we showed that 
transitions between these three regimes can be achieved in different 
ways. The network connectivity increases with increasing actin filament 
length and density as well as increasing crosslink density, promoting 
larger-scale contraction. The myosin activity increases with decreasing 
ATP and salt concentration, promoting network contraction and 
rupture into multiple clusters. 

Based on all our own data in combination with prior data on 
contractile actin-myosin networks, we propose a schematic phase 
space diagram of contractile active gels that summarizes the contractile 
behavior as a function of these two parameters (Fig. 12). We distinguish 
six different regimes: I. Dissipative networks; II. Local contraction; III. 
Critically connected networks; IV. Global contraction; V. Prestressed 
networks. O. Passive networks.

In the dissipative networks regime (region I), motor activity is high 
but connectivity approaches zero. In this regime, motors locally exert 
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pulling forces on actin filaments, but the lack of connectivity prevents 
build-up of contractile stress. Instead, motor-driven sliding results in 
mainly dissipative processes such as the dynamic cluster reorganization 
reported in dilute suspensions of actin-fascin bundles (below 0.3 mg 
mL-1 actin) (Köhler et al., 2011a) or the coalescence of freely diffusing 
actomyosin foci we report in Fig. 5. In the local contraction regime 
(region II), sufficient connectivity is present to allow motor-induced 
sliding of filaments to locally deform the surrounding network. At 
low crosslink concentrations, we observed that motors mostly induce 
contractile fluctuation events, whereas permanent coalescence events 
were rare (cf. Fig. 7). This agrees with previous findings: in the absence of 
(passive) crosslinks, motor activity fluidizes actin networks (Humphrey 
et al., 2002) and increases the apparent temperature (Le Goff et al., 2002a; 
Liverpool, 2003; Morozov and Pismen, 2010), and in weakly crosslinked 
networks motor activity mainly generates contractile fluctuations 
(Mizuno et al., 2008; Soares e Silva et al., 2011b; Stuhrmann et al., 2012). 
At high enough crosslink density, the interplay between connectivity 
and force can give rise to net contraction. Net contractile stresses may 
result from the asymmetry in the mechanical response of actin filaments, 
which support tension but not compression (Lenz et al., 2012a; 2012b; 
Murrell and Gardel, 2012; Soares e Silva et al., 2011b) or from active 
reorganization of motors in the network (Dasanayake et al., 2011). 
We showed that motors contract networks that are weakly crosslinked 
with fascin or fimbrin into clusters with a mean size that increases with 
increasing crosslink concentration, qualitatively consistent with earlier 
observations on networks crosslinked by biotin-neutravidin (Soares e 
Silva et al., 2011b).

In the critically connected regime (region III), motor activity 
contracts connected network to clusters with a scale-free size 
distribution. Experimentally, we have shown that this critical behavior 
occurs for contractile active gels crosslinked by fascin (cf. Chapter 5). 
We have also observed qualitatively similar behavior for gels crosslinked 
by fimbrin (cf. Fig. 9). Interestingly, networks crosslinked by α-actinin 
do not appear to exhibit robust critical behavior (cf. Fig. 9). Only 
one network assayed exhibited a broad distribution of cluster sizes, 
suggesting that α-actinin suppresses the robustness of critical behavior. 
We do not yet know why α-actinin produces a qualitatively different 
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behavior. Possibly, the crosslink responds differently to an applied force 
than fascin and fimbrin. There are reports of catch-bond behavior of 
human α-actinin-4 (Yao et al., 2013; 2011) as well as rabbit skeletal-
muscle α-actinin (Ferrer et al., 2008), but the force-responsiveness of the 
human α-actinin-2 used here is unknown. In contrast, there is strong 
evidence that fascin exhibits slip-bond behavior in response to motor-
driven forces (Ishikawa et al., 2003). The geometry of the crosslink 
protein may also play a role: α-actinin forms actin bundles of mixed 
polarity whereas fascin and fimbrin are smaller crosslink proteins that 
form unipolar actin bundles (see below). Furthermore, the microscopic 
organization of the actomyosin foci appear to be different in the presence 
of α-actinin compared to fascin (cf. Fig. 11). In the presence of gelsolin, 
we observed that actomyosin foci had an actin core surrounded by a 
thin coat of myosin in the presence of α-actinin, whereas they have a 
myosin core and an actin shell in the presence of fascin. This difference 
in microscopic organization may contribute somehow to the difference 
in macroscopic phase behavior.

In the global contraction regime (region IV), connectivity is strong 
enough to allow motor activity across the entire network to uniformly 
contract it into one dense cluster. Finally, in the prestressed networks 
regime (region V), connectivity and/or network stiffness is too high to 
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Figure 12. Proposed schematic phase diagram of active contractile 
actomyosin gels, showing six different phases and their proposed 
dependence on connectivity and motor activity. The conductivity 
percolation threshold in the absence of motor activity is shown as a 
black circle on the connectivity axis. 
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allow motors to macroscopically deform the network. We did not find 
a prestressed regime with fascin, fimbrin, and human α-actinin-2, but 
this regime was reported for actin networks crosslinked by filamin or by 
α-actinin purified from chicken gizzard and also for human filamin A 
(Bendix et al., 2008; Janson et al., 1991; Koenderink et al., 2009). 

A transition to the global contraction region (IV), likely from 
regions II or V, has been suggested by  simulations accounting for 
correlated motor kicks (Wang and Wolynes, 2012a; 2012b). Although 
a contraction phase was evident above a certain connectivity threshold, 
the nature of the threshold  itself remained poorly characterized. Our 
own experiments and numerical modeling revealed a scale-free cluster-
size distribution that characterizes region III, which is consistent with 
a conductivity percolation transition (Stauffer and Aharony, 1994). 
Simulations of a crosslinked network of filaments internally stressed 
by contractile motor activity showed that force-induced crosslink 
unbinding is required in combination with a finite viscosity to obtain 
critical behavior (cf. Chapter 5). Interestingly, motor activity can drive 
networks with a wide range of initial conditions to this critical state, 
when either fascin or fimbrin is used as a crosslinker. This robustness 
may explain why the critically connected regime is experimentally 
accessible. The relationship between region III and the transition 
between regions IV and V has not yet been addressed.

At low fascin crosslink density, we observed a transition between 
regions I and II: specifically, we showed that at RF = 0.002 and above, 
myosin foci accumulate a coat of actin (cf. Fig. 6), indicating that 
the network connectivity is high enough to allow for local network 
contraction. Furthermore, we found that G’ decreases with increasing 
crosslink concentration, likely due to increased local compaction of the 
actin network into dense actomyosin foci. The transition from region 
I to region II may represent a rigidity percolation transition, similar to 
the rigidity percolation observed in passive actin networks as a function 
of crosslink density (Tempel et al., 1996).

In the limit of diminishing force and connectivity, we should 
expect networks that are not observably active (Region O). The physical 
properties of contractile active gels in this “passive regime” remain 
poorly understood experimentally. Previous experiments and theory 
have demonstrated an order-disorder transition which depends on a 
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critical motor activity in the presence of small amounts of permanent 
crosslinks (Peter et al., 2008; Smith et al., 2007). It will be interesting to 
investigate whether this transition relates to a boundary between region 
O and the other regions we propose.

We showed that modulating motor forces by addition of KCl 
and ATP allows transitioning between different contractile phases by 
influencing myosin motor activity. Both KCl and ATP affect myosin 
activity in several ways. Higher KCl concentrations decrease the 
binding affinity of myosin II to actin filaments (Brenner et al., 1982) 
and prevent sliding of actin filaments in gliding assays (Takiguchi et 
al., 1990). Furthermore, monovalent salts influence the size of myosin 
filaments (Davis, 1988; Kaminer and Bell, 1966; Katsura and Noda, 1973; 
Koretz, 1979; Pinset-Härström and Truffy, 1979; Pollard, 1982; Reisler 
et al., 1980). Myosin filament length has been shown to strongly affect 
contraction velocity in reconstituted actomyosin bundles (Thoresen et 
al., 2013). As discussed above, the KCl-dependence of myosin motor 
activity may explain why prior experiments on actin-myosin-fascin 
networks at high salt (130 mM KCl) gave rise to ordered patterns, 
including networks of actin bundles and asters (Backouche et al., 2006). 
We anticipate that these patterns are only possible when motor activity 
is weak enough to allow polar bundles of fascin to form and remain 
intact. At 100 mM KCl, we found that macroscopic contraction could 
be prevented and the actin networks consisted of bundles, qualitatively 
consistent with the study of Bakouche et al. performed at 130 mM KCl 
(Backouche et al., 2006). In contrast, we never find ordered patterns at 
intermediate salt concentrations (50 or 70 mM KCl) in the presence of 
any of the crosslinks we studied. Similarly, prior studies using biotin-
neutravidin crosslinks also observed only disorganized actomyosin foci 
(Soares e Silva et al., 2011b). At 75 mM KCl, we found a fine meshwork 
of actin, rather than a network of well-defined bundles around myosin 
foci (cf. Fig. 2). 

Increasing concentrations of ATP also reduce myosin processivity, 
but at the same time the ATP concentration influences the motor 
velocity. In dilute (<0.3 mg/ml) actin suspensions, an ATP concentration 
window of 0.05–0.1 mM was found to yield a maximum in motor-
driven collective pulsatile behavior (Köhler et al., 2011b), consistent 
with experiments on glycerinated rabbit psoas fibers showing that 
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motor-induced tension was maximized at ATP concentrations of 0.05 
mM (Cooke and Bialek, 1979). Higher ATP concentrations in these 
studies resulted in higher velocities but lower tensions, due to decreased 
binding affinity between myosin motors and actin filaments, which in 
turn decreases processivity and hence motor activity. Our results are 
consistent with this interpretation, where we found that added ATP 
shifted networks to the macroscopic contraction regime.

 A number of microscopic effects could significantly alter the 
phase-space diagram we propose. The effect of different crosslink 
proteins on the phase behavior of contractile active gels remains poorly 
understood. A particularly interesting open question is the role of the 
geometry of crosslinks. In the absence of a connected network, myosin 
motors contract only filaments of opposite polarity (Reymann et al., 
2012). In this light, it may appear surprising that actin-fascin and 
actin-fimbrin networks can contract, since both crosslinks are known 
to induce polar bundles of actin filaments (Courson and Rock, 2010; 
Ishikawa et al., 2003). Both proteins possess two actin-binding domains, 
which contain tandem calponin-homology domains in case of fimbrin 
(Klein et al., 2004) and β-trefoil domains 1 and 3 in case of fascin 
(Jansen et al., 2011). However, in a connected network, contraction does 
not necessarily require antiparallel filament pairs since the asymmetric 
force-extension behavior of actin filaments can break symmetry 
(Dasanayake et al., 2011; Lenz et al., 2012a; 2012b; Soares e Silva et 
al., 2011b). Indeed, recent contraction assays that directly compared 
the influence of fascin and cortexillin (which creates mixed polarity 
bundles) showed that networks in both cases contract above a critical 
crosslink density (Köhler et al., 2012). However, cortexillin-networks 
contracted more dramatically than fascin-networks (to 3% compared to 
15% of the original volume), indicating a subtle influence of the type of 
crosslink used. We did not observe a clear difference between the degree 
of contraction of networks crosslinked by the polar crosslink fascin and 
fimbrin compared to the apolar crosslink α-actinin. However, we did 
observe a more narrow critical regime for α-actinin. It remains to be 
seen whether this is related to the geometry of α-actinin. In contrast to 
fimbrin and fascin, α-actinin possesses only one actin-binding domain, 
but it dimerizes to simultaneously bind two actin filaments and form 
crosslinks (Broderick and Winder, 2005). Alternatively, the binding 
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kinetics and the responsiveness to force may be different for the different 
crosslinks. Previous work has shown that human α-actinin 4 exhibits 
catch-bond behavior (Yao et al., 2013; 2011), which could drastically 
affect the propagation of myosin-induced contractile stresses. 

The microscopic properties of myosin will also likely influence the 
contractile phase space diagram. Myosin motors were recently shown 
to cause rupture of actin filaments by introducing high-curvature 
bends (Murrell and Gardel, 2012; Vogel et al., 2013), which provides 
an additional mechanism to actively reduce the network connectivity 
in the course of myosin-driven network remodeling. Different isoforms 
of myosin have rather different processivities and velocities, which also 
strongly influences contractility of actin-myosin systems (Thoresen et 
al., 2013). Motors themselves may also introduce network connectivity, 
acting as active crosslinks, an effect which is probably particularly 
relevant for highly processive motors such as nonmuscle myosin IIB 
(Norstrom et al., 2010; Wang et al., 2003) and in highly connected 
networks due to the catch bond response of myosin to high loads 
(Guo, 2006; Luo et al., 2012). In isotropic networks, motors only cause 
contraction at extremely low ATP concentrations, a phenomenon 
known as superprecipitation (Mizuno et al., 2007). However, when actin 
filaments are pre-organized into bundles before motors are activated, 
motors can cause bundle contraction in the absence of crosslinks 
(Stachowiak et al., 2012; Thoresen et al., 2011; 2013).

In conclusion, we have shown that the physical properties 
of contractile active gels can tune the length scale of motor-driven 
contraction. There is evidence that physical interactions also contribute 
to regulation of actomyosin contraction during diverse physiological 
processes in living cells and organisms, in combination with biochemical 
regulation. For instance, recent observations of Dictyostelium amoeba 
showed that a cooperative interaction between motors and crosslinks 
aids mechanosensation (Kee et al., 2012; Luo et al., 2012; Ren et al., 
2009). During cytokinesis in Drosophila S2 cells, cortical flows deliver 
myosin II to the cell equator, which contributes to local contractile ring 
formation in concert with biochemically regulated myosin activation and 
filament formation (Uehara et al., 2010). Large-scale cortical flows have 
also been shown to aid segregation of membrane-bound cell polarity 
factors in embryos (Goehring et al., 2011), and local contractions of the 
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actin-myosin cortex in hamster ovary cells have been shown to cause 
clustering of cell surface proteins (Goswami et al., 2008; Gowrishankar et 
al., 2012). These observations suggest a strong link between the physical 
properties of active gels and the regulation of the plasma membrane. 
Such a link could allow for a direct role for contractile active gels in 
the regulation of biochemical signaling networks (Bois et al., 2011; 
Goehring et al., 2011; Howard et al., 2011).

6.4 Methods

Protein Preparation. Monomeric (G-) actin and myosin II were purified 
from rabbit psoas skeletal muscle (Soares e Silva et al., 2011b). G-actin 
was purified with a Superdex 200 column (GE Healthcare, Waukesha, 
WI, USA) and stored at −80 °C in G-buffer (2 mM tris-hydrochloride pH 
8.0, 0.2 mM disodium adenosine triphosphate, 0.2 mM calcium chloride, 
0.2 mM dithiothreitol). Myosin II was stored at −20 °C in a high-salt 
storage buffer with glycerol (25 mM monopotassium phosphate pH 6.5, 
600 mM potassium chloride, 10 mM ethylenediaminetetraacetic acid, 1 
mM dithiothreitol, 50% w∕w glycerol). Creatine phosphate disodium and 
creatine kinase were purchased from Roche Diagnostics (Indianapolis, 
IN, USA), all other chemicals from Sigma Aldrich (St. Louis, MO, USA). 
Magnesium adenosine triphosphate was prepared as a 100 mM stock 
solution using equimolar amounts of disodium adenosine triphosphate 
and magnesium chloride in 10 mM imidazole pH 7.4. Myosin II was 
labeled with Alexa Fluor 488 NHS ester (Invitrogen, Paisley, UK); actin 
was labeled with Alexa Fluor 594 carboxylic acid, succinimidyl ester 
(Soares e Silva et al., 2011b). Recombinant mouse fascin was prepared 
from T7 pGEX E. coli (Gentry et al., 2012). The mouse fascin plasmid was 
a kind gift from Scott Hansen and R. Dyche Mullins (UC, San Francisco). 
Arabidopsis fimbrin-2 tagged with GFP and 6xHis was prepared from T7 
pET28 E. coli. Lysate from cells expressing GFP-His-Fim2 was clarified 
by centrifugation at 10,000 g and applied to Ni-NTA Agarose beads (GE 
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Healthcare). Eluted protein was stored in 20 mM imidazole, 50 mM 
potassium chloride, 5% sucrose, and 1 mM dithiothreitol. The fimbrin 
plasmid was a kind gift from Tijs Ketelaars (Wageningen UR). Human 
α-actinin 2 protein was a kind gift from Balász Visegrády (U Pécs).

Sample Preparation. Samples were mixed to yield a final 
buffer composition of 20 mM imidazole pH 7.4, 50 mM potassium 
chloride, 2 mM magnesium chloride, 1 mM dithiothreitol, and 0.1 
mM adenosine triphosphate (ATP). Furthermore, 1 mM trolox, 2 mM 
protocatechuic acid, and 0.1 µM protocatechuate 3,4-dioxygenase were 
added to minimize photobleaching. Networks lacking protocatechuate 
3,4-dioxygenase and protocatechuic acid contracted with a length scale 
that was indistinguishable from control experiments. The ATP level was 
held constant by addition of 10 mM creatine phosphate disodium and 
0.1 mg mL-1 creatine kinase. The actin concentration was held constant 
at 12 µM (0.5 mg mL-1) unless otherwise indicated. Freshly mixed 
actomyosin solutions were loaded into polyethylene-glycol-passivated 
flow cells with a square geometry measuring 2.5 x 2.5 x 0.1-mm3 
and sealed with either Baysilone silicone grease (Bayer, Leverkusen, 
Germany) or uncured PDMS (Dow Chemicals, Midland, MI, USA). 
The time evolution of the network structure was observed with a Nikon 
PlanFluor 4x objective (NA 0.13), which allows the network to fit entirely 
within the objective’s field of view.

Rheology. Networks were sheared by a stress-controlled rheometer 
(Physica MCR 501, Anton Paar). Samples were polymerized at room 
temperature between a top cone plate (CP-20-1) and a bottom planar 
plate. A wet tissue was placed around the sample and a surrounding 
hood was lowered to maintain humidity. Network evolution was 
monitored by probing the samples at low strains (0.5 %, 0.5 Hz) for one 
hour. Next, network mechanical properties were probed by a frequency 
sweep (frequencies 1–0.01 Hz) using a strain amplitude 5% which was 
still within the linear viscoelastic regime.

Sample Preparation. Fresh myosin solutions were prepared by 
overnight dialysis into myosin buffer (20 mM imidazole pH 7.4, 300 mM 
potassium chloride, 4 mM magnesium chloride, 1 mM dithiothreitol) 
and used within four days. All frozen protein stocks (actin, myosin, 
fascin) were clarified of aggregated proteins upon thawing at 120,000 g for 
at least 5 min and used within four days. The proteins’ concentrations in 
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the supernatant were determined by measuring the solution absorbance 
with a NanoDrop 2000 (ThermoScientific, Wilmington, DE, USA) 
and using extinction coefficients, in M-1 cm-1, of 26600 (280 nm, actin 
(Pardee and Spudich, 1982)), 66280 (280 nm, fascin, computed from 
amino acid sequence (Artimo et al., 2012)), and 55000 (488 nm, GFP-
fimbrin (McRae et al., 2005)). Fluorescently labeled proteins were mixed 
with unlabeled proteins to yield a 10% molar ratio of dye to protein. 
During sample preparation, myosin and Alexa-488-myosin were mixed 
at high salt and then mixed into a tube containing fascin and buffer. 
This solution was mixed into a second tube containing actin and Alexa-
594-actin to initiate polymerization and immediately inserted into glass 
flow cells passivated by adsorption of poly-L-lysine-polyethylene-glycol 
(Surface Solutions AG, Dübendorf, Switzerland).

Preparation of flow cells. Glass flow cells were assembled by 
sandwiching strips of ParaFilm between a long cover slip (24 mm 
x 60 mm) and 2.5-mm-narrow glass strips which were manually cut 
from 40-mm-long cover slips. This yielded 2.5 x 2.5 x 0.1-mm3-large 
chambers (corresponding to ~0.6 µL). For thinner chambers (~20 
µm), ParaFilm was first stretched before cutting into strips. All glass 
was cleaned with a base piranha solution (5:1:1 water to ammonium 
hydroxide to hydrogen peroxide), rinsed in MilliQ water, and stored 
in isopropanol. Assembled flow cells were then passivated by applying 
1M potassium hydroxide for 5 min, rinsing with MilliQ, drying in a 
flow of N2-gas, applying 0.2 mg mL-1 poly-L-lysine-polyethylene-glycol 
(Surface Solutions AG, Dübendorf, Switzerland) for 30 min, rinsing with 
MilliQ, and drying in a flow of N2. Networks in passivated chambers are 
free to contract macroscopically (Fig. 13a, top). After the experiment, 
confocal stacks reveal that proteins are distributed homogeneously in 
the z-direction (Fig. 13a, bottom). However, in the presence of sticky, 
nonpassivated surfaces, networks do not contract macroscopically (Fig. 
13b, top). Furthermore, surfaces appear to be uniformly coated in actin 
and myosin (Fig. 13b, bottom).
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6.5 Outlook: Light scattering of contractile 
active gels

Until now we investigated the phase behavior of contractile active gels 
exclusively by optimal microscopy. However, the spatial resolution of 
images obtained by conventional fluorescence microscopy methods is 
limited by the diffraction of light. We are thus able to observe changes 
in network structure on micron and millimeter length scales, but we 
can obtain only limited insight into the microscopic processes that 
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Figure 13. Sticky surfaces decrease the cluster size of contractile 
networks. a. A macroscopically-contracting network with passivated 
glass surfaces. b. A macroscopically-contracting network with non-
passivated, sticky glass surfaces. Top row: Time-overlay images. 
Color corresponds to time (calibration bar, below). Scale bars 1 mm. 
Times (tstart, tend) of color overlays, given as time after initiating actin 
polymerization: a. (1  min,  38  min), b. (1  min,  30  min). Bottom row: 
Average-y-projections of confocal stacks corresponding to dashed cyan 
boxes of top row. Vertical direction: z-direction, horizontal direction: 
x-direction. In sticky chambers, myosin is clearly localized on the 
bottom and top surfaces.
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determine the dynamics of networks before and during contraction. 
Here we investigate the dynamics of an active gel undergoing contraction 
using light scattering techniques, which can quantitatively probe the 
microscopic structure and dynamics of soft condensed matter systems 
(Pine, 2000). Light scattering techniques can probe a large sample 
volume, yielding better ensemble averages than standard microscopy 
techniques (Cipelletti and Weeks, 2010). However, the analysis of 
light scattering experiments assumes ergodic behavior (time averages 
correspond to ensemble averages), and therefore cannot accurately 
probe spatially heterogeneous or nonequilibrium samples. However, 
recent light scattering techniques have been developed to overcome 
this limitation by resolving (rather than averaging) data over time 
(Cipelletti et al., 2002), or over both time and space (Duri et al., 2009). 
Such space- and time-resolved techniques were employed to measure a 
decrease of the relaxation timescale as a function of sample age for actin 
networks crosslinked by fascin, which demonstrated out-of-equilibrium 
dynamics in networks previously assumed to be in equilibrium (Lieleg 
and Bausch, 2007).

In this Outlook Section, we employ these space- and time-
resolved light scattering techniques to probe the sample-age-dependent 
dynamics of contractile active gels. We simultaneously measure four 
different scattering vectors and show that actomyosin networks exhibit 
a length-scale-dependent relaxation timescale. Furthermore, we find 
sudden bursts of microscopic de-correlation which occur just moments 
before contraction.

Phase behavior of contractile active gels. Actin networks were 
prepared with varying amounts of myosin and fascin and loaded into 
cylindrical glass NMR tubes with a 5-mm outer diameter and a wall 
thickness of 0.4 mm (see Methods). The dependence of contractile 
behavior on myosin and fascin concentrations is shown in Figure 14. 
Phase behavior was determined by visual inspection: stationary samples 
(blue) did not exhibit observable contractions and appeared clear 
or turbid. Clustered samples (green) exhibited small, ~1-mm-large 
clusters suspended throughout the sample, suggesting the existence 
of a background network that keeps clusters suspended. Samples that 
contracted macroscopically (pink) collapsed into one large, 2–3-mm-
large cluster, which often remained suspended in the middle of the 
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solution or attached to the sides of the tube. The phase behavior observed 
here is largely consistent with microscopy experiments. In particular, the 
existence of the cluster regime was also observed at RF = 0.02 and RM = 
0.01, where the network broke up into many small clusters. Macroscopic 
contractions were also observed at RF = 0.05 and RM = 0.01. The only 
inconsistency with microscopy experiments occurred at RF = 0.02 and 
RM = 0.005. With microscopy we saw macroscopic contractions, whereas 
here we found a stationary sample.

Time-resolved dynamics. In order to probe microscopic 
dynamics of contractile active gels, we first measured speckle dynamics 
using the 4xCCD setup (see Methods). We compute the correlation 
function c(t, τ) between time-points t and t+τ, where t is sample age 
and τ is lag time (see Methods). Figure 15 shows how c(t, τ) evolves for 
a sample that contracts macroscopically. At t = 0 s, just after the proteins 
are mixed, we find fast dynamics with relaxation times below 1 s, as 
evidenced by the correlation functions which take values close to zero 
for all time-lags. Up till t ≈ 2500 s (42 min), c(t, τ) increases, suggesting 
slower dynamics. Slower dynamics are consistent with the formation of 
a space-spanning network and may also reflect the build-up of stresses 
across the network due to tension driven by myosin motor activity. At 
t ≈ 2500–3000 s (42–50 min), c(t, τ) experiences a drop, suggesting a 

Figure 14. Contraction phase diagram as a function of fascin and myosin 
concentration (given by RF = [fascin] / [actin] and RM = [myosin] / 
[actin], respectively). Numbers indicate the number of experiments 
performed. Parentheses denote three additional experiments under 
altered conditions (150 mM KCl; no ATP, CP, CK; 1 mM ATP). “+G” 
denotes an additional goniometry measurements.
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Figure 15. Correlation function c(t,τ) as a function of sample age t and 
lag time τ for θ = 22.5°. Colored lines denote different values of τ (see 
legend, right) for all sample ages observed, up to 9000 s (2.5 h). Actin 
network (0.5 mg/ml) with RM = 0.01 and RF = 0.05.

Figure 16. Correlation valleys in c(t,τ) arising from sudden network 
rearrangements. Top row: Close-up of Figure 15 for sample ages t = 
6480–8100 s. Bottom row, left: Corresponding speckle pattern at 6480s. 
Scale bar 100 µm. Bottom row, right: Kymograph. Horizontal direction: 
sample age t = 6480–8100s. Vertical direction: speckle intensity along 
red line (bottom-left panel). Scale bar 30 µm x 100 s.
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change in microscopic structure. The amount by which c(t,  τ) drops 
depends strongly on lag time τ, and is maximal for τ ~ 28s. At t ≈ 
3000–72500 s (50 min–2 h), c(t,  τ) remains constant, suggesting that 
the network remains in a steady state during this time. However, at t ≈ 
7000–7400 s (2 h), we observe three sharp valleys in c(t, τ) (Fig. 16, top, 
black arrows). These valleys become progressively deeper, and are much 
narrower than the drops in correlation observed at t ≈ 2500 s. These 
valleys occur because speckle patterns undergo a sudden change. This 
is shown in the kymograph in Figure 16, bottom panel (black arrows). 
At t ≈ 6600–7000 s, before the three peaks, speckles appear as straight, 
horizontal streaks on the kymograph. This feature indicates that the 
microscopic structure of the network slowly rearranges on timescales 
that are comparable to the length of the streaks. However, the network 
remains stationary on a macroscopic scale. At t ≈ 7000–74000, the three 
valleys in c(t, τ) occur and the speckle pattern changes abruptly. This 
is evident in the kymograph, where existing horizontal streaks cease 
and new streaks begin. These abrupt changes in speckle pattern indicate 
a sudden rearrangement of the network. After these three peaks, at t 
≈  7400–8000, the speckles drifted globally, which is evident in the 
kymograph as slanted streaks. The global drift of speckles is very likely 
due to contraction, which results in a macroscopic drift of the network. 
After the experiment, a large cluster was indeed visible with the naked 
eye. The three sharp negative peaks may correspond to sudden events 
relating to an abrupt change in microscopic conformation: global loss of 
tension, detachment of the network from a boundary, etc.

Length-scale dependent dynamics. So far, we presented 
correlation function at one fixed scattering angle. We now turn our 
attention to data acquired simultaneously for four different scattering 
angles using four separate CCD detectors (Fig. 17). Qualitatively, we 
observe the same time evolution of the correlation functions at all 
angles. However, c(t, τ) decays faster with increasing scattering angle, 
which corresponds to smaller length scales. 

In order to quantify relaxation times, we plot g2(τ) – 1 (Fig. 18a) 
and fit with a stretched exponential decay to extract the relaxation time 
τrelax (see Methods). Performing this fit for all four scattering angles 
reveals that the relaxation time depends on scattering vector with a 
scaling relation of approximately τrelax ~ q-0.7 (Fig. 18b). We do not yet 
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know the physical origin of this scaling relation. Further measurements 
on networks prepared at different myosin and fascin concentrations 
will likely help to understand better how light scattering data may 
complement the microscopy results presented here and in Chapter 5.

Methods. Active gels were prepared under the following 
conditions: [actin] = 12 uM; [myosin] / [actin] = RM = 0, 0.002, 
0.005, 0.01; [fascin] / [actin] = RF = 0, 0.02, 0.05; assay buffer (20 mM 
Imidazole pH 7.4, 50 mM KCl, 2 mM MgCl2, 0.1 mM ATP, 10 mM 
creatine phosphate disodium, 0.1 mg/mL creatine kinase, 1 mM trolox, 
5 mM protocatechuic acid). These conditions are identical to those used 
for microscopy, but a few experimental details are different: actin was 
resuspended from lyophilized powder without centrifugation to remove 
any oligomers, and was not fluorescently labeled, and we did not add 
the anti-photobleaching mix of protocatechuate-3,4-dioxygenase and 
protocatechuic acid. All buffer solutions were filtered through 0.22-µm 
filters to remove dust, which hampers light scattering measurements. 

Figure 17. Correlation function c(t,τ) from Figure 15, acquired at 
different scattering angles θ: Top-left: θ  =  22.5°. Top-right: θ  =  45°. 
Bottom-left: θ = 90°. Bottom-right: θ = 120°.
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Networks were prepared by mixing a solution containing buffers, salts, 
myosins, and fascins. Polymerization of the network was initiated 
by mixing this solution with actin monomers. This mixture was 
subsequently loaded into a cylindrical glass NMR tube with a 5-mm 
outer diameter and a wall thickness of 0.4 mm.

a

b c

q / µm-1 q / µm-1
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Figure 18. Quantifying relaxation time scales. Top: g2(τ) – 1, averaged 
over the time window t = 4000–6000 s for the four different angles shown 
in Figure 17. Red lines denote fits to a stretched exponential decay. 
Bottom, left: relaxation time τrelax from fit versus scattering vector q. 
Bottom, right: exponent p from fit versus scattering vector q. Error bars 
denote standard error of the mean.
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4xCCD setup. We used a setup with 4 charge-coupled devices 
(henceforth “4xCCD setup”) to measure space- and time-resolved 
scattering of an incident 532 nm laser collimated to a beam width of 1 
mm. The sample is mounted in a metal housing with four holes drilled 
at 22.5°, 45°, 90°, and 120°. The four CCDs were mounted to capture 
speckle dynamics simultaneously at all four angles. Each CCD delivers 
space- and time-resolved information, and combining all four CCDs 
allows us to investigate length-scale dependent dynamics. The intensity 
of each pixel of the CCD corresponds to the microscopic conformation 
of a 3µm x 3µm x 1mm volume of the network. The value of 3 µm is 
determined by the size of the image projected on the CCD and was 
chosen to coincide with the average speckle size. The value of 1 mm is 
determined by the width of the beam.

CCD data acquisition was performed using a variable delay 
between images. Acquisitions were triggered with a user-programmable 
transistor-transistor logic (TTL) circuit. All CCDs were triggered 
simultaneously. We acquired pairs of images: the delay between two 
pairs of images varied from ~5ms to 1s using ¼-order-of-magnitude 
steps, scaled logarithmically; the delay between pairs was fixed at 1s. 
Image exposure time was ~1ms. We cycle through these logarithmically 
separated pairs of images continuously throughout the entire experiment.

Scattering intensity decreases for increasing scattering angle θ. In 
order to compensate for this intensity variation and ensure a roughly 
constant intensity on all four CCDs, we placed linear polarizers in 
front of the CCDs corresponding to 22.5° and 45°. We then adjusted 
the gain of the other two CCDs. We found that the scattering intensity 
of contracting samples increases over time; in order to minimize pixel 
saturation, we acquired data using the lowest possible gains.

CCD data processing: Before performing an experiment, we 
acquired so-called “dark data”: ~100 images of each CCD with the laser 
switched on but no sample loaded. We averaged dark data over space and 
frames to obtain the contribution <Nback> of the ambient background, 
which depends on the gain chosen for each CCD. We furthermore 
corrected for intensity variations due to the beam profile by calculating 
a normalization factor Nbeam(x,y) equal to the time-average over all 
frames acquired in an experiment. This average image usually results 
in a smooth image with features occurring only over long length scales, 
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corresponding to the background. However when sample dynamics was 
slow, these average image exhibited intensity variations on the length 
scale of a speckle. In these cases, we further spatially filtered the average 
image to smooth out features of speckle-length-scales. Therefore, given 
the signal S(x, y, t) from the CCD, we compute the scattered laser 
intensity:

I (x, y, t ) = S(x, y, t )°hNbacki
Nbeam(x, y) .

Correlation between two images A and B is defined as

c(A,B) = hABi
hAihBi °1

,
where angular brackets denote an average over all pixels. Note that the 
correlation between an image A with itself, c(A, A), can take on values 
less than one. This value depends on the pixel intensity distribution of 
image A. Well-resolved speckles exhibit a Chi-distribution and c(A, 
A) → 1, whereas poorly-resolved speckles (which are observed when 
speckle dynamics are faster than the acquisition time, or when speckles 
are smaller than the pixel size) exhibit a Gaussian distribution and c(A, 
A) → 0. The correlation function between two spatial conformations of 
speckle intensities is therefore given by

c(t ,ø) =
≠

I (x, y, t ) · I (x, y, t +ø)
Æ

x y≠
I (x, y, t )

Æ
x y ·

≠
I (x, y, t +ø

Æ
x y

°1
,

where angular brackets denote averages over all pixels of a given time 
frame. In order to extract relaxation times from c(t, τ), we average c(t, τ) 
over a time window in which it remains constant, yielding the quantity 
g2(τ) – 1:

g2(ø)°1 = hc(t ,ø)it ,
where angular brackets denote a time average over the chosen time 
window. We then fit g2(τ) – 1 with a stretched exponential to recover

g2(ø)°1 = Ae

≥
ø

ørelax

¥p

+B .
Scattering angle θ and scattering vector q are related by
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q = 4ºn

∏
sin

µ
µ

2

∂

,
where n is the index of refraction of the solvent (we use the refractive 
index of water, which is 1.33), and λ is the wavelength of the incident 
laser beam (here 532 nm).
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Summary

Polymers differ from many common solids. Crystalline solids can be 
thought of as a three-dimensional lattice of point-like atoms. Meanwhile, 
polymers can be thought of as lines of matter, or filaments. The 
filamentous shape of single polymer chains explains some of the unique 
material properties of polymer-based materials such as plastics. Cells, 
too, contain a special subclass of polymers called biological polymers. 
These polymers give cells mechanical strength, allowing them to resist 
external forces and maintain their shape. Biological polymers also give 
cells the fascinating ability to actively exert forces on their internal 
compartments as well as their environment. Understanding how cells 
resist and exert forces is essential in quantifying cell behavior.

The goal of this thesis is to better understand biological polymers 
inside cells. Most of our understanding of biological polymers comes 
from idealized experiments in an artificial, cell-free environment. Using 
this knowledge to explain the behavior of real cells remains challenging. 
In order to address this shortcoming, I have designed experiments of 
biological polymers confined to cellular dimensions, bent into rings, 
and driven by molecular motors.

 In Chapters 2 and 3, I report experiments where biological 
polymers were confined to small chambers. The sizes of these chambers 
compares to the typical size of cells. Little is known about how polymers 
organize when packed into such confined spaces. I built customized 
chambers of different shapes to address how confinement influences 
biological polymers. In Chapter 2, I report experiments with liquid 
crystals of the rod-shaped virus bacteriophage fd which are confined 
to donut-shaped chambers. I wrote customized software to quantify 
the local alignment of the liquid crystal. This analysis reveals a striking 
pattern with three-fold symmetry. Existing continuum models, which 
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neglect rod size, cannot predict this pattern. But numerical simulations 
which account for rod size can. In Chapter 3, I report experiments of 
actin filament networks which were confined to rectangular chambers. I 
wrote customized software to quantify local alignment. Filaments align 
either along the diagonal or parallel to the longest edges. The results of 
both these chapters suggest that the boundary of a cell influences the 
alignment of its biological polymers.

In Chapter 4, I report experiments showing that septins bind to and 
bundle actin filaments. These results overthrow prevailing assumptions 
to the contrary. Surprisingly, growing actin filaments in the presence 
of septins lead to rings. I wrote customized software to quantify their 
curvature. We do not yet understand how these rings form. Existing 
models disagree with our findings. The results of this chapter suggest 
that septins can form actin rings inside cells—including the contractile 
ring which divides cells.

In Chapters 5 and 6, I report experiments with myosin motor 
proteins, which drive actin filaments. This driving leads to muscle-
like contraction forces. Crosslink proteins are needed for contraction 
over long distances. But little is known about how crosslinks propagate 
force. I perform experiments with crosslinked, driven actin networks to 
address this question. In Chapter 5, I report that motors contract actin 
networks to clusters. I wrote customized software to determine cluster 
size. The size distribution of these clusters is scale-free, indicating critical 
behavior. Surprisingly, this behavior occurs more commonly than 
expected. Existing theories cannot predict this finding. But numerical 
simulations which account for motor forces and crosslink detachment 
predict it. In Chapter 6, I extend the results in Chapter 5. I compare the 
effect of different crosslinks and different methods of weakening motor 
force. The results of these chapters show that internal forces from myosin 
motors behave differently from external forces. They suggest that non-
muscle cells exploit this fact to determine the distance of contractions.

As for all five research chapters, we currently lack analytical 
physical models to explain our results. Future theoretical work will 
likely overcome this. In doing so, we will better understand the physical 
forces that affect the biological polymers inside cells. This should allow 
researchers to better quantify how cells exert and resist forces.
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Samenvatting

Polymeren zijn anders dan gewone vaste stoffen. Een driedimensionaal 
rooster van deeltjes is een goed model voor een kristalstructuur. Maar 
polymeren zijn eendimensionale strengen van materie, filamenten 
genoemd. Deze filamenteuze vorm zorgt voor de unieke eigenschappen 
van vele polymeren, zoals plastic. Ook cellen bevatten polymeren: 
zogenaamde biologische polymeren. Deze polymeren geven cellen 
mechanische rigiditeit. Zo kunnen cellen externe krachten weerstaan 
en hun vorm handhaven. Door middel van biologische polymeren 
kunnen cellen kracht uitoefenen op hun interne compartimenten en op 
hun omgeving. Inzicht in hoe cellen krachten weerstaan en uitoefenen 
is nodig om celgedrag te kunnen kwantificeren.

Het doel van dit proefschrift is om biologische polymeren in cellen 
beter te begrijpen. De meeste van onze kennis komt van geïdealiseerde 
experimenten in een kunstmatig, cel-vrij milieu. Met deze kennis kan 
men biologische polymeren in echte cellen moeilijk kwantificeren. 
Om dit tekort te verhelpen ontwierp ik experimenten met biologische 
polymeren die op cellulaire lengteschalen zijn ingesloten, in ringen zijn 
gebogen, en worden aangedreven door moleculaire motoreiwitten.

In hoofdstukken 2 en 3 beschrijf ik experimenten waar biologische 
polymeren in kleine ruimtes zijn ingesloten. De groottes van deze 
ruimtes komen overeen met de typische groottes van cellen. We weten 
weinig over hoe polymeren zich organiseren in dergelijke ruimtes. Ik 
maakte ruimtes met verschillende vormen om te begrijpen hoe insluiting 
polymeren beïnvloedt. In hoofdstuk 2 beschrijf ik experimenten 
met vloeibare kristallen van staafvormige fd-virussen, die in donut-
vormige kamers zijn ingesloten. Ik ontwierp software om de lokale 
ordening van het vloeibare kristal te kwantificeren. Deze analyse laat 
een verrassende patroon van drievoudige symmetrie zien. Bestaande 
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continuümmodellen die de grootte van de staven verwaarlozen kunnen 
dit patroon niet voorspellen. Maar dat kan wel met numerieke simulaties 
die rekening houden met de grootte van de staven. In hoofdstuk 3 
beschrijf ik experimenten met actinefilamenten die in rechthoekige 
kamers zijn opgesloten. Ik ontwierp software om de lokale ordening te 
kwantificeren. Filamenten liggen of langs de diagonaal of parallel met de 
langste kanten van de rechthoek. De resultaten van deze hoofdstukken 
suggereren dat de grens van een cel de ordening van zijn biologische 
polymeren kan beïnvloeden.

In hoofdstuk 4 beschrijf ik experimenten die laten zien dat het 
eiwit septine actine-filamenten bindt en bundelt. Deze resultaten 
verwerpen eerdere aannames die het tegenovergestelde suggereerden. 
Verrassend is dat actine in de aanwezigheid van septine ringen vormt. Ik 
ontwierp software om hun kromming te kwantificeren. Wij weten niet 
hoe deze ringen vormen. Bestaande modellen zijn in tegenspraak met 
onze bevindingen. De resultaten van dit hoofdstuk laten zien dat septine 
binnen cellen actineringen kan vormen—inclusief de contractiele ring 
die delende cellen insnoert.

In hoofdstukken 5 en 6 beschrijf ik experimenten waar het 
motoreiwit myosine actine-filamenten aandrijft. Deze aandrijving leidt 
tot inwaartse trekkrachten zoals in spieren. Gecrosslinkte eiwitten zijn 
nodig om samentrekkingen over lange afstanden uit te voeren. We weten 
weinig over hoe crosslinks inwaartse trekkrachten propageren. Ik voer 
experimenten uit met aangedreven, gecrosslinkte actine-netwerken om 
deze vraag te beantwoorden. In hoofdstuk 5 schrijf ik dat myosine actine-
netwerken in klonten kunnen samentrekken. Ik ontwierp software om 
de grootte van klonten te kwantificeren. De distributie van deze klonten 
is schaalvrij, wat op een kritische proces duidt. Verrassend is dat dit 
vaker gebeurt dan verwacht. Bestaande modellen kunnen dit resultaat 
niet verklaren. Maar dat kan wel met numerieke simulaties die rekening 
houden met krachten van motoreiwitten en het loslaten van crosslinks. 
In hoofdstuk 6 breid ik het werk van hoofdstuk 5 uit. Ik vergelijk het 
effect van verschillende soorten crosslinks en verschillende manieren 
om motorkrachten te verzwakken. De resultaten van deze hoofdstukken 
laten zien dat de interne krachten uitgeoefend door myosines anders 
zijn dan externe krachten. Ze suggereren dat cellen dit feit gebruiken 
om de lengte van contracties te bepalen.
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In alle vijf onderzoekshoofdstukken ontbreken analytische 
modellen die onze experimentele resultaten verklaren. Toekomstige 
theoretische modellen zullen deze tekortkoming verhelpen. Dan 
kunnen we de natuurkundige krachten die biologische polymeren 
beïnvloeden beter begrijpen. Dit zou ons helpen begrijpen hoe cellen 
krachten weerstaan en uitoefenen.

Met dank aan Martijn Wehrens en Joris Paijmans voor hun hulp met de 
nederlandse tekst.
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