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	 Molecular biology in the twentieth century was a revolutionary disci-
pline aimed at understanding biological processes mechanistically. Many success-
es of molecular biology came from interdisciplinary work involving physicists, 
geneticists and structural chemists. Fundamental discoveries of molecular biol-
ogy include the demonstration that genetic mutations arise spontaneously, rather 
than being a response to selection [1], the discovery of DNA as carrier of the 
genetic material [2], the double helical structure of the DNA molecule by Watson 
and Crick in 1953 [3, 4], and gene regulation in 1961 by Jacob and Monod with 
the lac operon [5]. However, the focus of molecular biology was mostly on the 
characterization of individual macromolecules, and despite the initial influence 
of physicists, molecular biology developed into a qualitative, rather than quanti-
tative, science [6].
	 A living cell can be viewed as a dynamical system in which a large num-
ber of different molecules react continuously with one another. Molecular inter-
actions are central to biological function: gene expression, protein folding and 
function or enzymatic reactions are but a few examples of such interactions. To 
understand how the interaction between different components leads to biological 
function, it is not sufficient to study individual macromolecules. Systems biology 
is the discipline that aims to answer this question [7]. Although in the 1960s and 
1970s some efforts were made to build mathematical models that describe cel-
lular regulatory circuits [8, 9], system-level analysis of biological regulation was 
pushed by technology development in the 1980s and 1990s. With automated 
DNA sequencers it became possible to sequence entire genomes [10], with DNA 
microarrays to measure the expression level of a large number of genes [11], while 
advances in mass spectrometry made it possible to identify and quantify proteins 
and metabolites, and gave rise to the fields of proteomics and metabolomics [12, 
13]. The advantage of high-throughput technologies is that they provide com-
plete information about one layer of the system (genome, proteome, metabolome 
etc.) [7]. However, to understand how cells function, it has appeared necessary 
to understand the connection between these different layers and their effects. 
Integrative ‘omics’ studies can address this issue, but analyzing the data remains 
challenging because of the complexity of even the simplest bacterial cells. With 
genome-wide techniques, correlations between concentrations of molecules are 
identified, and models are used to determine the underlying structure of the mo-
lecular network [7]. However, these models do not explain correlations in terms 
of molecular mechanisms.

From molecular biology to systems biology1.1
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	 In parallel with genome-wide approaches, small scale approaches have 
been followed, where usually a circuit composed of a few proteins is studied. 
Here, the objective typically is to see how a particular molecular mechanism leads 
to a particular biological function. Experimental studies of cells response to per-
turbations are often combined with mechanism-based models that can then be 
used to predict cellular behavior. These models are based on kinetic parameters 
determined experimentally. Thus one limitation comes from the estimation of 
these parameters, as they are not always known and can be difficult to measure 
[7]. This approach has been used for instance in signaling networks such as bacte-
rial chemotaxis [14, 15], transcriptional regulatory networks [16], and in cell fate 
decisions [17-19].

	 One of the generic features of life at the molecular level is the stochastic-
ity, or randomness of molecular motion and reactions [20]. Cells must rely on 
noisy signals in biochemical networks to make decisions [21]. Molecular noise is 
unavoidable: biochemical reactions involve a low number of molecules subject to 
Brownian motion, which then gives rise to stochastic fluctuations in their interac-
tions [22]. Thus, isogenic cells experiencing the same environment will display 
slightly different behaviors [23]. In addition to the stochastic nature of for ex-
ample gene expression, other cell parameters contribute to cellular heterogeneity, 
such as cell cycle stage [24, 25], random partitioning at cell division [26], aging 
[27] and epigenetic factors [28-30]. Two well-known examples of phenotypic 
variability are persistence [31], where a fraction of cells is able to resist antibiotics, 
and bistability, where a population of cells in presence of intermediate inducer 
concentrations is divided between induced and non-induced cells [32]. Tradi-
tional assays in microbiology provide information on the average of the popula-
tion, and thus hide cell-to-cell variability. Experiments with single-cell resolution 
provide the opportunity to directly investigate the causes and consequences of 
such cellular heterogeneity.
	 Thanks to classic biological studies, and ‘omics’ technologies, the struc-
ture of gene regulatory networks, interactions between proteins and metabolic 
pathways are fairly well characterized for many biological functions [12, 33, 34]. 
To understand how these different networks respond to perturbations, it is nec-

Quantitative single-cell dynamics studies

1.2.1 Motivation

1.2
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essary to study their dynamics. Though it is now possible to perform single-cell 
analysis with omics-based methods, most of these techniques require cell lysis, 
and thus give information of genes, proteins and metabolites at specific time 
points outside of the cell’s physiological environment [35]. These limitations can 
be overcome with live-cell imaging, which is non-invasive and permits spatiotem-
poral characterization of biological processes. In particular, time-lapse fluores-
cence microscopy coupled with fluorescent reporters has proven a powerful tool 
to investigate the dynamic properties of gene expression in single cells [36]. With 
automated image analysis, the tracking of the fate of many single cells over several 
generations (a time usually sufficient to account for biological processes of inter-
est such as gene regulation) has become feasible. For instance, the differentiation 
dynamics of the Bacillus subtilis competence circuit have been investigated with 
this approach [37, 38]. To control the cellular environment, it is possible to com-
bine this technique with either agarose pads or microfluidic devices. With agarose 
pads the environment stays constant in time, while microfluidic devices permit 
changes in the environment.
	 In this thesis, we use the model organism Escherichia coli to answer the 
general question: how does the growth of cells respond to perturbations? These 
perturbations can be either internal, such as gene expression noise, or external, 
which involve changes in the cellular environment. As detailed in the next sec-
tion, the nature of stochastic gene expression has been well characterized. Recent 
studies have shown that noise can have functional roles in genetic circuits, for 
instance in cell fate [39]. However, the role of stochasticity in cellular growth and 
metabolism remains only scarcely explored. One of the most analyzed systems, 
the lac system, displays stochasticity in expression [40], and it was shown that 
stochastic repressor-operator association and dissociation events affect the cells 
transition from the ‘off’ to the ‘on’ state [29]. But the impact on growth is not 
well known. In general, the propagation of noise in gene expression to growth has 
not been thoroughly investigated. It is an important issue because random fluctu-
ations in metabolic efficiency could compromise biological growth itself. Indeed, 
metabolic instability has been hypothesized to cause various critical physiological 
phenomena ranging from persistence in bacteria [41] to metabolic switching in 
cancer [42].

	 Since the work of Arkin et al. [43] showing a functional role for stochastic 
gene expression in phage λ more than ten years ago, the origins and consequences 

1.2.2 Dynamics of noise in gene expression
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of noise have been studied intensively, both experimentally and theoretically [20, 
39, 44, 45]. It is not our intent to present an exhaustive review of the subject. 
Rather, we highlight here some landmark studies that used temporal information 
to understand gene regulation, an essential tool for the topics explored in this 
thesis.
	 One of the first studies to explore the sources of noise experimentally 
were by Elowitz et al. and Ozbudak et al. in 2002 [40, 46]. By measuring the 
expression of two different fluorescent proteins under the control of identical 
promoters in Escherichia coli, a first study [40] could distinguish between two 
sources of noise: extrinsic noise, which affects the expression of both copies of the 
gene equally, and intrinsic noise, which affects each copy of the gene indepen-
dently, resulting in uncorrelated temporal fluctuations in the expression levels of 
the two genes. Depending on the promoter, both sources of noise can be signifi-
cant. A second study [46] compared the noise levels of a reporter gene with varied 
transcription and translation rates in Bacillus subtilis. It was found that transcrip-
tion is the dominant source of noise in prokaryotes, which confirmed a previous 
model of stochastic gene expression [47]. Recent single-molecule investigations 
in E. coli showed directly how proteins are produced in stochastic bursts [48, 49], 
caused by the production of mRNA molecules in transcriptional bursts [50]. 
Several studies have further investigated regulation at the mRNA level by means 
of single-molecule FISH (fluorescent in situ hybridization), both in prokaryotes 
and eukaryotes [51-53]. Intrinsic noise arises from these random fluctuations 
inherent to transcription and translation, while extrinsic noise has been hypoth-
esized to be caused by differences between cells in global factors such as number 
of polymerase enzymes or ribosomes.
	 Gene expression noise dynamics can be characterized by its autocorrela-
tion time, which is the characteristic time over which fluctuations persist. In-
trinsic fluctuations were shown to persist only for a few minutes, consistent with 
the known mRNA half-life, while extrinsic fluctuations lasted a cell cycle in E. 
coli [54]. By studying the effects of noise in simple synthetic genetic networks, it 
was found that fluctuations in the expression of one gene can propagate to cre-
ate fluctuations in downstream genes [55]. This temporal information can also 
be used to infer regulatory interactions. For instance, Dunlop et al. [56] showed 
how time-delayed correlations between two proteins can inform on whether one 
protein activates or represses the other, or whether a third protein controls them 
both (see Fig. 1.1).
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Figure 1.1 Inferring regulatory interactions from cross-correlations. Top: schematic representa-
tion of four different regulatory motifs (X activates Y, X represses Y, W activates X and Y, W acti-
vates X but represses Y). Bottom: cross-correlation function for X and Y. The intensity of RXY(τ) 
indicates how strongly X(t + τ) is correlated with Y(t). A positive value denotes a positive regulation, 
while a negative value denotes a negative correlation. The timing of peaks or dips shows causality in 
this regulation. For instance, if X activates Y, the peak appears at negative delay times because X is 
upstream of Y (first column). Plain lines correspond to the motifs on the top column. Dashed lines 
correspond to the same motif where X and Y are exchanged. Adapted from [57].

	 In order to survive, the cell’s physiology must be tuned to the environ-
ment. Thus growth must be properly regulated and balanced, which can be a 
challenging task for cells living in fluctuating environments. For instance, when 
the conditions are favorable, it is advantageous for the cells to grow fast. On the 
contrary, upon stressful conditions such as starvation or presence of toxins, slow 
growth or even dormancy may allow for survival. Many other processes must in 
turn be coordinated with the growth rate, such as nutrient uptake, synthesis of 
the right amount of metabolites and DNA replication. These requirements sug-
gest a complex interplay between gene expression and growth rate, where each 
depends on the other. At steady-state growth, a large fraction of all genes was 
found to exhibit a close correlation with the cellular growth rate [58]. In E. coli, a 
similar result was found with protein levels [59]. Hence gene expression changes 
are due to specific gene regulation mechanisms and global growth rate effects. A 
challenge is then to identify the regulatory parameters responsible for these gene 
expression changes. By using a small number of growth rate-dependent param-
eters (such as gene copy number or transcription rate), Klumpp et al. [60] devel-
oped a simple quantitative model of the coupling between the population mean 
gene expression and growth.

1.2.3 Interplay between gene expression and growth
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	 One of the goals of systems biology is to link molecular mechanisms 
with cellular behavior. Several studies have characterized how gene expression 
affects cellular growth [61-63], and conversely how the growth rate affects gene 
expression [60, 64-66]. What the origin of the interdependence of gene expres-
sion and cell growth is, is less clear. Scott et al. [67] used a phenomenological 
approach that does not require any information of molecular mechanisms, to 
characterize bacterial physiology. They proposed some ‘bacterial growth laws’ that 
partition the proteome in three components: a fixed fraction invariant to growth 
rate, a ribosome-affiliated fraction, and the remainder.
	 Most of the studies mentioned here were performed at a steady-state 
growth rate. Significant progress has been made to understand how cells achieve 
growth homeostasis, for instance by exposing the cells to different environmental 
perturbations or stresses. However, the cellular growth response to environmen-
tal changes has been obtained primarily using bulk techniques that measure the 
growth rate of the population as a whole [68-73]. Consequently, the transient 
change of growth rate of individual cells and its causal relationship to molecular 
mechanisms has been less well investigated.

	 The goal of this thesis is to characterize the dynamics of cellular growth 
under two different types of perturbations, internal and external, and to link it 
to the dynamics of gene expression. To this end, we use a single-cell approach, 
combined with fluorescence time-lapse microscopy to measure both growth rate 
with sub-cycle resolution, and expression of genes of interest. Chapter 2 provides 
details on a novel hybrid microfluidic design used to control the cellular environ-
ment in chapters 3, 4 and 6. This device is well-suited to investigate growth at the 
single-cell level.
	 Chapter 3 shows how cells respond during a diauxic shift, the classic 
experiment originally performed by Monod in bulk. Surprisingly, we find that 
some cells do not exhibit a lag phase, as had previously been concluded from 
bulk data and widely assumed to be obligatory; a fraction of about 10% contin-
ues to grow at the same speed. A mathematical model integrating expression and 
growth that matches with the data provides a molecular-level explanation.
	 Chapter 4 deals with the response of cells growing on lactose to a trans-
lation-inhibiting antibiotic. In addition to growth, several essential enzymes are 
monitored. Inhibition of lac synthesis, with maintenance of ribosome synthesis, 

Scope of the thesis1.3
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leads to linear growth. The linear growth rate is correlated to the size of the 
cell, or age, at the moment of drug addition, resulting in significant single cell 
heterogeneity. Further increasing the antibiotic concentration leads to complete 
growth arrest but allows growth to proceed transiently, until ribosome synthesis 
is arrested.
	 In chapter 5, cross-correlation functions are used to demonstrate that 
expression noise of a single metabolically active enzyme can cause noise in cellular 
growth, mediated by transmission through the underlying metabolic network. In 
addition, growth noise transmits back to enzyme expression to form a loop, me-
diated not by specific regulatory interactions but by general growth factors that 
affect gene expression such as ATP. A stochastic model that integrates expression 
and metabolism accurately predicts correlations in re-wired networks.
	 Chapter 6 is a preliminary work concerning the transient dynamics of 
growth and ribosome synthesis during nutrient shifts. Growth rate is modulated 
by varying only the external concentration of glucose. The data show that ad-
aptation to a higher growth rate is surprisingly slow while adaptation to a lower 
growth rate is comparatively faster. In both cases the response of individual cells 
is rather homogeneous.
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Controlling living cells and 
organisms with microfabricated 
polyacrylamide membranes

2 The need for precisely controlling the environment of 
living cells and organisms has stimulated many devel-
opments in microfluidic technologies. However, their 
implementation in biology laboratories can be limited 
by technical barriers or by a lack of versatility of the 
methods. Here, we present a simple technique based 
on polyacrylamide membranes to build chemostat-like 
devices for cells and organisms, with the possibility to 
embed microfabricated features in the membrane. Poly-
acrylamide gels possess many beneficial properties for cell 
culture, being soft, porous and transparent, while simple 
to fabricate and handle. Here, we demonstrate the long-
term growth of organisms ranging from prokaryotes to 
multicellular eukaryotes in a variety of polyacrylamide-
based designs. These devices allow for precise tempo-
ral control of culture conditions, such as the chemical 
composition of the growth medium and the presence of 
drugs, on a minute timescale. In addition, we show how 
spatial confinement conferred by these devices allows for 
time-lapse microscopy in a parallel fashion.
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Introduction2.1

	 The ability to create precisely controlled microenvironments has been 
pursued in microbiology [74], cell biology [75] and tissue engineering [76]. Mi-
crofluidic techniques have emerged as an important tool to impose spatial con-
finement, control transport of chemicals on the micrometer scale and drastically 
increase the level of parallelization of data acquisition [77, 78]. However, realiz-
ing these capabilities often requires technologically complex devices, potentially 
comprising microfabricated structures with multiple layers, surface treatments 
and multiple modules [74-76, 78]. As a consequence, fabricating and handling 
such devices can be challenging, which has limited their use in laboratories with-
out specific microfabrication expertise [79].
	 PDMS-based microfluidics is extremely versatile and has been applied to 
the culture of bacteria [80], yeast [81], mammalian cells [82], and even embry-
os [83] or nematode worms [84]. While exquisite for controlling flows, PDMS 
based devices can require sophisticated designs to cope with the constraints of 
living objects and can be ultimately limited by the properties of PDMS as a mate-
rial. PDMS devices can ensure localization of the object under study by confine-
ment in microchambers and controlled medium exchange by laterally connecting 
channels that are narrow enough to prevent escape of the cells [85, 86]. How-
ever, whether it is necessary to either impose spatial confinement or decouple 
flow from diffusion, this requires multi-layered flow-cell designs and sometimes 
integration of in situ valves [87]. Watertight closure of the system is generally 
performed by a plasma treatment of the PDMS [88], which can be incompat-
ible with complementary treatments required to obtain the stable hydrophilic or 
hydrophobic properties ensuring appropriate adhesion of cells to the surfaces of 
the culture chambers [89]. PDMS is not porous to aqueous solutions [88], which 
is desirable in some applications but a limitation in others, as it does not allow 
building osmosis membranes and can lead to local medium heterogeneities [90, 
91] and accumulation of toxic residues [92]. In addition, PDMS has poorly tun-
able mechanical properties, which is critical for the correct growth of many cell 
types [93, 94].
	 Many of these issues could be addressed by the use of hydrogels. Hy-
drogels allow for free diffusion of the medium throughout the device, thereby 
ensuring uniformity of the cellular environment. In addition, hydrogels have 
highly tunable mechanical properties [95]. For these reasons, a variety of micro-
environments based on hydrogels are being explored for tissue engineering [76, 
96]. So far, the most commonly used hydrogel for the study of micro-organisms 
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as well as multicellular organisms is agarose, which is commonly used as an ‘agar 
pad’, a single monolayer of hydrogel, to confine bacteria [97], yeast [98] or nema-
todes [99, 100] to the imaging plane for live microscopy imaging. Simple layers 
of agarose have also recently been used as membranes to precisely control bacte-
rial medium as a function of time [30, 101, 102]. In addition, agarose has been 
structured on the micrometer scale, e.g. to create grooves that guide the growth of 
bacteria [103, 104] or to build microchambers to spatially confine live nematode 
larvae [105]. However, agarose is brittle and tears readily, making it difficult to 
manipulate, especially in the form of thin layers. This severely limits microfab-
rication possibilities [106]. In addition, agarose is composed of sugar and can 
be directly metabolized by some organisms [107] or may contain residual non-
purified simple sugars, which could hinder study of growth under well controlled 
conditions.
	 Here we propose polyacrylamide hydrogels as an alternative substrate for 
building controlled microenvironments. Polyacrylamide gels have several prac-
tical advantages that make them ideally suited for developing devices for live 
microscopy in biological studies. First, polyacrylamide is a commonly used mate-
rial in biology laboratories for DNA and protein electrophoresis and its micro-
fabrication requires minimal technological investments, as we will show below. 
Polyacrylamide gels are physico-chemically well characterized and known to be 
biocompatible [108, 109]. They are mechanically stronger (fracture energy G ~ 
10 - 50 J.m-2 [110]) than agarose gels (G ~ 0.1 - 6 J.m-2 [111, 112]), and hence 
allow for easier handling and are better suited for microfabrication. Their elastic 
properties are tunable over a wide range, which allows to build environments 
with well controlled mechanical properties [108, 109, 113, 114]. They are per-
meable to aqueous solutions and composed of a synthetic polymer that cannot be 
metabolized as a carbon source, which allows for excellent control of the growth 
conditions. While polyacrylamide gels have been micropatterned by photopoly-
merization inside glass or PDMS microchannels [115-117], their unique prop-
erties have not yet been exploited to construct devices for biology studies using 
standard soft lithography techniques.
	 Here, we demonstrate two essential properties of polyacrylamide gels 
that enable the building of controlled environments and can be used simultane-
ously. First, we describe a soft lithography method to transfer micropatterns from 
a silicon wafer to a poyacrylamide gel, allowing to integrate confining culture 
chambers or microchannels. Second, we show how to use polyacrylamide gels 
as membranes to control the transfer of chemicals, adapting designs already de-
veloped with other materials, such as devices based on dialysis membranes for 
changing medium in time [118] or based on diffusion between lateral channels 
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for generating gradients in space [106, 119]. We describe several elementary de-
signs for culturing cells and organisms, comprising a polyacrylamide membrane 
constrained between glass or PDMS components. We then demonstrate their use 
for the study of a range of organisms. We show that one can control the growth 
of E. coli bacterial colonies by controlling the carbon source as a function of time, 
and simultaneously track the response on the level of single-cell lineages. We also 
show that we can confine and grow S. pombe yeast cells, imposing a time-con-
trolled reversible arrest of growth by a microtubule-depolymerizing drug. Finally, 
we show that we can confine C. elegans nematodes larvae in microchambers and 
follow the growth of multiple individual larvae in parallel by time-lapse micros-
copy.

	 Master mold – Microfabricated polyacrylamide membranes can be in-
definitely reproduced by soft-lithography from a single silicon wafer comprising 
the desired micropattern made of an epoxy resin, such as SU-8 (Methods). The 
initial master mold was made according to standard protocol by UV-lithogra-
phy from a printed transparent mask, allowing the specification of an arbitrary 
two-dimensional pattern with a uniform height determined by the user, typically 
ranging from 1 to 100 μm.

	 Molding of the acrylamide – The aqueous solution of acrylamide mono-
mers mixed with curing agents is poured on the master mold within a contour 
made of glass or metal of pre-determined height, bound to the wafer with silicon 
grease (Methods, Fig. 2.6). The molding cavity is then closed with a silanized 
glass coverslip. A gel is generally obtained after 20 min at room temperature, but 
waiting 2 hrs ensures optimal polymerization. After polymerization, this results 
in a polyacrylamide gel with one face shaped as the negative of the micropattern 
of the master mold. We could easily obtain replica of molds going down to 10 µm 
features with an apparent fidelity at the micron scale (Methods, Fig. 2.7). Note 
that we also use unstructured flat polyacrylamide membrane in the following. 
These are obtained according to the same protocol in which the wafer has been 
replaced by a silanized glass slide.

Results

2.2.1 Microfabrication of polyacrylamide gels

2.2
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	 Preparation of a membrane – After polymerization, the top silanized cov-
erslip is removed, after which the gel is cut to the experimentally required dimen-
sions and removed with tweezers. Importantly, the polyacrylamide membranes 
should be rinsed in water to remove non-polymerized toxic acrylamide mono-
mers. In our studies, transferring the polyacrylamide layer to fresh purified water 
at least two times for approximately 1 hr proved sufficient to ensure biocompat-
ibility and a lack of any observed growth defect in the organisms studied in this 
chapter. The membrane can be stored for several weeks in an aqueous solution. 
Before using the polyacrylamide membrane for a cell or organism culture experi-
ment, we soaked it two times in the appropriate medium.

	 In Figure 2.1, we first outline the different designs used in this research. 
In general, all devices consist of multiple layers stacked on top of each other, with 
the entire device being held together by mechanical clamping (Fig. 2.1). In our 
case, this clamping was achieved by a metal holder with screws, with the appro-
priate openings for microscopy acquisition and microfluidic connectors.
	 In all different designs the objects under study have to be confined be-
tween the polyacrylamide membrane and the glass coverslip through which mi-
croscopy imaging is performed. Here, we use two different approaches to achieve 
this. In the first design, we enclose the membrane within a surrounding glass 
spacer sealed to a top glass slide with vacuum silicon grease (Fig. 2.1A-B). This 
simple design ensures sufficient air tightness to limit evaporation and allows for 
observation under constant conditions for up to two days, provided that nutri-
ents in the hydrogel membrane are present in large excess. In the second design a 
PDMS device containing a control channel is placed on top of and in direct con-
tact with the polyacrylamide membrane (Fig. 2.1C), thereby allowing continu-
ous diffusion of the medium to cells or organisms growing below the hydrogel 
membrane. As no sealing or chemical bonding is required, the PDMS channel 
can be re-used many times.
	 Potentially, microfabricated polyacrylamide membranes and PDMS 
control channels can be combined depending on the experimental needs (Fig. 
2.1D), with the possible designs not limited to those in Fig. 2.1. For example, 
more complex designs containing microchannels embedded in the gel could be 
fabricated.

2.2.2 Experimental designs
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Figure 2.1 Schematics of devices for cells or organisms culture in polyacrylamide membranes. 
In all devices presented here, cells or organisms (represented as black circles) grow at the interface 
between the polyacrylamide gel and a glass coverslip through which microscopy is performed. (A) 
Side view of a microfabricated membrane comprising culture chambers, mechanically clamped 
between a glass slide and a glass coverslip. The device is sealed with a glass or metal contour. Seal-
ing can be enhanced by adding vacuum silicon grease between surfaces. (B) Top view of panel (A) 
showing the array of microchambers surrounded by the glass or metal contour. (C) Flow cell using 
a PDMS control channel in contact with a polyacrylamide monolayer, which allows transfer of the 
flowing medium to the cells. In this design, cells are compressed underneath a flat polyacrylamide 
monolayer. (D) A more complex device combining the microchambers of the design in panel (A) 
and with the PDMS control channel in panel (C).

	 First, we used the advantageous transport properties of polyacrylamide 
gels to precisely control the medium composition in time, using an unstructured 
gel as a membrane, as well as in space, by setting up a concentration gradient 
within a membrane using molded microchannels.
	 In the first experiment, time control of the medium was obtained by 
placing a 500 μm thick gel membrane between a structured PDMS layer and 
a glass coverslip (Fig. 2.2A). Flow was established in the PDMS channel with a 
syringe pump at flow rates ranging between 20 and 50 μL.min-1. A fluorescent 
glucose analog (2-NBDG) was added or removed from the flowing medium at 
a particular time point by switching a valve, thereby changing the composition 
of the flowing medium within seconds. The amount of 2-NBDG fluorescence 
was measured as a function of time by standard fluorescence microscopy using a 

2.2.3 Temporal and spatial control of the 
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100X objective focused on the gel-glass interface. After the change of medium, 
the measured fluorescence signal rose in an approximately exponential fashion to 
the newly imposed steady-state value with a half-time of ~5 min (Fig. 2.2B-C). 
Fits to the diffusion profile (Methods) yielded diffusion coefficients of 4.0x10-10 
m2.sec-1 to 5.3x10-10 m2.sec-1, comparable to the typical diffusion coefficient of 
small molecules in water (5.0x10-10 m2.sec-1).
	 In the second experiment, we aimed to set up a spatial concentration 
gradient by placing a structured gel membrane between a glass slide and a flat 
PDMS layer, the latter containing inlet and outlet connectors (Fig. 2.2D). Liquid 
was pumped through the 100 μm high channels molded into the polyacrylamide 
hydrogel at a rate of 50 μL.min-1. One channel contained pure water, whereas the 
other channel contained an aqueous solution of fluorescein molecules. Diffusion 
of fluorescein into the polyacrylamide hydrogel, coupled with its removal at the 
adjacent channel, is predicted to create a linear concentration gradient in the 
space between the two channels [106]. We found that the spatial gradient reached 
steady state after ~1 hr. Subsequently, we imaged the concentration profile at 
mid-channel depth. We observed a linear concentration gradient within the gel 
between the two channels as predicted by the theory (Fig. 2.2E-F) [106].

	 We tested the use of the polyacrylamide hydrogels to create a micro-
fluidic chemostat for the growth of E. coli bacteria (Fig. 2.1C). First, we used 
time-lapse phase contrast microscopy to visualize single E. coli cells growing on 
a simple flat polyacrylamide membrane while flowing minimal medium with 
abundant lactose. Cells divided for at least 8-9 generations into monolayered 
colonies (Fig. 2.3A). Colony growth into monolayer was most probably favored 
both by the imposed confinement and the observed preferential adhesion of the 
bacterial cells to the hydrogel rather than to the glass surface. In the absence of 
vertical overlap between cells, we could perform unambiguous determination of 
their outlines and determine the length of individual cells using custom image 
analysis software (Methods). The population growth, quantified as the sum of the 
length of all cells in the microcolony, showed that cells were growing exponential-
ly (Fig. 2.3B, green trace) with a doubling rate of ~0.9 h-1. The single-cell analysis 
of cell growth indicated variability in growth rate within each colony. This vari-
ability was not correlated with the position within the colony (Fig. 2.3C), which 
strongly suggested it was rather caused by internal stochastic factors rather than a 

2.2.4 Carbon controlled growth of bacteria
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lack of uniformity in the environment.
	 Control of the growth rate of bacterial cells was demonstrated by expo-
nential growth on minimal medium supplemented with various carbon sources 
(Fig. 2.3B). The population growth showed that cells grew at a constant rate in 

Figure 2.2 Diffusion in unstructured and structured acryl gel membranes (A) Sketch of the flow 
cell device. An unstructured acryl gel (height 500 μm) is sandwiched between a PDMS layer com-
prising a channel (in white, height 113 μm), and a glass coverslip, similar to Figure 2.1A. (B) 
Fluorescence of the small dye 2-NBDG is proportional to its concentration in the flowing solution. 
(C) Dynamics of fluorescence after infusion (squares) or depletion (circles) of the dye 2-NBDG 
was measured at the gel-glass interface (yellow cross). Lines show fits to the 1D diffusion equation. 
Open symbols and dashed lines correspond to flow rates of 50 μL.min-1, closed symbols and solid 
lines to flow rates of 20 μL.min-1. (D) Sketch of the gradient generator device. A structured acryl 
gel (height 1 mm) is sandwiched between a PDMS layer and a glass slide. Water containing 3.5 
μg.mL-1 fluorescein is flown through the left channel, while pure water is flown through the right 
channel, creating a concentration gradient within the gel. (E) Image of the fluorescence intensity 
profile at mid-channel height taken approximately 85 min after the flows were established (yellow 
line in (D)). Red lines indicate channel walls. (F) Fluorescence intensity profile (blue crosses) plot-
ted versus distance (along blue line in (E)). The fluorescence intensity in the acryl gel in between 
the channels is linear (red line).
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each condition, yielding doubling rates of 0.8 h-1 for growth on maltose (Fig. 
2.3B, red trace), 0.6 h-1 on lactate (Fig. 2.3B, yellow trace) and 0.23 h-1 on limit-
ing lactose (Fig. 2.3B, blue trace). These values are in good agreement with our 
growth rate measurements in bulk (Fig. 2.8) and the relative quality of the differ-
ent carbon sources ([120] and Methods). Growth on limiting lactose confirmed 
in particular that our nutrient free material is suitable for attaining and studying 
low growth rates.
	 To show the ability of our designs to study single-cell dynamics in chang-
ing environments, we performed a carbon shift (with the device of Fig. 2.1C), 
and monitored both growth and gene expression over time. We started from a 
single cell on a minimal medium containing lactose, and switched to a minimal 
medium containing glucose after three generations. Expression of the lac genes 
was measured with a GFP reporter inserted in the lac operon (see Methods). The 
lac genes control the import and metabolization of lactose and are induced dur-
ing growth on lactose, but repressed when glucose is present.
	 We show the population-level dynamics in Fig. 2.3D. During growth on 
lactose, cells reached a steady growth rate of ~0.8 h-1 and the mean fluorescence 
intensity of the microcolony over time was high, consistent with the full expres-
sion of the lac genes in all cells. Upon shifting to glucose, the growth rate was 
maintained at its pre-shift value during a delay of approximately 20 min, after 
which it increased abruptly to the higher glucose steady-state value of ~1 h-1. At 
the same time, the mean fluorescence started to decrease exponentially with a 
characteristic half-time of 70 min, close to the doubling time. This indicated the 
arrest of lac genes expression after the shift and a decrease in GFP per cell domi-
nated by dilution [121], until attaining cellular auto-fluorescence levels after four 
generations. We performed single-cell analysis and observed significant variabil-
ity between lineages related to stochastic factors both in genetic expression and 
growth (Fig. 2.3E), as previously described [29, 30].
	 Overall, we verified that the use of polyacrylamide gels allows precise 
determination of growth properties for given quality and abundance of nutrients 
in the media. We also tested the response of bacteria to a sudden change in the 
growth medium. Combined with quantitative movie analysis, we demonstrated 
that it was possible to measure growth and gene expression dynamics at the sin-
gle-cell level with polyacrylamide based devices.
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Figure 2.3 Monitoring bacterial growth by time-lapse microscopy. (A) Phase contrast images of 
E. coli cells growing in minimal medium supplemented with lactose. Images were taken at 2 hrs in-
tervals. White bar is 4 μm. (B) Sum of cells length for microcolonies growing on minimal medium 
with lactose (green), maltose (red), lactate (yellow) and limiting lactose (blue) as sole carbon source. 
(C) Scatter plot of instantaneous growth rate and cell position within the microcolony, calculated 
6.5 hrs after the start of the experiment. The cell position was calculated as the distance of the 
center of a cell to the arithmetic center of the microcolony. (D-E) Dynamics of growth and gene 
expression during shift from lactose to glucose. (D) Sum of cells length (top) and mean fluorescence 
intensity (bottom) of a microcolony. For comparison, fluorescence intensity for a microcolony 
growing only on lactose is shown in grey. (E) Elongation rates (top) and fluorescence levels (bot-
tom)over time of all lineages within the microcolony. Selected lineages are highlighted in different 
colors. Note that for clarity the first cell cycle is not plotted.
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	 We first checked that yeasts grew normally, both confined between an 
unstructured hydrogel monolayer and a glass cover slip and confined within 
microstructures such as channels or chambers in a device similar to Fig. 2.1A-
B. When cells where confined between an unstructured flat hydrogel and glass, 
we could observe the constant exponential proliferation of fission yeast cells for 
more than 7 generations over 20 hrs (Fig. 2.4A). This corresponded to an aver-
age doubling time of 170 min at 32°C, in agreement with liquid culture growth 
rate in the same minimal medium. This indicated that the hydrogel imposed a 
mechanical pressure sufficient to confine the cells, but was soft enough to not 
perturb growth, most probably slightly deforming around the cells which have a 
3-4 μm diameter. We then grew yeast cells, confined in 3 μm deep microstruc-
tures molded in the hydrogel. Timelapse imaging showed that colony expansion 
was constrained by the walls until the culture chamber was full (Fig. 2.4B).
	 We tested the ability of the microstructured membrane combined with a 
PDMS control channel on top (Fig. 2.1D) to control the chemical composition 
of the microenvironment, in this case by inducing microtubule depolymerization 
during a defined time window. In fission yeast cells, microtubules form 3-5 bun-
dles composed of groups of 2-4 microtubules. These microtubules are involved in 
multiple biochemical pathways, notably the delivery of polarity factors essential 
for the control of cell growth [122]. After growing yeast cells for 2 generations, 
we supplemented the flowing medium with 50 μM of the microtubule-destabi-
lizing drug methyl-2-benzimidazole-carbamate (MBC). Within 5 min, fluores-
cently labeled microtubules disappeared in >80% of the cells (Fig. 2.4C). In the 
remaining fraction of cells, abnormally short microtubules were present, as al-
ready reported for MBC-treated fission yeast cells [123]. We observed that in the 
remaining fraction of the cells, microtubules were organized in mitotic spindles 
prior to addition of MBC, rendering them more stable. As expected, cell growth 
was halted in the absence of microtubules. After 60 min, the drug was removed 
from the flowing medium, leading to the reappearance of microtubules in >90% 
of cells within 5 min and inducing recovery of the growth process.
	 In conclusion, we have shown that yeast cells grow normally on po-
lyacrylamide hydrogel membranes, and that colony expansion can be confined 
between a flat hydrogel membrane and a glass coverslip, or within a structured 
membrane. The membrane allowed for adding or removing a drug on a timescale 
of minutes.

2.2.5 Temporary induction of a growth arrest in yeast
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	 We then tested whether our approach could be used to confine much 
larger, multicellular organisms. To that end, we monitored growth and devel-
opment of single larvae of the nematode worm Caenorhabditis elegans, spatially 
confined to arrays of microchambers molded into polyacrylamide gel (Fig. 2.5A).
	 We grew C. elegans larvae by adding an individual C. elegans egg and 
sufficient E. coli bacteria as food source to each microchamber. We observed that 
eggs developed normally inside the polyacrylamide microchambers and that new-
ly hatched larvae increased in length from about ~300 μm directly after hatching 
to ~600 μm over the course of 10-15 hrs (Fig. 2.5 A-B). All larvae stayed confined 
to the microchambers during the entire period of observation.
	 Development of C. elegans is divided in four larval stages, labeled L1 to 
L4, that are separated by molts during which a new cuticle is synthesized and 
old cuticle is shed. The molts are accompanied by a behaviorally quiescent state 
called lethargus. After 10-15 hrs, animals entered the lethargus accompanying 
the L1 molt (Fig. 2.5B), agreeing well with the observed duration of the L1 larval 
stage of ~15 hrs [99]. We observed that the start of the L1 molt correlated well 
with animal length. Note that the variability in the duration of the L1 stage we 
observed was mostly due to variation in animal length at the time of hatching. 
These results indicate that the development of L1 larvae occurred normally inside 
the microchambers.

2.2.6 Growth and development of spatially confined      
         Caenorhabitis elegans larvae

	 We have demonstrated the microfabrication of polyacrylamide mem-
branes by soft lithography and used these to build controlled environments 
for the study of growing cells and organisms. While similar capabilities can be 
achieved with other techniques based on hydrogels, notably agarose gels, our 
method has several practical advantages. A major one is the advantageous me-
chanical properties of polyacrylamide, which allow easy handling of the gel both 
during microfabrication steps and experimental setup, especially compared to 
the classically used agarose layers which can easily tear. In addition, our method 
requires minimal investment in materials and technological infrastructure, as we 
used a protocol for fabrication of polyacrylamide hydrogels that is commonly 

2.3 Discussion
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Figure 2.4 Control of the environement of growing fission yeast colonies (A) Growth curve of the 
colony (area) obtained by a time-lapse experiment (blue) from 1 cell to 142 cells after 20 hrs. In 
red, single exponential fit of the growth rate with a doubling time of 240 min. (B) Phase contrast 
images of the fission yeast S. pombe growing in a microchamber. Fluorescent microscopy images of 
fluorescently labeled microtubules during treatment with the microtubule-inhibiting drug methyl-
2-benzimidazole- carbamate (MBC). Before the injection of 5 μM MBC, microtubules are observ-
able in every cells (t = -5 min). 5 min after the shift MT disappeared in more than 80% of the cells. 
MBC treatment lasts for one hour, over which MT assembly is not observed. Rapidly after the wash 
out of the drug, MTs reappeared in almost every fission yeast cells. (D) Percentage of cells without 
observable MTs in a time-lapse experiment, before, during and after microtubule depolymerization 
with 5 μM of MBC.

used in biology laboratories for protein electrophoresis and only requires prepara-
tion of a solution that polymerizes at room temperature. Once polymerized, these 
membranes remain functional for months when stored in solution. In addition, 
the microfabrication step relies on a silicon mold that can be re-used many times.
	 We have proposed various devices that allow accurate spatio-temporal 
control of the environment. Control in time was achieved by diffusion through 
the gel into culture chambers that are otherwise entirely uncoupled from the flow 
in the PDMS channel. Diffusion coefficients of small molecules in the gel are 
close to their value in water, which combined with the possibility to build thin 
membranes allowed medium exchange with a characteristic time of 5 minutes. 
This response time is well suited for many applications that require the control 
of the growth and gene expression dynamics in micro-organisms such as bacte-
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Figure 2.5 C. elegans growth in microchambers. (A) Growth of a single C. elegans animal through 
the L1 larval stage constrained in a 200 x 200 x 18 μm polyacrylamide microchamber filled with 
OP50 as source of food. Black bar is 100 μm. Time is shown in hours after hatching. At 12 hrs after 
hatching the animal has entered the lethargus at the end of the L1 larval stage. (B) Worm length as 
a function of time after hatching. Different colors indicate animals grown in parallel on the same 
device. Horizontal bars show the duration of lethargus, ending with the molt at the start of the L2 
larval stage. The markers indicated by the arrow correspond to the time points shown in (A).

ria or yeast, as these cellular responses typically need to be assessed on the time 
scale of several tens of minutes. We have demonstrated the creation of precisely 
controlled linear concentration gradients between continuously flowing solutions 
in channels embedded in a single gel layer. This method may be used to set up 
steeper gradients or more complex two-dimensional concentration patterns than 
conventional chemotaxis assays for which diffusion between PMDS channels is 
constrained to occur through a hydrogel layer in a third dimension [106]. We 
have demonstrated the potential of these devices to study dynamically the genetic 
or the morphologic responses to changes in growth medium or the addition of 
chemical inhibitors of cellular processes. In conclusion, these polyacrylamide-
based devices are uniquely suited to study the response of diverse biochemical 
pathways to chemical perturbations. They are also of particular interest for stud-
ies on metabolism and growth as the polyacrylamide matrix is free of nutrients.
	 The physico-chemical properties of polyacrylamide layers are well suited 
for single-cell or organisms studies. In the case of bacteria, long-term growth in 
monolayers enabled convenient single-cell analysis. In the case of yeast cells, soft 
confinement by the membrane or by microstructures built within the hydro-
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gel ensured localization of the colonies, while maintaining normal growth and 
morphological phenotypes without requiring the deposition of an additional soft 
layer on the glass [118].
	 This technology is also promising for the study of larger, multicellular 
organisms, such as C. elegans. In this context, polyacrylamide gels with micro-
chambers provide two major advantages. First, they allow spatial confinement 
of these otherwise highly motile organisms, enabling time-lapse microscopy and 
parallel image acquisition without the use of anesthetic drugs [100] or automated 
tracking of individual animals [124]. Second, polyacrylamide hydrogels enable 
exchange of medium and waste products with the microenvironment of the ani-
mal.
	 Finally, the tunable mechanical properties of polyacrylamide hydrogels 
make them potentially highly useful for the culture of other cell types, given, for 
example, the exquisite sensitivity of mammalian cells to the mechanical proper-
ties of their support [93]. The potential to embed microfabricated polyacrylamide 
membrane in complex modular designs offers exciting opportunities to develop 
precisely controlled environments for cell biology studies and tissue engineering.

Figure 2.6 Molding of the polyacrylamide gel. The acrylamide solution is injected with a pipette 
within the cavity created by the wafer with the photoresist pattern stuck with silicon grease to a 
glass or metal contour of desired height. A silanized coverslip is then added on top of the cavity and 
polymerization occurs at room temperature for 2 hrs.

Materials and methods

2.4.1 Supplementary figures
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Figure 2.7 SU-8 pattern on a wafer and molded acrylamide gel. (A) Image of a silicon wafer 
micropatterened with SU-8 photoresist. (B) Structures shown in (A) have been molded in a poly-
acrylamide gel. Scale bars 100 μm. Smallest features are 10 μm wide.

Figure 2.8 Growth rates in batch cultures. Optical density at 550 nm (normalized by the expo-
nentially fitted OD at t = 0) versus time for batch cultures of MG1655 cells growing in minimal 
medium with abundant (0.1%) glucose (dotted line), lactose (green), maltose (red) and lactate (yel-
low) as sole carbon source. Exponential fits to the experimental data points (lines) yielded growth 
rates of 1.12 h-1 on glucose, 1.01 h-1 on lactose, 0.88 h-1 on maltose and 0.54 h-1 on lactate, compa-
rable to those obtained for cells growing in the microfluidic device (Fig. 2.3B and D).
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2.4.2 Fabrication of the microfluidic device

2.4.3 Experimental devices

	 Master molds have been realized on silicon wafers with spin-coated SU-8 
epoxy resins (MicroChem) of different viscosities (models 2005, 2025 and 2100) 
resulting in heights of 3 μm for the yeast chambers, 18 μm for the worm cham-
bers and 100 μm for the gradient assay. No specific wetting treatment was done 
to the surface of the wafer. For the polyacrylamide gel, we used a 37.5:1 ratio of 
acrylamide/bis-acrylamide (Bio-Rad) with a final concentration of 10%. Polym-
erization was initiated by the addition of 0.1% of ammonium persulfate (Sigma) 
and 0.1% of TEMED (Sigma). The mixture was poured in a mold consisting of a 
cavity made of a machined glass or aluminum slide of thickness varying between 
150 μm and 1 mm, glued to the wafer or to a simple silanized glass slide with 
vacuum silicon grease. A silanized glass coverlsip was deposited on top and the 
solution was left to polymerize for about 2 hrs. The polyacrylamide membrane 
was then cut and transferred in deionized water for conservation. The PDMS 
(Sylgard 184, Dow Corning) channel was molded on a silicon wafer with SU-8 
according to the protocol provided by the resin manufacturer (MicroChem) and 
consisted of a 113 μm high and 3 mm wide channel comprising pillars to ensure 
uniformity of the pressure applied on the polyacrylamide membrane. Mechanical 
clamping of the whole device was performed by a homemade metal holder with 
4 screws, comprising openings on the bottom for microscopy acquisition and on 
the top for illumination and the tubing.

	 The flow was externally driven with syringe pumps (ProSense, NE-1000 
and NE-300) connected to the microfluidic device by polyethylene tubing of 
0.58 mm internal diameter (Smiths medical International Ltd.). When using 
a PDMS channel, the device was degassed 1 hr in low vacuum prior to flow to 
avoid trapped air bubbles. Switches were performed by a manual valve (Hamil-
ton, HV 4-4). All experiments have been performed with an inverted microscope 
(Nikon, TE2000) embedded in a temperature-controlled incubation chamber 
(Solent), equipped with cooled CCD camera (Photometrics, CoolSnap HQ), 
xenon lamp with liquid light guide (Sutter, Lambda LS), GFP filter set (Chroma, 
41017), computer-controlled shutters (Sutter, Lambda 10-3 with SmartShutter) 
and automated stage (Märzhäuser, SCAN IM 120 x 100). The microscope con-
trol software used was MetaMorph. 
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	 Growth experiments were performed using derivatives of E. coli MG1655 
(rph-1 ilvG- rfb-50). To measure the expression of the lac operon, lacA was re-
placed with GFPmut2 [125] and chloramphenicol resistance using the protocol 
described by Datsenko and Wanner [126] (gift of M. Ackermann).
	 Cells were grown in M9 minimal medium (47.7 mM Na2HPO4, 25 mM 
KH2PO4, 9.3 mM NaCl, 17.1 mM NH4Cl, 2.0 mM MgSO4, 0.1 mM CaCl2) 
(all the chemicals were provided by Merck), with 0.2 mM uracil (Sigma), sup-
plemented with 0.1% (w/v) lactose (Fluka), maltose (Sigma), lactate (Sigma) and 
0.001% (w/v) lactose in the limiting case. Note that adding uracil compensates 
for intrinsic pyrimidine starvation of the MG1655 strain [127] and accounts for 
the typically 15% higher growth rates measured in our study compared to Beg et 
al. [128].
	 Cells were initially inoculated from glycerol stock in TY medium and 
grown until the OD > 0.02 and next diluted in M9 medium with 0.1% (w/v) lac-
tose for growth overnight. The following day, the overnight culture was diluted in 
M9 medium 0.1% (w/v) lactose (OD ~0.005) and transferred to the microfluidic 
chamber. 10 μL of culture were deposited on a glass coverslip, the polyacrylamide 
gel membrane was put on top and left to dry for about 2 min before the setup was 
assembled. All these steps were performed at 37°C.
	 Cell imaging was performed with a 100X oil objective (Nikon, Plan 
Fluor NA 1.3). An additional intermediate 1.5X magnification was used, result-
ing in images with pixel size corresponding to a length of 41 nm. Phase contrast 
images (300 ms exposure time with GIF filter) were taken every 1 to 2 min; fluo-
rescence images every 25 min (1000 ms exposure) or 15 min (500 ms exposure). 
Data analysis is detailed in section 2.4.8.

	 Standard methods for S. pombe media were used throughout. For growth 
experiments, we used wild type fission yeast (PT286 h- ade6-M216 leu1-32 ura4- 
D18). For the drug shift experiment, we used a strain expressing GFP tubulin (DB 
871 h90 nmt1-GFP-tub:lys1+ leu- ura-). Fission yeast cells were grown overnight 
in Edinburgh Minimal Medium (EMM) liquid culture to ensure an exponential 
growth. 2 μL of 10X-concentrated culture were deposited on a polyacrylamide 
gel membrane that had been incubated in EMM medium. A clean coverslip was 
put on top of it. All these steps were performed at room temperature, while the 

2.4.4 Bacteria

2.4.5 Yeasts
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experiment was performed at 32°C. Cells were imaged through a 40X objective 
oil immersion lens (Nikon, NA 1.0). Colony area was measured with ImageJ 
(http://rsbweb.nih.gov/ij) software. Fit of the colony growth was done with Mat-
lab (MathWorks). Microtubules detection was performed visually.	

	 The wild-type (N2) C. elegans strain was grown on NGM agar plates 
covered with E. coli OP50 as food source, following standard protocols [129]. 
Before sample preparation, the polyacrylamide microchamber array was soaked 
overnight in M9. Under a stereomicroscope, OP50 bacteria and a single em-
bryo at the three-fold stage, between 550 and 840 min after fertilization [99], 
were transferred to each individual microchamber, using a worm pick to transfer 
bacteria and an eyelash attached to a Pasteur pipette to transfer eggs. Images of 
individual microchambers were captured every 15 min using a 10X Nikon objec-
tive (NA 0.30). L1 larvae hatched and developed at room temperature (22°C). 
Worm length was quantified as a function of time with a 1 hr interval. Entry 
into and exit from the L1 molt was monitored by reduction in movement during 
lethargus, decrease in contrast in the transparency of the animal’s body due to 
synthesis of the new cuticle and finally the shedding of the old cuticle.

	 The following formula was taken from [130]:

where l = 500 μm (width of system), x = 0 μm (position of measurement), C 
is concentration and t is time, values taken from Figure 2.2C. Fitting was per-
formed with Matlab with nmax = 3.C0 (maximum concentration) and D (diffusion 
coefficient) were used as fitting parameters.

2.4.6 Nematodes

2.4.7 Fitting of diffusion coefficients in Figure 2.2C
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	 The data analysis described in this section was used in all the other exper-
iments of this thesis. Images were analyzed with a custom Matlab (MathWorks) 
program based on a software from Elowitz lab (Schnitzcells) [131]. Cell outlines 
were determined automatically by applying a Laplacian of Gaussian filter on the 
phase contrast images and cutting clumps of cells based on concavity and phase 
contrast maxima (Fig. 2.9A). All cell segmentations were visually checked, and 
if necessary corrected by forcefully running the same analysis procedures at user-
defined locations. After tracking, a complete history of each cell lineage in the 
microcolony was unambiguously determined up until the microcolony expanded 
beyond the field of view, or when a second layer of cells would form. Generally 
this meant that the history of 9 generations of lineages, consisting of ~500 com-
plete cell cycles from a single microcolony, could be determined in one experi-
ment.

	 Growth rates were determined from exponential fits of cell length over 
time. Cell lengths were measured with sub-optical-resolution precision by analy-
sis of phase contrast intensity profiles along the cell axis [132]. The cell axis was 
determined by fitting a third degree polynomial f(x) through the silhouette of the 
cell (Fig. 2.9A-B), as to fit both straight and curved cells (which are observed at 
very low growth rates). After determination of the pole positions (x0 and x1) on 
the axis (Fig. 2.9C), the cell length L was calculated by numerical integration of:

Growth rates (µ) were obtained by calculating the elongation rate with an expo-
nential fit of length over time (see Fig 2.8I):

Cell doubling times (Td) are Td = 1/µ. Sub-cell-cycle growth rates were deter-
mined by fitting length measurements within a time window (corresponding to 
a third of the cell’s mean doubling time) centered at the time points when fluo-

2.4.8 Data analysis

Growth rate at sub-cell-cycle resolution

Controlling living cells and organisms with microfabricated polyacrylamide membranes36



rescence images were taken. For time points at the end of a cell cycle where the 
time window includes a cell division, fitting was performed using extrapolated 
length values from summation of the lengths of the two daughter cells. Vice 
versa, for those time points at the beginning of the cell cycle, half of the length of 
the mother cell (Lm) was used with a correction for asymmetric division lengths 
between the cell (L0) and its sister (LS,0):

	 Fluorescence images were corrected for camera noise and uneven illu-
mination of the sample, using a background image (Ib) and a shading image (Is). 
Given the original image I, the calibrated output image Ic is given by:

The image was further enhanced by deconvolution using Matlab’s Lucy-Rich-
ardson algorithm in combination with a point-spread function for our imaging 
system (experimentally determined using 0.02 μm sized FluoSpheres from Invit-
rogen, see Fig. 2.9E-G).
	 The total fluorescence of each cell was determined by extracting those 
pixels that were within the cell outline. The protein production rate was then 
measured by taking the slope of the best linear fit over the total fluorescence sig-
nal over three consecutive time points.
	 To obtain protein concentrations from fluorescence images, one gener-
ally divides the cell’s total fluorescence by its size. The size measurement, however, 
is also used for calculation of the growth rate. In order to avoid artificial correla-
tions between these two measurements, we determined the protein concentration 
independent of cell size. The cell mean fluorescence was calculated by averaging 
pixels within 0.2 μm of the cell axis, but more than 0.3 μm away from the cell 
poles (Fig. 2.9G). The protein concentration was calculated from this value by 
subtracting background fluorescence (determined from pixels outside microcolo-
ny) and autofluorescence (determined from fluorescence of wild-type MG1655).
	 In order to correct measured parameters for cell-cycle phase effects, we 
first calculated the cell phase at each time point, as a linear function in time from 
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Figure 2.9 Determination of cell length and enzyme concentration. (A) Segmented cell silhou-
ettes are obtained by applying a Laplacian of Gaussian filter on phase contrast images. (B) The cell 
axis is determined by fitting a third degree line through the silhouette. (C) Cell length determina-
tion. We compute the distances between points on the cell axis and the closest 25 segmentation 
pixels. The sum of these distances squared, here termed the silhouette proximity, is plotted for 
points along the cell axis. In the center of the cell silhouette or mask, the silhouette proximity 
consistently remains at 4.06 μm2, but near the cell poles it rapidly increases. The location of the 
cell poles was taken at silhouette proximity of 4.47 μm2. (D) Elongation rate of a single cell. The 
length of a single cell, its parent and its offspring plotted over time (dark circles). Instantaneous 
exponential elongation rate is determined by fitting an exponential to this data for a fraction of the 
cell cycle. At the beginning and end of each cell cycle, length data of the parent or the offspring are 
used for this fitting process (grey circles, see text). (E) Initial fluorescence image. (F) Image after 
background correction, shading correction and deconvolution by a point spread function. Total cell 
fluorescence is determined as the sum of fluorescence values within the cell silhouette. (G) To ac-
curately determine the cellular fluorescence intensity that reports for the enzyme concentration, we 
averaged the fluorescence values of pixels within a box of fixed width and equidistant length from 
the poles inside the cell perimeter.
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0 at the cell’s birth to 1 at its division. Next, the dependency of the parameter on 
the phase of the cell cycle was determined by a fit with a 3rd degree polynomial 
using all data points from a microcolony experiment. We subtracted the devia-
tion of the fitted line from the cell cycle average at the phase for each data point. 
We used this method to normalize the growth rates, protein concentration and 
protein production rates that were used for correlation calculations in chapter 5 
of this thesis.

I would like to thank Daan Kiviet for developing our custom image analysis software, 
as well as Philippe Nghe and Noreen Walker for further improvements on the algo-
rithm.
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Single-cell dynamics reveals 
sustained growth during  
diauxic shifts

3 Stochasticity in gene regulation has been characterized 
extensively, but how it affects cellular growth and fit-
ness is less clear. We study the growth of E. coli cells as 
they shift from glucose to lactose metabolism, which is 
characterized by an obligatory growth arrest in bulk ex-
periments that is termed the lag phase. Here, we follow 
the growth dynamics of individual cells at minute-reso-
lution using a single-cell assay in a microfluidic device 
during this shift, while also monitoring lac expression. 
Mirroring the bulk results, the majority of cells displays 
a growth arrest upon glucose exhaustion, and resume 
when triggered by stochastic lac expression events. How-
ever, a significant fraction of cells maintains a high 
rate of elongation and displays no detectable growth lag 
during the shift. This ability to suppress the growth lag 
should provide important selective advantages when nu-
trients are scarce. Trajectories of individual cells display 
a highly non-linear relation between lac expression and 
growth, with only a fraction of fully induced levels being 
sufficient for achieving near maximal growth. A stochas-
tic molecular model together with measured dependen-
cies between nutrient concentration, lac expression level, 
and growth accurately reproduces the observed switching 
distributions. The results show that a growth arrest is not 
obligatory in the classic diauxic shift, and underscore 
that regulatory stochasticity ought to be considered in 
terms of its impact on growth and survival.
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Introduction3.1

	 In the presence of two carbon sources, bacterial cells may either metabo-
lize them both at the same time, or first use one and then the other. The latter 
strategy has been termed diauxic growth [133]. A classical example is the growth 
of E. coli on a mixture of glucose and lactose, which is characterized by initial 
rapid growth on glucose, followed by a phase of arrested growth when glucose is 
depleted, until the lac enzymes are expressed that allow growth on lactose [134]. 
Studies of glucose-lactose diauxie have led to many key discoveries on biological 
regulation, ranging from the existence of regulatory proteins and operator regions 
[5] to catabolite repression [135]. More generally, nutritional shifts experiments 
have revealed the dynamic changes of key classes of cellular components, such as 
protein, DNA, and ribosomes [68, 71, 136-138]. However, our understanding of 
the cellular growth response to environmental change has been obtained primar-
ily using bulk techniques [68-73] that measure the growth rate of the population 
as a whole. As a result, it is unclear how the growth of individual cells responds 
during diauxic shifts.
	 This question is central to understanding how cells compete. Cellular 
heterogeneity within populations could critically affect the ability to consume 
limited resources before they are exhausted by competitors, which can be de-
cisive for survival. For instance, populations could respond fast by following a 
bet-hedging strategy, in which the expression of genes is randomly turned on, 
thus generating sub-populations that are primed for diverse future environmental 
changes [139]. On the other hand, stochasticity in regulatory control could be 
disadvantageous, as the costs of spuriously expressing genes may lower the rate 
of growth and reproduction [140]. Stochasticity in gene regulation may thus 
have important consequences for fitness, and therefore, shed a new light on the 
function of regulatory systems in complex natural environments, as well as their 
historical evolutionary origins.
	 The advent of single-cell techniques has in recent years quantitatively 
characterized the stochastic nature of gene expression [36, 40, 141, 142]. The lac 
system in particular has been shown to display stochasticity in expression [40], 
as well as in the underlying repressor-operator association and dissociation events 
[29]. In response to changes in artificial inducer, lac expression was shown to 
exhibit bistability [143, 144] and heterogeneity in the timing of induction [30]. 
However, it remains poorly understood how cellular growth is affected. To ad-
dress this issue, we have studied the dynamics of diauxic growth at the single-cell 
level. We used a microfluidic approach to control glucose and lactose levels in the 
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cellular environment, accurately determined cellular lengths at high time resolu-
tion, and used GFP labeling to monitor expression of the lac operon.	

	 To control the environment, we used a microfluidic device in which 
microcolonies of cells were growing between a membrane and a coverslip [101, 
118] (Fig. 3.1A). By flowing different media above the permeable membrane, 
cells were exposed to a variable but spatially uniform environment. We meas-
ured the depletion of a fluorescent glucose analog from the cellular area, upon 
instantaneous switch to plain minimal medium, and found an exponential decay 
with a half-life of ~5 min (Fig. 3.1B). Starting with one or two cells, growing mi-
crocolonies were monitored by phase-contrast microscopy for 8–9 generations, 
yielding 200 to 500 cells for each microcolony at the end of the experiment. The 
lengths of the cells were determined using phase contrast images acquired every 
1 to 2 min, and custom image analysis software (see section 2.4.8). We started by 
characterizing the steady-state growth limitations, using fixed external nutrient 
concentrations (Fig. 3.1C and D). The data for both glucose and lactose were 
consistent with the Monod relation [133], indicating characteristic limiting con-
centrations of 5 μM for glucose and 70 μM for lactose. For glucose a value of ~1 
μM has been found previously in batch cultures [145]. Induction with artificial 
inducers IPTG and TMG has been shown to lead to bistability in lac expression 
[29, 143, 144]. Here we did not observe bistability, thus confirming theoretical 
predictions that natural inducers do not give rise to bistability because they are 
actively degraded by metabolism [146, 147].
	 We then subjected cells to an environmental switch after 4-5 genera-
tions. Switching from glucose to lactose or from a mixture of glucose and lactose 
to lactose only, gave similar results as expected (see Appendix, Fig. 3.9). We used 
a starting glucose concentration at which the growth rate is maximal (555 μM, 
Fig. 3.1C). The population growth, quantified by adding the lengths of all cells 
within the microcolony, displayed the prototypical diauxic growth behavior (Fig-
ure 3.2A): first a phase of rapid exponential growth, followed by a lag phase, after 
which growth restores to exponential growth. The two exponential growth rates 
matched the values for the fixed glucose and lactose media (~1 doubling/hr, and 
~0.8 doubling/hr respectively). The duration of the lag phase was about 20 min, 

Results

3.2.1 Population growth and expression dynamics   
         during diauxie

3.2
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comparable to batch culture data [134, 148]. Expression of the lac operon was 
monitored using a GFP reporter (see Appendix). The mean fluorescence intensity 
within the microcolony in the first exponential phase was near the cellular auto-
fluorescence, consistent with expected repression of the lac operon when growing 
on glucose [134]. Upon the shift, the mean fluorescence increased and reached 
a steady state level on a timescale that is similar to that observed for the growth 
rate (about 300 min, Fig. 3.2B). The fluorescence started to increase rapidly 30 
min after the shift, though the precise onset of expression increase could not be 
determined precisely because the rise was smooth. Overall, these observed popu-
lation dynamics of growth and expression are consistent with previous results 
from batch experiments.

Figure 3.1 Experimental setup. (A) Layout of the microfluidic device. The cells are growing be-
tween a glass coverslip and a polyacrylamide gel membrane. The medium reaches the cells and is 
exchanged by diffusion through the membrane. (B) Estimation of the fluid exchange time by means 
of the fluorescent glucose analog 2-NBDG (30 μM). 2-NBDG is removed at time zero. The experi-
mental curve is shown in red; the exponential decay fit is shown in black. (C-D) Mean growth rate 
of E. coli in steady-state growth in minimal media containing glucose (C) or lactose (D) as the only 
carbon source. In both cases, the fitted line is a Monod growth curve taking into account a non-zero 
growth rate on contaminants.

Time (min)

Fl
uo

re
sc

en
ce

 (a
.u

.)

50 100 150 200
0

400

800

1200

1600

0

Glucose concentration (μM)

E
lo

ng
at

io
n 

ra
te

 (h
-1
)

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1

Lactose concentration (mM)

E
lo

ng
at

io
n 

ra
te

 (h
-1
)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
C

B

D

A

glass
 coverslip

membrane

E. coli cells

PDMS
channel

Single-cell dynamics reveals sustained growth during diauxic shifts44



	 We followed the growth of individual cells during the diauxic shift by de-
termining their length over time. The instantaneous growth rate was determined 
at sub-cell cycle resolution by fitting the cell length over time to an exponential 
function. We observed no significant changes in cell width during the experi-
ment. Cells within one colony displayed diverse growth behaviors (Fig. 3.2C and 
D). For the majority, traces of length versus time showed a sharp transition from 
the glucose growth rate (1.0 doubling/hr) to a low growth rate (between 0.2 and 
0.6 doubling/hr), followed by a smoother transition to the lactose growth rate 
(0.8 doubling/hr). The low growth rate was similar to growth in media without 
any added carbon sources, which we could observe either in constant conditions 
(Fig. 3.1C and D), or when switching from glucose to a medium without added 
carbon sources (data not shown). These experiments suggested the intermittent 
growth at low rate was supported predominantly by metabolism of contaminants 
in the media, which unlike in batch cultures are continuously replenished in 
these experiments. Other minor contributions to growth after the shift could 
potentially come from internal cellular glucose reserves, residual glucose that was 
not depleted, and from lactose metabolized by leaked lac enzymes produced at 
low repressed levels. The length analysis sometimes displayed measurement arti-
facts at cell division, but their amplitude was small compared to the general trend 
and therefore did not affect the growth analysis (Fig. 3.2C, red). The data thus 
showed that the lag phase did manifest itself at the single-cell level.
	 To characterize the variability in growth dynamics, we determined the 
moment of growth decrease (ΔTμ1) and restoration (ΔTμ2). Both are quantified 
relative to the moment of switching the fluid flow, which we refer to as the shift 
time. The difference between ΔTμ2 and ΔTμ1 is a measure for the duration of 
the lag phase in individual cells. We found that ΔTμ1  and the duration of the lag 
phase are not significantly correlated (r2 ≈ 0.01 and p-value = 0.104, N = 185), 
suggesting that the growth decrease and the growth restoration are independent 
processes. ΔTμ1 was narrowly distributed close to zero (mean of the distribu-
tion: 13 min), which shows the growth process responds rapidly to the glucose 
decrease (Fig. 3.3A). ΔTμ2 on the other hand displayed a broad and asymmetric 
distribution that extended to lag times of up to hundreds of minutes (79 min on 
average) (Fig. 3.3B). A small fraction of lineage, ~5%, even failed to resume expo-
nential growth within the timescale of the experiment. These delays thus exceed 
by far the average lag time of 20 min. This broad distribution of lag times suggests 
that escape from lag is strongly affected by the timing of stochastic internal cel-

3.2.2 Growth dynamics in single cells during diauxie
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lular events. We did not find correlations between progression into the cell cycle 
and the timing of the growth transitions (r2 ≈ 0.03, p-value = 0.02 for growth 
decrease; r2 ≈ 0.001, p-value = 0.7 for growth recovery, N =185). 
	 Interestingly, not all cells showed a lag phase. Some cells displayed no 
discernible decrease in growth rate (15% of all traces) (Fig. 3.2D), in contrast 
with the abrupt entry into lag seen in the other cells. The absence of a lag phase 
did not appear to be related to correlations with the cell cycle, or the position of 
the cell within the microcolony (see Appendix, Fig. 3.8). The ΔTμ2 distribution 
extended monotonically down to zero, which suggested that the cells without lag 
do not represent a distinct sub-population (Fig. 3.3B). To understand the origins 
of this lack of a lag phase in some cells, information on the dynamics of lac op-
eron expression is required.

Figure 3.2 Dynamics at the population level and in single cells. (A) Growth curve for a typical 
microcolony, indicating the sum of all cell lengths within the colony. (B) Mean fluorescence inten-
sity (per unit area) within cells, averaged over a microcolony. (C) Single-cell length over time for 
three different lineages, representing cases with no growth rate decrease (green), a lag phase (blue) 
and a longer lag phase (red). Arrows indicate cell division events. The curves are vertically shifted for 
clarity. (D) Elongation rates obtained by exponential fits to the length data at sub-cell cycle resolu-
tion. Drawn lines are fitted parameterized functions. ΔTμ2 is the time difference between the time 
of shift and the half maximum to growth recovery after shift. (E) Fluorescence levels for the three 
lineages in (C) and (D). Drawn lines are fitted parameterized functions. ΔTF is the time difference 
between the time of shift and the half maximum to induction after shift.
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	 We determined the mean fluorescence per unit area within single cells 
as a measure for the lac operon expression. The fluorescence versus time for indi-
vidual lineages had a sigmoidal shape: a low level close to the background during 
growth on glucose, followed by a rise some time after the shift to lactose, until a 
constant steady-state level was achieved on the order of the doubling time (Fig. 
3.2E). However, different lineages displayed significant variability. For instance, 
the fluorescence level at the end of the experiment varied by up to 40% (see Fig. 
3.2E), reflecting heterogeneity in protein production between cells [40] as well as 
incomplete entry into steady state for some lineages. This final fluorescence level 
did not correlate significantly with the timing of induction (r2 = 0.04 and p-value 
= 0.003, N = 216).
	 The timing of induction was also variable, as observed previously for the 
ara system [149]. The time between the shift and the moment at which fluores-
cence reaches half-maximum, which we here denote as ΔTF, was distributed with 
a width and shape similar to that of ΔTμ2 (133 min on average) (Fig. 3.3C). We 
found ΔTF and ΔTμ2 to be strongly correlated (Fig. 3.3D, r2 = 0.85, p-value < 
0.001). This correlation is directly evident in the individual traces (Fig. 3.2C-E), 
where the red lineage displayed both a long growth arrest and a long induction 
delay, while the blue lineage with a smaller growth arrest exhibited a correspond-
ingly smaller induction delay. The correlations also indicated that ΔTF was sys-
tematically larger than ΔTμ2, which we will address below. Overall, these data are 
consistent with a simple model in which the lag phase is caused by the lac operon 
being in the repressed state, and exit out of the lag phase is triggered by the sto-
chastic lac induction.
	 However, this model did not explain the sustained growth. In particular, 
at the moment of glucose exhaustion (ΔTμ1) the lac operon in these cells was still 
‘off’, with expression at low repressed levels (N = 31, mean fluorescence 15 min 
after the time of shift: 0.76 ± 0.34 (SD) a.u.). While we did not observe spatial 
heterogeneity of nutrients, for instance when using the fluorescent glucose, we 
cannot formally exclude that some spatial differences in the precise moment of 
glucose exhaustion occur. However, delayed glucose exhaustion should merely 
delay all events, including the moment at which the repressible effect of glucose 
is alleviated (catabolite repression). Hence, while spatial nutrient inhomogeneity 
could lead to growth arrests occurring at different times for different cells, it does 
not explain the absence of a growth arrest. The fluorescence traces also showed 
no sign of lac bistability, where the lac operon spontaneously switches between 

3.2.3 Correlations between growth and expression in     
         single cells
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repressed and induced expression levels, as has been observed for artificial induc-
ers that are not metabolized [30, 32, 143]; bistability is thus also excluded as the 
cause of sustained growth. It has also been shown that the moment of lac induc-
tion upon a change in the artificial inducer TMG depends on the lac expression 
level before the change [30]. Hence we wondered whether the leaky stochastic 
expression of the repressed lac operon [40, 48], could underlie the variability 
in growth responses. If so, the lac expression level before the shift should cor-
relate with ΔTF. However, such a correlation is difficult to detect, as the meas-
ured expression level during glucose growth is similar to the autofluorescence 
of wild-type cells. Nonetheless, the mean fluorescence 120 min before the shift 
did exhibit a weak but significant correlation with ΔTF (r

2 ≈ 0.08 and p-value < 
0.001, N = 216). This result suggests that the sub-population of cells exhibiting 
sustained diauxic growth originated from pre-existing variations in expression 
that had developed stochastically during glucose growth.
	 While the data supported the idea that expression variability caused the 
observed differences in the growth dynamics of individual cells, a number of 
questions remained unanswered. For instance, how can the low leaky expression 
when glucose is exhausted be sufficient to maintain the growth rate at high levels, 
and why does growth restoration seem to precede induction? The latter is seen by 
ΔTF being systematically larger than ΔTμ2 by up to hundreds of minutes (Fig. 
3.2D), and hence cannot be explained by the ~10 min GFP maturation time 
[149]. To address these questions we have developed a stochastic model, which is 
detailed in the next section.

3.2.4 Stochastic model of diauxic growth

	 Diauxic growth has been studied extensively using mathematical mod-
els [150-154]. With the aim to gain intuitive insight into the main features of 
observed heterogeneity, we developed a minimal stochastic model that focuses 
on key features and neglects various known details (Fig. 3.4A; see Appendix for 
complete description). For instance, for simplicity we considered the stochastic 
binding and dissociation of repressor at a single operator site and neglected other 
operator sites, as well as stochasticity arising from variabilities in the lac repressor 
levels [23]. The free and bound operator states yielded respectively a high and low 
rate of stochastic transcription events, with the latter resulting from brief partial 
repressor dissociations. Cellular metabolism and growth depended on lac expres-
sion through lactose import and metabolism, following deterministic Michaelis-
Menten kinetics and using the experimentally determined dependence of growth 
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Figure 3.3  Statistical analysis and correlation between expression and growth. (A) Distribution of 
growth decrease times ΔTμ1. (B) Distribution of growth recovery times ΔTμ2. (C) Distribution of 
fluorescence recovery times ΔTF. N = 216 for all histograms. (D) Scatter plot of the delays in growth 
recovery versus delays in fluorescence increase for 185 cell lineages. r2 = 0.85, p-value < 0.001. The 
line drawn is ΔTμ2 = ΔTF. (E) Elongation rate versus internal lac levels for all lineages (scatter plot, 
in grey) and the three lineages in Fig. 3.2C. Arrows are directed towards increasing time.
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on glucose (Fig. 3.1C). In turn, lac expression depended on metabolism through 
the deactivation of free LacI repressors and random dissociation of DNA-bound 
repressors stimulated by intracellular lactose. Inducer exclusion and regulation by 
the cAMP pathway were modeled phenomenologically. Cells divided at a speci-
fied size, and their contents were randomly partitioned between the two daugh-
ters. Parameter values for the various reactions were, where possible, taken from 
direct experimental measurements; otherwise, these were inferred indirectly or fit 
to available experimental data (see Appendix for details). An initial population 
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Figure 3.4 Stochastic model. (A) Within each cell the concentrations of lactose, LacYZ and LacI 
are simulated, as well as the operator state. Lactose imported from the environment or glucose lead 
to cell growth. (B) Each cell is simulated until it reaches a specified length, at which point it divides 
to produce two daughter cells. The proteins of the parent cell are partitioned randomly between 
the two daughters. The daughters are then simulated until their subsequent division. Growth and 
fluorescence recovery times (TF and Tμ) are extracted from the reconstructed cell lineages.

	 Analysis of the temporal dynamics revealed how growth rates could be 
maintained at high levels during diauxie. First, stochastic leaky expression of the 
lac proteins during glucose growth gave a fraction of cells a somewhat higher lac 
protein concentration just before the shift, while still at repressed levels [29, 48] 
(see Fig. 3.5B and D). The resulting comparatively high lactose import triggered 
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of 100 cells was simulated for 210 min on both glucose and lactose, after which 
external glucose decreased exponentially (decay time τ = 5 min, Fig. 3.4B). Delay 
times ΔTμ1, ΔTμ2 and ΔTF were determined using the same criteria as for the 
experimental data. Overall, we found growth and lac expression dynamics to be 
similar to the experiments (Fig. 3.5A-C). While most cells showed sharply de-
creased growth around 20 min after the shift, a small fraction of the cells did not 
and instead maintained a high growth rate (~15% of cells, green trace, Fig. 3.5A). 
Note that the simulated growth rates do not account for random perturbations 
of the growth rate from other sources as observed in the experiments (~20% of 
the mean growth rate), and are thus artificially smooth. The moment of growth 
restoration was again highly variable, with ΔTμ2 and ΔTF distributed similarly as 
for the experiments (Fig. 3.5C).
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the start of induction of the lac operon. However, when external glucose becomes 
exhausted in these cells, the lac expression and hence the concentration of LacZ 
enzymes that can metabolize lactose is still near repressed levels. A non-linear de-
pendence of growth on lac expression is therefore essential as a third ingredient, 
while metabolism of contaminants and residual glucose may also provide small 
contributions to the overall growth rate. The relation between cellular growth 
and expression can here be studied directly by plotting the fluorescence inten-
sity against the concurrent instantaneous growth rate (Fig. 3.3E). The data after 
growth restoration shows that induction to just 20% of fully induced levels is 
sufficient to induce near maximal growth on lactose. Thus, even low lac levels can 
generate high growth rates, which is essential to sustaining growth at high levels 
during the transition. The steep dependence also explains the observed delays 
of induction with respect to growth for the cells with a lag phase (Fig. 3.3D): 
growth reaches a near-maximal rate as enzyme production is only beginning to 
be ramped up.
	 The inherent positive feedback in the system is crucial for the rapid es-
cape from the lag phase: LacY permeases allow lactose to enter the cell, which in 
turn leads to lac induction and hence increased numbers of permeases. We find 
that the threshold level of transporters required to initiate this positive feedback 
is small, with just a few lac transporters at the time of shift sufficient for a rapid 
induction within ~90 min (see Fig. 3.5D and Fig. 3.7). On the other hand, cells 
without permease at the time of shift exhibit a very broad distribution of induc-
tion delays (mean ∆TF ≈ 180 min), with a significant probability of not being 
induced at all within the time-frame of the simulations. The major component of 
this delay is waiting for a first stochastic burst of production caused by a partial 
repressor dissociation (mean waiting time of ~200 min), consistent with a previ-
ous study of lac induction kinetics [29] and a recent theoretical model [155]. 
Dissociation of repressor typically follows rapidly (within about 20 min), such 
that expression can be induced to the threshold level (in about 50 min) (see for 
example Fig. 3.5A and B, red trace, around 250 min). We note that the high 
threshold for the number of lac transporters required for induction reported in 
a recent study [29] was related to the bistability of that system and the inter-
mediate amounts of inducer that were added, which can explain the difference 
with our observations. We find that two mechanisms counter this escape from 
lag: metabolism of lactose and dilution of lactose by volume expansion both de-
crease its concentration, which tends to drive cells back towards the off expression 
state, and ultimately arrest of growth. However, both metabolism and dilution 
are comparatively slow during the lag phase, and hence even a small number of 
permeases can maintain an appreciable internal concentration of lactose. Once 
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	 Our results indicated that expression history can determine the timing of 
future switching events. This non-genetic cellular ‘memory’ could result in cor-
related behavior between genealogically related cells [28]. To test this possibility 
we compared the delay in growth recovery (ΔTμ2) of a recovering cell with the 
recovery delay of its sister (or, if this sister does not recover, the sister’s progeny). 
We find a weak but significant correlation (r2 = 0.52, p-value < 0.001, Fig. 3.6A). 
A control with randomly picked pairs of recovering cells does not display any 
correlation (r2 = 0.008, p-value = 0.47). The simulations also show a weak corre-
lation between growth recovery times (Fig. 3.6B). One may wonder what causes 
this correlation between sister cells, as the gene expression bursts that underlie 
exit from the lag phase are stochastic, which should make them independent 
and uncorrelated. However, a newborn cell inherits lac enzymes expressed by the 
mother, intracellular lactose, as well as lac repressors, which all affect the escape 
probability from the lac-repressed state. In particular, both daughter cells will 
inherit a similar propensity for repressor dissociation and hence full induction. 
The persistence of correlations between sisters for lag times up to 250 min is 
surprisingly long, but consistent with the expected decorrelation time for protein 
concentrations, which are much longer in the lag phase due to the slow growth 
and volume expansion (the doubling time during lag phase can be up to 5 hours). 
Additionally, the time between the division event generating the two sisters and 
induction, which is the time available for decorrelation of the two sister lineages, 
can be much shorter than the overall lag time if the sister cells divided after the 
shift of medium. If a cell divides after a small production burst but before disso-
ciation of the repressor, which typically takes tens of minutes after such a produc-
tion burst, then both daughter cells are likely to inherit some of the lac proteins 
and a significant level of lactose. The two daughter cells will therefore both be 
induced shortly after division, resulting in very similar values of ΔTμ2 for the two 
daughter lineages.

3.2.5 Genealogical relations

full induction is achieved the import rate is sufficiently fast to support a high 
internal lactose concentration, making repressor rebinding rare, and the induced 
rapid growth state stable.
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Figure 3.5 Results of the stochastic model. (A) Example time-series of cell growth rate for a cell 
with fast (green), slow (blue) and very slow (red) response. (B) Fluorescence time-series for the cells 
shown in (A). Inset: The same data on a logarithmic scale, showing that cells with higher expression 
levels at the time of shift of medium tend to be induced more rapidly. (C) Histograms of growth 
(red) and fluorescence (green) recovery times, ∆Tμ2 and ∆TF. In panels (C) and (D), cells at ∆Tμ2 
= 0 showed a decrease in growth rate of less than 20%. (D) Lac expression of each lineage at tshift 
plotted against growth recovery time. Cells which did not reach the induction threshold in the time 
of the simulations are placed at ∆Tμ2 = 500 min. Cells with initial concentrations above ~10 nM 
typically have a rapid recovery of growth rate. Note that the plot range does not represent the full 
range of initial expression levels.

Figure 3.6 Switching synchrony of sister cells. The growth recovery delays ΔTμ2 are plotted for 
pairs of sister cells. (A) Data obtained from experiments. N = 75, r2 = 0.52, p-value < 0.001. (B) 
Data resulting from simulations. N = 660, r2 ≈ 0.13 and p < 0.001. Note that in both cases lineages 
in which one cell switches but its sister or its progeny does not are not plotted (in total: 22 pairs for 
the experimental data, 146 pairs for the numerical data).
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	 Monod’s original glucose-lactose diauxic growth assays have become the 
prototypical illustration of the regulation of gene expression. Not only did they 
reveal the underlying molecular mechanisms, but also how growth and survival 
in complex environments – the essential cause of their evolutionary origins – is 
impacted. In the last decade, novel methods to monitor single cells over time 
has highlighted the stochastic nature of gene expression and its causal molecular 
mechanisms, and has allowed us to begin uncovering its impact on signal propa-
gation and differentiation [39, 55]. But how molecular stochasticity of biological 
systems affects their growth and survival remains poorly understood [156, 157]. 
Here we aimed to begin addressing this problem by interrogating how stochastic-
ity in lac expression impacts the dynamics of growth, upon switch from glucose 
to lactose on single-cell level.
	 We found that although a population as a whole may display diauxic 
lag, a significant fraction of the cells within this population (~15%) does not and 
thus produces an immediate growth response. This result counters the common 
notion that the speed of the response to lactose changes is determined by the 
processes of lac operon induction, protein dilution and degradation [158]. While 
correct for the transcriptional response, this study shows that growth responses 
can be much faster. Our experiments showed cells maintaining a continuously 
high growth rate, uninterrupted by the switch from glucose to lactose detec-
tion and metabolism. Paradoxically, the expression of the lac enzymes importing 
and metabolizing lactose was repressed at the time of shift, and turning on their 
expression required of order 100 min – conditions that seems more consistent 
with an obligatory lag phase. However, stochastic simulations together with ex-
perimental correlations between expression and growth pointed to a plausible 
explanation: the stochastic basal lac expression before the shift provided some 
cells with limited but sufficient lac permeases to achieve rapid induction, which 
in turn yielded sufficient lac catabolic enzymes to support near-maximal growth 
rates on lactose by the time glucose was depleted. Limited permease levels were 
sufficient owing to the positive feedback between lac expression and the lactose 
import rate. Furthermore, the steep dependence of growth on lac enzyme con-
centration permits rapid growth shortly after induction and well before full ex-
pression levels are reached. We note that while this model accurately predicts the 
central experimental features, it is a minimal one, and additional mechanisms can 
be considered. For instance, one could imagine that growth during the switch is 
supported rather by other compounds such as acetate that are produced by me-

Discussion3.3
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tabolism overflow during growth on glucose [154]. However, this seems unlikely 
as such compounds will be depleted at the same rate as glucose by the external 
flow. Growth could also be briefly supported by internally-buffered compounds 
[159], though this should not result in the observed heterogeneous growth dy-
namics.
	 While a minor fraction of cells continues to grow after the sugar switch, 
another fraction of the population displayed surprisingly long lag phases. Lag 
times often exceeded the doubling time as well as the population average lag 
time by several fold. We showed that these long delays are consistent with the 
experimentally-observed timescale of rare bursts of lac expression in the repressed 
state, combined with an expression threshold that must be crossed for the ‘on’ 
state to remain stable [29]. The stringent response has been shown to be involved 
in diauxic shifts [160, 161]. Thus stochasticity in cellular components associ-
ated with the stringent response, such as ribosomes, could be another source of 
variability in the growth response, in addition to variability originating from lac 
operon expression. Our results further put a different perspective on the gradual 
exit from stationary phase as observed at the population level. Exit from the lag 
phase is significantly more abrupt for individual cells, with the gradual exit seen 
in bulk assays stemming from averaging over cells with a wide distribution of lag 
times.
	 The findings have implications for competition and survival when re-
sources are limited. In general, cells may follow various strategies in heteroge-
neous environments [156, 162]. One option is responsive switching, in which 
cells detect the changes in the environment and thus can change their phenotype 
appropriately. The advantage is that all cells within a population can deterministi-
cally exploit new opportunities, but at the cost of expressing a sensing machinery 
[140], and of time delays involved in changing a cellular phenotype. While the 
cellular response may be affected by noise in the sensing machinery during and 
after the environmental change, any cellular heterogeneity prior to the change 
does not play a role. In contrast, in the stochastic switching strategy [156], cells 
in constant conditions continually switch in a stochastic manner between phe-
notypes, and the population as a whole thus displays many different phenotypes. 
Here, cells are not burdened by sensing costs, yet some cells will be well-adapted 
directly and thus can act upon opportunities without delay. However, there are 
significant costs in spuriously expressing phenotypes that are not utilized, and not 
all cells within the population can exploit transient opportunities.
	 The data presented here suggest a hybrid third option, namely a sto-
chastic sensing strategy, which overcomes the central tradeoffs. Here, a stochastic 
expression of the sensing machinery allows a fraction of the population to re-
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spond deterministically, without delay, at minimal costs. While the lac repres-
sor – a sensor in the lac system – is constitutively expressed in line with a re-
sponsive strategy, the lac transporter also plays a central sensing role, and it is 
expressed stochastically at low repressed levels in the absence of lactose. As a 
result, some cells respond immediately while others respond slowly as they wait 
until the expression of their sensing machinery randomly gets turned on. The 
costs for the rapidly responding cells are limited, as the sensing function of the 
lac enzymes – nutrient detection – requires just a fraction of transporters that are 
expressed at full induction. Note that while it is weak, a trade-off does remain, as 
the slowly responding cells express even less of the sensing machinery in glucose. 
Importantly, even the metabolic function of the lac enzymes – nutrient import 
and catalysis – initially requires just a fraction of full induction because of the 
non-linear expression-growth relation. This enables immediate growth responses 
with zero delay, despite the delays involved in turning expression up until fully 
induced levels. Rapid growth responses are particularly acute when competing for 
limited resources: those genotypes capable of responding rapidly may consume 
all resources before slow genotypes respond, and hence dramatically out-compete 
them. Stochasticity is an essential ingredient in this strategy, as it limits the bur-
den of maintaining the responsive state to just a fraction of the population, and 
thus hedging its bets at minimal cost on future episodes when lactose becomes 
available.
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Appendix

3.4.1 Supplementary figures

3.4

Figure 3.8 Absence of lag phase is not due to cell cycle or spatial dependence. (A) Distributions 
of time of shift - time of birth for cells with growth arrest (N = 105, mean = 27 ± 12 min (SD); 
light grey) and continuously growing cells (N = 22, mean = 28 ± 9.8 min (SD); dark grey), show-
ing that the two distributions are similar. (B) Phase contrast images of microcolonies at the time 
of shift. Continuously growing cells are colored. The colors were chosen randomly, but sister cells 
were given the same color.
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Figure 3.7 Distribution of computed fluorescence induction times for cell lineages with (green) 
and without (red) permease present at the time of shift.
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	 All experiments were performed with the E. coli strain AB460 (created 
by A. Böhm and kindly provided by M. Ackermann). AB460 is a derivative of 
MG1655 (rph-1 ilvG- rfb-50). To measure the expression of the lac operon, lacA 
was replaced with GFPmut2 [125] and chloramphenicol resistance using the pro-
tocol described by Datsenko and Wanner [126].
	 Cells were grown in M9 minimal medium with 0.2 mM uracil (as de-
scribed in chapter 2), supplemented with 0.01% (w/v) glucose (Merck) or 0.1% 
(w/v) lactose (Fluka). The M9 medium supplemented with lactose also contained 
cells with a knocked-out lac operon (NCM520, obtained from the Coli Genetic 
Stock Center). These cells cannot grow on lactose but can grow on the contami-
nants present in the medium. NCM520 cells were inoculated from glycerol stock 
in M9 + 0.1% (w/v) glucose for growth overnight. The following day, cells were 
washed with M9 + 0.1% (w/v) lactose and transferred to the same medium to be 
used for experiments. To control for glucose depletion, the red fluorescent dye 
sulforhodamine 101 (0.01 mg.mL-1) was systematically added to the M9 medium 
containing glucose.

3.4.2 Strain and media

	 Fluorescence time traces for individual cells were fitted by the following 

3.4.3 Parameterized functions used to fit the 
         experimental data

Figure 3.9 Shift from a medium containing glucose and lactose to a medium containing lactose 
only. (A) Example of a growth traces showing a decrease upon shift to lactose. As in the main text, 
the fit is shown in thick lines. (B) Example of a growth traces showing no visible growth decrease. 
Continuously growing cells represent ~10% of the total lineages analyzed, which compares to the 
15% obtained from glucose-only to lactose experiments.
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where a is the lower asymptote, b is the upper asymptote, τ is the characteristic 
time of fluorescence change, t0 is the time where fluorescence is at half its maxi-
mum (t0 – tshift = ∆TF).

Similarly, elongation rates for individual cells were fitted by the following func-
tion:

where a is the growth rate before shift, b is the growth rate after shift, c is the 
depth of the dip, δ is the duration of the lag phase, τ is the characteristic time of 
growth rate change, t0 is the time at the middle of the lag phase.

	 Here we discuss in detail the stochastic model of the growth of E. coli 
and the expression of lac proteins during the switch of environmental conditions 
from glucose and lactose to lactose only. The model has been developed on the 
basis of a number of previously described models [150, 158, 163, 164], but some 
simplifications have been made in the dynamics of protein production and sugar 
metabolism with many reactions coarse-grained into a single effective reaction 
step. Parameter values were taken from experiments where possible, and else-
where are largely consistent with those used in these models.

3.4.4 Complete description of the stochastic model

	 The multiple operator sites of the lacZYA operon and the multiple bind-
ing sites of the LacI repressor for both DNA and inducer mean that the chromo-
some-repressor-inducer complex can exist in many distinct binding states [165]. 
While it has been proposed that individual partial dissociation events can lead to 
observable changes in lac expression [29], it remains unclear which are the rele-
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	 The effective parameter KCAP , the effective repression strength of glucose 
and the fold change in expression in the presence of CAP, incorporate a num-
ber of processes including cAMP expression, cAMP-CRP binding and binding 
of CAP to the DNA, and should not be interpreted as describing any specific 
molecular interaction. We do not include any effect of cAMP on the transcrip-
tion rate in the BOUND state as we assume that the timescale of these bursts is 
determined primarily by partial dissociations of repressor in the actual system 
(see below), which we take to be independent of CAP binding. We additionally 
assume that the rate of protein production events is dependent on the growth rate 
of the cell, since under starvation conditions cells may be limited in their ability 
to synthesis proteins. Specifically, we assume that the rate of production events in 
a cell with growth rate µ  is modulated by a factor 2µ (µmax + µ) , where µmax  is 
the maximal achievable rate of growth on glucose. 
	 For simplicity we assume that all proteins in the lac operon are coex-
pressed, and represent the concentration of both LacZ and LacY proteins by [Z ] . 
Protein concentrations are calculated from the copy number NZ  and cell length  
l  assuming a cylindrical cell with a constant radius of r = 0.25 μm.
	 Statistics of lac protein production have been measured in [29, 48]. They 
described two types of production bursts. During small bursts the number of 
proteins produced, b , is exponentially distributed,

vant binding configurations in vivo and how expression and binding propensities 
vary between different binding states. We therefore consider a greatly simplified 
phenomenological model of a single lac operator which can exist in only two 
states: the operator can be either BOUND by repressor, in which case there is a 
slow rate of leaky protein production κ B , or FREE of repressor, in which case 
protein production occurs at a rapid rate κ F ([glu]) . The regulatory effect of the 
cAMP pathway, which increases lac expression in environments lacking glucose, 
is represented through the dependence of the production rate from the FREE op-
erator on the environmental glucose concentration, according to the relationship:

with b  ~5. This was interpreted as the distribution of proteins produced from a 
single mRNA transcript. Larger bursts were also found, although their distribu-

(1)

(2) p(b) = e−b b

e1 b −1

κ F [glu]( ) = κ F ,max

1+ [glu] KCAP
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where [R]T = NR l  is the total concentration of repressor proteins, NR  is the 
number of repressor proteins in the cell, [L]  is the intracellular lactose concentra-
tion and KR  is the binding constant for lactose (or products of lactose metabo-
lism) to the repressor. The Hill coefficient h  allows for cooperativity in the deac-
tivation of the repressor tetramer. The rate of association of repressor to the FREE 
operator depends on the concentration of active LacI, kF→B[R]

* . We assume that 
dissociation of LacI from the operator is also enhanced by the presence of lactose. 
We assume that at any time a fraction ϕ = (1+ KR

′ / [L])−1  of DNA-bound repres-
sors is associated with inducer. The net dissociation rate of repressors from the 
operator is then taken to be kB→F (1+ ′k ϕ ) , where ′k  is the enhancement factor 
of dissociation for inducer-bound repressors. We emphasize that since we use a 
simplified two-state operator model, this enhancement of dissociation represents 
an effective action of lactose on repressor binding, which in reality could be due 
to a number of processes on a molecular level.	

tion was not characterized. We interpret these large bursts as resulting from many 
mRNA transcripts being produced in quick succession, such that the products of 
the individual transcripts cannot be resolved. Here, we assume that an individual 
gene transcription event, in either the BOUND or FREE operator state, gives rise 
to a number of proteins according to the distribution (2). The production charac-
teristics in these two states differ only in the average rate of transcription events.
	 We assume that LacI repressor proteins are produced at a rate κ R . The 
concentration of repressors decreases only due to dilution, with no degradation. 
Repressors can be active or inactive; binding of inducer causes repressor deactiva-
tion. Since repressor-inducer binding and dissociation is fast (< 1 s) we do not 
model (de)activation reactions explicitly but instead assume that this is a revers-
ible reaction at equilibrium. The fraction of active repressors is then given by:

	 The maximal rate of production bursts for the FREE operator is taken 
to be κ F ,max  = 15 min-1, comparable to the experimentally-determined rate of 
transcription initiation [166]. This leads to copy numbers of a few thousand 
molecules in fully induced cells, which is also consistent with data of [29]. For 

(3)
[R]*

[R]T
= 1
1+ [L] KR( )h
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	 We do not consider individual lactose molecules since these will be pre-
sent in extremely high copy numbers within the cell. The rate of import of extra-
cellular lactose into the cell depends on the concentration of permeases, which 
equals the concentration of LacZ, their activity, and the external lactose concen-
tration:

Intracellular lactose dynamics

the leaky production rate when the operator is BOUND we take the burst rate 
measured in [29, 48] for fully repressed cells, κ B  ~0.5 per cell cycle ~0.005 min-1. 
The strength of cAMP-mediated transcriptional repression by glucose, KCAP  = 30 
μM, is chosen to fit the results to the experimental delay distributions.
	 The typical concentration of repressors is 10-50 nM, corresponding to 
~1-20 per cell [167, 168]. We take a production rate κ R = 5µ , which gives a typi-
cal concentration of [R]T  ≈ 20 nM.
	 The choice of binding constant for inducer-inhibitor binding is com-
plicated by the fact that it is allolactose, rather than lactose itself, which binds 
to the repressor, but our model does not include allolactose explicitly. However, 
in practice upon the addition of lactose cells rapidly reach a stable high lactose 
concentration > 1 mM, and the precise value of the parameter KR  will have little 
effect on the dynamics provided that it is much smaller than this value. We sim-
ply take KR  = 10 μM, comparable to measured values for allolactose and other 
strong inducers [169]. The effective Hill coefficient for deactivation of inhibitor 
has been estimated as h  ≈ 2 [170]. For the binding constant for inducer and 
DNA-bound repressor we take KR

′  = 200 μM.
	 For the binding rate of repressor to the operator we use kF→B  = 60 μM-

1min-1, which gives a binding rate comparable to the association time measured 
in [167]. A dissociation rate of LacI from the operator of kB→F  = 0.0005 min-1 

gives rise to an ~1100-fold difference between the mean expression levels in the 
repressed and fully-induced states, which is again consistent with the data of [29]. 
Experiments suggest that the enhancement of this dissociation rate by inducer for 
binding to a single operator fragment can be as large as a factor of 1000 [171]. 
Here we choose ′k  = 100, since in the presence of DNA looping with multiple 
operator binding sites not all dissociation events will lead to full release of the 
repressor.

(4) υimport = ρ [glu]( ) [Z ][L]ex
K import + [L]ex
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Following previous models [150, 164], inducer exclusion is implemented by 
making the import rate for an individual permease a decreasing function of the 
concentration, ρ([glu]) = ρmax (1+ [glu] Kexcl ) . Intracellular lactose is diluted 
during growth. In addition, it is metabolized by LacZ. Since typically [L] [Z ] , 
the flux of this reaction is simply taken to be proportional to [Z ] ,

Finally, therefore, the overall lactose concentration within a cell follows:

where µ  is the cell growth rate.

	 The maximal import rate of lactose is around ρmax  = 2000 min-1 [172, 
173]. The critical glucose concentration for inducer exclusion is determined, to-
gether with KCAP , by fitting the delay time distributions and is taken to be Kexcl

= 30 μM. The lactose import saturation concentration is K import  = 400 μM [172, 
173]. The maximal rate of metabolism of lactose by a single β-galactosidase en-
zyme is set as Δ  = 3600 min-1 [174]. The saturation coefficient for lactose conver-
sion by β-galactosidase is KL = 1.4 mM [174].

Parameter values

	 There are three sources of growth in the experiments: glucose, lactose 
and contaminants, and these can all be present simultaneously. In order to model 
the combined metabolism of all three carbon sources at once we assume that 
these three sources contribute to the same effective metabolic flux,

Growth rate

(5)

(6)

(7)

Here the first term is the concentration of glucose in the environment. The me-
tabolism of glucose is not simulated in detail, and is simply assumed to be in-
dependent of the internal state of the cell. The second term in (7) is the flux of 

υconsumption = Δ [Z ][L]
KL + [L]

d[L]
dt

=υimport −υconsumption − µ[L]

Φ = [glu]+δ [Z ][L]
KL + [L]

+Φres

Chapter 3 63



The parameter KΦ  reflects the fact that growth is limited by other processes inde-
pendent of metabolism, and therefore cannot be increased arbitrarily.

	 The parameters µmax  = 1.02 h-1, Φres  = 0.54 μM and KΦ  = 5.1 μM can 
be found by fitting the growth rate as a function of glucose level in the absence of 
lactose. We choose δ  = 50 to fit the experimental growth dynamics.
	 A consequence of assuming this form for the growth rate is that the 
maximal growth rate on lactose can approach the maximal growth rate on glucose 
if the lactose concentration L > KL  and δ [Z ]> KΦ . With the parameters listed 
above the maximal expression level is [Z ]  ≈ 25 μM, and hence the maximal 
growth rates on the two substrates are similar.

	 The change in cell length over time follows:

Parameter values

Cell division

For a constant growth rate µ , this corresponds to exponential growth. We assume 
that all cells divide when they reach a critical length ldiv , which is independent 
of the growth rate or protein levels. Upon division a new cell is created with half 
of the length of the parent cell, which also has its length halved. The repressor 
and LacZ molecules in the parent cell are binomially-partitioned between the 
parent and daughter cells (i.e. each protein is moved into the new daughter cell 
with probability 0.5 or otherwise remains in the parent cell). Assuming that the 
number of lactose molecules is large and noise in partitioning can be neglected, 
the lactose concentration in the daughter cell is set to be the same as that of the 
parent cell. The daughter cell also inherits a copy of the operator which is in the 

(8)

(9)

lactose metabolism by LacZ. The parameter δ  weighs the relative contributions 
of glucose and lactose metabolism. Finally, Φres  is a constant residual flux due to 
contaminants.
	 This growth rate is then taken to be a Monod-function of the flux,

µ = µmax
Φ

Φ+ KΦ

dl
dt

= µ ⋅ l
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	 ldiv  = 3 μm.

	 The model is propagated with a constant time step δ t . At each time 
step the active repressor and LacZ concentrations and the growth rate are recal-
culated according the current cell length and lactose concentration. [L]  and l  
are updated according to Eqs. (6) and (9) with a first-order difference scheme 
(i.e. l(t +δ t) = l(t)+δ t ⋅ ′l (t) ). Switching of operator can switch with probabil-
ity δ t ⋅ k , where k  is the relevant switching rate. Similarly, a protein production 
burst takes place with probability δ t ⋅κ , where κ  is the appropriate production 
rate for the current operator state. Errors due to this discretization will be negli-
gible provided δ t  is chosen to be small enough. Here we take δ t  = 0.001 min, 
which ensures that the probability for each stochastic reaction to occur during 
each time step in much less than 1.
	 First, an initialization simulation is performed. A population of 2000 
cells is simulated in the presence of glucose only, [glu] = 555 μM and [L]ex  = 0, 
for a period of 10000 minutes. During this simulation only one of the daughter 
cells produced in each cell division event is retained, such that the population size 
is constant and each cell present at the end of the simulation is an independent 
sample of the steady-state distribution of cellular states.
	 Next, a sub-population of 100 cells is selected randomly from those pre-
sent at the end of initialization simulation to form the initial population in the 
simulation of the experimental conditions. During the subsequent phases of sim-
ulation all daughter cells are retained and propagated to the end of the simulation 
period in order to preserve correlations between related lineages. This popula-
tion of cells is then propagated as described above in an environment mimicking 
the experimental conditions of glucose, [glu] = 555 μM, and lactose, [L]ex  = 3 
mM, until the shift time tshift  = 210 min. After the shift time the concentration 
of glucose is decreased according to [glu](t) = exp − (t − tshift ) τ )[ ]⋅555  µM, while 
lactose remains unchanged. The timescale τ  = 5 min is chosen to match the 
experimentally-determined timescale for diffusion out of the flow chamber. The 
simulation continues until a time t  = 610 min.

Parameter values

Simulation protocol

same state (BOUND or FREE) as the parent at the time of division.
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	 For each cell, time series of the growth rate and expression level data are 
recorded, and subsequently used to recreate the trajectory of each cell lineage. 
The mean concentration in fully-induced cells in the presence of lactose is [Z ]  
≈ 25 μM. Lineages which reach a concentration level of at least [Z ]  = 17 μM 
during the simulation are identified as becoming induced. For each such lineage 
the threshold LacZ concentration for calculating ΔTF is set at half the maximal 
concentration of the lineage. Lineages for which the growth rate never decreases 
below µ  = 0.82 h-1 are designated as having no lag phase. For the remaining line-
ages, the time of growth decrease ΔTμ1 is found as the time at which the growth 
rate trajectory crosses a threshold half-way between the maximal growth rate on 
glucose and the lowest growth rate after the shift of medium. The time of growth 
recovery ΔTμ2 is similarly found as the time at which the growth rate crosses a 
threshold midway between the lowest growth rate after the shift and the highest 
subsequent growth rate.

The mathematical model reported in this chapter was done by Filipe Tostevin.
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Prolonged linear growth in 
single bacterial cells upon 
exposure to antibiotics

4 Growth of bacterial cells is exponential: during the cell 
cycle new components are synthesized, which in turn 
help to synthesize other components. How growth is af-
fected when this exponential growth is disrupted is not 
known. Here we investigate the response of individual 
cells growing on lactose only upon addition of the trans-
lation inhibitor tetracycline. We controlled the environ-
ment with a microfluidic device, and monitored cellular 
growth at sub-cycle resolution while also following the 
expression of several essential enzymes. We show that in-
hibition of lac synthesis leads to linear growth. In this 
growth regime, ribosomes synthesis is maintained at a 
lower rate. In addition, we find that the linear growth 
rate correlates with the size of cells at the moment of 
tetracycline addition, resulting in significant cell-to-cell 
variability. Further increase in antibiotic concentration 
allows growth to continue transiently, until ribosomes 
synthesis is suppressed. This study shows that in absence 
of lac protein synthesis, existing lac proteins are able to 
sustain cellular growth, and further underlies the im-
portance of single-cell investigations of the effects of an-
tibiotics.
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Introduction4.1

	 A defining feature of continuous microbial growth is that it is exponen-
tial, with the number of cells within a population doubling each division cycle. 
Within the division cycle, bacterial growth laws have been the subject of debate. 
Cell size has been considered to increase either in bilinear [175], bilinear and 
trilinear [176], or exponential [177] fashion, while recent evidence has shown 
exponential mass increase in single cells [178, 179]. All models are non-linear 
however, with older cells on average growing more rapidly than young ones. The 
common explanation is that because older cells are larger, they contain more cop-
ies of active components such as metabolic enzymes and ribosomes, and hence 
increase size faster [180, 181]. This logic reflects the cycle inherent to self-rep-
lication, where active components help producing the building blocks that are 
required for their own synthesis (Fig. 4.1A).
	 The cyclical nature of biological growth raises the fundamental ques-
tion how growth is affected by interrupting this cycle. Because of its essential 
nature, experimentally interrupting the cellular growth cycle poses challenges. 
For instance, knocking out components that form the cycle produces non-viable 
cells [182]. Here, we overcome this issue by directly observing the growth of indi-
vidual E. coli cells as their protein synthesis becomes interrupted by the antibiotic 
tetracycline within a microfluidic chamber. In bulk experiments, tetracycline is 
known to inhibit translation and cause arrested growth, but the transient growth 
response in individual cells is not well understood. Here, we grow the cells on 
lactose, which is imported and catabolized by the LacY and LacZ enzymes re-
spectively, which provides all the energy and carbon required for growth. The 
instantaneous growth rate of individual cells is quantified at sub-cell-cycle resolu-
tion, by taking phase contrast images at high acquisition rates and image analysis 
algorithms. The concentration of LacY and LacZ enzymes is quantified using 
GFP fused within the lac operon. With this approach, we can simultaneously 
follow both the synthesis of the first-acting enzymes and the resulting cellular 
growth rate. Using mCherry fusions, we also follow the expression dynamics of 
other components that are important to growth, including the ribosome and 
gltA, a central enzyme in the TCA cycle.
	 We found that when antibiotics were added to concentrations that fully 
blocked lac enzyme synthesis, the cells continued to grow in a linear fashion 
for over 12 hrs, until we stopped the experiment. Moreover, the antibiotics ap-
peared to ‘freeze’ the cells in their current growth state: cells that were large at 
the shift time maintained a faster linear rate of growth than the small cells over 
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the timescale of the experiment. The results indicated that this linear mode of 
growth was supported by the lac enzymes present at the time of shift, while it did 
require renewed synthesis of ribosomes, at a rate of about one third of the level 
before the shift. Fully suppressing ribosome synthesis by increasing the antibiotic 
concentration did allow growth to proceed transiently after the shift, resulting 
in an approximate doubling of the cell size, but the rate of growth continued to 
decrease over time. The results show that cellular growth continues well beyond 

Figure 4.1 Real-time observation of single-cell growth upon translation inhibition. (A) Sche-
matic representation coupling nutrient import, metabolism and growth. (B) Cross-section of the 
used microfluidic device. The cells are growing between a glass coverslip and a polyacrylamide gel 
membrane. The medium that flows through the top channels reaches the cells by diffusion through 
the membrane. (C) Phase contrast images of a microcolony obtained by time-lapse microscopy. 
After a few generations of growth on lactose only, tetracycline is added to the environment. The 
images were taken 1 hr before addition of the drug, at the time of addition tTET, and 6 hrs and 12 
hrs afterwards. (D) Segmentation of phase contrast images using custom image analysis software. 
Contour of every cell within the microcolony (left). Cells are fitted with a polynomial to determine 
the cell length (right).
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	 Starting with a single cell, we monitored by time-lapse microscopy E. 
coli cells as they grew into microcolonies within a microfluidic device (Fig. 4.1B). 
After several generations of growth on lactose, we exposed the cells to a medium 
containing both lactose and the translation-inhibiting antibiotic tetracycline 
[184, 185] (Fig. 4.1C). We measured the expression of the lac genes with a GFP 
reporter (Fig. 4.2A and Methods). The total fluorescence of the microcolony is 
defined as the sum of the total fluorescence of each cell within the microcolony 
(Fig. 4.2B and Methods). The mean production rate of lac enzymes within the 
microcolony (Fig. 4.2C) was quantified by averaging the production rate of each 
cell in the microcolony (see Methods). Upon exposure of tetracycline at low con-
centrations (0.5 μM), the lac production rate decreased by about 30% (Fig. 4.2C) 
while the total fluorescence continued to increase exponentially (Fig. 4.2B, pur-
ple trace). At concentrations equal to 1 μM, the lac production rate became zero 
within half an hour upon tetracycline exposure (Fig. 4.2C), and hence the total 
fluorescence remained constant (Fig. 4.2B). Further increasing the tetracycline 
concentration did not significantly alter the outcome (Fig. 4.2B-D). Note that 
the observed small differences in the total fluorescence at the time of shift is not 
relevant here, as it depends on the total number of cells that are present at the 
time of shift. Also, a minor decrease in the total fluorescence is observed about 
100 min after the inhibition of lac protein synthesis (see Fig. 4.2B). This was 
due to photo bleaching of the GFP molecules, which was confirmed by the fact 
that microcolonies less frequently illuminated showed a correspondingly slower 
decrease.
	 Growth was followed by measuring the length of the cells over time. We 
observed no significant changes in cell width during the experiment (Fig. 4.5). 

Results

4.2.1 Linear growth upon inhibition of lac expression

4.2

the moment of translation inhibition, in a way that is masked in bulk measure-
ments. This study demonstrates that antibiotics can be used to study metabolism 
and growth in the absence of the complicating factor of continuously renewed 
protein synthesis, in a manner that is complementary to in vitro assays. On the 
other hand, measurements of the instantaneous growth rate upon exposure to 
antibiotics can be an important new tool to understand the physiological effects 
of antibiotics [183], and to develop novel antibiotics.
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At low tetracycline concentrations where lac expression was only partially inhib-
ited, exponential growth was maintained after the shift (Fig. 4.2E and F, purple 
trace). At the concentrations where lac protein synthesis became fully inhibited 
(1 μM and 2 μM), the cells continued to elongate in a strikingly linear fashion 
for over 12 hrs until the experiment stopped. Division became highly infrequent 
and stopped completely within 400 min after addition of the drug, resulting in 
highly elongated cells that reached up to 10 times the size of a normally grow-
ing cell (Fig. 4.1C and Fig. 4.2E-F). This observation of long filamentous cell 
morphologies is consistent with previous studies on the effects of low concen-
trations of tetracycline [186]. At the highest tetracycline concentration (8 μM), 
the cells stopped to divide rapidly (within 30 min; Fig. 4.3E red trace), while 
the elongation rate of the microcolony continuously decreased without reaching 
steady state. We found that the moment where lac synthesis became arrested (Fig. 
4.2C) corresponded to the moment at which exponential growth was no longer 
observed (Fig. 4.3F, grey arrow).

	 Within a microcolony, different lineages displayed significant variability 
in their response to tetracycline. One way we quantified this variability is by 
the distribution of cell lengths after 12 hours of growth in presence of the drug. 
Without antibiotic, the cell length was narrowly distributed around 2.6 μm (Fig. 
4.3A, black line). At 1 μM tetracycline, the cell length ranged from ~3 μm to 
almost 20 μm (10 μm on average). Upon further increases in tetracycline concen-
tration (up to 8 μM), the width of the distribution decreased again. This peaking 
of the distribution width can be explained by the concomitant increase in total 
cell length, resulting in constant coefficient of variation, both for all concentra-
tions of tetracycline (~24%) and the no- drug control (~28%). These results in-
dicate that translational inhibition does not introduce more length variation.
	 Next, we considered the growth dynamics of individual cells (Fig. 4.3B). 
The data confirmed that growth was linear also at the level of individual cells. 
Moreover, it showed a striking heterogeneity, with some cells having 2 times 
higher growth rate than others, and maintaining this difference of the entire 
course of the experiment (Fig. 4.3B). These differences could be explained within 
the rudimentary model in which non-linear growth arises from the fact that older 
cells have more active components and hence grow faster. It thus also suggests 
that cells that are older at the time of shift display a high linear growth, while 
younger cells display a low linear rate of growth (Fig. 4.3C). We indeed find that 

4.2.2 Single-cell heterogeneity in linear growth rate
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Figure 4.2 Growth and lac expression of a microcolony. (A) Cells are growing exponentially on 
lactose as the sole carbon source. Expression of the lac genes is monitored with GFP. Addition of 
tetracycline causes inhibition of lac mRNA translation. (B-C) Total lac fluorescence (B) and mean 
production rate of the lac genes (C) at different tetracycline concentrations. The horizontal line 
corresponds to production rates of zero. (D) Mean production rate of the lac genes in presence of 
tetracycline Plac-TET at different drug concentrations. The concentrations further used in this study 
are indicated by a colored arrow. (E-F) Number of cells (E) and growth curve (F) for a typical mi-
crocolony at different tetracycline concentrations as indicated in (D). The growth curve indicates 
the sum of all cell lengths within the colony. These concentrations represent three different regimes 
of growth: exponential (0.5 μM), linear (1 and 2 μM) and sub-linear (8 μM). The grey arrow indi-
cates the time of lac synthesis arrest.

the linear elongation rate correlates as expected both with the time of birth (Fig. 
4.3B inset) and with the cell size at the time of shift (Fig. 4.3D; r2 = 0.42, p-value 
< 0.001). We also found a similar result at 8 μM tetracycline (Fig. 4.6).
	 In addition, a similar correlation was found between elongation rate and 
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the number of ribosomes at the time of tetracycline addition (r2 = 0.50 and p−
value < 0.001, N = 26). Since the correlation is rather weak, other sources of 
variability can be considered. For instance, antibiotics cause many physiological 
changes. It was shown that tetracycline induces cold-shock response [187]. Also 
the expression level of most genes changes, even at sub-inhibitory concentrations 
[188, 189]. Another cell response to inhibition of translation could be an attempt 
to restore protein synthetic capacity by increasing ribosome production and ac-
tivating transcription of rRNA and ribosomal protein genes [67, 190]. However, 
another indirect effect of ribosome-targeting drugs is inhibition of ribosome as-
sembly [191, 192], caused by excess of rRNA expression compared to ribosomal 
proteins [193, 194]. These different direct and secondary effects of the drug could 
thus affect the elongation rate of single cells.

	 The data indicated that cellular growth became linear when the produc-
tion of lac enzymes was stopped. To investigate further requirements for linear 
growth, we aimed to monitor the expression of ribosomes, a gene involved in cen-
tral metabolism, as well as a constitutively expressed protein (Fig. 4.4A). Ribo-
some synthesis was monitored with a translational fusion between mCherry and 
the ribosomal protein L31. From the enzymes acting in the TCA cycle, we chose 
to follow gltA by constructing a transcriptional fusion with GFP. To test expres-
sion of a constitutive protein, we made a construct with a transcriptional fusion 
between the promoter PN25 from T5 bacteriophage and mCherry (see Materials 
and methods). These constructs were interrogated during a switch to tetracycline 
at 1 μM and to 8 μM.
	 For 1 μM, we found that the mean gltA production rate decreased rap-
idly down to zero upon tetracycline addition, and after about 200 min transition 
period it increased to a rate roughly equal to a third of the pre-drug level and 
remained constant afterwards (Fig. 4.4B, green trace). The mean production rate 
of ribosomes displayed a slow decrease down to about half the pre-drug level (Fig. 
4.4B, yellow trace). The production rate of PN25 first stayed constant up to 300 
min after tetracycline addition, after which it started to increase (Fig. 4.4B, blue 
trace). This increase suggests a change in the repartition of ribosomes activity.
	 At 8 μM, the production rate of gltA decreased immediately upon tetra-
cycline addition and was zero within 30 min (Fig. 4.4C, green trace). The pro-
duction rate of PN25 first stayed constant for about 50 min, then decreased down 
to zero within the next 50 min (Fig. 4.4C, blue trace). Ribosome production 

4.2.3 Expression of ribosomes and a TCA cycle enzyme
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Figure 4.3 Growth dynamics in single cells. (A) Distribution of cell lengths after 12 hours of 
growth in presence of 1 μM tetracycline (blue; mean = 10.34 ± 2.57 μm (SD), N = 238), 4 μM 
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cycline. The colors correspond to the time of cell birth: cells born early relative to tTET are red, cells 
born late are blue. Inset: zoom around tTET. (C) Progression into the cell cycle as the main source 
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was maintained for about 5 hours though at a continuously decreasing rate (Fig. 
4.4C, yellow trace), after which it became zero. These results suggest that mainte-
nance of ribosome synthesis is required for continuous growth, in contrast to lac 
and gltA synthesis, whose expression was either zero or at low levels.

	 Bacterial growth is characterized by various processes that all proceed 
continuously, including gene expression, metabolism, volume growth, and dilu-

Discussion4.3
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tion. The cyclical nature of the cell cycle makes it difficult to disentangle each 
process separately. While metabolic reactions are catalyzed, the enzymes that cata-
lyze these reactions continue to be expressed. Here we disrupted this cycle by 
inhibiting translation with the antibiotic tetracycline.
	 We found three regimes of growth depending on the drug concentra-
tion. At low concentrations, lac synthesis was partially blocked, and thus growth 
continued exponentially throughout the experiments. At intermediate concentra-
tions, lac synthesis was completely blocked such that their number stayed con-
stant. In that case, cells did not divide but elongated linearly for an extensive 
period of time. At the same time, ribosome synthesis continued at a constant 
rate. Synthesis of gltA, a TCA cycle gene, was almost fully inhibited, though some 
expression remained. This result indicates that metabolic activities and growth 
could continue with the existing lac enzymes. In addition, progression into the 
cell cycle, and the size of the cell at the time of tetracycline addition, contributed 
significantly to the variability in linear growth rates we observed in this regime.
	 At high concentrations of tetracycline, the elongation rate of the mi-
crocolony continuously decreased down to zero without reaching steady state. 
Here, both gltA and ribosome syntheses were completely shut down. Notably, 
the timing of synthesis arrest seemed to follow the steps of metabolism. First, the 
synthesis of the lac enzymes, precursors for the synthesis of all other components, 
was shut down. Then, further down the catabolic pathways, synthesis of central 
metabolism enzymes was arrested. Finally, ribosome synthesis, which involves 
anabolic processes, stopped and was followed by complete growth arrest a few 
hours afterwards. This could be a deliberate mechanism to make the most out 
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	 Experiments were performed with different E. coli strains based on 
MG1655 (rph-1 ilvG- rfb-50). To measure expression of the lac operon, lacA was 
replaced with GFPmut2 [125]. mCherry controlled by the constitutive promoter 
PN25 [195], and GFP controlled by gltA were inserted into the chromosome using 
the Datsenko & Wanner protocol [126].
	 Cells were grown in M9 minimal medium (as described in Chapter 2) 
supplemented with 0.1% (w/v) lactose (Sigma). Tetracycline (Fluka) solutions 
were made from powder stock, stored at -20°C in the dark and added as indi-
cated.

Materials and methods

4.4.1 Strains and media

4.4

of nutrients, as non-growing cells would experience a lag period before resuming 
growth.
	 Cells could reach sizes 20 times larger than normal after almost a day in 
presence of intermediate concentrations of tetracycline (data not shown). This 
observation indicates that no limits were imposed by diffusion, and also raises 
the question whether these cells were still viable. It was found for instance that 
the morphology of filamentous cells was reversible, and upon transfer to a fresh 
medium, division occurred [186]. This situation of growth at low densities might 
be closer to one E. coli cells experience in their natural environment compared to 
bulk cultures. Therefore, it could be relevant to bacterial resistance and activities 
in biofilms. In addition, it shows that single-cell growth rate measurements could 
be useful to develop novel antibiotics.

Strain Genotype Origin
AB460 ΔlacA::gfp-CamR Created by A. Böhm
ASC631 ΔlacA::gfp-CamR, Δphp::PN25-mCherry-KanR This study
ASC666 L31-mCherry-KanR, gltA-gfp-CamR This study

Table 1 List of strains used in this study.
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4.4.2 Microscopy and data analysis￼￼￼￼￼

	 Phase contrast images (300 ms exposure time with GIF filter) were taken 
every 70 sec; fluorescence images every 14 min (50 or 100 ms exposure). The 
total fluorescence and protein production rate were determined as described in 
Chapter 2. The production rate obtained was smoothed with the Matlab ‘smooth’ 
function using the ‘lowess’ method and a span of 4. The total fluorescence of the 
microcolony was quantified by adding the total fluorescence of each cell in the 
microcolony at each time point. The mean production rate of the microcolony 
is the mean of the production rate over all cells in the microcolony at each time 
point. This mean production rate was subsequently normalized to 1.

4.4.3 Supplementary figures
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Noise propagation 
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Introduction5.1

	 Elucidating the role of molecular stochasticity [196, 197] in cellular 
growth is central to understanding phenotypic heterogeneity [39, 41, 198] and 
the stability of cellular proliferation [199, 200]. The inherent stochasticity of met-
abolic reaction events [201] should have negligible effect, because of averaging 
over the many reactions contributing to growth. Indeed, metabolism and growth 
are often considered to be constant for fixed conditions [202, 203]. However, 
stochastic fluctuations in the expression level [40, 57, 196, 197, 204] of meta-
bolic enzymes could produce significant variations in catalytic activity. Whether 
such internal fluctuations are suppressed by regulatory mechanisms [205-207] or 
by the secretion [208] and buffering [209, 210] of excess metabolites is unclear. 
Here, we used time-lapse microscopy to measure fluctuations in the expression 
of lac enzymes and in the instantaneous growth rate of single E. coli cells, and 
quantified their time-resolved cross-correlations. We found that fluctuations in 
the expression of a catabolically active enzyme propagate to growth, with the 
transmission strength depending on the mean enzyme concentration. Growth 
fluctuations in turn perturb expression, mediated by general growth factors rather 
than specific regulatory interactions. Remarkably, expression noise in one enzyme 
was found to transmit to other unrelated genes via growth. The results indicate 
that molecular noise is propagated not only by cascades of regulatory proteins 
[54, 55], but also by sequential metabolic reactions. Furthermore, they suggest 
that interplay between noise in gene expression and in metabolic activity governs 
the stability of cellular growth, and that growth noise is a generic source of cel-
lular heterogeneity.

Results and discussion5.2

	 To investigate the dynamics of cellular growth, we followed individual 
Escherichia coli cells growing on different nutrients. In particular, we used the 
synthetic sugar lactulose [211], which is imported and catabolized by the LacY 
and LacZ enzymes like its analog lactose, but unlike lactose does not induce lac 
operon expression (Fig. 5.1A). Mixtures of lactulose and the gratuitous inducer 
IPTG thus allowed us to vary the mean lac expression level independently and 
hence to explore different regimes of noise transmission. We determined the in-
stantaneous growth rate µ(t)  of individual cells within microcolonies at sub-cell-
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cycle resolution for various growth conditions, using time-lapse microscopy [54] 
at high acquisition rates and automated image analysis (see Methods in Chapter 
2). We found that µ(t)  varied significantly in time, both within one cell cycle 
and between different cell cycles (Fig. 5.1B-C), with noise intensities (standard 
deviation over the mean) ranging between 0.2 and 0.4 (Fig. 5.1D). To quantify 
the timescales of the growth variations we computed autocorrelation functions: 

where δµ(t)  denotes the deviation of µ(t)  from the population mean µ(t)  and 
angle brackets represent averaging over the branched lineage structure (Fig. 5.5). 
The Rµµ (τ )  curves decreased mono-exponentially down to zero (Fig. 5.1E), with 
a characteristic time that was somewhat smaller than the mean cellular doubling 
time (Fig. 5.1F). Such a correlation time that scales with the mean doubling time 
is typical for concentration fluctuations of long-lived proteins, as their variations 
are set by volume growth and dilution [121]. Thus, the data indicated that the 
cells exhibited growth limitations that fluctuate randomly in time, and suggested 
they could be caused by variations in concentrations of cellular components.
	 In order to study the relation between the growth fluctuations and en-
zyme expression, we quantified the latter using a fluorescent protein (GFP) fused 
into the lac operon (Fig. 5.1A). The concentration of lac enzymes E(t) , as deter-
mined by the cellular fluorescence per unit area (Fig. 5.1G), also displayed fluc-
tuations with autocorrelation times that scaled with the mean doubling time (Fig. 
5.1H-I). Cross-correlation between lac expression and growth were examined by 
computing:  

REµ (τ )  quantifies whether E -fluctuations that occur now are correlated with µ
-fluctuations that occur time τ  later, and can thus inform on delays, the direc-
tion of signal transmission between E  and µ , and hence the underlying network 
topology [56, 57]. In addition, we quantified the production rate of lac enzymes 
p(t) , by taking the time-derivative of the total fluorescence integrated over the 
entire cell, and used it to determine Rpµ (τ ) . When growing on lactulose, both 
REµ (τ )  and Rpµ (τ )  showed positive correlations regardless of the IPTG concen-
tration (Fig. 5.2A-C, p < 0.02). Their shapes and symmetries did depend on IPTG 
however. At low and intermediate IPTG, REµ (τ )  was nearly symmetric around 
τ = 0  while Rpµ (τ )  was asymmetric with larger weight at positive τ  (Fig. 5.2A-
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B). This would indicate that p  fluctuations on average correlated more strongly 
with µ  fluctuations that occur later. Such a delay in µ  is consistent with the idea 
that lac expression fluctuations produce variations in lactulose catabolism, which 
in turn propagate through the metabolic network and perturb growth.
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Figure 5.1 Growth rate variability in single E. coli cells. (A) Lactulose is metabolized by the Es-
cherichia coli lac enzymes, but does not induce lac expression. The mean lac expression can hence 
be varied independently by the inducer IPTG, which is not metabolized. (B) Phase contrast kymo-
graphs for two lineages. Microcolonies grew on polyacryl pads (0.1% lactulose and 200 µM IPTG) 
for 8 to 9 generations. Up to 48 images were taken per hour. Red line: cell boundary from image 
analysis (Fig. 2.9). (C) Instantaneous growth rate against time µ(t) , determined by fitting expo-
nentials to the cellular length (see Fig. 2.9). Four lineages are colored for clarity. Black bar: mean 
division time. Light points: division events. (D) Top: Histograms of µ  values for different IPTG 
levels. Bottom: Noise intensity (standard deviation over the mean). (E) Autocorrelation function of 
µ(t)  for low (4 µM, green), intermediate (6 µM, ochre), and high (200 µM, brown) IPTG levels. 
For clarity, error bars denoting twice the standard deviation are indicated only for a fraction of the 
points. Black lines: exponential fits that provide the correlation time. (F) µ(t)  correlation time ver-
sus mean doubling time. Colors are as in (E), black points are for growth on defined rich, lactose, 
succinate, and acetate (in order of increasing doubling time). (G-I) As panels (C), (E), and (F), but 
for the fluorescence intensity reporting for E(t)  within single cells.

	 At high IPTG, REµ (τ )  became asymmetric, and displayed a peak at 
negative τ  (Fig. 5.2C). These correlations at negative times indicate that E  fluc-
tuations correlate more strongly with µ  fluctuations occurring earlier, which sug-
gests that fluctuations transmitted predominantly from growth to lac expression 
rather than the other way around. Such a growth-to-expression coupling could be 
caused by specific regulatory interactions [60, 67, 212], or they could arise more 

Noise propagation from enzyme expression to cellular growth, and back82



generally when increased growth yields increased abundance of components that 
are required for transcription and translation. Overall, the data suggested that 
noise not only propagated forward, from expression to growth, but also back-
ward, from growth to expression.
	 To determine whether a back and forth transmission of noise could ex-
plain the correlations we developed a minimal stochastic model. A black-box 
approach was followed, in which noise propagation is represented by phenom-
enological transmission coefficients that do not specify molecular details (Fig. 
5.2D). Analytical solutions for the cross-correlation functions revealed all the 
contributing transmission pathways from noise source to observable ( p, E , and 
µ ) through the looped network structure (see Appendix). The analysis showed 
the system is described by just a few noise transmission modes that generate 
cross-correlations of distinct shape and symmetry, and contribute additively to 
the overall correlations (Fig. 5.2E-G). The first two modes respectively described 
the transmission of expression noise to growth by lac catabolism, and the trans-
mission of common noise to both growth and expression, while a third expressed 
the transmission of growth noise to expression by volume expansion and dilu-
tion. Despite the simplicity of the model, it reproduced detailed features of the 
data (Fig. 5.2H-J). 
	 The model indicated the cross-correlation differences are explained by al-
tered intensities of the modes. The lac catabolism mode (Fig. 5.2E) dominated at 
low and intermediate IPTG (Fig. 5.2H-I), but diminished towards higher IPTG 
because of decreasing strength of transmission from E  to µ . This decrease is 
plausible, as catalyzed reactions should become less dependent on catalyst when 
the latter becomes abundant. Consistently, when the population-mean lac en-
zyme concentration increased by induction, the mean growth rate initially rose 
steeply and then leveled off (Fig. 5.2K). On the other hand, the intensity of the 
common-noise mode (Fig. 5.2F) was almost constant for all IPTG concentra-
tions, as seen by the rather constant Rpµ (0)  (Fig. 5.2A-C). To investigate which 
factors affect the transmission from common noise to expression in this mode we 
genetically modified different aspects of our construct. We found the coupling to 
remain present when we knocked-out the lac repressor, changed the GFP posi-
tion within the operon, altered the type of fluorescent protein, or used an exog-
enous constitutive promoter (Fig. 5.8-10, Appendix). These data suggest that 
common noise couples to expression in general, though it does not exclude that 
additional coupling is mediated by specific regulatory interactions.
	 To critically assess the properties and validity of our model, we tested its 
ability to predict the correlations when altering the network. The model asserts 
that lac catabolism is responsible for the positively weighed p-µ  correlations 
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Figure 5.2 Cross-correlation functions and mathematical model. (A-C) Cross-correlation func-
tions Rpµ (τ )  for the enzyme production rate p(t)  and growth rate µ(t)  (thin line), as well as 
REµ (τ )  for the enzyme concentration E(t)  and µ(t)  (thick line, see Appendix). Growth is on 
lactulose (0.1 %) with IPTG: 4 µM (A), 6 µM (B), 200 µM (C). Top triangles indicate mean divi-
sion time. Error bars denoting twice the standard deviation are indicated for some data points only. 
The main features were robust to changing the growth determination method and taking the cell 
width into account (Fig. 5.6). Growth and expression differences typically did not correlate with 
location within the microcolony (Fig. 5.7). (D) Model for coupling between expression and growth 
noise. Two noise sources are specific to p  and µ , one is common to both p  and µ . (E-G) Classes 
of noise transmission modes resulting from theoretical analysis (see Appendix). Left: example noise 
source and transmission pathway. Middle: µ , p , and E  signals in response to a block-wave emit-
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ted from the noise source. The block-wave illustrates the mode dynamics; colored noise is emitted 
in the actual model. Right: corresponding cross-correlations. (H-J) Fits to the experimental data 
(panels (A-C) and Appendix). (K) The mean growth rate within microcolonies versus the mean 
expression level within colonies, as measured for different levels of IPTG induction. Line: fit to a 
Monod growth model.

when the cells are weakly induced and grow slowly (Fig. 5.2A-B). Thus, when 
growth is similarly slow but carbon enters central metabolism via another path-
way, these correlations should become more symmetric (Fig. 5.3A). Growth on 
acetate also yielded slow growth (0.22 vs. 0.23 h-1). Rpµ (τ )  indeed became nearly 
symmetric while REµ (τ )  turned from approximately symmetric to negatively 
weighed (Fig. 5.3B), as predicted (Fig. 5.3A). Growth on other carbon sources 
allowed further probing of the nature of the observed delays. The model indicates 
they reflect the timescale at which E  can vary, which is limited by dilution and 
thus much slower than other possible causes of delay such as chemical reactions. 
Consistently, for acetate growth, the peak-width of REµ  (Fig. 5.3A) that quanti-
fies the delay is indeed of the same order as the doubling time (on the order of 
hours). Decreasing the doubling time should lead to narrower peaks, which we 
indeed observed when going from slow nutrients such as acetate (Fig. 5.3B) to 
faster ones such as lactose (Fig. 5.3D) and various other carbon sources (Fig.  
5.4).
	 Second, the network structure implied a noise cancelling mechanism: 
upward fluctuations from the common noise source cause increases in E  because 
of transmission via p , but at the same time they cause decreases in E  because 
of transmission via µ  (Fig. 5.2D). This balance offers a direct prediction: if the 
positive pathway dominates, REµ (τ )  should be positive, as is the case for all 
the data so far. But, if the negative pathway dominates, REµ (τ )  should become 
negative (Fig. 5.3E). One cannot manipulate how volume changes affect dilution 
in the negative pathway. So, to tilt the balance, we looked for constructs with a 
weaker transmission from common noise to p  in the positive pathway, which is 
measured by Rpµ (0) . A constitutively expressed mCherry that displayed a two-
fold lower Rpµ (0)  indeed displayed negative REµ (τ )  at negative times (Fig. 5.3F), 
as predicted (Fig. 5.3E). Thus, two parallel antagonistic pathways that together 
form a so-called incoherent feed-forward network motif [213] can partially can-
cel noise. The effects of this noise cancelling is further seen in REµ (0) , which is 
low at high induction despite the high Rpµ (0)  (Fig. 5.2C and 5.3D). Interesting-
ly, the positive REµ (τ )  values for lac expression contrasts with the observed nega-
tive dependence between the population average E  and µ , when µ  is varied by 
growing on different carbon sources (Fig. 5.12), as has been reported previously 
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Figure 5.4 Cross-correlations for growth on different carbon sources, in the absence of noise 
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[60, 67]. These opposing dependencies show that different mechanisms must 
play a role at different timescales. 
	 Finally, if lac enzymes transmit to growth and growth transmits to ex-
pression in general, then lac enzymes should also transmit to other genes. To test 
this we studied a chromosomally inserted mCherry gene under the control of a 
constitutive promoter that has no known functional interaction with the GFP-
labeled lac system. If noise in the GFP expression rate p(t)  transmits to the 
mCherry expression rate p*(t) , Rpp*(τ )  should display a positive peak weighing 
more heavily at positive τ  (Fig. 5.3G). When we grew these cells on lactulose and 
low IPTG, we indeed observed positively weighed GFP-mCherry correlations 
(Fig. 5.3H) that agreed with the predictions based on previously determined pa-
rameters (Fig. 5.3G). In contrast, Rpp*(τ )  should be symmetric for growth on ac-
etate, because the lac genes then do not transmit to growth (Fig. 5.3I). We indeed 
found Rpp*(τ )  to become symmetric under these conditions (Fig. 5.3J and Fig. 
5.11). Noise in lac expression can thus couple to other proteins without specific 
regulatory interactions.
	 Our study shows that noise in a single gene can affect the entire growth 
machinery of a cell, and in turn, growth noise affects the expression of potentially 
all other genes. This entanglement between growth and expression noise reflects 
the inherent cyclical nature of the reaction pathways that power self-replicat-
ing systems: metabolic enzymes catalyzing these reactions help synthesizing the 
building blocks for their own synthesis. The results raise the question how dif-
ferent fluctuating metabolic activities within the cell are coordinated, and which 
regulatory mechanisms are involved. Noise in metabolic systems may constitute 
a generic source of cellular heterogeneity [21], but also prevent optimal growth 
[213] and limit efficient biosynthesis. Novel approaches are required to incorpo-
rate noise transmission within the current theoretical framework of metabolism.

	 Growth experiments were performed using derivatives of E. coli MG1655 
(rph-1 ilvG- rfb-50), see Table 5.1. To measure expression of the lac operon, lacA 
was replaced with GFPmut2 [125]. mCherry and GFPmut2 controlled by the 
constitutive promoter PN25 [195] was inserted into the chromosome at different 

Appendix

5.3.1 Strains and media

5.3
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5.3.2 Cell growth

	 Cells from -80°C glycerol stock were grown at 37°C in TY medium until 
they reached 0.02-0.50 OD (optical density at 600 nm, 1 cm path length). These 
cells were transferred at different dilutions into flasks containing M9 with glucose 
for growth O/N. The following day cells from a culture in exponential growth 

locations using the Datsenko & Wanner protocol [126]. LacZ-GFPmut2 fusion 
was performed using the Hamilton et al. protocol [215].
	 Cells were grown in M9 minimal medium with 0.2 mM uracil (as de-
scribed in Chapter 2). As carbon and energy source either 0.1% lactulose (= 2.9 
mM), 0.1% lactose (= 2.9 mM), 0.1% glucose (= 5.6 mM), 0.1% succinate 
(= 8.5 mM) or 0.12% acetate (= 20 mM) was added. When indicated, IPTG 
was added to the medium (0-200 μM). Rich medium consisted of MOPS EZ 
Rich Defined from Teknova (Hollister, CA, USA), with 0.2% glucose as carbon 
source.

Strain Genotype Origin

AB460 ΔlacA::gfp-CamR Created by A. Böhm

ASC631 ΔlacA::gfp-CamR, Δphp::PN25-mCherry-KanR This study

ASC636 ΔlacA::gfp-CamR,  ΔCheZ::PN25-mCherry-KanR This study

ASC638 ΔCheZ::PN25-gfp-KanR This study

ASC639 ΔlacA::gfp-CamR, ΔlacI::KanR This study

ASC662 lacZ-gfp This study

MG22 ΔintC PL –lac01::yfp Elowitz et al.

NCM520 ΔlacAYZ Coli Genetic Stock Center

Table 5.1 List of strains used in this study.
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	 We calculated how two signals correlate over time using a temporal cross-
correlation. For each lineage in a microcolony, discrete time signals of growth rate 
(µ ), protein concentration (E ) and protein production ( pE ) were extracted (see 
Fig. 5.1E-G). We made sure that correlation analysis was performed in steady-
state conditions, i.e. population averages of these three signal was stationary over 
time. A microcolony consists of M  lineages, each containing N  data values sepa-
rated by sampling interval Δt , such that data value n  originates from time point 
t = n ⋅ Δt . We calculated the noise in these signals as the difference between the 
signal and the population mean:

5.3.3 Correlation along lineages

(OD < 0.2) were diluted in their respective experimental medium and grown for 
at least another 11 hours, while taking care that cells did not reach stationary 
phase. Subsequently 1 μL of diluted cells (OD ≈ 0.005) was applied on a small 
pre-warmed polyacrylamide gel and covered with a pre-warmed coverslip, result-
ing in sparsely distributed cells each growing into a single layered microcolony 
of about 500 cells before forming a second layer. The gel pad was placed inside 
a glass cavity slide containing sufficient oxygen for prolonged cell growth, and 
sealed in a tight sealing metal clamp to avoid drying of the sample. 
	 Polyacrylamide gels were made by pouring 900 μL of polyacrylamide 
mix (1.25 ml 40% acrylamide, 3.7 mL water, 50 μL fresh 10% ammonium per-
sulfate, and 5 μL TEMED) into a cavity glass slide, covering it with a 24 mm x 
60 mm silanized coverslip and letting it polymerize at room temperature for half 
an hour. The gel was cut in pieces of 5 mm x 10 mm, and washed with water to 
remove unpolymerized chemicals. Before an experiment, the gel was filled with 
the designated media by transferring it every few hours to large volumes of the 
media. Despite thorough washing of glassware and using distilled water, our gels 
contained organic contamination as observed by slow but significant cell growth 
on minimal M9 media without sugar. Such organic contaminations have also 
been observed for growth in batch cultures [145, 216, 217]. To make sure that 
cells would not use these contaminants as carbon source in experiments at low 
growth rate, we first grew cells with a knocked-out lac operon on the gel (strain 
NCM520), as to consume the organic contaminants before the actual experi-
ment.

(1)
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The cross-covariance between two signals within a single lineage at time-lag 
τ = r ⋅ Δt  is defined by (shown here for E  and µ ) [131]:

The cross-correlation within a lineage is calculated by normalizing the covariance 
by the product of the standard deviation (σ ) of the signals, which equals their 
auto-covariance at r = 0 :

Multiple lineages can be combined into a composite cross-covariance:

As our lineages are extracted from a branched data set, many data points are used 
multiple times in this composite cross-covariance. In order to get a composite 
cross-correlation that best estimates the real underlying process, it is essential to 
only use comparisons between unique pairs of measurement points. To correct 
for unequal contributions we weigh each pair of data points based on the number 
of lineages the data points are used in (λ ). Multiple contributions of the same 
pair of data points can be corrected using the weighing factor: 

effectively resulting in the same calculation as in Dunlop et al. [56]). We used a 
weighing factor that also corrects for contributions where a single data point is 
used in pairs with many other data points (see Fig. 5.5):

This weighing is used in the branch-corrected composite cross covariance:

(2)

(3)

(4)

(5)
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Figure 5.5 Extracting and weighing lineages from a branched dataset. (A) Depiction of a growing 
microcolony over time, starting with 2 cells on the left and growing into 5 cells on the right. (B) A 
lineage tree of the data shown in (A). The tree starts with two lines (left), indicating the two starting 
cells, and at each division the line splits, resulting in five cells at the end (right). (C) Five lineages 
can be extracted from the data. Note that most lineages share part of their data. When correlating 
data points from t0 with t1, one pair consists from completely independent data points (lineage I).
Two lineages provide exactly the same pairs of data points (lineages IV and V), and two lineages 
only share a data point at t0 (lineages II and III). (D) Different types of weighing for the correlation 
of data points from t0 with t1 as used in Equation 6 in the Modelling section. No: each lineage is 
weighed equally. Unique pairs: weighing such that only comparisons between unique data pairs are 
used. Unique points: Lineages II and III are not completely independent, which can be corrected 
for by this weighing from Equation 5. 

We calculated correlation error bars by pruning microcolony lineage trees at the 
stem until 4 independent branches remained. Composite correlations within 
these independent trees were calculated separately, and then combined to calcu-
late the mean correlation and its standard deviation.

(6)
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5.3.4 Modelling

Analytical expression of the correlations

	 We note E  the enzyme concentration, p  its production rate and µ  the 
rate of increase of volume. Given that enzymes are long-lived compared to the 
cell cycle time:

A first order development of (1) gives:

The rates p  and µ  can vary due to fluctuations in the concentration or the activ-
ity of global factors (such as ribosomes, ATP, amino-acids or common regulatory 
elements) or due to fluctuations of specific factors, such as lacI repressor binding 
to the lac operon or enzymes catalyzing cell wall production. Hence we consider 
three independent noise sources: NG  is the effect of common components, NE

and Nµ  are components specific respectively to E  and µ . These NX  are mod-
eled as independent colored noises: 

with decay rate βX  and a white noise source of amplitude θX . We computed ana-
lytical solutions for the time-correlations under a linear response approximation, 
which is suited to probe quantitatively the short term response of the network 
when fluctuations are of sufficiently limited amplitude. We defined the perturbed 
variables δ X(t) = X(t)− X0  (where X0  is the mean of X ) and logarithmic gains 
TXY  representing how a variable X  responds to the fluctuations of a source Y . 
Given the network of noise coupling interactions described in the main text (Fig. 
5.2D), we write the following additional relations between variables p , E , and 
µ , and the noise sources NG , NE , and Nµ :

(1)

(2)

(3)

(4)

(5)
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where the rate µE = µ0 (1−TEµTµE −TEE )  sets the timescale of E  fluctuations. Let: 

be the cross-covariance between E  and µ  normalized by their mean, AE  and Aµ  
their respective auto-covariance. In the frequency domain we have:

Using the independence between noise sources (2) together with (6-7), cross-
covariance in the time domain is:

where the transmission of dilution fluctuations is denominated as TEµ = −1 . 
Fourier transforms of (3-5) ( X  indicates the Fourier transform of X ) result in a 
linear system for E  and µ  fluctuations in the frequency domain:

Each term of the sum on the right-hand side of equality (8) is the product of 
three factors separated by dots respectively representing: fluctuations transferred 
to E , fluctuations transferred to µ , and a τ -dependent function quantifying 
delayed correlation arising from a particular noise source. We find these functions 
have one of two forms: SX  (symmetric) or AX  (asymmetric, negatively delayed), 
which are inverse Fourier transforms of the frequency dependent components of 
the cross-correlation (obtained following the method described in details in [56]):

(6)

(7)

(8)

(9)
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The first three terms of (8) correspond to the symmetric modes generated by di-
rect transmission fluctuations from E  to µ , originating from NE , NG  and Nµ  
(Fig. 5.2E). These modes thus depend on lac catabolism (they disappear when 
TµE = 0 ), and are hence named ‘lac catabolism’ modes (see Fig. 5.2E). The fourth 
term represents the asymmetric contribution arising from the joint dependence 
of protein synthesis and cell volume increase on noise in common factors, and 
was hence named the ‘common noise’ mode (see Fig. 5.2F). The fifth term is 
the asymmetric contribution originating from the effect of volume growth on 
enzyme concentration by dilution (TEµ = −1 ), and was thus termed the ‘dilution’ 
mode (see Fig. 5.2G). Similarly, we obtain analytical expressions for the auto-
covariance for τ  ≥ 0: 

In the case of a second constitutively expressed gene F , we computed similarly 
the different types of correlation functions, assuming the response of the produc-
tion rate p*  to be:

where 

The cross-covariance function between the production rate and growth rate is 
obtained in the same way:

(10)

(11)

(12)

(13)

(14)
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	 Parameters of the model are the average growth rate µ0 , the charac-
teristics of the noise sources θ E ,βE ,θµ ,βµ ,θG ,βG{ }  and the transfer coefficients 
TµE ,TEE ,TEG ,TµG ,TEµ{ } . TEµ = −1  accounts for physical dilution. As TEG  and TµG  

are determined modulo a renormalization constant of the amplitude of NG , we 
arbitrarily set TµG = 1.  All the other parameters were determined from experi-
mentally measured timescales, noise intensities and correlations at t = 0 as de-
tailed below, with the exception of TEG TµG  (ratio of the response the lac operon 
promoter and µ  to common noise NG ), which could be set to a unique value 
of 1.3 to match the shape of all the time-correlation functions across all experi-
ments.
	 More specifically, the population average growth rate µ0  was measured 
experimentally. Timescales 1 βµ  and 1 βG  (growth and global noise sources) were 
taken equal to the measured autocorrelation time of growth rate fluctuations. 
Transfer coefficient TµE  for fluctuations from E  to µ  was taken from the average 
slope of the clouds of Fig. 5.13. Feedback of E  on itself TEE , which only impacts 
the characteristic time of E  fluctuations (see Equation (6)), was taken to match 
µE  the experimental decay rate of E  autocorrelation. The amplitudes of the noise 
sources  θ E ,θµ ,θG{ }  were determined from the experimentally measured triplet 
REE (0),Rµµ (0),RµE (0){ }  by solving the linear system obtained from equations (8, 

11, 12) in real time space at t = 0. Timescale for specific noise of lac enzyme pro-
duction (1 βE ) was tuned to fit Rpµ (0)  and corresponded to timescales already 
reported for gene specific noise (~9 min in doubling units [54]).  Parameter val-
ues are summarized in Table 5.2.

Fitting parameters for growth experiments on lactulose

	 Prediction for the lactose experiment (Fig. 5.3C) has been taken identi-
cal to the fit for lactulose at high induction (Fig. 5.2J). For the other conditions 
of Fig. 5.3, average growth rate µ0  was measured directly. Following the trends 
observed on lactulose experiments, we took βµ = βM = 2µ0  and 1 βE  = 9 min. 
For TµE  and TEE , we took the values found for lactulose experiments at the same 
induction level, otherwise zero when the enzyme was in excess or inactive. We 
considered TEG TµG  to be promoter specific and kept the value of 1.3 for the lac 
operon. We found TCG TµG  = 0.7 for the exogenous constitutive promoter inde-
pendently of the genomic location of its chromosomal insertion. θE , θµ  and θG  

Predictions for rewired networks
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Table 5.2 Parameters value used to fit the data obtained during growth on lactulose for different 
IPTG concentrations (first 3 columns corresponding to model fits Fig. 5.2A-C represented on Fig. 
5.2H-J) and for the predictions of the rewiring experiments (Fig. 5.3 ACEGI). Population average 
growth rate is measured and indicated in bold. Grey boxes correspond to parameters inferred from 
other experiments with similar conditions, as explained above. The noise sources amplitudes are 
expressed as the standard deviation of the random variable NX  which corresponds to ηX =θX 2βX

	 The correlation between the production rates p  of lac enzyme and p*  
of mCherry under a constitutive promoter (Fig. 5.3G and I) were fully predict-
ed: we took the parameters already obtained from the experiments on the same 
growth medium, assumed that noise transmission from the lac catabolism affect-
ed similarly the production rate of lac and the production rate of the constitutive 
gene (TCE = TEE ), and arbitrarily took the same noise level ηF  for the constitutive 
promoter as measured on lactose.

were fitted to reproduce the experimentally measured values REE (0) , Rµµ (0)  and 
Rpµ (0) . In all cases, the cross-correlation between growth rate and gene concen-
tration was fully predicted.
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Figure 5.6 Cross-correlations based on different methods of growth-rate determination. (A) 
Cross-correlations for lactulose growth at low IPTG (4 µM), with growth rate determined as fol-
lows: S(t) is the surface area of the cell silhouette vs. time (see Fig. 2.9). The growth rate is the time 
derivative of S(t). (B) Idem, for lactulose growth at high IPTG (200 µM). (C) Cross-correlations 
for lactulose growth at low IPTG (4 µM), with growth rate determined as follows: S(t) is the surface 
area of the cell silhouette vs. time, L(t) is the length of the cell silhouette vs. time. The growth rate is 
the derivative of L(t)*(S(t)/L(t))2. Note that S(t)/L(t) is taken as a measure for the width of the cell, 
and the width squared times the length as a measure for the cell volume. (D) Idem, for lactulose 
growth at high IPTG (200 µM). These cross-correlations display the same shape and symmetry as 
in Fig. 5.2A and C, where the growth rate is determined as the derivative of the length of the cell 
silhouette. Hence the central features are robust to different methods of growth rate determination.

5.3.5 Supplementary figures
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Figure 5.7 Scatter plot of instantaneous growth rate and cell position within the microcolony. 
The cell position was calculated as the minimal distance of the center of a cell to the edge of the 
microcolony. Data obtained during growth on laculose at intermediate IPTG induction (6 µM).
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Figure 5.8 Cross-correlation functions after knocking out the lac repressor LacI, at high lac ex-
pression (lactose minimal medium). The data is similar as before the knock-out at high expression 
(Fig. 5.2C), showing that the correlations are not mediated by lac repressor regulation.

Figure 5.9 Cross-correlation functions after changing the position of the GFP gene within the 
lac operon, at intermediate lac expression (0.1% lactulose and 6 µM of IPTG). Here GFP is fused 
translationally to LacZ. The data is similar as before changing the GFP position (Fig. 5.2B), show-
ing that the position within the operon is not critical.  

Figure 5.10 Cross-correlation functions for two different constructs: (A) For an exogenous con-
stitutive promoter (PN25) driving the production of GFP, inserted in the CheZ locus. Growth is on 
minimal medium with lactose. (B) For a lac promoter driving the production of YFP, inserted in 
the intC locus. Growth is on minimal medium with maltose. Both experiments show the presence 
of a coupling from common noise to expression.
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Figure 5.11 Cross-correlation between GFP production rate ( p ), reporting for the lac expression 
rate, and the mCherry production rate ( p* ). Growth is on minimal medium with 0.1% lactose. 
Model (black line) and experiment (green). The prediction is similar as in Fig. 5.3I, as the transmis-
sion by lac metabolism is low at high IPTG because lac enzymes are in excess. 
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Figure 5.12 Population average lac enzyme concentration versus the population average growth 
rate on minimal medium supplemented with varying carbon sources.

Figure 5.13 Scatter plots of the growth rate and the enzyme concentration normalized by their 
average. Darker dots indicate the µ  average over bins of E . These plots have been obtained for 
increasing IPTG induction levels on minimal medium and lactulose 0.1%: from left to right, IPTG 
= 4 μM, 6 μM and 200 μM.
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The mathematical model reported in this chapter was done by Philippe Nghe.
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Transient dynamics during  
nutrient shifts

6 Sensing of the availability of external nutrients and ad-
justing the genetic expression is of crucial importance 
for bacterial survival and growth in fluctuating envi-
ronments. Despite decades of investigation of growth 
limitations and environmental shifts, several aspects of 
growth regulation and the underlying regulatory mech-
anisms remain unclear. This chapter is a preliminary 
study of the transient dynamics of growth and ribosomes 
synthesis during adaptation to a new steady-state, from 
limiting to non-limiting glucose and vice-versa. We use 
a single-cell approach combined with microfluidics to 
monitor accurately the growth rate of cells while con-
trolling precisely the environment. The data show that 
adaptation to a higher growth rate is slow while ad-
aptation to a lower growth rate is comparatively faster. 
To our knowledge, no mechanism has been put forward 
to explain the observed slow dynamics of growth rate 
increase, and further work could aim to that direction.
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Introduction6.1

	 Bacterial cells possess genetic and metabolic regulatory systems that al-
low them to adjust their growth rate when environmental conditions change. 
Because they depend on external nutrients to maintain and expand their cel-
lular machinery, our understanding of physiological regulation in bacteria has 
progressed thanks many studies both in steady-state conditions of growth and in 
changing nutritional conditions [68, 218-220]. The starting point was perhaps 
the work of Schaechter et al. fifty years ago, who established that the macromo-
lecular composition of cells (amount of DNA, RNA and proteins) depends only 
on the growth rate and not on the details of the composition of media [218]. As 
a result, the growth rate dependence of a large number of parameters has been 
measured in Escherichia coli [221]. A question then arises: how do cells transition 
from one steady-state to the other? This is what Schaechter et al.  investigated 
in another paper [68]. They performed a shift-up from slow to fast growth and 
a downshift from fast to slow growth rate, and measured how DNA, RNA and 
proteins changed with growth rate. In these experiments, cells were transferred or 
washed to a very different medium, which can be a complication when elucidat-
ing the interplay between regulatory mechanisms of the cell and its physiology. 
In addition, it is difficult to determine precisely the growth rate in these experi-
ments, and only cell mass can be inferred from optical density (OD) measure-
ments. Chemostats were invented in 1950 to cultivate cells in a well-defined, 
constant and controllable environment. This bulk technique was used in mul-
tiple areas of microbiology, to study evolution [222], selection [223], nutrient 
limitations [224, 225], kinetics of growth [226] and microbial ecology [227, 
228] in various species. In practice, the use of chemostats can be complicated by 
problems of mixing [229]. Though chemostats made it possible to modulate the 
growth rate without changing the growth medium but simply by changing the 
quantity of nutrient [230], they give information at the population level, which 
can mask the true dynamics because of cell-to-cell variability. In general, growth 
rate regulation at the single-cell level and the underlying regulatory mechanisms 
has remained an important issue. Hence, new techniques are needed to study 
single cells.
	 Growth regulation is closely coupled to the control of ribosome synthesis 
which, in turn, determines the rate of protein synthesis. In E. coli for instance, 
the number of ribosomes in the cell correlates linearly with the growth rate [221]. 
This chapter is a preliminary work, where we studied the transition dynamics be-
tween limited nutrient and excess of nutrient in a microfluidic device. We moni-
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tored simultaneously the growth rate of single cells and ribosome synthesis. We 
found that, during upshift, adaptation to the new growth rate was very slow and 
spanned 4 generations, corresponding to 5 hours. Production rate of ribosomes 
increased to the new rate within roughly the same time. However, the transition 
from high to low growth rate was faster and the new steady-state for growth and 
ribosome synthesis was reached after 2 generations only, or 3 hours. In both cases 
however, the response of single cells to nutrient shifts was quite homogeneous.

	 We started with a single cell and after a few generations of growth on 
a minimal medium containing a limiting concentration of glucose (2.77 µM), 
we switched to a minimal medium with abundant glucose (5.55 mM). Having 
previously determined the dependence of growth rate on glucose concentration 
(see Chapter 3), we chose these glucose concentrations in order to get a twofold 
change in growth rate upon nutrient shift, from a doubling time of 120 min to 
one of 60 min. We monitored expression of the exogenous constitutive promoter 
PN25 using GFP labeling, and the expression of ribosomes using mCherry labeling 
(Material and methods). 
	 Bacteria are bigger when they grow faster, and in the case of E. coli, both 
the length and the width, and hence the volume, change upon nutrient shift 
[218]. Here we examined the dynamics of length, width and volume increase 
during the shift-up at the single-cell level. The lengths of the cells were deter-
mined using phase contrast images acquired every 1 to 2 min, and custom image 
analysis software (see Methods and Chapter 2). Width was calculated by dividing 
the cell’s area by its length. Volume was calculated with the hypothesis that the 
cells are perfectly rod-shaped (detailed in Methods). First we considered the sum 
of the length of all cells in the microcolony, as well as the summed width and 
volume (Fig. 6.1A). Before the shift, all three parameters increased exponentially, 
resulting in straight lines on the log plot, except for the width that increased with 
steps, corresponding to cellular divisions. In addition, all parameters increased at 
roughly the same rate, indicating steady-state growth. Upon shift, these param-
eters adapted to the new rate with different delays. Fitting exponentials through 
the length trace at steady-state before and after the shift, indicated a doubling 

Results and discussion

6.2.1 Cellular growth response to glucose upshift

6.2
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time of 100 min and 70 min respectively. Surprisingly, the length responded 
immediately with first a transient decrease in rate that lasted 40 min followed 
by a gradual adaptation to the new rate. The origin of this decrease is unclear. 
The volume and the width continued to increase at the old rate for about 120 
min after the shift, at which point the old rate changed abruptly to the new rate. 
Similarly, the rate of cell division, inferred by the number of cells over time (Fig. 
6.1B), remained approximately constant for more than 200 min after the upshift. 
This rate maintenance of cell division is a well understood phenomenon and has 
been observed for nutrient upshifts in batch cultures [68]. It is the sum of C and 
D periods, which corresponds to the time for new initiations of DNA replication 
to be associated with new cell divisions. Here the delay is longer than the sum of 
C and D periods (about 100 min, see [231]), suggesting that other mechanisms 
are involved.
	 These delays can also be seen on Fig. 6.1C where the mean length, width 
and volume over time are plotted for the microcolony. Note that the width de-
crease at the beginning of the experiment is a phase contrast imaging artefact: 
cells that have neighbors appear thinner than those that do not, and they become 
more dominant over time. The length and volume saw-tooth patterns are due to 
the cells being in synchrony at the beginning of the experiment. This synchrony 
was slowly lost over time, resulting in the loss of these patterns. We are however 
interested in the trend on top of these oscillations. All three parameters exhibited 
transient dynamics, followed by a leveling-off indicating that steady-state was 
reached 200 to 300 min after shift-up. The mean width increased from 0.50 
µm to 0.58 µm, while the mean volume increased from 0.50 to 0.66 µm3. In 
addition, the width seemed to increase more slowly that the length. We did not 
observe any immediate decrease in mean cell length or width upon shift-up, as 
might have been caused by the rise in osmolarity when switching to higher glu-
cose concentration (from 275 to 280 mOsm.L-1). Upon a threefold change in 
growth rate in batch cultures [232], both mean cell length and width, determined 
from electron micrographs, reached their new steady-state value in about 2 and 3 
hours respectively. This is in agreement with our findings, though contrary to this 
study we did not observe any overshoot in cell length upon shift-up. A possible 
explanation is detailed below.
	 The most striking observation is that it took the cells considerable 
amount of time to reach the new faster growth rate (Fig. 6.1D). Indeed, steady-
state growth was achieved only 300 min after the time of shift, corresponding 
to 4 generations. This result is however in line with a previous study where cells 
growing in a chemostat with limited glucose were shifted to an excess of glucose 
[233]. A possible explanation is that the growth dynamics depends on the chemi-
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Figure 6.1 Growth dynamics during upshift at the population level. (A) Sum of cells length 
(blue), width (green) and volume (red) over time of one microcolony. Note that the volume trace 
has been slightly shifted vertically for clarity. Arrows indicate when the new steady-state rate was 
reached. (B) Number of cells of the microcolony over time. The dashed line is added to guide the 
eye. (C) Mean cell length (blue), width (green) and volume (red) over time of the microcolony. (D) 
Mean elongation rate of the microcolony over time. The time of shift is indicated by the transition 
from grey to white background.

Figure 6.2 Expression dynamics of ribosomes and of a constitutive gene during upshift. (A) Mean 
production rate of ribosomes (red) and PN25 (green) of the microcolony. (B) Mean fluorescence of 
ribosomes (red) and PN25 (green) of the microcolony.
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cal composition of the different media [70]. In most nutrient upshifts in batch 
cultures, it is the quality of the nutrient that is changed [68, 70, 71, 72, 232, 
234]. It involves reorganization of biosynthetic pathways and synthesis of es-
sential enzymes. The rate of cell mass increase, as inferred by OD measurements, 
adapted to the new rate almost immediately upon shift-up, while the rate of cell 
division was maintained for roughly 1 hr before increasing abruptly to the new 
steady-state rate. Note that in our experiments we measure cell volume instead of 
cell mass, and during the transition between two steady-states these two quanti-
ties are not necessarily coordinated.
	 Our results also differ from glucose pulse experiments in chemostats, 
where the glucose concentration is transiently increased on a very short time scale 
(a few minutes). In these studies, a threefold immediate (less than 1 min) increase 
in growth rate was reported [235, 236]. It is not clear why cells respond differ-
ently to glucose pulse compared to a prolonged excess of glucose. This would 
suggest that cells growing at low rates contain sufficient enzymes to transiently 
grow at a faster rate, but they would still need a few hours to reach a steady-state 
of growth.

	 Because ribosomes are known to be a major growth-limiting resource 
in continuous culture bulk experiments [237], we followed ribosome synthesis 
to get insight into the slow growth dynamics observed. The total fluorescence of 
each cell was determined by extracting the pixels that were within the cell outline. 
The ribosome production rate was then measured by taking the slope of the best 
linear fit over the total fluorescence signal over three consecutive time points. The 
cell mean fluorescence is determined as the mean of pixels within the cell outline 
(see Materials and methods). Note that the cell volume plays a role in the deter-
mination of ribosome concentration, but not in the production rate.
	 During slow growth at the lower glucose concentration, the mean ribo-
some production rate of the microcolony was constant at about 400 min-1. Upon 
shift-up, the production rate increased steeply by more than twofold after a delay 
of roughly 30 min (Fig. 6.2A, red trace). After this first fast increase, the produc-
tion rate continued to rise slowly and continuously until the new steady-state 
value of 1300 min-1, which was reached 250 min after the time of shift. The mean 
fluorescence of the microcolony, corresponding to the mean ribosome concentra-
tion, followed different dynamics (Fig. 6.2B, red trace). Upon shift-up, ribosome 

6.2.2 Transient dynamics of ribosome synthesis during
         upshift
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	 We next investigated the response of growth and ribosomes at the single-
cell level (Fig. 6.3). Qualitatively, the single-cell responses to nutrient shift are 
rather similar to the population response. Fig. 6.3B represents the distribution of 
the ribosome production rate at three different time points. First, a few minutes 
before the time of shift (top), during the transition to the new rate (middle), and 
at the end of the experiment when steady-state was reached (bottom). The shape 
of the histograms was quite similar, with no bimodality observed. In addition, 
the coefficient of variation (Fig. 6.3C) stayed at a constant value of about 0.25 
throughout the experiment. Oscillations at the beginning of the experiment are 
due to the low number of cells. A similar shape for distributions and coefficient 
of variation value over time of 0.20 was obtained for elongation rate (data not 

concentration increased slowly and reached its new steady-state value about 1 hr 
later than the production rate (Fig. 6.1B). A previous study in a chemostat [238] 
found that, upon upshift in dilution rate (from 0.2 to 0.6 h-1), ribosome con-
centration gradually increased and reached a stable concentration in about 6 hrs, 
which is in line with our results. Overall, the ribosome concentration increased 
by a factor 1.8 compared to the pre-shift value, which corresponds to a 2.5-fold 
increase in the number of ribosomes given the volume increase, which is also 
consistent with previous measurements [221].
	 As a control, we also monitored the expression of a constitutive promot-
er, PN25. The mean PN25 production rate, as the ribosome production rate, had a 
low constant value of approximately 60 min-1 during slow growth on low glucose 
(Fig. 6.2A, green trace). Upon shift-up, the PN25 production rate increased im-
mediately and gradually until steady-state. Both ribosome and PN25 production 
rates increased by the same factor 3 compared to their respective pre-shift values. 
	 Before the shift the mean PN25 fluorescence showed an initial decrease, 
likely due to adaptation to growth in the microfluidic device, before reaching 
a sready-state value. Upon upshift, the fluorescence increased slightly and re-
mained rather constant until the end of the experiment. Note that even though 
the production rate trends of ribosome and PN25 are quite the same, for the con-
centration trends are quite different. While the ribosome concentration follows 
expected trends (positive correlation with growth rate), the results for PN25 seem 
to be at odds with a recent theoretical study that found that the concentration of 
constitutive genes decreases when the growth rate increases [60]. This difference 
is unclear.

6.2.3 Single-cell dynamics during upshift
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shown). These results confirm the rather homogeneous response of single cells to 
the nutrient upshift.

	 Since ribosomes are considered to be growth-limiting and the growth 
rate is determined primarily by ribosome concentration (and their rate of trans-
lation), the next logical step is to look at correlations between growth and ribo-
somes. Fig. 6.4A is a scatter plot of elongation rate versus ribosome production 
rate, where each point represents a cell cycle and cells are colored according to 
their generation number. Elongation rate and ribosome production rate are well 
correlated (r2 = 0.50, p-value < 0.001, N = 655). Note that significant random 
variability is observed before (blue clouds) and after the transition (red cloud). 
However, these variations in elongation rate and ribosome production rate are 
only weakly correlated (e.g. r2 = 0.10, p-value < 0.001, N = 177; for cells in gen-
eration 9). One implication is that some cells grow at the maximal growth rate 
at a ribosome production rate of about 2000 min-1 while other cells achieve the 
same growth rate with half that ribosome production rate.
	 We found that the increase in growth rate was tightly correlated with the 
ribosome production rate (Fig. 6.5B-C). If cells needed to produce more ribo-
somes to increase their growth rate, we could have expected growth to increase 
after ribosome production rate. Here, it is not clear whether changes in ribosome 
production rate precede changes in growth rate, or vice versa, as both seem to 
increase simultaneously.

	 We next investigated the cells response to nutrient downshift. After a few 
generations of growth on a minimal medium containing abundant glucose (55.5 
µM), we switched to a minimal medium containing limiting glucose (2.77 µM). 
We should get a twofold change in the doubling time, from 60 min to 120 min, 
which is similar to the nutrient upshift.
	 We started by evaluating changes in cell dimensions and growth. Fig. 
6.5A represents the sum of cells length, width and volume over time of one 
microcolony. Before the downshift, all three parameters increased at the same 
steady-state rate, which is similar to the upshift experiment. Upon nutrient shift, 

6.2.4 Correlation between growth rate and ribosome 
         production rate

6.2.5 Cellular growth response to glucose downshift
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Figure 6.3 Transient dynamics during upshift at the single-cell level. (A) Ribosome fluorescence 
(top), ribosome production rate (middle) and elongation rate (bottom) over time of all lineages 
within the microcolony. The two thick lines highlight two particular lineages. (B) Histogram of 
ribosome production rate a few minutes before the shift-up (top, N = 28), during the transition 
period (middle, N = 67) and at steady-state (bottom, N = 490) as indicated by the colored arrows 
on (A). (C) Coefficient of variation of the ribosome production rate over time. Note that the first 
cell cycle is not taken into account here. The vertical line indicates the time of shift.

Figure 6.4 Correlation between elongation rate and ribosome production rate. (A) In this scatter 
plot, one point represents one cell cycle. Note that only cells that finished their cell cycle are used 
here. Cells are colored according to their generation number. Here, the shift-up occurred during 
generation 4-5. (B) In this scatter plot, each point represents single elongation rate and ribosome 
production rate at one point in time. A particular trajectory, or lineage, is shown in color, where the 
color represents time. (C) Mean elongation rate versus mean ribosome production rate. As in (B), 
the color represents time. The arrow indicates the time of shift.
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adaptation to the new rate proceeded with different delays. The rate of length in-
crease was maintained at its pre-shift value for 15 min, and decreased slowly until 
steady-state was reached 120 min after the time of shift. The width and volume 
continued to increase at the pre-shift rate for about 50 and 20 min respectively, 
after which they both adjusted abruptly to the new rate. The delays observed 
here are 2 to 4 times shorter than those observed in nutrient upshifts. The rate 
of cell division, inferred by the number of cells over time (Fig. 6.5.B), remained 
approximately constant for about 40 min after the downshift. We observed this 
rate maintenance in nutrient upshifts (see Fig. 6.1B), and it has been shown in 
bulk as well [239].
	 The mean length and volume (Fig. 6.5B) showed the same saw-tooth 
patterns that we observed in upshifts. Here also we are interested in the trend on 
top of these oscillations. Upon downshift, both gradually decreased and leveled 
off. 120 min after downshift near equilibrium was reached. The mean width 
started to decrease slowly 40 min after downshift, but did not reach steady-state 
by the end of the experiment (Fig. 6.5B, green trace). The mean width effectively 
decreased from 0.70 µm to 0.56 µm, while the mean volume changed from 0.76 
to 0.37 µm3. Overall, these results are qualitatively similar to those obtained for 
the nutrient upshift, but inverted.
	 The mean elongation rate showed an immediate decrease upon nutri-
ent downshift (Fig. 6.5C). This decrease continued gradually until a steady-state 
value was reached less than 200 min after downshift. Both the dimensional and 
growth adjustments were faster during downshift than during upshift. Adapta-
tion to the new growth rate spanned 4 generations, or 5 hours, in the nutrient 
upshift while it spanned 2 generations, or 3 hours, in the nutrient downshift. 
The upshift gave rise to a 1.4-fold change in growth rate, compared to a 2.5-fold 
change in the downshift. As a result, the absolute values of mean width and vol-
ume were different between upshift and downshift, and although the change in 
width was comparable in both shifts, the change in volume was 1.5 larger in the 
downshift than in the upshift.

	 The mean ribosome production rate was approximately constant and 
high during the first phase of high growth (Fig. 6.6A, red trace), equal to 1500 
min-1 on average, which is comparable to value measured at high growth rate 
during the upshift. Upon downshift, the production rate first decreased abruptly 

6.2.6 Transient dynamics of ribosomes synthesis during 
         downshift
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Figure 6.5 Growth dynamics during downshift at the population level. (A) Sum of cells length 
(blue), width (green) and volume (red) over time of one microcolony. Note that the volume trace 
has been slightly shifted vertically for clarity. Arrows indicate the time of the new steady-state rate. 
(B) Number of cells of the microcolony over time. The dashed line is added to guide the eye. (C) 
Mean cell length (blue), width (green) and volume (red) over time of the microcolony. (D) Mean 
elongation rate of the microcolony over time.

Figure 6.6 Expression dynamics of ribosomes and of a constitutive gene during downshift. (A) 
Mean production rate of ribosomes (red) and PN25 (green) of the microcolony. (B) Mean fluores-
cence of ribosomes (red) and PN25 (green) of the microcolony.
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by more than twofold with a delay of 20 min. Afterwards the rate continued to 
decrease but more slowly until steady-state was reached. The ribosome concen-
tration immediately increased upon downshift, and then decreased to a value 
slightly higher than the pre-shift concentration (Fig. 6.6B, red trace). Both ri-
bosome production rate and concentration adjusted to their new value within 
the same time of 200 min, which is faster than the 250 to 300 min measured 
in the nutrient upshift. The increase almost immediately after the shift indicates 
that the volume decreases faster than the number of ribosomes following glucose 
depletion. A study found that upon downshift in dilution rate (from 0.6 to 0.2 
h-1), the ribosome concentration reached steady-state almost 8 hrs after the shift 
[238], which is considerably longer than what we observe in our experiments. 
This could be because of the larger change in growth rate in this study compared 
to our experiments.
	 The mean production rate of PN25 decreased immediately upon down-
shift by half its pre-shift value, after which it fluctuated around its new rate (Fig. 
6.6A, green trace). The mean fluorescence remained constant for 1 hr after the 
shift, and then increased significantly (Fig. 6.6B, green trace). At the end of the 
experiment, though the mean fluorescence had doubled compared to the pre-
shift value, it was not at steady-state yet. The increase in concentration of consti-
tutively expressed proteins is consistent with previous results [60].

	 As observed for the nutrient upshift experiment, the growth and ribo-
some production rate response to downshift seemed to be rather homogeneous 
for all cells in the microcolony. Fig. 6.7B represents the distributions of the ribo-
some production rate at three different time points: a few minutes before the shift 
(top), during the transition to the new steady-state (middle) and at the end of the 
experiment when the new steady-state rate was established (bottom). Here again 
all distributions had a similar bell-shape with no bimodality, suggesting the uni-
form response of single cells to the shift. We characterized the variability further 
by plotting the coefficient of variation of the ribosome production rate distribu-
tions over time (Fig. 6.7C). Before the shift, the coefficient of variation fluctuated 
around 0.2 and increased slightly after the shift, though a sharp increase up to 
0.5 was observed the last hundred minutes of the experiment. This result suggests 
that a significant fraction of the population had a lower (or higher) production 
rate and growth rate than the mean.

6.2.7 Single-cell dynamics during downshift
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	 The correlation that we saw between elongation rate and ribosome pro-
duction rate in the nutrient upshift is conserved here too (Fig. 6.8A): overall, 
when the production rate decreases, the elongation rate decreases as well. At 
steady-state, the correlation between elongation rate and ribosome production 
rate is almost lost (for instance at generation 7, r2 = 0.12 and p-value = 0.007). 
On Fig. 6.8B is also plotted the elongation rate versus ribosome production rate, 
with a particular lineage highlighted and colored according to time. The curve is 
seen to take a detour, with the growth rate decreasing first, followed by the pro-
duction rate. This trend is also evident in the population mean curve (Fig. 6.8C). 
It also contrasts with the observations in the upshift experiments, where ribosome 
production rate and growth rate increased at the same time.

	 For the first time, we could accurately monitor simultaneously ribosome 
production rate and growth rate in single cells during nutrient shifts. Previous 
studies in bulk measured the number of cells over time, or the OD over time, 
from which the cell mass was inferred. However, OD measurements cannot prop-
erly distinguish between cell elongation and number increase. In addition, while 
these studies could measure the amount of RNA over time, this is not a direct 
measurement of ribosome production rate. The preliminary results shown here 
are not in conflict with previous data obtained with batch cultures or chemostats. 
Indeed, both in upshifts and downshifts, we observed the ‘rate maintenance’ phe-
nomenon. In addition, the timescale of dimensional rearrangements is similar in 
our experiments and these studies. 
	 Surprisingly, during nutrient upshift, it took the cells considerable 
amount of time to reach the new faster growth rate. It remains unclear what 
limits growth, and ribosome synthesis, when increasing the glucose concentra-
tion. Further investigations would thus be needed to propose a mechanism. It 
could be that because ribosomes are the rate-limiting step in their own synthesis, 
ribosome synthesis takes time to ramp up. However, that should also be the case 
in batch cultures where cells were shifted from poor to rich media. There, adapta-
tion is comparatively faster, as RNA synthesis for instance adapted to the new rate 
immediately. Perhaps glucose uptake itself could be limiting. The main glucose 

6.2.8 Correlation between growth rate and ribosome  
         production rate

Conclusions and outlook6.3

Chapter 6 113



F rib
os

om
es

 (a
.u

.)

0

100

200

300

shift

0 200 400 600
0

0.4

0.8

1.2

Time (min)

E
lo

ng
. r

at
e 

(h
−1

)

0

10

20

30

40

0

10

20

30

40

%
 o

f l
in

ea
ge

s

0 800 1600 2400
0

10
20
30
40
50

0 200 400 600
0

0.2

0.4

0.6

Time (min)

C
oe

ff.
 o

f v
ar

ia
tio

n

A B C

shift

Pribosomes (min-1)

0

1000

2000

P
rib

os
om

es
 (m

in
−1

)

Figure 6.7 Transient dynamics during downshift at the single-cell level. (A) Ribosome fluores-
cence (top), ribosome production rate (middle) and elongation rate (bottom) over time of all line-
ages within the microcolony. The two thick lines highlight two particular lineages. (B) Histogram 
of ribosome production rate a few minutes before the shift-up (top, N = 33), during the transition 
period (middle, N = 57) and at steady-state (bottom, N = 171) as indicated by the colored arrows 
on (A). (C) Coefficient of variation of the ribosome production rate distributions over time. The 
vertical line indicates the time of shift.

Figure 6.8 Correlation between elongation rate and ribosome production rate. (A) In this scatter 
plot, one point represents one cell cycle. Note that only cells that finished their cell cycle are used 
here. Cells are colored according to their generation number. Here, the downshift occurred during 
generation 5. (B) In this scatter plot, each point represents single elongation rate and ribosome 
production rate at one point in time. A particular trajectory, or lineage, is shown in color, where the 
color represents time. For clarity, the first cell cycle is not plotted. (C) Mean elongation rate versus 
mean ribosome production rate. As in (B), the color represents time. The first cell cycle is not plot-
ted. The arrow indicates the time of shift.
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uptake system in E. coli under conditions of glucose excess is the PTS system. 
When glucose is limiting, the glucose-PTS system has been shown to remain the 
main uptake system (and thus the main contributor to growth) but is used to-
gether with the mannose-PTS and maltose and galactose high-affinity transport-
ers [240]. Hence, monitoring not only ribosome synthesis but glucose assimila-
tion could be of interest. We did not see an immediate response of the elongation 
rate upon upshift. Since all the enzymes were present and nutrient was limiting, 
a higher flux and faster cell wall growth could well have been possible. However, 
some internal adjustments seem required to grow faster. The measurements sug-
gest that this could be ribosome adjustment, given the tight correlation between 
the growth rate and ribosome production rate, though other adjustments could 
also be causal.
	 The rather homogeneous timing of adaptation within single cells upon 
nutrient shift could also be worth further investigation, as it is also surprising 
since it could be expected that cells starting with different ribosome production 
rates and growth rates would adapt with different delays to nutrient shifts. 

 	 Experiments were performed with the E. coli strain ASC659 (ΔChe::HR-
gfp + PN25-CamR, L31-mCherry-KanR) based on MG1655 (rph-1 ilvG- rfb-50). 
Cells were grown in M9 minimal medium supplemented with uracil (as described 
in Chapter 2) and the appropriate amount of glucose (Sigma). The microfluidic 
device used in the same as described in other chapters.

 	 Phase contrast images (300 ms exposure time with GIF filter) were taken 
every 70 sec; fluorescence images every 10 min at high growth, 20 min at low 
growth (50 or 150 ms exposure).
	 The total fluorescence of each cell and the protein production rate 
were determined as described in Chapter 2. The production rate obtained was 
smoothed with the Matlab ‘smooth’ function using the ‘lowess’ method and a 

Materials and methods

6.4.1 Strain and media

6.4.2 Microscopy and data analysis

6.4
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span of 4. The mean production rate of the microcolony is the mean of the pro-
duction rate over all cells in the microcolony at each time point.
	 The cell volume v was calculated by assuming that the cell has the shape 
of a cylinder capped by two half-spheres. The resulting formula follows:

where w is the cell’s width and l the cell’s length.
	 Fits to determine the mean cell width and volume were performed on a 
time window of 100 min before the shift, and the last 100 min of the experiment.
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Summary

	 Biological systems are often described as complex. Yuri Lazebnik [241] 
describes how biologists would find out how radios work, instead of biological or-
ganisms, without having any knowledge of electronics. He argues that to under-
stand how cells (or radios) function, it is not enough understand their individual 
components, and puts forward the need for a more quantitative approach in bi-
ology. Systems biology is an attempt to understand how the interaction between 
different components leads to biological function. Numerous studies have shown 
heterogeneity within population of cells, and that gene expression noise can be a 
source of heterogeneity. Consequently, the origins and consequences of stochas-
ticity in gene expression have been well investigated. However, how stochasticity 
impacts growth is less known.
	 Significant progress has been made to understand how cells achieve 
growth homeostasis at the population level. However, how the growth of single 
cells is impacted during environmental changes remains poorly understood. This 
thesis is thus concerned with the following fundamental question: how are grow-
ing cells responding to perturbations? These perturbations can be either internal, 
such as gene expression noise, or external, which involve changes in the cellular 
environment. To address this question, we use a single-cell approach, combined 
with fluorescence time-lapse microscopy to measure both growth rate with sub-
cycle resolution, and expression of genes of interest.
	 Chapter 2 describes novel microfluidic devices based on polyacrylamide 
gels, which require minimal investment in microtechnologies. For all the differ-
ent designs, the organism is confined between a polyacrylamide membrane and 
the glass coverslip through which microscopy is performed. We demonstrate that 
these devices allow accurate spatio-temporal control of the environment, and 
can be used to study diverse organisms. We show that we can control the growth 
of bacterial colonies, change the carbon source in time and follow the response 
of single-cell lineages. In addition, we can confine and grow yeasts, imposing a 
reversible arrest of growth within a defined time window by a microtubules de-
polymerizing drug. We finally show that we can confine developing nematodes 
in microchambers and follow by time-lapse microscopy the individual growth of 
multiple larvae in parallel.
	 Chapter 3 characterizes the dynamics of bacterial growth during diauxic 
shift in Escherichia coli at the single-cell level. We measure simultaneously single-
cell growth at high time resolution, and lac expression levels. It is known from 
bulk data that upon glucose exhaustion, cells experience a phase of growth arrest. 
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Surprisingly, we find that some cells do not exhibit a lag phase: a fraction of about 
15% continues to grow at the same speed. In addition, growth recovery times and 
induction times of single cells are broadly distributed, and are well correlated. 
To explain the sustained growth of some cells, we create a minimal stochastic 
model for the system. Simulations reproduce the experimental results, and show 
sustained growth in a small fraction of cells provided that the relation between lac 
expression and growth is highly non-linear. Finally, we show that genealogically 
related cells have similar growth recovery times.
	 Several studies have shown the exponential nature of bacterial growth, 
both at the population level and in single cells. Exponential growth reflects the 
cycle inherent to self-replicating systems, where active components help produc-
ing the building blocks that are required for their own synthesis. Chapter 4 is 
concerned with the growth dynamics of single cells upon exposure to a trans-
lation-inhibiting antibiotic that disrupts this cycle. We grow cells on lactose as 
the sole carbon source, and monitor expression of the lac genes as well as other 
essential enzymes. We found that when antibiotics were added to concentrations 
that fully blocked lac enzyme synthesis, the cells continued to grow linearly for 
over 12 hrs. In this growth regime, ribosome synthesis is maintained though at a 
lower rate. In addition, we find that the linear growth rate correlates with the age 
of cells at the moment of tetracycline addition, resulting in significant cell-to-cell 
variability. Further increase in antibiotic concentration allows growth to continue 
transiently, until ribosome synthesis is arrested. We show that in absence of lac 
protein synthesis, existing lac proteins are able to sustain cellular growth.
	 Chapter 5 investigates the propagation of noise in gene expression to 
growth. We use time-lapse microscopy to measure fluctuations in the expression 
of lac enzymes and in the instantaneous growth rate of single E. coli cells, and 
quantify their time-resolved cross-correlations. Metabolism and growth have been 
shown to be constant in fixed conditions. We show on the contrary that cellular 
growth is inherently destabilized, and how this is caused by the stochastic expres-
sion of metabolic enzymes. In addition, this growth destabilization involves noise 
propagation through metabolism. We find that not only fluctuations in the lac 
enzymes propagate to growth, but growth fluctuations in turn perturb expression 
in general. Hence, reciprocal interactions between expression and growth govern 
the stability of cellular growth. We develop a minimal stochastic model coupling 
expression and growth noise. The model reproduces the experimental data, and 
predicts correlations in rewired networks.
	 Chapter 6 deals with growth dynamics of single cells during nutrient 
shifts. Cellular growth rate is modulated by changing the external concentra-
tion of glucose, from abundant to limiting glucose and vice-versa. We monitor 
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both the growth rate and ribosome synthesis over time. Previous studies in bulk 
measured the number of cells over time, or the OD over time, from which the 
cell mass was inferred. However, OD measurements cannot properly distinguish 
between cell elongation and number increase. We find that, during upshift, adap-
tation to the new growth rate is slow and spanned 4 generations, corresponding 
to 5 hrs. Production rate of ribosomes increases to the new rate within roughly 
the same time, and is tightly correlated to the growth rate. The transition from 
high to low growth rate is comparatively faster: the new steady-state for growth 
and ribosome  synthesis is reached after 2 generations only or 3 hrs. Here, growth 
decrease precedes ribosome production rate decrease. In both cases however, the 
response of single cells to nutrient shifts is rather homogeneous.
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Samenvatting

	 Biologische systemen staan bekend om hun complexiteit. Yuri Lazebnik 
[241] beschreef hoe biologen, zonder enige kennis van electronica, zouden moe-
ten uitvinden hoe radio’s werkten in plaats van biologische organismen. Hij be-
toogt dat het niet voldoende is om de uitzonderlijke componenten van de cel (of 
een radio) te begrijpen om de werking van het geheel te begrijpen, en pleit verder 
voor meer kwantitatieve benaderingen in de biologie. Systeembiologie probeert 
te achterhalen hoe de wisselwerkingen tussen verschillende componenten leiden 
tot een biologische functie. Een groot aantal onderzoeken heeft variaties laten 
zien in celpopulaties en dat ruis in genexpressie een bron van variaties kan zijn. 
Zodoende zijn de oorzaken en gevolgen van stochasticiteiten in genexpressie 
uitgebreid onderzocht. Echter, de invloed van stochasticiteiten op groei is niet 
onderzocht.
	 Er is aanzienlijke vooruitgang geboekt in de kennis van hoe cellen groei-
homeostase bereiken op populatieniveau. Echter, de invloed van veranderingen 
in de omgeving op de groei van enkele cellen is niet helder. In dit proefschrift 
staat de volgende fundamentele vraag centraal: hoe reageren groeiende cellen op 
verstoringen? Deze verstoringen kunnen intern plaats vinden, zoals ruis in de 
genexpressie, of, externe storingen betreffende veranderingen in de celomgeving. 
Om deze vraag te beantwoorden hanteren we een benadering voor een enkele-
cel- systeem gecombineerd met tijdsverloop fluorescentiemicroscopie om zowel 
de groeitempo met subcyclusresolutie als de expressie van genen die van belang 
zijn te meten. 
	 Hoofdstuk 2 beschrijft nieuwe microfluidische apparaten gebaseerd op 
polyacrylamide gels, die een minimale investering vereisen in microtechnolo-
gieen. Bij elke apparaat met een specifiek ontwerp is het organisme opgesloten 
tussen een polyacrylamide membraan en een dekglaasje en dit is geschikt voor 
microscopie. We tonen aan we met deze apparaten nauwkeurige veranderingen 
teweeg kunnen brengen in zowel plaats als tijd en deze apparaten kunnen worden 
ingezet om verschillende organismen te bestuderen. We laten zien dat we de groei 
van de bacteriekoloniën kunnen beheersen, de koolstofbron veranderen als func-
tie van tijd en de reactie van afstemmingen van een individuele cel. Daarbovenop 
kunnen we gist opsluiten en groeien, een omkeerbare groeistilstand opleggen bin-
en een gedefinieerd tijdsvak met een drug dat depolymerizatie van microtubuli 
tot stand brengt. Tot slot laten we zien dat we ontwikkelde nematoden in micro-
kamers kunnen opsluiten en de individuele groei van meerdere larven simultaan 
kunnen volgen.
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	 Hoofdstuk 3 karakteriseert de dynamica van bacteriegroei tijdens veran-
dering van catabolietrepressie in Escherichia coli op het enkele cel niveau. We 
meten parallel de groei van enkele cellen met een hoge tijd resolutie en lac ex-
pressieniveaus. Van bulkdata is bekend dat bij glucose-uitputting cellen een fase 
van groeistilstand ondergaan. Verrassend genoeg zien we dat sommige cellen geen 
vertragingsfase tonen: een deel van ongeveer 15% blijft op dezelfde snelheid groe-
ien. Bovendien zijn de groeiherstellingstijden en de inductietijden van enkele cel-
len breed verdeeld en goed gecorreleerd. Om de aanhoudende groei van sommige 
cellen te verklaren, creëren we een minimaal stochastisch model voor het systeem. 
De simulaties weergeven de experimentele resultaten en laten een aanhoudende 
groei zien in een klein deel van de cellen, mits de relatie tussen de lac expressie 
en de groei zeer niet lineair is. Tot slot laten we zien dat genealogisch gerelateerde 
cellen gelijksoortige groeiherstellingstijden hebben.
	 Verscheidende studies hebben een exponentieel eigenschap van bacte-
riegroei laten zien zowel op populatieniveau als in enkele cellen. Exponentiële 
groei weerspiegelt de cyclus dat inherent is aan systemen die zichzelf kopieren, 
waar actieve componenten meehelpen aan het produceren van de bouwstenen die 
nodig zijn voor hun eigen synthese. Hoofdstuk 4 betreft de groeidynamica van 
enkele cellen na blootstelling aan een translatiestremmingsantibioticum dat deze 
cyclus verstoort. We groeien cellen op lactose as de enige koolstofbron en zien 
toe op zowel de expressie van lac genen als andere essentiële enzymen. We vinden 
dat wanneer antibiotica toegevoegd werden in hoeveelheden dat het lac enzyme 
synthese volledig blokkeert, de cellen lineair blijven groeien gedurende 12 uur. In 
dit groeiregime is de ribosomensynthese behouden, al is het op een lager tempo. 
Daarnaast vinden we dat de lineaire groeitempo correleert met de leeftijd van 
de cellen op het moment van toevoeging van tetracycline, wat resulteert in een 
significante cel-tot-cel variatie. Verdere toeneming van de antibioticaconcentratie 
staat toe dat de groei tijdelijk doorgaat totdat de ribosoomsynthese is tegenge-
houden. We laten zien dat in de afwezigheid van lac eiwitsynthese de bestaande 
lac eiwitten in staat zijn de celgroei te steunen.
	 In hoofdstuk 5 wordt de voortplanting van ruis in de genexpressie tot 
groei onderzocht. We meten fluctuaties in de expressie van lac enzymen en in de 
ogenblikkelijke groeitempo van enkele E. coli cellen en kwantificeren hun tijd-
sopgeloste kruiscorrelaties. Hoewel uitgewezen is dat metabolisme en groei con-
stant zijn in bepaalde condities, hebben wij het tegendeel laten zien dat celgroei 
inherent gedestabiliseerd is en hoe dit is veroorzaakt door stochastische expressie 
van metabolistische enzymen. Daarbij heeft deze destabilisatie in groei betrek-
king tot ruisvoortplanting via metabolisme. Niet alleen vinden we dat fluctuaties 
in de lac enzymen aanzetten tot groei, maar ook de fluctuaties in groei op hun 
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beurt de expressie verstoren in het algemeen. Dus, wederkerige wisselwerking-
en tussen expressie en groei bepalen de stabiliteit van celgroei. We ontwikkelen 
een minimaal stochastisch model dat expressie met ruis in de groei koppelt. Het 
model reproduceert de experimentele bevindingen en voorspelt de correlaties in 
samengebrachte netwerken.
	 Hoofdstuk 6 heeft te doen met de groeidynamica van enkele cellen ge-
durende veranderingen van voedingsstoffen. De celgroeitempo is gemoduleerd 
door het veranderen van de externe glucoseconcentratie, van overvloedig tot ge-
limiteerd glucose en vice-versa. We beschouwen zowel het groeitempo en de ribo-
soomsynthese in tijd. Voorgaande bulkstudies hebben het aantal cellen gemeten 
in tijd, of de OD in tijd, waarvan het celgewicht is afgeleid. Echter, OD metingen 
kunnen niet naar behoren celrekking onderscheiden van een toename in aantal. 
We vinden dat tijdens een verandering van lage naar hoge glucoseconcentratie 
de omschakeling naar het nieuwe groeitempo langzaam verloopt en 4 generaties 
overspant, wat correspondeert met 5 uur. Het tempo van het aanmaken van ribo-
somen stijgt tot het nieuwe tempo in ruwweg dezelfde tijd en is strak gecorreleerd 
met het groeitempo. De overgang van hoge naar lage groeitempo verloopt relatief 
sneller: het nieuwe evenwicht voor groei en ribosoom synthese is al bereikt na 2 
generaties ofwel 3 uur. In dit geval gaat de afname in groei vooraf aan de afname 
in productietempo van ribosomen. Echter in beide gevallen is de reactie van en-
kele cellen op de veranderingen in voedingsstoffen tamelijk homogeen.
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