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Chapter 1

Introduction

Cells are the elementary building blocks of life and therefore could be regarded as the
atoms of living matter. Recent advances in high-throughput techniques have made
it possible to identify and characterize the components of the living cell on an un-
precedented scale. Moreover, single-molecule techniques such as optical tweezers have
allowed us to elucidate the dynamics of individual components with impressive detail.
Yet, cellular function does not emerge at the level of individual molecules, but rather
at the collective level of many molecules acting together. Computer simulations and
mathematical modeling have an important role to play in advancing our understand-
ing of the collective behavior of cellular components, and hence cellular function. The
interactions between the components are often not only highly non-linear, but also act
at multiple length- and time scales, making it di�cult to predict and interpret their
behavior by intuition. In parallel, experiments in cell biology have in recent years
become increasingly quantitative, calling for quantitative models. In this thesis, we
develop and apply numerical techniques to understand how spatial patterns of protein
activity are robustly formed and maintained.

Information processing in cells

Cells could be viewed as self-assembling information processing devices. Since the
discovery of DNA by Avery, MacLeod and McCarty [1] and the establishment of
its structural model by Watson and Crick [2] molecular biology and genetics have
seen enormous advances. Genes encode information; more speci�cally, they constitute
construction plans for the functional molecules that perform speci�c tasks in the
cell. However, proteins usually are not produced from their DNA continually; gene
expression is regulated, i.e. activated or suppressed, by transcription factors which
themselves are proteins expressed from genes, as demonstrated by the pioneering
work of Jacob andMonod [3]. Gene regulation in addition is in�uenced by external
signals sensed by the cell. The DNA code thus can be regarded as a �program�
that is �processed� by the cell, depending on the speci�c composition of the DNA
and external stimuli. Cells therefore can be fairly considered �living computers� that
contain internally wired logics capable of processing �protein input� to produce other
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2 Introduction

proteins as �output� [4] in order to make situational decisions, either as a single cell or
in groups. In fact, even the most simple bacterial organisms can successfully detect
gradients in order to bias their movement towards increasing nutrient concentration
(chemotaxis) [5] or temperature (thermotaxis) [6, 7], and �count� how many of their
fellow bacteria surround them via quorum sensing [8, 9]. In essentially all organisms
an autonomous internal clock is maintained via circadian rhythms, which can reach
a surprisingly high precision and moreover adapt their pace in response to external
cues [10]. Finally, in a process which perhaps most elegantly re�ects the notion of
�the wonder of life�, all higher organisms exhibit an astonishing reproducibility and
robustness in the course of their development from one single cell that contains the
blueprint of their body towards a complete organism, consisting of up to trillions of
diversi�ed and well-positioned cells [11, 12, 13].

Only in the recent decades, however, it became clear that gene regulation is an
intrinsically stochastic process [14, 15, 16, 17]. This is due to the fact that, while
there is an enormous diversity of proteins in cells, the typical copy number per cell
of a speci�c protein is very low, sometimes reaching down to the order of 10-100
copies. Their sparseness and the fact that transcription factors predominantly move
via di�usion renders their arrival times at binding sites on the DNA highly irregular,
causing protein production to occur in random bursts of varying size. In that respect,
cells fundamentally di�er from man-made information processing devices because sig-
nal propagation is subject to permanent intrinsic uncertainty, e�ectively resulting in
noisy output at each step of a signalling cascade. This leads to the question: How
can cells, being genuinely stochastic systems, produce a behavior that, on a larger
scale, appears deterministic and well-coordinated? Ultimately, this is part of the
major question how chemistry converts to behavior, or matter to life, which already
haunted such distinguished scientists as Schrödinger and Turing [18, 19].

Spatially resolved stochastic models help understanding how

cells control noise

The issue of noise control in cells has been addressed by a broad range of theoretical
approaches, using techniques from statistical physics and information and signalling
theory. While these e�orts yielded elegant results on limiting and optimizing factors of
information processing by biochemical systems [20, 21, 22, 23, 24, 25, 26, 27, 28], often,
for ease of solvability, they do not explicitly account for spatial aspects, assuming well-
stirred chemical conditions or even instantaneous action of components on each other.
However, in the recent years it is becoming increasingly evident that space plays a
prominent role in cellular information processing. Importantly, the obsevation that
time-averaging�as a straightforward noise-control mechanism�often is incompatible
with the timescales of cellular processes, and that protein-based signalling in many
cases is localized to speci�c parts of the cell, such as the cell membrane or sca�old
proteins, lead to the idea that cellular systems use space as an additional degree of
freedom in their e�ort to control protein noise [29, 30, 31, 32]. Whether and how cells
employ space to attenuate stochasticity in protein dynamics is the main theme of this
theoretical study. More speci�cally, we focus on one particular function that proteins
ful�ll: the establishment of spatially con�ned, well-localized gene expression patterns
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that are stable, precise and robust. Such patterns play an indispensable role in cell
morphogenesis, con�ning growth to particular regions of the cell, and in organism
development, where they specify di�erent cell fates on the tissue level.

A fundemental di�culty that arises here is the following: On the one hand, typi-
cal protein copy numbers appear too small to use mean-�eld techniques, calling for a
particle-based approach; on the other hand, however, they are too large to describe
the particle-system analytically as a whole. This makes it necessary to resort to
particle-based, stochastic chemical simulation techniques. In the recent years the de-
velopment of numerous numerical schemes that serve this purpose, such as Smoldyn1,
MCell2 and ChemCell3 [33, 34, 35, 36, 37, 38], has been put forward. All of these are,
ultimately, based on Brownian Dynamics, in which particle di�usion is simulated by
large series of small random steps. Since, as a consequence of low protein numbers,
interparticle distances typically are large, simulation schemes based on Brownian Dy-
namics necessarily spend a major part of computation time on simulating di�usive
trajectories, whereas truly interesting events, such as particle reactions, are rare. For
that reason, the use of next-event driven schemes, which are able to step from reaction
to reaction, is much more preferable.

eGFRD: a powerful particle-based scheme for stochastic simu-

lation of biochemical networks

Arguably, the only event-driven particle-based simulation algorithm that is currently
in active development is enhanced Green's Function Reaction Dynamics (eGFRD)
[39, 40, 41, 42]. Based on analytical solutions (Green's functions) for the one- and
two-particle reaction-di�usion problem (Smoluchowski equation), it implements an
exact and outstandingly e�cient way to simulate chemical reaction-di�usion systems
on the single-particle level. Under biologically relevant conditions, eGFRD can be up
to 4-6 orders of magnitude more e�cient than Brownian Dynamics. It was successfully
applied to simulate gene regulation and enzyme dynamics in space, revealing that
rapid rebindings of reactants can fundamentally alter the noise characteristics, and
even the qualitative behavior of the system [41, 42]. eGFRD is part of the E-Cell
Project4, which aims at creating a comprehensive whole-cell simulation platform that
retains molecular-level detail.

In spite of its paramount computational power, until now eGFRD was limited
to systems of particles that di�use and interact in an unbounded three-dimensional
volume. As such, it did not account for well-known intracellular features that chie�y
contribute to symmetry breaking, patterning and signal processing in cells, like two-
dimensional di�usion and reactions on the cell membrane and one-dimensional active
transport on linear polymer �laments, such as microtubules [43, 44, 45, 29, 46, 47].
The incorporation of particle transport and interparticle reactions in 1D and 2D into
eGFRD is one of the principal achievements of this work. Indeed the �rst, more
technical chapters of this thesis are completely devoted to describe how we extended

1http://www.smoldyn.org
2http://www.mcell.cnl.salk.edu
3http://chemcell.sandia.gov
4http://www.e-cell.org
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eGFRD towards 1D (chapter 2) and 2D (chapter 3). Since eGFRD owes its virtue
to the full knowledge of the Green's functions, which have to be recalculated from
scratch for the reaction-di�usion problems in the lower dimensions, a fair part of these
chapters deals with the associated mathematical derivations. A thorough introduc-
tion into the basic principles of eGFRD will be given at the beginning of chapter
2. Chapters 2 and 3 converge towards chapter 4, where we use the newly imple-
mented features of eGFRD to simulate a stochastic whole-cell model, studying the
polarization of growth factors in �ssion yeast morphogenesis. The latter is a widely
studied�yet poorly understood�symmetry breaking process that involves active trans-
port on microtubules, di�usion in the cytoplasm and on the membrane, and shuttling
of particles between these transport modes. We identify conditions that optimize
polarity in this system and �nd that recruitment of polarity agents to the membrane
via a second, purely membrane-bound species signi�cantly enhances polarization.

Mutual repression: a bene�cial gene interaction motif that

makes early fruit �y development more robust

In the second half of this thesis (chapters 5 and 6) the focus is shifted to another or-
ganism which became a paradigm of developmental biology: the fruit �y Drosophila
melanogaster. Since the pioneering work of Wieschaus, Lewis and Nüsslein-

Volhard [48, 49] the early embryogenesis of the fruit �y, which is driven by successive
appearance of spatial gene expression patterns that locally determine cell fates and
thus specify divergent development of di�erent body parts, has been the subject of
extensive experimental and theoretical endeavor. Morphogen gradients, i.e. spatially
decreasing transcription factor pro�les that locally activate and suppress the expres-
sion of downstream target genes in a concentration-dependent manner, play a crucial
role in this process. For a long time, the common model of early tissue development
assumed that local patterns are successfully con�ned only via morphogen gradients
(�French-�ag model�) [50] This picture originally ignored the noisy nature of gene
expression. More recent work, however, revealed the intriguing observation that the
level of noise in the gradients is markedly higher than the uncertainty in their target
gene patterns [51, 30, 52]. This again lead to the question how to overcome intrinsic
stochasticity of genetics in order to generate highly reproducible and precise patterns.
The insight that the timescale of rapidly progressing �y embryogenesis simply does
not allow for time-averaging that is su�cient to reduce noise [30] prompted the search
for better-suited noise-control mechanisms in the context of this multi-cellular sys-
tem. Mutual regulatory interactions between di�erent of the downstream patterning
genes have been identi�ed experimentally and put forward as a candidate for such
mechanism. While noise reduction via negative autoregulation has been well stud-
ied, how mutual repression between pairs of genes enhances the precision of spatial
gene-expression patterns is poorly understood.

In chapters 5 and 6 we present two studies in which we conducted extensive
stochastic simulations of a spatially-resolved model of the early fruit �y embryo in
order to elucidate how mutual interactions between developmental patterning genes
help to increase pattern precision and robustness. While these chapters thus follow
the main theme of this thesis, they di�er from the preceding chapters by employ-
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ing other simulation techniques: a clear separation of length- and timescales in the
Drosophila embryo allowed us to opt for a spatial variant of the Stochastic Simula-
tion Algorithm by Gillespie [53, 54]. We use this highly e�cient next-event driven
scheme to simulate a setup in which the embryo is represented as a cylindrical array of
well-stirred biochemical reactors coupled by di�usion between neighboring volumes.
Chapter 5 focuses on mutual repression between two patterning genes under the

control of upstream morphogen gradients. Our main �nding here is that mutual re-
pression and spatial averaging together provide a noise-reduction mechanism that can
produce patterning gene pro�les which are both precise and steep. Mutual repression
is also the subject of chapter 6; here, however, we ask whether a stripe pattern of gene
expression domains can be maintained in a robust way without morphogen gradients.
To answer this question we study interactions between four genes whose expression
domains are arranged in a particular order along the embryo, in which mutual re-
pression between adjacent stripes is weak, whereas long-range mutual repression is
strong, as observed in experiment [12]. Importantly, this model explicitly does not
include any morphogen gradients. By combining the spatial Gillespie simulation
with Non-Stationary Forward Flux Sampling (NS-FFS), a recently developed rare-
event sampling technique, we quantify the stability of the pattern as a function of a
crucial system parameter, the strength of repression between adjacent gene expression
domains. We �nd that there exists an optimal repression strength that maximizes
pattern stability, resulting in persistence times well beyond the biologically relevant
timescales, in the abscence of morphogen gradients.
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Chapter 2

1D-eGFRD

2.1 Introduction to eGFRD

Green's Function Reaction Dynamics, in short GFRD, is a next-event driven stochas-
tic simulation algorithm for chemical reactions in time and space that retains spatial
information on the particle level. The original motivation for GFRD was the limited
availability of techniques that combine the e�ciency of zero-dimensional next-event
driven algorithms, such as the Stochastic Simulation Algorithm by Gillespie [53, 54],
with the richness of detail provided by particle-based schemes like Brownian Dynam-
ics, which however are computationally demanding. At its heart, GFRD decomposes
the simulated volume into geometrically simple subvolumes (�domains�) that contain
at most two particles in order to sample next-events from Green's functions, i.e. exact
analytical solutions of the reaction-di�usion problem. The Green's functions are used
to compute next-event times and particle positions in runtime, updating the individ-
ual domains in an asynchronous fashion. Thanks to the complete knowledge of the
expected spatio-temporal evolution of the probability density within each domain,
large jumps in time and space can be performed and sampling of particle trajectories
is unneccessary. In terms of computational e�ort, GFRD is orders of magnitudes
more e�cient than brute-force Brownian Dynamics for biologically relevant particle
concentrations (c ≤ 1 µM) [42].

Originally, GFRD was developed by van Zon and ten Wolde in 2005 [39, 40, 41].
While this �rst version successfully implemented the basic idea of GFRD, it employed
Green's functions that were calculated under the assumption that interacting particles
can separate in�nitely far. This required the de�nition of a maximum time step and
distance-cuto�, in order to ensure that interactions with particles further away than
the closest particle indeed can be neglected. Hence, the original scheme was event-
driven, but not exact, and updates were synchronous. In 2010 T�anase-Nicola,
Takahashi and ten Wolde presented an improved version of the algorithm, called
eGFRD (e for enhanced) [42], inspired by earlier work [55, 56]. Here the necessity for
a time cuto� was eliminated by the use of Green's functions with absorbing boundary
conditions on the outer radii of the spherical domains. While this approach demands
the calculation of Green's functions that are more complicated, it guarantees that

7



8 1D-eGFRD

any sampled next-event occurs within the domain, and thus truly breaks down the
N -particle problem into independent one- and two-particle problems. This makes
eGFRD an exact, event-driven, asynchronous algorithm.

GFRD proved an extremly powerful tool to simulate di�usion and reactions of
spherical particles in an unbounded three-dimensional volume [42, 41]. However, as
yet it did not allow for the simulation of transport on one- and two-dimensional
structures, which play a prominent role in many intracellular processes, such as DNA
sliding and active transport on microtubules or actin �laments, and reactions at the
cell membrane. Here we present work that extends eGFRD in a way that enables the
simulation of transport and particle reactions on �nite structures in 1D, 2D and 3D,
and transitions between the 3D bulk and the lower-dimensional structures.

The following content is organized as follows: First we describe the working prin-
ciples of eGFRD in more detail. Thereby we introduce common GFRD terminology.
After that, in section 2.2 we explain how we include transport and reactions on 1D
structures into eGFRD, introducing new, cylindrical domain types. These require new
Green's functions, and a large part of this chapter is indeed devoted to their mathe-
matical derivation. This will be conducted in detail for the most important case in
section 2.3 and provides an exemplary reference for other cases presented in this and
later chapters. Where instructive, methodic details of Green's function calculation
will be mentioned. For a complete overview of the use of Green's functions in solving
the di�usion/heat equation we refer to the classical book by Carslaw & Jaeger

[57] and [58, 59], which are excellent sources. Section 2.4 brie�y introduces additional
modi�cations that are necessary to model linear tracks of �nite length. To end with,
in section 2.5 we present a Green's function used to model di�usive transport in 1D
in the presence of a reactive sink.

The implementation of 2D transport into eGFRD is discussed separately in Chap-
ter 2 and partly builds on what follows in this chapter.

2.1.1 Working principle of eGFRD

Imagine a random constellation of N particles of di�erent chemical species that dif-
fuse and react in a 3D volume. Let us assume that the particles are well-represented
by solid spherical spheres and completely characterized by their radius, di�usion con-
stant, rates of interaction with each other and their decay rate. Even with these
simpli�cations, in general it is hard�if not impossible�to �nd an analytical prediction
for future particle species and positions given that the system started from a certain
initial condition. Nonetheless, as often in physics, exact analytical solutions can be
obtained for the case N ≤ 2. eGFRD capitalizes on this fact by dividing the 3D
volume into subvolumes, called protective domains, that contain at most two parti-
cles, in order to isolate the content of each domain from the in�uence of surrounding
particles up to a certain (domain-speci�c) time τD. This way the N -particle problem
is reduced to M < N independent one- or two-particle problems. τD is the time at
which a reconstruction of the domain becomes necessary, e.g. when one of the par-
ticles hits a domain boundary or experiences a reaction that changes its properties.
Figure 2.1 illustrates this principle.



Introduction to eGFRD 9

Figure 2.1: Protective domains separate the N-particle problem into one- and
two-particle problems. The drawing illustrates how eGFRD constructs protective do-
mains that contain at most two particles in order to isolate these from the in�uence of other
particles, starting from a random particle constellation. Subsequently, analytical solutions
are calculated for each domain individually and used to propagate the domains in an event-
driven, asynchronous fashion. We show here a 2D projection for the standard scenario in
which particles di�use and react in unbounded 3D space. In this case protective domains
are spherical. Di�erent colors mark di�erent chemical species.

For su�ciently simple domain geometries, such as spheres or cylinders, the Green's
functions for the isolated reaction-di�usion problems, i.e. the density function p(r, t|r0)
for the probability that a particle is at position r at time t given that it started at
position r0, can be calculated analytically with exact results. Here the con�ning
character of the domain is taken into account by imposing speci�c boundary condi-
tions to p(r, t|r0). Quantities that derive from the Green's function can be used to
generate tentative next-event times for each domain individually. Most importantly,
since p(r, t|r0) completely describes the transient dynamics within the domain, it en-
ables the sampling of new particle positions at τD, rendering the sampling of particle
trajectories unnecessary. If collected in an global scheduler list, the sampled times
can be used to update the domains sequentially, i.e. asynchronously, and to set up
an event-driven scheme. While updates result in particle displacements and possibly
species changes, by construction these remain con�ned to the respective domain and
thus do not interfere with the situation in neighboring domains. After each domain
update the domain is removed, the new constellation of particles is reanalysed and
new domains are constructed around the displaced particles. The newly calculated
next-event times are inserted into the ordered scheduler in the right place and the
domain with the foremost next-event time is updated next. To enhance the formation
of two-particle domains, recently updated particles can force a premature update of
domains in their proximity, called �bursting�. A bursted domain is propagated to-
wards a time prior to its originally scheduled update; the new particle position at
that time sampled form the associated Green's function. If bursting causes particles
to move close enough, creation of a two-particle domain will be attempted. A compact
overview over the basic eGFRD algorithm is given by Algorithm 1.
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Algorithm 1 Basic outline of the eGFRD algorithm. Symbols Dx denote domains,
τx next-event times. The scheduler S is the list of all next-event times in the system,
ordered by increasing time. List U collects all particles that have been updated at a
given time τx and require construction of a new domain. tsim is the time that passed
since simulation start.

Initialize:
tsim ← 0, scheduler S ← {}
for all particles pi do

if not pi already in domain then
Dj ← create domain for pi

τj ← draw next-event time for Dj

insert τj into S ordered by increasing time
end if

end for

Main loop:
while S 6= {} and tsim < tend do

tsim ← τn = topmost element in S
remove τn from S
propagate Dn to τn and remove Dn

reset particle update list: U ← {}
U ← U ∪ {pni} for all particles pni ∈ Dn

while U 6= {} do
pu ← next particle in U
for all domains Duj close to pu do

burst: propagate Duj to τn and remove Duj

remove τuj from S
U ← U ∪ {pujk} for all particles pujk ∈ Duj

end for
end while
for all pu ∈ U do

if not pu already in domain then
Du ← create domain for pu

τu ← draw next-event time for Du

insert τu into S
end if

end for
end while
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In the following we will call domains that contain one particle Single domains or
Singles and domains that contain two particles Pair domains or Pairs. We will now
explain how Green's functions may be used to sample next-event times for the two
domain types speci�cally.

2.1.2 Single domains

Two types of next-events can happen within a Single domain D1: either the particle
undergoes a monomolecular reaction, which can mean decay or species change, or it
hits the boundary of the domain by di�usion. In eGFRD, the former is called a Single
Reaction, the latter a Single Escape.

If we assume that monomolecular reactions are a Poissonian process independent
of particle di�usion, the propensity function for the next reaction is simply an expo-
nential distribution

qm(t) = kme
−kmt (2.1)

where km is the rate of the speci�c monomolecular reaction. A tentative next-event
time τm for a monomolecular reaction then can be sampled via the inversion method
as

τm = −km ln(Rm) (2.2)

where Rm ∈ [0, 1] is a uniformely distributed random number.
Let p(r, t|r0) be the density function for the probability that a di�using particle

will be located at r at time t given that it started at r0 at time t0 = 0. Within
an unbounded volume, the evolution of p(r, t|r0) is well-described by the di�usion
equation

∂tp(r, t|r0) = D∇2p(r, t|r0) + δ(r− r0)δ(t− t0) . (2.3)

Note that due to the delta-peak inhomogeneity that represents the initial condition,
the solution p(r, t|r0) technically is a Green's function.

To sample a �rst-passage time for the particle to reach the outer shell ∂D1 of a
domain D1 constructed around r0, additionally an absorbing boundary condition may
be imposed as follows:

p(r, t|r0) = 0 for r ∈ ∂D1 (2.4)

In the simplest case, for a spherical domain with radius R:

p(|r− r0| = R, t|r0) = 0 (2.5)

For more complicated domain geometries, e.g. cylinders, the problem has to be trans-
formed into a coordinate system that captures speci�c symmetries, and boundary
conditions have to be imposed for each coordinate separately.

Given that the Green's function p(r, t|r0) for the above boundary-value problem
can be found, integration of p(r, t|r0) over the whole domain yields its survival prob-
ability S(t), i.e. the probability for the particle(s) to still remain within D1 at time t.
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Note that S(t0) = 1. The survival probability is linked to the propensity function
q(t), which is the probability for hitting ∂D1 within the time interval [t, t+ dt], via:

q(t) = −∂tS(t) = −∂t

∫
D1

p(r, t|r0)dr (2.6)

In other words, 1− S(t) =
∫ t

t0
q(t′)dt′ = Q(t) is equal to the cumulative distribution

function of q(t) and may be used to sample a next-event time τe for exiting the domain
via the inversion method as follows:

τe = Q−1(Re) = S−1(1−Re) (2.7)

Here Re ∈ [0, 1] again is a uniformely distributed random number. In general, it may
be di�cult to calculate S−1 analytically. Then τe can be obtained by solving the
equation S(τe)−Re = 0 with a numerical root�nder1.

After construction of an eGFRD Single domain, �rst both τe and τm are sampled
as described. Since we presuppose that di�usion and monomolecular reactions are
occuring independently, the next-event time for the domain is set as:

τD1 = min(τe, τm) (2.8)

This automatically determines the event type to be either a Single Escape or a Single
Reaction. For reasons discussed earlier and in appendix section 2.B.2, eGFRD also
allows for �bursting�, i.e. update of the domain at times τb < τD1 . Here we make
use of the fact that eGFRD is capable to generate a new particle position rν from
the Green's function for an arbitrary update time τν ≤ τD1 . Since in these cases the
PDF p(r, τν |r0) is not normalized within D1, precisely because probability leaked out
through ∂D1 during the time τν−t0, it is important to sample rν from the conditional
PDF pS(τν)(r, τν |r0) ≡ 1

S(τν)p(r, τν |r0). How this is done in detail depends on the
geometry of the domain. For a spherical domain with radius R the angles θ ∈ [0, π]
and φ ∈ [0, 2π] in rν = (rν , θ, φ) are sampled from uniform distributions over the
respective intervals, employing existing symmetry. If the next-event type is a Single
Escape, rν = R with certainty and no further steps are required. For the other event
types, i.e. Single Reaction or bursting, the new radial distance rν is sampled from

rν = P−1
S(τν)(RS) (2.9)

with a uniform random number RS ∈ [0, 1] and the cumulative conditional PDF

PS(τν)(rν) =
1

S(τν)

rν∫
0

2π∫
0

π∫
0

p(r, θ, φ, τν |r0)r2 sin(θ)dθdφdr . (2.10)

If a Single Reaction event produces two particles from one, these are put at contact
at the sampled position rν with random spatial orientation. If it is a true decay event
the particle is removed from the system together with its domain. Finally, when a
Single Reaction induces a change the particle species from s0 to s, the s0 particle
is removed and a new s-particle is created at rν . In any other event the particle is
simply moved to rν .

1As a matter of course, using 1−Re and Re is equivalent if both are uniform random numbers
from [0, 1].
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2.1.3 Pair domains

Sampling of next-event times for a Pair domain D2 follows the same principles as
for Singles. However, here the two particles can react at contact, which creates an
additional channel of exit from the domain and a new next-event type.

Let us denote by p2(rA, rB, t|rA0, rB0) the PDF for the likelihood of �nding two
di�using particles A and B initially located at positions rA0 and rB0 at t = t0 at
positions rA and rB at a later time t. The time-evolution of p2 is governed by the
Smoluchowski equation:

∂tp2 = [DA∇2
A +DB∇2

B]p2 (2.11)

Here DA and DB are the di�usion constants of particles A and B. As demonstrated
later for a more general case, this problem can be simpli�ed by transforming coordi-
nates rA and rB to r and R, where r is the interparticle vector and R the (weighted)
center-of-mass of the particles. A separation ansatz p2 = pr(r)pR(R) then yields two
separate, uncoupled di�usion equations for r and R, which are equivalent to (2.11):

∂tpr = Dr∇2
rpr , ∂tpR = DR∇2

RpR . (2.12)

The constants Dr and DR depend only on DA and DB. The uncoupling allows for
the calculation of two Green's function solutions pr(r, t|r0) and pR(R, t|R0) on two
subdomains Dr and DR of D2, respectively, with boundary conditions adapted to the
problem as described further below. Dr and DR must be de�ned in a way that all
possible positions constructed from sampled values of r and R remain within the
protective domain D2. Figure 2.2A shows a valid de�nition of the subdomains for a
(projected) spherical pair domain.

The Green's function pR for the R di�usion is calculated in precisely the same
way as the Green's function for the one-particle problem in Single domains, with an
absorbing boundary condition pR(R, t) = 0 for R ∈ ∂DR. This yields a next-event
time τR for �rst-arrival of R to ∂DR, called Center of Mass Escape or CoM Escape.

Reactions between A and B are modelled via a radiating boundary condition to
pr at the particle contact radius σ = RA +RB:

qσ(t) ≡
∫
∂Dσr
−D∇rpr(r, t|r0)dr = kpr(|r| = σ, t) (2.13)

Here, k is the intrinsic particle reaction rate, which is the rate at which the particles
react given that they are in contact, and pr(|r| = σ, t) is the probability that the
particles are indeed at contact at time t. The integral on the left is the total probability
(out)�ux through the �contact surface� or inner boundary of the r-subdomain, which is
the set of all points at which A and B are in contact: ∂Dσr =

{
r
∣∣|r| = σ

}
. At the outer

boundary of the r-subdomain ∂Dar absorbing boundary conditions are imposed. The
initial condition for this boundary value problem is set by the inital separation of the
two particles, pr(r, t = 0|r0) = δ(r− (rB0 − rA0)). A tentative next-event time τr can
be sampled from the survival probability Sr(t) =

∫
Dr
pr(r, t|r0)dr in the same way as

before. With this, however, it remains undetermined by which boundary the particle
escaped. To specify whether the exit from Dr happens through the radiating (Pair
Reaction event) or through the absorbing boundary (IV Escape2), the probability

2IV = interparticle vector
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A B

Figure 2.2: Pair and Multi domains in eGFRD. (A) Decomposition of a (projected)
spherical Pair domain into subdomains for the center-of-mass vector R and the interparticle
vector r. (B) An exemplary Multi domain. Here we show the situation in which particles
inside the Multi have been already propagated by earlier updates (and thus are o�set with
respect to the shells), but none of them reached its outer shell yet. Thin faint-color rings
around the particles indicate their reaction volume. A blue and a red particle in the lower-
right part of the Multi overlap with their reaction volumes and will attempt a reaction. Since
enough space was available, the top-right green particle formed a regular Single domain.

�uxes through the boundaries at time τr are compared: If a uniformly distributed
random number Rr ∈ [0, 1] is smaller than the fractional propensity

qfrac(τr) =
qσ(τr)

qσ(τr) + qa(τr)
=

qσ(τr)
−∂tSr(τr)

(2.14)

the next-event is a Pair Reaction; otherwise it is a IV Escape.
In general, particles A and B additionally can undergo monomolecular reactions,

for which next-event times τA and τB are calculated in the same manner as for Singles.
Thus, during Pair domain construction, altogether four next-event times τr, τR, τA,
τB with di�erent next-event types are determined. Since the four stochastic processes
again are independent of each other, the tentative next-event time for the Pair domain
is de�ned as:

τD2 = min ({τr, τR, τA, τB}) (2.15)

The precise procedure of sampling new positions for A and B at next-event time
τD2 depends on the type of the next event and the coordinate system in which the
problem is considered. We present here the classical treatment for two interacting



Introduction to eGFRD 15

particles in 3D, which employs spherical coordinates, for each possible event-type re-
spectively:

• Pair Reaction: Here the CoM position Rν(τr) is sampled in the same manner
as the new position rν(τ < τD1) in Singles. A particle with the product species
is created at Rν(τr).

• IV Escape: In this case |rν | = a with certainty, but the escape angle θν yet
remains undetermined. It is sampled from the propensity function for leaving
the r-subdomain at the r-escape time τr through its outer boundary at an angle
θ, given by

qa(θ) = −a sin(θ)
Q

Dr

2π∫
0

[∂rpr(r, θ, φ, τr|r0)]r=a adφ .

Here the normalization factor is the total �ux through the outer boundary Q =∫ π
0
qa(θ)dθ. The second angle φν ∈ [0, 2π] is drawn from a uniform distribution.

• CoM Escape: A new center-of-mass position Rν(τR) is sampled as rν(τD1) in
the Single. To determine rν(τR), �rst a new radius rν is sampled from the
conditional probability

p̃r(r, τR) ≡ r2

Sr(τR)

π∫
0

2π∫
0

pr(r, θ, φ, τR|r0) sin(θ)dθdφ .

Subsequently, a new angle θν is sampled from the density pr,θ(θ, rν , τR)
≡ rν sin(θ)

p̃r(rν ,τR)

∫ 2π

0
pr(rν , θ, φ, τR|r0)dφ and φν ∈ [0, 2π] from the uniform distri-

bution.

• Monomolecular reaction (of A)3: The new CoM position Rν(τA) is sampled as
in the case Pair Reaction, the new interparticle vector rν(τA) as in the case CoM
Escape. From this we obtain rA,ν(τA) and rB,ν(τA). Particle B is simply moved
to rB,ν(τA), while A is treated as described for the monomolecular reactions in
Singles.

3An identical procedure applies, with A and B interchanged, to the case in which B undergoes a
monomolecular reaction.
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2.1.4 Brownian Dynamics provides a fallback-system

The strength of eGFRD is that�due to the knowledge of the Green's function�detailed
sampling of di�usive trajectories inside the domains can be omitted and particles are
propagated with large jumps in time and space. This, however, comes at the cost
of increased computational e�ort per update, because drawing times and positions
from Green's functions is signi�cantly more expensive than sampling of simple Gaus-
sian displacements. Therefore eGFRD becomes more costly than Brownian Dynamics
(BD) when particles get such crowded that the maximal size of protective domains
becomes comparable to particle radii. This may be due to the presence of more
than one other particle or other, static obstacles. In such situations, eGFRD seam-
lessly switches to a simulation mode in which particles are propagated by Brownian
Dynamics within specialized domains, called Multis.

Multi domains

Whenever particle distances fall below a prede�ned threshold and regular domain
types cannot be constructed, the algorithm prompts the construction of Multi do-
mains, which can contain more than two particles. An exemplary Multi domain is
shown in Figure 2.2B. Multis are composed of intersecting spherical shells with shell
radii ρn proportional to particle radii Rn, i.e. ρn = µRn, where the �multi-shell factor�
µ > 1 is a simulation parameter. EachMulti constitutes an autonomous BD simulator
isolated from its surroundings. Within their shells, particles are propagated, one at a
time, by sampling displacements ∆r from the free Gaussian propagator with a �xed,
su�ciently small timestep ∆t that ensures |∆r| � ρn. Particle propagation continues
until either one of the particles hits its surrounding shell or two overlapping particles
react. Then, theMulti is broken apart and the new constellation is evaluated de novo,
possibly resulting in Multi reconstruction. Particles that moved away su�ciently far
from the particle crowd or obstacle at that moment reform Single domains and revert
to propagation via Green's functions.

When and how Multis are constructed is explained in more detail in section 2.B.2
in the appendix.

Reactions in BD ful�ll detailed balance

Particles that create overlaps withinMultis are tested for reactions. Reaction events in
BDmode are sampled such that detailed balance is obeyed. Let r12 be the interparticle
vector of the two interacting particles. Detailed balance demands that, for any r12,
the probability of the unbound con�guration at distance |r12| times the transition
probability to move into the bound state from r12 equals the likelihood to be in the
bound state times the probability of the inverse transition:

pu(r12)πu→b(r12) = pbπb→u(r12) (2.16)

The occupancy ratio pb/pu(r12) = Keq is �xed by the equilibrium constant of the
reaction and πu→b(r12) depends on algorithmic details of particle propagation. This
leaves us with the task to prescribe a backward move in a way that πb→u(r12) obeys
(2.16). Originally, eGFRD employed the Reaction Brownian Dynamics algorithm by
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Morelli and ten Wolde [60]. While this scheme yields excellent results for di�using
spheres in 3D, it proved troublesome to extend it to arbitrary dimensions and non-
spherical objects. In recent eGFRD we therefore implemented a conceptually similar
but more versatile scheme. Its key assumption is that reactive objects, be it other
particles or static structures, are surrounded by a small �reaction volume� V ∗ within
which the precise shape of the density pu(r12) may be ignored. Reaction attempts
only occur within V ∗, and at the inverse reaction the particle is placed uniformely
back into V ∗. The binding process is thus broken apart into a displacement and a
reaction step. As in [60], it proves useful to rewrite the transition probabilities as
a product of a proposal (i.e. move generation) density and (reaction) acceptance
probability:

πu→b(r12) = P gen
u→V∗(∆t)P

acc
V∗→b

πb→u(r12) = P gen
V∗→u(∆t)P acc

b→V∗ (2.17)

Herein P gen
u→V∗(∆t) is the probability to move di�usively into the reaction volume V ∗

from a distance r12 in the unbound state within a time ∆t, whereas P gen
V∗→u(∆t) is

the probability of the inverse move. It can be shown that these probabilities only
di�er by a factor V ∗: P gen

V∗→u(∆t) = V ∗P gen
u→V∗(∆t). Together with the assumption

that unbinding occurs with Possonian statistics, i.e. P acc
b→V∗ = ku∆t, one �nds that

detailed balance is ful�lled when forward reaction attempts are accepted with a rate

P acc
V∗→b =

kb∆t
V ∗

. (2.18)

In practice V ∗ depends on the given situation and it is convenient to tune the magni-
tudes of speci�cally occuring reaction volumes via a global �reaction length� parameter
δ. For two spherical particles with contact radius σ we have V ∗ = 4

3π
(
(σ + δ)2 − σ2

)
.

For the particle-surface interactions that we introduce later V ∗ is calculated similarly,
taking into account the particular geometry of the contact region. This is described
in more detail in [61].

The reaction length δ and the propagation time step ∆t are set for each Multi
domain individually, subject to the following two constraints:

Dmax∆t ≤ (φRmin)2 (2.19)

kb,max∆t
δ

≤ P acc
max (2.20)

Here Dmax is the maximal di�usion constant of a particle in the Multi, Rmin the min-
imal particle radius, kb,max the fastest intrinsic forward rate (divided by dimension-
speci�c contact-surface factors) and φ ≤ 1 a tuneable step size fraction. The �rst
requirement limits the maximal displacement within timestep ∆t to a fraction of the
smallest particle size; the second ensures that the acceptance probability remains
bounded by a value ≤ 1 also for fast reactions. The standard choice in eGFRD is
P acc

max = 0.01 and δ = φRmin with φ = 0.05− 0.10.
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2.1.5 Practical aspects

On the practical level, additional attention has to be devoted to some further aspects.
In particular, we were not concerned about details of creating protective domain
shells given a certain constellation of surrounding shells. While it is clear that in
principle one would like to size them up as much as possible, precisely because this
makes it possible to make large jumps in time and space, in practice it turns out that
this directive by itself may provoke unfavorable behavior that hampers e�ciency.
Speci�cally, a domain that is sized up to the boundary of a rather small neighboring
domain is likely to be bursted shortly afterwards, when the small domain is updated;
this forces domain reconstruction from scratch from almost the same situation as
before, wasting computational e�ort. Moreover, while we explained in section 2.1.4
that it is advantageous to locally propagate particles by Brownian Dynamics when
they get crowded, it is not a priori clear when precisely the transition between the two
simulation modes should be done. We give a full account of measures that deal with
these issues in section 2.B.2 in the appendix, where we present a detailed description
of domain making rules in eGFRD.

Implementation

eGFRD is implemented with a core-system written in C++ and a Python-based annex
part. The core system is embedded into Python via Boost.Python. While the usage
of C++ at the core level ensures high computation e�ciency, the attached Python
interface provides a user-friendly scripting environment. eGFRD makes intense use
of GNU Scienti�c Library, Numpy, Scipy, Automake and GNU Libtool. In later 2012
eGFRD surpassed the 150k linecount. The open-source code is stored in an online git
repository accessible from the eGFRD website (http://gfrd.org).

Performance

eGFRD has demonstrated hitherto unmatched computational e�ciency as a truly
particle-based stochastic simulation environment in simulations of reacting hard spheres.
It clearly outperforms classical Brownian Dynamics up to µM particle concentrations
[39, 42], which is well within the biologically relevant regime. At higher particle den-
sities BD becomes favorable for the reasons explained in section 2.1.4. For particles in
a �nite, constant 3D volume with periodic boundary conditions the CPU time scales
as N5/3 with the particle number N . For the extended simulator with the new fea-
tures that we present in the forthcoming sections and chapters, detailed benchmarking
remains yet to be performed.
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2.2 Introducing 1D transport into eGFRD

In cells, 1D transport is common. There are two princpal types of 1D transport:
di�usion on linear structures, an example of which is DNA sliding [62, 63, 64], and
cytoskeletal active transport [65, 66]. In active transport, cargo such as proteins,
vesicles or virus vectors, is transported via molecular motors on linear macropolymer
tracks like microtubules and actin �laments. Molecular motors consist of a stalk
domain that bind the cargo and two foot domains that can attach to the polymer track.
There are two major classes of molecular motors: processive and non-processeive
motors [67]. Processive motors can move preferentially into one direction in a walking-
like fashion while remaining bound to the �lament. This is achieved through an ATP-
powered sequence of reactions that induce periodic allosteric changes of the motor
structure, in a way that one foot remains bound to the track while the other one is
�rst protruded towards and then anchored to a neighboring lattice site on the track.
In spite of reaction reversibility, permanent consumption of ATP makes the forward-
step reaction more probable than the backward-step. This way, a biased random
walk of the motor towards a speci�c end of the linear track is created. Although
non-processive motors also can change their con�rmation upon binding to a �lament,
they are incapable of taking successive steps. Nevertheless, multiple groups of non-
processive motors can create a step-like movement and drag cargo along the �lament
collectively. However, the resulting movement is much more irregular as compared to
processive motors, with di�usion dominating over drift.

GFRD heavily relies on the availability of exact analytical solutions for the di�usion-
reaction problem in simple geometries. Under this constraint, details like motor struc-
ture and �lament curvature, which massively complicate mathematical calculations,
have to be abandoned. In order to implement 1D transport into GFRD we therefore
devised a minimal model of di�usive and active transport on linear tracks: Tracks are
represented as thin, long cylinders with a reactive surface. Sliding proteins and motor-
cargo complexes are assumed to be well-represented by perfectly spherical (single)
particles. The biased 1D random walk is described by a modi�ed di�usion equation
that contains an additional drift term. These simpli�cations enables us to introduce
(cylindrical) domains that produce next-event times for binding to and displacements
on the cylinders, using the associated Green's functions.

In what follows, after introducing some new terminology, we �rst describe how we
treat binding of particles from the cytosol to the reactive cylindrical structures and
the reverse process. We then explain modelling of 1D movement of particles on the
cylinders. The mathematical derivation of the required Green's functions is subject
of the subsequent section 2.3.

2.2.1 Structures, surfaces and interactions

Here we brie�y clarify the use of new terminology.
We will call static objects on which particles can exist �structures�. This may

be the 3D volume, called the �bulk� structure, or submanifolds of the 3D space, like
cylinders and planes, referred to as �surfaces�.



20 1D-eGFRD

Further, we will distinguish between �reactions�, i.e. the binding of particles to
particles, and �interactions�, which is the binding of particles to surfaces. Instant
transfer of particles from one surface to another is called �transitions�. Accordingly,
in addition to the basic classi�cation into Singles and Pairs, we distinguish between
�Interaction� and �Transition� domains, in which, respectively, particles can bind
to surfaces or jump from one surface to another. The four domain categories are
not necessarily mutually exclusive: Transitions can be Singles or Pairs, whereas
Interactions are always Single domains. For completeness, we refer to Singles that
are not Interactions as �Non-Interaction Singles�. Note that Non-Interaction Singles
may also exist on surfaces.

A domain class tree illustrating the categorization of domain types, which also
includes new domain types introduced in the next chapter, is shown in Figure S2.1 in
appendix section 2.B.1.

2.2.2 Interactions with cylinders

Let us assume a situation in which a spherical particle that di�uses in 3D is close
to a long cylinder with a reactive surface to which the particle can bind with an
intrinsic forward rate k. To isolate the particle-surface association problem from the
in�uence of surrounding particles and surfaces we construct a cylindrical protective
domain, with an axis that coincides with the axis of the reactive surface and such
that it contains only the proximate particle. A sketch of such a �Cylindrical Surface
Interaction� domain is shown in Figure 2.3A. For the one-particle surface-binding
problem an analytical solution can be readily obtained.

Di�usion of the particle within the cylindrical domain is described by the di�usion
equation in cylindrical coordinates r = (r, φ, z):

∂tp(r, t|r0) = D∇2p(r, t|r0) = D

[
1
r
∂r (r∂r) +

1
r2
∂2
φ + ∂2

z

]
p(r, t|r0) (2.21)

Since here di�usion in the direction parallel to the cylinders and di�usion in the direc-
tion orthogonal to the cylinders are not correlated, the above 3D di�usion equation
can be uncoupled into a 1D and 2D problem using a separation ansatz p(r, t|r0) =
pr(r, φ, t)pz(z, t). This yields:

∂tpr(r, φ, t) = D

[
1
r
∂r (r∂r) +

1
r2
∂2
φ

]
pr(r, φ, t) (2.22)

∂tpz(z) = D∂2
zpz(z, t) (2.23)

Let the particle initially be located at r0 = (r0, φ0, z0 = 0). Then we may write the
initial condition as:

p(r, φ, z, t = 0) = δ(r− r0) =
1
r
δ(r − r0)δ(φ− φ0)︸ ︷︷ ︸

pr(r,φ,t=0)

δ(z)︸︷︷︸
pz(z,t=0)

(2.24)

To include the new domain into the existing eGFRD framework we have to com-
pute the expected times of particle exit from the domain. Here exit can either happen
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A

B

C

Figure 2.3: New protective domain types for interactions with and transport and
reactions on 1D structures. (A) Cylindrical Surface Interaction domain; (B) Cylindrical
Surface Single domain; (C) Cylindrical Surface Pair domain. Right panels show sections of
3D objects along the common cylinder axis. Absorbing boundaries are highlighted by red,
radiative boundaries by green. Note that drift velocities (v, vA, vB) can be towards any
cylinder end.

by hitting the absorbing outer boundary of the cylindrical domain or by reacting with
the cylindrical structure enclosed by the domain. Let RD and L be the radius and the
length of the cylindrical domain, respectively, R0 the radius of the reactive cylinder
representing the �lament and R the particle radius. Then the two aforementioned
exit channels can be included into the model by imposing the following boundary
conditions:

pz(−L/2, t) = 0, pz(+L/2, t) = 0 (2.25)

pr(RD, φ, t) = 0 (2.26)

2πσD∂rpr(r, φ, t)
∣∣
r=σ

= kpr(|r| = σ, t) (2.27)

Here σ = R + R0 is the contact radius, i.e. the radius of the cylindrical surface that
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comprises all positions in which the particle is in contact with the reactive cylinder.
2πσD∂rpr(r, φ, t)

∣∣
r=σ

is the total outward probability �ux in radial direction through
the radiative boundary at r = σ at time t, while pr(|r| = σ, t) is the probability to be
at contact with the reactive cylinder for the given t.

Clearly, the original 3D di�usion-reaction problem can be broken down into two
problems that can be solved separately: Equations (2.22) with (2.26), (2.27) and
the respective part of (2.24) constitute a boundary value problem for 2D di�usion
of a point particle with a radiating boundary condition at r = σ and an absorbing
boundary condition at r = RD. We present the Green's function for this problem in
section 3.3.2. Equations (2.23) with (2.25) and the initial condition for pz in (2.24)
describe di�usion of a point particle in one dimension with two absorbing boundaries.
The Green's function for this scenario follows as a special case of the Green's Function
derived later in this chapter, as described in section 2.3.2.

2.2.3 Di�usion, drift and reactions on cylinders

Once a particle has bound to the cylindrical surface it can di�use and drift along
its axis and interact with other particles. To calculate next-event times for this
scenario we again construct a protective domain around the particle. Here speci�cally
we seek a domain that isolates cylinder-bound (1D) particles both from bulk (3D)
particles and from other 1D particles simultaneously. While it certainly would be
possible to take into account the �nite thickness of the �lament and rotational di�usion
around the cylinder axis, we ignore these microscopic dynamics here; we argue that for
most biological processes the dynamics at this molecular scale can be coarse-grained.
Therefore we assume that the spherical particles in their bound state localize onto the
axis of the cylinder. Then cylindrical domain geometry again is a natural choice, with
a cylinder radius RD equal to or greater than the particle radius. The length of the
cylindrical domain is determined by the available free space, which in turn is limited
by already present protective domains of other particles or the ends of the cylindrical
surface if it is �nite. In section 2.4 we describe in more detail how �nite linear tracks
are treated. Again we allow for one- (Cylindrical Surface Single, Fig. 2.3B) and two-
particle domains (Cylindrical Surface Pair, Fig. 2.3C); the latter are formed when
two cylinder-bound particles are close to each other. In addition, we introduce a
special Single domain that encloses a reactive sink (Cylindrical Surface Sink domain,
Fig. 2.5D) which may be used to model, for example, a reactive promoter site on
DNA. More detail on the Cylindrical Surface Sink follows in sections 2.4 and 2.5.

The new domain types di�er by their associated Green's functions. For the Single
domains the Green's Function p(x, t|x0) is calculated from the di�usion-drift equation

∂tp(r, t|r0) = D∇2p(r, t|r0)− v∇p(r, t|r0) (2.28)

with two absorbing boundary conditions. Here the constant parameter v is the drift
velocity of the particle and D the di�usion coe�cient of the 1D di�usion process.
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Similarly, in the Pair domains the spatio-temporal evolution of the combined
probability density p2 for two particles with di�usion constants DA and DB and
(constant) drift velocities vA and vB, respectively, may be described by the following
Smoluchowski equation [68, 39]:

∂tp2 = [DA∇2
A +DB∇2

B − vA∇A − vB∇B]p2 (2.29)

Herein p2 = p2(rA, rB, t|rA0, rB0) is the probability density function for the proba-
bility to �nd particle A at postion rA and particle B at rB at time t given that they
started at rA0 and rB0 at t = 0. In section 2.3.1 we demonstrate that via an ade-
quate coordinate transform we can decompose the combined di�usion-drift movement
of both particles into two independent di�usion-drift processes for the center-of-mass
and the interparticle vector, as already described in general for Pairs in section 2.1.3.
This yields two equations of the same form as (2.28).

The fact that the required Green's function solutions follow from the same partial
di�erential equation (2.28) facilitates further e�ort: In the following we will �rst
derive the Green's function for the 1D di�usion-drift problem with one radiating and
one absorbing boundary and then obtain the corresponding solution for the situation
with two absorbing boundaries as a limit (section 2.3.2). The Green's function for
the Cylindrical Surface Sink domain is treated as a special case in section 2.5.

2.2.4 Unbinding from cylinders

Unbinding from the cylindrical surfaces is treated in the same way as monomolecu-
lar reactions in standard eGFRD. A next-unbinding time τu is again sampled from
an exponential distribution. Upon unbinding at time τu the cylindrical protective
domain of the particle is bursted, i.e. particles are propagated until τm using the
associated Green's function. After that, the unbinding particle is put at contact with
the cylindrical surface at a random unbinding angle φu ∈ [0, 2π]. Of course, also
monomolecular reactions that leave the particle on the cylinder or annihilate it are
possible, and technically treated in the same way.



24 1D-eGFRD

2.3 Green's functions for the di�usion-drift-reaction

problem in 1D

In the following we derive Green's functions that are needed to sample next-event
times for particles di�using, drifting and interacting in 1D.

First we present the coordinate transform that is necessary to treat the two-particle
problem.

2.3.1 Coordinate separation for the Smoluchowski equation

Starting from the Smoluchowski equation [68] for two particles with di�usion coef-
�cients DA, DB and drift velocities vA, vB

∂tp2 = [DA∇2
A +DB∇2

B − vA∇A − vB∇B]p2 (2.30)

we de�ne the interparticle vector r and the weighted center-of-mass vector R as
follows:

r ≡ rB − rA

R ≡ γrA + δrB (2.31)

γ and δ are constant coe�cients that will be speci�ed later.
In section 2.A of the appendix we show that operators ∇A and ∇B may be rewrit-

ten in terms of ∇r and ∇R as follows:

∇A = γ∇R −∇r

∇B = δ∇R +∇r (2.32)

With the constraint DAγ = DBδ, which causes mixed derivative terms ∼ ∇r∇R

to vanish, and after some intermediate steps one arrives at:

∂tp2 =
[
(DA +DB)∇2

r + (γ2DA + δ2DB)∇2
R

− vA (γ∇R −∇r)− vB (δ∇R +∇r)
]
p2

=
[
(DA +DB)∇2

r + (γ2DA + δ2DB)∇2
R

+ (vA − vB)∇r − (γvA + δvB)∇R

]
p2 (2.33)

Via the separation ansatz p2 ≡ prpR we can rewrite the above equation in terms
of two di�usion-drift equations, one for r and one for R, with di�usion and drift
constants made up from the corresponding constants of the individual particles:

∂tpr =
[
(DA +DB)︸ ︷︷ ︸

Dr

∇2
r − (vB − vA)︸ ︷︷ ︸

vr

∇r

]
pr

∂tpR =
[
(γ2DA + δ2DB)︸ ︷︷ ︸

DR

∇2
R − (γvA + δvB)︸ ︷︷ ︸

vR

∇R

]
pR (2.34)
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The interpretation of the new drift constants is straightforward: vr describes the
relative velocity of the particles (as in the case without di�usive motion) while vR is
an e�ective weighted center-of-mass drift.

As explained in section 2.A, there is some freedom in choosing γ and δ as long as
the constraint imposed above remains ful�lled. Here we make the same choice as in
eGFRD:

γ =
DB

DA +DB
, δ =

DA

DA +DB
(2.35)

which implies:

DR =
DADB

DA +DB
, vR =

DBvA +DAvB

DA +DB
(2.36)

With the de�nition of 1D structures and domains introduced in section 2.2 move-
ment of the particles is restricted to a straight line. Then vectors r, R, vr and vR are
collinear, and we can pass from the vector equation to a scalar equation.

2.3.2 Solution for the 1D-di�usion-reaction problem with drift

with di�erent boundary conditions

With the assumptions made in the previous section the 1D di�usion-drift equation
takes the common form, where x stands for either the inter-particle distance r or the
center-of-mass position R:

∂tpx =
[
Dx∂

2
x − vx∂x

]
px (PDE)

In both cases the initial condition is px(x, t0 = 0) = δ(x − x0). In the following we
will drop the index and simply use p = p(x, t|x0, t0) to denote the Green's function.
Following the standard treatment in eGFRD, we model chemical reactions between
particles A and B on the cylinder by imposing a radiating boundary condition to
r at particle contact, while the R-equation has to be solved subject to absorbing
boundary conditions. For completeness, we will also give the solutions for the half-
bounded problems.

To summarize, in the following we will derive the Green's function for (PDE) on an
interval [σ, a] of length L = a− σ or on a one-sided interval [σ,∞), and the following
boundary conditions, respecitvely:

• Rad-Abs: radiating left boundary at σ, absorbing right boundary at a > σ.

• Abs-Abs: absorbing left boundary at σ, absorbing right boundary at a > σ.

• Rad-Inf: radiating left boundary at σ, no right boundary.

• Abs-Inf: absorbing left boundary at σ, no right boundary.

The Green's Functions are used to derive the resulting survival probability S(t|x0, t0) =∫ b or ∞
a

p(x, t|x0, t0)dx, the corresponding propensity function π(t|x0, t0) = −∂tS(t|x0, t0)
and expressions for the transient boundary �uxes.
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Free solution

It is easily veri�ed that �free�, i.e. unbounded, di�usion-drift equation (PDE) with
initial condition p(x, t = 0) = δ(x− x0) is solved by

pfree(x, t|x0) =
1√

4πDt
e−

1
4Dt [(x−x0)−vt]2 (2.37)

which describes a Gaussian distribution with a width that increases in time, centered
around a mean value that moves with the drift velocity v.

Green's function for 1D-di�usion with drift, Rad-Abs case

We start with the most general of the four cases, with the perspective of deriving
other cases as special limits.

The radiation boundary condition relates the probability �ux j(x = σ, t) at the
radiating boundary to the intrinsic reaction rate k via:

j(x = σ, t) = −kp(x = σ, t) (2.38)

Here the �ux contains a contribution from di�usion and a contribution from the drift:

j(x, t) = −D∂xp(x, t) + vp(x, t) (2.39)

The correct boundary condition for the boundary at σ < a therefore is:

−D∂xp(x, t)
∣∣
x=σ

+ vp(σ, t) = −kp(σ, t)

⇔ ∂xp(x, t)
∣∣
x=σ

=
v + k

D
p(σ, t) (BCr)

The minus sign on the right side of the equation is due to the fact that at the left
boundary the �ux out of the system is negative with respect to the x-axis.

The absorbing boundary at x = a requires:

p(a, t) = 0 ∀t (BCa)

Dedimensionalization

Before we attempt to solve the PDE with these boundary conditions it is convenient
to perform a dedimensionalization. The natural length scale is given by the length
L = a− σ of the interval [σ, a], while T ≡ L2/D de�nes a corresponding natural time
scale. We thus rescale our variables via

ξ ≡ x− σ
a− σ

=
x− σ
L

, ⇒ ∂ξ ≡ L∂x

τ ≡ t

T
=
Dt

L2
, ⇒ ∂τ ≡ T∂t =

L2

D
∂t (2.40)
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to obtain the following boundary value problem to solve:

∂τp(ξ, τ) =
[
∂2
ξ −

vL

D
∂ξ

]
p(ξ, τ) (PDE)

∂ξp(ξ, τ)
∣∣
ξ=0

=
(v + k)L

D
p(0, τ) (BCr)

p(1, τ) = 0 (BCa)

p(ξ, τ = 0) =
1
L
δ (ξ − ξ0) (IC)

The last equation represents the starting condition for a particle initially located at
position Lξ0 (or a pair having an initial separation Lξ0), where for convenience we
set t0 = 0 = τ0. Note that we have to scale the delta function by 1/L because the
integration norm scales as dξ = Ldx.

Unfortunately the linear operator Λ ≡
[
∂2
ξ − vL

D ∂ξ

]
is non-Hermitian. Therefore

we can not apply straightforward techniques like eigenfunction expansion to calculate
the solution. As we will see, a simple transform can resolve this issue.

Simplifying the problem with the help of an integrating factor

The di�culties imposed by the non-Hermiticity of the operator can be overcome by
introducing an integrating factor φ(ξ) ≡ e

vL
2D ξ = e

ν
2 ξ (depending explicitly on ξ)4.

This technique was already used by Smoluchowski himself [69]. Multiplying (PDE)
with 1/φ(ξ) = e−

ν
2 ξ and completing the square yields (ν ≡ vL

D ):

∂τ
[
e−

ν
2 ξp(ξ, τ)

]
= e−

ν
2 ξ
[
∂2
ξ − ν∂ξ

]
p(ξ, τ)

=
[
e−

ν
2 ξ∂2

ξ − 2
ν

2
e−

ν
2 ξ∂ξ +

ν2

4
e−

ν
2 ξ

−ν
2

4
e−

ν
2 ξ

]
p(ξ, τ)

= ∂2
ξ

[
e−

ν
2 ξp(ξ, τ)

]
− ν2

4
e−

ν
2 ξp(ξ, τ) (2.41)

Thus, by writing the solution with an ansatz

p(ξ, τ) = φ(ξ)π(ξ, τ) = e
ν
2 ξπ(ξ, τ) (2.42)

which means de�ning a new function

π(ξ, τ) ≡ e− ν2 ξp(ξ, τ) (2.43)

equation (PDE) is equivalent to:

∂τπ(ξ, τ) = ∂2
ξπ(ξ, τ)− ν2

4
π(ξ, τ) (2.44)

4Λ is non-Hermitian with respect to the usual Cartesian integration norm dξ. However it is
Hermitian with respect to the integration norm dφ = ν

2
e
ν
2 ξdξ.
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Alternatively, this can be seen by plugging the new ansatz for p into (PDE) and
applying the operators accordingly.

As a next step, also the boundary conditions and the initial condition have to
be transformed analogously to yield an equivalent of the whole problem. Clearly,
π(ξ, τ) = 0 whenever p(ξ, τ) = 0. Thus, π(ξ, τ) ful�lls the boundary condition at
ξ = 1 trivially if p(ξ, τ) does so. Because of

∂ξπ(ξ, τ) =
[
∂ξe
− ν2 ξ

]
p(ξ, τ) + e−

ν
2 ξ∂ξp(ξ, τ)

we have

∂ξπ(ξ, τ)
∣∣
ξ=0

= −ν
2
p(0, τ) +

[
e−

ν
2 ξ∂ξp(ξ, τ)

]
ξ=0

= −ν
2
p(0, τ) +

(v + k)L
D

p(0, τ)

=
[
ν

2
+
kL

D

]
π(0, τ)

where in the last step we use p(0, τ) = π(0, τ) and ν = vL
D .

The initial condition becomes:

π(ξ, 0) = e−
ν
2 ξp(ξ, 0) = e−

ν
2 ξ

1
L
δ (ξ − ξ0)

In the prefactor of the delta function ξ only takes values other than ξ0 when the delta
function is zero, so we can set ξ = ξ0 here. This facilitates further calculations.

In summary, after multiplication with the integrating factor φ the initial problem
for p(ξ, τ) is equivalent to the following problem for π(ξ, τ):

∂τπ(ξ, τ) =
[
∂2
ξ −

ν2

4

]
π(ξ, τ) (PDE)

∂ξπ(ξ, τ)
∣∣
ξ=0

=
[
ν

2
+
kL

D

]
π(0, τ) (BCr)

π(1, τ) = 0 (BCa)

π(ξ, 0) = e−
ν
2 ξ0

1
L
δ (ξ − ξ0) (IC)

This result reveals that the di�usion-drift problem is mathematically equivalent to a
di�usion-decay problem with a slightly modi�ed radiative boundary condition. The
strategy now is to solve (PDE) for π(ξ, t) and reconstruct the solution p(ξ, t) after-
wards using (2.42).

Solving the PDE via Laplace transform

Applying the Laplace transform by integrating
∫∞

0
π(ξ, τ)e−sτdτ ≡ π̂(ξ, s) on both

sides of (PDE) yields:

sπ̂(ξ, s)− e− ν2 ξ0 1
L
δ (ξ − ξ0) =

[
∂2
ξ −

ν2

4

]
π̂(ξ, s)

⇔
[
∂2
ξ − κ2

]
π̂(ξ, s) = −φ0δ (ξ − ξ0) (2.45)
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where we abbreviate κ2 ≡ ν2

4 +s ≥ 0 and φ0 ≡ 1
Le
− ν2 ξ0 > 0. According to transforma-

tion rules, the time derivative ∂τπ(ξ, τ) converts to π̂(ξ, s)− π(ξ, τ = 0) in Laplace
space.

To solve the transformed equation we �rst calculate the solution of the homogenous
problem. This will be used to obtain two di�erent speci�c solutions on the two
parts of the underlying space separated by the delta peak, i.e. [0, ξ0] and [ξ0, 1],
employing the boundary conditions and a continuity/discontinuity condition at ξ = ξ0.
The general solution to the homogenous problem ∂2

ξ = κ2π̂(ξ, s) can be written as
π̂h(ξ, s) = α sinh(κx) + β cosh(κx). We thus make an ansatz for each part of the
interval [0, 1] as follows:

π̂(ξ, s) = π̂−(ξ, s) ≡ α− sinh(κξ) + β− cosh(κξ) for ξ < ξ0 (2.46)

π̂(ξ, s) = π̂+(ξ, s) ≡ α+ sinh(κξ) + β+ cosh(κξ) for ξ > ξ0 (2.47)

with constant, yet arbitrary, real coe�cients α+, β+ and α−, β−. Let us �rst apply
the absorbing boundary condition at ξ = 1 to (2.47):

π̂+(1) = 0 ⇒ α+ sinh(κ) = −β+ cosh(κ) (2.48)

where we neglect the unphysical solution α+ = 0, β+ = 0.
Applying the transformed radiating boundary condition at ξ = 0 to (2.46) yields:

∂ξπ̂−(ξ, s)
∣∣
ξ=0

=
[
ν

2
+
kL

D

]
︸ ︷︷ ︸

Ω

π̂−(0, s)

⇔ [α−κ cosh(κξ) + β−κ sinh(κξ)]ξ=0

= Ω [α− sinh(κξ) + β− cosh(κξ)]ξ=0

⇔ κα− = Ωβ− (2.49)

Reinsertion into (2.46) and (2.47) leads to:

π̂−(ξ, s) = α−

(
sinh(κξ) +

κ

Ω
cosh(κξ)

)
(2.50)

π̂+(ξ, s) = α+ (sinh(κξ)− tanh(κ) cosh(κξ)) (2.51)

In order to determine coe�cients α+ and α− we, �rstly, impose continuity of π̂(ξ, s)
at ξ = ξ0, i.e. π̂−(ξ0, s) = π̂+(ξ0, s) for all s. Secondly, by integrating equation (2.45)
over [ξ0 − ε, ξ0 + ε] and taking the limit ε→ 0, we obtain the following discontinuity
condition for the left- and right-hand derivative ∂ξπ̂(ξ, s)

∣∣
ξ=ξ0

:

∫ ξ0+ε

ξ0−ε

[
∂2
ξ π̂(ξ, s)− κ2π̂(ξ, s)

]
dξ = −

∫ ξ0+ε

ξ0−ε
φ0δ(ξ − ξ0)dξ ⇔[

∂ξπ̂(ξ, s)
∣∣
ξ0+ε
− ∂ξπ̂(ξ, s)

∣∣
ξ0−ε

]
− κ2

[
Π̂(ξ0 + ε, s)− Π̂(ξ0 − ε, s)

]
= −φ0

ε→0⇒ ∂ξπ̂+(ξ, s)
∣∣
ξ0
− ∂ξπ̂−(ξ, s)

∣∣
ξ0

= −φ0 (2.52)
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The term [Π̂(ξ0 + ε, s)− Π̂(ξ0 − ε, s)] vanishes for ε→ 0 because continuity of π̂(ξ, s)
at ξ = ξ0 implies continuity of the stem function Π̂(ξ, s) =

∫
π̂(ξ, s)dξ at this point.

Applying the two additional constraints to (2.50) and (2.51) determines, after
some algebraic steps, the coe�cients α− and α+:

α− =
−φ0

κ
(
κ
Ω + tanh(κ)

) (sinh(κξ0)− tanh(κ) cosh(κξ0))

α+ =
−φ0

κ
(
κ
Ω + tanh(κ)

) (sinh(κξ0) +
κ

Ω
cosh(κξ0)

)
(2.53)

Hence,

π̂−(ξ, s) =
−φ0

κ
(
κ
Ω + tanh(κ)

)×(
sinh(κξ) +

κ

Ω
cosh(κξ)

)
(sinh(κξ0)− tanh(κ) cosh(κξ0))

π̂+(ξ, s) =
−φ0

κ
(
κ
Ω + tanh(κ)

)×(
sinh(κξ0) +

κ

Ω
cosh(κξ0)

)
(sinh(κξ)− tanh(κ) cosh(κξ))

(2.54)

or, after multiplying numerator and denominator by cosh(κ):

π̂−(ξ, s) =

φ0

κ

(
sinh(κξ) + κ

Ω cosh(κξ)
)

(sinh(κ) cosh(κξ0)− cosh(κ) sinh(κξ0))
sinh(κ) + κ

Ω cosh(κ)

π̂+(ξ, s) =

φ0

κ

(
sinh(κξ0) + κ

Ω cosh(κξ0)
)

(sinh(κ) cosh(κξ)− cosh(κ) sinh(κξ))
sinh(κ) + κ

Ω cosh(κ)
(2.55)

Here we shall not forget that κ = κ(s) =
√
s+ ν2

4 .
With this we have determined unique solutions to the di�usion-drift-reaction prob-

lem for the left (ξ ≤ ξ0) and right (ξ ≥ ξ0) part of the spatial domain in Laplace

space. Now we can attempt the back transform to the time domain, where we will
�nd that the solution becomes symmetric in ξ and ξ0 again.

Inverse Laplace transform via residue formula

Having π̂(ξ, s) we can obtain the corresponding function in the time domain via the
Bromwich / Fourier-Mellin integral:

π(ξ, t) = L−1 [π̂(ξ, z)] =
1

2πi
lim

T→∞

∫ γ+iT

γ−iT

π̂(ξ, z)eztdz (2.56)
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Herein π̂(ξ, z) is the extension of π̂(ξ, s) to the complex plane. The integration has
to be performed on a line perpendicular to the real axis at the positive real value γ,
which must be greater than the real part of any singularity of the complex function
π̂(ξ, z). Usually this is a daunting task. It is simpli�ed a lot if π̂(ξ, z) is a holomorphic
function. In that case we can apply residue calculus to compute the line integral via
a contour integral. To that purpose we close the line path from γ − iT to γ + iT
by a half-circle in the space left to it ({z|Re(z) ≤ γ}) to obtain contour γ′(T ). In
the limit T →∞ the half-circle contribution vanishes, i.e. limT→∞

∮
γ′(T)

π̂(ξ, z)dz =

limT→∞
∫ γ+iT

γ−iT
π̂(ξ, z)dz. The residue formula states that the integral of π̂(ξ, z) along

the contour is equal to the sum of residues at the singularities of π̂(ξ, z) enclosed by
the contour times 2πi. Thus, if all singularities of π̂(ξ, z) are to the left of γ, the
inverse Laplace transform can be calculated as:

π(ξ, t) =
1

2πi
lim

T→∞

∮
γ′(T)

π̂(ξ, z)eztdz =
∑

n

Resπ̂(ξ,z)ezt(zn) (2.57)

Since π̂−(ξ, s) and π̂+(ξ, s) only di�er by the fact that ξ and ξ0 are interchanged
it is su�cient to carry out the inverse transform for π̂+(ξ, s) and obtain π−(ξ, t) by
substituting ξ ↔ ξ0.

As a �rst step we reinsert κ =
√
s+ ν2

4 and substitute s = z − ν2

4 in π̂+(ξ, s)
where z is a complex variable now:

π̂+(ξ, z) =
φ0√
z

(
sinh(ξ0

√
z) + 1

Ω

√
z cosh(ξ0

√
z)
)

sinh(
√
z) + 1

Ω

√
z cosh(

√
z)

×(
sinh(

√
z) cosh(ξ

√
z)− cosh(

√
z) sinh(ξ

√
z)
)

(2.58)

Later, instead of reinserting z = s+ ν2

4 , we will apply the standard Laplace-inversion
rule L−1[f̂(s+ c)] = e−ctf(t) for c = const.

The fact that π̂+(ξ, z) contains
√
z which is non-holomorphic on the negative real

branch recommends testing holomorphicity of the function. By Taylor-expanding
the sinh(const ·

√
z) and cosh(const ·

√
z) functions one can show that π̂+(ξ, z) can

be written as a sum over purely integer powers zn and thus is indeed a holomorphic
(even entire) function. Its complex roots zn are found by setting the denominator to
zero, which yields:

tanh(
√
zn) = − 1

Ω
√
zn (2.59)

It can be shown that all zn lie on the negative real axis and that there is no singularity
at z = 0. Since π̂+(ξ, z) can be written as π̂+(ξ, z) = g(z)/h(z) with functions g(z)
and h(z) that are holomorphic in the neighborhood of each zn, we may calculate the
residue of π̂+(ξ, z) at zn via the well-known formula Resπ̂+(ξ,z)ezt(zn) = g(zn)/h′(zn).
Here we �nd, with h(z) = sinh(

√
z) + 1

Ω

√
z cosh(

√
z):

h′(zn) =
1

2
√
zn

[(
1 +

1
Ω
− zn

Ω2

)
cosh(

√
zn)
]

(2.60)
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In the next step we additionally substitute the square roots via
√
zn ≡ ±iζn with

ζn ∈ R+. Taking into account sinh(±ix) = ± sin(x) and cosh(±ix) = cos(x) and
cancelling multiplicative minus signs, the solution in the time domain as a sum of
residues reads:

π+(ξ, ξ0, t) =
∑

n

Resπ̂+(ξ,z)ezt(zn)

= e−
ν2
4 t · 2φ0

∑
n

eznt
sinh(ξz

1
2
n ) + z

1
2
n
Ω cosh(ξz

1
2
n )(

1 + 1
Ω −

zn
Ω2

)
cosh(z

1
2
n )

×
(

sinh(z
1
2
n ) cosh(ξ0z

1
2
n )− cosh(z

1
2
n ) sinh(ξ0z

1
2
n )
)

= − 2
L
e−

ν2
4 t−

ν
2 ξ0 ·

∑
n

e−ζ
2
nt

sin(ξζn) + ζn
Ω cos(ξζn)(

1 + 1
Ω + ζ2n

Ω2

)
cos(ζn)

× (sin(ζn) cos(ξ0ζn)− cos(ζn) sin(ξ0ζn))
(2.61)

where the n-summation goes over the (positive) roots of the implicit equation

tanh(
√
zn) = − 1

Ω
√
zn ⇔ tan(ζn) = − 1

Ω
ζn (2.62)

with Ω = ν
2 + kL

D =
(
v
2 + k

)
L
D . Using the root equation (2.62) we can further simplify

(sin(ζn) cos(ξ0ζn)− cos(ζn) sin(ξ0ζn))
cos(ζn)

=

tan(ζn) cos(ξ0ζn)− sin(ξ0ζn) = −
(

sin(ξ0ζn) +
ζn
Ω

cos(ξ0ζn)
)

(2.63)

and realize that the denominator of the summation terms in the time domain is
completely symmetric in ξ and ξ0. Hence, the solution in the time domain is invari-
ant to interchanging ξ and ξ0. After taking into account the integrating factor via
p(ξ, ξ0, t) = e

ν
2 ξπ(ξ, ξ0, t) and reverting dedimensionalization we can write the �nal

solution for both sides of the spatial domain as:

pRA(x, x0, t) ≡

p(x, x0, t) =
2
L
e
v

2D (x−x0)− v2
4D t
∑

n

e
−ζ2nDt
L2

Fn(x)Fn(x0)
Ω2 + Ω + ζ2

n

(2.64)

with

Fn(x) ≡ Ω sin(ζn
x− σ
L

) + ζn cos(ζn
x− σ
L

) (2.65)

Ω =
(v

2
+ k
) L
D

and (2.66)

ζn positive roots of tan(ζn) = − 1
Ω
ζn (2.67)
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It can be easily veri�ed that this function ful�lls the imposed boundary conditions.
Also the initial condition at t = 0 is recovered, which can be seen by expanding the
delta function into the orthogonal functions Fn(x) and utilizing the straightforwardly
proven orthogonality relation:∫ a

σ

Fn(x)Fm(x)dx =
{

L
2

(
ζ2
n + Ω2 + Ω

)
for n = m

0 for n 6= m
(2.68)

In the limit v → 0 the solution reproduces the well-known solution for the case
without drift, which can be found in [57, 14.3II, p. 360]. To verify this, set ζn = αnL
in (2.64) and k1 = 1, k2 = 0, h1 = k

D , h2 = 1 in the reference formula.
Exemplary time evolution plots of pRA(x, x0, t) are shown in Figure 2.4 for di�erent

values of di�usion coe�cient D, drift velocity v and intrinsic reaction rate k.

Green's function for 1D-di�usion with drift, Abs-Abs case

From (2.64) we can easily obtain the Green's function for 1D-di�usion with drift on
a �nite domain with two absorbing boundaries by taking the limit k → ∞. The
originally radiating boundary condition at x = σ (BCr) then becomes

p(σ, t) =
D∂xp(x, t)

∣∣
x=σ
− vp(σ, t)

k
−→
k→∞

0 . (2.69)

First notice that because of Ω =
(
v
2 + k

)
L
D −→

k→∞
0 the root equation (2.67) in

the limit k →∞ reads:

tan(ζn) = − 1
Ω
ζn −→

k→∞
0

⇒ ζn = nπ, n ∈ N for k →∞ (2.70)

To obtain the limit of (2.64) we multiply the numerator and denominator of the
summation terms by 1/k2. Because of

Ω
k

=
(

1 +
v

2k

) L
D
−→
k→∞

L

D
(2.71)

we have

Ω
k

sin
(
ζn
x− σ
L

)
+
ζn
k

cos
(
ζn
x− σ
L

)
−→
k→∞

L

D
sin
(
ζn
x− σ
L

)
(2.72)

Ω2

k2
+

Ω
k2

+
ζ2
n

k2︸ ︷︷ ︸
→0

−→
k→∞

L2

D2
(2.73)

and therefore:

pAA(x, x0, t) = pRA(x, x0, t)
∣∣
k→∞

=
2
L
e
v

2D (x−x0)− v2
4D t
∑

n

e−(nπ
L2 )2

Dt sin
(
nπ

x− σ
L

)
sin
(
nπ

x0 − σ
L

)
(2.74)
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Figure 2.4: Green's function for the 1D di�usion-drift problem with radiating
(x = 0) and absorbing (x = 1) boundary. (A) D = 1.0, v = −1.0, k = |v|; (B) D = 1.0,

v = +1.0, k = v; (C) D = 0.1, v = −1.0, k = |v|; (D) D = 0.1, v = −1.0, k = |v|
2
; (E)

D = 0.1, v = −1.0, k = 10|v|; (F) D = 0.01, v = −1.0, k = |v|. Values are in [µm(2)

s
].

x0 = 0.5 µm.



1D Green's functions with drift 35

Green's function for 1D-di�usion with drift, Rad-Inf case

For completeness, we also mention here the Green's functions for the corresponding
half-bounded problems. A solution for the case with only one radiating boundary at
x = 0 and constant drift was already published by Lamm and Schulten [70] and
reads:

pR∞(x, t|x0, t = 0)

=
1√

4πDt

(
e−

(x−x0−vt)
2

4Dt + e−
vx0
D e−

(x+x0−vt)
2

4Dt

)
− v/2 + k

D
e
vx0
D e

k
D [(x+x0)+(k+v)t] erfc

(
x+ x0√

4Dt
+
v/2 + k

D

√
Dt

)
(2.75)

Green's function for 1D-di�usion with drift, Abs-Inf case

For the situation with only one absorbing boundary at x = a ≥ 0 the Green's function
for the 1D-di�usion-drift problem can be straightforwardly obtained via the method
of images: Since any linear combination of the free solution pfree(x, t|x0) ful�lls the
di�usion-drift equation, we can easily construct a solution pA∞(x, t|x0) that will obey
pA∞(a, t|x0) = 0 ∀t by subtracting from the free solution the antisymmetric solution
for a particle starting from a distance x0 − a to the left of the boundary and with
inverted drift v → −v:

pA∞(x, t|x0) = pfree,v+(x, t|x0)− pfree,v−(x, t|a− (x0 − a))

=
1√

4πDt

(
e−

1
4Dt [(x−x0)−vt]2 − e− 1

4Dt [(x−2a+x0)+vt]2
)

(2.76)

We veri�ed that the above solution is equivalent to the solution for this problem
calculated explicitly by applying the boundary conditions in Laplace space and
inverting via the Residue formula, following the work�ow described in section 2.3.2.

Survival probabilities

The survival probability is calculated by integration of the Green's function over the
whole interval on which it is de�ned:

S(t) =

b∫
a

p(x, t|x0)dx (2.77)

For the half-bounded solutions b =∞. The cumulative distribution function P (x, t|x0) =∫ x
a
p(x′, t|x0)dx′ is needed besides S(t) to sample positions at next-event times τν . It

is therefore convenient to �rst calculate P (x, t|x0) and then S(t) = P (b, t|x0) as a
special case.

The Green's functions presented in this section all have the the form

p(x, t|x0) = C0e
v(x−x0)

2D

∑
n

cnfn(x) (2.78)
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where C0 and cn do not depend on x and fn(x) are either trigonometric or Gauss
functions. To calculate P (x, t|x0) the integration is most conveniently performed

term-wise, i.e. by computing
∫ x

a
e
v(x′−x0)

2D fn(x′)dx′ with the help of partial integra-
tion and reassembling the sum. Di�erentiation of the survival probability gives the
propensity function q(t) ≡ −∂tS(t). These are all straightforward calculations and
therefore omitted here.

Boundary �uxes

With drift v 6= 0 the probability �ux at position x = x′ is calculated from the Green's
function p(x, t|x0) as follows:

qx′(t) = −D∂xp(x, t|x0)
∣∣
x=x′

+ vp(x′, t|x0) (2.79)

Note that for an absorbing boundary at x′ = a we have p(a, t|x0) = 0 and the drift-
dependent term vanishes.

For a radiating boundary at x′ = σ with intrinsic reaction rate k it is more
convenient to calculate the �ux directly from

qσ(t) = kp(σ, t|x0) (2.80)

which equals (2.79) with x′ = σ by construction of the problem.
For the Green's functions introduced in this chapter these expressions are again

easily calculated and therefore not shown here. A complete collection of the surivival
probabilities, cumulative distribution functions and boundary �uxes for all Green's
functions presented in this chapter is available as part of the eGFRD technical docu-
mentation.

2.4 Finite cylindrical structures

Throughout this chapter until now we have assumed an in�nite length for the cylin-
drical structures that particles interact with and are transported on. In many appli-
cations, however, we seek to study systems with �nite 1D tracks, such as microtubules
that canalize transported cargo to one of their ends preferentially, where it may un-
bind at a certain rate. Moreover, particles can behave di�erently after reaching the
ends of microtubules by, for example, forming tip clusters [71, 72].

In order to include these features into eGFRD we introduce a new structure type,
the disk structure, which is used to mark a special interaction site on a 1D cylindrical
structure. A disk may be placed at the ends of a cylindrical structure of �nite length
to model reactive tip sites, or in any other place on the cylinder to model a point of
interaction, e.g. a transcription-factor binding pocket on DNA. Within our framework
a disk located at the end of a cylindrical structure is called a �cap�, a disk located in
between the ends a �sink�. Particles on disks are immobilized. We allow particles on
the cylinder to bind with a certain a�nity both to disk structures and to particles
already immobilized on caps. Unbinding from a cap returns the particle into the
bulk, whereby the particle is moved in radial direction and placed at contact with
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the disk. When unbinding from a sink, the particle transfers back to the cylindrical
structure, i.e. becomes mobile again. Concerning implementation, particles bound to
caps or sinks are treated as individual species, which enables the de�nition of di�erent
parameters and reactions for cylinder-bound and disk-bound species. This may be
used, for example, to introduce cap-bound species representing particle clusters that
�grow� by successively absorbing particles from the cylinder via a cascade of reactions,
in order to model particle clustering at �lament tips.

Since the problem of a di�using 1D particle that interacts with a disk is mathe-
matically equivalent to the problem of two interacting particles that move in 1D, here
we may re-use the 1D Green's function with drift (2.64).

To model interactions with disks we introduce the following new domain types:

• Cap Interaction domain: a cylindrical domain that encloses an empty cap and
a nearby cylinder-bound 1D particle. Next-event times are calculated from the
1D Green's function with drift and Rad-Abs boundary conditions.

• Disk Surface Single domain: a cylindrical domain that encloses a particle bound
to a disk surface. The only possible next-events are unbinding reactions which
are sampled from exponential distributions.

• Mixed Pair 1D-Cap domain: a cylindrical domain that encloses a cap with a
bound particle and a nearby cylinder-bound 1D particle. Next-event times are
calculated as for the Cylindrical Surface Pair, with drift and di�usion coe�cient
of the cap-bound partner set to zero.

• Cylindrical Surface Sink domain: a cylindrical domain that contains a sink and
a proximate cylinder-bound particle. For this case we calculate the Green's
function explicitly in section 2.5.

Sketches of these new domain types are shown in Figure 2.5.

Dynamical cylinders

While the aforementioned modi�cations allow for the inclusion of �nite cylindrical
structures into eGFRD, these are still assumed to be static. In reality, macromolecular
�laments are dynamical structures which exhibit interchanging phases of growth and
shrinkage. For microtubules, this mechanism is known as dynamic instability and has
been extensively studied in both experiment [73, 74, 75, 76] and theory [77, 78, 79, 80].

We present a concept to include cylinders with length dynamics into eGFRD, with
detailed description of required new domain and event types, in appendix section 2.C.
The concept will be fully implemented in future work.
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A

B

C

D

Figure 2.5: New protective domain types on �nite 1D structures. The cylindrical
surface is limited by a reactive cap at its right end (green colour). (A) Cap Interaction

domain; (B) Mixed Pair 1D-Cap domain; (C) Disk Surface Single domain, here shown for
a particle on a cap; (D) Cylindrical Surface Sink domain. Right panels show sections of
3D objects along the common cylinder axis. Absorbing boundaries are highlighted by red,
radiative boundaries by green. Note that drift velocities (v, vA, vB) can be towards any
cylinder end.
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2.5 Green's function for 1D di�usion with a reactive

sink

In transcription activation, transcription factors can perform a di�usive search for
their binding site on the DNA [62, 63, 64]. To be able to model such and similar 1D
random search processes in GFRD, we introduced sink structures that mark point-
sites at which particles can react while di�using over the cylindrical structure that
they are bound to. In order to isolate this interaction from interactions with other
particles on the cylinder we further introduced new domains (Cylindrical Surface Sink
domains) that only contain a sink and the closeby particle. Exits from these domains
then can happen via two di�erent events: either the particle hits the (absorbing)
boundaries of the domain, or it binds to the sink. For the case without particle drift,
we present here the Green's function for this problem. One complication here is that
the particle may di�use over the sink without being absorbed. It is, however, possible
to incorporate this feature into the mathematical derivation by imposing the correct
probability �ux balance at the sink position.

Assuming that the particle, starting from initial position x = x0, can attach to
the sink located at position xs with an intrinsic rate k, the di�usive dynamics of the
particle may be described via the modi�ed di�usion equation:

∂tp(x, t|x0) = D∇2p(x, t|x0)− kδ(x− xs)p(x, t|x0) (2.81)

with absorbing boundaries at x = a and x = b > xs > a

p(a, t|x0) = 0 , p(b, t|x0) = 0 (2.82)

and initial condition

p(x, t = 0|x0) = δ(x− x0) . (2.83)

As with the 1D-Rad-Abs Green's function calculated in section 2.3.2, this problem
may be solved separately for the subintervals of [a, b] divided by the delta peaks,
imposing continuity of p(x, t|x0) and discontinuity of its derivative at the junction
points. Here it is convenient to consider the intervals left and right to the sink and
to account for the initial condition directly by an adequate ansatz for the part that
contains the starting point x0. Continuity-discontinuity relations then only have to
be imposed at xs.

Let us denote the solution on interval [a, xs] by p−(x, t|x0) and the solution on
[xs, b] by p+(x, t|x0). By integrating (2.81) over an ε-interval around the sink and
taking the limit ε → 0 we obtain the discontinuity condition for the probability �ux
at x = xs:

∂xp−(x, t|x0)
∣∣
x=xs

− ∂xp+(x, t|x0)
∣∣
x=xs

= − k
D
p−(xs, t|x0) (2.84)

This equation simply states that the �ux from/towards the left of the sink equals
the �ux from/towards the region right of it minus the reactive �ux through the sink.
Moreover, continuity requires:

p−(xs, t|x0) = p+(xs, t|x0) (2.85)
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Again this problem is most conveniently solved in Laplace space. The homoge-
nous version of the Laplace-transformed PDE reads:

sp̂(x, s|x0) = D∇2p̂(x, s|x0) (2.86)

Let us without loss of generality assume x0 ∈ [xs, b] and that the sink is located at
x = xs = 0, implying a = −|a| < 0. Then we can make the following ansatz in
Laplace space (q ≡

√
s
D ):

p̂−(x, s|x0) = A− sinh(qx) +B− cosh(qx), x < 0

p̂+(x, s|x0) = A+ sinh(qx) +B+ cosh(qx) +
1

2Dq
e−q|x−x0|︸ ︷︷ ︸

p̂free(x,s|x0)

, x > 0 (2.87)

Function p̂+(x, s|x0) contains the (Laplace-transformed) free solution for a point
particle starting from x = x0 and thus ful�lls the initial condition by construction.

The coe�cientsA± andB± are calculated by applying the boundary and continuity-
discontinuity conditions. Subsequently, the solution can be transformed back into the
time-domain via the residue formula. This procedure is precisely the same as in 2.3.2
and therefore omitted here. The �nal solution reads, with L ≡ b− a = b+ |a|,

p−(x, t|x0) = −2D
∞∑

n=1

e−Dζ
2
nt sin (ζn(|a|+ x))

ζn sin (ζn(b− x0))
Ξn

(2.88)

p+(x, t|x0) = −2D
∞∑

n=1

e−Dζ
2
nt sin (ζn(b− x̂))×

Dζn sin (ζn(|a|+ x̌)) + k sin(ζn(|a|) sin(ζnx̌)
Ξn

(2.89)

with x̂ ≡ max(x, x0), x̌ ≡ min(x, x0) and a common denominator:

Ξn = D [Lζn cos(ζnL) + sin(ζnL)]
+ k [b cos(ζnb) sin(ζn|a|) + |a| cos(ζn|a|) sin(ζnb)] (2.90)

The numbers ζn are all real and positive and the roots of the equation

Dζn sin (ζnL) + k sin (ζn|a|) sin (ζnb) = 0 (2.91)

which, with the help of trigonometric relations and setting ∆L ≡ b − |a|, may be
written in the more convenient form:

Dζn sin (ζnL) =
k

2
[cos (ζnL)− cos (ζn∆L)] (2.92)

The necessity of interchanging x and x0 in (2.89) when the sign of (x − x0) changes
arises from the presence of |x− x0| in the ansatz for p+(x, s|x0).
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The survival probability for the whole domain [a, b] is given by

S(t) =

xs=0∫
a

p−(x, t|x0)dt+

b∫
xs=0

p+(x, t|x0)dt (2.93)

and easily obtained by simple integration.
The next-event time τν for the associated Cylindrical Surface Sink domain is

sampled from 1− S(t), as usual. The next-event type, i.e. whether the particle exits
the domain by being absorbed at the sink or at one of the boundaries, is determined
by comparing the probability �uxes through these exit channels at τν . These are most
conveniently calculated via:

qs = kp−(xs, τν |x0) = kp+(xs, τν |x0)

qa = −D∂xp−(x, τν |x0)
∣∣
x=a

qb = −D∂xp+(x, τν |x0)
∣∣
x=b

(2.94)
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2.A Appendix: Detailed coordinate-separation

transform

The Smoluchowski equation for the probability density function p =
p(rA, rB, t|rA0, rB0, t0) of two di�using particles A and B that can interact via a force
F depending on their distance and move with di�erent di�usion constants DA and
DB is given by [68, 39]

∂tp = [DA∇2
A +DB∇2

B +DA∇A · ϕF(r)−DB∇B · ϕF(r)] p (S2.1)

where r denotes the interparticle vector:

r = rB − rA (S2.2)

We de�ne the weighted center-of-mass vector R as follows:

R = γrA + δrB (S2.3)

Equations (S2.2) and (S2.3) de�ne new coordinates r(rA, rB) and R(rA, rB). No-
tice that this is not a coordinate transformation in the strict sense, as in general r
and R will not be orthogonal.

Moreover, we de�ne the operators:

∇r ≡
∂

∂r
=

∂r1

∂r2

∂r3

 , ∇R ≡
∂

∂R
=

∂R1

∂R2

∂R3

 . (S2.4)

If the di�erential operator on the right side of (S2.1) equation can be written as a
sum of ∇2

r , ∇r, ∇2
R and ∇R, we may separate (S2.1) into two independent PDEs for

r and R by a product ansatz for p. In the following we will calculate di�erent options
for the choice of coe�cients γ and δ with which the above objective is reached.

Rewriting ∇A and ∇B

First we rewrite ∇A and ∇B in terms of ∇r and ∇R. Let rA,i = rA,i(r,R) denote
the i-th component of the vector rA, and rj, Rk components of r and R respectively.
Then the derivative of p with respect to rA,i is

∂p

∂rA,i
=
∑

j

∂p

∂rj

∂rj

∂rA,i
+
∑

k

∂p

∂Rk

∂Rk

∂rA,i

=
∑

j

(−1)δij
∂p

∂rj
+
∑

k

γδik
∂p

∂Rk

= γ
∂p

∂Ri
− ∂p

∂ri
=
(
γ
∂

∂R
− ∂

∂r

)
i

p (S2.5)

because ri and Ri only depend on the component rA,i with the same index i. Since
this holds for every i, we have:

∇A = γ∇R −∇r (S2.6)
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Analogously, one obtains:

∇B = δ∇R +∇r (S2.7)

From this it follows that:

∇2
A = γ2∇2

R +∇2
r − 2γ∇r∇R

∇2
B = δ2∇2

R +∇2
r + 2δ∇r∇R (S2.8)

Here we use ∇r∇R = ∇R∇r, assuming the 2nd derivative of p with respect to any
of its variables to be a continuous function in R3. The partial derivatives then may
be interchanged by the theorem of Clairaut & Schwarz.

Now that we have expressed ∇A and ∇B in terms of ∇r and ∇R, we can also
rewrite the right side of the Smoluchowski equation. First, for the case ϕ = 0, we
get:

DA∇2
A +DB∇2

B = (DA +DB)∇2
r

+
(
γ2DA + δ2DB

)
∇2

R

+ 2 (δDB − γDA)∇r∇R (S2.9)

Rewriting the force term separately yields:

(DA∇A −DB∇B) · ϕF = [(γDA − δDB)∇R − (DA +DB)∇r] · ϕF (S2.10)

To get rid of the mixed term containing ∇r∇R we can make any choice for γ and δ
that ful�lls

δ =
DA

DB
γ . (S2.11)

Note that with this choice the force contribution (S2.10) only depends on the deriva-
tive with respect to the interparticle vector (∇r).

Coe�cient choice as in original GFRD

One possible choice for γ and δ, which is the the same as in the original version of
GFRD, is the following:

γ ≡
√
DB

DA
, δ ≡

√
DA

DB
(S2.12)

This yields

R =
√
DB

DA
· rA +

√
DA

DB
· rB (S2.13)

and

DA∇2
A +DB∇2

B = (DA +DB)
(
∇2

r +∇2
R

)
. (S2.14)
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The same prefactor also appears in the force term

(DA∇A −DB∇B) · ϕF = − (DA +DB)∇r · ϕF (S2.15)

so that equation (S2.1) simpli�es as follows:

∂tp = (DA +DB)
(
∇2

r +∇2
R −∇r · ϕF

)
p (S2.16)

Here we can separate the equation by the product ansatz p(r,R, t|r0,R0, t0) =
pr(r, t|r0, t0)pR(R, t|R0, t0) into two equations describing two independent di�usion
processes (here with the same di�usion constant DA +DB):

∂tpr = (DA +DB)︸ ︷︷ ︸
Dr

(
∇2

r −∇r · ϕF
)
pr (S2.17)

∂tpR = (DA +DB)︸ ︷︷ ︸
DR

∇2
R pR (S2.18)

Note that, as expected, the force contribution is present only in the equation for the
interparticle vector r.

Coe�cient choice as in eGFRD

The following slightly di�erent choice for γ and δ

γ ≡ DB

DA +DB
, δ ≡ DA

DA +DB
(S2.19)

leads to:

DA∇2
A +DB∇2

B =

[
DAD

2
B +DBD

2
A

(DA +DB)2

]
∇2

R + (DA +DB)∇2
r

=
(

DADB

DA +DB

)
∇2

R + (DA +DB)∇2
r (S2.20)

Everything that has been said for the previous choice of γ and δ also applies to
this case, except for the fact that R(rA, rB) now has a di�erent weighting as before:

R =
DBrA +DArB

DA +DB
(S2.21)

Therefore, also the di�usion constant DR now is di�erent from Dr. Using the same
separation ansatz as before we arrive at:

∂tpr = (DA +DB)
(
∇2

r −∇r · ϕF
)
pr

∂tpR =
(

DADB

DA +DB

)
∇2

R pR (S2.22)



Appendix: Detailed coordinate-separation transform 45

Prescribing an arbitrary centre-of-mass di�usion constant

For completeness we brie�y describe how to choose γ and δ in order to ensure that
DR is equal to an arbitrary prescribed di�usion constant DC, if desired. DC might
be, for example, the di�usion constant of the product of the A+B → C reaction.

In this case γ and δ have to obey the two equations:

DR = γ2DA + δ2DB, δ =
DA

DB
γ (S2.23)

Combining these we obtain:

DR = γ2DA

[
1 +

DA

DB

]
!= DC (S2.24)

Since all involved quantities are positive real numbers, it follows that:

γ = +

√√√√ DC

DA

(
1 + DA

DB

) ⇒ δ =
DA

DB
γ = +

√√√√ DC

DB

(
1 + DB

DA

) (S2.25)

This combination of γ and δ indeed leads to:

DR = DAγ
2 +DBδ

2 =
DC

1 + DA
DB

+
DC

1 + DB
DA

=
DBDC +DADC

DA +DB
= DC (S2.26)

Since γ and δ are always real and positive, except for the (usually uninteresting) cases
DA = 0 or DB = 0, one can indeed always �nd a coordinate transform for which DR

matches an arbitrary di�usion coe�cient, while Dr = DA +DB.
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2.B Appendix: Domains in eGFRD

2.B.1 Domain classtree

Figure S2.1 shows the complete class tree of the domain classes employed by the new
version of eGFRD that features transport and reactions in 1D and 2D, including the
new domain types introduced in chapters 2 and 3.

Domain

Single

Non-

Interaction

Single

Spherical

Single

Cylindr.

Surface

Single

Disk

Surface

Single

Planar

Surface

Single

Planar

Surface

Tran-

sition

Inter-

action

Cylindr.

Surface

Inter-

action

Cylindr.

Surface

Sink

Cap In-

teraction

Planar

Surface

Inter-

action

Pair

Spherical

Pair
Cylindr.

Surface

Pair

Mixed

Pair

1D Cap

Planar

Surface

Pair

Planar

Surface

Transition

Pair

Mixed

Pair

2D-3D

Multi

Figure S2.1: Domain class tree. Blue circles are domain types used to simulate reac-
tions and di�usion purely in 3D. Domain types employed for interactions with and reaction-
di�usion on 1D rods are in green, whereas yellow marks domain types used for 2D interactions
and reaction-di�usion. Red color marks abstract superclasses.
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2.B.2 Domain making in eGFRD

Principal domain making strategy

The governing principle in constructing and sizing of domains in eGFRD is to min-
imize the computational cost associated with this process. Domain making consists
of the following successive steps:

1. Determine which type of domain to construct.

2. Determine the available space for the domain (i.e. its shell).

3. Construct the domain with an optimally sized shell.

4. Draw the next-event time and type for the newly constructed domain.

5. Re-schedule the domain in the central scheduler.

While the cost of the �rst and last step is roughly the same for all domains, it may
vary among di�erent domain types for the other steps. In general, cylindrical domains
are more expensive to construct than spherical domains because of the increased
computational e�ort for scaling up cylinders within a constellation of other cylinders
and spheres. Similarly, Pair domains are more expensive than Single domains because
they require an additional coordinate transform and employ Green's functions which
are mathematically more complex.

It is unfeasible to foresee all possible constellations that may occur during eGFRD
simulations as required for a real quantitative optimization of the domain making
rules. The strategy in de�ning a unique set of functional rules therefore is to minimize
the likelihood of situations that lead to the waste of computational cost, such as
repeated reconstruction of domains and construction of expensive domains when it is
not strictly advantageous.

Social upsizing prevents premature and mutual bursting

Particular care must be put into determining the optimal size of the domain. In
principle we want to construct domains as big as possible because their next-event
time directly correlates with their size. However, when we size up a large domain such
that it will protrude into the direct vicinity of a very small domain, the latter will
most likely be updated long before the next event time of the freshly constructed large
domain. This may induce premature bursting of the large domain which then has to
be reconstructed from an almost identical situation as before after insigni�cant time
progress, wasting the initial investment of domain making cost. Therefore domains
should not be sized up to the maximal available space in any given situation but in
a �social� manner, i.e. leave some space for their neighbour domains to avoid very
small domains in their own direct vicinity.

In particular it is important to prevent repeated mutual bursting of two newly
constructed adjacent Single domains, which may even result in an in�nite cycle of
domain (re)construction and bursting. Repeated mutual bursting can occur when two
particles are at a small distance, yet su�ciently far away to enable the construction
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of two Single domains, and the formation of a Pair is disallowed for other reasons
(e.g. presence of obstacles). Since domains are sized up in a successive order, using
the maximally available space for the �rst Single domain (A) would result in a very
small size of the second (B), causing immediate update of B with negligible particle
displacement. This in turn would force bursting of domain A in order to size up the
B domain again, which would restart the whole process all over from B. This example
demonstrates that maximizing domain size is not the same as optimizing it.

A minimal Single domain size controls switching to Brownian Dynamics

In section 2.1.4 we explain why it is necessary to switch from eGFRD to Brownian
Dynamics when propagating particles under crowded conditions. Yet, it is not a priori
clear when this switch should be performed. In principle it should be done when
the computational cost for Single construction divided by the maximal displacement
within the domain, which is correlated to domain size, becomes larger than the cost
to sample a trajectory covering the same distance with Brownian Dynamics. Since
in GFRD Single construction cost is variable, it is hard to devise a general rule.
Notwithstanding, it is clear that a minimal Single has to be de�ned for proper working
of the algorithm. We decided to make this a simulation parameter, the details of which
will be described in more detail in the following text.

Summarized domain making objectives

The abovementioned compiles into the following set of simple objectives for e�cient
domain making rules:

• Construct Pair and Interaction domains only when interaction is likely, i.e.
when particles are close to other particles or reactive surfaces.

• Construct domains socially, i.e. reserve some space for neighbouring domains
in order to prevent premature or mutual bursting.

• ConstructMulti domains (i.e. fall back into Brownian dynamics) if construction
of a minimal-size Single is impossible.

In order to transform these rules into an applicable algorithm we introduced two
length factors which will determine when to start constructing Pairs or Interactions
and when to go into the Brownian dynamics mode during runtime.

Two length factors balance the domain making behaviour

Let us de�ne the following two dimensionless constants:

• β ≡ �single-shell factor�

• µ ≡ �multi-shell factor�

For a given particle radius R these two factors de�ne the half-size βR of the
minimal Single shell and the radius µR of the (always spherical) Multi shell of that
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particle, respectively. Note that the minimal Single shell can be either a sphere
or a cylinder, depending on whether the particle is a 3D, 2D or 1D species. The
requirements β ≥ 1 and µ ≥ 1 are obvious. Since a Multi shell shall never be
constructed when there is enough space for a minimal Single shell, we also require
β > µ.

Let R0 be the radius of a particle P0 for which we want to construct a domain,
R1 the radius of its nearest neighbour particle P1 and σ ≡ R0 +R1. Then, based on
β and µ, we de�ne the following lengths for P0:

• the �reaction horizon� ≡ βR0

• the �multi horizon� ≡ µR0

and, as specializations of the above:

• the �pair horizon� ≡ βσ

• the �surface horizon� ≡ �reaction horizon� = βR0

• the �burst horizon� ≡ �burst radius� ≡ �reaction horizon� = βR0

• the �multi-partner horizon� ≡ µσ

Di�erent naming highlights di�erent purpose for these of the above quantities that
are equal to each other.

The reaction horizon is used to determine when a Pair or Interaction domain
should be constructed instead of a Single domain. The multi horizon de�nes when
Single construction should be dropped in favor ofMulti construction. The pair horizon
and surface horizon are speci�cations of the reaction horizon for Pair and Interaction
Single formation: while an Interaction is formed when a surface is within the reaction
horizon, a Pair construction is attempted only when the reaction horizons of the two
involved particles overlap, i.e. when the center of mass of P1 is within the pair
horizon of P0. Similarly, the algorithm will switch into Brownian Dynamics mode
when a surface is within the multi horizon of P0 or when the multi horizons of P0 and
P1 overlap, i.e. when P1 is within the multi-partner horizon of P0.

The burst horizon de�nes the volume within which a particle will burst neigh-
bouring domains. Since the objective of bursting is to generate space for at least a
minimal Single shell the burst horizon should be at least as big as the reaction hori-
zon. Since there is no evident necessity to make it bigger than the reaction horizon,
we conveniently set these lengths to be equal.

Practically β and µ can be used to tune the overall behaviour and performance
of domain making: Increasing µ will prompt the simulation to switch to Brownian
Dynamics earlier. Whether this is advantageous or not depends the crossover radius
at which construction of small Single domains yields a smaller average simulation
time advance per computational cost unit than the construction of Multi domains.
In a similar way, whether a larger or smaller β is favorable depends on the average
likelihood of reactions in the system. Since the latter depend on the parameters, there
is no obviously optimal choice for β and µ. We �nd that β ∈ [2, 3] and µ ∈ [

√
3, 2]

gives reasonable performance.



50 1D-eGFRD

Domain making algorithm

We can now compile the abovementioned postulations and de�nitions into a well-
de�ned algorithm for domain making. Let us imagine a particle which just exited from
whatever domain type after an update. An update can be either triggered by a next-
event picked from the scheduler (i.e. a reaction, domain exit or surface interaction)
or by premature bursting of neighbouring particles induced in the aftermath of such
scheduler event. The particle by default is put into the system as a Non-Interaction
Single with a shell that just envelopes the particle. Note that this �zero-shell� is
spherical for 3D particles and cylindrical for 2D and 1D particles. We will call a
Single with a zero-shell a �Zero-Single�. Each Zero-Single is put into the scheduler
with zero next-event time (dt = 0) in order to reconstruct its domain immediately
after it was produced.

We then perform the following order of actions to construct a new domain:

1. Bursting: Burst any neighbouring �intruder�, i.e. a domain that intrudes into
the burst radius of the particle, with the exception of Multi domains and other
Zero-Singles, i.e. domains which are yet to pass through the domain making
procedure themselves. By default the burst radius is equal to the reaction
horizon. Burst recursively, i.e. whenever a bursted intruder has intruders within
its own reaction horizon, also burst these. The following steps then are repeated
for each Zero-Single present in the system after bursting.

2. Reaction/interaction attempt: Compile a list of all potential interaction
partners (particles or reactive surfaces). Pick the closest interaction partner
and try a reaction (with particles) or interaction (with surfaces) if the closest
partner is within the speci�ed reaction or interaction horizon. If a minimal
reaction (Pair) domain or Interaction domain can be constructed, size it up
socially to the maximal available space and go directly to step (4.).

3. Single domain upsizing attempt: If a Pair or Interaction could not be
constructed, yet the closest partner is within the multi horizon of the Non-
Interaction Single, then (recursively) construct aMulti domain (as speci�ed fur-
ther below) and proceed directly to step (4.). Else, size up the Non-Interaction
Single domain socially to the maximally available space and continue.

4. Re-scheduling: For the constructed domain type determine the next-event
time and type and reinsert this information into the scheduler.

5. Repeat the whole procedure for the next Zero-Single until there are no more
Zero-Singles in the scheduler.

The pseudo-code of the domain making algorithm is shown in Algorithm S1.
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Algorithm S1 The eGFRD domain making algorithm.
Z ← Zero-Single
while z ∈ Z do

for all domain in burst radius of z do
if domain is not Multi and dt(domain) > 0 then

Zbursted ← burst domain recursively
Z ∪ Zbursted

end if
end for

S ← {neighbouring surfaces of z}
P ← {neighbouring particles of z}
c← closest object n ∈ S ∪ P

if c ∈ S and c in surface horizon of z then
successful ← try interaction of z with c

else if not successful and c ∈ P and c in pair horizon of z then
successful ← try to form Pair (z, c)

else if not successful and c out of multi horizon of z then
successful ← try to scale up shell of z

else if not successful then
form Multi from z with c recursively

end if

re-schedule z
remove z from Z

end while

r
dr

dzR
zR

C

SR

SL

αR

Figure S2.2: Cylinder scaling in eGFRD. The cylinder is scaled di�erently on its two
sides (L and R) from two separate scale centers SL and SR which here do not coincide with
the center point (C). For each side, the scale angle (αL, αR) de�nes the aspect ratio at
scaling, i.e. how the respective height (zL, zR) scales with the cylinder radius (r). In the
given example, αL = π/2, meaning that zL (= 0) remains constant upon changing r.
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Multi construction

In eGFRD Multis are contingent three-dimensional objects made up from either one
spherical Multi shell or a set of overlapping spherical Multi shells. The radius of
a Multi shell is equal to the particle radius plus the reaction length multiplied by
the multi-shell factor µ > 1. Multi domains are constructed recursively: When a
Zero-Single z has been determined to form a Multi object it checks for objects within
its surroundings. Any other Zero-Single z′ that is within the common multi horizon
µ(Rz + Rz′) will be added to the Multi. Then, for each z′ that was added, the
same check is performed for its surroundings, ignoring z. This is repeated until no
further Zero-Singles can be added to the Multi object. Note that Multi shells in such
constellations in principle can overlap with more than one other Multi shells. If there
are only surfaces within the horizon the Multi will consist of only one Multi shell, the
one around z.

The test-shell concept

In order to prevent double e�ort, in eGFRD the sizing of a domain shell upon do-
main (re)construction is decoupled from sampling of next-event information from the
Green's function. This is achieved by using �test shells�. In a particular situation in
which a new domain has to be created, the simulator �rst attempts to determine the
maximal size of the tentative test shell of the domain, taking into account the required
shell geometry (cylinderical or spherical) and particular scaling parameters (e.g. the
scale aspect ratio of cylinders). Starting from a (prede�ned) maximal shell size, the
test shell then is scaled down successively with respect to each neighboring shell via
collision detection. During the collision detection step the maximal dimensions of
the test shell that does not lead to an overlap with the particular other domain shell
are calculated (see subsequent section for more detail). If at the end of the scaling
procedure the dimensions of the test shell are not smaller than the required minimal
dimensions (determined by the factors β and µ de�ned further above and particle
radii) a new domain object is parametrized with the test shell, and only after this
step its next-event information is sampled. In the opposite case the construction of
the respective domain type is rejected and the algorithm proceeds by attempting the
construction of another domain type (e.g. Single or Multi).

Shell collision detection

Considerable computational e�ort has to be put into detection of collisions between a
scaled test shell and another (static) shell. While this problem is trivial when scaling
spheres or cylinders against spheres or parallel cylinders against each other, it is,
maybe surprisingly, less straightforward for arbitrarily oriented and even orthogonal
cylinders. Note that in eGFRD cylinder scaling is performed subject to a �xed (but
in principle arbitrary) �scale aspect ratio� (de�ning a certain �scale angle�), which
links the change in cylinder height to the change in the radius. The aspect ratio
is usually set by the requirement of equalizing expected �rst passage times of the
enclosed particle towards the cap and the tube of the cylindrical shell; as illustrated
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by Figure S2.2, the scale angle may di�er for the two opposite sides of the cylinder1.
In general, also the reference points of the scaling (�scale centers�) do not coincide
with the midpoint of the cylinder, particularly in cases in which scale angles are
indeed di�erent on both sides. Thus, scaling a cylindrical shell in eGFRD conceptually
consists of scaling the two sides of the cylinder separately, albeit linked via the common
radius.

To scale orthogonal cylinders against each other in eGFRD we consider the two-
cylinder problem in a standardized cartesian coordinate system centered at the mid-
point of the scaled cylinder, with x-base-vector pointing towards the midpoint of
the static cylinder and z-base-vector coinciding with the axis of the scaled cylinder.
We then determine the speci�c type of collision that may occur upon scaling up the
cylindrical test shell. There are seven possible collision types:

1. TF: the tube of the scaled cylinder hits the �at side of the static cylinder.

2. TT: the tube of the scaled cylinder hits the tube of the static cylinder.

3. TE: the tube of the scaled cylinder hits the edge2 of the static cylinder.

4. FT: the �at side of the scaled cylinder hits the tube of the static cylinder.

5. ET: the edge of the scaled cylinder hits the tube of the static cylinder.

6. EE: the edge of the scaled cylinder hits the edge of the static cylinder.

7. None: no collision possible in the given scenario3.

Identi�cation of the collision type is facilitated by comparing the location of the
projected midpoint of the scaled cylinder to the projected edges of the static cylinder
in the xy-plane of the standardized coordinate system (in which the scaled cylinder
appears circular and the static cylinder rectangular). Certain respective locations
exclude certain collision types; for example, if the midpoint of the scaled cylinder is
within the rectangular projection of the static cylinder, the collision must be of type
FT (given that the height is scaled). Once the collision type is known, the maximal
dimensions of the scaled cylinder are determined taking into account its �intrinsic�
scaling properties (scale angle, location of scale center, minimal size). This is mostly
achieved via straightforward geometric calculations. For collision type EE a closed
form for the new dimensions could not be obtained; the values are therefore calculated
from an implicit equation using a numerical root�nder. The detailed calculations are
part of the eGFRD technical documentation and beyond the scope of this thesis.

A concise scheme for scaling arbitrarily oriented eGFRD-type cylinders against
each other is yet to be devised.

1This is e.g. the case for the shell of the Planar Surface Interaction domain (see section 3.2.1),
the height of which is scaled only on the side of the planar surface facing the particle, while the
height on the opposite side is kept �xed when the radius is scaled. This is the example shown in
Fig. S2.2, where the gray line represents a planar surface.

2de�ned as the circular line that separates cylinder tube and �at side
3This e.g. may occur in cases in which only the radius or height are scaled.
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2.B.3 Convergence issues a�ecting domain construction

The Green's functions, survival probabilities, cumulative PDFs and the expressions
for the boundary �uxes used in eGFRD typically have the common form

C ·
∞∑

n=0

e−ζ
2
nDtXn (S2.27)

where C is constant and Xn does not depend on t. It can be shown that ζ2
n, to a good

approximation, scales linearly with n and inversely with the domain size L, while
typically |Xn| ∼ 1. Convergence of these sums thus is dominated by the exponential
terms. We found that it is severly hampered for evaluation times t which are small
on the typical timescale of the domain, i.e. the mean time required to traverse it
by di�usion with di�usion constant D. This is the case when the distance ∆ of the
particle to the closest boundary becomes very small. Then evaluation times are of the
order of t∆ = ∆2/2dD, where d is the dimensionality. A fair estimate for the number
n of summation terms needed to reach a desired convergence threshold ε follows from:

e−( cnL )2
Dt < ε ⇔ n >

L
√

1/ε
c
√
Dt

(S2.28)

where we approximate ζn = cn/L with c = const. Inserting t∆ into the above equation
yields

n∆ >
L

∆
· const (S2.29)

showing that the required number of terms to reach a prede�ned convergence accuracy
scales inversely with the distance ∆ to the closest boundary. Therefore it should be
avoided to construct domains in a way that ∆/L is small; optimally domains should
be constructed in a way that distances between the starting point of the di�using
particle and the domain boundaries are approximately equal.

In practice this is handled in two ways: Whenever particles start very close to
radiating or absorbing boundaries we construct a domain that does not use all avail-
able space but is only sized up to L ' 2∆. While this requires the succesive creation
of undersized domains (resulting in minor next-event times) in order to elongate the
distance between the reactive boundary and the particle, it overcomes the above-
mentioned convergence issues by keeping ∆/L constant. Alternatively, we scale do-
mains up as much as possible and, where available, employ Green's functions that
are bounded unilaterally, i.e. neglect the distant second boundary. These Green's
functions typically are �nite sums, which facilitates their implementation and com-
putation, and in the above case approximate the double-bounded solutions very well.
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2.C Appendix: Dynamical cylinders

2.C.1 Abstracting dynamical properties of microtubules

A further step towards a more accurate representation of microtubules in eGFRD is
to allow for dynamical cylindrical surfaces which�in a coarse-grained fashion�re�ect
the dynamics of microtubules. Here we present a concept to incorporate dynamical
cylinders into eGFRD.

Microtubule dynamics are characterized by permanent length changes via a process
called dynamic instability [73, 74, 75, 76]: The microtubule tip alternates between
phases of growth and shrinkage; the latter are induced by sporadic �microtubule
catastrophies� that lead to an almost instantaneous shortening of the microtubule
by a large fraction of its length, occasionally even to its complete disappearance.
Catastrophies are�to a good approximation�Poissonian events that happen with a
certain frequency which may depend on other factors, such as forces exerted onto the
microtubule [81] and the presence of tip-tracking proteins [82, 83, 44].

The arguably most simple way to implement dynamic instability into eGFRD is
to allow for length �uctuations of cylindrical surfaces that grow at a constant speed
vg and retract instantaneously to zero length at a constant catastrophy rate kc. Next-
event times for catastrophy events then can be sampled from an exponential distri-
bution, while growth is linear and future length therefore easy to predict. However,
since the cylinders typically carry particles enclosed by domains with well-de�ned
next-event times, which moreover may interact with the growing tip, more care is
required to integrate growth and shrinkage events with events produced by particle
domains. In the following sections we �rst describe how catastrophies of dynamical
cylinders can be treated within the current eGFRD framework. We then introduce
growth events, produced by several new �growth� domain types that take into ac-
count particles bound to or interacting with a growing cylinder cap, as described in
more detail further below. Finally, we give a brief summary of the dynamical cylinder
concept elaborated here.

2.C.2 Including growth and catastrophies into eGFRD

We assume that the succession of microtubule catastrophies is a Poisson process with
constant catastrophy rate kc. Next-event times for catastrophies then are easily sam-
pled via τc = −kc ln(R), where R is a random number from the uniform distribution
on [0, 1]. For each cylindrical surface, τc is the lifetime of the cylinder and as such an
upper cut-o� for growth next-event times.

In the event of a catastrophy (�Cylindrical Surface Catastrophy�) the length of the
cylindrical surface is immediately set to zero and all domains associated with that
surface are bursted, i.e. their position is propagated up to the time of catastrophy τc
before they are converted to cytoplasmic zero-singles.

Cylinders grow at constant speed within cylindrical growth domains

In order to shield the growing cylinder tip from interference by particles that are in the
way we construct cylindrical growth domains in the extension of the cylinder surface
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beyond its growing end (�growth volume�), with a certain length Lg determined by the
speci�c constellation in the neighborhood of the growth domain. Here we �rst consider
the most simple growth domain, the �Cylindrical Surface Cap Growth� domain, which
encloses only the growing tip and the growth volume; further growth domains that
also contain cylinder-bound particles are the subject of the forthcoming sections. We
de�ne the �Cylindrical Surface Growth� event to occur when the growing cap of the
cylindrical surface reaches the distant end of the growth domain. For constant growth
velocity vg we can easily calculate the length L(t|t < τc) of the cylinder at any future
time t given that a catastrophy did not happen until that time. The next-event time of
the growth event then simply is given by τg ≡ Lg/vg. To avoid that the growth domain
becomes an arti�cial obstacle for di�using particles we allow the growth domain to
be bursted by nearby particles when the growth domain is within the burst radius
of the particles. This results in a length change ∆L < Lg and creates a situation in
which the particles close to the growing cylindrical surface correctly detect the free
space available to them.

Whenever obstacles such as surfaces or particle domains are in the way of the
growing cylinder, the growth domain is constructed up to the closest interfering object
in the direction of cylinder growth (i.e. along the extended cylinder axis). When a
growth domain with minimal size cannot be constructed any more, both the length
changes of the cylinder and�if the obstacles are particle domains�the displacements
and reactions of intruding particles are simulated via Brownian dynamics. Once the
intruders have moved out of the growth volume of the cylindrical surface, construction
of a new growth domain may be attempted. To avoid instantaneous re-bursting of a
newly constructed growth domain, it is wise to propagate the particles in BD mode
until their distance is larger than their burst radius (reaction horizon).

Binding to a growing cylinder cap

In section 2.4 we have described how the 1D Green's function with drift derived in
section 2.3 is used to sample next-event times and positions for a particle that di�uses
(with di�usion constant D) and drifts (with velocity v) on a �nite, static cylindrical
surface and binds to the cylinder cap with an intrinsic reaction rate. This principle
can be straightforwardly extended to the case of dynamical cylinders. For constant
cylinder growth velocity vg, the problem can be easily transformed into the reference
frame of the moving cap by substituting the drift velocity v in the Green's function
with v−vg. Note that this then also assumes that the absorbing boundary of the cap
binding domain is not static any more, but trails behind the particle at a velocity vg.
This has to be taken into account when sampling a new particle position x on the
cylinder axis at a time τ : position x has to be post-processed by adding ∆x = vgτ ,
the length increase of the growing cylinder until time τ . Note that τ may be a time
at which the domain is bursted, and thus arbitrary.

To isolate the problem from exterior in�uence, we can encapsulate the particle
and the growing cap by a (cylindrical) �Cylindrical Surface Growing Cap Interaction�
domain that extends beyond the cap as far as possible, i.e. using up all available space
in the direction of the growing cylindrical surface. As described for the Cylindrical
Surface Cap Growth domain (see previous subsection), the length of this extension
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de�nes the next-event time τg for the Cylindrical Surface Growth event. The next-
event time τν for the Cylindrical Surface Growing Cap Interaction domain then is
given by the minimum of τdd, the next-event time sampled from the di�usion-drift
Green's function with the modi�ed drift, τg and τs, which is the tentative time of the
next monomolecular reaction of the particle.

Similarly, we can de�ne a �Cylindrical Surface Growing Cap Single� domain for
a particle that is bound to the cap of a growing cylinder. Again we construct a
cylindrical domain that encloses the particle and as much of the space in the direction
of the growing cylinder as possible. Here the next-event time τν is the minimum of
τg (cylinder growth) and τs (monomolecular reaction). For any τν , both the cap and
the particle are displaced by ∆x = vgτν ; when τν = τs, the particle in addition is
displaced orthogonally and placed at contact with the cap at a random angle.

To end with, the case of a cylinder-bound particle interacting with a particle
on the growing cylinder cap can be treated in analogy to the Cylindrical Surface
Growing Cap Interaction de�ned above. As before, we can create a cylindrical domain
(�Mixed Pair 1D-Growing Cap�) that encloses both particles and the available growth
volume. There are two minor di�erences: First, for any next-event time τ the cap-
bound particle is displaced deterministically with the growing cap by ∆x = vgτ , while
the position of the other particle is sampled from the 1D Green's function before
∆x is added, as described above. Second, since here both particles can undergo
monomolecular reactions with tentative next-event times τs1 and τs2, the next-event
time τν of the domain is the minimum of τg, τdd, τs1 and τs2.

2.C.3 Summarized cylinder growth sampling algorithm

The concept presented in the preceding sections can be compiled into the following
algorithm for growth domain construction in eGFRD.

Starting from the situation in which a growing cylinder with growth velocity vg and
catastrophy rate kc just exited from its last update we �rst sample a next-catastrophy
time τc from an exponential distribution with decay rate kc. Depending on whether
there are particles on and/or close to the cylinder cap, we construct a domain that
surrounds the cap and the particles associated or interacting with the cap and the
available growth volume in the direction of the growing cylindrical surface. Possible
growth domain types are:

• Cylindrical Surface Cap Growth: contains only the growing cap, no particles.

• Cylindrical Surface Growing Cap Single: contains the growing cap and a cap-
bound particle.

• Cylindrical Surface Growing Cap Interaction: contains the growing cap and a
nearby particle di�using and drifting on the cylinder.

• Mixed Pair 1D/Growing Cap: contains the growing cap, a cap-bound particle
and a nearby particle di�using and drifting on the cylinder.

We then calculate a next-event time τg for the growth event which is directly deter-
mined by the length of the �free path� Lg available to the growth domain in growth
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direction, τg = Lg/vg. If the domain contains a mobile particle that is not bound
to the cap, we calculate a next-event time for particle association to the cap (or
cap-bound particle) or for exit through the absorbing boundary from the 1D Green's
function with drift (section 2.3) in which the drift v is substituted via v → (v − vg).
In the following this function is denoted by pv−vg . For all of the above domain types
that contain a particle, we �nally also compute the next-event time of a monomolec-
ular particle reaction τs, where τs is the smaller of the two tentative monomolecular
reaction times if there are two particles involved. The next-event time for the growth
domain then is de�ned as τν = min(τc, τg, τdd, τs); this automatically determines the
scheduled next-event type. The possible events produced by growth domains require
slightly di�erent update procedures:

• Cylindrical Surface Catastrophy (τν = τc): If the next event is a catastrophy we
burst all associated domains and shorten the cylinder down to zero length. The
cylindrical single and pair domains that enclose cylinder-bound particles are
bursted in the regular fashion; bursting of growth domains, which also contain
the growing cylinder end, is described further below.

• Cylindrical Surface Growth (τν = τg): In this case we �rst extend the length of
the growing cylinder by ∆Lg = vgτg. If the domain contains a cylinder-bound
mobile particle, a new particle position xν is sampled from pv−vg(x, τg) and
∆Lg added to xν afterwards.

• Particle exit (τν = τdd): here �rst the length of the cylindrical surface is enlarged
by ∆Ldd = vgτdd. The cap and an eventual cap-bound particle are displaced
by ∆Ldd. Then, if the exit of the di�using cylinder-bound particle is through
the reactive boundary, it is removed and a new cap-bound product particle is
placed at the updated position of the cap, which will subsequently result in the
creation of a Cylindrical Surface Growing Cap Single. If the exit is through the
absorbing boundary, the sampled new particle position xν has to be transformed
via xν → xν + vgτdd.

• Particle monomolecular reaction (τν = τs): again, �rst the cylinder length
should be enlarged by ∆Ls = vgτs. The cap and an eventual cap-bound particle
are displaced accordingly. The new position xν of a di�using particle is sampled
from pv−vg(x, τs) and post-transformed via xν → xν + ∆Ls. The particle that
underwent the monomolecular reaction is placed at contact with the cylinder at
a random angle.

• Bursting τ ≤ τν : If any of the domains is bursted at an arbitrary time τ ,
the cap and cap-bound particles have to be displaced by ∆L = vgτ . For the
di�using particles new positions are sampled from pv−vg(x, τ) and ∆L is added
afterwards.

Note that growth, binding and monomolecular reaction events are conditioned on
the fact that a catastrophy did not yet happen. The above prescription exploits the
fact that catastrophy times are Poissonian, which precisely means that the probability
of an catastrophy event to happen within the time interval [t, t + dt] is independent
of the fact that it did not occur until time t.



Chapter 3

2D-eGFRD

3.1 Introduction

It has long been known that the cell membrane serves to maintain an intracellular
environment that is di�erent from its surroundings. The membrane acts both as a
barrier and as an interface: not only does it prevent unwanted exchange of molecules
between cell and environment, it also allows for controlled exchange of proteins and
ions via endo- and exocytosis and ion channels. In addition, it is now becoming
increasingly clear that the membrane is also a central platform for cellular signal
processing. It is not only the place where extra-cellular signals are detected, but also
ampli�ed and integrated [29, 46, 47].

Not surprisingly, a broad range of proteins is able to anchor to the membrane
in order to perform specialized tasks or to act as membrane-bound reaction sites
for other proteins. In eukaryotic cells, up to 50% of the membrane mass consists of
proteins, and in yeast about one third of all genes code for membrane-bound proteins
[84, 85, 86]. Therefore, a scheme that aims at constituting a generic and versatile cell
simulation environment must take into account membrane-associated processes.

Here we describe the inclusion of membrane-binding and two-dimensional di�usion
into eGFRD. In the �rst part of this chapter we explain how we use planar struc-
tures to represent the cell membrane in eGFRD, de�ning new domain types which
model interactions between bulk and membrane and di�usion-reaction processes on
the membrane. There we also introduce the concept of �transitions�, i.e. instant par-
ticle transfer between adjacent planes, which is used to de�ne closed compartments
consisting of interlinked planes.

While many concepts already introduced in the �rst chapter also apply here, it is
necessary to calculate new Green's functions for the newly introduced domain types,
to which the second, mathematical part of this chapter is devoted. Since many of the
calculations employ polar coordinates in which the di�usion equation translates to
Bessel's equation, we make extensive use of the theory of Bessel functions; while
we brie�y mention related details where necessary, we refer the reader to [87] for a
comprehensive treatise and to [88] for an excellent concise introduction to this topic.
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We end by describing a generalized coordinate transform which is needed to treat
the case of a bulk particle that directly interacts with a membrane-bound particle, to
which we refer by �direct binding�.

3.2 2D structures in eGFRD

In order to render eGFRD capable of simulating di�usion and reactions on the cell
membrane we introduce two-dimensional structures into the scheme. In vivo, mem-
branes are closed, irregularly curved shapes, which in addition undergo dynamical
�uctuations. However, in many systems shape �uctuations and deformations are not
essential for cellular signaling. We therefore represent membranes as static reactive
planes, neglecting curvature. Bulk particles may bind to any position on the plane
that is not yet occupied by another particle with a certain rate, and unbind back to
the bulk. We also allow for �direct binding� of a (3D) bulk particle to a (2D) particle
that is already bound to a plane. In addition, particles may di�use and react on the
membrane.

In order to permit modelling of a �nite, fully membrane-enclosed volume repre-
sentative of a whole cell, we implemented a box structure consisting of six �nite,
orthogonal planar surfaces that are connected at their common edges. Particles that
di�use on one plane can instantly change to a neighboring plane at edge contact via
special �Transition� domains that enclose tentative new positions on both planes and
account for the necessary geometric transform. Alternatively, a closed cell could be
represented by a spherical or cylindrical outer surface, to which particles can bind
and di�use in curvilinear coordinates. While we did not implement this variant here,
a Green's function for binding to such a (cylindrical) curved surface was derived and
is brie�y presented in section 3.3.3.

In the following we �rst describe how binding to planar surfaces is treated. Then
we present the treatment of di�usion and reactions of particles on the planes. A third
subsection explains the concept of transitions and associated geometric transforms.
In all cases, new domain types will be introduced. The mathematical derivation of
the new Green's functions employed by these domains is described separately in the
subsequent sections.

3.2.1 Interactions with planar surfaces

Binding of a bulk particle to a reactive planar structure is treated in a similar way
as binding to a reactive cylinder, as described in section 2.2.2. Following the usual
principle, we construct a protective domain that isolates the bulk particle and a region
on the reactive plane from exterior in�uence. For that purpose we introduce a new
cylindrical domain type, the �Planar Surface Interaction� domain, shown in Figure
3.1A. Cylindrical geometry was chosen because it facilitates scaling of the domain
with respect to the other cylindrical domains for plane-bound particles that we will
introduce further below. The domain is created in a way that its cylinder axis is
perpendicular to the plane and congruent with the line that projects the particle onto
the plane. Its height over the plane h = δ + βR0 is determined by the distance δ
between plane and interacting particle plus βR0, where R0 is the particle radius and
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A
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C

Figure 3.1: New protective domain types for interaction with and reaction-
di�usion on planar surfaces. (A) Planar Surface Interaction domain; (B) Planar Surface
Single domain; (C) Planar Surface Pair domain. Right panels show sections of 3D objects.
Absorbing boundaries are highlighted by red, radiative boundaries by green.

β > 1 the single-shell factor (as de�ned in section 2.B.2 of the appendix). Note that
the domain slightly extends behind the reactive plane by a length h′ = βR0; this is
to prevent the bound particle from overlapping with particles on the opposite side of
the plane�a prerequisite for modelling intracellular compartments. Association to the
plane is modeled via a radiating boundary condition at particle-plane contact. Here,
the spherical particles are thought to interact with the in�nitely thin plane not with
their outer shell but with their centers; concomitantly, in the bound state particle
centers coincide with the plane. By default we allow for binding to both sides of the
plane; binding can be restricted to one side as a species property.

The particle can exit the interaction domain by either reacting with the plane
or by hitting one of the domain's absorbing boundaries, i.e. the cylinder tube or
the cytoplasmic cylinder cap. Let p(r, φ, z, t|r0, φ0, z0) be the probability density
function for this problem, written in cylindrical coordinates r = (r, φ, z). As in section
2.2.2, we can separate di�usion along the cylinder axis from di�usion in the polar



62 2D-eGFRD

plane via the ansatz p(r, φ, z, t|r0, φ0, z0) = pr(r, φ, t|r0, φ0)pz(z, t|z0), which yields a
one-dimensional di�usion equation for pz and Bessel's equation for pr. The 1D-
problem for pz has to be solved with a radiating boundary at z = 0 and an absorbing
boundary at z = h. Here we simply reuse the 1D Green's function (2.64) calculated
in section 2.3.2 with drift v = 0, σ = 0 and a = h. The equation for pr has perfect
radial symmetry by construction and describes 2D di�usion in polar coordinates for
a particle starting at r = 0 and a circular absorbing boundary at r = R. The solution
to this problem is well-known and presented in section 3.3.1.

From the two Green's functions pr and pz we sample next-event times τr and τz
in the usual way and take their minimum as the next-event time τν of the interaction
domain. In the case τν = τz, i.e. when the particle exits the cylindrical domain
through one of its caps, we compare the �uxes through the opposite boundaries to
determine whether the particle left through the absorbing (IV Escape event, particle
is put into the cytoplasm) or through the radiating boundary (IV Interaction, particle
associates with the membrane). For τν = τr we know with certainty that a (radial)
escape through the cylinder tube occured. In both cases the respective other coordi-
nate is sampled from the corresponding Green's function normalized by the respective
survival probability.

3.2.2 Direct binding: Interactions of particles with particles

bound to planes

Instead of binding to the plane, a bulk (3D) particle may bind to a (2D) particle that
is already associated with the plane. We call this process �direct binding�, in the sense
that the 3D particle directly interacts with the 2D particle without prior binding to
the membrane. Within the framework of eGFRD direct binding constitutes a pair-
reaction. When the cytoplasmic particle can bind the particle on the membrane,
but not the membrane itself, the membrane acts as a re�ecting surface. We can then
exploit the fact that trajectories that are re�ected from the plane are simply the mirror
image of the trajectories that would continue through the plane if the plane would
not exist. This conceptual trick enables us to use the Green's functions that we have
already derived for pairs of particles that interact in 3D. However, here in addition
the fact that movement of the 2D particle is restricted to the plane must be taken
into account. More speci�cally, since the bound particle is immobile in the direction
perpendicular to the plane, the interparticle di�usion constant in this direction is equal
to the di�usion constant of the 3D particle, whereas in the orthogonal directions it
is given by the sum of the 2D and 3D di�usion constants. This renders interparticle
di�usion anisotropic. In section 3.4 we show that by de�ning the interparticle and
center-of-mass coordinates such that they account for the anisotropy, the problem
can be transformed in a way that known Green's functions may be employed to
sample the next event. The sampled new positions then are post-processed via the
corresponding inverse coordinate transform. For the speci�c transform that we choose,
the new interparticle positions lie within an oblate spheroid centered around the new
center-of-mass position. To facilitate scaling of domain shells against each other, we
enclose the mathematical domains by adequately sized cylindrical shells, as for regular
binding. We show such a �Mixed Pair 2D-3D� domain in Figure 3.2A.
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3.2.3 Di�usion and reactions on planar surfaces

We treat di�usion of particles on the plane and reactions between two such particles
in the same manner as in 3D. Here, however, instead of spheres we use �at cylinders
for single and pair domains and consequently the corresponding Green's functions are
calculated in polar instead of spherical coordinates. Figures 3.1B and 3.1C, respec-
tively, show a �Planar Surface Single� and a �Planar Surface Pair� domain.

In the Planar Surface Single the particle starts out from the center of the domain
and the only exit channel is the absorbing boundary at its outer radius. The Green's
function for this problem is precisely the one that describes planar movement in the
Planar Surface Interaction domain (see section 3.2.1), which is presented in section
3.3.1.

The same Green's function is also used to sample next-event information for the
center-of-mass di�usion in the Planar Surface Pair domain, after the 2D pair problem
has been transformed into center-of-mass and interparticle di�usion; this is achieved
via precisely the same transform as in 3D and 1D (see calculations in section 2.3.1
with drift v = 0). The respective interparticle vector problem is solved subject to
an outer absorbing boundary and an inner radiating boundary at particle contact
which models the reaction. While this is completely analogous to the treatment in
3D, mathematically the problem has to be reconsidered from scratch for the polar
coordinate system used here. The derivation of the corresponding Green's function
is summarized in section 3.3.2. Next-event times and new positions for the Planar
Surface Pair are sampled in the regular fashion, as described in section 2.1.3.

3.2.4 Finite planes and transitions between them

When introducing the new domain types for membrane-interaction and -di�usion we
implicitly assumed that particles interact with a single unbounded planar surface.
An extension towards bounded planes does not require signi�cant changes: domains
associated to the plane must simply be constructed such that they do not reach out
of it. In contrast, the implementation of particle transitions between two bordering
orthogonal planes within the box-arrangement that we introduced earlier requires new
domain types. We imagine that the two connected planes�in an abstract fashion�
represent a continuous part of the membrane. This means that the edge does not
constitute an obstacle for the di�using particle; when it reaches the edge its movement
is instantly redirected into the orthogonal direction imposed by the bordering plane.
Under the assumption that this holds for each di�usive trajectory, we devised the
following procedure for transitions of a particle between orthogonal planes: First we
construct a spherical �Planar Surface Transition� domain in a way that it contains
the particle on the surface of origin and an empty region on the target surface. The
domain is centered around the original particle position r0. This construction is
shown in Figure 3.2B. As a second step a next-event time τν and a new position rν
is sampled in the same way as for the Planar Surface Single, where the radius of the
absorbing outer circle is equal to the radius of the spherical transition domain. If
rν is inside the �nite plane of origin, the particle is moved to that point at τν . If,
in contrast, rν lies beyond the boundaries of the original plane, the new position is
de�ected onto the orthogonal target plane; this is done by rotating the part of the
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Figure 3.2: Special protective domains for particles on planar surfaces. (A)Mixed

Pair 2D-3D domain; (B) Planar Surface Transition domain; (C) Planar Surface Transition

Pair domain. Right panels show sections of 3D objects. Here, absorbing boundaries are
highlighted by red, re�ective boundaries by cyan color. The center of spherical domains is
indicated by a black cross.
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displacement vector ∆r = rν−r0 that reaches out of the original plane about the line
that marks the edge between the planes by an angle of π/2. Details of this simple
geometrical transform are described in section 3.A in the appendix.

The above principle can be straightforwardly extended to the case of a pair of
particles that reside on di�erent neighboring planes and interact �around the edge�.
Let us assume that particle A is located at position rA on plane A and and particle B at
rB on plane B. Here �rst position rB is transformed into plane A via the inverse of the
de�ection transform (appendix section 3.A). Then a next-event time and new particle
positions are determined in plane A, following the procedure for the Planar Surface
Pair. Finally, new positions that lie beyond the boundaries of plane A are transformed
into plane B. Also the construction of the protective domain is slightly di�erent as
compared to the case with one particle: We encapsulate the pair constellation with
a spherical �Planar Surface Transition Pair� domain centered around the weighted
center-of-mass R of the particles, as shown in Figure 3.2C. Note that here vector R
is calculated as follows: First rB is transformed into plane A, yielding r′B, and the
weighted center-of-mass R′ is computed in plane A from r′B and rA. If R′ is within
the bounds of plane A, we set R = R′; otherwise R is obtained by de�ecting R′ back
into plane B. The latter case is shown in the example situation in Figure 3.2C.

Special treatment is required in the rare event that two particles end up very close
to each other in the proximity of an edge between two planes. This may happen due
to a single reaction, in which the products are put at contact with a random angle,
but also when a Planar Surface Transition Pair is bursted and its two particles
happen to end up close to each other. In these cases constellations are possible in
which one of the particles reaches out of the plane, but application of the de�ection
transform would lead to particle overlap, because the transform shortens the e�ective
distance between the two particles. Therefore particles are slightly moved apart in
such situations, introducing a minor error.
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3.3 Green's functions

3.3.1 Green's function with absorbing outer boundary in polar

coordinates

We now sketch the calculation of the Green's function in polar coordinates r = (r, φ)
for a di�using particle starting at radius r = 0 with a symmetric absorbing boundary
at a radial distance r = a; this function is used to sample next-event times and new
positions in the Planar Surface Interaction domain (section 3.2.1), Planar Surface
Single and Planar Surface Pair domains (section 3.2.3), and the transition domains
derived from the latter two (section 3.2.4).

Since we assume perfect radial symmetry here, the Green's function ps(r, t) does
not depend on the angular coordinate φ, so that the corresponding boundary value
problem can be written as follows:

∂tps(r, t) = D

[
1
r
∂r (r∂r)

]
ps(r, t) (3.1)

ps(r, t0 = 0) =
1

2πr
δ(r) (3.2)

ps(a, t) = 0 (3.3)

The solution to this problem is well-known [57, p. 368f] and, for the above initial
condition, reads

ps(r, t|r0 = 0) =
1
πa2

∞∑
n=1

e−ρ
2
nDt

J0(rρn)
J2

1 (aρn)
(3.4)

where J0 and J1 are regular Bessel functions and ρn the roots of the equation:

J0(aρn) = 0 (3.5)

The corresponding survival probability Ss(t) and (radial) cumulative PDF Ps(r, t)
follow by integration of ps(r, t) over the considered circular domain:

Ss(t) =

a∫
0

2π∫
0

p(r, t|r0)rdφdr =
2
a

∞∑
n=1

e−ρ
2
nDt

1
ρnJ1(aρn)

(3.6)

Ps(r, t) =

r∫
0

2π∫
0

p(r′, t|r0)r′dφdr′ =
2
a2

∞∑
n=1

e−ρ
2
nDt

rJ1(rρn)
ρnJ2

1 (aρn)
(3.7)

Here the standard formula
∫ r

0
r′J0(r′)dr′ = rJ1(r) is used.

Next-event times τν are sampled from ps(r, t) in the usual way by comparing a
uniform random number from [0, 1] with Ss(t) via the inversion method. For an
arbitrary time τ , a new radius rν(τ) is obtained from 1

Ss(τ)Ps(r, τ), whereas a new
angle φν(τ) is sampled from the uniform distribution on [0, 2π]. If τ = τν , we directly
set rν(τν) = a.
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3.3.2 Green's function for the 2D di�usion-reaction problem

In this section we describe the derivation of the Green's function in polar coordinates
r = (r, φ) for a particle starting at an arbitrary position r0 = (r0, φ0) within an
annular region bounded by a radiating inner and absorbing outer boundary. This
Green's function is required for next-event sampling in the Planar Surface Pair do-
main (section 3.2.3), but also for the Cylindrical Surface Interaction domain (section
2.2.2).

We assume here that the problem of two particles that interact on a plane has been
transformed correctly into a di�usion problem for their center-of-mass vector R and
a di�usion-reaction problem for their interparticle vector r = (r, φ), with a radiating
boundary at particle contact, i.e. r = |r| = σ = RA +RB, and an absorbing boundary
at r = a. While the problem for R is solved by the Green's function presented in
section 3.3.1, the spatio-temporal evolution of r is goverened by the following di�usion
equation in polar coordinates

∂tpr(r, φ, t|r0, φ0) = Dr∇2
rpr(r, φ, t|r0, φ0)

= Dr

[
∂2

r +
1
r
∂r +

1
r2
∂2
φ

]
pr(r, φ, t|r0, φ0) (PDE)

subject to boundary conditions

2πσDr∂rpr(r, φ, t|r0, φ0)
∣∣
r=σ

= kpr(|r| = σ|r0, φ0) (BCr)

pr(r, φ, t|r0, φ0)
∣∣
r=a

= 0 (BCa)

and initial condition

pr(r, φ, t = 0|r0, φ0) =
1
r
δ(r − r0)δ(φ− φ0) (IC)

where k is the intrinsic particle reaction rate.

Solution in Laplace space

The above boundary value problem is again solved most conveniently in Laplace

space. Applying the Laplace transform p̂r(r, φ, s|r0, φ0) ≡
∫∞
−∞ pr(r, φ, s|r0, φ0)e−stdt

on both sides of the equations yields:

sp̂r(r, φ, s|r0, φ0)− pr(r, φ, t = 0|r0, φ0) = Dr∇2
rp̂r(r, φ, s|r0, φ0) ⇔[

∂2
r +

1
r
∂r +

1
r2
∂2
φ −

s

Dr

]
p̂r(r, φ, s|r0, φ0) =

−1
Drr

δ(r − r0)δ(φ− φ0) (PDE)

2πσDr∂rp̂r(r, φ, s|r0, φ0)
∣∣
r=σ

= kp̂r(r = σ|r0, φ0) (BCr)

p̂r(r, φ, s|r0, φ0)
∣∣
r=a

= 0 (BCa)

As usual we �rst attempt to �nd a general solution to the homogenous prob-
lem corresponding to (PDE) and specialize it afterwards by applying the initial and
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boundary conditions. Let us set s/Dr ≡ q2 ≥ 0. The homogenous problem then
reads: [

∂2
r +

1
r
∂r +

1
r2
∂2
φ − q2

]
p̂r,h(r, φ, q) = 0 (3.8)

Via the separation ansatz p̂r,h(r, φ, q) = R(r)Φ(φ) one can show that the above PDE is
equivalent to the following two di�erential equations coupled by a positive parameter
m2:

∂2
φΦ(φ) = −m2Φ(φ) (3.9)[

r2∂2
r + r∂r − (r2q2 −m2)

]
R(r) (3.10)

The solution to (3.9) is readily obtained as Φ(φ) = α cos(m(φ−φ0)) where we exploit
that Φ(φ) must be an even function because the operator ∂2

φ conserves the symmetry
of δ(φ − φ0). α is a yet undetermined real constant. With rq ≡ ρ equation (3.10) is
equivalent to the modi�ed Bessel equation:[

ρ2∂2
ρ + r∂ρ − (ρ2 −m2)

]
R(ρ) (3.11)

which is solved by any linear combination of the modi�ed Bessel functions R(ρ) =
βIm(ρ) + γKm(ρ). The solution to (3.8) thus reads

p̂r,h(r, φ, q)
= (αβ) cos (m(φ− φ0)) Im(ρ) + (αγ) cos (m(φ− φ0))Km(ρ)
≡ A cos (m(φ− φ0)) Im(qr) +B cos (m(φ− φ0))Km(qr) (3.12)

with constants A and B.
We now can construct an ansatz for the inhomogenous problem. For further

calculation it is convenient to write the ansatz as

p̂r = p̂f + p̂c (3.13)

where p̂f(r, q|r0) = 1
2πDr

K0(q(r · r0)) is the �free� solution to the unbounded 2D
di�usion problem for a point particle starting at (r0, φ0), written in Laplace space,
and p̂c a correction resulting from the boundaries. Although p̂f ful�lls the initial
condition by construction, this does not automatically apply to the entire ansatz and
must be separately proven later on. Since until now m2 is an arbitrary constant, we
shall construct the ansatz as a sum over all possible m. For p̂c we thus write

p̂c(r, φ, q|r0, φ0) =
∞∑

m=−∞
cos (m(φ− φ0)) [AmIm(qr) +BmKm(qr)] (3.14)

with real coe�cients Am and Bm. Now it is also convenient to expand p̂f into functions
that resemble (3.12), using a formula from [57, 87, p. 365]:

p̂f(r, q|r0) =


1

2πDr

∞∑
m=−∞

cos (m(φ− φ0)) Im(qr)Km(qr0) , r < r0

1
2πDr

∞∑
m=−∞

cos (m(φ− φ0)) Im(qr0)Km(qr) , r > r0

(3.15)
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This yields the combined ansatz:

p̂r(r, φ, q|r0, φ0)

=



1
2πDr

∞∑
m=−∞

cos (m(φ− φ0))×

[Im(qr)Km(qr0) +AmIm(qr) +BmKm(qr)] ,

for r < r0

1
2πDr

∞∑
m=−∞

cos (m(φ− φ0))×

[Im(qr0)Km(qr) +AmIm(qr) +BmKm(qr)] ,

for r > r0

(3.16)

By applying the boundary conditions at r = σ and r = a term-wise for each m we
�nd, after some algebraic steps

Am = Km(qa)
Im(q)Km(qr0)−Km(q)Im(qr0)
Km(q)Im(qa)− Im(q)Km(qa)

Bm = Im(q)
Im(qr0)Km(qa)−Km(qr0)Im(qa)
Km(q)Im(qa)− Im(q)Km(qa)

(3.17)

where we abbreviated:

Im(q) = κIm(qσ) + qI ′m(qσ)
Km(q) = κKm(qσ) + qK ′m(qσ) (3.18)

With these coe�cients the particular solution to the initial problem is completely
determined in Laplace space.

Inverse Laplace transform

We may transform the solution back into the time domain as usual by calculating the
Bromwich integral

pr(r, φ, t|r0, φ0) = lim
T→∞

γ+iT∫
γ−iT

p̂r(r, φ, s|r0, φ0)estds

= lim
T→∞

γ+iT∫
γ−iT

p̂r(r, φ, q|r0, φ0)eq
2Drt(2Drq)dq (3.19)

where the integration as usual occurs on a line through a real constant γ located
to the right of all singularities of function p̂r(r, φ, q|r0, φ0) extended to the complex
plane. Assuming convergence of the sum, we can perform the integration term-wise.
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This somewhat lengthy calculation shall be omitted here. It ultimately yields:

pr(r, φ, t|r0, φ0) =

π

4

∞∑
m=−∞

cos (m(φ− φ0))
∞∑

n=1

ζ2
mnR2

m(ζmn)Jmn(r)Jmn(r0)
R2

m(ζmn)− ζ2
mn − κ2 − m2

σ2

e−ζ
2
mnDrt (3.20)

where ζmn are the roots of the implicit equation

κJm(σζmn)− ζmnJ
′
m(σζmn)

Jm(aζmn)
=
κYm(σζmn)− ζmnY

′
m(σζmn)

Ym(aζmn)
≡ Rm(ζmn) (3.21)

with κ = k
Dr

and

Jmn(r) ≡ Jm(rζmn)Ym(aζmn)− Ym(rζmn)Jm(aζmn) (3.22)

As demonstrated in [89], the above function ful�lls the di�usion equation (PDE),
the boundary conditions (BCr) and (BCa) and the initial condition (IC).

By separating out the m = 0 term from the sum and unifying the summation
over m < 0 and m > 0 with the help of cosine and Bessel function (anti)symmetry
relations, the Green's function (3.20) can be rewritten into a form that proves more
convenient for further usage:

pr(r, φ, t|r0, φ0) =

π

4

∞∑
n=0

ζ2
0nR2

0(ζ0n)J0n(r)J0n(r0)
R2

0(ζ0n)− ζ2
0n − κ2

e−ζ
2
0nDrt

+
π

2

∞∑
m=1

∞∑
n=1

cos (m(φ− φ0))
ζ2
mnR2

m(ζmn)Jmn(r)Jmn(r0)
R2

m(ζmn)− ζ2
mn − κ2 − m2

σ2

e−ζ
2
mnDrt (3.23)

The advantage of this form of the Green's function is that here the double-sum term
vanishes under the

∫ 2π

0
dφ integral, which signi�cantly facilitates the calculation of

the survival probability and the boundary �uxes.
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Survival probability

The survival probability S(t) here is obtained by integrating the Green's function over
the entire circular domain on which the 2D di�usion takes place:

Sr(t) =

a∫
σ

2π∫
0

pr(r, φ, t|r0, φ0)rdφdr (3.24)

This is done most conveniently starting from (3.23), where the part with the sum over
m > 0 disappears under the φ-integral because of

∫ 2π

0
cos (m(φ− φ0)) dφ = 0. Hence,

after interchanging the order of summation and integration:

Sr(t) = 2π · π
4

∞∑
n=0

e−ζ
2
0nDrt

ζ2
0nR2

0(ζ0n)J0n(r0)
R2

0(ζ0n)− ζ2
0n − κ2

a∫
σ

rJ0n(r)dr

=
π2

2

∞∑
n=0

e−ζ
2
0nDrt

R2
0(ζ0n)J0n(r0)

R2
0(ζ0n)− ζ2

0n − κ2

[
2
π

+ σJ ′0n(σ)
]

(3.25)

with J ′0n(r) =
d

dr
J0n(r) = ζ0n [J1(rζ0n)Y0(aζ0n)− Y1(rζ0n)J0(aζ0n)]

To calculate the integral we have employed the well-known relations
∫
rJ0(r)dr =

rJ1(r) and J ′1(r) = −J0(r) which analogously apply to Y0(r). The 2
π term within

the brackets originates from J ′0n(a) = − 2
πa which can be shown with the help of the

boundary conditions.

Boundary �uxes

We can calculate the probability �uxes through the radiative (qr,σ) and absorbing
(qr,a) domain boundaries at time t by integrating the probability density gradient
over the two circular contours that constitute the boundaries:

qr,σ(t) =
∫ 2π

0

+Dr∂rpr(r, φ, t|r0, φ0)
∣∣
r=σ

rdφ

qr,a(t) =
∫ 2π

0

−Dr∂rpr(r, φ, t|r0, φ0)
∣∣
r=a

rdφ (3.26)

Here the signs account for opposite �ux directions. In the modi�ed form of the
Green's function (3.23) again the m 6= 0 terms vanish under the φ-integral. The
only r-dependent part of the m = 0 term is J0n(r), the derivative of which we have
calculated in (3.25). With this we arrive at:

qr,σ(t) = 2πDr ·
π

4

∞∑
n=0

e−ζ
2
0nDrt

ζ2
0nR2

0(ζ0n)J0n(r0)
R2

0(ζ0n)− ζ2
0n − κ2

σJ ′0n(σ)

qr,a(t) = 2πDr ·
π

4

∞∑
n=0

e−ζ
2
0nDrt

ζ2
0nR2

0(ζ0n)J0n(r0)
R2

0(ζ0n)− ζ2
0n − κ2

(−aJ ′0n(a))︸ ︷︷ ︸
2
π

(3.27)
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3.3.3 Green's function for binding to a cylindrical membrane

In order to faciliate the calculation of Green's functions, here we opted to implement
binding to and di�usion on membranes in the arguably most straightforward way,
representing the membrane with planar surfaces. In reality, however, cells typically
have curved shapes. In particular, a cylindrical outer membrane would represent many
types of yeast and bacteria more accurately. As a �rst step towards implementing
curved membrane shapes into eGFRD we derived a Green's function for binding of a
particle to a region on a cylindrical outer membrane. This is achieved by solving the
di�usion equation on a cylindrical wedge domain, with a radiating boundary at the
outer radius and absorbing boundary conditions elsewhere. While this function is not
yet further used, for completeness we present it together with the resulting survival
probability function in the appendix, in section 3.B.

3.4 Generalized linear coordinate transform for di-

rect binding

In this section we present a generalization of the linear coordinate transform that
maps two arbitrary particle positions rA and rB onto a (generalized) interparticle
vector r and weighted center-of-mass vector R in a way that the di�usion anisotropy
which arises in the direct binding scenario disappears in the transformed coordinates.
To this end we pursue the following approach: First, we rewrite the linear operator
(Laplacian) of the di�usion equation in a generic matrix notation in order to account
for anisotropic di�usion, starting from the well-known form of the Smoluchowski
equation. As a second step, we write down the linear coordinate transform in its most
general form and apply it to both the linear operator and the original coordinates rA

and rB in order to decouple the equation. Finally, the generic result will be used to
specify a particular transform for the direct binding scenario. This involves some free-
dom in the choice of transformation coe�cients. We therefore postulate the following
criteria to constrain the result: First, the transformed Laplacian should not contain
any mixed derivatives because this complicates the solution of the transformed equa-
tion. Second, the new coordinates should capture existing symmetries and, moreover,
resemble the previously de�ned interparticle vector and center of mass as much as
possible, so that we can use previously derived Green's functions.

3.4.1 Rewriting the Laplace operator in matrix notation

Let us recall the Smoluchowski equation for the density of the probability p ≡
p(rA, rB, t|rA0, rB0, t0) to �nd two di�using particles A and B with di�usion constants
DA andDB at positions rA and rB, given that they started from rA0 and rB0 (compare
to section 2.1.3):

∂tp = [DA∇2
A +DB∇2

B] p (3.28)

Here for simplicity we neglect the force-interaction term, i.e. F (rA − rB) = 0.
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By introducing

∇X ≡
(
∇A

∇B

)
(3.29)

and its transpose ∇TX ≡ (∇A,∇B) the linear operator L2 ≡ DA∇2
A + DB∇2

B may be
written in vector-matrix-notation as

L2 = ∇TX
(
DA

DB

)
∇X ≡ ∇TXD∇X (3.30)

where the sub-matrices

DA(B) ≡

DA(B) O
DA(B)

O DA(B)

 (3.31)

de�ne a di�usion matrix D. While here the entries of matrices DA and DB are
equal along their diagonals, in general they may di�er if di�usion is anisotropic.
Importantly, the Laplacian L2 has no mixed derivatives only if D is diagonal.

3.4.2 Writing the linear coordinate transform in matrix nota-

tion

A generic linear coordinate transformM : R6 → R6 for two arbitrary R3-vectors rA

and rB is described via:

r ≡ arA + brB , R ≡ crA + drB . (3.32)

In matrix notation this reads

Y ≡
(

r
R

)
=M

(
rA

rB

)
≡MX (3.33)

with

M =


a 0 0 b 0 0
0 a 0 0 b 0
0 0 a 0 0 b
c 0 0 d 0 0
0 c 0 0 d 0
0 0 c 0 0 d

 ≡
(
A B
C D

)
. (3.34)

We may generalize this transform further by allowing the nonzero coe�cients to di�er
from each other as long as the full rank of the matrix is preserved. In the following
we therefore assume thatM has the form:

M =
(
A B
C D

)
=


a1 0 0 b1 0 0
0 a2 0 0 b2 0
0 0 a3 0 0 b3
c1 0 0 d1 0 0
0 c2 0 0 d2 0
0 0 c3 0 0 d3

 (3.35)
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3.4.3 Transforming the Laplace operator

Let us now apply the generalized transform to the linear operator L2. This means
expressing the derivatives ∂Xi of the original coordinates in terms of derivatives ∂Yi

of the new, transformed coordinates. The chain rule of di�erentiation yields:

∂

∂Xi
=
∂Yj

∂Xi

∂

∂Yj
≡ Nij

∂

∂Yj
(3.36)

The coe�ceints Nij = ∂Yj
∂Xi

de�ne a new matrix N . Since the considered transform is
linear these coe�cients must be constants and related to the entries of the matrixM
via

∂Yi

∂Xj
= (M)ij = Nji . (3.37)

Since for a linear transform the Jacobian and the matrix of the transform are identical,
we have:

N =MT

∇X =MT∇Y (3.38)

With this we may rewrite the linear operator as follows1:

L2 = ∇TX
(
DA

DB

)
∇X

= ∇TYM
(
DA

DB

)
MT∇Y ≡ ∇TYD′∇Y ≡ Λ2 (3.39)

Here D′ is the transformed di�usion matrix in the new coordinates. Recall that Λ2

will not contain mixed derivatives after the coordinate transform only if D′ is diagonal.
By carrying out explicitly the above calculation we arrive at:

D′ =
(
DAA2 +DBB2 DAAC +DBBD
DAAC +DBBD DAC2 +DBD2

)
(3.40)

Since all matrices involved in the above expression are diagonal by de�nition, the
diagonality condition reduces to:

DAAC +DBBD = O
⇔ ∀j : (DA)jjajcj + (DB)jjbjdj = 0 (3.41)

We have now established a condition for transforming the Laplacian in a way that
mixed derivatives disappear in the new coordinates. This is a generalization of the
condition already mentioned in section 2.3.1. However note that we still can choose
the transform coe�cients freely as long as the above equation is ful�lled. We will
now determine a speci�c choice that is appropriate for the considered direct binding
scenario.

1We denote the new representation of the operator with a di�erent sign, but formally Λ2 = L2.
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3.4.4 Particular transform for the direct binding scenario

In direct binding one of the particles (A) di�uses on a planar 2D submanifold of the
R3 while the other particle (B) performs a standard isotropic 3D di�usion in R3. Let
us assume that the 2D plane corresponds to the xy-plane of the Cartesian coordinate
system, implying DAz ≡ (DA)33 = 0. The di�usion matrix in the original coordinates
{rA, rB} then reads:

D =


DA 0 0 0 0 0
0 DA 0 0 0 0
0 0 0 0 0 0
0 0 0 DB 0 0
0 0 0 0 DB 0
0 0 0 0 0 DB

 (3.42)

We now specify the coe�cients of the transformation matrixM such that (3.41) holds
and the o�-diagonal elements of D′ vanish. The latter requires either b3 = 0 or d3 = 0
because of DAz = 0 and DBz 6= 0. To ensure that the z-component of the generalized
interparticle vector r is nonzero, as in previous de�nitions, we opt for d3 = 0. The
transformed di�usion matrix D′ =MDMT then becomes:

D′ =


D2

Aa
2
1+D2

Bb
2
1 0 0 0 0 0

0 D2
Aa

2
2+D2

Bb
2
2 0 0 0 0

0 0 DBb
2
3 0 0 0

0 0 0 D2
Ac

2
1+D2

Bd
2
1 0 0

0 0 0 0 D2
Ac

2
2+D2

Bd
2
2 0

0 0 0 0 0 0

 (3.43)

With this we may rewrite the Laplacian as follows:

Λ2 = ∇TY(MTDM)∇Y

= (DAa
2
1 +DBb

2
1)∂2

r1 + (DAa
2
2 +DBb

2
2)∂2

r2 +DBb
2
3∂

2
r3

+ (DAc
2
1 +DBd

2
1)∂2

R1
+ (DAc

2
2 +DBd

2
2)∂2

R2

(3.44)

The fact that the prefactor of ∂2
r3 is di�erent from the prefactors of the other two

components prevents us from regrouping the separate di�erential operators into a
closed form. This is precisely the signature of anisotropic di�usion. Provided that we
do not change the (full) rank ofM we may choose the yet undetermined coe�cients
freely. Here we set

a1,2 = −1 b1,2 = +1 (3.45)

to ensure that the �rst two components of r reproduce the ones of the standard

interparticle vector. Then from (3.44) it is evident that setting b3 = ±
√

DA+DB
DB

yields equal prefactors for all three derivatives. With this choice we get rid of di�usion
anisotropy by adequately rescaling the rz-coordinate.
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The corresponding transformation matrixMDB has the form

MDB =



−1 0 0 1 0 0
0 −1 0 0 1 0

0 0 a3 0 0 ±
√

1 + DA
DB

c1 0 0 d1 0 0
0 c2 0 0 d2 0
0 0 c3 0 0 0


(3.46)

and in this particular case the diagonality condition (3.41) reads:

−DAcj +DBdj = 0 , j = 1, 2
(DA)33︸ ︷︷ ︸

=0

a3c3 +DBb3 d3︸︷︷︸
=0

= 0 (3.47)

Evidently, the second line is ful�lled for any choice of a3, b3 and c3. However, pre-
serving full rank requires c3 6= 0. An adequate choice is c3 = 1

DA+DB
. Moreover it is

convenient to set a3 = −b3 and

cj =
DB

DA +DB
, dj =

DA

DA +DB
, j = 1, 2 . (3.48)

With this the particular transform is completely determined and we �nally arrive at
the Laplacian in transformed coordinates:

Λ2
DB = (DA +DB)︸ ︷︷ ︸

≡Dr

∇2
r +

(
DADB

DA +DB

)
︸ ︷︷ ︸

≡DR

(
∂2

R1
+ ∂2

R2

)
(3.49)

This is structurally analogous to the operator yielded by the coordinate transform
previously de�ned in section 2.3.1. However, here the transformed coordinates are
di�erent. The explicit (forward) transformation rules read:

r =

 rB1 − rA1

rB2 − rA2

b3rB3 + a3rA3

 =

 rB1 − rA1

rB2 − rA2

ε(rB3 − rA3)

 , ε ≡ ±
√

1 +
DA

DB

R =
1

DA +DB

DBrA1 +DArB1

DBrA2 +DArB2

rA3

 (3.50)

The formula for r demonstrates that in the new coordinate system anisotropy is
cancelled by rescaling the z-component of the interparticle vector. The sign of the
scaling factor ε may be chosen freely; in the following we opt for the positive solution.
Note that rA3 = const because the 2D particle (A) is always in the plane by de�nition.



Generalized linear coordinate transform for direct binding 77

For completeness we once again explicitly state the �nal version of the transfor-
mation matrixMDB:

MDB =



−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −ε 0 0 ε
ε−2 0 0 DA

DB
ε−2 0 0

0 ε−2 0 0 DA
DB
ε−2 0

0 0 D−1
r 0 0 0

 (3.51)

The determinant of this matrix is

det(MDB) =
−ε

DA +DB
=

∓1√
DB(DA +DB)

6= 0 (3.52)

con�rming that our speci�c coe�cient choice preserves the full-rank property.

3.4.5 Inverse transform

To obtain the inverse transformation rule we simply calculate the inverse of matrix
MDB (3.51):

M−1
DB =



−DA
DB
ε−2 0 0 1 0 0

0 −DA
DB
ε−2 0 0 1 0

0 0 0 0 0 Dr

ε−2 0 0 1 0 0
0 ε−2 0 0 1 0
0 0 ε−1 0 0 Dr

 (3.53)

This results in the following back-transform rules:

rA =

R1 − DA
DA+DB

r1

R2 − DA
DA+DB

r2

(DA +DB)R3



rB =

 R1 + DB
DA+DB

r1

R2 + DB
DA+DB

r2

(DA +DB)R3 +
√

DB
DA+DB

r3

 (3.54)

We will now explain how the derived transform may be used to sample next-event
information for the direct binding scenario using some of the Green's functions that
we have already presented within this thesis.
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3.4.6 Using known Green's Functions for the transformed prob-

lem

By applying the coordinate transform in the way described we succeeded in trans-
forming the two-particle problem in 3D into two separate di�usion problems, namely
a 2D-di�usion of the center-of-mass vector R and a 3D-di�usion of the interparticle
vector r, with a z-axis rescaled by ε ≥ 1. Since di�usion of R in the plane is still
isotropic after the transform, we may sample next-event times and new positions for
R in the same way as for the Planar Surface Pair, i.e. by imposing a circular absorb-
ing boundary at |R| = Rmax and reusing the Green's function presented in section
3.3.1.

The situation is di�erent for the rescaled interparticle vector r. In 3D, where
di�usion of the interparticle vector is isotropic, radiating or absorbing boundary con-
ditions are de�ned on spheres. Here, by rescaling the z-axis all lengths in z-direction
become slightly longer with respect to the other directions in the new coordinate sys-
tem, meaning that boundaries originally represented by spheres now become prolate
spheroids (Figure 3.3). Since it is technically challenging to compute the Green's func-
tion for such boundary conditions, we opted for a simpler, approximative approach,
in which the prolate spheroidal boundaries in the transformed coordinates are substi-
tuted by spherical boundaries. As an evident advantage, with spherical boundaries
we may reuse the well-known 3D Green's function for a radiating inner and absorb-
ing outer boundary. Given that the di�usion constant in the plane is signi�cantly
smaller than the di�usion constant in the bulk, e.g. DA ' DB/10, the scaling factor
ε =

√
1 +DA/DB is rather small (ε ' 1.05), implying only a minor error induced by

the substitution.
As a further modi�cation, we choose the radius of the inner, radiating sphere in

such a way that its surface area equals the surface area of the prolate spheroidal. The
rationale here is that equal surface areas will ensure that the total probability �ux
through the new, spherical boundary will be approximately equal to the total �ux
through the original, prolate boundary. Let the radius of the boundary sphere in the
untransformed coordinate system be σ. The sphere transforms to a prolate spheroidal
with semi-major axis length A = εσ, whereas the semi-minor axis a is identical to the
radius σ (Figure 3.3). The surface area of a prolate spheroidal is given by:

AP(a,A) = 2π

[
a2 +

aA arccos
(
a
A

)
sin
(
arccos

(
a
A

))] (3.55)

Setting this equal to the surface of a sphere with radius ρ, with the particular values
for the half-axes from above, we obtain:

4πρ2 = 2π

[
σ2 +

σ(εσ) arccos
(
σ
εσ

)
sin
(
arccos

(
σ
εσ

)) ]

ρ = +

√√√√1
2

(
1 +

ε arccos
(

1
ε

)
sin
(
arccos

(
1
ε

))) · σ (3.56)
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Figure 3.3: Distorsion of a spherical boundary due to the anisotropic coordinate transform.

To facilitate calculations we sample next-event information for the transformed inter-
particle vector from the regular Green's function that assumes a spherical boundary,
using ρ as de�ned above for the contact radius. Note that after back-transform sam-
pled positions are located on oblate spheroids. This may cause particle overlap when
the sampled new distance between the particles is short (comparable to σ); in this
case particles are slightly moved apart, the error of which again is small.
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3.A Appendix: De�ection of particle trajectories at

the edge between orthogonal planes

Here we describe the mathematical procedure that �de�ects� the new position rν of a
plane-bound particle towards an adjacent, orthogonal �target� plane when rν reaches
beyond the boundaries of the original plane.

Imagine that the particle originally was located at position r0. To transform the
trajectory of the di�using particle towards the target plane �rst we calculate the point
S at which the edge between the two planes intersects with the line r0 + λ∆r that
links r0 and the new position rν . Let ûx and ûz be the unit vectors that de�ne the
orientation of the target plane and ûz ≡ ûx × ûy the corresponding normal vector.
Since S lies both on the line r0 + λ∆r and in the target plane, it must obey

S · ûz = (r0 + λS∆r) · ûz = C · ûz (S3.1)

where C is the center point of the target plane1. With this we �nd

S = r0 + λS∆r with λS =
(C− r0) · ûz

∆r · ûz
(S3.2)

and the protruding part of displacement vector ∆r:

∆r′ = (1− λS)∆r (S3.3)

Instead of applying a rotation transform to ∆r′, here it is more convenient to construct
the de�ected position r′ν directly via

r′ν = S + ∆r′‖û‖ + ∆r′⊥û⊥ (S3.4)

where ∆r′‖ = ∆r′ · û‖ is the component of ∆r′ parallel to the edge and ∆r′⊥ = ∆r′ · ûz

its component perpendicular to the edge. û‖ is the target plane's unit vector parallel
to the edge, whereas û⊥ is the target plane's second unit vector, which is perpendicular
to both û‖ and ûz. How precisely û‖ and û⊥ map onto the two unit vectors ûx and
ûy that de�ne the plane depends on the direction from which the particle enters the
target plane. To avoid recalculation at each edge crossing, this information is stored
in a neighborhood table when the box structure is constructed. It is easily proven
that the de�ected position is ensured to stay within the circular domain.

For the inverse transform we note that S is obtained by projecting r′ν onto the
original plane. With this rν is easily constructed via:

r = r0 + |r′ν − S| · S− r0

|S− r0|
(S3.5)

1Note that instead of C, alternatively we could choose any point located in the target plane.
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3.B Appendix: Green's function for binding to a

cylindrical membrane

Here we present the Green's function in cylindrical coordinates for a particle enclosed
by a �wedge� with two reactive surfaces at radii r = a and r = b (with di�erent
intrinsic rates ka, kb). Thus, the particle is bounded by absorbing conditions at z = 0
and z = L and at angles θ = 0 and θ = Θ, while at radii r = a and r = b we
impose radiating boundary conditions. The Green's function for this problem can be
calculated by a product ansatz p(r, ϑ, z, t|r′, ϑ′, z′, t′) = T (t)R(r)Θ(ϑ), following the
work�ow described in [58, p. 125�], from which we also took the eigenfunctions used
here. For brevity, we start by stating the �nal solution for the Green's function, and
directly proceed to the calculation of the survival probability. Note that in eGFRD
the solution of interest that models association to a cylindrical outer membrane is the
one for the special case ka = 0.

Green's function

The �nal result for the Green's function on the reactive wedge domain reads

p(r, ϑ, z, t|r′, ϑ′, z′, t′) =

8
LΘ

∑
k

∑
m

∑
ρnm

{
e
−D(t−t′)

“
ρ2nm+ k2π2

L2

”
sin
(
kπ

L
z

)
sin
(
kπ

L
z′
)

sin (lmϑ) sin (lmϑ′)×

Rlm(ρnmr)Rlm(ρnmr
′)

b2
[
k2
b

D2
b

1
ρ2nm

+
(

1− l2m
b2ρ2nm

)]
R2

lm
(ρnmb)− a2

[
k2
a

D2
a

1
ρ2nm

+
(

1− l2m
a2ρ2nm

)]
R2

lm
(ρnma)

}
(S3.6)

where lm ≡ mπ
Θ are the eigenvalues of the ϑ-eigenfunctions. The radial eigenfunctions

Rlm(ρnmr) 6= R(r) are de�ned as

Rlm(ρnmr) =
Jlm(ρnmr)

DbρnmJ ′lm(ρnmb) + kbJlm(ρnmb)
− Ylm(ρnmr)
DbρnmY ′lm(ρnmb) + kbYlm(ρnmb)

(S3.7)

and ρnm are the roots of the transcendental equation

−DaρnmJ
′
lm

(ρnma) + kaJlm(ρnma)
DbρnmJ ′lm(ρnmb) + kbJlm(ρnmb)

−
−DaρnmY

′
lm

(ρnma) + kaYlm(ρnma)
DbρnmY ′lm(ρnmb) + kbYlm(ρnmb)

= 0 .

(S3.8)

The constants Da/b and ka/b originate from the boundary conditions for the radial
function R(r) at r = a and r = b > a:

−Da [∂rR]r=a = −kaR(a)
Db [∂rR]r=b = −kbR(b) (S3.9)
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Here we assume isotropic di�usion and therefore Da = Db = D.
Alternatively the solution may be written in terms of another set of eigenfunctions

R̃lm(ρnmr), which only di�er from Rlm(ρnmr) by their coe�cients and by the fact that
they match the boundary condition at r = a already by de�nition (while Rlm does so
with the BC at r = b):

R̃lm(ρnmr) =
Jlm(ρnmr)

DaρnmJ ′lm(ρnma)− kaJlm(ρnma)
− Ylm(ρnmr)
DaρnmY ′lm(ρnma)− kaYlm(ρnma)

(S3.10)

Since Rlm(ρnmr) and R̃lm(ρnmr) are of the same structure, the normalization constant
is computed in the same way in both cases.
The solution p̃(r, ϑ, z, t|r′, ϑ′, z′, t′) then also has the same structure as before:

p̃(r, ϑ, z, t|r′, ϑ′, z′, t′) =

8
LΘ

∑
k

∑
m

∑
ρnm

{
e
−D(t−t′)

“
ρ2nm+ k2π2

L2

”
sin
(
kπ

L
z

)
sin
(
kπ

L
z′
)

sin (lmϑ) sin (lmϑ′)×

R̃lm(ρnmr)R̃lm(ρnmr
′)

b2
[
k2
b

D2
b

1
ρ2nm

+
(

1− l2m
b2ρ2nm

)]
R̃2

lm
(ρnmb)− a2

[
k2
a

D2
a

1
ρ2nm

+
(

1− l2m
a2ρ2nm

)]
R̃2

lm
(ρnma)

}
(S3.11)

However, the roots ρnm this time are to be determined from:

−DbρnmJ
′
lm

(ρnmb) + kbJlm(ρnmb)
DaρnmJ ′lm(ρnma)− kaJlm(ρnma)

−
−DbρnmY

′
lm

(ρnmb) + kbYlm(ρnmb)
DaρnmY ′lm(ρnma) + kaYlm(ρnma)

= 0

(S3.12)

Solution 14.15(3) in [57], in which also the radial boundaries are completely absorbing,
can be reconstructed from the above expression by taking ka, kb →∞.

Survival probability

To obtain the survival probability from the calculated Green's function we have
to integrate the latter on the whole domain of support, thus calculate the integral∫ L

0

∫ Θ
0

∫ b
a
p(r, ϑ, z, t)rdrdϑdz.

Since the z- and ϑ-dependend parts are simple trigonometric functions, these
integrals are readily obtained:

Iz =
∫ L

0

sin
(
kπ

L
z

)
dz =

L

kπ
[1− cos (kπ)] =

2L
(2k′ + 1)π

Iϑ =
∫ Θ

0

sin
(mπ
Θ
ϑ
)
dϑ =

Θ

mπ
[1− cos (mπ)] =

2L
(2m′ + 1)π

(S3.13)
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In the last steps we account for the fact that

1− cos(nπ) = 2 for n odd

1− cos(nπ) = 0 for n even (S3.14)

so that we can directly replace k → (2k′ + 1) ∈ 2N + 1, m→ (2m′ + 1) ∈ 2N + 1.
While the z- and ϑ-integrations are straightforward, the integral over the r-

component is more demanding. It contains a particular type of Hankel function,
which consists of both regular and irregular Bessel functions of arbitrary order.

De�nite integrals over rJν(r) or rYν(r) typically yield hypergeometric series. Here
we use∫

rJν(ρr)dr =
r2

2

(ρr
2

)ν
Γ(1 +

ν

2
) 1F̃2

(
1 +

ν

2
,
{

1 + ν, 2 +
ν

2

}
,−
(ρr

2

)2
)

∫
rYν(ρr)dr =

cos (νπ)
r2

2

(ρr
2

)ν
Γ(1 +

ν

2
) 1F̃2

(
1 +

ν

2
,
{

1 + ν, 2 +
ν

2

}
,−
(ρr

2

)2
)

− 4ν

sin (νπ)
r2

2

(
1

2ρr

)ν
Γ(1− ν

2
) 1F̃2

(
1− ν

2
,
{

1− ν, 2− ν

2

}
,−
(ρr

2

)2
)

(S3.15)

where pF̃q (·, ·, ·) is the regularized generalized hypergeometric function. The �rst
part of the Yν-integral di�ers from the Jν-integral only by the cosine prefactor. The
rdr-integral of a Hankel-type function ΨJν(ρr) + ΥYν(ρr) (with r-independent pref-
actors Ψ and Υ ) therefore may be written as:∫

[ΨJν(ρr) + ΥYν(ρr)] rdr =(
Ψ + Υ cos (νπ)

)
r2

2

(ρr
2

)ν
Γ(1 +

ν

2
) 1F̃2

(
1 +

ν

2
,
{

1 + ν, 2 +
ν

2

}
,−
(ρr

2

)2
)

−Υ r
2

2
4ν

sin (νπ)

(
1

2ρr

)ν
Γ(1− ν

2
) 1F̃2

(
1− ν

2
,
{

1− ν, 2− ν

2

}
,−
(ρr

2

)2
)

(S3.16)

The regularized generalized hypergeometric function pF̃q (·, ·, ·) di�ers from the non-
regularized version pFq (·, ·, ·) only by some gamma function factors:

pF̃q ({A1, A2, .., Ap}, {B1, B2, .., Bq}, C) =

pFq ({A1, A2, .., Ap}, {B1, B2, .., Bq}, C)
Γ(B1)Γ(B2)..Γ(Bq)

(S3.17)
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Using this de�nition and Γ(z + 1) = zΓ(z) for the gamma function we obtain a form
of the integral based on pFq (·, ·, ·), which facilitates later implementation:

Yν(ρr) ≡
∫

[ΨJν(ρr) + ΥYν(ρr)] rdr =(
Ψ + Υ cos (νπ)

)
r2
(
ρr
2

)ν
2(1 + ν

2 )Γ(1 + ν) 1F2

(
1 +

ν

2
,
{

1 + ν, 2 +
ν

2

}
,−
(ρr

2

)2
)

−Υ r2

2(1− ν
2 )Γ(1− ν)

4ν

sin (νπ)

(
1

2ρr

)ν
1F2

(
1− ν

2
,
{

1− ν, 2− ν

2

}
,−
(ρr

2

)2
)

(S3.18)

The above expression is the inde�nite integral, whereas we will use the de�nite inte-
gral

∫ b
a

[ΨJν(ρr) + ΥYν(ρr)] rdr = Yν(ρb)− Yν(ρa) in the expression for the survival
probability.

Further detailed calculations shall be omitted here for brevity. Ultimately, for the
survival probability we obtain the expression presented in the box on the following
page. Note that here in contrast to the Green's function p(r, t), the sums go over the
odd k and m now, which is accounted for by lm → l̂m ≡ l2m+1.

The roots ρnm that appear in this function are to be calculated from:

−DaρnmJ
′
l̂m

(ρnma) + kaĴlm
(ρnma)

DbρnmJ ′l̂m
(ρnmb) + kbĴlm

(ρnmb)
−
−DaρnmY

′
l̂m

(ρnma) + kaYl̂m
(ρnma)

DbρnmY ′l̂m
(ρnmb) + kbYl̂m

(ρnmb)
= 0

(S3.19)

Possible simpli�cations

Evidently, the formulae for p(r, t) and S(t) are far from trivial. For an arbitrary wedge
angle Θ, they involve the calculation of arbitrary order Bessel functions and hyper-
geometric series with non-integer arguments. A simple workaround that facilitates
calculations is found by choosing rational values for Θ as follows

Θ =
π

N
, N ∈ N\0 (S3.20)

because then

lm =
mπ

Θ
= m ·N ∈ N

l̂m =
(2m+ 1)π

Θ
= (2m+ 1) ·N ∈ N (S3.21)

This restriction implies a trade-o� between the possible sizes of wedge domains
and numerical calculation e�ciency. At this point it cannot be predicted whether the
above constraint will be advantageous or rather detrimental. However note that by
choosing Θ = π

2 ,
π
3 ,

π
4 , .. a fair amount of di�erent cylindrical wedges can be generated.
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S(t|r′, ϑ′, z′, t′) =

32
π2

∑
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∑
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∑
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(
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with

Rl̂m
(ρnmr

′) ≡ ΨĴlm
(ρnmr

′) + ΥYl̂m
(ρnmr

′)

=
Ĵlm

(ρnmr
′)

DbρnmJ ′l̂m
(ρnmb) + kbĴlm

(ρnmb)
−

Yl̂m
(ρnmr

′)
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(S3.23)

and

Yl(ρb)− Yl(ρa) =

Ψ + Υ cos (lπ)
2(1 + l
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where we further have abbreviated:

ρ ≡ ρnm , l ≡ l̂m ≡ l2m+1 =
(2m+ 1)π

Θ
,

Ψ ≡ 1
DbρnmJ ′l̂m

(ρnmb) + kbĴlm
(ρnmb)

, Υ ≡ 1
DbρnmY ′l̂m

(ρnmb) + kbYl̂m
(ρnmb)

(S3.24)
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Chapter 4

Simulating polarized growth

factor delivery in �ssion yeast

4.1 Introduction

How di�erent cell types can produce di�erent shapes is a fundamental question in
cell biology. As a relatively simple eukaryotic single-cell organism that is easy to
control and manipulate, �ssion yeast (Schizosaccharomyces pombe) became one of
the most intensely studied model systems of single-cell morphogenesis. Fission yeast
cells have an elongated, rod-like shape with a highly reproducible diameter of ca.
3 µm and a cell-cycle-dependent length on the order of 8− 14 µm [90]. The rod-like
shape results from restriction of cell growth to two opposite regions on the cell cortex
that are marked by accumulations of growth factor proteins. Knock-out experiments
have identi�ed many key components of �ssion yeast polarization. Intriguingly, they
suggest that the localization of growth factors to the growing poles of the cell is
established via a symmetry-breaking mechanism that combines active transport on the
cytoskeleton, di�usion on the membrane and shuttling of proteins between cytoplasm,
cytoskeleton and membrane.

To elucidate this interplay we developed a spatially-resolved model of growth factor
polarization that features microtubules and a fully membrane-enclosed cell volume,
and conducted stochastic simulations of the model with eGFRD. Our model is rep-
resentative of the Tea1/Mod5-system, which is described in detail in section 4.2. It
contains two species: a permanently membrane-bound species M (Mod5) and species
T (Tea1), which can di�use in the cytoplasm, bind microtubules on which it can
drift towards the cell poles, and form TM-complexes with M on the membrane. The
TM-complexes have a �nite lifetime; after TM-complex dissociation T moves back
into the cytoplasm. This sets up a cycle in which T is transported actively from the
cytoplasm to the membrane at the poles and passively returns from the membrane to
the cytoplasm via di�usion on the membrane.

In order to identify the components of the considered system that are critical to
establish proper growth factor polarization we compared models with di�erent ways
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of TM-complex formation at the membrane and systematically varied the membrane
di�usion constant and the lifetime of the TM-complexes. We �nd that a �direct
binding� model, in which growth factors T can bind to their membrane-bound partners
M directly, exhibits better polarization properties than a �two-step binding� model, in
which a T-particle �rst binds the membrane and then must �nd its reaction partner M
via membrane di�usion. In the �direct binding� model, the simulations further reveal
that cell polarization is enhanced with decreasing membrane di�usion constant of the
TM-complexes. Moreover, there exists an optimal lifetime of TM-complexes on the
membrane that maximizes both the e�ciency of polarization, measured as the ratio
between polar and central surface-density of TM-complexes, and the growth factor
concentration at the poles.

In this chapter, we �rst give an overview of the current knowledge on �ssion yeast
morphogenesis, discussing recent experimental �ndings. We then describe how we
model the yeast cell and simulate polarization of growth factors with eGFRD. In the
last part of this chapter we present and discuss our results.

4.2 Experimental facts

Elongated growth of �ssion yeast cells is controlled by polarity markers that agglom-
erate at the opposite cell poles in a mechanism that involves microtubules, actin and
the cell membrane [43, 90, 91]. Once established, the agglomerations persist through-
out interphase and promote continuous cell elongation from the poles, until growth
stops during mitosis. Directly after cell division, cells only continue growing at the
�old� pole opposite of the division site until the growth machinery is reconstituted at
the �new� pole in G2 phase (�new end take o�� / NETO) [92].

An essential polarity factor is the GTPase Cdc42, whose active form accumulates
preferentially at the cell poles; cells with deleted or overexpressed cdc42 produce
under- or oversized round cells, respectively. Cdc42 also plays a crucial role in growth
of other yeast types and is thought to activate a range of proteins that promote actin
polymerization. Indeed, the growth sites at the cell poles feature patches of actin
which are necessary to localize enzymes involved in cell wall synthesis and remodelling
[43, 90]. Recently, the active form of Cdc42 was shown to exhibit oscillations between
the cell poles [93]. Here, we do not focus on the Cdc42 system, but rather on another
polarization system.

Among the most prominent polarity markers are further the proteins of the Tea
familiy. While certain Tea protein complexes (Tea1/Tea4) play an essential role in
establishing bipolar patterns of Cdc42 [94], the detailed interactions between Tea
proteins and Cdc42 are yet poorly understood. Figure 4.1 summarizes the current
picture of Tea-protein-based polarization in �ssion yeast. Proper localization of the
Tea-family markers requires interaction with microtubules [45]. In �ssion yeast, mi-
crotubules form dynamic antiparallel bundles emerging from the cell center, with
plus-ends growing towards and transiently remaining at the cell poles. The polar-
ity marker Tea1 is delivered directly to the membrane at the poles by microtubule
tips, to which it associates with the help of protein Tip1 [44, 95]. Tip1 is rapidly
transported by the motor protein Tea2 towards the plus-end, where both proteins
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Figure 4.1: Schematic drawing of the currently assumed model of �ssion yeast
growth polarization. Fission yeast forms elongated cells by restricting growth to opposite
cell poles. This involves microtubules (dark green), which in �ssion yeast form dynamic
antiparallel bundles with outwards-growing plus ends. Growth is restricted to the cell poles
by accumulation of polarity factors Tea1 (green) and Tea4 (blue). Tea1 and Tea4 are trans-
ported towards microtubule plus-ends via Tip1 (light red) and kinesin motor protein Tea2
(dark red). These complexes accumulate at the plus-end with the help of tip-tracking protein
Mal3 (magenta). Membrane-bound protein Mod5 (yellow) is required for direct delivery of
the markers to the membrane at the poles. On the membrane, Tea1 and Tea4 engage in
complexes that promote actin assembly and subsequent recruitment of cell-wall-remodelling
enzymes. Note that the drawing does not include other prominent polarity factors such as
Cdc42, whose connection to the Tea-proteins is yet unclear.

form clusters [96]. To accumulate at the microtubule tip, they require the protein
Mal3 [97], which belongs to the EB1 family of tip trackers. Cells with knocked-out
tea1 or its transporter tea2 fail to establish two oppositely located growth sites; in-
stead, a single growth site forms in a random spot on the cell wall, producing L- or
T-shaped cells [98, 99, 100]. The same is observed in cells with shorter or completely
depolymerized microtubules [45, 101]. While microtubules thus play a crucial role
in Tea-protein polarization, there is also evidence that proper anchoring of Tea1 to
the membrane requires the membrane protein Mod5 [102]. Consistently, Mod5 is
localized to the cell poles in wild-type, whereas in a tea1 -knockout it spreads out
uniformly over the membrane. Since Mod5-turnover at the cell poles was found to be
much faster than Tea1-turnover, it was proposed that Mod5 catalyzes the formation
of membrane-bound Tea1-clusters [103]. An important role was also found for Tea4:
like Tea1, it associates with growing microtubule plus-ends and together with Tea1
forms membrane-complexes that act as nucleators of actin assembly [94, 95, 104, 105].

Importantly, polarity factors also in�uence microtubule dynamics. At the micro-
tubule plus-ends Tip1 acts as a stabilizing factor, reducing the microtubule catastro-
phy rate in the regions far from the cell poles [44]. Increase of the catastrophy rate at
the poles was also found to depend on pushing forces and tip-accumulation of motors
from the kinesin-8 family, which contribute to depolymerization of long microtubules
at their plus-ends [81, 106]. Moreover, microtubules are hampered in directing their
growth towards the cell poles in tea1 -deletion mutants [82, 83].
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Taken together, these observations suggest a polarization mechanism that involves
1D active transport on microtubules and di�usion in 2D and 3D: Microtubules recruit
polarity markers such as Tea1 and Tea4 from the cytosol and direct them via active
transport towards their plus-ends, where the markers accumulate aided by tip-trackers
like Mal3. The plus-end clusters have a stabilizing e�ect on the microtubules, enhanc-
ing the probability to reach the cell poles. At the poles, the polarity markers are deliv-
ered to the cell membrane, where they bind and anchor with the help of highly mobile
membrane-bound proteins such as Mod5. After forming membrane-bound complexes,
the markers stimulate actin polymerization, leading to actin-mediated recruitment of
wall-remodelling enzymes, and further cell growth.

The overwhealming number of interacting proteins involved in �ssion yeast growth
polarization, which in addition employ di�erent transport modes and partly appear
to follow distinct strategies to set up bipolar patterns, prompted us to ask: Which
components of this system are indeed critical for e�cient polarization? Following
a bottom-up approach, we therefore aimed at reconstituting a minimal model of
growth factor polarization in �ssion yeast, i.e. a model that includes as few of the
experimentally identi�ed system components as possible while producing a robust
bipolar pattern under biologically realistic, meaning stochastic conditions.

4.3 Model

In order to reconstitute a minimal mechanism of �ssion yeast polarization we devel-
oped a model which features 1D active transport on microtubules, 2D di�usion on
the cell membrane, cytosolic di�usion in 3D and particle interactions across the dif-
ferent dimensions. Using eGFRD, we performed particle-based stochastic simulations
of the spatially-resolved model. We considered the system on the observed timescale
of polarization, i.e. minutes. Therefore our model neglects elongation of the cell, fo-
cusing on the spatio-temporal dynamics of polarity factors. The cell is thus modelled
as a static rectangular box consisting of six interlinked �nite planes representing the
cell membrane, with an aspect ratio typical of interphase �ssion yeast; exemplary 3D
views of the model geometry are shown in Figure 4.3. At the mid-plane of the long
axis of the box, we symmetrically place four pairs of antiparallel capped rods whose
orientation vectors point outwards, representing microtubules with plus-ends directed
towards the cell poles. Here we considered only static rods, i.e. microtubules with
a �xed length; the in�uence of microtubule dynamics will be studied in forthcoming
work. In our model, the microtubule bundles are almost as long as the box, with tips
located in proximity to the poles.

As shown in Figure 4.2, the model features two principal chemical species: the
cytosolic species T, which represents a polarity factor protein, e.g. Tea1, and the
membrane-bound species M, representative of the Mod5 protein. T and M can form
membrane-bound complexes TM with di�usion-limited on-rate; the lifetime τ of TM-
complexes is a model parameter. The complex di�uses slower than the individual
proteins. This is tuned via a �slowdown factor� χ that divides the standard 2D di�u-
sion constantD2 = 0.1 µm2/s of a single membrane-bound protein. Most importantly,
in our model Mod5 (M) acts only as a recruiting agent for Tea1 (T), i.e. the model
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Figure 4.2: Schematic of the simulated �ssion yeast polarization model. Our
model includes two protein species: a bulk species T (green), representative of (e.g.) Tea1,
and a membrane-bound species M (yellow), representing Mod5. Upon binding of T to
microtubles it is converted to T∗ and transported towards the microtubule plus-end (tip)
with drift velocity v. T∗-particles can agglomerate at the tip, forming clusters T∗n (magenta),
which �spawn� T-particles back into the cytosol close to the membrane. T and M can
form membrane-bound complexes TM (red) which have a reduced mobility, tuned by model
parameter s. We compare a �direct binding� scenario, in which T may bind M directly (red
arrows), to a �two-stage binding� scenario, in which T �rst binds to the membrane to create
TM before forming TM (blue arrows).

does not assume a catalytic role for Mod5 in Tea1 polymerization on the membrane,
as proposed previously [103]. We assume that species M is tightly bound to the
membrane, i.e. never dissociates on the considered timescale. Moreover, we assume
that on the given timescale protein production and degradation is negligible. Particle
numbers thus only change due to formation and dissociation of TM-complexes. As
a further important model feature, T-particles may also bind to the microtubules
and convert to species T∗, which is transported outwards with signi�cant drift until it
reaches the cylinder cap. T∗ represents the whole complex consisting of Tea1 or Tea4,
Tip1 and the motor protein Tea2 as a single species. The cylinder cap (microtubule
tip) can accumulate T∗-particles via a cascade of reactions of the type T∗n + T∗ →
T∗n+1; for simplicity we represent a cluster of n T∗-particles by a single, immobile
particle with increased radius (species T∗n). A cap-bound cluster particle can �spawn�
T particles at a rate ku

tip back into the cytosol. In order to limit the combinatorial
explosion of modelled reactions here we only considered a model in which T-particles
unbind from the cap-bound cluster one by one.

To assess the role of the membrane-protein Mod5 in the polarization of the polarity
markers, we compare a system with �direct binding�, in which T directly associates
with M, to a system with �two-stage binding�, in which T �rst binds to the membrane
to form TM and then �nds its reaction partner M via 2D di�usion.
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A B

Figure 4.3: Typical 3D views of the polarization model simulated with eGFRD.
We show here a typical initial (A) and �nal, polarized state (B) of the particle-based �ssion
yeast model as simulated with eGFRD. The yeast cell is represented as a box consisting
of interlinked �nite planes, with lengths and aspect ratio corresponding to wild-type cells
in interphase. Four microtubule bundles are modelled by eight pairwise antiparallel static
cylinders oriented with their plus-ends outwards, starting from the mid-section of the box.
Each bundle spans 95 % of the box length, with cylinder caps close to the two opposite �cell
poles�. Our model features two principal particle species, cytoplasmic species T (green) and
membrane-bound species M (yellow), which can form membrane complexes TM (red; also
see Fig. 4.2). T-particles can bind the microtubules to drift outwards, and return to the
cytoplasm at the cylinder caps. The shown snapshots are for the system with direct binding,
for complex di�usion constant DTM = 0.01 µm2/s (slowdown factor χ = 10) and complex
lifetime τ = 10 s.

4.3.1 Parameters

Here we brie�y describe the choice of parameters in our model. Table 4.1 gives an
overview of their standard values. Note that modelled species are not thought to
represent single molecules but rather larger protein complexes, in particular in the
microtubule-bound state.

The dimensions of the simulation box roughly correspond to the dimensions of a
�ssion yeast cell in interphase. With the chosen aspect ratio between box length and
width/height the surface-to-volume ratio of the box corresponds well to the surface-
to-volume ratio of a spherocylinder of the same size. In our model, microtubules are
static and their length is chosen such that their tips are close to the two box ends;
the bundles therefore span 95 % of the box length. Particle and rod diameters have
typical values for proteins and microtubules.

Since di�usion constants for the involved protein species are unknown we resorted
to typical values. Thefore we set D3 = 1 µm2/s for the cytoplasmic di�usion constant
and D2 = 0.1 µm2/s for the standard di�usion constant on the membrane. The
di�usion constant of the membrane-bound TM-complex is equal to D2/χ, where the
slowdown factor χ = 1− 100 is varied.
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Quantity Symbol Value Unit
Geometry
Simulation box length lX 9.5 µm
Simulation box width lYZ 4.0 µm
Microtubule (MT) length lMT 4.5 µm
Distance of MT axis from box sides δMT 1.0 µm
Total membrane surface area Amem 240 µm2

Particles
No. of cytoplasmic (T) particles NT 200
No. of membrane-bound (M) particles NM 400
Particle radius (TM-complexes) RTM 45 nm
Particle radius (all other species) R0 30 nm
Microtubule radius r0 25 nm
Mobility
Cytoplasmic di�usion constant D3 1.0 µm2

/s
Standard membrane di�usion constant D2 0.1 µm2

/s
Standard 1D di�usion constant D1 0.1 µm2

/s
Membrane complex slowdown factor χ 10�103

Outwards drift velocity on MTs v 0.5 µm/s
Kinetics
T∗-unbinding rate from microtubule ku

MT 0
T∗n-dissociation rate from MT tip ku

tip 1.0 1/s
TM-complex dissociation rate ku

TM = 1/τ 0.01�1.0 1/s
Dissociation rate of TM from membrane ku

TM
= 1/τ 0.01�1.0 1/s

binding rates di�. ltd.

Table 4.1: The standard parameters of the simulated �ssion yeast system.

We assume all binding rates to be di�usion-limited; the binding rates at contact are
therefore set to high numerical values. For simplicity we set the unbinding rate from
the microtubules to zero. Unbinding thus only happens from the microtubule tips at
a rate kutip = 1.0/s. The dissociation rate of TM-complexes is a model parameter that
we vary.

4.3.2 Simulations and analysis

We conducted stochastic, particle-based simulations of the simpli�ed yeast model
de�ned in section 4.3 using eGFRD, with the new features de�ned in chapters 2 and
3. In all simulations, initially we randomly placed NT T-particles in the cytosplasm
and NM M-particles on the membrane (the state shown in Fig. 4.3A). The system
then was propagated for a �xed number of steps, usually resulting in several hundred
seconds of simulated time. Particle data (positions and species) was acquired at
approximately regular time points with a measurement interval of ∆t = 0.5 s.

Initial simulations showed that the polarity-complex formation model indeed is
capable of establishing polarity along the long axis of the simulation box on a timescale
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of minutes. To quantify and compare the extent of polarization we introduced the
following protocol: For all recorded time points, raw particle position data was binned
into a coarse (six-bin) histogram along the long axis of the system. This was used to
compute the average (area) density 〈ρ〉 of TM-complexes on the membrane for each
bin by dividing the total particle number by the total membrane surface area in the
bin. We then de�ne the �polarization score� or �polarity� as the ratio between the
average density in the two outermost bins at the poles 〈ρp〉 and the average density
〈ρc〉 in the two central bins:

Π ≡ 〈ρp〉
〈ρc〉

(4.1)

The polarity Π quanti�es the anisotropy of the TM-complex density in a straight-
forward way. However, high anisotropy does not necessarily imply a su�ciently high
density of the complexes at the poles. Indeed, Π could be high, while the overall
density at the poles is low. To capture the combined e�ect of polarization and den-
sity enhancement at the poles, we therefore also compute a �combined score� which
increases with both TM-complex density and polarity, de�ned as:

Γ ≡ 〈ρp〉Π =
〈ρp〉2

〈ρc〉
(4.2)

4.4 Results

We reasoned that two parameters of our model are crucial for the magnitude of
TM-complex polarity: the slowdown of membrane di�usion upon complex formation,
characterized by the slowdown factor χ, and τ , the mean lifetime of the complexes
on the membrane. Since in our model particle binding to microtubules occurs (quasi)
instantly after contact and microtubule-bound particles drift outwards very e�ciently
without interrupting unbindings, τ is the main determinant of the timescale of po-
larity marker recycling via cytoplasm and microtubules. To assess the dependence
of polarity on χ and τ we performed a parameter sweep over these two quantities
and compared the values of polarity Π and combined score Γ. We �nd that while in-
creasing slowdown is bene�cial for proper polarization, there exits an optimal lifetime
τopt = 10 s of the complexes on the membrane that maximizes Γ.

In Figure 4.4 we plot the time evolution and a time average of the TM-complex
surface density along the long (x-) axis of the system; we compare the system in
which the cytoplasmic species T binds membrane-bound species M directly (4.4A) to
the system in which T �rst has to associate with the membrane itself before it can
form the complex with M (4.4B), for τ = 10 s and χ = 10. In both cases the density
of the membrane-bound polarity marker complexes is enhanced at the poles. The
systems are capable of establishing polarization on a timescale of t ' 60 s. However,
while in the system with two-stage binding the overall complex density is slightly
higher, polarization along the x-axis is signi�cantly more pronounced in the system
with direct binding (Π = 4.32 / Γ = 3.17 with direct binding vs. Π = 1.64 / Γ = 1.64
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Figure 4.4: Establishment of TM-complex density polarization. Here we plot the
time evolution of the average TM-complex surface density along the long (x-) axis of the
simulation box for the systems with direct binding (A) and with two-stage binding (B), for
complex lifetime τ = 10 s and slowdown factor χ = 10. The black dashed line shows the
time average of the density over the last 30 s. Note that initially the complex density is
zero because no membrane-complexes have formed yet. The expected system-wide average
density when all T-particles have formed membrane complexes is 0.83/µm2.

with two-stage binding). Note that in the system with direct binding, membrane-
complex density at the midplane of the system initially reaches higher values than at
later times, when it is reduced simultaneously with the increase of the pole density.
In contrast, in the system with two-stage binding the density at the center remains
at the relatively high level that builds up at the onset of polarization.

As a next step we quanti�ed the dependence of polarity on the two principal
parameters of our system, the TM-complex lifetime τ and the complex slowdown
factor χ. In Figure 4.5 we plot, for the system with direct binding, the polarity Π
and the combined score Γ, which is the product of Π and the pole density 〈ρp〉, as
a function of τ for di�erent slowdown factors χ. The �gure reveals the requirements
for optimizing polarization in the considered system: First, for slowdown factors
χ ≥ 10, i.e. for membrane-complex di�usion constantsDTM ≤ 0.01 µm2/s, the system
reaches signi�cantly higher scores than for χ = 1 (DTM = 0.1 µm2/s). Moreover,
�gure 4.5A suggests that faster recycling of the complexes, corresponding to short
complex lifetimes, leads to more e�cient polarization. However, this neglects the fact
that with decreasing complex lifetime τ also the complex density on the membrane
decreases. Therefore there is a trade-o� between polarity and membrane occupancy
when reducing τ . This is captured by the combined score Γ = 〈ρp〉Π (4.5B), which
displays a maximum at τopt = 10 s.
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Figure 4.5: An optimal TM-complex dwell time maximizes the product of po-
larity and pole density in the system with direct binding. Plotted are (A) the
polarization score Π and (B) the combined score Γ = 〈ρp〉Π as a function of τ , the TM-
complex dwell time on the membrane, for di�erent complex slowdown factors χ, in the system
with direct binding. Slowdown is bene�cial for polarity in general, and polarity increases
with decreasing complex lifetime τ (A). Since binding is di�usion-limited, the latter simulta-
neously reduces the number of bound complexes; hence, there is a trade-o� between polarity
and pole occupancy that maximizes the combined score Γ for τ = 10 s.

We compared these results to a system in which the ratio between membrane-
bound particles (M) and polarity markers (T) was increased in favor of M (NM = 600,
NT = 200). We found that while the density at the poles is slightly higher in that
system, the principal �ndings still apply.

4.5 Discussion

In order to reconstitute a minimal model of yeast polarization we conducted stochas-
tic, particle-based eGFRD-simulations of a model that features a cytoplasmic polarity
marker species T (representing Tea1), which can bind microtubules which transport
it towards the cell poles, and a membrane-bound species M (representing Mod5),
with which T can form slow-di�using heterodimeric polarity complexes TM on the
membrane. The results presented in this chapter demonstrate that this simple sys-
tem, with static microtubules that reach the proximity of the cell poles, is capable
of establishing considerable polarity (Π & 4) along the long axis of the cell if two
conditions are met: First, for e�cient polarization the polarity markers should di�use
slowly (D . 0.01 µm2/s) once bound to the membrane. Second, there is an optimal
lifetime of polarity marker complexes on the membrane τopt = 10 s that maximizes
both polarity and the surface density of the markers at the poles. The optimum arises
from a trade-o� between two opposing e�ects: On the one hand, fast complex recy-
cling aids polarization by rapidly returning polarity markers that were �misanchored�
at the membrane far from the poles back to the microtubules, and by preventing
correctly localized complexes from di�using too far away from the poles; on the other
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hand, it also reduces the overall number of complexes at the membrane. Importantly,
in contrast to earlier studies [103, 107], our polarization model does not explicitly
assume polymerization, i.e. formation of larger clusters of Tea1 on the membrane.

Interestingly, we �nd that the two-stage binding scenario, in which T must �rst
associate with the membrane to form TM-complexes with M, performs signi�cantly
worse in terms of polarization e�ciency than the system in which direct binding of T
to M is allowed. Since this is observed for equal slowdown factors, the reduced polar-
ization e�ciency in the system with two-stage binding must be the product of reduced
recycling e�ciency for complexes forming at the central parts of the membrane. In
the system with two-stage binding the whole membrane constitutes a reactive sur-
face for cytoplasmic T-particles and thus the probability of a cytoplasmic T-particle
to bind the microtubule and be directed to the cell poles is lower than in the direct
binding scenario. Moreover, in the two-stage binding scenario T remains bound to the
membrane for a certain time after complex dissociation; this enhances the probability
to reform the complex with a closeby M-particle.

We believe that in addition the following positive feedback mechanism is at work:
The formation of complexes at the poles is accompanied by depletion of freely di�using
M. For high slowdown factors, there is a signi�cant di�erence between the mobility
of M and TM-complexes. This leads to an e�ective in�ux of M into the pole regions
upon formation of slow complexes; simulataneously, the concentration of M in more
remote regions of the membrane is decreased. This way, formation of polarity marker
complexes at the poles reduces the probability of complex formation at the central
parts of the membrane. The above e�ect also manifests itself in the density pro�les
of the two species: If the di�usion constants of species M and TM were to be equal,
DM = DTM, the sum of their average densities 〈ρM〉 + 〈ρTM〉 would be constant,
because the total number NM +NTM is conserved on the membrane. A rise of 〈ρTM〉
at the poles then would be accompanied by a complementary drop of 〈ρM〉, implying
a peak of 〈ρM〉 in the central parts of the cell. In contrast, if DM � DTM, the total
density 〈ρM〉+ 〈ρTM〉 can be high at the poles while 〈ρM〉 does not exhibit the central
peak because it is annihilated by fast di�usion of M. Indeed, in our simulations with
direct binding we observe that while in the polarized state the density of M at the
poles is somewhat reduced when compared to its density in the center of the system,
this e�ect is far less pronounced than enhancement of TM-complex density at the
poles (data not shown); in fact, to a good approximation, the M-particles equilibrate
over the membrane, supporting the existence of the mechanism described above. This
gives a rationale for the presence of the membrane-bound reaction partner (M / Mod5)
in the system.

A combined theoretical-experimental study on the Pom1 protein [107], another
important polarity factor in �ssion yeast that associates with the membrane to form
concentration gradients decreasing from the cell poles, recently uncovered dynamics
with striking similarities to our model: It was found that membrane-bound Pom1
molecules permanently change from a clustered to a non-clustered state, de�ning
two separate Pom1 populations with markedly di�erent di�usion speeds (unclustered
form: Du ' 0.026 µm2/s; clusters: Dc ' 0.006 µm2/s; cytoplasmic di�usion: D1 '
1.5 µm2/s). While the average cluster lifetime was measured as τu ' 3 s, the overall
membrane-bound time of Pom1 was τm ' 30 s. These �ndings not only are in very
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good agreement with the values at which we �nd optimal polarization e�ciency in
our model, they also suggest that slowdown of polarity factors upon binding to the
poles is a common ingredient in mechanisms that establish bipolar concentrations
along the yeast membrane. While in [107] the authors demonstrate that two di�erent
di�usion speeds on the membrane aid in producing more robust Pom1 gradient signals,
i.e. making positional information along the membrane more reliable, our results,
in particular the uncovered trade-o� between polarity and pole occupancy, give a
slightly di�erent rationale for the observed slowdown, also o�ering an explanation
for the timescale of membrane association (∼ 10 s). To clarify whether true (i.e.
multimeric) membrane clustering as proposed in [107] performs better or worse in
terms of polarization reliability than the simpler (hetero-) dimerization considered in
our model a direct comparison of these two �slowdown mechanisms� will have to be
performed.

Continued simulations which account for the observed microtubule dynamics, and
with more realistic copy numbers of the involved reaction partners, will help to further
elucidate the mechanisms of �ssion yeast polarization in forthcoming work.
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Chapter 5

Mutual repression in early

Drosophila embryogenesis

5.1 Introduction

The development of multicellular organisms requires spatially controlled cell di�er-
entiation. The positional information for the di�erentiating cells is typically pro-
vided by spatial concentration gradients of morphogen proteins. In the classical
picture of morphogen-directed patterning, cells translate the morphogen concentra-
tion into spatial gene-expression domains via simple threshold-dependent readouts
[50, 108, 109, 110]. Yet, while embryonic development is exceedingly precise, this
mechanism is not very robust against intra- and inter-embryonic variations [52, 51, 30]:
the spatial patterns of the target genes do not scale with the size of the embryo and the
boundaries of the expression domains are susceptible to �uctuations in the morphogen
levels and to the noise in gene expression. Intriguingly, the target genes of morphogens
often mutually repress each other, as in the gap-gene system of the fruit �y Drosophila
[111, 112, 113, 114, 115, 116, 117]. To elucidate the role of mutual repression in the
robust formation of gene expression patterns, we have performed extensive spatially-
resolved stochastic simulations of the gap-gene system of Drosophila melanogaster.
Our results show that mutual repression between target genes can markedly enhance
both the steepness and the precision of gene-expression boundaries. Furthermore, it
makes them robust against embryo-to-embryo variations in the morphogen gradients.

The fruit �y Drosophila melanogaster (Fig. 5.1A) is arguably the paradigm of mor-
phogenesis. During the �rst 90 minutes after fertilization it is a syncytium, consisting
of a cytoplasm that contains rapidly diving nuclei, which are not yet encapsulated by
cellular membranes. Around cell cycle 10 the nuclei migrate towards the cortex of
the embryo and settle there to read out the concentration gradient of the morphogen
protein Bicoid (Bcd), which forms from the anterior pole after fertilization [109].
One of the target genes of Bcd is the gap gene hunchback (hb), which is expressed in
the anterior half of the embryo (Fig. 5.1B). In spite of noise in gene expression, the
midembryo boundary of the hb expression domain is astonishingly sharp. By cell cycle
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A B

Figure 5.1: The fruit �y Drosophila melanogaster. (A) An adult �y. (B) The �y
embryo ca. 90 min after fertilization. The anterior pole of the embryo is oriented towards the
left. The cortical layer of nuclei is clearly visible. Expression of the gap gene hunchback (hb)
is visualized via in-situ hybridization against its RNA (blue). The main expression domain
of hb is localized to the anterior half of the embryo. See thesis appendix for image sources.

11, the hb mRNA boundary varies by about one nuclear spacing only [118, 119, 120],
while by cell cycle 13 a similarly sharp boundary is observed for the protein level
[52, 51, 121]. This precision is higher than the best achievable precision for a time-
averaging based readout mechanism of the Bcd gradient [51]. Interestingly, the study
of Gregor et al. revealed that the Hb concentrations in neighboring nuclei exhibit
correlations and the authors suggested that this implies a form of spatial averaging
that enhances the precision of the posterior Hb boundary [51]. Two recent simulation
studies suggest that the mechanism of spatial averaging is based on the di�usion of
Hb itself [122, 123]; as shown analytically in [122], Hb di�usion between neighboring
nuclei reduces the super-Poissonian part of the noise in its concentration. In essence,
di�usion reduces noise by washing out bursts in gene expression. However, the mech-
anism of spatial averaging comes at a cost: it tends to lessen the steepness of the
expression boundaries.

Bcd induces the expression of not only hb, but a number of gap genes, and pairs of
gap genes tend to repress each other mutually. Interestingly, repression between di-
rectly neighboring gap genes is weak, whereas repression between non-adjacent genes
is strong [124]. hb forms a strongly repressive pair with knirps (kni) which is ex-
pressed further towards the posterior pole; both genes play a prominent role in the
later positioning of downstream pair-rule gene stripes [112]. It has been argued that
mutual repression can enhance robustness to embryo-to-embryo variations in mor-
phogen levels [115, 116, 117] and sharpen a morphogen-induced transition between
the two mutually repressing genes in a non-stochastic background [125, 126]. How-
ever, mutual repression can also lead to bistability [127, 128, 129, 130, 131]. While
bistablity may bu�er against inter-embryo variations and rapid intra-embryo �uctu-
ations in morphogen levels, it may also cause stochastic switching between distinct
gene expression patterns, which would be highly detrimental. Therefore, the precise
role of mutual repression in the robust formation of gene-expression patterns remains
to be elucidated.
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While the role of antagonistic interactions in the formation of gene-expression
patterns has been studied using mean-�eld models [115, 131, 132, 133, 134], to ad-
dress the question whether mutual repression enhances the robustness of these pat-
terns against noise arising from the inherent stochasticity of biochemical reactions
a stochastic model is essential. We have therefore performed large-scale stochastic
simulations of a minimal model of mutual repression between hb and kni . Our model
includes the stochastic and cooperative activation of hb by Bcd and of kni by the
posterior morphogen Caudal (Cad) [135, 136]. Moreover, Hb and Kni can di�use be-
tween neighboring nuclei and repress each other's expression, generating two separate
spatial domains interacting at midembryo (see Fig. 5.2). We analyze the stability of
these domains by systematically varying the di�usion constants of the Hb and Kni
proteins, the strength of mutual repression and the Bcd and Cad activator levels. To
quantify the importance of mutual repression, we compare the results to those of a
system containing only a single gap gene, which is regulated by its morphogen only;
this is the �system without mutual repression�. While our model is simpli�ed�it
neglects, e.g., the interactions of hb and kni with krüppel (kr) and giant (gt) [12]�it
does allow us to elucidate the mechanism by which mutual repression can enhance
the robust formation of gene expression patterns.

One of the key �ndings of our analysis is that mutual repression enhances the ro-
bustness of the gene expression domains against intra-embryonic �uctuations arising
from the intrinsic stochasticity of biochemical reactions. Speci�cally, mutual repres-
sion increases the precision of gene-expression boundaries: it reduces the variation
∆x in their positions due to these �uctuations. At the same time, mutual repression
also enhances the steepness of the expression boundaries. To understand the interplay
between steepness, precision and intra-embryonic �uctuations (biochemical noise), it
is instructive to recall that the width ∆x of a boundary of the expression domain of
a gene g is, to �rst order, given by

∆x =
σG(xt)
|〈G(xt)〉′|

(5.1)

where σG(xt) is the standard deviation of the copy number G of protein G and
|〈G(xt)〉′| is the magnitude of the gradient of G at the boundary position xt [51, 20,
122]. Steepness thus refers to the slope of the average concentration pro�le, |〈G(xt)〉′|,
while precision refers to ∆x, which is the standard deviation in the position at which
G crosses a speci�ed threshold value, here taken to be the half-maximal average
expression level of G.

The simulations reveal, perhaps surprisingly, that mutual repression hardly a�ects
the noise σG(xt) at the expression boundaries of hb and kni . Moreover, mutual repres-
sion can strongly enhance the steepness |〈G(xt)〉′| of these boundaries: the steepness
of the boundaries in a system with mutual repression can, depending on the di�usion
constant, be twice as large as that in the system without mutual repression. Together
with Eq. (5.1), these observations predict that mutual repression can signi�cantly
enhance the precision of the boundaries, i.e. decrease ∆x, which is indeed precisely
what the simulations reveal. Interestingly, there exists an optimal di�usion constant
that minimizes the boundary width ∆x, as has been observed for a system without
mutual repression [122]. While the minimal ∆x of the system with mutual repression
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is only marginally lower than that of the system without it, this optimum is reached
at a lower value of the di�usion constant, where the steepness of the boundaries is
much higher. We �nd that these observations are robust, i.e. independent of the
precise parameters of the model, such as maximum expression level, size of the bursts
of gene expression, and the cooperativity of gene activation.

Our results also show that mutual repression can strongly bu�er against embryo-
to-embryo variations in the morphogen levels by suppressing boundary shifts via a
mechanism that is akin to that of [137, 138]. A more detailed analysis reveals that
when the regions where Bcd and Cad activate hb and kni respectively overlap, bista-
bility can arise in the overlap zone. Yet, the mean waiting time for switching is longer
than the lifetime of the morphogen gradients, which means that the hb and kni expres-
sion patterns are stable on the relevant developmental time scales. This also means,
however, that when errors are formed during development, these cannot be repaired.
Here, our simulations reveal another important role for di�usion: without di�usion a
spotty phenotype emerges in which the nuclei in the overlap zone randomly express
either Hb or Kni; di�usion can anneal these patterning defects, leading to well-de�ned
expression domains of Hb and Kni. Finally, we also study a scenario where hb and
kni are activated by Bcd only. While this scheme is not robust against embryo-to-
embryo variations in the morphogen levels, mutual repression does enhance boundary
precision and steepness also in this scenario.

5.2 Results

5.2.1 Model

We consider the embryo in the syncytial blastoderm stage at late cell cycle 14, ca.
2 h after fertilization. In this stage the majority of the nuclei forms a cortical layer
and hb and kni expression can be detected [114]. Our model is an extension of
the one presented in [122]. It is based on a cylindrical array of di�usively coupled
reaction volumes which represent the nuclei, with periodic boundary conditions in the
angular (φ) and re�ecting boundaries in the axial (x) direction. The dimensions of the
cortical array are Nx = Nφ = 64, with equal spacing of the nuclei ` = 8.5µm in both
directions. For a given embryo length L, this implies a cylinder radius R = L

2π '
L
6 ,

which is close to the experimentally observed ratio. The resulting number ofN = 4096
nuclei roughly corresponds to the expected number of cortical nuclei at cell cycle 14 if
non-dividing polyploid yolk nuclei are taken into account [139] (see appendix section
5.A.1 for details); we also emphasize, however, that none of the results presented
below depend on the precise number of nuclei.

In each nuclear volume we simulate the activation of the gap genes hb and kni by
the morphogens Bcd and Cad, respectively, and mutual repression between hb and
kni (see Fig. 5.2). In what follows, we will refer to Hb and Kni as repressors and to
Bcd and Cad as activators. Our model of gene regulation bears similarities to those of
[140, 141, 133, 134, 131], in the sense that it is based on a statistical mechanical model
of gene regulation by transcription factors, allowing the computation of promoter-site
occupancies. However, the models of [140, 141, 133, 134, 131] are mean-�eld models,
which cannot capture the e�ect of intra-embryonic �uctuations due to biochemical
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Figure 5.2: The model. (A) Cartoon of our model. Bcd activates hb, while its antagonist
kni is activated by Cad. The gap genes hb and kni repress each other mutually. In each
nuclear compartment we simulate the genetic promoters of both hb and kni . Activation is
cooperative: In the default setting, 5 morphogen proteins have to bind to the promoter to
initiate gene expression. Hb and Kni both form homodimers, which can bind to the other
gene's promoter to totally block expression, irrespective of the number of bound morphogen
proteins. Both dimers and monomers travel between neighboring nuclear compartments via
di�usion. (B) Protein copy number pro�les along the AP axis in a typical simulation in steady
state, with parameter values as in Table S5.1 in the appendix. Plotted are the morphogen
gradients Bcd (〈B〉, solid green line) and Cad (〈C〉, solid red line) and the resulting Hb (H)
and Kni (K) total copy number pro�les for di�erent times. The dashed green and red lines
show the Hb (〈H〉) and Kni (〈K〉) pro�les averaged over time and the circumference of the
(cylindrical) system.
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noise arising from the inherent stochasticity of biochemical reactions. This requires a
stochastic model; moreover, it necessitates a model in which the transitions between
the promoter states are taken into account explicitly, since these transitions form a
major source of noise in gene expression, as we will show. To limit the number of
combinatorial promoter states, we have therefore studied a minimal model that only
includes Bcd, Cad, Hb and Kni. Following [122], we assume that Bcd and Cad bind
stochastically and cooperatively to nmax sites on their target promoters. To obtain a
lower bound on the precision of the hb and kni expression domains, we assume that
the activating morphogens Bcd and Cad bind to their promoters with a di�usion-
limited rate kA

on = 4παDA/V , where α is the dimension of a binding site, DA is the
di�usion constant of the morphogen, and V is the nuclear volume (see �Methods�
section 5.4 for parameter values). Since the morphogen-promoter association rate
is assumed to be di�usion limited, cooperativity of hb and kni activation is tuned
via the dissociation rate kA

off,n = a/bn, which decreases with increasing number n of
promoter-bound morphogen molecules. The baseline parameters are set such that the
half-maximal activation level of hb and kni is at midembryo, and the e�ective Hill
coe�cient for gene activation is around 5 [122]; while we will vary the Hill coe�cient,
this is our baseline parameter. Again to obtain a lower bound on the precision of
the gap-gene expression boundaries, transcription and translation is concatenated in
a single step. Mutual repression between hb and kni occurs via binding of Hb to
the kni promoter, which blocks the expression of kni irrespective of the number of
bound Cad molecules, and vice versa. To assess the importance of bistability, Hb
and Kni can homodimerize and bind to their target promoters only in their dimeric
form, which is a prerequisite for bistability in the mean-�eld limit [127]. Both the
monomers and dimers di�use between neighboring nuclei and are also degraded; the
e�ective degradation rate µeff is such that the gap-gene expression domains can form
su�ciently rapidly on the time scale of embryonic development (≈ 10−20 min [139]).
In the absence of mutual repression, our model behaves very similarly to that of
[122], even though our model contains both monomers and dimers instead of only
monomers.

Motivated by experiment [109, 52, 30], and in accordance with the di�usion-
degradation model, we adopt an exponential shape for the stationary Bcd pro�le;
we thus do not model the establishment of the gradient [142]. To elucidate the role
of mutual repression, it will prove useful to take our model to be symmetric: the
Cad pro�le is the mirror image of the Bcd pro�le, and hb and kni repress each other
equally strongly. Di�usion of Bcd and Cad between nuclei induce �uctuations in their
copy numbers on the time scale τd = `2/(4DA) ' 6 s. Because τd is much smaller
than the time scale for promoter binding, 1/kA

on ' 360 s, �uctuations in the copy
number of Bcd and Cad are e�ectively averaged out by slow binding of Bcd and Cad
to their respective promoters, hb and kni [122]. To elucidate the importance of the
threshold positions for hb and kni activation, we will scale the morphogen gradients
by a global dosage factor A; this procedure will also allow us to study the robustness
of the system against embryo-to-embryo variations in the morphogen levels.

We simulate the model using the Stochastic Simulation Algorithm of Gillespie
[53, 54]. Di�usion is implemented into the scheme via the next-subvolume method
used in MesoRD [143, 144]. See http://ggg.amolf.nl for a public version of our code.
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5.2.2 Characteristics of gap-gene expresson boundaries

Three key characteristics of gene expression boundaries are (1) the noise in the protein
concentration at the boundary; (2) the steepness of the boundary; (3) the width of the
boundary. While these quantities may make intuitive sense, their de�nitions are not
unambiguous. Equally important, di�erent de�nitions will reveal di�erent properties
of the system.

Decomposing the noise

Let us consider the variance in the copy number G of protein G at position x along
the anterior-posterior (AP) axis. We de�ne its mean copy number, averaged over all
embryos, circumferential positions φ and all times, at the anterior-posterior position
x as

〈〈G〉φ〉e(x) ≡ 1
Ne

1
T

1
Nφ

Ne−1∑
e=0

T−1∑
t=0

Nφ−1∑
φ=0

Ge(φ, x, t), (5.2)

where Ge(x, φ, t) is the copy number of protein G in embryo e at position x and angle
φ in the circumferential direction (perpendicular to the AP-axis) at time t. Here,
we introduce the convention that the overline denotes an average in time, while the
ensemble brackets with a subscript φ denote an average along the φ direction and
that with a subscript e an average over all embryos. The variance in the copy number
G ≡ Ge(x, φ, t) is then given by

σ2
G(x) = 〈〈(G− 〈〈G〉φ〉e)2〉φ〉e (5.3)

= 〈〈G2〉φ〉e − 〈〈G〉2φ〉e + 〈〈G〉2φ〉e − 〈〈G〉φ
2
〉e

+ 〈〈G〉φ
2
〉e − 〈〈G〉φ〉e

2
(5.4)

=

mean intra-embryonic noise︷ ︸︸ ︷
〈σ2

G〉e(x) + 〈σ2
〈G〉φ〉e(x) +

inter-embryonic variations︷ ︸︸ ︷
σ2
〈G〉φ

(x) (5.5)

The total variance in the copy number can thus be decomposed into intra-embryonic
�uctuations averaged over all embryos and inter-embryonic variations. The former
can, furthermore, be decomposed into 〈σ2

G〉e(x), which is the time-averaged mean of
the variance in G along the circumferential direction, σ2

G(x), averaged over all em-
bryos, and 〈σ2

〈G〉φ〉e(x), which is the variance in time over the mean of G along the

circumferential direction, σ2
〈G〉φ(x), again averaged over all embryos. These intra-

embryonic terms capture di�erent types of dynamics. If the expression boundary is
rough but its average position does not �uctuate in time, then σ2

G(x) will be large yet
σ2
〈G〉φ(x) will be small. Conversely, when the boundary is smooth but its average po-

sition does �uctuate in time, then σ2
G(x) will be small yet σ2

〈G〉φ(x) will be large. Nat-
urally, a combination of the two is also possible. The third term, σ2

〈G〉φ
(x), captures
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x

H

x
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Figure 5.3: Two di�erent contributions to the intra-embryonic variance in the
boundary position. The total variance of the gap gene expression boundary position
xt due to intra-embryonic �uctuations, σ2

xt,intra, can be decomposed into two contributions:

σ2
〈xt〉φ , the variance in time of the circumferential mean of xt, and σ2

xt , the time-average of the
variance of xt along the circumference of the embryo. The sketch illustrates two extremal
cases: If the boundary is very smooth along the circumference at any moment in time,
concerted movements of the boundary will dominate the total variance, i.e. σ2

xt,intra ' σ2
〈xt〉φ

(left side). If, in contrast, the boundary is rough but its mean position does not �uctuate
much in time, then σ2

xt,intra ' σ2
xt (right side). Naturally, a combination of the two types of

�uctuations is possible.

the embryo-to-embryo variations in the average over time and φ of the protein-copy
number. Similarly, we can decompose the �uctuations in the boundary position xt as

∆x = σxt =
√
〈σ2

xt
〉e + 〈σ2

〈xt〉φ〉e + σ2
〈xt〉φ (5.6)

The two di�erent contributions to the intra-embryonic variance, 〈σ2
xt
〉e +〈σ2

〈xt〉φ〉e, are
illustrated in Fig. 5.3. Here and in the next section, we will study the robustness of
the system against intra-embryonic �uctuations, while in section 5.2.4 we study the
robustness against inter-embryonic variations in the morphogen levels.

Intra-embryonic �uctuations

Fig. S5.2 in the appendix shows the decomposition of the noise in the Hb copy
number H and the threshold position xt of the Hb boundary, as a function of the
di�usion constant. We show the intra-embryonic �uctuations for one given embryo
(with the baseline parameter set); how ∆x (the boundary variance originating from
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intra-embryonic �uctuations) changes with embryo-to-embryo variations in the mor-
phogen levels is addressed in section 5.2.4. Fig. S5.2 shows that by far the dominant
contribution to the intra-embryonic noise in the copy number and threshold position
is the time average of the variance in these observables along the circumferential di-
rection; the variance in time of the φ-average of these quantities is indeed very small.
The picture that emerges is that the expression boundary is rough, even when the
di�usion constant D is large, i.e. D = 1 µm2/s. An analysis of the spatial correla-
tion function at midembryo 〈δH(0)δH(φ)〉φ(xt), where δH(φ) = H(xt, φ, t) − 〈H〉φ,
revealed that the correlation length ξφ is on the order of a few nuclei, which cor-
responds to the di�usion length λ =

√
D/µeff a protein can di�use with di�usion

constant D before it is degraded with a rate µeff ; the correlation length is thus small
compared to the circumference. One possible source of coherent �uctuations in the
mean copy number 〈X〉φ and boundary position 〈xt〉φ are temporal variations of the
morphogen pro�les. However, in our model, these pro�les are static�we argued that
the morphogen �uctuations are fast on the timescale of gene expression, and are thus
e�ectively integrated out. The small correlation length ξφ then indeed means that
the varations in the mean over φ, 〈. . . 〉φ, will be small. This leads to an interesting
implication for experiments, which we discuss in the Discussion section (5.3).

The boundary steepness

Now that we have characterized the �uctuations in the copy number and the boundary
position, the next question is how �uctuations in the copy number a�ect the steepness
of the boundary. In particular, a gene-expression boundary can be shallow either
because at each moment in time the interface is shallow, or because at each moment
in time the interface is sharp yet the interface �uctuates in time, leading to a smooth
pro�le. The question is thus how much the gradient of the mean concentration pro�le,
〈G〉φ

′
, and the mean of the gradient, 〈G′〉φ, di�er (here the prime denotes the spatial

derivative). Fig. S5.3 in the appendix shows both quantities as a function of the
di�usion constant. It is seen that while the average of the gradient is larger than the
gradient of the average (as it should), the di�erence is around a factor of 2. We thus
conclude that the steepness of the expression boundary at each moment in time does
not di�er very much from the steepness of the average concentration pro�le.

In the rest of the manuscript, we will predominantly focus on the properties of
individual embryos, and average quantities are typically averages over time and the
circumference. For brevity, therefore, 〈. . . 〉 = 〈. . .〉φ, unless stated otherwise.
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5.2.3 Robustness to intra-embryonic �uctuations

Mutual repression shifts boundaries apart

Fig. 5.4A shows the average Hb and Kni steady-state pro�les along the anterior-
posterior (AP) axis as a function of their di�usion constant D for a system with
mutual repression. The inset shows the morphogen-activation pro�les, which are the
spatial pro�les of the probability that the hb and kni promoters have 5 copies of their
respective morphogens bound. Without mutual repression, thus when Hb and Kni
cannot bind to their respective target promoters, these pro�les describe the probability
that hb and kni are activated by their respective morphogens. Indeed, without mutual
repression and without Hb and Kni di�usion, the Hb and Kni concentration pro�les
would be proportional to their respective morphogen-activation pro�les [122], which
means that they would precisely intersect at midembryo. In contrast, Fig. 5.4A
shows that the Hb and Kni concentration pro�les are shifted apart in the system with
mutual repression. There is already a �nite separation for D = 0, which increases
further as D is increased.

In Fig. 5.4B we show the pro�le of the probability 〈H0
5 〉 that the hb promoter is

induced, meaning that it has 5 copies of Bcd bound to it and no Kni, and the pro�le
of the likelihood 〈H1

5 〉 that hb is activated by Bcd, yet repressed by Kni, in which
case hb is not expressed. It is seen that repression by kni almost fully inhibits hb
expression beyond the half-activation point, where hb would be expressed without kni
repression (see inset Panel A). Indeed, mutual repression e�ectively cuts o� protein
production beyond midembryo. The production probability therefore changes more
abruptly along the AP axis, leading to a higher steepness of the protein pro�les near
midembryo. For D > 0, repressor in�ux over the midplane increases, and as a result
the regions of expression inhibiton are enlarged and the concentration pro�les shift
apart further.

Noise reduction via spatial averaging

Fig. 5.4C shows the standard deviation of the protein copy number along the AP axis
for both Hb (σH) and Kni (σK). It is seen that the noise increases close to the half-
activation point where promoter-state �uctuations are strongest [22, 41, 145]. This is
also observed in Fig. 5.4D, which shows the normalized standard deviation σH/〈H〉max

versus the normalized mean 〈H〉/〈H〉max of the average Hb copy number; here, 〈H〉max

is the maximum average concentration of Hb. The noise maximum close to mid
embryo diminishes with increasing D, approaching the Poissonian limit. Note that
the Poissonian limit here is given by σP =

√
(1 + fD)〈H〉, where fD = 2〈HD〉/〈H〉

is the fraction of dimerized Hb proteins with respect to the total Hb copy number
(see appendix section 5.B.1 for details). Clearly, the spatial averaging mechanism
described in [122, 123] reduces the noise also in our system, which di�ers from those
in [122, 123] by the presence of both gap gene monomers and dimers instead of
monomers only.
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Figure 5.4: The e�ect of mutual repression on the average protein concentrations
and their standard deviations. (A) Time- and circumference-averaged Hb (〈H〉, solid
lines) and Kni (〈K〉, dashed lines) total protein copy number pro�les along the AP axis
for various di�usion constants D in a system with mutual repression. The inset shows
for both the hb and the kni promoter the probability that the promoter binds 5 morphogen
proteins irrespective of whether the antagonistic gap protein is bound to it (meaning that the
promoter is activated by the morphogen, even though it may be repressed by the antogonistic
gap protein); these �morphogen-activation� pro�les are identical for all D values. (B) Pro�les
of the probability 〈H0

5 〉 that the hb promoter is induced, meaning that it has 5 copies of Bcd
bound to it and no Kni dimer (solid lines), and the probability 〈H1

5 〉 that hb is activated by
Bcd yet repressed by Kni, in which case hb is indeed not expressed (dashed lines). (C) AP
pro�les of the time- and circumference-averaged standard deviation of the total gap protein
copy number for Hb (σH, solid lines) and Kni (σK, dashed lines). (D) Normalized standard
deviation σH(x)/〈H〉max versus the normalized mean 〈H〉(x)/〈H〉max; 〈H〉(x) is the averaged
total Hb copy number at x and 〈H〉max is the maximum of this average over all x. The grey
dashed line represents the Poissonian limit (PL) given by

p
(1 + fD)〈H〉(x)/〈H〉max, where

fD is the fraction of proteins in dimers.
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Mutual repression reduces the boundary width by increasing the steepness

Fig. 5.5 quanti�es the impact of spatial averaging and mutual repression on the Hb
boundary width ∆x, comparing it to that of the system without mutual repression.
To �rst order, the boundary precision ∆x is related to the standard deviation in the
protein copy number at the boundary, σH(xt), and the steepness of the boundary,
|〈H(xt)〉′|, via Eq. (5.1) [20, 51, 122]. The noise σH(xt) decreases with increasing
D due to spatial averaging in an almost identical manner for the systems with and
without mutual repression (Fig. 5.5, top panel); indeed, perhaps surprisingly, mutual
repression has little e�ect on the noise at the boundary. Increasing D also lessens the
steepness of the protein pro�les, thus reducing the slope |〈H(xt)〉′| (Fig. 5.5, middle
panel). While without mutual repression this reduction is monotonic, in the case with
mutual repression the steepness �rst rises because increasing D increases the in�ux
of the antagonistic repressor into the regions where the gap genes are activated by
their respective morphogens, which, for low values of D, steepens the e�ective gene-
activation pro�le 〈H1

5 〉(x) by most strongly reducing gene expression near midembryo;
after the steepness has reached its maximum at D = 0.032 µm2/s, it drops for higher
di�usion constants, because the di�usion of the gap-gene proteins now �attens their
concentration pro�les. Most importantly, with mutual repression |〈H(xt)〉′| reaches
signi�cantly higher values for all D ≤ 1.0 µm2/s. At D = 0.032 µm2/s the pro�le
is roughly twice as steep as in the case without repression. Interestingly, for D .
0.1 µm2/s, our simulation results for the steepness of the pro�les as normalized by
their maximal values agree with those measured experimentally by Surkova et al. in
cell cycle 14 [114]: In both simulation and experiment, the concentration drops from
90% to 10% of the maximal values over 5-10% of the embryo length.

Both with and without Hb-Kni mutual repression the trade-o� between noise
and steepness reduction leads to an optimal di�usion constant Dmin that maximizes
boundary precision, i.e. minimizes ∆x (Fig. 5.5, lower panel). Mutual repression en-
hances the precision for D ≤ 1.0 µm2/s because in this regime decreasing D increases
the steepness markedly while it has only little e�ect on the noise as compared to the
system without mutual repression. Conversely, ∆x is increased by mutual repression
for D ≥ 10 µm2/s because it reduces the steepness. The minimum in the case with re-
pression is marginally lower than that without (Dmin,R/Dmin,NR ' 0.86), but located
at a lower D-value (1.0 µm2/s vs. 3.2 µm2/s). Most importantly, at D = 0.32 µm2/s,
the system with mutual repression produces a pro�le that is twice as steep as that of
the system without it at Dmin,NR = 3.2 µm2/s, whereas the precision ∆x is essentially
the same in both cases. Clearly, mutual repression can strongly enhance the steepness
of gene-expression boundaries without compromising their precision.
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Figure 5.5: The e�ect of mutual repression on the precision and steepness of
the Hb boundary. The �gure shows the time- and circumference-average of the standard
deviation of the total Hb copy number at the boundary σH(xt) (upper panel), the slope of the
total Hb copy number pro�le at the boundary |〈H〉′(xt)| (middle panel) and the Hb boundary
width ∆x (lower panel) as a function of the di�usion constant D of the gap proteins. Red
solid lines show the case without (NR) and green solid lines the case with mutual repression
(R); the red and green dashed lines show the limiting values without di�usion of the gap
proteins. The grey dashed lines in the boundary width plot are the values based on the
approximation ∆x = σH(xt)/|〈H(xt)〉′|. Note that for D < 3.2 µm2/s, mutual repression
enhances the steepness of the boundary, which in turn enhances the precision of the boundary.
The black dotted line marks the D-value where the boundary is both steep and precise due
to mutual repression.
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In�uence of the Hill coe�cient

A key parameter controlling the precision of the gap-gene expression boundaries, is
the degree of cooperativity by which the gap genes are activated by their respective
morphogens�this determines the pro�le steepness of the average gap-gene promoter
activity. To investigate this, we have lowered the e�ective Hill coe�cient from its base-
line value of 5 by reducing the number nmax of morphogen molecules that are required
to bind the promoter to activate gene expression. To isolate the e�ect of varying the
mean gene-activation pro�les 〈H0

nmax
〉(x) and 〈K0

nmax
〉(x), we varied, upon varying

nmax, the association and dissociation rates such that 1) the average gene activation
probabilities near midembryo, 〈H0

nmax
〉(L/2) and 〈K0

nmax
〉(L/2), are unchanged and

2) the waiting-time distribution for the gene on-to-o� transition is unchanged (since
the average activation probability is �xed, the mean o�-to-on rate is also unchanged,
although the waiting-time distribution is not; see also Fig. S5.4 in the appendix).
We observe that mutual repression markedly enhances the steepness of the gap-gene
expression boundaries, also with a lower Hill coe�cient for gene activation (Fig. S5.5
in the appendix). However, lowering the Hill coe�cient reduces the steepness of the
gene-activation pro�les, causing the two antagonistic gene-activation pro�les to over-
lap more. As a result, in each of the two gap-gene expression domains, more of the
antagonist is present, which tends to increase the noise in gene expression by oc-
cassionally shutting o� gene production. This, as explained in more detail later, is
particularly detrimental when the di�usion constant is low. Indeed, when the e�ective
Hill coe�cient of gene activation is 3 or lower, mutual repression increases ∆x when
the di�usion constant is low, i.e. below approximately 0.1 µm2/s. Nonetheless, the
minimal ∆x is still lower with mutual repression, and, consequently, also with a lower
Hill coe�cient for gene activation, mutual repression can enhance both the steepness
and the precision of gene-expression boundaries.

In�uence of the repression strength

As a standard we assume very tight binding of the Hb and Kni dimers, �the re-
pressors�, to their respective promoters. To test how this assumption a�ects our
results we performed simulations in which we systematically varied the repressor-
promoter dissociation rate kR

off in the range [5.27 · 10−4/s, 5.27 · 102/s], keeping the
di�usion constant at D = 1.0 µm2/s (the value that minimizes the boundary width
at kR

off = 5.27 · 10−3/s) and all other parameters the same as before. Fig. 5.6 shows
the noise, steepness and boundary precision as a function of the repressor-promoter
dissociation rate. For high dissociation rates, these quantities equal those in the
system without mutual repression (dashed lines). Yet, as the dissociation rate is de-
creased, the steepness rises markedly at kR

off = 1/s. In contrast, the noise σH(xt)
�rst decreases with decreasing kR

off , passing through a minimum at kR
off = 0.1/s before

rising to a level that is higher than that in a system without mutual repression. This
minimum arises because on the one hand increasing the a�nity of the repressor (the
antagonist) makes the operator-state �uctuations of the activator (the morphogen)
less important�increasing repressor binding drives the concentration pro�les of Hb
and Kni away from midembryo, where the promoter-state �uctuations of the activa-
tors are strongest; on the other hand, when the repressor binds too strongly, then
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Figure 5.6: The e�ect of varying repression strength on the precision and steep-
ness of the Hb boundary. Shown are the time- and circumference average of the standard
deviation of the total Hb copy number at the boundary σH(xt) (upper panel), the steepness
of the boundary |〈H〉′(xt)| (middle panel) and the Hb boundary width ∆x (lower panel)
as a function of kR

off , the promoter-dissociation rate of Hb and Kni. The solid green line
are values obtained from the boundary position distribution, the dashed grey line the ones
calculated from the approximation ∆x = σH(xt)/|〈H(xt)〉′|. Straight dashed lines mark the
limits for the case without mutual repression (kR

on = kR
off = 0).



114 Mutual repression in early Drosophila embryogenesis

slow repressor unbinding leads to long-lived promoter states where gene expression
is shut o�, increasing noise in gene expression; this phenomenon is similar to what
has been observed in Refs. [41] and [60], where slower binding of the gene regulatory
proteins to the promoter increases noise in gene expression and decreases the stability
of a toggle switch, respectively. The interplay between the noise and the steepness
yields a marked reduction of the boundary width ∆x; indeed, even in the limit of very
tight repressor binding, mutual repression signi�cantly enhances the precision of the
boundary.

In�uence of the expression level

Since the precise gap protein expression level is not known, we also varied the maxi-
mal protein copy number N by varying the maximal expression rate β (see appendix
section 5.C.2). Fig. S5.7 in the appendix shows the output noise and slope at the
boundary position, and the boundary precision ∆x, as a function of the di�usion
constant for three di�erent expression levels. It is seen that for low di�usion con-
stant, the precision is independent of N , while for higher di�usion constant it scales
roughly with 1/

√
N . This can be understood by noting that the steepness of the

gene-expression boundary scales to a good approximation with N independently of
D, while the noise σ scales with N when the di�usion constant is small, but with√
N when the di�usion constant is large (see also Eq. (5.1)). The scaling of the noise

with N is due to the fact that for low D the noise in the copy number is dominated
by the noise coming from the promoter-state �uctuations, which scales linearly with
N , while for high D, di�usion washes out the expression bursts resulting from the
promoter-state �ucutations, leaving only the noise coming from the Poissonian �uc-
tuations arising from transcription and translation, which scales with the square root
of N [122]. In the appendix (section 5.C.2) we also study the importance of bursts
arising in the transcription-translation step (see Fig. S5.8 in the appendix); however,
we �nd that for a typical burst size, these bursts do not dramatically a�ect boundary
precision.

5.2.4 Robustness to inter-embryonic variations

Although the Bcd copy number at midembryo has been determined experimentally
[51], the measured value is not necessarily the half-activation threshold of hb. Indeed,
in vivo the Hb pro�le is shaped by other forces, like mutual repression. In the kni -kr
double mutant, the Hb boundary at midembryo shifts posteriorly [116]. Moreover, gap
gene domain formation has been observed at strongly reduced Bcd levels, suggesting
that Bcd might be present in excess [146]. Also from a theoretical point of view it
is not obvious that a precisely centered morphogen-activation threshold is optimal,
in terms of robustness against both intra-embryonic �uctuations and inter-embryonic
variations. Here, we study the e�ect of changing the threshold position where hb
and kni are half-maximally activated by their respective morphogens, Bcd and Cad.
While the threshold positions could be varied by changing the threshold morphogen
concentrations for half-maximal gap-gene activation (for example by changing the
morphogen-promoter dissociation rates), we will vary these positions by changing the
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amplitude of the morphogen pro�les by a factor A. This procedure not only preserves
the promoter-activation dynamics at the boundaries�a key determinant for the noise
at the boundaries�but also allows us to study the importance of mutual repression
in ensuring robustness against embryo-to-embryo variations. Indeed, we will examine
not only how changing the threshold position a�ects the precision of the gap-gene
expression boundaries, ∆x(A), but also how the average boundary positions vary
with morphogen dosage, xt(A), and how the latter gives rise to embryo-to-embryo
variations in the boundary position ∆xt(∆A) due to embryo-to-embryo variations in
the morphogen dosage ∆A.

Double-activation induces bistability

We �rst consider the scenario in which the amplitudes of both morphogens are scaled
by the same factor A. When A = 1, the position at which hb and kni are half-
maximally activated by their respective morphogens coincide at midembryo, meaning
that the domains in which hb and kni are activated beyond half-maximum are ad-
joining, but do not overlap�this is the scenario discussed in the previous sections.
When A > 1, the position at which hb is half-maximally activated by its morphogen is
shifted posteriorly, while that of kni is shifted anteriorly, creating an overlap between
the two regions where hb and kni are activated. In this �double-activated region�
both hb and kni are activated by their respective morphogens, yet they also mutu-
ally repress each other. This may lead to bistability. To probe whether this is the
case, we performed a bifurcation analysis of the mean-�eld chemical-rate equations
of isolated nuclei, implying that D = 0 (see Fig. S5.1 in the appendix). In addition,
we performed stochastic simulations of isolated nuclei with di�erent morphogen levels
corresponding to di�erent positions along the AP axis. All other parameter values
were the same as in the full-scale simulation. We recorded long trajectories of the
order parameter ∆N ≡ H − K, the di�erence between the total Hb and total Kni
copy numbers, in the stationary state. From each trajectory we computed the dis-
tribution P (∆N) of the probability that the system is in a state with copy number
di�erence ∆N . This de�nes a �free energy� G(∆N) ≡ − lnP (∆N), with minima of
G(∆N) corresponding to maximally probable values of ∆N [129, 130]. For a bistable
system, G(∆N) resembles a double-well potential with minima located at a positive
value of ∆N = ∆NH and a negative value of ∆N = ∆NK, respectively. At midem-
bryo the morphogen levels of Bcd and Cad are the same and hence the biochemical
network in the nuclei in the midplane is symmetric, which means that, if this network
is bistable, G(∆N) resembles a symmetric double-well potential with ∆NH = −∆NK

and ∆G ≡ G(∆NH) − G(∆NK) = 0. Away from the middle, the morphogen lev-
els di�er, and one state will become more stable than the other; if the other state
is, however, still metastable, then G(∆N) will resemble an asymmetric double-well
potential, with ∆G being negative if the hb-dominant state is more stable than the
kni -dominant state, and vice versa. The emergence of such a �spatial switch� along
the AP axis is also captured by our mean-�eld, bifurcation analysis (see appendix
section 5.B.2) and was recently also shown in the mean-�eld analysis of Papatsenko
and Levine for the same pair of mutually repressing genes [131].
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Figure 5.7: Emergence of bistability in double-activated regions. The �free energy�
di�erence ∆G ≡ G(∆NH) − G(∆NK) as a function of x, the distance of the nucleus from
the anterior pole, for di�erent amplitudes of the morphogen gradients A; here, G(∆N) ≡
− ln(P (∆N)), where P (∆N) is the stationary distribution of the order parameter ∆N =
H − K; ∆NH ' −∆NK ≈ 800 correspond to the minima of G(∆N). Negative values of
∆G represent a strong bias towards the high-Hb state, while positive values correspond to
high-Kni states. The insets shows G(∆N) as a function of ∆N at the positions indicated by
the numbers in their corners (values in [% EL]; colors correspond to main plot). The data
is obtained from simulations of single nuclei with morphogen levels corresponding to the
ones at position x in the full system; this is equivalent to the full system without di�usion
between neighboring nuclei. Note the bistable behavior in a wide region of the embryo for
higher A values.

Fig. 5.7 shows ∆G as a function of the position along the AP axis, for di�er-
ent amplitudes A of the morphogen gradients. The inset shows the energy pro�les
G(∆N) for di�erent positions along the AP axis. For A = 1, G(∆N) always exhibits
one minimum only, irrespective of the position along the AP axis; at midembryo, this
minimum is located at ∆N = 0, while moving towards the anterior (posterior) the
energy minimum rapidly shifts to ∆N ≈ +800(−800), re�ecting that in the anterior
(posterior) half of the embryo hb (kni) is essentially fully expressed. For A = 2,
G(∆N) develops into a double-well potential at midembryo, with two pronounced
minima at ∆N ≈ 800 and ∆N ≈ −800, respectively. These two minima correspond
to a state in which hb is highly expressed (〈H〉 ≈ 800) and kni is strongly repressed
(〈K〉 ≈ 0) and another state in which kni is highly expressed and hb strongly re-
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pressed, respectively. The fact that the two energy mimima are equal indicates that
both of these states are equally likely. Moving away from midembryo, however, one
gap-gene expression state rapidly becomes more stable than the other, and bistability
is lost, yielding a potential with one minimum located at ∆N ≈ 800 in the anterior
half and a potential with one minimum located at ∆N ≈ −800 in the posterior half
of the embryo. Interestingly, for A = 4 and A = 8 a wide region of bistability devel-
ops around midembryo. In this region, ∆G ≈ 0, meaning that the high-hb�low-kni
state and the low-hb�high-kni state are equally stable. These two states are equally
likely because in this region both the hb and kni promoters are fully activated by
their respective morphogens. It can also be seen that the width of this bistable region
increases with the amplitude of the morphogen gradients, as expected.

Slow switching ensures a low noise level while di�usion avoids error locking

The bistability observed for A > 1 and D = 0 raises an important question, namely
whether the nuclei can switch between the two gap-gene expression states on the
time scale of embryonic development. This question is particularly pertinent for the
higher morphogen amplitudes, where these two states are equally likely (∆G ≈ 0)
over a wide region of the embryo (Fig. 5.7): random switching between the two
distinct gap-gene expression states in this wide region would then lead to dramatic
�uctuations in the positions of the hb and kni expression boundaries, which clearly
would be detrimental for development. We therefore computed [130] from the recorded
switching trajectories the average waiting time for switching, τs, at midembryo (∆G '
0) for di�erent values of A; for A ≥ 2, we �nd τs ' 6 h (see Table S5.2 in the
appendix). During cell cycle 14, approximately 2-3 hours after fertilization, the Bcd
gradient disappears [147], suggesting that the spontaneous switching rate is indeed
low on the relevant time scale of development.

With di�usion of Hb and Kni between neighboring nuclei (D > 0), the time scale
for switching will be even longer. Di�usion couples neighboring nuclei, creating larger
spatial domains with the same gap-gene expression state. This reduces the probability
that a nucleus in the overlap region �ips to the other gap-gene expression state. The
latter can be understood from the extensive studies on the switching behavior of the
�general toggle switch� [129, 130, 148, 149, 150, 60], which is highly similar to the
system studied here�indeed, the toggle switch consists of two genes that mutually
repress each other. These studies have revealed that the ensemble of transition states,
which separate the two stable states, is dominated by con�gurations where both
antagonistic proteins are present in low copy numbers. Clearly, the probability that
in a given nucleus not only the minority gap protein, but also the majority gap protein
reaches a low copy number, is reduced by the di�usive in�ux of that majority species
from the neighboring nuclei, which are in the same gap-gene expression state. In
essence, di�usion increases the e�ective system size, with its spatial dimension given
by λ =

√
D/µeff ; in fact, since the stability of the toggle switch depends exponentially

on the system size [129, 130], we expect the stability τs to scale with the di�usion
constant as τs ∼ eD. We thus conclude that random switching between the two
gap-gene expression states, the high-hb�low-kni and low-hb�high-kni states, is not
likely to occur on the time scale of early development.
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Figure 5.8: Mutual repression bu�ers against correlated variations in the acti-
vator levels. (A) Time- and circumference-averaged Hb (〈H〉, solid lines) and Kni (〈K〉,
dashed lines) total copy-number pro�les along the AP axis for various morphogen dosage
factors A. Inset: the corresponding average occupancy of the promoter states with �ve
bound morphogen molecules as a function of x. (B) The average Hb boundary position xt

as a function of ∆xA, the distance between the Hb and Kni boundaries without mutual
repression, for the system with mutual repression (green,) and without it (red); ∆xA is var-
ied by changing the morphogen dosage factor A. Note that mutual repression makes the
gap-gene expression boundaries essentially insensitive to correlated changes in morphogen
levels when A > 1. (C) AP pro�les of the average standard deviation of the total Hb (σH,
solid lines) and Kni (σK, dashed lines) copy numbers. Inset: σH(x)/〈H〉max as a function of
〈H〉(x)/〈H〉max, where 〈H〉(x) is the average Hb copy number at x and 〈H〉max its maximum
over x. The grey dashed line represents the Poissonian limit. (D) The Hb boundary width
∆x as a function of ∆xA with (green) and without (red) mutual repression. For A = 4, it
was impossible to obtain a reliable error bar on ∆x, because of the weak pinning force on
the hb and kni expression boundaries.

The observation that the switching rate is low raises another important question:
if errors are formed during development, can they be corrected? We observe in the
simulations with D = 0 that when we allow the gap-gene expression patterns to de-
velop starting from initial conditions in which the Hb and Kni copy numbers are both
zero, in the overlap (bistable) region a spotty gap-gene expression pattern emerges,
consisting of nuclei that are either in the high-hb�low-kni state or in the low-hb�
high-kni state. When the di�usion constant of Hb and Kni is zero, then these defects
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are essentially frozen in, precisely because of the low switching rate. Interestingly,
however, we �nd in the simulations that a �nite di�usion constant can anneal these
defects. This may seem to contradict the statement made above that di�usion lowers
the switching rate. The resolution of this paradox is that while di�usion lowers the
switching rate for nuclei that are surrounded by nuclei that are in the same gap-gene
expression state, it enhances the switching rate for nuclei that are surrounded by
nuclei with a di�erent gap-gene expression state; this is indeed akin to spins in an
Ising system below the critical point. The mechanism for the formation of the gap-
gene expression patterns, then, depends on the di�usion constant. When D is small
yet �nite, 0 < D < 0.1µm2/s, in the overlap region �rst small domains are formed
consisting of nuclei that are in the same gap-gene expression state; these domains
then coarsen analogously to Ostwald ripening of small crystallites in a liquid below
the freezing temperature; ultimately, they combine with the hb or kni expression do-
mains that have formed in the meantime outside the overlap region, where hb and kni
are activated by their respective morphogens yet do not repress each other (see Videos
S1 and S2, published online at http://www.ploscompbiol.org). For D & 0.1µm2/s, no
�crystallites� are formed in the overlap region (both the Hb and Kni copy numbers
are low yet �nite and hb and kni simultatenously repress each other); instead, the hb
and kni domains formed near the poles slowly invade the overlap region (see Videos
S3 and S4, published online). Interestingly, even while in the absence of Hb and Kni
di�usion ∆G ≈ 0 in the overlap region, the interface between the hb and kni expres-
sion domains does slowly di�use towards midembryo when D > 0 and A ≤ 4, due to
the di�usive in�ux of Hb and Kni from the regions outside the overlap region. When
A = 8, the hb and kni expression boundaries are not pinned to the middle of the
embryo, and their positions exhibit slow and large �uctuations, presumably because
the energetic driving force is small, and the di�usive in�ux of Hb and Kni from the
regions near the poles is negligible. We will investigate this e�ect in more detail in a
forthcoming publication.

Mutual repression inhibits boundary shifts

Fig. 5.8A shows the average gap-gene expression pro�les for A ∈ {1, 2, 4} and D =
1.0 µm2/s, which minimizes the boundary width ∆x when A = 1 (see Fig. 5.5).
While the morphogen-activation thresholds shift beyond midembryo as A is increased
beyond unity, leading to an overlap of the domains where the gap genes are activated
by their respective morphogens (see inset), the gap-gene expression boundaries overlap
only marginally. This is quanti�ed in panel B, which shows the Hb boundary position
xt as a function of A and as a function of ∆xA ≡ xA,Kni − xA,Hb, which is de�ned
as the separation between the positions xA,Kni and xA,Hb where Kni and Hb are
half-maximally activated by their respective morphogens; for A = 1, with adjoining
morphogen activation regions, ∆xA = 0 and for A > 1, with overlapping activation
regions, ∆xA is negative. Without mutual repression (red data), the Hb boundary
position xt tracks the shift of the hb activation threshold, as expected. In contrast,
with mutual repression (green data) the boundary does not move beyond the position
for A = 1 as A is increased. The same robustness was also observed for other values
of the Hill coe�cient of gap-gene activation (see Fig. S5.6 in the appendix).
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Mutual repression enhances robustness to embryo-to-embryo variations

The fact that mutual repression can pin expression boundaries, dramatically enhances
the robustness against embryo-to-embryo variations in the morphogen levels. We
did not sample inter-embryo variations in A explicitly, but made an estimate using
∆xt = (dxt/dA)∆A, where dxt/dA was taken from Fig. 5.8B. A correlated symmetric
variation δA ≡ ∆A/A = 0.1 of both morphogen levels then would lead to ∆xt(δA) '
0.82 %EL at A = 1 and ∆xt(δA) ' 0.25 %EL at A = 2. Without mutual repression
∆xt,NR(δA) ' 2.2 %EL. This analysis thus suggests that mutual repression reduces
boundary variations due to �uctuations in the morphogen levels by almost a factor of
10 if the half-activation threshold is slightly posterior to midembryo (e.g. A = 2). If,
on average, A = 1, then mutual repression still reduces ∆xt by inhibiting posterior
shifts in those embryos in which A > 1. These results are consistent with those of
[137, 117].

Overlap of morphogen activation domains does not corrupt robustness to
intrinsic �uctuations

While mutual repression proves bene�cial in bu�ering against embryo-to-embryo vari-
ations in morphogen levels, the question arises whether overlapping morphogen-ac-
tivation domains does not impair robustness to intrinsic �uctuations arising from
noisy gene expression and di�usion of gap gene proteins. We found that this de-
pends on the Hill coe�cient of gap-gene activation, which depends on the number
nmax of morphogen binding sites on the promoter. Fig. 5.8C shows, for nmax = 5,
that even though mutual repression increases the noise in gap-gene expression away
from the boundaries, it has little e�ect on the noise at the boundaries when A ≤ 2.
For A > 2, the noise does increase signi�cantly; in fact, it was impossible to ob-
tain reliable error bars, because of the weak pinning force of the hb-kni interface.
Moreover, overlapping morphogen activation domains decrease the steepness of the
expression boundaries (panel A), and this increases the boundary width ∆x (panel
D). Indeed, when nmax = 5, mutual repression can enhance the precision of gene-
expression boundaries, but only if the activation domains are adjoining (A = 1), or
have a marginal overlap (1 < A < 2). For lower values of nmax, however, this en-
hancement of precision extends over a much broader range of A values; in fact, when
nmax < 3, mutual repression enhances precision even up to A = 4 (see Fig. S5.6 in
the appendix).
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5.2.5 Boundaries shift upon uncorrelated variations in mor-

phogen levels, yet intrinsic noise remains unaltered

Since correlated upregulation of both morphogen levels is a special case, we also
studied the e�ect of uncorrelated activator scaling. To this end, only the Bcd level
was multiplied by a global factor A ∈ {0.5, 1, 2, 3, 4}, while other parameters were left
unchanged. Again we investigated the Hb boundary position xt, its variance ∆xt(∆A)
due to extrinsic (embryo-to-embryo) variations in A and the variance due to intrinsic
(intra-embryo) �uctuations ∆x(A). Results for D = 1.0 µm2/s are summarized in
Fig. 5.9.

The Hb boundary shifts less with mutual repression

Fig. 5.9A shows that the hb expression boundary shifts posteriorly with increasing
A, in contrast to the case of correlated activator scaling. The Kni pro�le retracts in
concert with the advance of the Hb domain. In Fig. 5.9B we compare the Hb boundary
xt(A) to the data of Houchmandzadeh et al. [52], assuming a 100% e�ciency of
the additional bcd gene copies. It is seen that the agreement between simulation
and experiment is very good: while xt(A) of the simulations has a marginal o�set
as compared to the experimental data, the slope of xt(A) is essentially the same.
Moreover, the slope is much lower than that obtained without mutual repression,
showing that mutual repression can indeed bu�er against uncorrelated variations in
morphogen levels. These results parallel those of [137].

Robustness to inter-embryo �uctuations

To estimate the boundary variance due to inter-embryo variations in morphogen levels,
we �tted a generic logarithmic function xt,fit(A) ≡ a log(A)+b to the simulation data,
giving a . 15 %EL for all values of D studied. Hence ∆xt(∆A) . 15 %EL ∆A/A. A
10% variability in A around A = 1 thus would result in ∆xt(∆A) . 1.5 %EL, which
is half as much as predicted by the model in [137] for that case. Nevertheless, it is
yet too large to correspond to the experimental observations of Manu et al. that
variations in the Bcd gradient of ∆A/A ≈ 20% correspond to variations in the Hb
boundary position of ∆xt(∆A) . 1.1 %EL [116]. Our results therefore support their
conjecture that higher levels of Bcd are correlated with upregulation of Kni and Cad.

Robustness to intra-embryo �uctuations

The output noise at the Hb boundary remains largely una�ected (Fig. 5.9C and
inset) by Bcd upregulation, whereas the slope is reduced by approximately 10% per
doubling of A (data not shown). As a result, the boundary width ∆x stays close
to 1 %EL for all considered A (green data; Fig. 5.9D), remaining lower than that
obtained without mutual repression (red data; Fig. 5.9D).
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Figure 5.9: Robustness of the gap-gene expression boundaries to variations in
the bcd gene dosage. (A) Time- and circumference-averaged Hb (〈H〉, solid lines) and Kni
(〈K〉, dashed lines) total copy-nymber pro�les along the AP axis for various bcd gene dosage
factors ABcd = A ∈ {0.5, 1, 2, 3, 4} and D = 1.0 µm2/s. Inset: the average occupancy of the
promoter states with �ve bound morphogen molecules as a function of x. (B) Comparison
of the boundary position xt as a function of A for D = 1.0 µm2/s to values measured by
Houchmanzadeh et al. [52] (black line). The red line shows the simulation results for the
system without mutual repression. Note the good agreement between the experimental data
and the simulation data of the system with mutual repression. (C) Pro�les of the average
standard deviation of the total Hb (σH, solid lines) and Kni (σK, dashed lines) copy number.
Inset: σH(x)/〈H〉max as a function of 〈H〉(x)/〈H〉max. The grey dashed line represents the
Poissonian limit. (D) The Hb boundary width ∆x as a function of A and ∆xA, the separation
between the Hb and Kni boundaries in a system without mutual repression, for the system
with (green) and without (red) mutual repression. ∆xA is varied by multiplying the Bcd
level by ABcd.
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5.2.6 Mutual repression with one morphogen gradient

In the mutual repression motif discussed above, the two antagonistic genes were ac-
tivated by independent morphogens, one emanating from the anterior and the other
from the posterior pole. An alternative mutual repression motif is one in which the
two genes are activated by the same morphogen, e.g. hb and kni both being activated
by Bcd [125, 151].

We simulated a system in which hb and kni mutually repress each other, yet both
are activated by Bcd, with kni having a lower Bcd activation threshold than hb. This
generates a Hb and Kni domain, with the latter being located towards the posterior
of the former (see Fig. S5.9 in the appendix). We systematically varied the mutual
repression strength and the di�usion constant, to elucidate how mutual repression and
spatial averaging sculpt stable expression patterns in this motif. Our analysis reveals
that since hb and kni are both activated by the same morphogen gradient, hb should
repress kni more strongly than vice versa: with equal mutual repression strengths ei-
ther a spotty gap-gene expression pattern emerges in the anterior half, namely when
the Hb and Kni di�usion constant are low (D < 0.1µm2/s), or Kni dominates or even
squeezes out Hb, namely when their di�usion constant is large. Nonetheless, for un-
equal mutual repression strengths and su�ciently high D, the repression of hb by kni
does enhance the precision and the steepness of the Hb boundary, although the e�ect
is smaller than in the two-gradient motif (Fig. S5.9 in the appendix). Clearly, while
the one-morphogen-gradient motif cannot provide the robustness against embryo-to-
embryo variations in morphogen levels that the two-morphogen-gradient motif can
provide, mutual repression can enhance boundary precision also in this motif.

5.3 Discussion

Using large-scale stochastic simulations, we have examined the role of mutual repres-
sion in shaping spatial patterns of gene expression, with a speci�c focus on the hb-kni
system. Our principal �ndings are that mutual repression enhances the robustness
both against intra-embryonic �uctuations due to noise in gap-gene expression and
embryo-to-embryo variations in morphogen levels.

To investigate the importance of mutual repression in shaping gene-expression
patterns, we have systematically varied a large number of parameters: the strength
of mutual repression, the di�usion constant of the gap proteins, the maximum ex-
pression level, the Hill coe�cient of gap-gene activation, and the amplitude of the
morphogen gradients. To elucidate how varying these parameters changes the pre-
cision of the gap-gene boundaries, we examined how they a�ect both the steepness
of the gene-expression boundaries and the expression noise at these boundaries (see
Eq. (5.1)). The e�ect on the steepness is, to a good approximation, independent of
the noise, and would therefore be more accessible experimentally. We �nd that the
steepness increases with decreasing di�usion constant, but increases with increasing
strength of mutual repression, maximum expression level, and Hill coe�cient of gap-
gene activation. Moreover, mutual repression shifts the expression boundaries apart
and makes the system more robust to embryo-to-embryo variations in the morphogen
levels. In contrast, the noise at the expression boundaries decreases with increasing
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di�usion constant, decreasing expression level, and decreasing Hill coe�cient, while
the dependence on the strength of mutual repression is non-monotonic, albeit not
very large. The interplay between noise and steepness means that the precision of
the gap-gene expression boundaries increases (i.e., ∆x decreases) with increasing ex-
pression level. The dependence of ∆x on the di�usion constant and the strength of
mutual repression, on the other hand, is non-monotonic: there is an optimal di�u-
sion constant and repression strength that maximizes precision. The e�ect of the
Hill coe�cient is conditional on the strength of mutual repression: without mutual
repression, the precision slightly decreases with increasing Hill coe�cient, while with
mutual repression the precision increases with increasing Hill coe�cient.

While mutual repression has only a weak e�ect on the noise in the expression
levels at the gene-expression boundaries, it does markedly steepen the boundaries,
especially when the di�usion constant is low. Indeed, mutual repression can enhance
the precision of gene expression boundaries by steepening them. Nonetheless, even
with mutual repression spatial averaging [123, 122] appears to be a prerequisite for
achieving precise expression boundaries: without di�usion of the gap proteins, the
width of the hb expression boundary is larger than that observed experimentally [51].
Hence, while previous mean-�eld analysis found di�usion not be important for setting
up gene-expression patterns [131, 115], our analysis underscores the importance of
di�usion in reducing copy-number �uctuations. In addition, di�usion can anneal
patterning defects that might arise from the bistability induced by mutual repression.
Di�usion is, indeed, a potent mechanism for reducing the e�ect of �uctuations, such
that mean-�eld analyses can accurately describe mean expression pro�les.

Interestingly, the minimum boundary width at the optimal di�usion constant in
a system with mutual repression is not much lower than that in one without mutual
repression. Yet, in the latter case the boundary width is already approximately one
nuclear spacing, and there does not seem to be any need for reducing it further. How-
ever, with mutual repression, the same boundary width can be obtained at a lower
di�usion constant, where the steepness of the boundaries is much higher, approxi-
mately twice as high as that without mutual repression. Our results thus predict that
mutual repression allows for gap-gene expression boundaries that are both precise and
steep. In fact, the width and steepness of the boundaries as predicted by our model
are in accordance with values of these quantities measured experimentally [114].

Our observation that mutual repression increases the steepness of gene-expression
boundaries without signi�cantly raising the noise, makes the mechanism distinct from
other mechanisms for steepening gene expression boundaries, such as lowering di�u-
sion constants [122] or increasing the cooperativity of gene activation (see Fig. S5.5
in the appendix). These mechanisms typically involve a trade o� between steepness
and noise: lowering the di�usion constant or increasing the Hill coe�cient of gene
activation steepens the pro�les but also raises the noise in protein levels at the ex-
pression boundary. In fact, increasing the Hill coe�cient (without mutual repression)
decreases the precision of gene-expression boundaries. This is because increasing the
Hill coe�cient increases the width of the distribution of times during which the pro-
moter is o�, leading to larger promoter-state �uctuations and thereby to larger noise
in gene expression (see Fig. S5.4 in the appendix).
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Another important role of mutual repression as suggested by our simulations
is to bu�er against inter-embryonic variations in the morphogen levels. Houch-

mandzadeh et al. observed that in bcd overdosage experiments the Hb boundary
does not shift as far posteriorly as predicted by the French �ag model [52]. One pos-
sible explanation that has been put forward is that Bcd is inactivated in the posterior
half of the embryo via a co-repressor di�using from the posterior pole [137]. More
recently, it has been proposed that gap gene cross regulation underlies the resilience of
the gap-gene expression domains towards variations in the bcd gene dosage [116, 115].
Our analysis supports the latter hypothesis. In particular, our results show that when
the regions in which hb and kni are acitvated by their respective morphogens overlap,
the boundary positions are essentially insensitive to correlated variations in both mor-
phogen levels, and very robust against variations of the Bcd level only, with the latter
being in quantitative agreement with what has been observed experimentally [52].
Moreover, when this overlap is about 0-20% of the embryo length, mutual repression
confers robustness not only against inter-embryonic variations in morphogen levels,
but also intra-embryonic �uctuations such as those due to noise in gene expression.

Manu et al. found that in the kr ;kni double mutant, which lacks the mutual
repression between hb and kni/kr , the Hb midembryo boundary is about twice as
wide as that in the wild-type embryo [116]. This could be due to a reduced robust-
ness against embryo-to-embryo variations in morphogen levels, but it could also be
a consequence of a diminished robustness against intra-embryonic �uctuations. The
analysis of Manu et al. suggests the former [116, 115], and also our results are con-
sistent with this hypothesis. However, our results also support the latter scenario: for
D ≈ 0.3µm2/s, the Hb boundary width in the system without mutual repression is
about twice as large as that in the system with mutual repression (Fig. 5.5, middle).
Clearly, new experiments are needed to establish the importance of intra-embryonic
�uctuations versus inter-embryonic variations in gene expression boundaries.

To probe the relative magnitudes of intra- vs inter-embryonic variations, one ide-
ally would like to measure an ensemble of embryos as a function of time; one could
then measure the di�erent contributions to the noise in the quantity of interest follow-
ing Eq. (5.5). This, however, is not always possible; staining, e.g., typically impedes
performing measurements as a function of time. The question then becomes: if one
measures di�erent embryos at a given moment in time, are embryo-to-embryo vari-
ations in the mean boundary position or protein copy number (thus averaged over
the circumference) due to intra-embryonic �uctuations in time or due to systematic
embryo-to-embryo variations in e.g. the morphogen levels? Experiments performed
on di�erent embryos but at one time point cannot answer this question. Our analysis,
however, suggests that the intra-embryonic �uctuations in the mean copy number or
boundary position (i.e. averaged over φ) over time are very small, and that hence
embryo-to-embryo variations in the mean quantity of interest are really due to system-
atic embryo-to-embryo variations; these variations then correspond to σ2

〈G〉φ
or σ2

〈xt〉φ

in Eq. (5.5) or Eq. (5.6), respectively. The intra-embryonic �uctuations, 〈σ2
G〉e(x) or

〈σ2
xt
〉e(x), can then be measured by measuring the quantity of interest, G or xt, as a

function of φ, and averaging the resulting variance over all embryos. We expect that
these observations, in particular the critical one that intra-embryonic �uctuations in
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the mean quantity of interest are small, also hold for non-stationary systems, although
this warrants further investigation.

Our model does not include self-activation of the gap genes. Auto-activation
has been reported for hb, kr and gt , but there seems to be no evidence in case of
kni [152, 12]. The self-enhancement of gap genes has the potential to steepen and
sharpen expression domains even more by amplifying local patterns [153, 154]. Our
results suggest, however, that auto-activation is not necessary to reach the boundary
steepness and precision as observed experimentally.

Our results provide a new perspective on theWaddington picture of development
[155, 156]. Waddington argued that development is �canalized�, by which he meant
that cells di�erentiate into a well-de�ned state, despite variations and �uctuations
in the underlying biochemical processes. It has been argued that canalization is a
consequence of multistability [116, 115, 131], which is the idea that cells are driven
towards attractors, or basins of attraction in state space. To determine whether a
given system is multistable, it is common practice to perform a stability analysis at
the level of single cells or nuclei. Our results show that this approach should be
used with care: di�usion of proteins between cells or nuclei within the organism can
qualitatively change the energy landscape; speci�cally, a cell that is truly bistable
without di�usion might be monostable with di�usion. Indeed, our results highlight
that a stability analysis may have to be performed not at the single cell level, but
rather at the tissue level, taking the di�usion of proteins between cells into account.

Finally, while our results have shown that mutual repression can stabilize expres-
sion patterns of genes that are activated by morphogen gradients, one may wonder
whether it is meaningful to ask the converse question: do morphogen gradients en-
hance the stability of expression domains of genes that mutually repress each other?
This question presupposes that stable gene expression patterns can be generated with-
out morphogen gradients. Although it was shown that con�ned (though aberrant)
gap gene patterns form in the absence of Bcd [157, 158, 159] and that Hb can partly
substitute missing Bcd in anterior embryo patterning[160], it is not at all obvious
how precise domain positioning could succeed in such a scenario. In particular, one
might expect that with mutual repression only, thus without morphogen gradients,
there is no force that pins the expression boundaries. Our results for the large over-
lapping morphogen-activation domains, with A = 8, illustrate this problem: in the
overlap region, both hb and kni are essentially fully activated by their respective mor-
phogens, as a result of which the morphogen gradients cannot determine the positions
of the gap-gene boundaries within this region; indeed, mutual repression has to pin
the expression boundaries of hb and kni . Yet, our results show that in this case the
positions of the hb and kni expression boundaries exhibit large and slow �uctuations,
suggesting that mutual repression alone cannot pin expression boundaries. Interest-
ingly, however, with A = 4, the region in which both genes are activated is still quite
large, about 50% of the embryo, and yet even though the underlying energy landscape
is �at in this region, the interfaces do consistently move towards the middle of the
embryo, due to di�usive in�ux of Hb and Kni from the polar regions. It is tempt-
ing to speculate that mutual repression and di�usion can maintain stable expression
patterns, while morphogen gradients are needed to set these up, e.g. by breaking the
symmetry between possible patterns that can be formed with mutual repression only.
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5.4 Methods

In the following we describe details of our parameter choice and sampling technique.
To unravel the mechanisms by which mutual repression shapes gene-expression pat-
terns, it is useful to take the Cad-Kni-system to be a symmetric copy of the Bcd-Hb-
system. Cad thus inherits its parameters from Bcd and Kni from Hb, if not otherwise
stated. Table S5.1 in the appendix gives an overview of our standard parameter val-
ues. Data from experiments was used whenever possible. When it was unavailable
we made reasonable estimates.

Binding rates are di�usion limited

We assume all promoter binding rates to be di�usion limited and calculate them
via kX

on = 4παDX/V . Here α = 10 nm is the typical size of a binding site, DX is
the intranuclear di�usion constant of species X and V = 143.8 µm3 is the nuclear
volume. The precise values ofDX for the di�erent species in our system are not known.
Gregor et al. have shown experimentally that the nuclear concentration of Bcd is
in permanent and rapid dynamic equilibrium with the cytoplasm [30], suggesting
that nuclear and cytoplasmic di�usion constants can be taken for equal. They have
found DBcd ' 0.32 µm2/s by FRAP measurements. This value has been subject
to controversy because it is too low to establish the gradient before nuclear cycle
10 (' 90 min) by di�usion and degradation only, prompting alternative gradient
formation models [161, 162, 163, 164, 165, 166]. A more recent study revisited the
problem experimentally via FCS, yielding signi�cantly higher values for DBcd up to
10 µm2/s with a lower limit of 1 µm2/s [167]. We therefore have chosen a 10x higher
value of DBcd = DCad ≡ DA = 3.2 µm2/s as compared to the earlier choice in [122].
For simplicity, this value is taken for all binding reactions occuring in our model,
except for the dimerization reaction rate kD

on, which is taken to be higher by a factor
of 2 to account for the fact that both reaction partners di�use freely.

To model cooperative activation of hb and kni by their respective morphogens,
the morphogen-promoter dissociation rate is given by kA

off,n = a/bn/s, where n is the
number of morphogen molecules that are bound to the promoter; for our standard
cooperativity nmax = 5 the values of a = 410 and b = 6 have been chosen such that
the threshold concentration for promoter activation (in the absence of repression)
equals the observed average number of morphogen molecules at midembryo (when
A = 1, see below). nmax is varied in some simulations; we describe in appendix
section 5.C.1 how a and b are chosen in these cases. The promoter unbinding rate of
hb and kni (the repressor-promoter unbinding rate) kR

off is a parameter that we vary
systematically. To study the potential role of bistability we decided to set kR

off to a
value which ensures bistable behavior when both hb and kni are fully activated by
their respective morphogens (meaning that all �ve binding morphogen-binding sites
on the promoter are occupied). This requires tight repression, yielding dissociation
constants ∼ 10−2 nM (but see also below). The dimer dissociation rate is set to be
kD

off = kD
on/V , which is motivated by the choice for the toggle switch models studied

in [129, 130] and [60], and asserts that at any moment in time the majority of the
gap proteins is dimerized. This was found to be a precondition for bistability in the
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mean-�eld limit in previous studies [127, 129, 130].
The parameters of the exponential morphogen gradients are chosen such that the

number of morphogen molecules at midembryo and the decay length of the gradient
are close to the experimentally observed values for Bcd, 690 and λ = 119.5 µm,
respectively [51].

Production and degradation dynamics

The copy numbers of both monomers and dimers and the e�ective gap gene degrada-
tion rate µeff depend in a nontrivial manner on production, degradation and dimeriza-
tion rates. However, for constant production rate β, without di�usion and neglecting
promoter dynamics, an analytical estimate for the monomer and dimer copy numbers
can be obtained from steady state solutions of the rate equations (see appendix sec-
tion 5.A.2). Based on this we have made a choice for β and the monomeric (µM) and
dimeric (µD) decay rates that leads to reasonable copy numbers and µeff (see Table
S5.1 in the appendix). The latter is de�ned as the mean of µM and µD weighted
by the species fractions. µM and µD are set such that µeff ' 4.34 · 10−3 1/s, which
corresponds to an e�ective protein lifetime of ∼ 4 min. This is close to values used
earlier [137, 122] and allows for the rapid establishment of the protein pro�les ob-
served in experiments. The dimers have a substantially lower degradation rate than
monomers, which enhances bistability [168]. The lower decay rate of the dimers may
be attributed to a stabilizing e�ect of oligomerization (cooperative stability) [168].

Free parameters

One of the key parameters that we vary systematically is the internuclear gap gene
di�usion constant D, which de�nes a nuclear exchange rate kex = 4D/`2 (` = internu-
clear distance). To study the e�ect of embryo-to-embryo variations in the morphogen
levels, the latter are scaled globally by a dosage factor A. We considered two sce-
narios: scaling both gradients by the same A (�correlated variations�) or scaling the
Bcd gradient only (�uncorrelated variations�). To test how strongly the assumption
of strong repressor-promoter binding a�ects our results, we also varied the repressor-
promoter dissociation rate kR

off . Moreover, to study the dependence of our results on
the gap-gene copy numbers, we also increased the protein production rate β. These
simulations are much more computationally demanding; therefore we limited ourselves
to simulations with β = 2β0 and β = 4β0 where β0 is our baseline value. Finally we
also studied a system where both gap genes are activated by the same gradient (Bcd),
varying both the di�usion constant D and the Kni repressor o�-rate kR,Kni

off , while
keeping kR,Hb

off at the standard value.

Algorithmic details

All simulations are split into a relaxation and a measurement run. During the relax-
ation run we propagate the system towards the steady state without data collection.
To reach steady state, as a standard we run 1 · 109 − 3 · 109 Gillespie steps (ca.
2 · 105 − 7 · 105 updates per nucleus). The measurement run is performed with twice
the number of steps (2 · 109 − 6 · 109). The simulations are started from exponential
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morphogen gradients and step pro�les of the gap proteins; however, we veri�ed that
the �nal result was independent of the precise initial condition, and that the system
reached steady state after the equilibration run. The results for A = 4 (Fig. 5.8)
form, however, an exception: here it was impossible to obtain a reliable error bar,
because of the weak pinning force on the hb and kni expression boundaries.

In steady state, we record for each row of nuclei and with a measurement interval
of τm = 100 s the Hb boundary position xt, i.e. the position where H drops to half
of the average steady-state value measured at its plateau close to the anterior pole,
which in our simulations is equal to the maximum average total Hb level 〈H〉max.
From the corresponding histogram we obtain the boundary width ∆x by computing
the standard deviation. Additionally, after runtime we calculate an approximation for
∆x from the standard deviation of H divided by the slope of the averaged H pro�le,
both quantities taken at xt, see Eq. (5.1) [51, 20, 122]. Further details of boundary
measurement are described in appendix section 5.A.3.

Error bars for a given quantity are estimated from the standard deviation among
NB = 10 block averages (block length 6 · 108) divided by

√
NB − 1, following the

procedure described in [169]. We veri�ed that estimates with smaller and larger block
sizes yield similar estimates for a representative set of simulations.
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5.A Appendix: Details of parameter choice and mea-

surements

5.A.1 Number of cortical nuclei at cell cycle 14

The development of the Drosophila embryonic syncytium starts with a single nucleus.
The �rst 9 nuclear divisions happen in the yolk. During cell cycles 7 to 10 a mi-
gration of the nuclei towards the cortex can be observed. However, approximately
200 polyploid nuclei stay behind in the yolk and stop dividing after their 10th cycle
[139]. This quiescence persists during subsequent cell cycles, including cycle 14. As
an e�ect of this, the number of nuclei at the cortex in cycle 14 is considerably lower
than 213 = 8192. An estimate of the reduced number of cortical nuclei is given by:

Ncortex ' (29 − 200) · 24 = 4992 (S5.1)

This number indeed is closer to 212 than to 213. Note that in our model the pre-
cise number of nuclei does not matter, rather it is the distance between the nuclear
compartments and the di�usion correlation length that impact on the results. Our
values for both the internuclear distance and the nuclear diameter correspond to the
experimental values reported by Gregor et al. [51, 30].

5.A.2 Predicted copy numbers and e�ective protein lifetime

Our main observables are the total copy numbers of Hb and Kni, de�ned as follows:

H ≡ cmn,H = cmn,HM
+ 2cmn,HD

+ 2
5∑

j=0

cmn,K1
j

K ≡ cmn,K = cmn,KM
+ 2cmn,KD

+ 2
5∑

j=0

cmn,H1
j

(S5.2)

Here, for G ∈ {H,K}, cm
n,G1

j
= 1 if the promoter of species G is binding j morphogen

molecules and one (repressing) gap dimer; evidently, at any given moment in time
cm
n,G1

j
can be equal to one for only one j ∈ {0..5}.

The ratio between the number of monomeric and the number of dimeric proteins is
a nontrivial function of the monomer production rate, the monomer and dimer degra-
dation rates and the parameters that determine the dimerization and dedimerization
reactions. To obtain an estimate for the expected copy numbers of monomers and
dimers of gene g we solved the mean-�eld rate equations for a simpli�ed model which
comprises monomer production, (de)dimerization and monomer and dimer degrada-
tion only, i.e. in which promoter state �uctuations and di�usion are neglected, in
the steady state. We assume here that stochastic monomer production events can
be accounted for by an e�ective mean-�eld production rate 〈β〉 = β〈H0

5 〉 for Hb and
similarly for Kni, which depends on promoter (un)binding parameters and the par-
ticular morphogen and repressor levels. This yields the following prediction for the
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copy number of monomers (GM,〈β〉) and dimers (GD,〈β〉):

GM,〈β〉 =
1

4kD
onµD

{
2kD

onµD − kD
offµM − µMµD

+
√

8〈β〉kD
onµD

(
kD

off + µD

)
+
[
µM

(
kD

off + µD

)
− 2kD

onµD

]2}

GD,〈β〉 =
1

8kD
onµ

2
D

{
kD

offµ
2
M + µD

[
4〈β〉kD

on + µM

(
µM − 2kD

on

)]
− µM

√
8〈β〉kD

onµD

(
kD

off + µD

)
+
[
µM

(
kD

off + µD

)
− 2kD

onµD

]2}
(S5.3)

Here µM (µD) is the monomeric (dimeric) degradation rate and kD
on (kDoff) are the

dimerization forward (backward) rates, respectively. From this we calculate the total
expected copy number G〈β〉 := 2GD,〈β〉 +GM,〈β〉 at e�ective production rate 〈β〉. In
particular in the full-activation case, i.e. when the probability to be fully activated
and unrepressed 〈G0

5〉 ≈ 1 and therefore 〈β〉 ≈ β, the above estimates correspond to
average values from our simulations very well.

We de�ne the e�ective degradation as:

µeff = µeff(GM, GD) ≡ 1
GM + 2GD

(µMGM + 2µDGD) (S5.4)

Our standard values result in µeff ≈ 4.34 · 10−3/s with GM = GM,β and GD = GD,β .

5.A.3 Measurement of the boundary width

By default we determine the boundary width in the following two ways:
Let cmn,s be the copy number of species s in a nucleus with angular index m < Nφ

and axial index n < Nx, where Nφ is the number of rows around the circumference
of the cylinder, and Nx is the number of colums in the axial direction along the AP
axis. To compute the boundary width of the expression domain of a gap protein
s, we compute for each row m Tm

n,s = (cmn,s − θs) · (cmn+1,s − θs) as a function of n,
where θs is half the copy number expected at full activation. A boundary position
xm

t = xm(nt + 1
2 ) is de�ned as the position (nucleus) where Tm

nt,s < 0. The values of
xm

t are recorded in a histogram; here, the positions for the di�erent rows m are put in
the same histogram. The histogram is normalized at the end of the simulation, and
the boundary width ∆x is calculated as the standard deviation of this histogram.

Secondly, at the end of the simulation, the slope of the average, 〈H(xt)〉′, and the
standard deviation of the total Hb copy number σH(xt) at the Hb boundary position
xt are calculated from the time- and φ-averaged pro�les. From this, an approximation
for the boundary width given by ∆x ≈ σ(xt)

|〈H(xt)〉′| is obtained, following [20, 51, 122]. To
this end, �rst xt is determined in the same way as in the runtime measurements, only
now working on the (both time- and circumference-) averaged pro�le. We describe in
the following section how the steepness 〈H(xt)〉′ is measured.
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5.A.4 Measurement of the pro�le steepness

In our discrete system the measurement of a local derivative at the boundary posi-
tion xt is a process prone to even small stochastic variations if a naive measurement
technique is chosen. If the average boundary position xt for a set of di�erent samples
with identical initial conditions always is in between two particular nuclear posi-
tions x(n0) and x(n0 + 1), then using linear di�erences to determine the steepness
〈H(xt)〉′ at the boundary position may give a reasonable estimate. If, however, xt

�uctuates around a particular nuclear position x(n0) among di�erent samples and
〈H(x(n0 − 1))〉 − 〈H(x(n0))〉 signi�cantly di�ers from 〈H(x(n0))〉 − 〈H(x(n0 + 1))〉,
the linear di�erences method will produce a large error bar and also markedly a�ect
the mean of xt among these samples. As a result both the measured steepness and
the quality of that measurement for a given set of parameters depends on whether xt

accidently happens to predominantly vary in the interval between the same nuclear
positions or not. To overcome this illness we measure the boundary steepness from
the average protein pro�le by a two-step polynomial �tting procedure: First we �t
a polynomial of 3rd degree to a region of the data around xt that contains at least
four points (nuclei). The derivative of the polynomial at xt gives an initial estimate
of the boundary slope, which we use this to calculate the approximative x-interval
over which the pro�le falls from maximal to minimial expression level. If the latter is
larger than the original �tting range (which usually is the case) we repeat the �tting
on the enlarged interval. Since the pro�les to a good approximation are sigmoidal
functions this improves the quality of the �t. The measured boundary slope then is
de�ned as the derivative of the polynomial function at xt after the second �tting.
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5.B Appendix: Supplementary analysis

5.B.1 Poissonian limit with dimerization

In [122], it was shown that, when D →∞, the variance in the protein concentration
becomes equal to the mean concentration: di�usion washes out bursts in gene expres-
sion, thus reducing the non-Poissonian part of the noise. However, in that model the
proteins do not dimerize, in contrast to our model. With dimerization, a di�erent
limit for the variance in the total protein concentration is approached as D →∞. To
derive this limit, �rst note that the total protein copy number G of a protein G is
G ≈ 2GD +GM. Assuming that 〈GDGM〉 ≈ 〈GD〉〈GM〉 (our simulations indicate that
this approximation is very accurate), we �nd that the variance σ2

G in G is:

σ2
G ≈ 4σ2

GD
+ σ2

GM
, (S5.5)

where σ2
GD

is the variance in the dimer level GD and σ2
GM

is the variance in the
monomer level GM. Both monomers and dimers are subject to spatial averaging, and
therefore their variances can be written in the form [122]:

σ2
GM

= GM +
1
N

(
σ2

0,GM
−GM

)
σ2

GD
= GD +

1
N

(
σ2

0,GD
−GD

)
(S5.6)

Here N is the number of nuclei contributing to the averaging, which is proportional
to D, and σ2

0,GM/D
is the variance in the monomer and dimer levels in the absence of

di�usion, respectively. The part preceded by 1/N represents the variance that can be
reduced by spatial averaging. Plugging these expressions into the previous and using
G = 2GD +GM we arrive at:

σ2
G = 4GD +GM +

1
N

[
4σ2

0,GD
+ σ2

0,GM
− 4GD −GM

]
=
(

1 +
2GD

G

)
G+

1
N

[
σ2

0,G −
(

1 +
2GD

G

)
G

]
=: (1 + fD)G+

1
N

[
σ2

0,G − (1 + fD)G
]

(S5.7)

Note that N is the same for both monomers and dimers because their di�usion con-
stant does not di�er in our model. Evidently, the lower bound for σG in the limit
N → ∞ is not

√
G any more, but given by

√
(1 + fD)G, where fD is the fraction

of proteins in the dimer state with respect to the total protein number (implying
fD ≤ 1). This is indeed what we observe in our data for σG. In our simulations the
equilibrium is strongly shifted towards the dimerized state, so that fD ≈ 0.97. We
can understand the limit N,D → ∞ intuitively by noting that in this limit there is
no noise in the nuclear protein concentration due to the stochastic production and
decay of molecules in each of the nuclei�this is because the synthesized molecules
are immediately donated to a reservoir that is in�nitely large; instead, there is only
noise in the nuclear protein concentration due to the sampling of molecules from this
reservoir, which obeys Poissonian statistics: σ2

GM
= GM and σ2

GD
= GD. This yields,

for N,D →∞, σ2
G = 4σ2

GD
+ σ2

GM
= 4GD +GM = (1 + fD)G.
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5.B.2 Bifurcation analysis

In order to predict the regions in which bistability can be expected for di�erent
amplitudes A of the morphogen gradients we performed a deterministic mean-�eld
bifurcation analysis for a simpli�ed 1-dimensional version of our model of mutual
repression between hb and kni . The analysis is based on the following two equations
describing the change of the mean-�eld total copy number of Hb (H(x)) and Kni
(K(x)) at position x:

∂tH(x) = βH(x)
K2

R

K2
R + [fDK(x)]2

− µHH(x) (S5.8)

∂tK(x) = βK(x)
K2

R

K2
R + [fDH(x)]2

− µKK(x) (S5.9)

Here βH and βK represent the protein synthesis rates, µH and µK the corresponding
(e�ective) degradation rates, KR is the dissociation constant of cooperative repressor
binding to the promoter and fD is the fraction of proteins in the dimerized state.
Note that, since the intermediate step of dimerization is neglected here, we have to

take KR =
√
kRoff/k

R
on if kRon and kRoff are the binding rates of the dimers. To facilitate

calculations we make two further simplifying assumptions here:

1. We neglect activation dynamics and resulting promoter state �uctuations, i.e.
we assume that certain constant levels of the activators at position x lead to
average constant production rates βH = β([Bcd](x)) and βK = β([Cad](x)),
respectively. In our standard case β([Act](x)) = [Act]5(x)/([Act]5(x) + 6905)
for both [Act] = [Bcd] and [Act] = [Cad].

2. In our simulations we have di�erent degradation rates for monomers and dimers
so that the e�ective total degradation rate depends on the monomer-to-dimer
ratio, which in turn varies with the total copy number (see section 5.A.2). Thus,
in principle, also fD and µH and µK are functions of x, or the corresponding
activator levels. Since this introduces further nonlinearities into the above equa-
tions and complicates their solution, we substitute the degradation rates µH and
µK by a constant value µeff , which is the e�ective degradation rate for the maxi-
mal expression level (full activation). Also for fD we take the constant value for
full activation, fD ' 0.97, which re�ects that the dimerization equilibrium in
our simulations is strongly shifted towards the dimerized state. The predictions
concerning the bifurcation behavior only change marginally if µeff and fD values
for lower expression levels are used.

For each position x with local activator levels corresponding to the ones in the
simulations we calculated �xed point solutions for the copy number pair (H(x),K(x))
starting from the steady-state assumption ∂t(H(x),K(x)) = (0, 0). The stability of
the �xed points was determined starting from the Jacobian for the above ODE system:

J(H,K) =
(
∂H [∂tH] ∂K [∂tH]
∂H [∂tK] ∂K [∂tK]

)
(S5.10)
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Figure S5.1: Bifurcation analysis of a one dimensional mean-�eld model of mutu-
ally repressing gap genes activated by morphogen gradients. Plotted are the stable
(solid lines) and unstable (dashed lines) �xed points of the copy number of Hb (colored lines)
and Kni (grey lines) as a function of the AP position x as predicted by a bifurcation analysis
performed on a 1D mean-�eld model in which hb and kni are activated cooperatively by their
respective morphogens and mutually repressing each other. Di�erent colors correspond to
di�erent �xed points. The di�erent panels show the solutions for activator amplitudes (A)
A=1, (B) A=2, (C) A=4 and (D) A=8. All other parameters values are the standard values
from Table S5.1. Activator concentrations at position x used in the mean-�eld analysis corre-
spond to the ones in the 2D stochastic simulations. Away from midembryo each gap protein
level has only one stable �xed point and one of the two levels is always zero. For all A there
is a region around midembryo in which the protein levels have two stable and one unstable
�xed points, implying bistability. In this region the analysis predicts bistable switching be-
tween the high-Hb�low-Kni and the low-Hb�high-Kni state. For clarity we color-code the Hb
�xed points only. The Kni solutions are identical to the Hb solutions mirrored with respect
to midembryo.
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Within the relevant parameter regime we obtained �xed points with either two
negative eigenvalues (i.e. stable �xed points) or one positive and one negative eigen-
value (i.e. saddle points). The determinant therefore completely characterizes the
stability of the �xed points. If det J(H0,K0) < 0, then (H0,K0) is a saddle point.
Otherwise it is stable.

Fig. S5.1 shows the �xed point solutions for Hb and Kni as a function of x for
di�erent activator amplitudes A. Stable solutions are drawn with solid, unstable solu-
tions with dashed lines. Depending on the A value, the system displays a saddle node
bifurcation at a point towards the anterior (Hb) or posterior (Kni) from midembryo.
Within the region con�ned by the bifurcation points two stable and one unstable
�xed points exist for each gene, implying bistability. The region clearly widens for
increasing A and spans almost the whole embryo length for A = 8. Our deterministic
analysis therefore predicts the enlargement of the region of bistability as observed in
our single nucleus simulations.

5.B.3 Estimation of switching times

To quantify the swiching times in the presence of bistability we performed simulations
of isolated single nuclei featuring the same set of reactions and parameters as in the
full scale simulation. To obtain estimates of switching times at di�erent positions x
along the AP axis we set the levels of Bcd and Cad in the given nucleus equal to
the ones at x in the space-resolved simulations. The switching time was estimated
by calculating from long time trajectories of the total Hb and Kni copy numbers the
relaxation time ts of the average correlation function

〈C(t)〉t0 ≡
〈IH(t0)IK(t)〉t0
〈IH(t0)〉t0

(S5.11)

where IH (IK) are indicator functions which are one if the di�erence in the total gap
gene copy numbers ∆N = H−K is above (below) a certain threshold ΘN (−ΘN). ΘN

thus de�nes the regions within which the switch is considered to have switched to the
Hb�high or Kni�high states, respectively, and serves to separate the stable attractor
states from the transition region. We found that ΘN = 200 is a reasonable choice for
our set of parameters.

We determined the switching times from one long sample for di�erent positions x
and di�erent activator amplitudes A and �nd that ts is very similar within the double-
activated bistable regions for high A. To obtain an error estimate we additionally
calculated block averages of estimated switching times among 10 long samples for
various A at midembryo (x = L/2). Table S5.2 shows our results from the latter
procedure.

Note that for A = 1 the system is not truly bistable yet because for A = 1 we
have half-activation at midembryo and due to the lack of di�usion large promoter-
state �uctuations dominate over long-time switching potentially induced by mutual
repression. Consequently, the given number does not re�ect a switching time. We
cite it here for completeness, however.
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Activator amplitude A Switching time ts[s]
(1) (6343.7 ± 17.2)
2 20302.5 ± 74.5
4 20957.3 ± 54.9
8 20994.7 ± 67.2

Table S5.2: Switching times at midembryo for di�erent activator levels.

5.B.4 Analysis of statistical properties of the boundary

Our measures for both the boundary steepness and the variance of the boundary
position are based on averages over both the time and the circumference of the em-
bryo which were calculated during runtime. While the double-averaging procedure
limits the amount of data that must be stored and facilitates rapid acquisition of
good statistics, it also discards information about the microscopic properties of the
boundary at a given time instance. Based on the average data it is impossible to
determine whether the blurring of the boundary quanti�ed by ∆x is due to concerted
stochastic movements of a steep and rather homogeneous instantaneous boundary or
simply due to stochastic �uctuations of the boundary position in each nuclear row
around a well-de�ned constant mean boundary position (or due to both). In the latter
case the boundary will be rough at each given time instance, i.e. the time average of
the boundary position variance in the cicumferential direction will be large, but the
time variance of its circumferential mean will be negligible. The opposite will be the
case in the other extreme. These quantities therefore can be used to distinguish the
two hypothetical situations. The overall boundary width in both cases is given by the
sum:

∆x2 = σ2
xt(φ) + σ2

〈xt〉φ(t) (S5.12)

Here 〈. . . 〉φ denotes the average over the circumference, while the bar denotes the
time average. An identical variance decomposition can be made for the �uctuations
of the Hb copy number at any position x along the AP axis. Similarly, comparing the
average of the pro�le steepness for a particular nuclear row and time instance to the
steepness of the time- and circumference average of the copy number reveals whether
the steepness of the average pro�le is due to concerted movements of similarly shal-
low instantaneous pro�les or due to unconcerted �uctuations of steep instantaneous
pro�les.

In order to determine which of the portrayed blurring mechanisms is dominant
in our system we performed the described variance decomposition for a set of 100
instantaneous outputs of the fully resolved 2D system in steady state, i.e. for 6400
di�erent total Hb copy number pro�les along the AP axis, for both the variances at
the boundary and for the steepness at the boundary and for both the system with
and without mutual repression. We focused on our standard parameter set (see Table
S5.1) and a range of gap protein di�usion constants D.
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At each time instance the boundary is rather rough

Fig. S5.2 shows for the systems with (Fig. S5.2A and C) and without (Fig. S5.2B
and D) mutual repression the variance decomposition for the variance of the Hb copy
number at the boundary (Fig. S5.2A and B) and for the variance of the boundary
position xt (Fig. S5.2C and D) as a function of the Hb protein di�usion constant
D. As a control we compare the total variances calculated from the instantaneous
pro�les to the variances accumulated during runtime and, in case of ∆x, to the value
obtained from the approximation ∆x = σH(xt)/|〈H(xt)〉′| (note that here 〈. . . 〉 is the
average over both time and φ). We see a good agreement between these quantities.
The plots reveal that both for σH(xt) and ∆x the variance over the circumference at
a �xed time is by far the dominant contribution to the overall variance. This implies
that in our system the boundary is indeed very rough at each time point and that
concerted boundary movements do not occur.

At each time instance the pro�les are slightly steeper than their average

The calculation of the variance decomposition is less straightforward for the slope.
In particular for low D, when spatial averaging is still ine�cient, the instantaneous
pro�les are very ragged and the boundary threshold value typically is crossed at
multiple positions along the AP axis. This makes it impossible to uniquely de�ne an
instantaneous boundary position as required to calculate the instantaneous boundary
slope. In order to perform the analysis at least on a subset of the data we introduced a
protocol which only takes into account instantaneous pro�les with a single boundary
crossing, rejecting all other pro�les. For low D, however, the rejection rates rise
above 90%. We therefore decided to smoothen the pro�les by computing running
averages between a �xed number ν of nuclei along the AP axis before the analysis.
The averaging lowers the rejection rate dramatically, however it also decreases the
pro�le steepness and therefore manipulates the observable of interest. Nevertheless
we can make a qualitative statement on the base of the results obtained for only
slight smoothening of the pro�les (ν = 3). For simplicity and due to increased data
abundance, in this analysis we used simple �nite di�erences to determine the slope.

In Fig. S5.3 we plot the average of the instantaneous boundary steepness for
di�erent degrees of smoothening (averaging over ν = 3, 5, 7 nuclei along the x-axis) as
a function of D and compare to the steepness of the average Hb pro�le for the system
with (S5.3A) and without (S5.3B) mutual repression. While the data for ν > 3 clearly
must be considered biased by the running averages, the values for ν = 3 show that
the instantaneous boundary slope on average is higher than the slope of the average
pro�le, in particular for low di�usion constants.

The variance decomposition for the boundary position xt shows that the variance
of the circumference mean of the boundary position in time is very small. This implies
that the steepness of the circumference-averaged pro�les should be approximately
equal to the steepness of the time- and circumference-averaged pro�le. As a control
we therefore repeated the above analysis on the 100 φ-averaged instantaneous pro�les
of the same dataset. The averaging along the circumference signi�cantly reduces the
number of pro�les with ambiguous boundary positions. We therefore were able to
obtain reasonable estimates of the observable without pre-smoothening of the pro�les
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Figure S5.2: Decomposition of variances at the boundary. (A) Decomposition of the
total Hb copy number variance at the average boundary position for the system with mutual
repression as a function of the gap protein di�usion constant D. Plotted are: σ2

H(xt) the
total (time- and circumference-) variance measured during runtime (RT, black), the same
quantitity determined from a set of 6400 instantaneous pro�les (IP, red, 64 AP rows at 100
di�erent time points), σ2

〈H〉φ
the variance in time of the circumference average of H(xt, φ)

(green) and σ2
H the time average of the variance of H(xt, φ) over the circumference (blue).

(B) The same as (A) for the system without mutual repression. (C) The same variance
decomposition as in (A) for the Hb boundary position xt instead of the copy number. The
black line shows the ∆x values measured as the standard deviation of the boundary position
histogram accumulated during runtime (RT), the grey dashed line the corresponding values
determined from the approximation σH(xt)/|〈H(xt)〉′|. (D) The same as in (C) for the system
without mutual repression. In both cases, the main contribution to the total boundary
variance σ2

xt comes from σ2
xt , implying that the blurring of the boundary is rather due to

roughness than due to concerted boundary movements.

(ν = 1). The results are shown in Fig. S5.3C for the system with mutual repression
and Fig. S5.3D for the system without mutual repression. In the system with mutual
repression the average slope of the φ-averaged pro�les for ν = 1 agrees well with the
slope of the both time- and φ-averaged Hb pro�le. In the system without mutual
repression the φ-averaged pro�les are slightly steeper than the average.
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Figure S5.3: Microscopic properties of the boundary steepness. Panels (A) and (B)
compare for di�erent gap protein di�usion constants D the average Hb pro�le steepness at
the boundary measured in a set of 6400 instantaneous pro�les (64 AP rows at 100 di�erent
time points) to the steepness of the (time- and circumference-) average of the Hb pro�le
(|〈H(xt)〉′|, black) for di�erent numbers ν of neighboring data points used in calculating
running averages over the instantaneous pro�les for the system with (A) and without (B)
mutual repression. Although for increasing ν the instantaneous pro�les become less steep as
a consequence of the smoothening, the values for ν = 3 indicate that the pro�les at a given
row and time instance are slightly steeper than the average pro�le. In panels (C) and (D)
we show results of the same analysis performed on the 100 circumference-averages of the
instantaneous pro�les, again for the system with (C) and without (D) mutual repression.
Here ν = 1 is the data obtained without calculating running averages (magenta). In both
systems the steepness of the φ-averaged pro�les agrees reasonably well with the steepness of
the average pro�le |〈H(xt)〉′|.
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5.C Appendix: Supplementary simulations

5.C.1 In�uence of the Hill coe�cient

To address the in�uence of changing activator cooperativity on our results we per-
formed simulations with reduced number of activator binding sites nmax. While in our
model this is achieved by simply reducing the number of intermediate states between
the empty promoter state and the producing promoter state, the binding parameters
have to be rescaled with care to preserve the activation equilibrium at midembryo.
Since we assume the activator binding rates to be di�usion limited, the necessary
changes a�ect the unbinding rates kA

off,n = a/bn. However, even when preserving the
equilibrium, the freedom in the choice of these parameters allows for altering the time
scale of transitions between the di�erent activation levels. In order to rescale the rates
in a unique fashion upon lowering nmax we imposed the following constraints:

1. For all nmax the e�ective activator dissociation constant at midembryo KA
D =

A1/2 = 690 is preserved, which implies that for all nmax the average activation
probability at midembryo is 1/2.

2. The waiting-time distribution for the unbinding from the producing state is
the same for all nmax and, for comparison, equal to the one for the default
cooperativity nmax = 5, i.e. ∀n : kA

off,nmax
= const = kA

off,5.

3. The o�-rate reduction per subsequent activator binding is always 1/b, i.e. ∀n :
b(n) = b.

Note that for nmax = 1 the �rst two conditions can be met together only if
KA

Dk
A
on = kA

off,5, which is not the case for our parameter set. We therefore restricted
ourselves to nmax ∈ {2, 3, 4, 5}. For each nmax, the above constraints were used to
uniquely determine the parameters a and b from the exact analytical solution for
the average occupancy of the producing state, which was obtained from steady-state
mean-�eld solutions of the chemical mass-action ODEs. Interestingly this results
in only minor di�erences in a among the di�erent nmax values, while the reduction
per binding step 1/bnmax becomes signi�cantly larger for lower nmax. This fact has
an important implication for the noise charactistics of the di�erent promoters: If
anmax ' a = const for all nmax then the unbinding rate from the state binding
(nmax − 1) activator proteins (the �highest� non-producing activator state) is given
by:

kA
off,(nmax−1) ' a/b

(nmax−1)
nmax

= bnmaxk
A
off,5 (S5.13)

Since bnmax markedly increases with decreasing Hill coe�cient the unbinding rate
kA

off,(nmax−1) for low nmax will be higher than the corresponding rate for high nmax.
This will favor rapid returns to the producing state with nmax bound activator
molecules for high Hill coe�cients, whereas for low Hill coe�cients the promoter
is more likely to descent into the regime with less activator molecules bound. The
fact that this is less likely for higher Hill coe�cients is compensated by the fact that
also the time to return to the producing state from the states binding low numbers
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Figure S5.4: On- and o�-times distributions of the hb promoter for di�erent Hill
coe�cients nmax in a nucleus at midembryo. The panels show normalized histograms
of the times spent in the producing (n = nmax) promoter state (�ON�, green) and of the
times spent in the non-producing (n < nmax) states (�OFF�, red) for (A) nmax = 2, (B)
nmax = 3, (C) nmax = 4 and (D) nmax = 5 (standard case). It can be seen that with
increasing Hill coe�cient nmax the o�-times distribution changes from an exponential to a
non-exponential distribution with high weight on very short o�-times (implying fast returns
to the producing state) and a with a long tail of long o�-times. Since the o�-rate from the
producing state is kept the same for all nmax the on-times distributions remain unaltered.
The on- and o�-times have been determined from long time trajectories (ttotal = 105 s) of
the occupancy of the producing state with a sampling resolution of 0.5 s.

of activator molecules on average is longer for higher nmax. Note that the mean o�-
time�just as the mean on-time�is the same for all nmax. In short, for the promoters
with higher Hill coe�cients we expect an o�-time distribution with high probability
weight on short o�-times and a long low-probability tail for long o�-times, while the
distribution for lower Hill coe�cients should resemble an exponential.

In order to illustrate this e�ect we recorded long time-trajectories of the occupancy
of the producing state in a single isolated nucleus close to midembryo for di�erent
nmax and without mutual repression nor di�usion. All other parameters were kept
at the standard values. From these trajectories we determined the on- and o�-times
of the promoter and binned them into a histogram. The results are shown in Fig.
S5.4. It can be seen that while for nmax = 2 the two distributions are exponential
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with approximately equal mean, the o�-times distribution increasingly deviates from
an exponential distribution as nmax is increased; more probability is shifted to very
short o�-times and very long o�-times, causing the emergence of a long tail in the
distribution.

Also for lower Hill coe�cients mutual repression steepens pro�les without
corrupting boundary precision

The broadening of the o�-times distribution is expected to result in higher output
noise for high nmax as compared to low nmax. This is con�rmed by the simulations of
the full-scale spatially resolved system for di�erent nmax. Fig. S5.5 shows σH(xt), the
average standard deviation of the total Hb copy number at the boundary position xt

(upper panels), the steepness |〈H(xt)〉′| of the average Hb pro�le at xt (middle panels)
and the boundary width ∆x (lower panels) as a function of the gap protein di�usion
constant D for nmax ∈ {2, 3, 4, 5}. σH(xt) is indeed decreasing upon lowering nmax, in
particular in the regime of low di�usion constants. For higher di�usion constants the
decrease is less pronounced: spatial averaging is e�cient enough to lower the output
noise down to the observed values irrespective of the width of the o�-time distribution.
The noise decreases less markedly for the systems with mutual repression. This is most
likely due to the fact that lowering nmax also increases the probability of occasional
repressor production beyond midembryo, which in turn increases the noise. The
steepness plots reveal that, although the pro�les naturally become less steep for lower
nmax, the steepness in the systems with mutual repression is markedly higher than
the one in the system without mutual repression. In all systems the steepness as a
function of D shows a very similar behavior: Upon increasing D the steepness in the
systems with mutual repression �rst increases towards a maximum before it rapidly
decreases. Since both σH(xt) and |〈H(xt)〉′| change with nmax in a similar fashion,
in particular in the region around D = 1 µm2/s, the width ∆x as a function of D
also looks very similar in this region for all nmax. In all cases the pro�les in the
system with mutual repression are more precise and markedly steeper as compared to
the system without mutual repression at a D-value which is one order of magnitude
less than the optimal value in the systems without mutual repression. Therefore the
basic e�ect observed for nmax = 5 also is observed in the simulations for lower Hill
coe�cients.

Figure S5.5: Boundary characteristics for reduced Hill coe�cients nmax. The
standard deviation of the total Hb copy number at the boundary (σH(xt), upper panels),
the gradient of the average Hb total copy number gradient at the boundary (|〈H(xt)〉′|,
middle panels) and the boundary width (∆x, lower panels) as a function of the gap protein
di�usion constant D for the systems with (green) and without (red) mutual repression and
Hill coe�cients (A) nmax = 2, (B) nmax = 3, (C) nmax = 4 and (D) nmax = 5 (standard case).
Grey dashed lines are values determined from the approximation ∆x = σH(xt)/|〈H(xt)〉′|,
solid lines are values calculated from the distributions of xt. Broad dashed lines are the
values for D = 0. Black dotted lines mark the D-value where the boundaries are both steep
and precise due to mutual repression. −→
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Lower Hill coe�cients allow for stronger morphogen level variations

Although lowering nmax in our system reduces the protein production noise it also
markedly decreases the steepness of the gene activation pro�les. An important im-
plication of this is that for lower nmax the activation probability beyond midembryo
increases. Lowering nmax thus is similar to increasing the activator amplitude A and,
in principle, might result in the creation of a bistable region around midembryo al-
ready for lower A-values as compared to the system with nmax = 5. We analysed how
the results for ∆x as a function of A for the case of correlated variations change as
nmax is decreased. Fig. S5.6 shows ∆x(A) for nmax ∈ {2, 3, 4, 5} and D = 1.0 µm2/s
for systems with and without mutual repression. Overall, ∆x(A) is very similar for
all considered nmax. For A ≤ 2 the width ∆x in the systems with mutual repression
is always lower than in the systems without mutual repression. The minimal ∆x is
attained at A = 1 in all cases. The main di�erence is in how ∆x changes with A for
A > 1: The lower nmax, the slower the width increases with A. Thus, while lower Hill
coe�cients decrease the steepness of the pro�les signi�cantly, they may prove bene-
�cial by extending the range over which extrinsic variations are successfully bu�ered
without increasing intrinsic �uctuations of the boundary.
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Figure S5.6: The e�ect of changing the activator amplitude A on the boundary
precision for reduced Hill coe�cients nmax. Shown are the the boundary width ∆x
with (green) and without (red) mutual repression as a function of ∆xA, the separation
between the Hb and Kni boundaries expected in the system without mutual repression, and
the corresponding activator amplitude A for Hill coe�cients (A) nmax = 2, (B) nmax = 3,
(C) nmax = 4 and (D) nmax = 5 (standard case). In all cases D = 1.0 µm2/s.
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5.C.2 In�uence of the expression level

In order to examine the in�uence of a changed signal-to-noise ratio on our results
we performed simulations with altered production dynamics. We did this by (1) by
changing the production rate β (keeping the standard production burst size of one)
and (2) introducing bursty production, i.e. producing 10 copies of the gap protein
monomer at a time with a 10 times lower production rate (β = β0/10). To preserve
the binding equilibrium of the repression reaction at midembryo upon changing β we
also changed the o�-rate of the repressor dimers by a factor fD

β , which is the ratio
between the expected number of dimers at midembryo for the altered production
rate β and the corresponding value for the standard production rate β0. Note that,
since in our system the copy numbers of both monomers and dimers depend on β in
a nontrivial fashion (see section 5.A.2) the e�ective copy number increase typically
does not correspond to the ratio β/β0. Therefore fD

β > β/β0 for β > β0.

Increased production rates reveal di�erent noise scaling behavior for dif-
ferent regimes of the di�usion constant

Upon increasing the production rate and consequently the total copy number of the
gap proteins we may expect a relative decrease in the output noise, but only if the
latter is purely Poissonian. In our system this corresponds to the limit of high gap
protein di�usion constants. In that limit, we expect σG ∝

√
G, where σG is the

noise in the total gap gene copy number G. However, in the abscence of spatial
averaging, i.e. for the limit D → 0, non-Poissonian noise prevails and the expected
scaling is σG ∝ G [122]. If the copy number pro�le is scaled uniformly at each AP
position x, which�to a good approximation�is the case in our system, we expect for
the scaling of the gradient at midembryo G′(xt) ∝ G(xt). The expected scaling for
the boundary width ∆x then is ∆x ∝ 1 for low di�usion constants and ∆x ∝ 1/

√
G

for high D. While the overall characteristics of the boundary are very similar to the
system with β = β0, a comparison roughly con�rms the predicted scaling. Fig. S5.7
compares for Hb the standard deviation of the total copy number at the boundary
(S5.7A), the steepness at the boundary (S5.7B) and the resulting boundary width
(S5.7C) as a function of D for increased production rates β = 2β0 and β = 4β0 to the
corresponding values for the sytem with production rate β/2. Thus, the values for
β = 4β0 are compared to β = 2β0 and the values for β = 2β0 are compared to β0. Blue
lines mark the expected change of the quantities as predicted by the scaling relations,
where the corresponding copy number increase is given by the factor f2 ≡ f2β0 = 2.22
and f4 ≡ f4β0/f2β0 = 2.16. Here fβ ' fD

β is the predicted total copy number at
midembryo divided by the corresponding value for β = β0.

The plots show that while the slope ratio is roughly equal to f2 (f4) for all D
both in the system with (green) and without (red) mutual repression, the noise ratio
depends on the di�usion constant and also slightly di�ers for the systems with and
without mutual repression. Nevertheless the predicted scaling behavior is con�rmed
in both cases: in the low di�usion constant regime the noise ratio is roughly f2 (f4)
and approaches

√
f2 (
√
f4) as D increases; together this leads to a boundary width

ratio of one for low D which decreases towards 1/
√
f2 (1/

√
f4) for higher D.
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Bursty production has only a marginal in�uence on the boundary proper-
ties

In Fig. S5.8 we plot the standard deviation of the total Hb copy number at the
boundary, the steepness of the total Hb copy number pro�le at the boundary and the
boundary width ∆x as a function of D for the system with bursty production (burst
size 10). There is no signi�cant di�erence as compared to the system with normal
production (burst size 1, compare to Fig. S5.5(D) or Fig. 5.4 in the main text). For
low D the production noise is marginally higher with bursty production, resulting
in a slight increase of ∆x in this regime; the e�ect of varying D, however, is much
more important. This is most likely a consequence of the fact that for the given Hill
coe�cient nmax = 5 promoter state �uctuations are already at a high level due to a
very broad o�-time distribution (see section 5.C.1).

Figure S5.7: The e�ect of increased copy number on the Hb boundary precision.
Shown are the value ratios of important boundary properties for production rates β > β0

as compared to β/2 for (A) the total Hb copy number noise σH(xt) at the boundary, (B)
the steepness of the average Hb pro�le at xt, and (C) the resulting width ∆x with (green)
and without (red) mutual repression. Solid lines are for β = 2β0, dashed lines for β = 4β0.
Blue lines depict the ratios as predicted from the expected scaling behavior for the limits
of D → 0 (upper line pairs) and D −→ ∞ (lower line pairs). The steepness is expected
to scale precisely with the increased copy number in both limits. Note that the expected
factor of copy number increase upon doubling β is not precisely two because of the nontrivial
dependence of the monomer-dimer equilibrium on the production rate. −→
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Figure S5.8: The e�ect of bursty gap protein production on the Hb boundary
precision. The plot shows σH(xt) the standard deviation of the total Hb copy number at
the boundary, the steepness |〈H(xt)〉′| of the average total Hb copy number pro�le at the
boundary and the boundary width ∆x with (green) and without (red) mutual repression as
a function of the gap protein di�usion constant D for a system in which the gap proteins
are produced in bursts of 10 at a time with decreased production rate β = β0/10. The grey
dashed lines are the values obtained from the approximation ∆x = σH(xt)/|〈H(xt)〉′|. Thick
dashed lines are values for D = 0. Error bars were obtained from block averages over 10
independent samples. The black dotted line marks the D-value where the boundary is both
steep and precise due to mutual repression.
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5.C.3 Activation of both gap genes by a single gradient

In the one-morphogen gradient scenario, both hb and kni are activated by the Bcd
gradient. Here, kni is activated in the same way as hb, namely by 5-step cooperative
binding, but with a lower activation threshold. This results in the induction of both
genes in the anterior half of the embryo up to the posterior Hb boundary and of kni
in an additional region posterior to the Hb boundary. Given that hb represses kni
more strongly than vice versa in the double-activated bistable region, this parameter
choice will result in the formation of two neighboring domains. We chose the kni
activation threshold to be lower by a factor of 1/2, which causes an o�set of its
half-activation point by approximately 10 nuclei (83 µm) towards the posterior. We
varied the protein di�usion coe�cient D and kR,K

off , the o�-rate of the Kni repressor
dimers from the hb promoter. The rate for dissociation of the Hb dimers from the kni
promoter was kept at the standard value kR,H

off = 5.27 · 10−3/s in all simulations.

The di�usion constant D of the gap proteins and the dissociation rate kR,K
off of

Kni from the hb promoter are indeed key parameters. On the one hand, hb must
repress kni more strongly than the other way around, because otherwise there will
be only one kni domain. On the other hand, when kR,K

off is high, then kni is only
signi�cantly expressed when D is low, because kni represses hb more weakly than
vice versa, which means that low amounts of invading Hb dimers are su�cient to
shut o� Kni production almost completely; indeed, in this regime, kni has hardly any
e�ect on the precision of the hb expression domain. We found that when kR,H

off /kR,K
off

is roughly between 0.1 and 1, both hb and kni domains are formed robustly. In Fig.
S5.9 we display the case for kR,H

off /kR,K
off = 1/

√
10 ≈ 1/3.

Fig. S5.9A shows that the maximum of the average Kni copy number is lower
than that of Hb, even though for x < 60 %EL kni is essentially fully activated by
Bcd (Fig. S5.9B). The lower maximum is due to the fact that hb represses kni more
strongly than vice versa. Another point worthy of note is that the �uctuations in the
Kni copy number in the Kni domain are higher than those of Hb in the Hb domain
(Fig. S5.9C). This is essentially due to the small width of the Kni domain: kni is
either fully activated by Bcd yet still repressed by Hb or not repressed by Hb yet
stochastically activated by Bcd.

Panels D-F show, respectively, the noise in the Hb copy number at the hb ex-
pression boundary, the steepness of this boundary, and the width of this boundary,
as a function of the di�usion constant D of the gap proteins. It is seen that the
results are highly similar to those of the two-gradient motif. The noise in the Hb
copy number at the boundary is not much a�ected by mutual repression (panel D),
while the steepness, and consequently boundary precision, is markedly enhanced by
mutual repression, especially when the di�usion constant is small. Note that while for
the two-morphogen gradient scenario the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′| is
in very reasonable agreement with ∆x as measured from the distribution of threshold
crossings p(x), here the agreement is much less. This is due to sporadic repression
events in the anterior region where hb and kni are both fully activated, which leads
to a long tail of p(x) extending towards the anterior pole; while p(x) in the tail is
small, the fact that the tail is long does markedly increase the standard deviation ∆x.
Given that the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′| works so well for all the other
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cases, we consider this approximation, which does not su�er from sporadic but strong
hb repression events in the anterior, to be more reliable. We therefore conclude that
also in the one-morphogen gradient scenario, mutual repression can enhance both the
steepness and the precision of gene-expression boundaries.

Figure S5.9: The e�ect of mutual repression in a system where both hb and kni

are activated by the Bcd gradient. (A) Time- and circumference-averaged Hb (〈H〉,
solid lines) and Kni (〈K〉, dashed lines) total copy-number pro�les along the AP-axis for
various Hb and Kni di�usion constants D. (B) AP pro�les of the average standard deviation
of the total gap gene copy number for Hb (σH, solid lines) and Kni (σK, dashed lines).
Note that the noise in K in the Kni domain is larger than that in H in the Hb domain.
(C) AP pro�les of the probabilities 〈H0

5 〉 + 〈H1
5 〉 and 〈K0

5 〉 + 〈K1
5 〉 that the hb (solid lines)

and kni (dashed lines) promoters have 5 Bcd molecules bound to them, respectively; in the
absence of mutual repression between hb and kni , these pro�les would directly determine
the expression of hb and kni . (D) The noise in the Hb copy number at the hb expression
boundary as a function of the Hb and Kni di�usion constant D. (E) The steepness of the
hb expression boundary as a function of the di�usion constant of the gap proteins. (F) The
width ∆x of the hb expression boundary as a function of the Hb and Kni di�usion constant.
The grey line corresponds to the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′|, which we consider
to be more reliable than ∆x as measured from the distribution of threshold crossings, p(x);
the latter su�ers from sporadic but strong suppression events of hb by kni in the anterior,
which leads to a long tail of p(x), increasing ∆x. It is seen that while mutual repression has
hardly any e�ect on the noise in the copy number at the boundary, it does markedly enhance
the steepness of the boundary, and thereby its precision. The ratio of the Hb�kni-promoter
dissociation rate over the Kni�hb-promoter dissociation rate is kR,H

off /kR,K
off = 1/3. −→
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Chapter 6

Robust gap gene patterns

without morphogen gradients

6.1 Introduction

In embryogenesis, the stability of gene expression patterns is critical for correct
development. In many developing organisms, stable patterns are established and
maintained under the control of a single master regulator, whose spatial concentra-
tion pro�le results from production at a localized source, di�usion and degradation
[171, 172, 173, 174]. However, reaction-di�usion systems of several interacting species
o�er an alternative strategy for robust developmental patterning [19, 175].

The embryo of the fruit �y Drosophila melanogaster is a paradigm of spatial
patterning in embryogenesis. In its anterior half, the gradient of the morphogen Bicoid
(Bcd) provides positional information [176, 109, 110, 177, 178, 179], and activates
downstream gap genes which form stripes along the embryo cortex [166, 30, 180,
12]. The stability and precision of morphogen-controlled gap gene patterns has
been extensively studied both in experiments [181, 147, 116, 114, 51, 113, 52] and
theoretically [182, 183, 170, 184, 185, 151, 122, 123, 115, 186, 20, 137] in recent years.
There is, however, increasing evidence suggesting that Bcd is not the main regulator of
downstream targets in the posterior half of the embryo. For instance, gap gene stripes
form in mutants with perturbed or knocked out bcd [146, 187, 188, 158, 177], and the
same holds for embryos with knocked-out maternal genes that form posterior gradients
[157]. In other species which lack bcd , well-ordered gap gene patterns similar to the
ones seen in Drosophila emerge [189, 190, 191, 192, 193]. Moreover, in Drosophila the
Bcd gradient is seen to disappear towards the end of developmental cycle 14, while
fully-developed gap gene patterns remain intact [147].

An intriguing observation is that gap genes interact via mutual repression [112,
194, 124, 195, 196, 197, 158, 152, 111], with a peculiar feature of weak nearest-neighbor
(NN) and strong next-nearest neighbor (NNN) repression [116, 115, 114, 113, 112, 12].
It has been suggested that alternating repression leads to stripe patterns which scale
with embryo size [117]. Here we address the general question whether gap gene

155
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patterns subject to gene expression noise can be maintained with high stability and
precision in a self-organized way, purely by mutual repression of gap genes, i.e. in the
absence of a master regulator.

Within this context, stability of an expression pattern can have two di�erent
meanings: In the Waddington picture [155, 156, 198], development is seen as a
succession of metastable states of gene expression. Taking this idea seriously, gene
expression patterns in the developing Drosophila embryo would be true metastable
states of the underlying dynamics, that is, basins of attraction in an �energy� land-
scape [115, 116, 199, 200, 201, 202, 203, 130, 204]. In such a scenario the breakdown
of an established pattern is an activated process driven by intrinsic �uctuations in the
system, and metastable states are separated by barriers that impose restoring forces
on escaping trajectories. Alternatively, gene expression patterns may be stable over
the required period of developmental time purely due to slow dynamics, without the
need of restoring forces towards a metastable patterned state. An eventual break-
down of the pattern is not detrimental since by that time, downstream patterning
mechanisms have taken control.

To address these questions we constructed a stochastic model for the pattern of
the gap genes Hunchback (hb), Krüppel (kr), Knirps (kni) and Giant (gt) in the pos-
terior half of the early Drosophila embryo. These genes repress each other mutually
according to the experimentally observed pattern of alternating repression strength.
We compared a setup in which Hb expression is pinned (i.e. not repressed) at the
system boundaries to a system without Hb pinning. Pinning is motivated by the fact
that the hb expression level at mid-embryo is strongly dictated by its activator Bcd
[176, 52, 30], while in the posterior a second enhancer puts hb under activating control
of the tightly localized protein Tailless (Tll) [205]. In this picture Bcd acts by setting
boundary conditions for the pattern, rather than directly controlling expression of
each gene, as would be the case in a purely threshold-based patterning mechanism.
We conducted stochastic simulations of the pattern dynamics starting from a well-
established stripe order, representing the posterior gap gene pattern in developmental
cycle 14, and measured the time until pattern breakdown. Initial results demonstrated
that for a well-tuned ratio of NN vs. NNN repression strength the gap gene patterns
indeed remain stable for very long times. This stability prevented us from sampling
destruction events by direct simulations and called for an enhanced sampling tech-
nique. Most well-established rare-event techniques such as transition-path sampling
[206, 207], transition-interface sampling [208, 209, 210, 211, 212], metadynamics [213]
and their descendants are limited to equilibrium systems. Several recent schemes in-
cluding Forward Flux Sampling [214], non-equilibrium umbrella sampling [215] and
the weighted-ensemble method [216, 217] address non-equilibrium systems. These
methods rely on the existence of a kinetic barrier, which separates the initial and
�nal state, making escape events e�ectively uncorrelated. Here, however, the exis-
tence of a barrier is part of the question; even the most stable patterns could gain
their stability from slow, but transient dynamics. Some of us have recently developed
Non-Stationary Forward Flux Sampling (NS-FFS) [218, 219] which enables e�cient
rare-event sampling in systems with transient dynamics. We used this technique to
quantify gap gene pattern stability as a function of the mutual repression strength.
The generated path ensemble allowed us to analyse the pathways to pattern destruc-
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tion, which is essential to understand the origins of pattern stability.
We �nd that there is an optimal regime of intermediate NN repression strength, in

which pattern persistence times are maximized and reach values that are more than
su�cient to ensure stability over the biologically required time (' 2 h), in the absence
of morphogen gradients. This stability arises from a combination of two e�ects: �rst,
progress towards pattern destruction is intrinsically slow whenever NN repression is
weak enough to allow for (partly) overlapping gap protein domains, but strong enough
to suppress bistable switching at the interface between NNN expression domains.
Second, in the pinned system in addition a restoring force towards the metastable
stripe pattern strongly enhances stability.

6.2 Results

6.2.1 Pattern stability is maximized at intermediate nearest-

neighbor repression strength

In order to assess whether and how gap gene patterns can be stable without an ex-
ternal morphogen gradient, we performed stochastic simulations of a spatial pattern
of four gap genes that control each other via mutual repression, using NS-FFS. While
Drosophila development is astonishingly precise and reproducible [52, 51, 30], the pro-
cesses that drive it, in particular gene expression, are very stochastic. This prompted
the search for mechanisms that attenuate gene expression noise in development, such
as spatial averaging [122] and mutual regulatory interactions [170, 116]. Addressing
this question requires a spatially resolved stochastic model. Here we opted for a min-
imal model of the posterior gap gene pattern in developmental cycle 14, shown in
schematic Fig. 6.1. Nuclei at the outer surface of the embryo are represented as a
cylindrical array of Nz ×Nφ well-stirred reaction volumes. Gap protein di�usion and
nuclear exchange are modeled via hopping between neighboring compartments. To ac-
count for the radial symmetry of the embryo we impose periodic boundary conditions
in the circumferential lattice direction, which enables di�usive hopping from lattice
site (z,Nφ) to lattice site (z, 1), and vice versa (here z and φ denote lattice indices
in the axial and circumferential direction, respectively). In each nucleus, proteins of
the gap genes hb, kr , kni and gt are produced from their corresponding promoters,
dimerize and mutually repress each other by promoter binding. Each gene can repress
the promoter of each other gene; however, the repression strength di�ers among dif-
ferent gene pairs, as discussed further below. Repression is non-competitive, i.e. each
promoter has binding sites for each of the three other genes' dimers and is inactivated
when at least one dimer is bound (�OR�-logics). Our model combines transcription
and translation into one production step, and thus neglects some features of eukary-
otic gene expression such as transcriptional bursts and enhancer dynamics; previous
work has shown that this does not alter the results qualitatively [122, 170].

We �x (�pin�) the expression level of Hb in the nuclei at the system boundaries by
locally disallowing repression. This accounts for the fact that in the native pattern
anterior Hb is in excess and under stringent control by Bcd [176], whereas in the
posterior hb expression is driven by a second enhancer under the control of Tll [205],
which in turn is directly controlled by the maternal terminal system and thus tightly
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Figure 6.1: Schematic of our Drosophila embryo model. The posterior of the embryo
in cycle 14 is modeled via a cylindrical lattice of reaction volumes that represent cortical
nuclei. In each nuclear volume we simulate production, degradation, dimerization and mutual
repression of the four gap genes Hb, Kr, Kni and Gt via the Gillsepie algorithm. Each gene is
subject to repression by the protein dimers of the other genes, as indicated by the schematic
promoters. Neighboring nuclei can exchange monomers and dimers via di�usive hopping.
The system is initialized in a �ve-stripe pattern of expression domains in the experimentally
observed order Hb�Kr�Kni�Gt�Hb. The strength of mutual repression varies among gap
gene pairs: genes that have adjacent expression domains repress each other weakly, while
next-nearest neighbors exhibit strong mutual repression. By default, the concentration of
Hb is �pinned� at the system boundary where the set of modelled reactions di�ers from the
rest of the system by the fact that the hb promoter can not be repressed. Note that this
deliberately simplifying drawing does not depict the cylindrical model geometry in all details;
these are fully described in the �Methods� section 6.4.

localized [220, 221]. To assess how this model assumption in�uences our results, we
later compare to simulations in which hb is not not pinned. Further model details are
given in the �Methods� section 6.4.

Initially, concentrations of the four gap gene proteins are arranged in �ve adjacent
rectangular domains of equal size in the (anterior-posterior) order Hb-Kr-Kni-Gt-
Hb, corresponding to the experimentally observed pattern in the posterior half of the
embryo [116, 114, 113, 112, 12]. Within this arrangement the genes repress each other
mutually via the characteristic pattern of strong next-nearest neighbor (NNN) and
weaker nearest-neighbor (NN) repression [113, 112, 124, 195, 197, 158, 111]. More
speci�cally, there are two pairs of strongly repressing genes, (hb,kni) and (kr ,gt), and
four pairs of genes that repress each other weakly ((hb,kr), (kr ,kni), (kni ,gt) and
(gt ,hb)). In our model the di�erence in repression strength is tuned via the unbinding
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Figure 6.2: Typical simulation output. Here we show typical snapshots of the total
copy numbers of all considered gap proteins as a function of the axial coordinate z of the
cylinder, averaged over its circumference. Colors correspond to Fig. 6.1 (green = Hb, blue
= Kr, red = Kni, black = Gt). Snapshots were taken every 60 min over a total simulated
time of 20 h after an initial relaxation phase of 30 min, starting from rectangular domain
pro�les of equal length.

rate of the repressors from the repressed promoter. The strong repressor o�-rate kNNN
off

is chosen such that NNN pairs ((hb,kni) and (kr ,gt)) are in a bistable regime, while
the weak repressor o�-rate kNN

off is varied; here bistability means that at the single-
nucleus level only one of the two competing genes is signi�cantly expressed. We then
study gap gene stability as a function of the repression strength ratio κ, de�ned as

κ ≡ kNN
off /k

NNN
off . (6.1)

For κ = 1 also adjacent gene pairs are in the bistable regime, while in the limit κ→∞
NN pairs do not a�ect each other at all.

Figure 6.2 shows typical simulated gap protein pro�les of an intact, relaxed pat-
tern. To quantify pattern stability we measure the average time until at least one gap
protein domain disappears as a function of κ. Note that in our system the shrinkage of
the domain of gap protein G is always accompanied by the enlargement of the domain
of G's strong interaction partner. This lead us to introduce the following two order
parameters that measure the asymmetry for each of the two strongly antagonistic
NNN pairs and track progress towards pattern destruction:

λx ≡ max([Hb]Σ, [Kni]Σ)/NΣ (6.2)

λy ≡ max([Kr]Σ, [Gt]Σ)/NΣ (6.3)

Here [G]Σ is the total copy number of G proteins (counting dimers twice). For con-
venience we normalize by NΣ = [Hb]Σ + [Kr]Σ + [Kni]Σ + [Gt]Σ, the total protein
number in the system.

In the well-ordered pattern each gap protein domain occupies roughly the same
fraction of the system, so that λx ≈ λy ≈ 0.25. As expansion of a domain progresses
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at the expense of its strong antagonist, λx(y) is enlarged and reaches values around
0.5 when the shrinking domain ultimately is destroyed. The sum λ = λx + λy thus
is a natural choice for a progress coordinate towards pattern destruction, with values
around 0.5 for intact patterns and values above 0.75 indicating their breakdown. In
short, λ measures increasing asymmetry between strong repression partners as the
system advances towards collapse.

Initial simulations revealed that the waiting times until destruction are long com-
pared to the duration of the actual breakdown event, and are di�cult to sample by di-
rect simulation. A key question of this work is whether the intact gap protein pattern
is protected by a barrier that separates it from the destroyed state. We thus cannot
assume a priori that pattern destruction is an activated barrier-crossing process. This
means that to investigate pattern breakdown the full history of the trajectories has
to be taken into account; we cannot presuppose rapid equilibration within the basin
of the initial state. We therefore resorted to NS-FFS which is uniquely suited to this
non-equilibrium, transient rare event system. We used λ as the progress coordinate
for NS-FFS, which resulted in a branched and weighted trajectory ensemble that sam-
ples the relevant λ-range uniformly; this allowed us to generate su�cient statistics of
rare breakdown events even in the most stable regions of parameter space. Details of
the setup are described in �Methods� section 6.4.

Figure 6.3 shows the reweighted histograms of simulated trajectories over the
reduced phase space spanned by order parameters λx and λy at snapshot times t ∈
[1h, 4h, 7h], for three di�erent values of κ ranging from strong NN repression (κ ' 3) to
the limit of non-interacting nearest neighbors (κ =∞). Clearly, there exists a region
of stable expression in phase space which is populated rapidly and then remains quasi-
stationary, hinting at the existence of a metastable state, in particular for the case
with moderate NN repression. Moreover, it can be seen that the speed with which the
system escapes from the quasi-stationary region strongly depends on κ. The �gure
also reveals that there are two pathways to destruction: one in which either the Hb or
Kni domain is destroyed �rst and one in which either the Gt or Kr domain is the �rst
to vanish. Motivated by these observations we de�ned a �region of stable patterns� in
terms of the order parameters via RS ≡ {(λx, λy)|λx ≤ 0.45 and λy ≤ 0.43}, see Fig.
6.3. States that lie outside of RS are considered destroyed patterns. The survival
probability S(t) =

∫∫
RS
p(λx, λy, t)dλxdλy is the probability for the system to remain

in the region of stable patterns until time t (re-entry into RS is not observed). We �nd
that S(t) is well-described by an exponential decay, S(t) ∝ e−kDt, for times t larger
than a certain lag-time tlag. kD then de�nes a �destruction rate�, which implies an
average �pattern stability time� or mean time until pattern destruction via τD ≡ 1/kD

(see �Methods� section 6.4 for details).
Figure 6.4A reveals that pattern stability indeed depends strongly on the ratio of

repression strenghts: there exists a sharp maximum of pattern persistence times τD
as a function of κ at κopt ' 31.6, i.e. there is an optimal NN repression strength
that maximizes pattern stability. Notably, while signi�cantly less stable than at the
optimum, patterns with considerable stability are possible in the limit of κ → ∞,
i.e. in the absence of NN repression. In contrast, in the limit κ → 1, i.e. when
NN and NNN repression have close to equal strength, patterns essentially collapse
immediately.
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Figure 6.3: Pattern breakdown in the phase space spanned by λx and λy. The
�gure shows probability density snapshots of the phase space spanned by order parameters
λx = max([Hb]Σ, [Kni]Σ)/NΣ and λy = max([Kr]Σ, [Gt]Σ)/NΣ at di�erent times t after
starting the simulation with an ordered pattern in the pinned system. (top row): for NNR
(NN repression) almost as strong as NNNR (NNN repression) (κ = 3.16), system stability
is low; (middle row) high stability for κ = 31.6; (bottom row) lower stability for NNNR
only (κ = ∞). All plots are normalized histograms of reweighted (λx, λy)-points within
t ± 5 min. White circles indicate the starting point (0.4, 0.2) of the initial rectangular
pattern. In the middle and bottom rows we identify three densely populated regions: a
broad region RS centered around (0.30, 0.30), which contains intact patterns, and two smaller
regions close to (0.55, 0.30) (RHK) and (0.30, 0.55) (RKG), representing (partially) destroyed
patterns (see �Methods� section 6.4 for detailed region de�nition). Ultimately trajectories
will converge towards region RD where two genes have been eliminated by their respective
strong antagonists. Note the two di�erent pathways to destruction, of which the one via
RHK is preferred over the one via RKG.

The observation of a preferred phase space region in which system trajectories per-
sist for long times raises the question whether this region constitutes a true metastable
basin of attraction, addressed next. One way to determine whether there exists a
basin that protects the pattern from destruction would be to compute the generalized
free energy Fg(~λ) = − log ρSS(~λ) from the stationary distribution ρSS(~λ), as in [130].
However, because the destroyed pattern e�ectively acts as a sink and the existence
of a barrier which would allow for a quasi-stationary distribution within the basin
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of intact patterns cannot be assumed a priori, we cannot meaningfully compute such
a stationary distribution. We therefore pursued two complementary approaches: we
analysed the transient behavior of perturbed patterns and computed the statistics of
local phase space velocities.

6.2.2 In the maximally stable regime a restoring force exists

If enhanced phase space density in certain regions of the (λx, λy)-space is indeed due
to the presence of a metastable basin, perturbations that transiently drive the system
away from the stable pattern should be counteracted by restoring forces. To test
this we perturbed intact patterns from the hypothetical basin by arti�cially enlarging
regions in which one gap gene is dominant. Via brute-force simulations with higher
time resolution we then checked whether the perturbed systems relax back into the
basin region. We investigated two types of asymmetric perturbations: �Kni expan-
sion�, in which the central Kni domain is unidirectionally expanded at the expense of
posterior Hb, and the converse �Hb expansion�, in which the anterior Hb domain is
enlarged at the expense of Kni (for details see �Methods� section 6.4). We found that
for a gap protein G the center of mass zG of its domain along the anterior-posterior
axis is a good measure for characterizing the spatial properties of the gene expression
domains. zG captures alterations to gene expression domains in a robust way by
avoiding ambiguity associated with de�ning and determining domain boundaries in
the presence of gene expression noise. We calculated zG separately for the anterior
(zHbA) and posterior (zHbP) Hb domains.

Figure 6.5 shows, for κ = κopt, time traces of zG with G ∈ {HbA,Kr,Kni,Gt,
HbP} for the two types of perturbations, averaged over 10 independent samples in
each case. For both perturbations the average centers of copy number relax back to
their original positions on a timescale ∼ 10 h. This demonstrates that for optimal
repression strength ratio an e�ective restoring force counteracts deviations from the
intact pattern, suggesting that in this case the region of high phase space density
within RS is a real metastable state con�ned by an underlying force �eld. Moreover,
the timescale of relaxation is orders of magnitude shorter than the timescale of pattern
collapse. Thus, for κ = κopt pattern destruction is a Markovian transition between
metastable basins with transition waiting times much longer than the timescales of
intra-basin dynamics.

In contrast, we could not observe clear restoring behavior in the systems with
very weak or no nearest neighbor interaction (data not shown). Here perturbations
of similar strength tend to result in almost immediate pattern destruction.

In summary, for the repression strengths ratio κopt ' 31.6 that maximizes stability,
pattern breakdown appears to be an activated process characterized by a restoring
force towards the initial state.
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Figure 6.4: An optimal strength of nearest neighbor repression maximizes pat-
tern stability. (A) Plotted is the mean time until pattern destruction τD as a function
of κ, the ratio between the weak and strong repressor o�-rate, for the system in which Hb
is pinned at the boundaries. The dashed lines are the values for the completely uncoupled
system, i.e. κ = ∞. We observe a pronounced maximum of the stability time when the
weak repression is ca. 30 times weaker than the strong repression (κopt ' 30). (B) The same
quantity for the system without pinning of Hb at the system boundaries. For comparison
we replot the data for the system with pinning (gray dashed line). In the system without
pinning stability is maximized at an optimal NN repression strength ratio as well. Note
however that here the optimum slightly shifts towards weaker repression (κopt ' 100), while
the optimal pattern persistence time is signi�cantly reduced as compared to the case with
pinning. Both curves agree well in the limit κ→∞.
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Figure 6.5: Perturbed trajectories are restored to their origin at optimal NN
repression strength. Shown are averaged time traces of the copy number center-of-masses
zG for the �ve domains of the stable pattern (HbA = anterior Hb, HbP = posterior Hb) at
κ = κopt for two di�erent perturbations: (A) �Kni expansion�, i.e. prolongation of the central
Kni domain by ∆ = 8 nuclei into the posterior and (B) �Hb expansion�, i.e. prolongation of
the anterior Hb domain by ∆ = 8 nuclei towards the center of the embryo. The gray-dashed
line marks the center of the system. In both cases we observe a restoration of the metastable
state on a timescale . 10 h.

6.2.3 The phase-space velocity �eld reveals a metastable basin

The existence of a true metastable basin should manifest itself also in the statistics of
transient dynamics in phase space: forces that drive trajectories in phase space should
translate into local mean phase space velocities with a clear bias towards basins of
attraction.

To extract the velocity �eld for our system we modeled the coarse-grained pattern
dynamics as overdamped di�usive motion in the ~λ ≡ (λx, λy) plane, assuming that
these degrees of freedom capture the slowest time scales of the system and making
a Markov approximation for the fast dynamics [222, 223]. This technique has been
successfully applied in protein folding [224, 225, 226, 227]. The model equation is

d

dt
~λ = 〈~vλ〉 (~λ) +

√
2Dλ(~λ)d ~W (6.4)

where ~W is uncorrelated (2D) white noise with unit covariance. We estimated
the local drift 〈~vλ〉 (~λ) and di�usion coe�cient Dλ(~λ) from our reweighted simu-
lated trajectories by averaging local displacements (see �Methods� section 6.4 and
section 6.A.1 in the appendix for details). The same analysis was also conducted
for the 2D spaces spanned by the single-gene components of λx and λy, i.e. for
~λHK ≡ ([Hb]Σ/NΣ, [Kni]Σ/NΣ) and ~λKG ≡ ([Kr]Σ/NΣ, [Gt]Σ/NΣ).

Note that the mean velocity 〈~vλ〉 (~λ) is di�erent from the gradient of the log of
the stationary density ρSS(~λ), which is not sampled in our simulations, and from the
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Figure 6.6: Phase space velocity �elds reveal metastable basins. Here we show
average phase space velocity �elds for projections on di�erent pairs of order parameters for
the system with (A-C) and without (D-F) Hb pinning. Velocity �elds were obtained by
averaging displacements of all trajectories that exit the local bin on a lattice of 50 × 50
bins (see also �Methods� section 6.4); colors indicate magnitude. Green and blue lines show
examples of relaxation trajectories for the two types of perturbations that we considered;
starting points are marked by black bullets. Gray dashed lines indicate boundaries of phase
space regions used for stability and �ux analysis. Plots A and C for coordinates λx =
max([Hb]Σ, [Kni]Σ)/NΣ and λy = max([Kr]Σ, [Gt]Σ)/NΣ (as in Fig. 6.3) show that regions of
enhanced phase space density typically correspond to regions with low drift magnitude. In
the lower-left part of RS we identify a small subregion with concentrically inwards-pointing
velocities (RMB, dashed circle), towards which perturbed trajectories relax in the system
with pinning (A). This is indicative of a metastable basin of intact patterns. The basin is
much weaker in the unpinned system, as seen in (D) and in the two other coordinate systems
(compare B to E and C to F). In particular, the concentric �eld region clearly visible in the
Kr-Gt space in the system with pinning (C, gray arrows) is much less pronounced in the
system without pinning (F). As expected, Hb pinning forbids the destruction pathway in
which Kni is maximized (compare B to E).

probability �ux in stationary state. Rather, it is proportional to the e�ective force
acting at the reduced phase space point ~λ in the overdamped Langevin model. The
local mean velocity �eld ~vλ(~λ) is determined by the conditional transition probabil-
ities π(~λ,~λ′) between states ~λ and ~λ′, and thus can be extracted from our transient
simulation data.

Figure 6.6 (A-C) shows a comparison of the average velocity �eld in di�erent
reduced phase space coordinates, for the optimal repression strength ratio (κ ' 31.6)
in the system with Hb pinning. We also plot the relaxation of example trajectories
starting from perturbed intact pattern states for the two considered perturbations and



166 Robust gap gene patterns without morphogen gradients

indicate boundaries between di�erent attractor regions (gray lines). In the (λx, λy)-
space (panel A) one can identify two regions with low average velocities: one within
the region of stable states RS, the other within the region RHK of states in which
the Kni gene domain is destroyed (the corresponding region in which either Kr or
Gt are destroyed, RKG, is less clearly visible due to poor sampling) These low-drift
�plateaus� are separated by a region with high velocity components towards RHK,
indicating that trajectories are quickly absorbed into this zone once they reach the
edge of RS. Notably, in the lower-left corner of the RS plateau we notice a small
region in which average velocities are signi�cantly higher and all pointing inwards
(RMB, gray circle). This is indicative of a metastable basin around the ordered stripe
pattern. Indeed, perturbed trajectories relax into this basin region after randomly
exploring the di�usive plateau, and remain con�ned to the basin for later times (Fig.
6.6). The basin can be perceived more clearly in the ~λHK-space (panel B) and in
the ~λKG-space (panel C). In both projections trajectories starting from perturbed
states relax towards regions which are clearly enclosed by velocity vectors that point
towards the centers of the regions, again indicating the existence of a metastable basin.
This is in line with the Waddington picture of �canalization� [155, 156], in which
developmental stages are seen as successive attractors of the underlying dynamics;
the ordered stripe pattern represents one such attractor.

In Figure S6.3 in the appendix we show the same set of velocity �eld plots for a
case with weaker NN repression (κ = 1000). Here the velocity �elds are even more
plateau-like in RS, and the characteristic concentric velocity pattern indicative of
the basin in the optimal case cannot be clearly discerned any more. In accordance,
trajectories starting from perturbed patterns fail to relax back and progress towards
defective pattern states. Thus, canalization requires a minimum level of NN repression
in this system.

Taken together, both the perturbation experiments and the velocity �eld analysis
demonstrate that the long-time con�nement of phase space trajectories close to the
ordered pattern at optimal NN repression is due to the existence of a metastable
basin which impedes progress towards destruction by restraining excursions from the
basin. With decreasing strength of NN repression the basin gradually disappears,
thus enhancing the probability of destruction.

6.2.4 Stability enhancement does not require pinning

To assess whether pinning of Hb domains is necessary for the observed stability en-
hancement at intermediate NN repression, we repeated our simulations and analysis
also for a system without pinning. Here, Hb promoters in nuclei at the system bound-
aries were not exempted from mutual inhibition. Surprisingly, we �nd that also in the
system that lacks pinning, stability is enhanced by the presence of weak interaction
partners between two strongly repressing gap protein domains. In Figure 6.4B we
again plot the mean destruction time τD against the ratio of the repressor o�-rates
κ for the system without pinning. The �gure reveals high stability at an optimal
repression strength ratio κopt = 100, which is close to the optimum in the system
with pinning, albeit with about 10 times lower overall stability times.
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6.2.5 Pinning introduces strong restoring forces

Perturbations of the same strength as in the system with pinning did not relax back
even in the maximally stable case in the system without pinning (data not shown).
This is elucidated by plotting the average local velocities in the unpinned system (Fig.
6.6D-F). While the mean velocity directions are very similar to the ones in the pinned
system (Fig. 6.6A-C), inward-pointing velocities indicative of a metastable state are
of signi�cantly lower magnitude. This suggests that without pinning restoring forces
are too weak to overcome �uctuations that drive the system out of the basin. Further
support is provided by the fact that the di�usion coe�cient in the plateau-like region
of intact patterns RS is very similar for all κ ≥ 10 in both the system with and
without pinning, as shown in Figure S6.1A of the appendix. This shows that the
e�ective temperature is the same in both systems and that the di�erences between
the pinned and unpinned system are indeed due to di�erences in their restoring forces,
re�ected in the velocity �elds shown in Fig. 6.6. Speci�cally, the most important e�ect
of pinning is that it removes the Hb destruction pathway which is accessible in the
system without pinning (compare 6.6B to 6.6E), as discussed in more detail in the
next section.

For the weakly coupled systems at κ & 1000, pinning has almost no e�ect on
the mean velocity �elds, except for the fact that without pinning the Hb-destroyed
states are apparent in the ([Hb]Σ/NΣ, [Kni]Σ/NΣ) space (compare Supporting Figure
S6.5C to Figure S6.3C). Consistently, in this regime average stability times are very
similar for the two considered system types. Most importantly, in the limit of weak
NN interaction (large κ) stability seems to be the product of slow dynamics alone,
both with and without pinning. Here the average times until destruction are of the
same order of magnitude as the estimated times to di�use through phase space from
the region that corresponds to metastable states for optimal κ towards the edge of
RS, from which trajectories are quickly canalized into defective pattern states (see
Supporting Figure S6.1B).

Thus, while in both the systems with and without pinning the overall e�ect of
nearest-neighbor repression on pattern stability is very similar, we �nd that it can
have two origins: for weak coupling, i.e. large κ values, stability originates from slow
di�usive dynamics in phase space; for optimal NN coupling (κ ' 10 − 100) stability
is additionally augmented by the creation of a metastable basin, which in turn can
be signi�cantly enhanced by pinning of Hb at the system boundaries.

6.2.6 Pathways to destruction

Both with and without pinning of Hb at the system boundaries, pattern stability
is maximal at an optimal strength of NN repression. Stability times, however, are
signi�cantly higher in the system with pinning. In order to understand whether this
is simply due to the fact that pinning prohibits destruction of the Hb domains or due
to other pinning-induced e�ects, we compared the di�erent pathways to destruction
by computing probability �uxes through distinct reaction pathways (see �Methods�
section 6.4 for details). The di�erent reaction pathways are de�ned by the order in
which gap gene domains are destroyed. In our system there are two major pathways:
the Hb-Kni destruction pathway (either the Hb or the Kni domain vanishes �rst)
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Figure 6.7: Pinning a�ects destruction pathwaysWe plot here the average probability
�uxes from the region of stable patterns RS into the di�erent remote basins identi�ed in
the (λx, λy) phase space as a function of the repression strength ratio κ for the systems
with and without pinning. Here the �ux is de�ned as the average increase per time of
the total probability in the basin. Basin boundaries and �ux quantities are described in
detail in �Methods� (section 6.4). Shown are the �ux into the basin RHK, corresponding to
destruction of either Hb or Kni (red lines), the �ux into the basin RKG, in which one of
Kr or Gt is destroyed (blue lines), and the total out�ux from RS, which equals the pattern
destruction rate kD (black bullets). Solid lines and triangles show the data for the system
with pinning, dashed lines and circles the values for the system without pinning. Clearly, in
both with and without pinning and for all κ considered here, RHK is the dominant fraction
of the �ux, re�ecting that the dominant pathway to destruction is the one that starts with
the disappearance of Hb or Kni. Pinning of hb expression at the system boundaries leads to
a pronounced reduction of the �ux through this pathway for κ = 10− 100.

and the Kr-Gt destruction pathway (either the Kr or Gt domain vanishes �rst). The
phase space histograms in Figure 6.3 demonstrate that simultaneous destruction of
two domains, corresponding to trajectories that progress diagonally in λx-λy space,
is highly improbable. We �nd that, while in general the Hb-Kni destruction pathway
prevails, the fact that the Hb-destruction pathway is dominant for κ ≤ 100 in the
system without pinning accounts for the strong enhancement of pattern stability due
to pinning.

In Figure 6.7 we plot for di�erent repression strength ratios κ the magnitude of
average �uxes from the region of intact patterns RS in the λx-λy space into the re-
spective neighboring regions that correspond to states in which one expression domain
vanished. The �gure reveals that for all κ the �ux through the Hb-Kni destruction
pathway is approximately ten times higher than the �ux through the Kr-Gt pathway,
for systems both with and without pinning. The �gure also shows that pinning indeed
reduces the �ux through the dominant, i.e. Hb-Kni, pathway, most signi�cantly for
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Figure 6.8: Pinning shifts the destruction �ux balance in the dominant (Hb-Kni)
pathway The �gure shows the contributions of the Hb-destruction and Kni-destruction
pathways to the out�ux from RS as a function of the repression strength ratio κ for the
systems with (A) and without (B) pinning. See �Methods� section 6.4 for the de�nitions
of basin boundaries and details of �ux calculation. Without pinning and for strong NN
repression, the preferred pathway to destruction is the one in which the Hb domains are
destroyed �rst, while for weaker coupling (large κ) destruction begins via annihilation of the
Kni domain. Interestingly, in both cases the �ux through the Kni-destruction pathway is
minimal at κ ' 31.6. Pinning forbids destruction via the Hb pathway and thus dramatically
reduces the overall destruction �ux for low κ, giving rise to the enhanced stability optimum
at κ ' 31.6.

κ ' 10 − 100, i.e. around the optimal value κopt. This gives rise to the pronounced
stability enhancement. The simultaneous reduction of the �ux through the Kr-Gt
pathway is not relevant for overall stability.

We analysed further the detailed composition of �uxes through the dominant (Hb-
Kni) pathway by computing the average �ux into the regions of destroyed states in
([Hb]Σ/NΣ, [Kni]Σ/NΣ) space (Figure 6.8). As expected, in the systems with pinning
the entire �ux through the dominant pathway goes into the Kni-destroyed state.
Interestingly, this is also the case for the weakly coupled systems without pinning.
Here the �ux into the Hb-destroyed state is clearly dominant over the �ux into the Kni-
destroyed state for strong NN interaction. This explains why pinning, which prohibits
exit through the Hb destruction pathway, increases stability in the κ . 100 regime.
While the �ux through the Kni destruction pathway is minimal at κ = 31.6 with or
without pinning, in the system without pinning the accessibility of Hb destruction
shifts the minimum of the combined �ux through both pathways towards κ = 100
(Figure 6.7).
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6.2.7 Fixed point analysis helps understanding the origin of

domain stability

To better understand the mechanism behind pattern stability we performed a linear
stability analysis for a deterministic system of two strongly repressing gene pairs
(A,B) and (C,D), with weaker mutual repression across the pairs; (A,B) and (C,D)
thus correspond to (Hb,Kni) and (Kr,Gt) in the simulated model. We �rst focused on
a single well-mixed reaction volume in stationary state, neglecting di�usive coupling.
This corresponds to either a single nucleus in the limit of zero di�usion constant or to
a spatially homogenous steady state of the full system, i.e. in�nitely fast di�usion. We
additionally carried out an analysis that accounts for spatial coupling in a minimal
way, as described further below. To compare to spatially resolved simulations, we
calculated the set of �xed points (A,B,C,D), where letters denote total copy numbers,
for di�erent values of κ with all other parameters as in the full model. As in the
simulations, κ was varied via the dissociation constant of the weak repression. For
details of the analysis we refer to section 6.A.3 in the appendix.

Figure 6.9A shows a representative subset of the �xed point solutions (A,B,C,D)
as a function of κ, for the well-mixed case. For weak NN repression, κ & κbif = 13, two
bistable pairs of genes exist in parallel, i.e. either gene of (A,B) can be coexpressed
with either of (C,D). At κ = κbif , a bifurcation occurs towards a �monostable� regime
for κ . κbif , where only one of the four genes can reach high expression levels. In
other words, overlapping domains are impossible for strong NN repression. This gives
a rationale for rapid pattern breakdown observed at κ . κbif in the full system:
because di�usion rapidly establishes NN overlap, no stable stripe pattern is possible.

We next included di�usive �uxes, mimicking the situation in a nucleus at one of
the Hb-Kni interfaces. Flux values were estimated from simulations of intact patterns
with κ = κopt (the setup shown in Fig. 6.2). At these interfaces, both Hb and Kni are
low and their e�ective in�ux is positive, while one weak repression partner (Kr or Gt)
is high with a net out�ux. How imposing these �uxes for the strong partners A and
B and weak partner C a�ects the �xed point solutions is shown in Figure 6.9B: here,
the only stable solution for κ & κbif is the one where C is high and both A and B low,
thus inhibiting bistable switching between A and B, with expression levels in good
quantitative agreement with those at the interface between the strong antagonists in
the simulation. We do not �nd physically relevant �xed points for κ . κbif , again in
line with simulations, where patterns rapidly collapse.

In summary, without di�usive coupling, for κ & κbif strongly repressing pairs in an
interface nucleus form two independent bistable systems ((A,C) and (B,D)), whereas
for κ . κbif one species predominates. Spatial coupling with in�ux of A and B and
out�ux of C completely destabilizes solutions for κ . κbif ; for κ & κbif it destroys
bistability and results in coexistence of A and B at low expression levels, while C
remains high. This suggests that the introduction of a weak interaction partner into
the contact region of two strongly repressing gap gene domains acts as a stabilizing
factor which impedes bistable switching, thereby slowing down interface dynamics
and pattern breakdown. This mechanism works only for intermediate NN repression:
for strong NN repression overlapping domains are unstable while for very weak NN
repression bistability of strong partners is unhindered.
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Figure 6.9: Linear stability analysis for two nested bistable pairs of mutually
repressing genes. The �gure shows �xed point solutions (A,B,C,D) for total copy num-
bers in a system of four mutually repressing genes. (A,B) and (C,D) constitute strongly
repressing pairs, with repression between pairs weaker by a factor of κ (κ→∞ corresponding
to no weak repression). We plot the solution branch in which gene A dominates. Equiva-
lent solutions are obtained by permutations of {A,B,C,D} which preserve the weak/strong
repression pattern. Panel (A) shows solutions for a spatially homogeneous system. The
notation [A,C] means that A and C coexist with equal copy numbers. For κ . κbif only
A is strongly expressed. Around κ = κbif a bifurcation occurs: for κ & κbif two bistable
pairs coexist, with two weakly interacting genes at high levels, while their respective strong
antagonists are repressed. For κ = 1 in particular we �nd a solution in which all four genes
are low (point P). In panel (B) we plot stable solutions for a system that mimics the situation
in a nucleus exactly in the middle between A and B domains in the spatially resolved model.
Di�usive coupling is accounted for by imposing in�ux of A and B and out�ux of C, as de-
scribed in the text. This selects a unique stable �xed point where C dominates, and A and B
coexist at low levels, without bistable switching. For κ . κbif we do not �nd any physically
relevant �xed points, indicating that the imposed domain con�guration is unstable.
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6.3 Discussion

In early embryogenesis, morphogen gradients provide a long-range positioning sys-
tem by activating downstream patterning genes in a concentration-dependent man-
ner. Indeed, many gap genes, which constitute the �rst layer of patterning genes in
Drosophila, are known to be regulated by the morphogen gradient of Bicoid (Bcd)
which spreads from the anterior embryo pole in the earliest stages of development
[114, 113, 109, 110, 177, 178, 179]. This, however, raises the question how gap genes
can establish expression domains in the posterior half of the embryo, where Bcd levels
have been measured to be very low [51, 30] and therefore carry imprecise positional
information. The fact that posterior gap gene stripes can form in �ies with de�cient
maternal gradients [146, 158, 157] and that other insect species lack the Bcd gradient
but display similar stripe patterns [189, 190, 191, 192, 193] raises further doubt on
the importance of Bcd for posterior patterning.

An alternative view is that Bcd provides high-resolution positional information
only in the anterior, up to a well-de�ned Hb expression domain boundary around mid-
embryo, while in the posterior, patterning emerges in a self-organized way through
mutual interactions of gap genes. Indeed, recent experimental and theoretical results
suggest that mutual interactions between gap genes may play a prominent role in
abdominal segmentation [181, 170, 183, 182, 115, 116, 114, 113], by establishing stable
domains with slow e�ective dynamics [117]. However, it is not a priori clear how
such a system could be robust given the stochastic nature of gene expression and
regulation. In particular, copy number �uctuations can induce bistable switching
at domain boundaries which may deteriorate expression patterns. Here we asked
whether a system of mutually repressing gap gene stripes can indeed be stable over
the required developmental time interval, and robust against perturbations, in the
absence of any morphogen gradient.

We quanti�ed the mean stability time of a �ve-stripe pattern of gap genes Hunch-
back (Hb), Krüppel (Kr), Knirps (Kni) and Giant (Gt) in a stochastic model of the
posterior Drosophila embryo in cycle 14, as a function of the repression strength be-
tween neighboring stripes. Simulations of the breakdown of very stable patterns were
made possible by the NS-FFS enhanced sampling scheme [218].

We �nd that for an optimal value of the repression strength between adjacent
expression domains, the stability of the pattern is dramatically increased. This sta-
bility optimum can be traced back to the fact that bistable switching at the boundary
between domains of strongly mutually repressing genes is inhibited by an intervening
cushion domain of a gene that weakly represses both strong partners. This stabilizing
mechanism works best if the spacer gene represses its nearest neighbors (NN) with
moderate strength: very weak NN repression has no e�ect while strong NN repres-
sion globally destabilizes overlapping domains. At the optimal repression strength
(κ = κopt), the cushion thus tends to slow down the domain-boundary dynamics.

Stability is enhanced even more if expression of the outermost gene Hb is pinned
at the system boundaries. We introduced pinning motivated by the fact that in
wild-type embryos, Hb is under direct or indirect control of maternal cues, namely
of Bcd in the anterior half and of Tailless (Tll) at the posterior pole of the embryo
[205, 176]. We then �nd that intact patterns form a metastable attractor of the dy-
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namics with a restoring force which counteracts perturbations, such as non-perfect
initial conditions. Restoring forces are induced by pinning at the boundaries which
e�ectively anchors the gene expression pattern. In the optimal stability regime, our
observations are consistent with the Waddington picture [155, 156] of development
as canalization into successive metastable states; the ordered gap gene pattern rep-
resents one metastable state in this succession. Earlier work already demonstrated
that developmental attractors may emerge as an intrinsic property of the created gene
expression pattern via mutual interactions [115, 116]. Here, we demonstrate that also
without morphogen gradients metastable basins arise, which protect stable patterns
against stochastic �uctuations.

The present work leads to the interesting question how a properly ordered stripe
pattern of mutually repressing genes is established initially. In particular, while pin-
ning of Hb at the boundaries in principle would determine that Kni must form its
domain in the center of the system, symmetry breaking between Kr and Gt requires
additional control. The fact that Hb acts as an activator to Kr at low concentrations
provides a possible mechanism [228, 194, 152]. Alternatively, the timing of the onset
of gene expression for the di�erent gap genes may determine their initial arrangement,
which then gets frozen by mutual interaction.

The observed stability times appear su�cient for early embryogenesis (' 2h un-
til cycle 14) for all NN repression strengths weaker than the optimal value, with or
without pinning, even for the reduced system size considered here for computational
feasibility. To assess the e�ect of system size, we have performed exemplary simula-
tions in which we increased the gap gene production rate, the length of the system
and its circumference, respectively (not shown). In all cases we �nd that while over-
all pattern stability is further increased, a stability maximum at intermediate NN
repression strength persists. In a more realistic description, stability times will be
modi�ed due to the in�uence of system size and of features of gene regulation that
were not included here (such as autoactivation and bursty translation); nevertheless
we believe that the mechanisms of enhanced stability described here apply also in
vivo. They provide an explanation for the persistence of the gap gene pattern after
the Bcd gradient starts to disappear in developmental cycle 14 [147].
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6.4 Methods

6.4.1 Details of the model

We model the early Drosophila embryo in its syncytial stage at cycle 14 with a cylin-
drical array of Nz ×Nφ nuclei coupled by di�usion of proteins. To capture the radial
symmetry of the real embryo, we impose periodic boundary conditions in the �angu-
lar� lattice coordinate, denoted by lattice index φ; proteins thus can di�use between
lattice site (z,Nφ) and lattice site (z, 1), where z ∈ {1, .., Nz} is the �axial� index of
the lattice site. Every nucleus contains four individual promoters for each of the gap
genes hunchback (hb), krüppel (kr), knirps (kni) and giant (gt).

Each promoter can be repressed by the products of the three others with di�erent
a�nities. We employ OR-logic, i.e. whenever one of the three repressor sites is
occupied expression of the gene is completely blocked. There is no competition for
repressor sites on the promoters. In the unrepressed state the promoters exhibit
constitutive protein production, i.e. no external activator signal is required. This
deliberately mimics a situation in which activation of the gap genes is not provided
by external morphogen gradients but by either an omnipresent master activator or
auto-activation with a low activation threshold. Consequently, our model explicitly
does not include morphogen gradients. As a simplifying assumption, we treat the
whole production process, i.e. transcription, elongation and translation, as one step
governed by a single rate β. Proteins however can form (homo)dimers and dedimerize
again [229, 230], and only in their dimeric form they act as repressors. This is to ensure
that antagonistic genes form bistable pairs for su�ciently strong mutual repression.

Initially, all simulations are set up in a stripe pattern corresponding to the exper-
imentally observed order in the embryo posterior, i.e. Hb-Kr-Kni-Gt-Hb [114, 113,
112]. This implies a �xed de�nition of �gene neighborhood� to which we refer through-
out this paper: by nearest neighbors (NN) we mean the pairs (hb, kr), (kr , kni), etc.,
while the pairs (hb, kni) and (kr , gt) are considered next-nearest neighbors (NNN). A
key ingredient of our model is that nearest-neighbor repression is weaker than repres-
sion between next-nearest neighbor domains (see paragraph �Parameter choice� for
more details). By default we pin the expression of hb at the system boundaries, i.e.
in nuclei on the two outermost rings of the cylinder the hb promoter is irrepressible,
and therefore constitutively produces Hb proteins. This takes into accout that in the
real system Hb is under strict control by Bcd throughout the anterior half [176], while
in the posterior a second enhancer exposes Hb to positive regulation by the maternal
terminal system [205, 220, 221]. We compare this system to a system in which there
is no pinning and all nuclei are identical.

6.4.2 Simulations

To perform rare-event sampling of the spatially resolved system we integrate our
�Gap Gene Gillespie� (GGG) simulator used in previous work [170, 122] with the
recently developed NS-FFS scheme [218]. NS-FFS is used to monitor and process a
progress coordinate written out by GGG at regular simulation interrupts, at which
GGG trajectories are cloned and restarted in a way that sampling is enhanced in the
direction of increased progress coordinate, i.e. towards pattern destruction.
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Spatially resolved stochastic simulations (GGG)

In GGG, the model is implemented via the Stochastic Simulation Algorithm by
Gillespie [53, 54] on a cylindrical 2D lattice of reaction volumes at constant dis-
tance l = 8.5 µm, with periodic boundary conditions in the circumferential direction
of the array. An abstract graph of the reaction network that displays the set of
reactions for any of the simulated promoters is shown in Figure S6.8 in the appendix.
Di�usive chemical species (gap proteins and their dimers) hop between neighbor-
ing volumes via the next-subvolume method [144] which integrates di�usion into the
Gillespie algorithm by annihilation of a species copy in the volume of origin and
instantaneous insertion of that copy in a randomly chosen neighboring volume with
a rate kdiff = 4D

l2 . The source code of GGG with examples can be downloaded from
http://ggg.amolf.nl.

Forward �ux sampling

We employ the recently developed non-stationary forward �ux sampling (NS-FFS)
method [218, 219, 148] to enhance stochastic sampling of system realizations that
increase a (reaction) progress coordinate λ while retaining correct statistical weight.
NS-FFS achieves this by branching o� multiple child trajectories upon crossing prede-
�ned interfaces in undersampled regions of (λ, t)-space and pruning trajectories that
cross interfaces in oversampled regions. The NS-FFS scheme aims at equilizing the
�ux of simulated trajectories in the reaction coordinate direction among the time bins.
The rate of branching and pruning is calculated from the temporal trajectory crossing
statistics collected during runtime. To that purpose the time domain is subdivided
into equidistant time intervals. For a detailed account of the reweighting procedure
we refer to [218].

Progress coordinates

The choice of a suitable progress coordinate is a critical step of the FFS technique.
Here, we seek to enhance progress of the simulated patterns towards their destroyed
state. The destruction events are in particular characterized by the disappearance of
one of the partners within each of the strongly repressing gap gene pairs. Progress
towards destruction thus is accompanied by increasing pair asymmetry, which can be
quanti�ed for each pair separately by the following two order parameters:

λx ≡ max([Hb]Σ, [Kni]Σ)/NΣ

λy ≡ max([Kr]Σ, [Gt]Σ)/NΣ (6.5)

Here [G]Σ is the total copy number of G proteins (counting dimers twice) and NΣ =
[Hb]Σ + [Kr]Σ + [Kni]Σ + [Gt]Σ the number of all proteins in the system. Based on
this we de�ne our progress coordinate, which increases whenever asymmetry among
any of the pairs is augmented, via

λ ≡ λx + λy = [max([Hb]Σ, [Kni]Σ) + max([Kr]Σ, [Gt]Σ)] /NΣ . (6.6)
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Since NS-FFS features multi-dimensional reaction coordinates we compared our
standard choice to a setup in which the two components λx, λy of the reaction coordi-
nate λ are treated as two separate reaction coordinates with an own set of interfaces
each. While an orthogonal pair of reaction coordinates captures the principal reaction
paths in our system more accurately, the acquisition of crossing statistics is prolon-
gated because of the increased number of bins in these simulations, and we did not
�nd any substantial advantage of this choice in terms of branching behavior. We
therefore preferred the standard de�nition.

Combination of simulation methods

In order to wrap NS-FFS around the GGG simulator we run GGG for a prede�ned
simulation time tGGG = 60 s. At the end of the simulation the reaction coordinates are
calculated and passed on to the NS-FFS module, and the end state of the simulation
is recorded. The NS-FFS module then determines whether an interface crossing has
occured and, if so, decides on whether the trajectory shall be branched or pruned.
In case of branching NS-FFS will prompt nB ≥ 1 restarts of the GGG simulator
with the recorded end state as initial condition, di�erent random seeds and with new
statistical weights. At each crossing and at measuring times spaced by a regular
interval ∆t the time, branch weight and reaction coordinate values are stored in a
tree-like data structure that facilitates later analysis.

Trajectory trees are started from a standardized, regular-stripe initial condition
passed to the �rst call of GGG. Propagation of the tree stops when all child branches
have either reached the end of the time histogram or have been pruned. Subsequently
a new tree is started with a di�erent random seed. NS-FFS monitors the cumulative
simulated time Tcum and terminates simulation when Tcum exceeds a prede�ned max-
imal simulation time Tmax and the last trajectory tree has been propagated towards
the end. Typically, Tmax = 3− 7 h and Tcum = 2− 5 · 107 s, which usually results in
several thousand independent starts from the initial condition.

By default we start from an arti�cial pattern consisting of �ve non-overlapping
stripes with rectangular pro�les occupying an equal part of the total system length L/5
each and equal number of monomers (no dimers) in each nucleus close to the expected
total copy numbers. We �nd that these initial patterns quickly relax towards typical
metastable patterns, i.e. into the metastable main basin, which justi�es our approach
a posteriori.

6.4.3 Parameter choice

Repression

We are mainly concerned about the importance of distinct repression strength of
nearest-neighbor (NN) as compared to next-nearest neighbor (NNN) interaction. We
assume repressor binding-rates to be di�usion-limited via kR

on = 4πσRDN, where DN

is the intranuclear di�usion constant and σR an e�ective target radius. Repression
strength therefore is varied by changing the unbinding rates of the repressing dimers.
The main parameter in our simulations is κ = kNN

off /k
NNN
off , the ratio between NN

and NNN repressor o�-rate. In this work only kNN
off is varied, while kNNN

off is chosen
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su�ciently low to guarantee bistability between next-nearest neighbor genes, which
is a precondition for the formation of individual stripe domains in the �rst place. For
κ = 1 NN and NNN repressive interactions are equally strong, while for large κ values
NN repression is much weaker than NNN repression. In the �uncoupled limit� κ→∞
the two bistable pairs coexist without sensing each other. We do not consider cases
with κ < 1.

Dimerization

We set the dimerization forward rate kD
on to be equal to two times the di�usion-limited

repressor binding rate, which is accounting for the fact that both reaction partners
are di�using. The dimerization backward rate is set via kD

off = kD
on/VN (VN = nuclear

volume) as in [129, 130, 60, 170] to ensure that at any moment most of the proteins
are dimerized.

Production and degradation

In our model both monomers and dimers are degraded. This leads to a nontrivial
dependence of the total copy number on production, degradation and (de)dimerization
rates, as we discuss with more detail in [170]. Since we did not �nd any experimental
reports of gap protein lifetimes, we chose equal monomeric (µM) and equal dimeric
degradation rate (µD) for all gap genes and set these quantities to values that lead to a
reasonable e�ective lifetime of the gap proteins of teff ' 100 s. The steady-state copy
number is tuned via the production rate β. By default, we consider copy numbers as
low as possible (' 15) to minimize computational e�ort. The e�ect of increasing the
average copy number is discussed in the �Discussion� section.

Geometry and internuclear transport

The choice of our geometric parameters, in particular of the lattice constant, is in-
spired by experimental measurements by Gregor et al. [51]. Information on the
di�usion constants of proteins involved in early Drosophila patterning is scarce. The
di�usion constant of the morphogen Bcd has been measured by several groups, yet
its true value is still under debate [30, 167]. In our model we therefore set for all
gap proteins an e�ective internuclear di�usion constant D = 1 µm2/s, which com-
prises both protein import/export and actual di�usion. This value is a reasonable
cytoplasmic di�usion coe�cient and well within the bounds reported for Bcd.

The simulated lattice is 40 nuclei long so that the total system length L roughly
corresponds to the posterior 2/3 of the embryo in cycle 14. To reduce computation
e�ort we simulate a system with smaller circumference (8 nuclei) as compared to the
living embryo. This is justi�ed by the fact that for our standard di�usion constant D
and e�ective protein lifetime µeff the di�usive correlation length lcorr =

√
D/µeff is

≤ 2 nuclei. A larger circumference therefore is not expected to introduce new features
into the system, but might alter the timescales of expression boundary movement
and domain desintegration. We discuss the e�ect of reduced system size on measured
stability times in the �Discussion� section.

For the speci�c numerical values of our parameters see the summary in Table S6.1.
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6.4.4 Data analysis

Quanti�cation of pattern stability

To analyse the destruction dynamics we produce two di�erent 2D-histograms of the
simulated trajectories: one histogram over the space spanned by the progress coordi-
nate λ and the simulation time t and one over the reduced phase space spanned by
the two components of the progress coordinate λx and λy. Trajectories are binned
with the statistical weight assigned by NS-FFS, and in the end the histograms are
normalized.

In the (λx, λy) phase space we can clearly identify several distinct regions that
accumulate probability. Based on the most stable case we de�ne rectangular bound-
aries that enclose the regions that correspond to di�erent destruction states of the
pattern:

• the metastable main basin of intact / undestroyed patterns:
RS ≡ {(λx, λy)|λx ≤ 0.45 ∧ λy ≤ 0.43}

• the basin in which either the Hb or Kni domain has vanished:
RHK ≡ {(λx, λy)|λx > 0.45 ∧ λy ≤ 0.43}

• the basin in which either the Kr or Gt domain has vanished:
RKG ≡ {(λx, λy)|λx ≤ 0.45 ∧ λy > 0.43}

• the destroyed end states basin in which either Hb or Kni and one of Kr or Gt
have vanished: RD ≡ {(λx, λy)|λx > 0.45 ∧ λy > 0.43}

Note that the location of the regions slightly changes for di�erent values of κ.
We found that the above boundary de�nitions constitute a good compromise. For
each basin we compute the fraction of total probability as a function of time by
integrating the weights of trajectories that are within the basin at time t. We de�ne
the survival probability of the pattern to be the integrated probability in RS at time
t after initialization: S(t) =

∫∫
RS
p(t)dλxdλy. As expected, S(t) displays roughly

exponential decay behavior after a certain lag phase that can be attributed to initial
relaxation. To obtain the destruction rate of the pattern kD we �t a function f(x) ≡
exp(−kD(t − tlag)) to S(t). This only yields satisfactory results if the �tting range
is adapted accordingly, i.e. only S(t) values for t > tlag are taken into account.
Since tlag itself is a �tting parameter we adopted the following protocol: Starting
from a value of tstart that is clearly in the relaxation regime we perform the �t on
the interval [tstart, tend] where tend is the largest time recorded. We then choose the
�tted values kD and tlag for which |tlag− tstart| is minimal. From this we compute the
pattern stability time (average time until pattern destruction) via τD ≡ 1/kD. In most
considered cases the patterns are very stable, i.e. kD very small, and we can expand
S(t) ' 1 − kD(t − tlag). As a control, we therefore also �tted g(t) ≡ kD(t − tlag) to
1−S(t) for a �xed tlag clearly in the exponential regime and obtained almost identical
results.
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Computation of average probability �uxes

To quantify which destruction pathways are dominant we computed the average �uxes
Javg into the regions of (partly) destroyed patterns. Here the average �ux is de�ned
as the average rate of increase in time of the fractional probability in the region and
obtained by �tting a linear function h(t) ≡ Javgt + P0 to PR(t) ≡

∫∫
R
p(t)dλxdλy

for R ∈ {RHK, RKG, RD} over the interval [tstart, tend] with tstart chosen such that
∂tPR(t) 6= 0 for t > tstart. P0 depends on the particular choice of tstart and is
discarded.

Computation of average �ux velocities

The average local drift velocity and di�usion constant of the trajectories in the (λx, λy)
phase space are computed by averaging displacements ∆λx(y) ≡ λx(y)(t+∆t)−λx(y)(t)
and squared displacements ∆λ2 ≡ ∆λ2

x + ∆λ2
y on a two-dimensional lattice of bins

covering the whole phase space. Displacements ∆λx(y) are assigned to the bin at
~λ ≡ (λx, λy), i.e. we are averaging outgoing displacements and the averaged vec-
tor 〈 ~∆λ〉(~λ) therefore will represent the average velocity with which trajectories
leave this bin. The local phase space di�usion constant is calculated as Dλ(~λ) ≡

1
4∆t

[
〈∆λ2〉(~λ)−

(
〈∆λx〉2(~λ) + 〈∆λx〉2(~λ)

)]
. This is done in the same way for other

combinations of phase space coordinates. The di�usion-drift decomposition is ex-
plained in more detail in the appendix.

6.4.5 Perturbation experiments

Simulations starting from perturbed initial conditions were performed directly via the
GGG simulator. First the systems were relaxed to representative states within the
metastable basin for a simulated time of trelax = 30 min. The �nal states of these
runs then were post-modi�ed according to the following two protocols:

1. �Kni expansion�: starting from mid-embryo the central Kni domain was ex-
panded as follows: the con�gurations in the nuclei just posterior to mid-embryo
were copied and used to overwrite con�gurations in the subsequent ∆ rows in
the axial (z-) direction of the cylinder. The original con�gurations were stored
and for each nucleus at row zi > Nz/2 + ∆ (counting from the anterior) the
con�guration was overwritten by the original con�guration at zi − ∆. The
posterior-most nucleus was exempted from overwriting to preserve pinning.

2. �Hb expansion�: here the anterior Hb domain was enlarged at the expense
of Kni. To this purpose we applied the same copy-paste procedure as above
starting form zi = 5, however only nuclei up to mid-embryo (zi ≤ Nz/2) were
overwritten by the original con�gurations at zi −∆.

∆ quanti�es the severity of perturbation. We found that ∆ < 4 results in changes to
the pattern that were hard to distinguish from noise, while for ∆ > 12 perturbations
were large enough to induce immediate pattern destruction with high probability.
We therefore limited systematic tests to pertubations with ∆ ∈ {4, 8, 12}. Starting
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from the perturbed initial conditions simulations were continued for tsim = 20 h
and snapshots of the current con�gurations in all nuclei were written out with an
acquisition interval of 10 min (simulated time). 10 samples starting from 10 di�erent
perturbed initial conditions were produced for each set of parameters.

In order to overcome the di�culties of boundary detection we quanti�ed the mo-
tion of gap protein domains by tracking their center of mass (CoM) along the z-axis
of the cylinder. For each gap gene G we de�ne the CoM zG as

zG ≡
∫

z

∫
r
zGtot(r, z)drdz∫

z

∫
r
Gtot(r, z)drdz

(6.7)

where Gtot = [G] + 2[G2] is the total copy number. Since our system features two Hb
domains we calculate zHb separately for the anterior (HbA) and the posterior (HbP)
part of the embryo by restricting z-integration adequately. While the CoM remains
unchanged upon symmetric changes of the domain boundaries or global copy number
increase, it is well-suited to indicate relaxations from the asymmetric perturbations
that we apply. To �nd general trends in the time-evolution of the domains CoM
trajectories were averaged over the 10 samples.
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6.A Appendix: Supplementary Information

6.A.1 Estimation of phase space di�usion coe�cient from over-

damped Langevin dynamics

Let f(X,Y, t) be a twice di�erentiable real function depending on a two-dimensional
di�usion-drift processes ~X = (X,Y ) and time t (explicitly). In the overdamped
Langevin limit, i.e. assuming that the displacements of the random walker are
goverened only by forces that stem from an underlying force �eld and by Gaussian
noise, and that its accelerations and inertia are negligible, we can describe this random
processes via

d ~X = ~vdt+ σd ~W (S6.1)

where ~W is a (two-dimensional) Wiener processes and ~v = (vX, vY) a (local) drift
velocity resulting from the potential forces. Then we may calculate the di�erential of
f with It	o's Lemma (employing Taylor expansion) as follows:

df(X,Y, t) = σ
∂f

∂X
dWX + σ

∂f

∂Y
dWY

+
[
∂f

∂t
+ vX

∂f

∂X
+ vY

∂f

∂Y
+
σ2

2
∂2f

∂X2
+
σ2

2
∂2f

∂Y 2
+ ζσ2 ∂2f

∂X∂Y

]
dt

(S6.2)

Here ζ measures the correlation between X and Y .

In order to apply this general formula to the speci�c di�usion-drift problem for the
phase space coordinates (λx, λy) we set X = λx, Y = λy and f(X,Y, t) = f(λx, λy) =
(λx − λx0)2 + (λy − λy0)2 ≡ ∆λ2 (the squared displacement function).

It	o's Lemma now reads (note that the time and mixed derivatives vanish):

d(∆λ2) = d
[
(∆λx)2 + (∆λy)2

]
= d

[
(λx − λx0)2 + (λy − λy0)2

]
' 2(λx − λx0)(vλxdt+ σdWx) + 2(λy − λy0)(vλydt+ σdWy)

+
σ2

2
2dt+

σ2

2
2dt (S6.3)

To relate the above formula to the displacements sampled in our simulations with
a �xed acquisition time interval ∆t we shall integrate the in�nitesimal contributions
over this interval. At the same time we take the ensemble average to account for the
averaging of independent samples, which causes the Gaussian terms σdWx and σdWy

to vanish. We further assume that, to a good approximation, the drift velocities and
di�usion coe�cients are constant over the time interval ∆t and di�usion isotropic in
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λx and λy direction, i.e. Dλx = Dλy = Dλ(~λ). Finally, using σ =
√

2Dλ, we obtain:

〈
∆λ2

〉
=
〈∫

∆t

d(∆λ2)
〉

=

〈∫ ∆t

0

2 [λx(t)− λx(0)]︸ ︷︷ ︸
'〈vλx 〉t

vλx︸︷︷︸
'〈vλx 〉

dt

〉
+

〈∫ ∆t

0

2 [λy(t)− λy(0)]︸ ︷︷ ︸
'〈vλy〉t

vλy︸︷︷︸
'〈vλy〉

dt

〉

+

〈∫ ∆t

0

4Dλdt

〉
+
∫

∆t

〈2∆λxσdWx〉︸ ︷︷ ︸
0

+
∫

∆t

〈2∆λyσdWy〉︸ ︷︷ ︸
0

'

〈
〈vλx〉

2
∫ ∆t

0

2tdt

〉
+

〈〈
vλy

〉2 ∫ ∆t

0

2tdt

〉
+ 4 〈Dλ〉∆t

' 〈vλx∆t〉2 +
〈
vλy∆t

〉2 + 4 〈Dλ〉∆t

= 〈∆λx〉2 + 〈∆λy〉2 + 4 〈Dλ〉∆t (S6.4)

The �nal result shows that, knowing the average displacements 〈∆λx〉 and 〈∆λx〉
and average squared displacements

〈
∆λ2

〉
at ~λ, we can compute the average di�usion

coe�cient 〈Dλ〉 (~λ) via:

〈Dλ〉 (~λ) =
1

4∆t

[〈
∆λ2

〉
(~λ)−

(
〈∆λx〉2 (~λ) + 〈∆λy〉2 (~λ)

)]
=

1
4∆t
V〈λ〉(~λ) (S6.5)

The bracket term containing the �rst moments corrects the mean squared displace-
ment for the contributions coming from the deterministic drift and tends to zero as
the process becomes purely di�usive.

6.A.2 Supplementary velocity �eld �gures

Figures S6.2, S6.3, S6.4 and S6.5 show phase space velocity �elds and trajectories
starting from perturbed initial conditions for three di�erent projections of the reaction
coordinates, for the following cases:

• for the repression strength ratio κ ' 31.6 that optimizes pattern stability with
pinning (Fig. S6.2)

• for weaker NN repression strength (κ = 1000) with pinning (Fig. S6.3)

• for the optimal repression strength ratio κ = 100 that optimizes pattern stability
without pinning (Fig. S6.4)

• for weaker NN repression strength (κ = 1000) without pinning (Fig. S6.5)
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Figure S6.1: Average phase space di�usion coe�cients as a function of κ. (A)
shows the di�usion coe�cient of phase space trajectories in the (λx, λy) space, as obtained
from the overdamped Langevin analysis described in section 6.A.1, averaged over the phase
space region RP = [0.3, 0.4]2 (which is clearly part of the �di�usive plateau�), for di�erent
repression strength ratios κ (PSU = phase space units). In (B) we plot resulting approximate
di�usion times from the phase space region of intact relaxed patterns, towards the edge of the
di�usive plateau (from which trajectories are quickly absorbed into the regions of destroyed
pattern states) as a function of κ, assuming a distance of 0.2 PSU for the initial phase space
distance to the edge.
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Figure S6.2: Average phase space velocities for the maximally stable system
(κ ' 31.6) with pinning. Left plots (A, C, E) show local average phase space velocities,
right plots (B, D, F) additionally show example trajectories for the two types of perturbations
considered in the restoration experiments. Starting points are marked by black bullets.
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Figure S6.3: Average phase space velocities for weaker NN interaction (κ = 1000)
in the system with pinning. Left plots (A, C, E) show local average phase space velocities,
right plots (B, D, F) additionally show example trajectories for the two types of perturbations
considered in the restoration experiments. Starting points are marked by black bullets.



186 Robust gap gene patterns without morphogen gradients

A

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2  0.3  0.4  0.5  0.6

m
a
x
([

K
r]

Σ,
[G

t]
Σ)

/N
Σ

max([Hb]Σ,[Kni]Σ)/NΣ

B

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2  0.3  0.4  0.5  0.6

m
a

x
([

K
r]

Σ,
[G

t]
Σ)

/N
Σ

max([Hb]Σ,[Kni]Σ)/NΣ

Kni expansion (∆=8)
Hb expansion (∆=8)

 0

 0.2

 0.4

 0.6

 0.8

 1

[1
/h

]

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

[K
n
i]

Σ/
N

Σ

[Hb]Σ/NΣ

D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

[K
n

i]
Σ/

N
Σ

[Hb]Σ/NΣ

Kni expansion (∆=8)
Hb expansion (∆=8)

 0

 0.2

 0.4

 0.6

 0.8

 1

[1
/h

]

E

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

[G
t]

Σ/
N

Σ

[Kr]Σ/NΣ

F

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

[G
t]

Σ/
N

Σ

[Kr]Σ/NΣ

Kni expansion (∆=8)
Hb expansion (∆=8)

 0

 0.2

 0.4

 0.6

 0.8

 1

[1
/h

]

Figure S6.4: Average phase space velocities for the maximally stable system
(κ = 100) without pinning. Left plots (A, C, E) show local average phase space velocities,
right plots (B, D, F) additionally show example trajectories for the two types of perturbations
considered in the restoration experiments. Starting points are marked by black bullets.
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Figure S6.5: Average phase space velocities for weaker NN interaction (κ = 1000)
in the system without pinning. Left plots (A, C, E) show local average phase space
velocities, right plots (B, D, F) additionally show example trajectories for the two types
of perturbations considered in the restoration experiments. Starting points are marked by
black bullets.
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6.A.3 Stability analysis of a mutually repressing four gene sys-

tem

In order to elucidate the reason for the stabilization of an interface of two strongly
antagonistic gene expression domains in the presence of further, weak interaction
partners we conducted a linear stability analysis on a deterministic ODE system in
steady state, which mimics the situation in a typical interface nucleus in our full-
scale system. To model the particular situation in such a nucleus more accurately
we introduce �ux terms into the ODEs, which�in an approximative fashion�take into
account the di�usive exchange of particles with neighboring nuclei.

We analysed the following set of 8 equations that describe the production, degra-
dation and (de)dimerization of four mutually repressing genes A, B, C and D:

∂tA1 =
β

(1 +B2/Ks)(1 + C2/Kw)(1 +D2/Kw)
− µMA1 − kD

onA
2
1 + kD

offA2 = 0

∂tA2 = kD
onA

2 − (kD
off + µD)A2 + jA2 = 0

∂tB1 =
β

(1 +A2/Ks)(1 + C2/Kw)(1 +D2/Kw)
− µMB1 − kD

onB
2
1 + kD

offB2 = 0

∂tB2 = kD
onB

2 − (kD
off + µD)B2 + jB2 = 0

∂tC1 =
β

(1 +D2/Ks)(1 +A2/Kw)(1 +B2/Kw)
− µMC1 − kD

onC
2
1 + kD

offC2 = 0

∂tC2 = kD
onC

2 − (kD
off + µD)C2 + jC2 = 0

∂tD1 =
β

(1 + C2/Ks)(1 +A2/Kw)(1 +B2/Kw)
− µMD1 − kD

onD
2
1 + kD

offD2 = 0

∂tD2 = kD
onD

2 − (kD
off + µD)D2 + jD2 = 0 (S6.6)

Here capital letters X1 denote monomer numbers, while capital letters with index
X2 describe dimer numbers; the total copy number is de�ned as X = X1 + 2X2. The
(monomer) production rate β, the monomeric and dimeric degradation rates µM and
µD and the dimerization forward and backward rates kD

on and kD
off are equal for all four

species, in correspondence to our full-scale model. The four genes thus have identical
properties, except for the strength by which a gene is repressed by the other genes,
which is tuned via two repression threshold parameters (dissociation constants) Ks
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and Kw. Here Ks stands for strong, Kw for weaker mutual repression, i.e. Ks < Kw.
The ratio κ = Kw/Ks corresponds to the repression strength ratio parameter κ in
the main text. For each gene X the term jX2 represents an e�ective dimeric �ux
into or out of the considered nucleus due to dimer exchange with neighboring nuclei.
To facilitate calculations we assume that in steady state these �uxes are constant;
�ux magnitudes are estimated from our spatially resolved simulations, as explained
further below. As a further simpli�cation we neglect the monomeric �uxes. This is
justi�ed by the fact that in our model the monomer degradation rate is one order
of magnitude higher than the dimer degradation rate, translating into a signi�cantly
shorter di�usion length for the monomers.

The analysis was performed by numerically solving the above steady-state equa-
tions for �xed point solutions. Stability was determined by calculating the eigenvalues
of the corresponding Jacobian at the �xed point to discriminate between stable (all
eigenvalues with negative real part), unstable (at least one eigenvalue with positive
real part) and oscillatory solutions. All parameter values were chosen in correspon-
dence to the full scale model (see Table S6.1), while κ was varied via Kw as in the
simulations.

We �rst analysed the system without dimeric �uxes, i.e. jX2 = 0 for X ∈
{A,B,C,D}. Figure S6.6 shows 3D plots of two di�erent 2D projections of the four-
dimensional �xed point solutions for the total copy numbers (A,B,C,D) as a function
of κ, the ratio between weak and strong repression threshold. Here we employ the fact
that, due to the repeating interaction symmetry, the change of 4D attractor locations
with κ can be understood by looking at the change of attractor locations in the 2D
spaces spanned by the components of two strongly and two weakly repressing species,
respectively. In Figure S6.7A-D we additionally plot 1D projections of the four single
components, which, in this case, are identical. The plots reveal two principal �xed
point regimes: A �monostable regime� in which only one of four genes can attain high
expression levels for low κ and a �coexistence regime� of two bistable pairs in which
each state of one bistable pair can coexist with each state of the other bistable pair.
The two regimes are separated by a bifurcation that occurs around κ ' κbif . Note
that when A is high on the weak partners branch (blue) in Fig. S6.6 (and its weak
partner C therefore low) within the monostable regime (κ . κbif), the corresponding
points on the strong partners branch (red) are the ones in the low-expression regime
close to zero, and vice versa. Interestingly, at κ = 1 we �nd an additional stable �xed
point at which all four genes have very low expression levels (A = B = C = D ' 1),
meaning that when all genes suppress each other equally strongly one possible out-
come is that none of them can reach signi�cant expresssion levels. Taken together this
demostrates that for κ . κbif solutions in which two genes are expressed at signi�cant
levels are unstable. Given a certain minimal domain size required in a system with
�nite repressor di�usion length this implies instability of the whole partly overlapping
�ve-stripe pattern and thus provides an explanation for fast pattern destruction in
the strong coupling regime.

As a second step we repeated the stability analysis with nonzero dimer �uxes,
in order to mimic the situation in a nucleus at the Hb-Kni expression boundaries
interface. To this end we imposed a dimer in�ux for the two strong antagonists A
and B and a dimer out�ux for C, which is a weak partner of both A and B, with
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�ux magnitudes approximately equal to average �uxes estimated on the base of time-
and circumference-averaged stationary pro�les from simulations of the system with
pinning at optimal κ. These �uxes were estimated by �rst �nding the nuclear row
Ni at the Hb−Kni interface, computing the stationary copy number gradients ∆N−
and ∆N+ with respect to the preceding and subsequent rows via �nite di�erences and
then multiplying their di�erence with the di�usive hopping rate, i.e.:

jest ≡ (∆N+ −∆N−)
4D
l2

(S6.7)

where l is the (constant) distance between nuclei.
Figure S6.7E-H demonstrates that imposing dimeric �uxes as described has a

dramatic e�ect on the �xed point solutions of the system. Here we could not �nd
any physically meaningful stable �xed points for κ . 12. For higher values of κ we
�nd that there is only one stable solution: Maybe contrary to expectation, an in�ux
of A and B dimers results in a signi�cant reduction of the expression levels of these
genes, while gene C, in spite of the assumed out�ux, reaches high expression levels.
Consequently, production of D is strongly suppressed. The total copy numbers at
the �xed points are in good agreement with typical copy numbers at the interface
between strongly repressing gene domains in our simulations.

In summary, our analysis predicts that when all genes repress each other with
close to equal strength (κ . κbif) patterns with overlapping gap gene domains are
intrinsically unstable. It further indicates that a small net in�ux of two strongly
repressing partners A and B and out�ux of one of their weak interaction partners C
may result in the counterintuitive e�ect that the expression level of A and B will be
signi�cantly reduced while C is stabilized at higher levels.
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Figure S6.6: Steady state stability analysis with zero dimer �uxes. Shown are 2D
projections of stable �xed point solutions (A,B,C,D) for the total copy numbers (monomers
+ dimers) of the considered mutually repressing four-gene system as a function of κ, the ratio
between weak and strong repression thresholds. Each plot contains data for two di�erent
projections: (A,B), i.e. strong interaction partners (red triangles), and (A,C), i.e. weak
interaction partners (blue triangles). Note that for the analysed system projections (A,B)
and (C,D) and projections (A,C), (A,D), (B,C) and (B,D) are identical for symmetry
reasons. Panels A-D display the same data in di�erent viewing perspective.
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Figure S6.7: Steady state stability analysis with zero and nonzero dimer �uxes.
Shown are the projected single components of stable �xed point solutions (A,B,C,D) for
the total copy numbers (monomers + dimers) of the considered mutually repressing four-
gene system as a function of κ, the ratio between weak and strong repressor o�-rate, for the
well-mixed system without dimer �uxes (A-D) and for the system with dimer �uxes (E-H),
mimicking the situation at an interface nucleus in the simulations.
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Quantity Symbol Value Unit
Geometry
Nuclear radius rN 2.5 µm
Nuclear volume VN 65.4 µm3

No. of nuclei in axial direction Nz 40
- resulting system length L 340 µm
No. of nuclei in circumferential direction Nφ 8
Production / degradation
Protein production rate β 0.20 s−1

Monomer degradation rate µM 0.05 s−1

Dimer degradation rate µD 0.005 s−1

- resulting e�ective degr. rate µeff 0.0095 s−1

Binding / unbinding
Intranuclear di�usion const. DN 3.2 µm2/s
Repressor target site radius σR 0.5 µm
- resulting (di�. ltd.) repressor on-rate kR

on 20.1 µm3/s
Standard (strong) repressor o�-rate kNNN

off 0.06 s−1

Weak repressor o�-rate kNN
off varied ≥ kR,s

off

Monomer protein radius σM 0.05 µm
- resulting (di�. ltd.) dimerization forward rate kD

on 4.0 µm3/s
Dimerization backward rate kD

off 0.062 µm3/s
Internuclear di�usion
Standard internuclear di�usion const. D 1.0 µm2/s
Internuclear lattice distance l 8.5 µm

Table S6.1: The standard parameters of the simulated model of the
posterior Drosophila embryo with four mutually repressing gap genes.
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Figure S6.8: Reaction network. This schematic shows the set of reactions that af-
fect production and degradation of a single gap gene species A. The strong repressor
of A is denoted by B, the weak interaction partners by C and D. For each species, X
denotes the monomer, X2 the dimer. For easy readability here we abbreviate: α ≡
kR

on = di�usion limited repressor binding rate; σ ≡ kNNN
off = next-nearest neighbor /

strong repressor unbinding rate; ω ≡ kNN
off = nearest-neighbor / weak repressor unbind-

ing rate; δ ≡ kD
on = dimerization forward rate; ε ≡ kD

off = dimerization backward rate.
In our model the shown set of reactions is de�ned for all combinations (A,B,C,D) ∈
{(Hb,Kni,Kr,Gt), (Kni,Hb,Kr,Gt), (Kr,Gt,Hb,Kni), (Gt,Kr,Hb,Kni)}.
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Summary

A Computational Study of Robust Formation

of Spatial Protein Patterns

The blueprint of all living organisms is contained in their genes. On the single cell
level, genetic information determines growth, shape and function, which on the level
of a whole organism speci�es its development and behavior. Since the discovery of
DNA and gene regulatory mechanisms it became more and more evident that cells
process their genetic information in a way comparable to a computer that runs a spe-
ci�c program. This requires the establishment of information �ow and �logical wiring�.
In biological cells this is achieved via proteins that are expressed from certain genes
and transported elsewhere to speci�cally activate (or suppress) the expression of other
genes (thus acting as �transcription factors�), or to accomplish other signalling tasks.
As a well-known example, distinct development of di�erent body parts is typically
controlled by localized concentration patterns of speci�c proteins in the respective
regions. However, in contrast to man-made information-processing devices, cells are
highly stochastic systems: both gene expression and intracellular transport, predom-
inantly occuring via di�usion, are random processes, and typical protein concentra-
tions very low, making cellular information processing prone to noise. Nevertheless,
cellular signalling and organism development appear exceedingly robust and reliable
on the macroscopic scale. The mechanisms that cells employ to control their intrisic
stochasticity recently have been the subject of numerous experimental and theoreti-
cal studies. Although it is increasingly recognized that spatial aspects chie�y a�ect
biochemical noise control, space often is not explicitly taken into account in theoret-
ical models of cellular information processing. The leading question of this work is
how cells control noise in gene expression in order to establish well-de�ned spatial
protein patterns that, on a larger scale, produce behavior that appears deterministic
and reproducible.

A major methodic di�culty arises here: Due to typically low protein numbers,
mean-�eld analysis largely fails to describe such systems accurately, while particle-
based approaches usually are demanding, both mathematically and computationally.
In the last years enhanced Green's Function Reacton Dynamics (eGFRD) was de-
veloped as an elegant and powerful stochastic simulation scheme that closes the gap
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between accuracy and e�ciency: Using exact analytical solutions, it implements an
event-driven stochastic algorithm that retains spatial information of individual par-
ticles at a markedly lower computational cost than classical simulation techniques,
such as Brownian Dynamics. However, until now eGFRD was limited to simulations
of biochemical particle ensembles in unbounded 3D space, whereas in vivo intracellu-
lar transport in lower dimensions and spatial con�nement play an important role. In
the �rst part of this thesis (chapter 2 and chapter 3) we present work that extends
eGFRD in a way that includes 1D and 2D transport on �nite structures, binding of
particles to these structures and reactions of particles both on and in between struc-
tures of di�erent dimensionality. Continuing on the main theme of this thesis, as an
example application in chapter 4 the extended eGFRD scheme is used to simulate
a particle-based stochastic model of growth factor polarization in �ssion yeast. A
di�erent model organism is the subject of chapter 5 and chapter 6: Here we study
how a speci�c gene regulation motif, mutual repression, contributes to noise-control
in the early development of the fruit �y Drosophila melanogaster, a paradigm of em-
bryogenesis. In the following, the three content blocks are described in more detail
separately.

eGFRD in all dimensions and di�erent transport modes

The main idea of eGFRD is to separate the space into simple (protective) subdomains
that contain at most two biochemically interacting particles, thus breaking down the
many-particle problem into a number of one- and two-particle problems. This makes
it possible to exactly calculate the transient analytical solution (Green's function) of
the reaction-di�usion problem for each of the subdomains individually. The Green's
functions are used to sample next-event times and expected new particle positions in
order to setup an event-driven Monte Carlo simulation. The analytical calculation of
the Green's functions thus is the�oftentimes challenging�key task in eGFRD devel-
opment. Moreover, a speci�c Green's function has to be determined essentially from
scratch for each dimension, each coordinate system and each new boundary condition.

One of the main achievements of this work is the analytical derivation of the
Green's function for the reaction-di�usion problem in 1D for various mathematical
boundary conditions, which is presented in chapter 2. Importantly, as an additional
feature, the derived solutions take into account active, drift-like transport in 1D, which
is a widespread mode of intracellular transport along linear polymer tracks in vivo.
We used the new Green's functions to implement transport on �nite 1D structures
into eGFRD, introducing several new protective domain types. As a special case, we
also derived the Green's function for a particle that di�uses in 1D and with a certain
rate binds to a reactive site (�sink�) along its way, modelling the di�usive search of a
transcription factor for its binding site on the DNA.

Similarly, we obtained the Green's functions describing di�usion and interparticle
reactions in 2D, as well as binding of particles from 3D two lower-dimension structures,
which is the subject of chapter 3. To treat the binding of a particle di�using in 3D
to a 2D particle that di�uses on a plane (�direct binding�) we derived a coordinate
transform which converts the anisotropic di�usion of the interparticle vector to a
coordinate-rescaling problem, enabling the use of previously known Green's functions
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for that case. Again, these solutions together with newly de�ned protective domain
types were used to implement transport and reactions in 2D into eGFRD. Finally,
we implemented transition domains into eGFRD, which handle transfer of di�using
particles between orthogonal planes, allowing for the creation of a simulation box
completely bounded by reactive 2D structures.

Establishment of polarized growth factor concentrations in �s-

sion yeast

The newly implemented eGFRD features enabled us to simulate a stochastic model
of the polarization of growth factor proteins in �ssion yeast, described in chapter 4.
Fission yeast forms rod-like shapes by virtue of growing in an elongated fashion from
two opposite cell poles exclusively. This growth localization is maintained by accu-
mulating growth factor proteins on the cell membrane at the poles. Experiments have
shown that proper growth factor polarization relies on a combination of (1) active 1D
transport of the growth factors on linear polymer tracks (microtubules) reaching out-
wards from the cell center with (2) 2D di�usion of a membrane-bound reaction-partner
that acts as a recruiting agent for the formation of slowly di�using membrane-bound
growth factor complexes. The mechanistic details of this interplay however remain
unknown. In our simulations we quanti�ed how e�ciently the growth factors are po-
larized along the long axis of the yeast cell as a function of key system parameters and
comparing di�erent models for binding of the growth factors to the membrane-bound
anchoring agent (direct binding from 3D to 2D vs. two-step binding, i.e. binding to
the membrane �rst, followed by di�usive search for the reaction partner). First, we
�nd that�at equal footing�the system with direct binding displays better polarization
properties than the two-step binding system. This is traced back to the fact that in
the two-step binding model growth factors are depleted from the bulk by membrane
binding much more than in the direct-binding model and therefore less likely to be
directed outwards by binding to microtubules, giving a rationale for the presence of
the membrane-bound anchoring agent in the �rst place. Second, we discover that�in
the system with direct binding�there is an optimal lifetime of the membrane-bound
growth factor complexes which maximizes a combined score de�ned as the product of
our polarity measure and the complex surface density at the cell poles; this re�ects a
trade-o� between these two factors arising upon variation of the complex lifetime.

The bene�ts of mutual repression in embryo development

The early embryonic development of the fruit �y Drosophila melanogaster is a widely
studied paradigm of developmental biology. Speci�cation of di�erent body segments
along the long axis of the egg-shaped embryo is driven by emergent protein stripe-
patterns in which distinct genes are expressed. These �gap genes� typically are ac-
tivated in a concentration-dependent manner by upstream transcription factors that
form (morphogen) gradients along the embryo axis. This way the concentration sig-
nal is converted into positional information. In this setting, the reliability with which
di�erent body parts are speci�ed directly depends on the reproducibility and sta-
bility of the protein-stripe boundaries. Intriguingly, experimental measurements of
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gap protein noise levels have revealed that �in spite of the stochastic nature of gene
expression�the boundary variance not only is surprisingly low, but even reduced with
progressing development, suggesting hidden noise-control mechanisms. As presented
in the second part of this thesis (chapter 5 and chapter 6), we studied�in a spatially-
resolved stochastic model�the noise-control properties of a gene regulatory motif that
is prominent among gap genes: mutual repression. In the context of gene regulation
mutual repression means that the protein produced from one gene suppresses the pro-
duction (transcription) of another gene and vice versa. Indeed we identi�ed several
bene�cial roles of mutual repression in the given context.

In chapter 5 we focus on a minimal model of two mutually repressing gap genes,
activated by two upstream activator gradients, respectively. We performed extensive
stochastic simulations of a model that explicitly comprises the several thousand indi-
vidual cell nuclei that constitute the embryo at that particular stage of development,
measuring the boundary variance of the activated gap protein patterns for di�erent
values of important system parameters. We �nd that mutual repression indeed plays
a useful role in limiting the boundary variance: In synergy with spatial averaging, at
an optimal gap protein di�usion constant mutual repression allows for protain domain
boundaries which are sharp and steep simulateously, facilitating downstream readout
of the spatially con�ned patterning protein signal. Moreover, this bene�cial e�ect
turns out to be very robust against varying key system parameters, such as the av-
erage level of the activator gradient: In the regime of slight activator overexpression,
mutual repression is found to bu�er against extrinsic �uctuations, i.e. �uctuations
in the concentration levels of the activator gradients, without hampering control of
the intrinsic noise. The origin of this additional bene�t is traced back to bistability
emerging from mutual repression.

The observation of a weakend role for the activator gradients in the abovemen-
tioned regime lead us to the question: Is the gradient-based activation of the gap
genes critical for correct stripe patterning in the �rst place, or can a stable gap gene
pattern also be maintained without morphogen gradients, i.e. only by mutual gap
gene interactions? This question was additionally motivated by the fact that most
gap gene stripes form in the posterior half of the embryo, where the concentration
of the morphogen that is commonly considered their master regulator is low. Most
intriguingly, the posterior gap genes repress each other mutually with a characteris-
tic pattern of alternating repression strength: while nearest-neighbor stripes interact
only weakly, mutual repression between next-nearest neighbor stripes is strong. Con-
ducting stochastic simulations of the posterior gap gene system, aided by a novel
rare-event sampling technique, we quanti�ed the pattern stability as a function of the
weak repression strength (chapter 6). We demonstrate that there is an optimal weak
repression strength for which the stability of the whole pattern is dramatically en-
hanced, reaching persistence times way beyond the biologically relevant regime. Our
results further indicate that�in the optimal setting�a restoring force is created which
counteracts �uctuations away from the stable pattern state. Finally, performing a sta-
bility analysis we show that the introduction of a weak repression partner between two
stripes of strongly repressing genes can suppress bistable switching at their interface,
thus attenuating interface �uctuations and stabilizing the whole pattern.



Samenvatting

Een numerieke studie naar de robuuste vorming van

ruimtelijke eiwit patronen

De blauwdruk van alle organismen is gecodeerd in hun genen. Deze genetische in-
formatie bepaalt de groei, vorm en functie op het niveau van een enkele cel, wat de
ontwikkeling en het gedrag van het gehele organisme bepaalt. Sinds de ontdekking
van het DNA en de mechanismen die genexpressie regelen werd het steeds duidelijker
dat cellen hun genetische informatie verwerken op een manier die sterke gelijkenis-
sen vertoont met hoe een computer een programma uitvoert. Dit leid tot de vraag
hoe in een biologische cel de benodigde �logische schakelingen� opgebouwd zijn. Een
cel neemt een �logische beslissing� door de gereguleerde expressie van eiwitten en het
transport van deze eiwitten binnen de cel. Hier kunnen de eiwitten de transcriptie van
bepaalde genen regelen (ze zijn dus werkzaam als transcriptiefactoren) of bepaalde
signaaltaken verrichten. Een bekend voorbeeld is de vorming van lichaamsdelen. Dit
wordt geregeld door de concentratie van regel eiwitten op bepaalde locaties van de cel
te verhogen. Echter, in tegenstelling tot informatie verwerkende systemen gemaakt
door de mens, zijn cellen hoogst stochastische systemen. Het gedrag van genexpressie
en intracellulair vervoer, dat doorgaans plaatsvindt door middel van di�usie, wordt
overheerst door willekeurige gebeurtenissen, waardoor bij de verwerking van infor-
matie in een cel rekening gehouden moet worden met ruis. Het is dus verrassend
dat de macroscopische ontwikkeling van een organismen zo robuust is. Recent zijn
de mechanismen die cellen gebruiken om hun inwendige stochasticiteit te beheersen
onderworpen aan talrijke experimentele en theoretische studies. Hoewel in toene-
mende mate wordt herkend dat de ruimtelijke aspecten van grote invloed zijn op het
controleren van ruis, wordt dit vaak niet meegenomen in modellen die de informatiev-
erwerking in een cel beschrijven. De voornaamste vraag in dit werk is hoe de ruis
in genexpressie voldoende beheerst wordt om de deterministisch en reproduceerbaar
ogende ruimtelijke eiwit patronen in organismen te produceren.

Nu blijkt het modelleren van de ruimtelijke aspecten binnen een cel uitdagend
te zijn: omdat eiwitten vaak in lage concentraties in de cel aanwezig zijn geeft een
mean�eld-analyse vaak een inadequate beschrijving van het systeem, terwijl een gede-
tailleerde beschrijving van alle deeltjes zowel mathematisch als numeriek ondoenlijk
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is. Recent is enhanced Green's Function Reaction Dynamics (eGFRD) ontwikkeld als
een elegante en krachtige stochastische simulatie methode dat het gat dicht tussen
nauwkeurigheid en e�ciëntie. Gebruik makend van exacte oplossingen van de dif-
fusievergelijking, implementeert het een gebeurtenis-aangedreven stochastisch algo-
ritme dat de posities van alle deeltjes in het systeem beschrijft bij een opvallend
lagere numerieke prijs dan klassieke simulatietechnieken zoals Brownian Dynamics.
Sinds kort was eGFRD gelimiteerd tot de simulatie van biochemische deeltjes in een
driedimensionale (3D) ruimte met periodieke randvoorwaarden, terwijl intracellulair
actief transport juist in lagere dimensies plaatsvindt en de ruimtelijke beperking hier
een belangrijke rol spelen. In het eerste deel van deze scriptie (hoofdstuk 2 en hoofd-
stuk 3) presenteren we een uitbreiding op eGFRD dat het mogelijk maakt één- en
tweedimensionaal vervoer op eindige structuren te simuleren. Verder maken we het
mogelijk dat deeltjes vanuit het cytoplasma binden met deze structuren, en kun-
nen reageren met andere deeltjes op hetzelfde structuur of met deeltjes uit het cy-
toplasma. Voortbordurend op het hoofdthema van deze scriptie presenteren we in
hoofdstuk 4 een toepassing van de uitgebreide mogelijkheden van eGFRD: een op
deeltjes gebaseerd stochastisch model van groeifactor polarisatie in gistcellen. Een
ander modelorganisme, de fruitvlieg Drosophila melanogaster, is het onderwerp van
hoofdstuk 5 en hoofdstuk 6: hier bestuderen we hoe een speci�ek motief van wederz-
ijdse onderdrukking in genregulatie bijdraagt aan ruiscontrole in een vroeg stadium
in de ontwikkeling van de vlieg: een paradigma van embryogenese. Hieronder gaan
we dieper in op de drie hoofdonderwerpen van de scriptie.

eGFRD in alle dimensies en verschillende manieren van trans-

port

De hoofdgedachte van eGFRD is om de ruimte onder te verdelen in simpele sub-
domeinen die hooguit twee deeltjes bevatten. Hierdoor wordt het veel-deeltjes prob-
leem opgebroken in een aantal één- en tweedeeltjesproblemen. Voor het di�usieprob-
leem geldend in elk van deze subdomeinen bestaan analytische oplossingen in de vorm
van Green's functies. De Green's functies worden gebruikt om het tijdstip van de vol-
gende gebeurtenis en de verwachte nieuwe posities van de deeltjes te berekenen zodat
een gebeurtenis-gedreven Monte Carlo simulatie ontstaat. De analytische a�eiding
van de Green's functies is dus een belangrijke en uitdagende stap in de ontwikkeling
van eGFRD. Bovendien moet een speci�eke Green's functie in wezen opnieuw worden
afgeleid voor elke dimensie, elk coördinatensysteem en elke nieuwe randvoorwaarde.

Een belangrijk resultaat van dit werk is de analytische a�eiding van de Green's
functie voor het reactie-di�usie probleem in 1D met verschillende randvoorwaarden.
We geven de a�eiding en resultaten in hoofdstuk 2. Een belangrijke eigenschap van
de oplossingen is dat ze rekening houden met actieve, driftachtig vervoer in 1D, wat
een wijdverspreide manier is van intracellulair vervoer langs lineaire polymeren. We
gebruiken de nieuwe Green's functies om vervoer op eindige 1D structuren te im-
plementeren in eGFRD. Verder hebben we het mogelijk gemaakt om in eGFRD de
zoektocht van een transcriptiefactor naar zijn promotor op het DNA te simuleren. De
Green's functie hiervoor beschrijft de 1D di�usie van een deeltje dat, als het langs een
speci�eke plek (de promotor) di�undeert, met een kans bind.
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Op een vergelijkbare wijze hebben we de Green's functies verkregen die de di�usie
en de reacties tussen deeltjes in het vlak (2D) beschrijven, zowel voor de binding van
deeltjes van het cytoplasma (3D) op lagere dimensionale structuren, wat het onderw-
erp is van hoofdstuk 3. Om de reactie van een deeltje dat in 3D di�undeert, met een
deeltje dat in 2D di�undeert (�directe binding�) te beschrijven hebben we een coördi-
natietransformatie afgeleid. Deze transformatie stelt ons in staat de anisotropische dif-
fusie van de vector tussen de deeltjes om te zetten naar een het reeds bekende probleem
van isotrope di�usie, zodat we het kunnen simuleren met de eerder afgeleide Green's
functies. We gebruiken deze oplossingen in combinatie met de nieuwe domeinen voor
2D di�usie om het transport en de reacties in 2D te implementeren in eGFRD. Tot
slot hebben we zogenaamde overgangsdomeinen geïmplementeerd in eGFRD, die de
di�usie van deeltjes tussen orthogonale vlakken behandelen, waardoor de di�usie over
de zijden van een doos mogelijk wordt.

De vorming van polarisatie in de concentratie van groeifactor

eiwitten in gistcellen

De nieuwe functies van eGFRD stellen ons in staat een stochastisch model te simuleren
van de polarisatie van de concentratie van groeifactor eiwitten in gistcellen, wat we
beschrijven in hoofdstuk 4. Gist heeft een staafachtige vorm door exclusief langs één
as te groeien vanuit de twee tegenover elkaar liggende polen. Deze lokalisatie van groei
wordt in stand gehouden door de ophoping van groeifactoren op het celmembraan bij
de polen. Experimenten hebben laten zien dat deze polarisatie veroorzaakt wordt
door een combinatie van (1) actief 1D transport van de groeifactoren langs de lineaire
polymeren (microtubuli) naar de polen, en (2) 2D di�usie van een membraangebonden
reactiepartners (ankereiwitten) van de groeifactoren. Als het membraan gebonden ei-
wit en de groeifactor een binding aangaan vormen zij een zeer langzaam di�underent
membraangebonden groeifactorcomplex. Hoe deze mechanismen leiden tot de polar-
isatie van de groeifactoren is echter onbekend. In onze simulaties kwanti�ceren we
hoe e�ciënt de groeifactoren zijn gepolariseerd langs de lange as van de gistcel, als
een functie van de belangrijkste parameters van het systeem en vergelijken we de ver-
schillende modellen voor de binding van de groeifactoren aan het membraangebonden
ankereiwit. Verschillende modellen voor interacties zijn de directe binding van 3D
naar 2D of een binding in twee stappen; i.e. eerst bind de groeifactor aan het mem-
braan, gevolgd door een zoektocht op het membraan naar zijn reactiepartner. We
vinden ten eerste dat het model met directe binding betere polarisatie eigenschappen
laat zien dan het model met binding in twee stappen. Dit komt omdat bij het tweede
model de groeifactoren grotendeels aan het celmembraan geboden zijn en nauwelijks
nog in het cytoplasma aanwezig zijn. Hierdoor binden ze minder met de microtubuli
die voor het actieve transport naar de celpolen zorgen en is de concentratie van het
eiwit bij de polen dus lager. Dit illustreert de noodzaak voor een membraangebonden
ankermiddel. Ten tweede ontdekken we dat er in het systeem met directe binding
een optimale levensduur bestaat van de membraangebonden groeifactorcomplexen.
Bij deze levensduur is het product van de polarisatiegraad en de concentratie van de
groeifactoren bij de polen optimaal. Dit optimum weerspiegelt een afweging tussen
deze twee factoren bij het variëren van de levensduur van het complex.
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De voordelen van wederzijdse onderdrukking bij genexpressie

in de embryonale ontwikkeling

De vroegste stadia in de embryonale ontwikkeling van de fruitvlieg Drosophila me-
lanogaster gelden als een paradigma in de ontwikkelingsbiologie. De lichaamsseg-
menten waaruit de fruitvlieg is opgebouwd worden in de eerste stadia van ontwikkeling
gevormd langs de lange as van het embryo. De locatie van de segmenten wordt bepaalt
door een aantal regel genen die in een gestreept patroon langs de as van het embryo
actief zijn. De activiteit van deze zogenaamde kloofgenen (gap genes) is afhanke-
lijk van de concentratie van transcriptiefactoren. De concentratie valt af langs de as
van het embryo en vormt zo een morfogene gradiënt. Hierdoor geeft de concentratie
van de transcriptiefactoren in een cel informatie over de positie van deze cel langs
de embryonale as. De nauwkeurigheid waarmee de positie en de speci�catie van een
lichaamsdeel bepaald wordt hangt direct af van hoe scherp de grenzen tussen de ge-
bieden met verschillende actieve genen van het embryo zijn. De gemeten niveaus van
ruis in de kloofeiwit concentraties in het embryo laten zien dat, ondanks de stochastis-
che aard van genexpressie, de variantie in de positie van de grensgebieden niet alleen
verrassend laag is, maar zelfs afneemt met de ontwikkeling van de fruitvlieg. Dit sug-
gereert de aanwezigheid van mechanismen voor ruiscontrole. In het tweede deel van
deze scriptie (hoofdstuk 5 en hoofdstuk 6), bestuderen we�in een ruimtelijk opgelost
stochastisch model�de eigenschappen van ruiscontrole met een motief van genregu-
latie dat veel voorkomt onder kloofgenen: wederzijdse onderdrukking. Bij genregulatie
betekend wederzijdse onderdrukking dat het eiwit behorend bij een bepaald gen de
productie (transcriptie) van een ander gen onderdrukt en vice versa. We vinden dat
het motief van wederzijdse onderdrukking de nauwkeurigheid van de positie van de
grensgebieden sterk verbetert.

In hoofdstuk 5 behandelen we een minimaal model van twee zich wederzijdse on-
derdrukkende kloofgenen, die geactiveerd worden door twee gradiënten van transcrip-
tiefactoren. We voeren uitgebreide stochastische simulaties uit van een model met een
duizendtal individuele celkernen waaruit het embryo bestaat. We meten de variantie
op de grens van de patronen van geactiveerde kloofeiwitten bij verschillende waarden
van de systeemparameters. We vinden dat wederzijdse onderdrukking een belangrijke
rol speelt in het verminderen van de variantie van de positie van het grensgebied.
Samen met de ruimtelijke middeling van eiwitconcentraties laat een wederzijdse on-
derdrukking bij een optimale di�usieconstante van het kloofeiwit eiwitgrenzen toe die
tegelijk scherp en steil zijn. Hierdoor ontstaat het robuuste ruimtelijke patroon in de
embryo. Het blijkt dat het fenomeen van scherpe grensgebieden persistent is bij vari-
atie van de systeemparameters. Bijvoorbeeld als we de activatorgradiënt veranderen:
indien sprake is van een te hoge expressie van het activator gen, treedt de wederzijdse
onderdrukking op als een bu�er tegen extrinsieke schommelingen, i.e. schommelingen
in de concentratieniveaus van de activatorgradiënten, zonder de controle over de in-
trinsieke ruis te belemmeren. Dit mechanisme dankt zijn werking aan de bistabiliteit
door de wederzijdse onderdrukking.

De observatie dat de activatorgradiënten minder belangrijk zijn voor de bepaling
van het grensgebied leidt tot de volgende vraag: is de activatie van de kloofgenen
door het morfogen essentieel voor het robuuste streeppatroon, of is het patroon van
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kloofgenen ook stabiel met alleen onderlinge interacties tussen de kloofgenen? Deze
vraag wordt nog extra gemotiveerd door de observatie dat de meeste kloofgenstrepen
vormen in het achterdeel van het embryo, waar de concentratie van het morfogen zo
laag is dat het onwaarschijnlijk is dat het nog voor celdi�erentiatie zorgt. Fascinerend
is dat de kloofgenen elkaar onderling onderdrukken met een karakteristiek patroon
van afwisselende sterkte van interactie: terwijl de eiwitten in grenzende gebieden
elkaars expressie slechts zwak onderdrukken, is de onderlinge onderdrukking tussen
de gebieden naast de buren zeer sterk. We hebben de stabiliteit van dit systeem van
kloofgen interactie onderzocht als functie van de zwakke interactie door middel van
stochastische simulaties in combinatie met een nieuwe techniek die geoptimaliseerd is
voor de simulatie van zeldzame gebeurtenissen (hoofdstuk 6). We laten zien dat er
een zwakke interactie van onderdrukking bestaat, waarbij de stabiliteit van het hele
patroon gemaximaliseerd is, en de levensduur van het patroon vele malen langer is
dan biologische relevante tijdschalen. Onze resultaten wijzen bovendien uit dat in het
optimale regime een corrigerende kracht ontstaat die schommelingen die wegleiden
van het stabiele patroon tegen gaat. Ten slotte laten we door middel van een sta-
biliteitsanalyse zien dat de introductie van een zwakke onderdrukkingspartner tussen
twee gebieden van sterk onderdrukkende genen de bistabiliteit van de eiwitconcen-
traties in het grensgebied onderdrukt en daarmee de �uctuaties in de positie van het
grensgebied verzwakken, wat de stabiliteit van het hele patroon versterkt.
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List of abbreviations

Abs absorbing

Bcd / bcd Bicoid protein / gene

BD Brownian Dynamics

Cad / cad Caudal protein / gene

CDF cumulative distribution function

Cyl cylindrical

eGFRD enhanced Green's Function Reaction Dynamics

FCS �uorescence correlation spectroscopy

FFS forward �ux sampling

FRAP �uorescence recovery after photobleaching

GFRD Green's Function Reaction Dynamics

GGG Gap Gene Gillespie

Gt / gt Giant protein / gene

Hb / hb Hunchback protein / gene

Inf in�nite

Kni / kni Knirps protein / gene

Kr / kr Krüppel protein / gene

NETO new end take-o�

NN nearest neighbor

NNN next-nearest neighbor

Nos / nos Nanos protein / gene

NS-FFS Non-Stationary Forward Flux Sampling

223



ODE ordinary di�erential equation

PDE partial di�erential equation

PDF probability density function

PSU phase space unit

Rad radiating, radiative

SSA Stochastic Simulation Algorithm

Sym symmetric

TIS transition interface sampling

Tll / tll Tailless protein / gene

TPS transition path sampling

WLOG without loss of generality
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List of persons

In this appendix for the interested reader we present some information about some of
the persons behind the names mentioned in di�erent places throughout this book.

Friedrich Wilhelm Bessel (∗1784 in Minden, Westfalen Province, Prussia;
†1846 in Königsberg, East Prussia). German mathematician and astronomer. Af-
ter an apprenticeship in a trade company, he turned towards astronomy, working
at Lilienthal observatory near Bremen. His work attracted widespread attention.
In spite of lacking university education, at the age of 25 he was appointed direc-
tor of the Royal Prussian Observatory in Königsberg. In the course of studying
many-body gravitational systems he developed the theory of Bessel functions,
today commonly used throughout classical and quantum physics.

George Green (∗1793 in Sneinton, England; †1841 in Nottingham, England).
British mathematician and physicist. Born as a wealthy baker's son, he received
some school education. He started his career as a miller, later inheriting half of his
father's business. His economic success increasingly allowed him to turn towards
science. At the age of 39 he enrolled for undergraduate studies in Cambridge
and �nished with a BA degree. His famous contributions to integral calculus �rst
remained largely unknown to the scientists of his time. Only after his death their
use became commonplace in physics and mathematics.

Hermann Hankel (∗1839 in Halle an der Saale, Saxony Province, Prussia; †1873
in Schramberg, Württemberg). German mathematician. He grew up in a physics
professor's family in Leipzig, Saxony. After studying mathematics with Möbius,
Riemann (in Göttingen), Weierstraÿ and Kronecker (in Berlin), he became
a professor in Erlangen, Bavaria. He made important contributions to integration
theory, complex analysis and the theory of special functions, being most known for
the development of the Hankel transform. Having su�ered from various diseases
early on, he died at a young age.

Marian Smoluchowski, Ritter von Smolan (∗1872 in Vorderbrühl, Austria;
†1917 in Cracow, Poland). Austro-Hungarian / Polish physicist. Born into an
aristocrat family, he grew up in larger Vienna, where he studied physics with
Exner and �tefan. After working in Paris, Glasgow and Berlin, he �rst became
a professor in Lwów / Lviv, Galicia in 1900, then in 1912 in Cracow. In�uenced by
Boltzmann's ideas, he co-pioneered statistical physics. He described Brownian
motion independently of Einstein and provided the �rst theory of di�usion in a
force �eld. He died in an dysentry epidemy in 1917.
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Paul Langevin (∗1872 in Paris, France; †1946 ibid.). French physicist. He
commenced his studies at École de Physique et Chimie and ENS in Paris, later
continuing in Cambridge. He obtained his PhD at the Sorbonne with P. Curie in
1902, only to become a physics professor at Collège de France in 1904. He became
director of the École de Physique et Chimie in 1926 and member of the Académie
des Sciences in 1934. As an anti-fascist, he was removed from his position during
the German occupation (1940�44). He developed groundbreaking mathematical
methods for the stochastic description of molecular systems (Langevin dynamics).

Oswald Theodore Avery (∗1877 in Halifax, Nova Scotia, Canada; †1955 in
Nashville, Tennessee, USA). Canadian-American physician and medical researcher.
He was born in Canada, but moved to New York City at young age, later study-
ing medicine at Colgate and Columbia University. After graduating in 1904 he
practiced as a physician, entering medical research in 1907. The major part of
his work was done at Rockefeller University. Together with MacLeod and Mc-

Carty, Avery is credited with the discovery that DNA is the carrier of genetic
information. Though outstandingly important, their work was never awarded the
Nobel-prize.

Erwin Schrödinger (∗1887 in Vienna; †1961 ibid.). Austrian-Irish physicist.
He studied physics in Vienna with Hasenöhrl and Exner. In 1921 he became
professor at the (then German) University of Breslau, later moving to Zürich. He
succeeded Planck on his chair in Berlin in 1927, but left Germany for England
when the Nazis took power, only to receive the Nobel Prize and return to Austria
shortly afterwards. Fleeing the Nazis again in 1939, he �nally became Theoretical
Physics Director in Dublin. He was �rst to describe quantum mechanics as an
eigenvalue problem, spearheading essentially all of subsequent quantum theory.

Conrad Hal Waddington (∗1905 in Evesham, England; †1975 in Edinburgh,
Scotland). British biologist, paleontologist and philosopher. Born in England, he
spent his early years in Southern India, before being sent back to England for
schooling at the age of 4. He studied natural sciences and philosophy in Cam-
bridge. After World War II he became a professor in Edinburgh. He made im-
portant contributions to genetics, developmental biology and evolution theory. In
particular, he is credited with introducing the concept of the epigenetic landscape
as a thinking model for progressing organism development.

Colin Munro MacLeod (∗1909 in Port Hastings, Nova Scotia, Canada; †1972).
Canadian-American geneticist. He entered medicine studies at McGill University,
Montreal, already at the age of 16, �nishing at the age of 23. After a short stay at
Montreal General Hospital, he joined the research group of Avery at Rockefeller
University in 1934. There he contributed to demonstrate that DNA is the carrier
of genetic information. Later he turned towards immunology and epidemiology.
He was chie�y involved in international programs �ghting cholera in South East
Asia and, from 1961 onwards, life sciences advisor of several US presidents.

Maclyn McCarty (∗1909 in South Bend, Indiana, USA; †2005 in New York City,
USA). American biochemist and geneticist. He studied biochemistry in Stanford
and medicine at Johns Hopkins University, graduating in 1937. After specializing
as a pediatrician, he joined Avery's research at Rockefeller University in 1941.
Together with MacLeod they showed that DNA is the carrier of genetic informa-
tion. He was at Rockefeller University for almost 60 years, becoming leader of the
bacteriology and immunology lab in 1946, later physician-in-chief of the university
hospital. He helped to elucidate how streptococci cause rheumatic fever.
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Jacques Lucien Monod (∗1910 in Paris, France; †1976 in Cannes, France).
French biochemist. Son of a French mother and an American father, he grew up
in Cannes. He studied biology at the Sorbonne. During the war he was an active
member of the Résistance. As one of the �rst propagators of quantitative and
molecular biology, he chie�y contributed to genetics, enzymology and bacteriology.
Together with Jacob and Lwoff he received the Nobel prize for their work on
the lac operon, the �rst discovered example of a gene regulation. He also coined
the term diauxie to characterize two distinct growth modes.

Alan Turing (∗1912 in London, England; †1954 in Wilmslow, England). British
mathematician, physicist and computer scientist. He was brought up in England
while his parents partly worked in India. He studied mathematics in Cambridge
and Princeton, quickly displaying his extraordinary skills. His work on compu-
tation theory and cryptology today forms the base of computer science. During
World War II he lead the team that broke the German Enigma cipher machine,
decisively contributing to the allied victory. Studying pattern formation in bio-
chemical systems, he also pioneered mathematical biology.

Kiyoshi It	o (∗1915 in Hokusei, Mie, Honsh	u, Japan; †2008 in Ky	oto, Japan).
Japanese mathematician. In 1938 he graduated in Mathematics from the Univer-
sity of Tokyo, receiving his PhD in 1945. During World War II he worked for the
national statistical o�ce, where he started to develop his new ideas on stochastic
processes. Becoming a professor in Ky	oto in 1952, he had numerous stays abroad,
in Stanford, Princeton, Cornell and Aarhus. His novel way of describing stochas-
tic processes today is well-known as It	o calculus, widely applied in science and
economy. He wrote in Japanese, Chinese, German, French and English.

Francis Harry Compton Crick (∗1916 in Weston Favell, England; †2004 in San
Diego, California, USA). British molecular biologist, biophysicist and neuroscien-
tist. Growing up in Northampton area, he studied physics at University College,
London. There he also began his PhD project, which however was interrupted by
a lab bombing during World War II. After the war he changed towards biology.
In 1949 he started to work on X-ray christallography of DNA in Cambridge. As a
35-year old graduate student, in 1953 he resolved the structure of DNA together
with Watson (Nobel prize 1962). Later he lead an own institute in La Jolla.

Edward B. Lewis (∗1918 in Wilkes-Barre, Pennsylvania, USA; †2004). American
geneticist. Having spent his youth in Pennsylvania, he studied biostatistics at the
University of Minnesota. He obtained his PhD in 1942, working on Drosophila
genetics with Sturtevant at Caltech. In World War II he served as a US Air
Force meteorologist. He is considered a founding father of developmental genetics.
For his studies on Drosophila development he received the Nobel Prize in Medicine
in 1995, together with Nüsslein-Volhard and Wieschaus. He also contributed
to radiology, studying the e�ect of nuclear fallout on cancer formation.

François Jacob (∗1920 in Nancy, France). French geneticist. Born into a mer-
chant's family, he enjoyed education in prestigeous schools. He demonstrated a
high talent in mathematics and physics, but decided to enrol for medical stud-
ies. During the war he escaped to Britain to join the allied cause. He �nished his
studies and became a medical doctor in 1947 only to turn towards microbiology re-
search shortly afterwards, later working with Monod. Together with Lwoff they
received the Nobel prize in 1967 for their groundbreaking work on transcriptional
regulation of enzyme expression in E. coli.
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James Dewey Watson (∗1928 in Chicaco, Illinois, USA). American molecular
biologist, geneticist and zoologist. Fascinated by bird-watching from his child-
hood, he initially aimed at becoming an ornithologist. However, after reading
Schrödinger's book What Is Life?, he decided to study genetics in Chicago and
at Indiana University, receiving his PhD in 1950. He �rst worked in Copenhagen,
but changed to Cavendish Laboratory (Cambridge) only 1 year later. In 1953, to-
gether with Crick, he elucidated the structure of DNA (Nobel prize 1962). Later
he became a professor in Harvard and directed the Cold Spring Harbor Laboratory.

Lewis Wolpert (∗1929 in Johannesburg, Republic of South Africa). South-
African biologist, scienti�c author and broadcaster. Originally trained as a con-
struction engineer, he moved to London to become a developmental biology re-
searcher. Today he is member of the Royal Society and professor emeritus of the
University College London. Wolpert is known for introducing the �French �ag
model�, one of the �rst explanations for how genetic information is converted into
positional information to specify distinct development of body parts, into devel-
opmental biology.

Daniel Thomas Gillespie (∗1938 in Missouri, USA). American physicist. He
was born in Missouri and grew up in Oklahoma. He studied at Rice University and
obtained his PhD at Johns Hopkins University with a dissertation in experimental
elementary particle physics. From 1971 to 2001, he worked as a civilian scientist
at the Naval Weapons Center in China Lake, California. There he developed
his famous algorithm for next-event driven stochastic simulation of biochemical
systems. Since 2001 he is a private consultant in computational biochemistry,
co-working with research groups at various Californian universities.

Christiane Nüsslein-Volhard (∗1942 in Magdeburg, Sachsen-Anhalt, Ger-
many). German biochemist. Though born in Magdeburg, she grew up in Frankfurt
/ Main, where she started to study biology, later also biochemistry in Tübingen,
where she completed her PhD. In 1978 she became a group leader at the EMBL
in Heidelberg. Here she conducted her famous work on the genetic regulation
of �y embryogenesis together with Wieschaus, for which (with Lewis) they re-
ceived the Nobel Prize. Later she directed the MPI for developmental biology in
Tübingen. She is a guest professor at numerous universities.

Eric F. Wieschaus (∗1947 in South Bend, Indiana, USA). American biologist.
He spent most of his youth in Alabama. After his studies at the University of Notre
Dame and in Yale, he went for his �rst postdoc to the EMBL in Heidelberg, working
on the genetic basis of fruit �y embryogenesis with Nüsslein-Volhard. For this
groundbreaking experimental work they received the Nobel Prize in Physiology or
Medicine together with Lewis. Today Wieschaus teaches molecular biology and
biochemistry in Princeton and the University of Medicine and Dentistry of New
Jersey.
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