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Abstract
In recent years it has been increasingly recognized that biochemical signals are not necessarily
constant in time and that the temporal dynamics of a signal can be the information carrier.
Moreover, it is now well established that the protein signaling network of living cells has a
bow-tie structure and that components are often shared between different signaling pathways.
Here we show by mathematical modeling that living cells can multiplex a constant and an
oscillatory signal: they can transmit these two signals simultaneously through a common
signaling pathway, and yet respond to them specifically and reliably. We find that information
transmission is reduced not only by noise arising from the intrinsic stochasticity of
biochemical reactions, but also by crosstalk between the different channels. Yet, under
biologically relevant conditions more than 2 bits of information can be transmitted per
channel, even when the two signals are transmitted simultaneously. These observations
suggest that oscillatory signals are ideal for multiplexing signals.
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1. Introduction

Cells live in a highly dynamic environment, which means
that they continually have to respond to a large number of
different signals. One possible strategy for signal transmission
would be to use distinct signal transduction pathways for the
transmission of the respective signals. However, it is now
clear that components are often shared between different
pathways. Prominent examples are the mitogen-activated
protein kinase (MAPK) signaling pathways in yeast, which
share multiple components [1, 2]. In fact, cells can even
transmit different signals through one and the same pathway,
and yet respond specifically and reliably to each of them.
Arguably the best-known example is the rat PC-12 system,
in which the epidermal growth factor (EGF) and neuronal
growth factor (NGF) stimuli are transmitted through the
same MAPK pathway, yet give rise to different cell fates,
respectively differentiation and proliferation [3, 4]. Another
example is the p53 system, in which the signals representing
double-stranded and single-stranded breaks in the DNA are
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transmitted via the same pathway [5]. These observations
suggest that cells can multiplex biochemical signals [6], i.e.
transmit multiple signals through one and the same signaling
pathway, just as many telephone calls can be transmitted
simultaneously via a shared medium, a copper wire or
the ether.

One of the key challenges in transmitting multiple signals
via pathways that share components is to avoid unwanted
crosstalk between the different signals. In recent years, several
mechanisms for generating signaling specificity have been
proposed. One strategy is spatial insulation, in which the
shared components are recruited into distinct macromolecular
complexes on scaffold proteins [1, 7]. This mechanism
effectively creates independent communication channels, one
for each signal to be transmitted. Another mechanism is kinetic
insulation, in which the common pathway is used at different
times, and a temporal separation between the respective signals
is thus established [8]. Another solution is cross-pathway
inhibition, in which one signal dominates the response
[9–13]. In the latter two schemes, kinetic insulation
and cross-pathway inhibition, the signals are effectively
transmitted via one signaling pathway, though in
these schemes multiple messages cannot be transmitted
simultaneously.
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We have recently demonstrated that cells can truly
multiplex signals: they can transmit at least two signals
simultaneously through a common pathway, and yet respond
specifically and reliably to each of them [6]. In the multiplexing
scheme that we proposed, the input signals are encoded in the
concentration levels of the signaling proteins. The underlying
principle is, however, much more generic, since essentially
any coding scheme can be used to multiplex signals. This
observation is important, because it is becoming increasingly
clear that cells employ a wide range of coding strategies for
transducing signals. One is to encode the signals in the duration
of the signal. This is the scheme used by the NGF–EGF
system: while EGF stimulation yields a transient response
of ERK, NGF leads to a sustained response of ERK [3, 4].
Another strategy is to encode the message in the frequency
or amplitude of oscillatory signals. Indeed, a large number
of systems have now been identified that employ oscillatory
signals to transduce information. Arguably the best-known
example is calcium oscillations [14], but other examples are
the p53 [5], NFAT [15, 16], nuclear ERK oscillations [17] and
NF-κB system [15, 18–20]. In fact, cells use oscillatory signals
not only to transmit information intracellularly, but also from
one cell to the next—insulin [21] and gonadotropin release
hormone [22] are prominent examples of extracellular signals
that oscillate in time. More examples of systems that encode
stimuli in the temporal dynamics of the signal are provided in
the recent review article by Behar and Hoffmann [23].

While in [6] we showed that biochemical networks can
multiplex two binary signals that are constant time, here we
demonstrate that they can also multiplex oscillatory signals.
We present a system that multiplexes two signals. One signal
is constant in time, yet the magnitude of the signal depends
on the message to be transmitted; the information is thus
encoded in the magnitude of the protein concentration. The
other signal oscillates in time, but with an amplitude that
depends on the message; the information is thus encoded in the
amplitude of the concentration oscillations. These two input
signals are then multiplexed in the dynamics of a common
signaling pathway, which is based on well-known network
motifs such as the Goldbeter–Koshland push–pull network
[24] and the incoherent feedforward motif [25]. The dynamics
of the common pathway are finally decoded by downstream
networks.

Our results highlight that information transmission is
a mapping problem. For optimal information transmission,
each input signal needs to be mapped onto a unique output
signal, allowing the cell to infer from the output what the
input was. It is now well established that noise, arising
from the inherent stochasticity of biochemical reactions,
can reduce information transmission [6, 20, 26–31], because
a given output signal may correspond to different input
signals. Additionally, here we show that crosstalk between
the two different signals can also compromise information
transmission: a given state of a given input signal can map onto
different states of its corresponding output signal, because the
input–output mapping for that channel depends on the state
of the signal that is transmitted through the other channel.
This crosstalk presents a fundamental bound on the amount

Figure 1. Schematic drawing of the multiplexing system. Two
signals are multiplexed. Signal S1 oscillates in time while signal S2

is constant. The message of S1 could be encoded either in the
amplitude or in the frequency of the oscillations, but in this work we
focus on the former. The message of S2 is encoded in the
concentration. The output or response of S1 is X1 while the response
of S2 is X2. Encircled is the adaptive motif, used to read out the
amplitude of the oscillations of S1.

of information that can be transmitted, because it limits
information transmission even in the deterministic, mean-field
limit. We also show, however, that under biologically relevant
conditions more than 2 bits of information can be transmitted
per channel, which means that each channel can transmit at
least four messages with 100% fidelity. We end by comparing
our results with observations on experimental systems, in
which oscillatory and constant signals are transmitted through
a common pathway.

2. Results

2.1. The model

Figure 1 shows a cartoon of the setup. We consider two input
species S1 and S2, with two corresponding output species,
X1 and X2, respectively. The concentration S1(t) of input S1

oscillates in time, while the concentration of S2 is constant in
time. An input signal can represent different messages; that
is, the input can be in different states. For S1 the different
states could be encoded either in the amplitude or in the
period of the oscillations. Here, unless stated otherwise, we
will focus on the former and comment on the latter in
section 3. The different states of S2 correspond to different
copy numbers or, since we are working at constant volume,
concentration levels S2. The signals S1 and S2 drive oscillations
in the concentration V (t) of an intermediate component V,
with a mean that is determined by S2 and an amplitude
that is determined by S1 (see Supporting Information,
stacks.iop.org/PhysBio/11/026004/mmedia).The states of S1

are thus encoded in the amplitude of V (t) while the states of
S2 are encoded in the mean level of V . The output X2 reads out
the mean of V (t) and hence the state of its input S2 by simply
time-integrating the oscillations of V (t). The output X1 reads
out the amplitude of the oscillations in V (t) and hence the state
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of S1 via an adaptive network, indicated by the dashed circle.
We now describe the coding and decoding steps in more detail.

2.1.1. Encoding. In the encoding step of the motif, the two
signals S1, S2 are combined into the shared pathway. The
signals Si are modeled as a sinusoidal function

Si(t) = μi

(
1 + Ai sin

(
2π

t

Ti

))
, (1)

where μi is the signal mean, Ai is the signal amplitude and
Ti is the period of the signal oscillation. We assume that the
signals are deterministic and discuss the effects of noise later.
As discussed above, S1 is an oscillatory signal, with kinetic
parameters A1, T1 and constant μ1. S2 is constant, A2 = 0,
and the concentration level μ2 carries the information (i.e. sets
the state) in the signal. In recent years it has been shown that
biochemical systems can tune separately the amplitude and
frequency of an oscillatory signal [32, 33].

The simplest shared pathway is a single component, V,
which could be a receptor on the cell or nuclear membrane,
but could also be an intracellular enzyme or a gene regulatory
protein. We imagine that each signal is a kinase for V, which
can switch between an active (e.g. phosphorylated) state (VP)
and an inactive (e.g. unphosphorylated) state, such that

dV P

dt
= kV [

∑
i Si(t)](VT − V P)

KV + (VT − V P)
− mV ET

V P

MV + V P
, (2)

where we sum over the two signals S1(t) and S2(t) =
μ2. The dephosphorylation is mediated by a phosphatase,
that has a constant copy number ET . In equation (2) we
assume Michaelis–Menten dynamics for V(see Supporting
Information, stacks.iop.org/PhysBio/11/026004/mmedia).

The Michaelis–Menten kinetics of the activation of V
could distort the transmission of the oscillatory signal of
S1. This could reduce the amplitude of the oscillations or
transform the sinusoidal signal into a signal that effectively
switches between two values. Such transformations potentially
hamper information transmission. We therefore require that
the component V accurately tracks the dynamics of the input
signals. It is well known that a linear transfer function between
S andV does not lead to a deformation of the dynamic behavior,
but only to a rescaling of the absolute levels (see Supporting
Information, stacks.iop.org/PhysBio/11/026004/mmedia). A
linear transfer function can be realized if the kinase acts in
the saturated regime, while the phosphatase is not saturated
(KV � (VT − V P(t)), MV � V P(t)), leading to

dV P

dt
= kV

(∑
i

Si (t)

)
− m′

VV P. (3)

with m′
V = mV ET /MV .

2.1.2. Decoding V P to X1, X2. The second part of the
multiplexer is the decoding of the information in V P into a
functional output (see figure 1). The signals that are encoded
in V P have to be decoded into two output signals, the responses
X1 and X2. We imagine that the cell should be able to infer
from an instantaneous measurement of the output response the
state of the corresponding input signal. Therefore, we take the

outputs of the multiplexing motif to be the concentration levels
X1 and X2 of the output species X1 and X2, respectively. Here
X1 is the response of S1, while X2 is the response of S2.

The response X2 should be sensitive to the concentration
of S2, but be blind to any characteristics of S1. In our simple
model there is only one time-dependent signal, namely S1; S2

is constant in time. Since VP has a linear transfer function
of the signals (equation (3)), the average level of V P, 〈V P〉,
is independent of both the amplitude A1 and the period T1 of
the oscillations in S1. The average 〈V P〉 does depend on the
mean concentration level of the two signals, and since S1 has
a constant mean, changes in 〈V P〉 reflect only a change in the
mean of S2, μ2. As a result, a simple linear time-integration
motif can be used as the final read-out for S2. We therefore
model X2 as

dX2

dt
= kX2V

P(t) − mX2 X2(t). (4)

The degradation term in the above expression constitutes a
simple and common integration motif which is sufficient for
our purpose, even though other decoding motifs might work
even better. Since equation (4) is linear, 〈X2〉 is a function of
〈V P〉 only. Moreover, if the response time of X2, τX2 (= m−1

X2
),

is much longer than the oscillation period T1 of S1, the effect
of the oscillations on the instantaneous concentration X2 is
integrated out. This is important for reducing the variability in
〈X2〉 due to dynamics in the system [34].

For X1 a simple time-integration scheme does not work.
The information that has to be mapped onto the output
concentration X1 is the amplitude of S1, which is propagated
to V P. The output X1 should therefore depend on the amplitude
of the oscillations of V P, but not on its mean 〈V P〉, since the
mean represents the information in S2. These requirements
mean that the frequency-dependent gain of the network from
V to X1 should have a band-pass structure. The frequency-
dependent gain shows how the amplification of the input signal
depends on the frequency of the signal [35] (figure 2). Due to
the finite lifetime of the molecules, the frequency-dependent
gain of any biochemical network inevitably reaches zero at
high frequencies. Here we require that at the other end of
the frequency spectrum, in the zero-frequency limit, the gain
should also be small: changes in the constant level of VP,
which result from changes in S2, should not be amplified
because X1 should not respond to changes in S2. Indeed, only
at intermediate frequencies should the gain be large: changes
in the amplitude of the oscillations of VP at the frequency
of the input S1 must be strongly amplified, because these
changes correspond to changes in S1 to which X1 must respond.
The network between V and X1 should thus have a frequency
transmission band that matches the frequency of S1. The output
X1 will then strongly respond to S1 but not to S2.

A common biochemical motif with a frequency band-pass
filter is an adaptive motif [36]. An adaptive system does not
respond to very slowly varying signals, essentially because it
then already adapts to the changing signal before a response
is generated. Indeed, the key feature of an adaptive system is
that the steady-state output is independent of the magnitude of
a constant input, meaning that

〈W 〉 = f ({all parameters} /∈ 〈V P〉). (5)
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(a) (b)

Figure 2. The gain g2
W P (ω) for channel 1 for different parameter sets. The circles indicate the response times τi. (a) The effect of changing

the time scale kR = μR. (b) The effect of changing the signal S2 in the other channel 2; it is seen that the gain g2
W P (ω) of channel 1 depends on

S2, which may lead to crosstalk. Parameters: panel (a): μ2 = 500, kR = mR; panel (b): μ2 = 200 and μ2 = 800, kR = 1, mR = 1; panels (a),
(b): μ1 = 0, kV = 0.1, KV = 10−4VT , mV ET = 600, MV = 5VT ,VT = 1000, kW = 1, KW = MW = WT /4,WT = 1000; mW sets the time scale.

This appears to be precisely what is required, because it means
that when S1 is absent and S2 is changed, the output X1 remains
constant, as it should—only X2 should change when S2, a
signal constant in time, is changed. On the other hand, while
the steady-state output of an adaptive network is insensitive
to variations in constant inputs, it is, in general, sensitive to
dynamical inputs. This observation is well known; it is, e.g.,
the basis for the chemotactic behavior of E. coli, where the
system responds to a change in the input concentration, and
the strength of the response depends on the magnitude of the
change in input concentration. This is another characteristic
that is required, because it allows the magnitude of the response
X1 to depend on the amplitude A1 of the oscillations in S1, thus
enabling a mapping from A1 to X1. The important question
that remains is that of whether the magnitude of the response
solely depends on the change in the input concentration, which
reflects S1, or whether it also depends on the absolute value of
the input concentration, which reflects S2. In the following, we
will show that it may depend on both, potentially introducing
crosstalk between the two signals.

Two common ways to construct an adaptive motif are
known: the negative feedback motif and the incoherent
feedforward motif [37–41]. In this multiplexing system we use
the latter. In the incoherent feedforward motif the input signal,
in our case V P, stimulates two downstream components R, W;
see figure 1. One of the downstream components, R, is also a
signal for the other downstream component, W. Importantly,
the regulatory effect of the direct pathway (V P → W ) is
opposite to the effect of the indirect pathway (V P → R → W ).
As a result, if VP activates W, this activation is counteracted
by the regulation of W through R. We thus obtain

dR

dt
= kRV P − mRR, (6)

dW

dt
= kW

V P(WT − W P)

KW + (WT − W P)
− mW

RW P

MW + W P
. (7)

This motif is adaptive, which can be shown by setting the
time derivatives in equation (6) and equation (7) to zero and
solving for the steady state 〈W P〉. This yields

0 = (kW (WT − 〈W P〉))(mR(〈W P〉 + MW ))

(KW + (WT − 〈W P〉))(mW kR〈W P〉) . (8)

Although the full expression for 〈W P〉 is unwieldy to present,
equation (8) shows that it does not depend on the magnitude of
a constant input 〈V P〉, which means that the network is indeed
adaptive.

For a correct separation of the signals, the response
W should be insensitive to the average level of V P, 〈V P〉,
since 〈V P〉 carries information on S2, and not S1. Indeed, a
dependence of W on 〈V P〉 and hence on S2 necessarily leads
to unwanted crosstalk between the two information channels.
The adaptive property of the network ensures that W P is
insensitive to the mean of V P when V P is constant in time.
Consequently, when signal 1 is absent (S1 = A1 = 0), then
W P and hence X1 will not depend on the level μ2 of S2, and
there is thus no crosstalk from channel 2, precisely as required.
However, the response of W P(t) (and thereby X1) to changes
in A1 may depend on the mean of V P(t) and hence on S2,
thus potentially generating crosstalk; in fact, when at constant
A1 	= 0, S2 is changed, both the mean and the amplitude of
the oscillations of W P(t) may change. These characteristics
are a result of the nonlinearity of the adaptive network.
While both terms on the right-hand side of equation (6) are
linear and the first term on the right-hand side of equation
(7) is linear in the regime KW < (WT − Wp), the second
term on the right-hand side of equation (7) is necessarily
nonlinear, since deactivation of W depends on both W and
R, involving bimolecular reactions. Crosstalk may thus arise,
as we discuss below. In the Supporting Information (available
at stacks.iop.org/PhysBio/11/026004/mmedia), we describe in
more detail how the transmission of the oscillatory signal from
V P(t) to W P(t) depends on the properties of the oscillatory
input signal and on the characteristics of the adaptive network.

To elucidate the crosstalk it is instructive to study the
frequency-dependent gain of the adaptive network [35, 42].
The frequency-dependent gain describes how much the
amplitude of the output oscillations W P changes when the
amplitude of the input oscillations V P (which depends on S1)
is varied, as a function of the frequency ω of the input. As we
will see, the frequency-dependent gain depends on the mean
of V P(t), which is set by S2. This can generate crosstalk.
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The full expression for the frequency-dependent gain
g2(ω) is too unwieldy to present here, but, linearizing
equation (6) and equation (7), we find in simplified form

g2
W P (ω) ∝ αω2

β
(
ω2 + τ−2

R

)(
ω2 + τ−2

W

)(
ω2 + τ−2

V

) , (9)

where α and β are proportionality constants and τi is the
response time of component i. For slowly varying signals
(ω → 0), the amplitude of the response is negligible due
to the ω2-term in the numerator of equation (9), reflecting
the adaptive nature of the network. Second, for ω �
min[τ−1

V , τ−1
R , τ−1

W ], the power scales with ω2. For very large ω

the power scales with ω−4. In the intermediate regime for ω, the
scaling depends on the precise response times. The response
times are the diagonal Jacobian elements for the linearized
system (2),(6),(7),

τV =
[

mV ET MV

(MV + 〈V P〉)2
+ kV KV μ

(VT − 〈V P〉 + KV )2

]−1

, (10)

τR = m−1
R , (11)

τW =
[

mW MW 〈R〉
(MW + 〈W P〉)2

+ kW KW 〈V P〉
(WT − 〈W P〉 + KW )2

]−1

. (12)

Equation (11) gives the response time for a protein with a
simple birth–death reaction. The mathematical form of the
response times, τV and τW , equation (10) and equation (12),
resembles that of a switching process with a forward and a
backward step; their values depend on the signal parameters.
When the dynamics of V P operate in the linear regime (see
equation (3)), τV simplifies to τV ≈ −(mV ET /(MV ))−1, which
is just the linear decay rate of V P. Importantly, the response
time τW and hence the gain g2(ω) depend on 〈V P〉 and thereby
on S2. This means that the response of X1 to S1 will depend on
S2, generating crosstalk.

The gain equation (9) is shown in figure 2(a) and (b) for
two different parameter sets. The band-pass structure, with
corresponding resonance frequency (the peak in the gain), is
observed. Further, with circles, the response times τV (black
open), τR (black solid) and τW (gray open) are shown, which
determine the position of the peak in the gain; the peak
occurs at a frequency in between the two largest response
times. In figure 2(a) we observe the influence of increasing
kR, mR, which are taken to be equal. For very slow changes
in R, corresponding to kR, mR being small, the network has a
very large gain. Increasing the response time of R decreases
the amplitude at the resonance frequency considerably. Faster
tracking of V P by R makes the adaptation of the biochemical
circuit very fast and as a result, W P does not respond at all
to changes in V P. In figure 2(b) we observe the influence of
changing the state μ2 of S2. The gain decreases for larger μ2,
and the response time τW increases. This may lead to crosstalk,
since the mapping of A1 to X1 will now depend on S2.

Finally, we look at the last step in the motif, the conversion
of the dynamic response of the adaptive motif W into X1. The
instantaneous concentration X1 should inform the system on
the state of input S1. Simple time-integration of W , similar

to the response X2 equation (4), is not sufficient. While time-
integration by itself is important for averaging over multiple
oscillation cycles, it is not sufficient because time-integration
with a linear transfer function does not lead to a change in the
response when the amplitude of the input is varied, assuming
that the oscillations are symmetric. Indeed to respond to
different amplitudes, a nonlinear transfer function is required:

dX1

dt
= kX1

W n

W n + Kn
X1

− mX1 X1. (13)

These Hill-type nonlinear transfer functions are very common
in biological systems, for example in gene regulation
by transcription factors, or protein activation by multiple
enzymes.

2.2. Multiplexing

Now that we have specified the model with its components,
we characterize its multiplexing capacity. Komarova, Bardwell
and co-workers have quantified crosstalk via two measures, a
specificity measure that quantifies how much a given input
generates the desired response as compared to the unwanted
response, and a fidelity measure that quantifies how much a
given response is generated by the corresponding ‘intended’
input signal as compared to the ‘unintended’ input signal
[43, 44]. We would like to quantify how many different
messages can be transmitted reliably through each channel.
To this end, we used the formalism of information theory
[45]. We define two measures: (1) I1(X1; A1), the mutual
information of the concentration X1 and the amplitude A1

of signal S1, and (2) I2(X2;μ2), the mutual information
of the concentration X2 and the concentration level μ2 of
S2. The information capacity of the system is then defined
by the total information IT = I1(X1; A1) + I2(X2;μ2) that
is transmitted through the system. The mutual information
I(Si, Xi) quantifies how much, on average, our uncertainty
in one variable, e.g. the input Si, is reduced by knowing the
value of the other variable, e.g. the output Xi. It measures, in
bits, how many different messages can be transmitted with
100% fidelity. Indeed, I(Si, Xi) quantifies how many messages
can be transmitted through channel i with 100% reliability.
Importantly, the mutual information does not necessarily
reflect whether each input signal is transmitted with 100%
fidelity. For example, increasing the number of input states
NA can increase the mutual information I1(A1; X1) [45], yet
a specific output concentration X1 could be less informative
about a specific input amplitude A1. To quantify the fidelity of
signal transmission, we normalize the mutual information by
the information entropy H(A1) and H(μ2) of the respective
inputs. We therefore define the relative mutual information

IR((A1; X1), (μ2; X2)) = I1(X1; A1)

H(A1)
+ I2(X2;μ2)

H(μ2)
(14)

= I1(X1; A1)

log2[NA]
+ I2(X2;μ2)

log2[Nμ]
. (15)

Note that IR((A1; X1), (μ2; X2)) has a maximum value of 2,
meaning that each channel i = 1, 2 transmits all its messages
Si → Xi with 100% fidelity.

5



Phys. Biol. 11 (2014) 026004 W de Ronde and P R ten Wolde

The mutual information depends on the kinetic parameters
of the system, on the input distribution of the signal states, and
on the amount of noise in the system. In a previous study
we have shown that under biologically relevant conditions,
a simple biochemical system using only constant signals is
capable of simultaneously transmitting at least two bits of
information [6], meaning that at least two signals with two
input states can be transmitted with 100% fidelity. Here we
wondered whether this information capacity can be increased.
Therefore, we study the system for increasing number of input
states (increasing NA for S1 and Nμ for S2), where we assume
a uniform distribution of the states for S1, A1 ∈ [0 : 1], and
for S2, μ2 ∈ [0 : μmax] (see equation (1)). To obtain a lower
bound on the information that can be transmitted, we optimize
the total mutual information over a subset of the kinetic
parameters, where we constrain the kinetic rates to being such
that 10−3 < ki < 103, the dissociation constants to being
such that 1 < Ki < 7.5 × 104, the maximum concentration
level for S2 to being such that 10 < μmax < 1000 and the
oscillation period to being such that 10 < T < 10000. We
set the response times of X1, X2 to be much longer than
the oscillation period, so that the variability in V and W
due to the oscillations in S1 is time-integrated; specifically,
mX1 = mX2 = (NTp)

−1 s−1, such that the output averages
over N = 10 oscillations with period Tp. The noise strength
is calculated using the linear-noise approximation [46] while
assuming that the input signals are constant, of magnitude
μ1, μ2. The effects of the nonlinear and oscillatory nature
of the network on the noise strength are thus not taken
into account. However, we do not expect these two effects
to qualitatively change the observations discussed below. To
compute the noise strength, we assume that the maximum copy
numbers of X1 and X2 are 1000. The optimization is performed
using an evolutionary algorithm (see Supporting Information,
stacks.iop.org/PhysBio/11/026004/mmedia).

Before we discuss the information transmission capacity
of our system, we first show typical results for the time traces
and input–output relations as obtained by the evolutionary
algorithm. Figure 3(a) shows that the oscillations in VP are
amplified by the adaptive network to yield large amplitude
oscillations in W P. In contrast, X1 and X2 only exhibit very
weak oscillations due to their long lifetime. Figure 3(b) shows
that when A1 is increased while μ2 is kept constant, the average
of V P, which is set by μ2, is indeed constant. As a result, 〈X2〉 is
constant, as it should be (because μ2 is constant). In contrast,
X1 increases with A1. This is because the amplitude of the
oscillations in W P increases with A1, which is picked up by
the nonlinear transfer function from W P to X1. In addition, X1

increases because the mean of W P itself increases, due to the
nonlinearity of the network; this further helps to increase X1

with A1. Figure 3(c) shows that when μ2 is increased while
A1 is kept constant, 〈V P〉 and hence X2—the response of S2—
increases. Importantly, while the mean of the buffer node R
of the adaptive network increases with 〈V P〉, the mean of the
output of this network, W P, is almost constant. Consequently,
X1 is nearly constant, as it should be because X1 should reflect
the value of A1 which is kept constant. These two panels
thus show that this system can multiplex two signals: it can

transmit multiple states of two signals through one and the
same signaling pathway, and yet each output responds very
specifically to changes in its corresponding input. This is the
central result of our work.

Interestingly, figure 3(c) shows a (very) weak dependence
of X1 on S2 = μ2, which will introduce crosstalk in the system.
It is important to realize that this will reduce information
transmission, even in a deterministic noiseless system. In a
deterministic system, every combination of inputs (S1, S2)

maps onto a unique combination of outputs (X1, X2) and, in
general, each output Xi depends on both Si and S j 	=i. Maximal
information transmission from S1 to X1 and from S2 to X2

occurs when for each channel i the input–output relation Xi(Si)

is independent of the state of the other channel. Thus, A1

should map onto a unique value of X1 independent of μ2

while μ2 should map onto a unique value of X2 independent
of A1. However, crosstalk causes the mapping from Si to Xi

to depend on the state of the other channel j 	= i. This
dependence reduces information transmission, because a given
value of Xi can now correspond to multiple values of Si. This
is illustrated in figure 4(a) for channel 1. The input–output
relation X1(A1) depends on μ2 and, as a result, from the
output X1 the value of the input A1 can no longer be uniquely
inferred. This reduces the number of distinct messages that
can be transmitted through channel 1 with 100% fidelity.
Crosstalk can thus reduce information transmission even in
a deterministic system without biochemical noise.

It is of interest to quantify the amount of
information that can be transmitted in the presence
of crosstalk in a deterministic, noiseless system. Via
the procedure described in the Supporting Information
(stacks.iop.org/PhysBio/11/026004/mmedia), we compute the
maximal mutual information for the two channels, assuming
that we have a uniform distribution of input states for each
channel, with A1 ∈ [0 : 1] and μ2 ∈ [0 : μmax]; WT = XT =
100. We find that for channel 2, the mutual information is
given by the entropy of the input distribution, which means
that the number of signals that can be transmitted with
100% fidelity through that channel is just the total number
of input signals for that channel. This is because signal
transmission through channel 2 is hardly affected by crosstalk
from the other channel. Below we will see and explain that
this observation also holds in the presence of biochemical
noise. For signal transmission through channel 1, however,
the situation is markedly different. The maximum amount of
information that can be transmitted through that channel is
limited to about 4 bits. This means that up to 24 signals can
be transmitted with 100% fidelity; in this regime, the input
signal S1 can be uniquely inferred from the output signal X1.
Increasing the number of input signals beyond 24, however,
does not increase the amount of information that is transmitted
through that channel; more signals will be transmitted, but,
due to the crosstalk from the other channel, each signal
will be transmitted less reliably (see figure 4 and Supporting
Information, stacks.iop.org/PhysBio/11/026004/mmedia).

We will now quantify how many messages can be
transmitted reliably in the presence of not only crosstalk,
but also biochemical noise. The results of the optimization
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(b)(a) (c)

Figure 3. Typical time traces and input–output curves as obtained by the evolutionary algorithm. Shown are results for a system with
NA = Nμ = 16. (a) Time traces of V P, R, W P, X1 and X2 for A1 = 0.5 and μ2 = 275. (b) 〈V P〉, 〈R〉, 〈W P〉, 〈X1〉, and 〈X2〉 as a function of A1,
keeping μ2 = 275 constant. (c) 〈V P〉, 〈R〉, 〈W P〉, 〈X1〉, and 〈X2〉 as a function of μ2, keeping A1 = 0.5. In both (b) and (c) 〈V P〉 ≈ 〈R〉 and the
lines for VP and R thus fall on top of each other. The figure shows that the system can multiplex: X1 is sensitive to S1 = A1 (panel (b)) but not
S2 = μ2 (panel (c)), while X2 is sensitive to S2 = μ2 (panel (c)) but not S1 = A1 (panel (b)). The time traces in panel (a) correspond to the
points in panels (b) and (c) that are indicated by the dashed lines. All panels correspond to the point in figure 5(c).

(a) (b) (c)

Figure 4. The influence of noise and crosstalk on information transmission in the pathway S1 → X1. (a) Schematic: crosstalk reduces the
amount of information that can be transmitted. For every A1, multiple values of 〈X1〉 are obtained, each corresponding to a different value of
μ2. The dark red line corresponds to the maximum value of 〈X1〉 for each A1, while the light red line denotes the minimum value. The black
line in between the red lines visualizes the range for which a specific 〈X1〉 uniquely maps to a single input amplitude A1. Crosstalk from the
S2 → X2 channel thus limits the number of states, and hence the amount of information, that can be transmitted through channel 1. (b)
Schematic: also noise reduces the number of input states that can be resolved. Shown is the mean response curve 〈X1〉(A1) together with the
noise in X1. Dotted lines give the minimum and maximum values of X1 for each amplitude. Since for each A1 a larger range of X1 values is
obtained, fewer states A1 can be uniquely encoded in the phase space. This is reflected in the width of the boxes; indeed, here only five input
states can be transmitted with absolute reliability. (c) Combined effect of noise and crosstalk on information transmission for a system with
NA = Nμ = 8, as obtained from the evolutionary optimization algorithm; the results corresponds to the black dot in figure 5(c). Both the
noise and the crosstalk reduce the number of possible input states that can be transmitted. Solid lines give the deterministic dose–response
curve, while dashed lines correspond to a network with noise. Dark red lines indicate the maximum of 〈X1〉 for a specific A1 over the range
of possible values of μ2, while light red lines give the minimum value. Because for each A1 a range of 〈X1〉 values is obtained, the number of
states A1 that can be uniquely encoded in the phase space is limited. This is reflected in the increase in the width of the boxes; indeed, here
only seven input states can be transmitted with absolute reliability.

of the mutual information using the evolutionary algorithm
are shown in figure 5. The left panel shows the relative mutual
information for channel 1, the middle panel shows that for
channel 2, and the right panel shows the total relative mutual
information equation (14). Clearly, biochemical noise affects
information transmissions through the two respective channels
differently.

Firstly, we see that the fidelity of signal transmission
through channel 2 is effectively independent of the number
of states NA that are transmitted through channel 1, even in the
presence of biochemical noise (figure 5(b)). This means that
channel 2 is essentially insensitive to crosstalk from channel
1. This is because X2 time-integrates the sinusoidal VP(t) via a
linear transfer function—the output X2 is thus sensitive to the
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(a) (b) (c)

Figure 5. The transmitted relative information IR equation (14) as a function of the number of input states NA, Nμ, where 2 bits correspond to
22 = 4 input states. Results are shown for a stochastic system with XT = 1000. In panels (a), (b) 100% corresponds to IR = 1, while in (c)
100% corresponds to IR = 2. (a) The relative mutual information IR(A1, X1) for the S1 → X1 channel; the total mutual information is
obtained by multiplying IR with log2(NA), the horizontal axis. Both decrease in IR(A1, X1) as a function of NA due to the presence of
biochemical noise and decrease in IR(A1, X1) as a function of Nμ due to the presence of crosstalk are observed. (b) The relative mutual
information IR(μ2, X2) for the S2 → X2 channel. The total mutual information is obtained by multiplying IR with log2(Nμ), the vertical axis.
The effect of noise is relatively small and crosstalk from S1 is hardly present. (c) The relative information of the total network
IR((A1, X1), (μ2, X2)) = IR(A1, X1) + IR(μ2, X2). The dot corresponds to the time traces in figure 3. All results are obtained through
numerical optimization (see the supporting information, stacks.iop.org/PhysBio/11/026004/mmedia).

mean of VP (set by S2), but not to the amplitude of VP(t)
(set by S1). We also observe that even in the presence of
noise, the relative information stays close to 100% when Nμ is
below 3 bits. Channel 2 is thus fairly resilient to biochemical
noise, which can be understood by noting that a linear transfer
function (from Vp to X2) allows for an optimal separation of
the Nμ input states in phase space [47–49].

The left channel, S1 → X1, is more susceptible to noise
(figure 5(a)) and to crosstalk from the other channel, S2.
The susceptibility to noise can be seen for Nμ = 1 bit = 2
states: the relative information decreases as NA increases. This
sensitivity to noise becomes more pronounced as Nμ increases,
an effect that is due to the crosstalk from the other channel.
A larger Nμ reduces the accessible phase space for channel
1—it reduces the volume of state space that allows for a
unique mapping from S1 to X1. As a result, a small noise
source is more likely to cause a reduction in IR(S1; X1). How
crosstalk and noise together reduce information transmission
is further elucidated in figure 4(c). Remarkably, even in the
presence of noise, maximal relative information is obtained
for NA = Nμ = 4 (=2 bits) (figure 5(c)), showing that four
input states can be transmitted for each channel simultaneously
without loss of information.

2.3. Experimental observations

Here we connect our work to two biological systems. The
first system is the p53 DNA damage response system. The
p53 protein is a cellular signal for DNA damage. Different
forms of DNA damage exist and they lead to different
temporal profiles of the p53 concentration. Double-stranded
breaks cause oscillations in the p53 concentration, while
single-stranded damage leads to a sustained p53 response
[5, 50, 51]. Compared to our simple multiplexing motif, the
encoding scheme in this system is more involved. In our
system two external signals activate the shared component V.

In the p53 system, p53 itself is V, but interestingly, negative
(indirect) autoregulation of p53 is required to obtain sustained
oscillations.

Although the encoding structure is different, the main
result is that the system is able to encode two different signals
into different temporal profiles simultaneously; depending on
the type of damage either a constant and/or an oscillatory
profile of p53 is present. These two signals could therefore be
transmitted simultaneously due to their difference in temporal
profile. For the p53 system the input signals are binary,
e.g. either there is DNA damage or not, although some
experiments suggest that the amount of damage also could
be transmitted [52]. The maximum information that can be
transmitted following our simplified model is much larger
than that required for two binary signals. A mathematical
model, based upon experimental observations, shows that the
encoding step creates a temporal profile for p53 that could be
decoded by our suggested decoding module (not shown).

Another system of interest is the MAPK (or RAF–MEK–
ERK) signaling cascade. The final output of this cascade is
the protein ERK, which shuttles between the cytoplasm and
the nucleus. ERK is regulated by many different incoming
signals of which EGF, NGF and HRG are well known [53].
The temporal profile of ERK depends on the specific input that
is present. NGF and HRG lead to a sustained ERK level [4],
while EGF leads to a transient or even oscillatory profile of the
ERK level [4, 17, 54]. In the framework of our model, ERK
would be the shared component V. Experiments show that
oscillations in the ERK concentration can arise due to intrinsic
dynamics of the system [17]. However, these oscillations could
be amplified by, or even arise because of, oscillations in the
signal EGF, especially since, to our knowledge, it is unclear
what the temporal behavior of EGF is under physiological
conditions.

For both experimental systems, we have only described
the encoding step. In both cases, two signals are encoded in
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a shared component V, where one signal leads to a constant
response, while the other signal creates oscillations. Both p53
and ERK are transcription factors for many downstream genes
[55, 56]. For the decoding of the constant signal, only a
simple birth–death process driven by V would be required.
Many genes are regulated in this way [25]. The decoding of
the oscillatory signal requires an adaptive motif. Although
adaptive motifs are common in biological processes [25],
it is unclear whether downstream of either p53 or ERK an
adaptive motif is present, which would complete our suggested
multiplexing motif. Hence, our study should be regarded as a
proof-of-principle demonstration that biochemical networks
can multiplex oscillatory signals.

3. Discussion

We have presented a scheme for multiplexing two biochemical
signals. The premise of the proposal is that the two signals
have to be transmitted, not integrated. Indeed, the central
hypothesis is that X1 should only respond to S1 and X2 only
to S2. Information transmission is then maximized when the
crosstalk between the different channels is minimized.

The model discussed here consists of elementary motifs,
and can simultaneously transmit two signals reliably. One
of these signals is constant in time, and its corresponding
information is encoded in its concentration level, while the
other signal is dynamic, and its information is encoded in the
dynamical properties, but not in its average concentration level.
The decoding of the constant signals is performed by a time-
integration motif, while the decoding of the oscillatory signal
requires a frequency-sensitive motif, for example an adaptive
motif.

The main problem in multiplexing biochemical signals is
crosstalk between the two signals. In this system the signals
are encoded on the basis of their dynamical profile—S1 is
oscillatory and S2 is constant in time. The decoding module
for the oscillatory signal, an adaptive motif, is nonlinear.
Therefore, this motif is sensitive not only to the temporal
properties like the amplitude, but also to the mean or average of
its input. This inevitably leads to crosstalk between channel 1
and channel 2, reducing information transmission.

Remarkably, the system is capable of transmitting over
3 bits of information through each channel with 100%
fidelity. In the presence of noise the information transmission
decreases, but even with considerable noise levels in the
biologically relevant regime, more than 2 bits of information
can be transmitted through each channel simultaneously; this
information transmission capacity is comparable to what has
been measured recently in the context of NF-κB signaling
[20]. To transmit signals without errors it is preferable to send
most information using channel 2 and a smaller number of
states through channel 1. The reason for this is twofold. First,
channel 2 is less noisy since the number of components is
smaller; secondly, channel 1 is corrupted by crosstalk from
channel 2, leading to overlaps in the state space of X1 as a
function of A1 (see figure 4). Nonetheless, the two channels
can reliably transmit four states in the presence of noise. This
is a considerable increase in the information transmission

as compared to a system where both signals are constant
in time [6]—this could transmit two binary signals with
absolute fidelity. This indicates that oscillatory signals could
significantly enhance the information transmission capacity of
biochemical systems. Importantly, while we have optimized
the parameters of our model system using an evolutionary
algorithm, it is conceivable that architectures other than those
studied here would allow for larger information transmission.
Indeed, the results presented here provide a lower bound on
information transmission.

In this system we have assumed that the amplitude of
the oscillatory signal is the information carrier of that signal.
The same analysis could be performed for an oscillatory
signal at constant amplitude but with different frequencies.
Qualitatively, the results will be similar. The dependence of
the gain on the frequency means that the amplitude of the
output varies with the frequency of the input (see figure 2). The
amplitude of the output thus characterizes the signal frequency.
However, an intrinsic redundancy is present in using the
frequency as the information carrier, which can be understood
from the symmetry of the gain (see figure 2). The response
of the system is equal for frequencies that are positioned
symmetrically with respect to the resonance frequency. As
a result, for any given output, there are always two possible
input frequencies, and without additional information, the cell
cannot resolve which of the two frequencies is present. Of
course, one way to avoid this would be to use only a part
of the gain, in which the gain increases monotonically with
frequency.

In this study we have assumed that the input signals are
deterministic. Results are obtained following deterministic
simulations, where noise is added following a solution
of the linear-noise approximation assuming non-oscillatory
inputs. The effect of noise is a reduction of the information
transmission. However, the effect of noise can always be
counteracted by increasing the copy number. At the cost of
producing and maintaining more proteins, similar results can
therefore be obtained [6]. The effect of oscillations on the
variability of the output is small since the response times of
X1 and X2 are much longer than the oscillation period. Slower
responding outputs would time-average the oscillation cycles
even more, reducing the variability in the response further.

Transmitting information via oscillatory signals has
many advantages. Oscillatory signals minimize the prolonged
exposure to high levels of the signal, which can be toxic
for cells, as has been argued for calcium oscillations [57].
In systems with cooperativity [58], an oscillating signal
effectively reduces the signal threshold for response activation.
Pulsed signals also provide a way of controlling the relative
expression of different genes [59]. Encoding of stimuli into
oscillatory signals can reduce the impact of noise in the input
signal and during signal propagation [60]. Frequency encoded
signals can be decoded more reliably than constant signals
[34].

Here we show that information can be encoded in the
amplitude or frequency of oscillatory signals, which are
then decoded using a nonlinear integration motif. We also
discussed two biological systems that may have implemented
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this multiplexing strategy. The idea of using the temporal
kinetics as the information carrier in a signal has been studied
in a slightly different context, where the dose information
is encoded in the duration of an intermediate component,
which in turn is time-integrated by a downstream component
[61]. Here, we show that encoding signals into the temporal
dynamics of a signaling pathway allows for multiplexing,
making it possible to simultaneously transmit multiple input
signals through a common network with high fidelity. It is
intriguing that systems with a bow-tie structure, such as
calcium and NF-κB [20], tend to transmit information via
oscillatory signals.

4. Materials and methods

The model is based on mean-field chemical rate equations
or the linear-noise approximation [62]. For details see the
supporting information (stacks.iop.org/PhysBio/11/026004/
mmedia).
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