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Abstract. The highly orientationally ordered cortical microtubule array in plant
cells is a key component for cell growth and development. Recent experimental and
computational work has shown that the anisotropic nucleation of new microtubules
from pre-existing microtubules has a major effect on the alignment process. We
formulate a theoretical model to investigate the role of the microtubule-bound
nucleation on the self-organization of the dynamical cortical microtubules. A bi-
furcation analysis of the stability of the disordered phase of the model reveals that
the effective degree of co-aligned nucleation is the main determinant of the location
of the transition. Increased co-aligned nucleation creates a positive feedback effect
on the ordering process that can significantly widen the ordered region. We validate
these predictions by comparing to the results of particle-based simulations.
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1. Introduction

Microtubules are dynamic filamentous protein aggregates and a key
constituent of the cytoskeleton of all eukaryotic cells. They can reach
lengths of several ten’s of µm’s and are therefore able to span lengths
comparable to the dimensions of cells. This allows them to perform a
host of functions related to establishing and maintaining the morphol-
ogy and mechanical properties of cells. In plants, a number of cell types,
e.g. the well-studied root cells, grow by expansion along a single axis
[1], and microtubules (hereafter abbreviated as MTs) play a key role
in defining this axis. They do so by setting up a plant-unique structure
called the transverse cortical array, a highly aligned arrangement of
microtubules bound to the inside of the plasma membrane [2]. There
is mounting evidence that the MTs in the transverse array guide the
insertion and the direction of motion cellulose synthase complexes [3, 4].
These complexes deposit cellulose microfibrils, the main architectural
component of the plant cell wall. The widely accepted idea is that
the ensuing transverse orientation of the cellulose microfibrils allows
the cells to elongate in a single direction, whilst maintaining mechan-
ical integrity in the face of an appreciable internal osmotic pressure
(turgor).
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A crucial aspect of MTs and the structures they form is that they
are both dynamic and intrinsically out of thermodynamic equilibrium.
Individual MTs alternate stochastically between growing and shrinking
states in an energy-consuming process dubbed “dynamic instability”
[5]. In the plant cortical array, where the MTs are bound to the plasma
membrane and hence form an effectively 2D system, it is this process
which drives collisions between growing MTs and obstructing MTs.
The stochastic and angle-of-incidence dependent outcomes of these
collisions are classified as (i) zippering, where the incoming MT alters
its course by bending and continues to grow along the obstructing MT,
(ii) induced catastrophes, where the incoming MT rapidly switches from
a growing to a shrinking state, and (iii) cross-overs, where the incoming
MTmanages to “slip over” the obstructing one and continues to grow in
its original direction [6]. Several groups have shown how the ordering of
the cortical array (hereafter abbreviated as CA) can be understood on
the basis of these collisions, using both computer simulations [7, 8, 9]
and an analytical model [10]. The dynamical instability process im-
plies that MTs can shrink to zero length and thus are expected to
have a finite lifetime. This means that in order to achieve a steady
state, new MTs need to be nucleated at a finite rate, for which cells
employ specific nucleation complexes called γ-TuRCS [11]. In most of
the modeling approaches the nucleation of new MTs was assumed to
occur homogeneously distributed over the 2D “cortex” and in arbitrary
directions, as is observed during the initial stages of CA formation. In
the later stages of CA formation, when there is an appreciable density
of MTs, most of the nucleations actually occur from preexisting MTs,
and moreover with a specific orientational distribution with respect to
the direction of the parent MT [12, 13, 14].

In a previous paper [15] we have addressed the impact of this MT-
bound orientationally-biased nucleation mechanism on CA ordering
using computer simulations, showing among others that (partially) co-
aligning the newly nucleated MTs with the parent MTs provides a
positive feedback on the ordering process, significantly widening the
range of parameters for which the aligned state is stable. Here we
provide the theoretical underpinning of these observations by generaliz-
ing our previously developed analytical model to explicitly incorporate
anisotropic microtubule-bound nucleations. This allows us to perform a
full parametric analysis of the location of the ordering transition in the
presence of these more complex nucleations. Significantly, this analysis
reveals that the co-alignment parameter ν2 introduced on phenomeno-
logical grounds in [15], is indeed also formally the system parameter
that most strongly influences the propensity of the system to order.
Moreover, the full model allows us to go beyond the simulations by
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also considering the effect of different firing rates of the nucleation
complexes whether in the bound- or the unbound state, and showing
how this difference interacts with the effects of differential binding of
the nucleation complexes to the MTs.

The outline of the paper is as follows. In Section 2 we present our
theory, first recapping the basic elements of the formalism (Section 2.1),
then implementing a binding equilibrium for the nucleation complexes
(Section 2.2), discuss the treatment of anisotropic nucleations (Sec-
tion 2.3), finishing with a dimensional analysis, which reveals a single
parameter that governs the influence of the MT-bound nucleations
(Section 2.4). In Section 3 we locate the critical values of the control
parameter of the system using bifurcation analysis (Section 3.1), calcu-
late the latter numerically (Section 3.2) and compare with simulations
(Section 3.3). We end with conclusions and outlook in Section 4.

2. Theoretical framework

2.1. Basic theory

Here we first recap the basic elements of the analytical model by Hawkins,
Tindemans and Mulder [10]) for the mechanism of orientational order
of the plant CA.

The cortical MTs are confined to a 2D plane and each MT is consid-
ered to consist of one or more straight segments with a fixed orientation,
connected end-to-end. The intrinsic dynamics of the MTs is described
by the standard two-state dynamic instability model of Dogterom and
Leibler [16], which assumes that each MT has a “plus” end on its
final segment that is either growing with speed v+ or shrinking with
speed v−. This plus end can switch stochastically from growing to
shrinking, a so-called spontaneous catastrophe, with rate rc, or from
shrinking to growing, a so-called rescue, with rate rr. The dynamics
of the interactions between colliding MTs dynamics is encoded into
the probabilities Pc(θ) of observing an induced catastrophe, Pz(θ) of a
zippering event and Px(θ) of a crossover when the collision occurs at a
relative angle θ. An individual segment of a MT can be either in the
growing (+) or shrinking (−) state, provided it is the final segment,
and otherwise is in the inactive state (0). The main ingredients of the
model are graphically summarized in Figure 1.

A coarse-grained description is employed for the alignment of MTs
in the cortical array: Instead of individual MTs, local densities of MT
segments are considered. The system is assumed to be spatially homo-
geneous and has as fundamental variables the areal number densities
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Figure 1. Schematic illustration of the main ingredients of our model for cortical
MT dynamics. Top left: The dynamical instability mechanism, with random switches
between a growing and a shrinking state. Top right: Labelling of MT segments from
the nucleation point (bar),increasing after each zippering event (collision with gray
obstructing MT). Bottom left: Collision outcomes. Bottom right: Nucleation of new
MTs.

mσ
i (l, θ, t) of segments in state σ ∈ {0,+,−}, where the segment num-

ber i keeps track of the number of orientation-changing zippering events
(= i− 1) that preceded in creating the segments, l is the length of the
segments and θ their orientation and t the time. These densities obey a
set of partial differential evolution equations determined by the overall
rates of growth and shrinkage, spontaneous and induced catastrophes,
zippering and reactivation of inactive segments through shrinking.

In steady state, the length of all segments, independently of type,
turns out to be distributed exponentially with a common average seg-
ment length l(θ)

mσ
i (l, θ) = mσ

i (θ)e
−l/l(θ), (1)

which introduces the angle dependent density at zero lengthmσ
i (θ). The

stationarity of the total length of MTs implies the balance equation

v+m+
i (l, θ) = v−m−

i (l, θ). (2)
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An important role is played by the total length density k(θ) of all MT
segments in direction θ, which is defined as

k(θ) =

∞∑
i=1

∫
dl l [m+

i (l, θ) +m−
i (l, θ) +m0

i (l, θ)]. (3)

Next, the quantitiesQi(θ), are defined as the ratio between the densities
of inactive and active MTs for segments with index i

Qi(θ) =
m0

i (θ)

m+
i (θ) +m−

i (θ)
. (4)

As is shown in [10], these quantities do not in fact depend on the index
i, hence Qi(θ) = Q (θ) . Finally, the quantity t(θ) is defined as the
overall density of active segments

t(θ) =

∞∑
i=1

∫ ∞

0
dl [m+

i (l, θ) +m−
i (l, θ)]

= l(θ)

∞∑
i=1

[m+
i (θ) +m−

i (θ)], (5)

where the second equality is a result of the exponential distribution
equation Eq. (1).

We now formulate the governing equations of the system. The “cross-
section”of the collisions is determined in part by the geometrical factor
sin(θ − θ′), where θ is the angle of the incoming growing MT segment
and θ′ is the angle of the MT “scatterer” with respect to a fixed ref-
erence frame. This factor is absorbed into the interaction probabilities
by defining

f(θ − θ′) ≡ | sin(θ − θ′)|Pf (θ − θ′)

where f ∈ {c, z, x}, with c denoting induced catastrophes, z zippering
events and x crossovers. We will assume that the collisions are insen-
sitive to the relative orientation of the MT plus-minus end polarities,
so that f (θ) = f (π − θ) for f ∈ {c, z, x} . The average segment length
l(θ) is shown to satisfy

1

l(θ)
= −g +

∫
dθ′[c(θ − θ′) + z(θ − θ′)]k(θ′) (6)

where
g =

rr
v−

− rc
v+

is called the growth parameter, and characterizes the behavior of the
non interacting system. Here we will limit ourselves to the case g < 0,
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which ensures a priori that the length of the MTs remains intrinsically
bounded. While the second term on the right-hand side of Eq. (6) could
in principle offset the effect of g > 0, the resulting system is expected to
be absolutely unstable with respect to alignment [10] which would lead
to a degenerate non-steady state with continuously elongating MTs. Al-
though the dynamical parameters measured in some plant systems (see
e.g. [7]) would suggest that g may be positive, the situation in planta
is complicated by the activity of the MT severing protein Katanin (see
e.g. [17]), which provides an additional channel for MT length control.
The effects of the latter, as well as other factors such length capping
due to the presence of cell boundaries, are beyond the scope of the
present work. For a more extended discussion of these issues please
refer to [18].

Using the Eqs. (1) through (5) we find that the length density k(θ)
obeys

k(θ) = l(θ)[1 +Q(θ)]t(θ) (7)

The inactive/active ratio Q(θ) satisfies the following self-consistency
equation

Q(θ) =

∫
dθ′z(θ − θ′)k(θ′)l(θ′)

(
1 +Q(θ′)

)
. (8)

Finally, the overall density of active tip segments t(θ) obeys

t(θ) = (1 +
v+

v−
)l(θ)m+

1 (θ) + l(θ)k(θ)

∫
dθ′z(θ − θ′)t(θ′). (9)

We see that the densitym+
1 (θ) of zero-length segments that have not

been created by a zippering event only appears explicitly in Eq. (9) for
the density of active tips. This density is determined by the rate and
the orientation at which new MTs are nucleated, which serves as a
boundary condition to the steady state equations

v+m+
1 (θ) = rn (θ) . (10)

The precise form of the angle-dependent nucleation rate rn (θ) per unit
area, which hitherto was considered to be an isotropic constant, will be
discussed below.

2.2. Binding equilibrium of the nucleation complexes

While in the initial stages of cortical array formation almost all of
the MT nucleations occur on random locations in the cortex and in
random directions, it appears that with increasing array density most
of the nucleations are localized to existing MTs [13, 14]. Moreover, these
MT-bound nucleations occur with a distinct distribution of orientations
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with respect to the parent MT. The majority of all these nucleations is
due to the presence of specific nucleation complexes, so-called γ-TuRCs,
that are able to bind specifically to MTs, with the precise geometry of
the individual binding configurations giving rise to the observed angular
pattern of the MT-bound nucleations. To include these effects into our
model, we first of all assume that there is finite density of available
nucleation complexes. Next, we assume that binding and unbinding
happens on a time scale fast compared to the other processes. These
assumptions allow us to model the fraction of bound- versus unbound
nucleation complexes as being determined by a binding equilibrium.

We let nucleation complexes bind to a unit of length of MT per unit
of system area with a rate rb. In steady state, the length density of
MTs is given by (cf. Eq. (3))

ktot =

∫ 2π

0
dθ k(θ). (11)

Bound nucleation complexes can unbind from their parent MT with
rate ru. The overall (areal) density of nucleation complexes is given by
ntot = nb+nu, where nb and nu are the bound- and unbound densities
respectively. With these definitions, the chemical equilibrium condition
then reads

nbru = rbktotnu (12)

Thus, the fractions of bound and unbound nucleation complexes are
given by

xb =
nb
ntot

=
rbktot

rbktot + ru
≡ ktot
ktot + k 1

2

xu =
nu
ntot

=
ru

rbktot + ru
≡

k 1
2

ktot + k 1
2

, (13)

where the cross-over density k 1
2
= ru

rb
, which equals the MT length

density for which exactly half the nucleation complexes are bound,
controls the shift between the regime of MT densities dominated by
unbound nucleations and bound ones respectively.

2.3. Anisotropic distribution of nucleation angles

To determine the angle-dependent nucleation rate rn (θ) we now differ-
entiate between nucleations occurring from unbound nucleation com-
plexes and bound ones. Consistent with observations, we take the nu-
cleations from the unbound complexes to be isotropically distributed
and assume that an available unbound complex “fires” with a rate
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run. The distribution of nucleation angles in the global reference frame
associated with unbound nucleations is trivially given by

ψu (θ) =
1

2π
. (14)

Nucleations from MT-bound complexes, on the other hand, have been
shown to occur with a distinct orientational pattern with respect to the
parent MT. We describe this pattern through the normalized relative
nucleation angle distribution ν (∆θ) , with∫ 2π

0
d∆θ ν(∆θ) = 1. (15)

To determine the distribution of nucleation angles due to the bound
nucleations in the global reference frame, this distribution must be
convolved with the orientation distribution of the MTs themselves, thus

ψb(θ) =
1

ktot

∫ 2π

0
dθ′ν(θ − θ′)k(θ′), (16)

which as one checks is again normalised. Finally, we take the firing
rate of bound nucleation complexes to be rbn. In the following, the only
condition we will assume on the relative nucleation angle distribution
is that it is mirror symmetric with respect to the parent-MT axis, i.e.
ν(∆θ) = ν (−∆θ) .

With these ingredients we can now construct the overall angle-
dependent nucleation rate

rn (θ) = nur
u
nψu(θ) + nbr

b
nψb(θ), (17)

where nu and nb are the densities of unbound and bound nucleation
complexes respectively, as derived in the previous section. We graphi-
cally illustrate the elements in the construction of the angle-dependent
nucleation rate in Figure 2.

It is now convenient to introduce the overall nucleation rate

rn = nbr
b
n + nur

u
n, (18)

and the relative firing rate

ρ =
rbn
run
, (19)

and to define

rn (θ) =
rn
2π
R(θ) (20)
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Figure 2. Schematic illustration of the model for the overall angle-dependent nu-
cleation rate, consisting of a chemical equilibrium between isotropic nucleation
from unbound nucleation complexes (left) and anisotropic nucleation from micro-
tubule-bound nucleation complexes (right). The light gray shape surrounding the
nucleation complex (solid circle) represents a polar plot of the distribution of relative
nucleation angles, circular (= isotropic) in the unbound case (left) and a nontrivial
function ψb(∆θ) in the bound case (right).

which introduces the absolute nucleation angle distribution R(θ). The
latter is explicitly given by

R(θ) =
ρktot

ρktot + k 1
2

2πψb(θ) +
k 1

2

ρktot + k 1
2

, (21)

where we have used the results of Eq. (13). The choice of the normal-
ization

1

2π

∫ 2π

0
dθ R(θ) = 1 (22)

for this distribution serves to minimize the number of explicit factors 2π
appearing in the final set of dimensionless equations discussed below.

2.4. Dimensional analysis

The set of equations Eqs. (6)–(9) can be simplified by the use of
dimensional analysis. The adoption of the length scale

l0 =

(
1

π

v+

(1 + v+

v− )rn/(2π)

)1/3
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allows the definition of the dimensionless variables

L(θ) = l(θ)/l0, (23)

K(θ) = πk(θ)l0, (24)

T (θ) = πl20t(θ), (25)

and dimensionless control parameter of the problem

G = gl0 =

[
2v+v−

rn(v+ + v−)

]1/3 ( rr
v−

− rc
v+

)
. (26)

It is convenient to adopt the collision operators

C[h](θ) =
1

π

∫ 2π

0
dθ′c(θ − θ′)h(θ′),Z[h](θ) =

1

π

∫ 2π

0
dθ′z(θ − θ′)h(θ′),

where h (θ) is any integrable function. With these definitions we can
formulate the set of dimensionless equations describing the system in
the presence of anisotropic nucleation

1

L(θ)
= −G+C[K](θ) + Z[K](θ) (27)

K(θ) = L(θ)(1 +Q(θ))T (θ) (28)

Q(θ) = Z[LK(1 +Q)](θ) (29)

T (θ) = L(θ)R(θ) + L(θ)K(θ)Z[T ](θ) (30)

The expression for the absolute nucleation angle distribution is facili-
tated by the introduction of two additional operators

V[h](θ) =
1

π

∫ 2π

0
dθ′ν(θ − θ′)h(θ′) (31)

U[h](θ) =
1

π

∫ 2π

0
dθ′h(θ′) (32)

Non-dimensionalizing the MT length density using the definition in
Eq. (24), we find

R(θ) =
2πβV[K] + 1

βU[K] + 1
(33)

where the parameter β is given by

β =
ρ

k 1
2
l0
. (34)

Strikingly, this single parameter suffices to capture the relative impor-
tance of the bound nucleations with respect to the unbound ones: it is
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high whenever the affinity of the nucleation complexes to the MTs is
high (small k 1

2
) or when the nucleation rate of the bound complexes is

high (large ρ) compared to that of the unbound ones.

3. Results

3.1. Bifurcation analysis

In the isotropic state of the system, all angular dependence drops out
and the set of equations becomes

1

L̄
= −G+ (ĉ0 + ẑ0)K̄ (35)

K̄ = L̄(1 + Q̄)T̄ (36)

Q̄ = ẑ0L̄K̄(1 + Q̄) (37)

T̄ = L̄R̄+ ẑ0L̄K̄T̄ (38)

where throughout the overbar denotes quantities of the isotropic phase.
Here, as in the following, the coefficients ĉn and ẑn are the eigenvalues of
the operators C and Z respectively, on the basis of the cosines cos (nθ)

C [cos (nθ)] = ĉn cos (nθ) , Z [cos (nθ)] = ẑn cos (nθ) . (39)

Next, equation (33) readily gives

R̄ = 1 (40)

showing that the equations for the isotropic state are, as expected,
independent of the angular details of the nucleation mechanism and
therefore the same as those considered in [10] (cf. Eqs. (40) in that
reference).

Using straightforward elimination we can derive the equations

K̄(ĉ0K̄ −G)2 = 1 (41)

and

N̄(1− ẑ0N̄)2G3 − [(ĉ0 + ẑ0)N̄ − 1]3 = 0 (42)

where N̄ = L̄K̄, that yield to equivalent ways of characterizing the
isotropic state as a function of the control parameter G.

In order to perform a bifurcation analysis, probing the stability of
the isotropic state against anisotropic perturbations, we parameterize
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the solutions to the full problem as

L = L̄(1 + λ) (43)

K = K̄(1 + κ) (44)

Q = Q̄(1 + χ) (45)

T = T̄ (1 + τ) (46)

where we assume that the perturbations λ, κ, χ and τ are small. Insert-
ing into the equations (27), (28), (29) and (30) and expanding to the
first order in the perturbations we obtain

−λ = N̄ (C[κ] + Z[κ]) (47)

κ = λ+ τ + ẑ0N̄χ (48)

χ =
1

ẑ0
Z
[
κ+ λ+ ẑ0N̄χ

]
(49)

τ = λ+ N̄ (ẑ0κ+ Z[τ ]) + (1− ẑ0N̄)B[κ] (50)

where

B[κ] =
βK̄

2βK̄ + 1
(2πV[κ]−U[κ]) (51)

Eliminating λ, χ and τ from these equations we find a linear eigenvalue
problem for the length density perturbation κ

(1− ẑ0N̄)κ = −2N̄C[κ] + (1− ẑ0N̄)B[κ] (52)

which is satisfied whenever κ(θ) is an eigenfunction of both the opera-
tors C and B. Given the symmetries of the operators C,V and U the
relevant set of common eigenfunctions is the family cos (2jθ) , where
j ≥ 1 (j = 0 is not an anisotropic perturbation). We assume, as in [10],
that the longest wavelength perturbation cos (2θ) , i.e. the case j = 1,
corresponds to the first break of symmetry on increasing G. Inserting
this assumption into the eigenvalue equation (52), we get the equation
which implicitly defines the location of the corresponding bifurcation
point

(1− ẑ0N̄) = −2N̄ ĉ2 + (1− ẑ0N̄)
2βK̄

2βK̄ + 1
ν2. (53)

Here we have introduced the co-alignment parameter

ν2 =

∫ 2π

0
dθ cos(2θ)ν(θ) ∈ [−1, 1] , (54)

which provides the relevant measure for the degree of orientational co-
alignment of MTs originating from bound nucleation events with their
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parent MTs. Its appearance in the bifurcation equation (53) provides an
a posteriori theoretical underpinning for its heuristic use in the analysis
of the simulation data in Ref. [15]. When ν2 = 1, which occurs e.g. when
ν(θ) = δ (θ)), the nucleated MTs are perfectly co-aligned (either in the
plus- or minus end direction) with the parent MT, when ν2 = −1, which
occurs when ν(θ) = 1

2

(
δ
(
θ − π

2

)
+ δ

(
θ + π

2

))
, the nucleated MTs are

maximally dis-aligned (= perpendicular) to the parent MT. Finally,
the intermediate case ν2 = 0 occurs when the MTs are either nucleated
evenly into the “neutral” directions ±π

4 and ±3π
4 or simply isotropically(

ν(θ) = 1
2π

)
.

The bifurcation equation (53), together with the isotropic state
equations (41) and (42), allow us to calculate the critical value of the
control parameter G∗ at which the bifurcation occurs. We start by
rewriting Eq. (53) as

N̄ =
1

ẑ0 + M̄
, (55)

where

M̄ = (−2ĉ2)
(2βK̄ + 1)(

2βK̄(1− ν2) + 1
) . (56)

Inserting this form of N̄ into Eq. (42), we obtain

G∗ = M̄1/3(
ĉ0
M̄

− 1). (57)

We note that this result is valid independent of the sign of G∗.
However, in line with our choice, discussed in Sect. 2.1, to limit the
analysis to the regime G < 0, so that we are ensured an ordered steady-
state can exist, we now enquire under which constraints in fact G∗ < 0.
As by definition ĉ0 > 0, we should need both M̄ > 0 as well as M̄ > ĉ0.
We now note that sgn

(
M̄
)
= − sgn (ĉ2) , so that we require ĉ2 < 0. As

discussed in [10], this is generically the case for induced catastrophe
probabilities Pc (θ) that are (semi)monotonically increasing in θ on the
interval

[
0, π2

]
, which in turn is consistent with the in vivo observations

[6]. Next, we note that for ν2 ∈ [0, 1] , i.e. the range of nucleations that
are effectively in the forward to neutral directions with respect to the
parent MTs, M̄ ≥ (−2ĉ2), so that it is then sufficient to require, as
in [10], that (−2ĉ2) > ĉ0. The latter requirement is readily met for
realistic induced catastrophe probability profiles. Finally, the available
data indicates that ν2 ∼ 0.7− 0.9., i.e. in the required regime [13, 14].
In the following we therefore freely adopt these constraints.

We also note that in the limit β = 0, where the nucleation complexes
do not bind to the MTs and all nucleations take place isotropically in
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the bulk, Eq. (57) correctly reduces to

G
(0)
∗ = (−2ĉ2)

1/3

(
ĉ0

−2ĉ2
− 1

)
, (58)

the result previously obtained in [10]. After some algebra, we can also
obtain the first order effect of a non-zero ν2 on the location of the
transition

G
(1)
∗ =

∂G∗
∂ν2

∣∣∣∣
ν2=0

=
1

3ĉ2
(−2ĉ2)

1
3 (ĉ0 − ĉ2)

2βK̄
(0)
∗

(2βK̄
(0)
∗ + 1)

< 0 (59)

where K̄
(0)
∗ is the critical length density at ν2 = 0. This result indi-

cates that for positive co-alignment (ν2 > 0) the bifurcation point is
shifted towards lower G values, indicating a widening of the ordered
region. Note also that Eq. (57) implies that, in spite of the anisotropic
nucleation mechanism, the location of the transition does not depend
on the presence or absence of the zippering mechanism, in line with the
analysis presented in [10].

To obtain the bifurcation point for arbitrary values of ν2, we intro-
duce (57) into the equation (41) coupling K̄ and G in the isotropic

state, ultimately obtaining a 15th order polynomial equation in
√
K̄

(not shown). Numerical solutions of this equation allow us to identify
the unique positive real root that yields the critical value of the MT
length density K̄∗, which in turn can be used in Eq. (41) to back out the
critical value G∗ of the control parameter. The results of this procedure
are discussed in the next section.

3.2. Numerical solutions

To present our numerical results on the location of the ordering tran-
sition we first have to choose a set of collision probabilities. Following
Refs. [7] and [9] we opted for the following stylized representation of
the available data

Pz (∆θ) =

{
1 ∆θ < θc = 40◦

0 θc ≤ ∆θ ≤ 90◦

Pc (∆θ) =

{
0 ∆θ < θc = 40◦

pc θc ≤ ∆θ ≤ 90◦
(60)

In Figure 3 we show the result for the critical value G∗ as a function
of ν2 for a few values of the parameter β in the specific case pc = 0.5.

We see that for all values of the parameter β, which governs the
strength of the anisotropic nucleation mechanism, the critical value
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Figure 3. Critical values G∗ of the control parameter G as a function of the degree
of co-aligned nucleation ν2 for 4 different values of the parameter β.

of the control parameter is a decreasing function of the coalignment
parameter ν2. This means that the regime of MT dynamical parameter
for which the system establishes an ordered state is widened. Indeed,
we can interpret the co-aligned nucleation of new MTs as an additional
positive feedback mechanism on the basic “survival of the aligned”
mechanism presented in [10]: longer-lived aligned MTs also generate
“offspring” that is similarly aligned, will therefore experience fewer
catastrophe inducing collisions, and hence “inherit” the longevity of
their parents.

3.3. Comparison to simulations

In order to verify that the results of our mean-field theory are reason-
able, we here compare them with results from particle-based simula-
tions. These employed a MT-bound nucleation distribution with n%
of nucleation along the parent MT in the forward direction, and the
remainder isotropically distributed. By varying the percentage n, the
degree of co-alignment, which in this case is simply given by ν2 = n/100,
can be varied over the full range [0, 1]. For details of the simulation,
including the technique to infer the critical control parameter from the
simulation data on the second-rank order parameter S2 as a function
of the control parameter G, please refer to Ref. [15].
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Figure 4. Comparison between simulation results of Ref. [15] (filled circles, dashed
line to guide the eye) and theoretical predictions (solid line) for the critical values
G∗ of the control parameter as a function of the degree of co-aligned nucleation ν2
for a model with pc = 0.5.

In spite of the fact that the simulation employed the so-called simple
bundle collision dynamics, in which an MT impinging on a bundle
only sees a single target MT [19], and had explicitly treadmilling MTs
[20], the qualitative agreement between the predicted locations of the
transitions and the ones observed in the simulations is satisfactory
(see Figure 4), specifically in reproducing the marked widening of the
ordered region.

4. Conclusion

We have shown that the theoretical framework for describing the self-
organisation of the microtubule cortical cytoskeleton in plant cells first
presented in [10] can be robustly extended to include the biologically
relevant MT-bound anisotropic nucleations. The relative importance of
this effect as compared to the background isotropic nucleation events is
predicted to depend on a single dimensionless number β, that takes into
account both the affinity of nucleation complexes for MTs, as well as a
possible binding-state dependence of their firing rate. Our bifurcation
analysis furthermore reveals that averaged co-alignment of the bound
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nucleations with the parent MT, captured by the parameter ν2, is the
main determinant of the location of the transition. The significant
widening of the ordered regime with increasing ν2 can be ascribed
to a positive feedback mechanism that enhances the “survival of the
aligned” mechanism already described in [8]: aligned MTs “beget” co-
aligned “offspring” thus increasing the survival of the preferential direc-
tion. Finally, the comparisons with the particle-based simulations, show
that the theory, albeit of a mean-field nature, is a robust approximation
to full dynamical system including the spatial dependencies.

The work described here is a first step in the extension of the model
to include a number of factors that are known to be involved in the in
vivo ordering process. Here, we specifically mention the effects of minus-
end treadmilling, MT severing by Katanin-like proteins and finiteness
of the available tubulin monomer pool. Including these effects is part
of our ongoing research effort.
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