
Molecular motors robustly drive active gels to a critically connected 

state

José Alvarado1, Michael Sheinman2, Abhinav Sharma2, Fred C. MacKintosh2*, Gijsje H. 

Koenderink1*

1 FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
2 Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
* e-mail:fcm@nat.vu.nl, gkoenderink@amolf.nl
     



Abstract

Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium 

phenomena such as metabolism or migration. Active gels constitute a fascinating class of 

internally driven matter, where molecular motors exert localized stresses inside polymer 

networks. There is evidence that network crosslinking is required to allow motors to induce 

macroscopic contraction. Yet a quantitative understanding of how network connectivity enables 

contraction is lacking. Here we show experimentally that myosin motors contract crosslinked 

actin polymer networks to clusters with a scale-free size distribution. This critical behavior 

occurs over an unexpectedly broad range of crosslink concentrations. To understand this 

robustness, we develop a quantitative model of contractile networks that takes into account 

network restructuring: motors reduce connectivity by forcing crosslinks to unbind. 

Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, 

motors drive initially well-connected networks to a critical state where ruptures form across the 

entire network.
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Introduction

One of the defining qualities of soft matter is that it is readily driven far from 

thermodynamic equilibrium by external stress. Driving forces such as those due to an electric 

field or shear can drive colloidal suspensions and polymer networks into fascinating non-

equilibrium patterns, including banded1,2, jammed3, and randomized steady states4. Much 

progress has been made in understanding such externally driven systems5. By contrast, living 

soft matter systems such as cells and tissues naturally exhibit a unique form of internal driving 

in the form of mechanochemical activity6,7. A prominent example is the cytoskeleton, a 

meshwork of protein polymers and force-generating motor proteins that constitutes the scaffold 

of cells. In solutions of purified cytoskeletal filaments and motors, remarkable self-organized 

patterns have been observed8,9, inspiring theoretical work of these so-called active gels10.

More recently, attention has shifted to the important role of network connectivity in active 

gels, which can be controlled by the number of crosslinks between filaments. In weakly 

connected systems, motors slide filaments to form static or dynamic clusters11-14. In the opposite 

limit of a well-connected, elastic network, motors generate contractile stresses as they pull 

against crosslinks, which can dramatically change the elastic properties of the network15,16 or 

lead to contraction17,18. The existence of a threshold connectivity that separates these two 

behaviors has been proposed, since macroscopic contractions are known to occur above certain 

minimum values of crosslink or actin concentration14,17,19,20. We should expect remarkable 

critical behavior at the threshold of contraction. Recent theoretical models predict diverging 

correlation length-scales and a strong response to external fields21-24 at the threshold of rigidity. 

In suspensions of self-propelled patches, critical slowing was predicted at the threshold of 

alignment25. Yet the threshold of contraction still remains poorly understood, and experimental 

evidence of criticality in active gels remains lacking.
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Here, we experimentally study model cytoskeletal systems composed of actin filaments 

and myosin motors. We vary network connectivity over a broad range by adding controlled 

amounts of crosslink protein. We show that the motors can actively contract the networks into 

disjoint clusters that exhibit a power-law size distribution. This behavior is reminiscent of 

classical conductivity percolation26, for which a power-law size distribution of clusters occurs 

close to a critical point. However, in sharp contrast to this equilibrium phenomenon, we observe 

critical behavior over a wide range of initial network connectivities. To understand this 

robustness, we develop a general theoretical model of contractile gels that can quantitatively 

account for our observations. In this model, motors not only contract the network, but also 

reduce the connectivity of initially stable networks down to a marginal structure by promoting 

crosslink unbinding. Below this marginal connectivity, the network no longer supports stress and 

the system rapidly devolves to disjoint clusters which reflect the critical behavior of the marginal 

structure. Our model predicts cluster size distributions that agree well with experiment. 

Moreover, it predicts an inverse relationship between cluster size and motor activity, which we 

also confirm experimentally.

Experiment: motors rupture networks into clusters

In order to resolve the interplay between motor activity and network connectivity in active 

cytoskeletal networks, we develop a biomimetic model system with a well-controlled 

composition (Fig 1a). Networks are formed by initiating actin filament polymerization, which 

results in a semiflexible polymer meshwork with a pore size of ~0.3 µm. We control the motor 

activity by adding different amounts of myosin motors, expressed in terms of the myosin-to-

actin molar ratio, RM = [myosin] / [actin]. We control the network connectivity by adding 

different amounts of the crosslink fascin, which can simultaneously bind to two neighboring 
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actin filaments (see Methods). We express the crosslink density in terms of the fascin-to-actin 

molar ratio, RC = [fascin] / [actin]. To ensure that we can observe motor-driven contraction on all 

scales, from microscopic to macroscopic, we prepare networks in customized flow-cells, which 

fit entirely in the field-of-view of the 4× objective of a confocal microscope (see Methods). To 

track the temporal evolution of the networks, we acquire time-lapse movies starting from 1 

minute after the initiation of actin polymerization, where the solution is still homogeneous, until 

2 hours afterwards.

To resolve the influence of network connectivity, we first prepare a series of networks with 

constant myosin activity (RM = 0.01) and gradually increasing crosslink density (RC). Even at 

low RC, the motors can contract actin networks (Supplementary Movie 1). However, contraction 

occurs only on a small length scale, as seen in the time projection image in Fig. 1b. However, 

when we increase RC, contraction occurs on a larger length scale (Fig 1c, Supplementary Movie 

2). The motors break the network up into multiple disjoint clusters. At still higher RC, motor 

activity contracts the entire network into a single dense cluster which often retains the square 

shape of the assay chamber (Fig 1d, Supplementary Movie 3).

To quantify the effect of connectivity on the length scale of network contraction, we 

developed an image processing algorithm (Supplementary Movie 4) which identifies the clusters 

in the final image and traces their origin back in time. As shown in Fig. 1, the initial areas of 

each cluster are small in weakly crosslinked networks (panel d). The smallest clusters are 

~30 µm in size, which corresponds to the typical distance between myosin motor clusters in the 

absence of cross-links (Supplementary Figure 1). However, the clusters increase in size when the 

crosslink density is increased (panel f). In strongly crosslinked networks, the entire network 

forms one cluster (panel g).
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Qualitatively, the transition from local to macroscopic contraction is reminiscent of a 

classical conductivity percolation transition. Below this transition, a system is only locally 

correlated and cannot establish connections over long distances. Only above a certain critical 

connectivity can the system establish global correlations. In order to determine the extent of 

agreement between our experimental results and percolation theory, we investigate three key 

predictions26.

First, conductivity percolation theory predicts how connectivity determines the size of the 

largest and second-largest connected clusters. Connectivity is quantified by the probability p of 

creating a connection. The largest cluster (of size ξ1) is predicted to increase monotonically with 

p, while the second-largest cluster (of size ξ2) should exhibit a peak right at the conductivity 

percolation threshold, where ξ1 and ξ2 both approach the system size, L (Fig 1h, inset). Our 

experiments agree with this prediction: the measured cluster sizes, ξ1 and ξ2, are both small at 

low crosslink density and increase monotonically with increasing crosslink concentration until 

they approach the system size, L ≈ 2.5 mm, around RC ~ 0.01 (Fig 1h). Above this threshold 

connectivity, ξ1 remains close to L whereas ξ2 decreases towards zero as the entire network 

contracts to one large cluster. 

Second, percolation theory predicts how cluster sizes are distributed: around the critical 

point, we should find a power law with an exponent of −2. To test this prediction, we begin by 

looking for networks which satisfy ξ1 ~ ξ2 ~ L. We replot all measurements separately in ξ1-ξ2-

space (Fig. 2a). Because ξ2 < ξ1 by definition, all samples are located within a triangle in ξ1-ξ2-

space. We can clearly identify the samples at the triangle’s peak, where ξ1 ~ ξ2 ~ L. We denote 

this peak as the critically connected regime. To the left of the peak are samples with low RC, 

which we denote the local contraction regime. To the right of the peak are samples with high RC, 

the global contraction regime.
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Do the samples in the critically connected regime really exhibit critical behavior? To test 

this more rigorously, we plot the entire distribution of cluster sizes (Fig 2b). We represent the 

observed distribution as a histogram (open circles), where power-law distributions appear as 

straight lines on a log-log plot. We additionally plot complementary cumulative probability 

distributions (solid lines), whose visual form does not depend on bin size. We find that our 

experiments are again consistent with percolation theory: the critically-connected regime indeed 

exhibits a cluster-size distribution that is statistically consistent with a power-law across more 

than two orders of magnitude in measured area27. The power-law exponent is −1.9, close to the 

exponent of −2 predicted by percolation theory. The distributions of the other two regimes 

furthermore agree with percolation theory. The local contraction regime exhibits a short-tail 

distribution with a sharp cut-off. The global contraction regime exhibits a bimodal distribution 

with two well-separated length scales: the percolating cluster with size ξ1 ~ L and other small 

disjointed clusters with a typical size of ξ2 << L.

Third, percolation theory predicts that only systems that are close to the critical point 

should exhibit a power law. But this prediction is difficult to reconcile with our data: the 

critically connected regime in ξ1-ξ2-space (Fig 2a) is populated by samples which span a wide 

range of cross-link densities (from RC = 0.01 to RC = 0.1). This is also reflected in Fig. 1h, which 

shows a broad ξ2-peak that is over half an order of magnitude wide in RC, in sharp contrast with 

the narrow ξ2-peak expected from percolation theory (inset of Fig 1h). We can therefore 

conclude that classical conductivity percolation theory cannot provide a complete description of 

the physics of active, contractile networks.
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Simulation: network restructuring

Percolation theory describes a network with a fixed connectivity. This can be appropriate 

for equilibrium fiber networks without internal driving. However, in motor-driven networks, the 

total connectivity can change significantly28-30. When we image our networks at high resolution, 

we see that motors actively pull on network strands and disconnect them, thereby reducing 

connectivity (Supplementary Movie 5). Crosslinks bind only transiently (~10 s in case of 

fascin31), and their binding kinetics are typically stress-dependent32. There is strong evidence 

that unbinding of fascin crosslinks is promoted under stress. For instance, in gliding assays 

where actin-fascin bundles move over immobilized myosin motors, the motors actively zipped 

open the bundles33. We hypothesize that such stress-dependent binding kinetics allow motor 

activity to drive initially well-connected networks down towards a critically connected state.

To test this hypothesis, we develop a computational model of contractile actin-myosin 

networks using molecular dynamics. We model actin filaments with a planar triangular lattice of 

nodes connected by line segments of length l0 (Fig 3a). Filaments possess stretching modulus k 

and can strain-stiffen34 and buckle35. We set the average number z of line segments connected to 

a node (i.e. coordination number) to 4.0. Point-like crosslinks are randomly placed on nodes 

with probability p, which depends on crosslink concentration c. We assume first-order kinetics 

of crosslink (un)binding, which yields p = c/(1+c). We model the crosslinks by freely-hinged 

constraints, which prevent relative sliding of connected filaments. Motor activity results in 

contractile stresses13,36,37, which we model by pairs of forces f between nodes. Every node has 

mobility µ and experiences an effective, free-draining viscosity, η. The network evolves over 

time to achieve force balance at the nodes (Fig 3b). For fixed crosslinks, network connectivity 

remains unchanged and ξ1 and ξ2 remain constant. We now introduce into the model the 

important ingredient of network restructuring: connectivity can change via crosslink unbinding 
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and rebinding. The unbinding rate of a crosslink koff increases exponentially with the tension T 

according to Bell’s law32: koff = koff,0 exp(T / T0), where koff,0 denotes the off-rate in the absence 

of tension, and T0 a characteristic tension (Fig 3c). To account for rebinding, we consider the 

probability that an unbinding event is followed by a rebinding event at the same location before 

filaments are separated, which is given by exp(-c kon d / T µ), where d is an effective distance on 

the order of the mesh size over which filaments can move with velocity equal to T µ and kon is 

the binding rate of a crosslink. The effective unbinding rate is thus given by

 koff = koff,0 exp(T / T0) exp(-c kon d/ T µ).

By varying c across many simulations (keeping f constant), we recover the three regimes 

found in experiment: the local contraction (Fig 3d,e; Supplementary Movie 6), critically 

connected (Fig 3f,g; Supplementary Movie 7), and global contraction regimes (Fig h,i; 

Supplementary Movie 8). The crosslink-dependence of ξ1 and ξ2 versus c (Fig 3j) as well as the 

cluster size distributions (Supplementary Figure 2) are fully consistent with experiment. The 

model clearly reveals that motor activity broadens the ξ2-peak: in the absence of active network 

restructuring (panel j, open symbols), only a narrow region (yellow stripes) around the critical 

point exhibits critical behavior. In the presence of network restructuring (panel j, closed 

symbols), this region broadens (solid yellow box). Motor-driven network restructuring can 

therefore account for the surprising robustness of critical behavior we found in experiment.

Motors promote network restructuring 

So far we have investigated the effect of connectivity in experiment and simulation (RC 

and N), but kept motor activity constant (RM and f). Network restructuring breaks networks into 

clusters because motor stresses unbind crosslinks. Increased motor activity should therefore 

increase tension on crosslinks, enhance their unbinding, and lead to smaller clusters. To test this 
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hypothesis, we simulate well-connected networks with constant c but varying motor activity 

(modeled through changes in the force f). Increased force indeed leads to smaller clusters (Fig 

4a-d). At low force (f / k < 0.1), the networks contract macroscopically (ξ1 >> ξ2), while at higher 

force levels ξ1 sharply decreases as f increases (Fig 4e). Increasing f allows networks that would 

otherwise contract globally to exhibit clusters with a power-law size distribution.

In order to validate these predictions, we perform experiments in well-connected networks 

(RC = 0.02) where we change motor activity by varying the myosin-to-actin molar ratio RM. In 

agreement with the model’s prediction, the length scale of contraction strongly depends on 

myosin concentration. For low motor concentrations up to RM = 0.002, the networks appear 

stationary for the entire duration of the experiment. Large-scale collective breathing fluctuations 

are visible, indicative of a strongly connected network, but the motors exert insufficient force to 

contract the network (Supplementary Movie 9). Increasing the motor concentration to 

RM = 0.005 results in a drastic change: the entire network collapses into one large cluster 

mediated by a uniform global contraction (Fig. 4f,h; Supplementary Movie 10). However, a 

further increase of RM results in smaller clusters (Fig 4g,i; Supplementary Movie 11). At high 

motor densities, ξ1 decreases in a manner consistent with the model’s prediction (Fig 4j) and we 

again recover scale-free cluster size distributions (Supplementary Figure 3.)

These results lead to a counterintuitive consequence: in order to coordinate contractions 

over macroscopic length scales, less motor activity is needed. Increasing motor activity only 

yields small clusters.

Motors can nucleate many concurrent ruptures

In order to better understand the effect of force on cluster size, we consider the opposing 

limits of local and global contraction in our simulations. These two regimes are clearly separated 
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by the critically connected regime, as evident in the schematic phase space diagram in Fig 5. The 

global contraction regime is located at the bottom-right corner, where motor forces are low and 

network connectivity is high. In this limit, networks are rigid, filaments remain straight, and the 

network deforms affinely22. On the opposite corner of the phase diagram, where connectivity is 

low and force is high, we find the local contraction regime. Such weakly connected, loose 

networks deform nonaffinely, and filaments are significantly bent.

We can interpret these limits by considering two relevant timescales, τoff and τrelax. The first 

timescale is the characteristic crosslink unbinding time τoff = koff-1. The tension T experienced by 

a crosslink depends on both the motor force f and the network configuration, which can change 

over time. Although the full dependence of crosslink tension on motor force is complex, the 

qualitative behavior is clear: when filaments are straight, motor stress does not greatly induce 

crosslink tension; when filaments are bent, crosslinks experience tension (Supplementary Figure 

4).

The second timescale, τrelax, is the time it takes for filaments in the network to relax in 

response to a crosslink unbinding event. We estimate the values of τoff and τrelax from previous 

work31,38:

 τoff,0 ~ 1–10s τrelax ~ 0.1–1s.

The above value for τrelax is set by the thermal equilibration of individual filaments. It acts as an 

upper bound: forces can cause faster relaxation. Therefore in the absence of tension, τoff > τrelax.

We now consider how these timescales respond to the two limits of local and global 

contraction. In the global contraction limit, f and T are small, and τoff > τrelax holds: once a 

crosslink unbinds, the network fully relaxes before the next crosslink unbinds. This well-known 

limit corresponds to a quasistatic process39. Boundary conditions determine how the network 

evolves in this limit: networks fixed at rigid boundaries build up stress and rupture via the 
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nucleation of a large crack at a microscopic flaw, reminiscent of Griffith’s criterion40. 

Unanchored networks contract affinely, or drive shape changes when coupled to deformable 

boundaries41.

In the opposite limit of local contraction, f and T are large, and the network satisfies 

τoff < τrelax: strong internal driving causes crosslinks to unbind quickly. Many cracks that rupture 

the network into clusters form across the whole network, rather than nucleating at a single flaw. 

The presence of a finite viscosity in our model is essential for this behavior. Neglecting viscosity  

leads to τrelax = 0, and networks fail only via quasistatic crack propagation39. 

In between the two limits of global and local contractions, we find critically connected 

networks with a scale-free distribution of clusters. For zero force, this regime is narrow and 

centered around the critical point. As forces increase, this regime broadens and shifts to higher 

connectivities. This rightward shift reflects an asymmetry where motor activity reduces 

connectivity, rather than increasing it. The broadening shows that increased motor activity drives 

networks more robustly to a critical state.

Intriguingly, robust critical behavior has been demonstrated in many biological 

systems42-46. Internal driving could underlie robust criticality47, but so could other mechanisms, 

including natural selection48,49. Disentangling these mechanisms cannot be addressed by 

studying living systems alone. Here we report robust criticality in a minimal model system and 

show that internal driving is directly responsible. These results may help explain criticality in 

other biological contexts and may prove useful in designing the physical properties of synthetic 

active materials, which have recently become available50.

Our framework offers a minimal microscopic mechanism that should help in modeling 

contractile systems in biology. Recent studies in live cells suggest that motor myosin-driven 

cytoskeletal ruptures play an important functional role in cell division,51, whereas they 
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contribute to developmental defects in developing embryos52. Consistent with our findings, 

decreased connectivity caused dramatic rupture of the ventral furrow into clusters of cells in 

developing fly embryos. We anticipate that our framework applies more generally to tissues of 

interconnected cells53,54, where a supracellular actomyosin network transmits forces over tissue 

length scales.

Methods

Protein Preparation. Actin and myosin were prepared from rabbit psoas skeletal muscle 

(Supplementary Information). Myosin II was labeled with Alexa Fluor 488 NHS ester 

(Invitrogen, Paisley, UK); actin was labeled with Alexa Fluor 594 carboxylic acid, succinimidyl 

ester13. Recombinant mouse fascin was prepared from T7 pGEX E. coli 55.

Sample Preparation. Samples were mixed to yield a final buffer composition of 20 mM 

imidazole pH 7.4, 50 mM potassium chloride, 2 mM magnesium chloride, 1 mM dithiothreitol, 

and 0.1 mM adenosine triphosphate (ATP). Furthermore, 1 mM trolox, 2 mM protocatechuic 

acid, and 0.1 µM protocatechuate 3,4-dioxygenase were added to minimize photobleaching. The 

ATP level was held constant by addition of 10 mM creatine phosphate disodium and 0.1 mg 

mL-1 creatine kinase. The actin concentration was held constant at 12 µM (0.5 mg mL-1). Freshly  

mixed actoymyosin solutions were loaded onto polyethylene-glycol-passivated flowcells with a 

geometry of 2.5 x 2.5 x 0.1-mm3 (Supplementary Information) and sealed with either Baysilone 

silicone grease (Bayer, Leverkusen, Germany) or uncured PDMS (Dow Chemicals, Midland, 

MI, USA). The time evolution of the network structure was observed with a Nikon PlanFluor 4x 

objective (NA 0.13), which allows the network to fit entirely within the objective’s field of view.
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Image Analysis. Cluster sizes were determined by a customized algorithm, implemented 

in MATLAB. Time-lapse images of contracting actomyosin networks were analyzed, starting 

from the final acquired frame. Cluster evolution, determined from Voronoi diagrams of myosin 

foci, was tracked by looping the algorithm backwards in time (Supplementary Information).

Definition of ξ1 and ξ2. For experimental results, we measure the areas ai of the initial 

network that contract together, which we define as clusters. We define ξ1 as the weighted mean 

of cluster sizes li (square root of area), in analogy to the definition of the correlation length from 

percolation theory26:

ξ1 := ∑i li ai2 / ∑i ai2

This length scale is dominated by the largest cluster. We furthermore define ξ2 in analogy 

to percolation theory:

ξ2 := ∑’i li ai2 / ∑’i ai2

where ∑’i denotes summation over all clusters except for the largest cluster, as well as long 

edge clusters (Supplementary Information). This length scale is dominated by the second-largest 

cluster.

For simulation results, ξ1 and ξ2 are given by the square root of the harmonic-averaged 

area of the largest and second largest clusters, respectively, over 10-100 disorder realizations for 

each set of parameters.
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Figure Captions

Figure 1: Experiments with motor-driven networks show that initial connectivity controls the 

length scale of contraction. a: Schematic representation of the experiment. Actin filaments 

(black lines) are connected by crosslinks (purple circles), and myosin motors (green dumbbells) 

exert force dipoles (orange arrows) on actin filaments. b–d: Temporal evolution of three 

networks with varying amounts of fascin crosslinks (a. RC = 0.01; b. RC = 0.05; c. RC = 0.1). 

Actin and motor concentrations are constant: [actin] = 12 µM; RM = 0.01. Color corresponds to 

time according to calibration bar (b, left). Times (tstart, tend) in minutes after initiation of actin 

polymerization: b. (2, 20); c. (2,120); d. (1,5). Scale bar 1 mm. See Supplementary Movies 1–3. 

e–g: Decomposition into clusters, delimited by black lines. Color indicates the largest (blue) and 

the second-largest (pink) cluster, whose sizes correspond to ξ1 and ξ2 respectively. Note that (g) 

does not have a second-largest cluster because we exclude long edge domains from our analysis 

(Supplementary Figure 6). h: Dependence of ξ1 (blue circles) and ξ2 (pink triangles) on crosslink 

concentration (RC). Error bars denote standard errors of the mean for repeat experiments: 1, 6, 

13, 14, 9, and 5 experiments for RC = 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1, respectively. Inset: 

Predicted dependence of ξ1 and ξ2 on connection probability p according to percolation theory, 

given experimental parameters (Supplementary Information).

Figure 2: Cluster size distributions depend on network connectivity, exhibiting power-law 

distributions when ξ1 ~ ξ2 ~ L. a. Scatter plot of 48 samples with different RC in ξ1-ξ2-space (see 

legend, top left). Boxes delimit different regimes: local contraction (ξ1 < 300 µm), critically 

connected (ξ1 ≥ 300 µm and ξ2 ≥ 300 µm), and global contraction (ξ1 ≥ 1500 µm and ξ2 < 300 
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µm). Two data points with ξ2 = 0 are depicted here with ξ2 = 30 µm. b: Histogram (circles) and 

complementary cumulative probability distribution (solid lines) of cluster areas, a / µm2, for the 

three regimes.  For the critically connected regime, data across more than two orders of 

magnitude (red circles) are statistically consistent with a power-law distribution (solid red lines) 

with an exponent of –1.91 ± 0.06, p = 0.52, where p > 0.1 indicates plausible agreement with a 

power law (Supplementary Information). Note that the slope of the complementary cumulative 

probability distribution is equal to one plus the slope of the histogram because the histogram is 

the absolute value of the derivative of the complementary cumulative probability distribution.

Figure 3: Simulations show that motors can drive initially well-connected networks to a critical 

state. a: Schematic representation of the simulation. A triangular lattice of nodes, connected by 

line segments (black lines), contains an average of N crosslinks per node (purple circles). During 

the course of the simulation, pairs of nodes experience contractile forces (orange arrows) and 

move in response to these forces. b: Temporal evolution of a representative network in the 

absence of remodeling. c: Motors cause network restructuring by generating tension T on 

crosslinks that increases the off-rate koff. d-j: Simulated networks exhibit behavior consistent 

with experiment. See Supplementary Movies 4–6. d,f,g: Temporal evolution of three networks 

differing in initial connectivity: a. c = 0.025; b. c = 3; c. c = 10000. Force is constant: f / k = 50. 

Color corresponds to simulation time according to calibration bar (d, left). Box size L is 100 

times longer than the initial lattice size l0. e,g,i: Decomposition into clusters, shaded by pastel 

colors. Bold color indicates the largest (blue) and the second-largest (pink) clusters, whose sizes 

correspond to ξ1 and ξ2 respectively. j: Dependence of ξ1 (blue circles) and ξ2 (pink triangles) on 

crosslink concentration c across repeat simulations. Open symbols indicate values at t = 0, which 

corresponds to passive networks described by classical percolation theory. Closed symbols 
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indicate values at the end of the simulation, after the network has broken up into clusters. Yellow 

regions correspond to values of c for which ξ2 > L / 10 and the cluster size distribution exhibits a 

power-law. Note that this region is narrow for classical percolation theory (diagonal yellow 

stripes) but broadens substantially in response to active internal driving (solid yellow box).

Figure 4: Simulation and experiment both show that increased motor force reduces cluster size. 

a,b: Temporal evolution of two simulated networks with constant network connectivity (c = 3) 

but with either (a) low force, f / k = 3; or (b) high force, f / k = 150. Color corresponds to 

simulation time. c,d: Decomposition into clusters. e: Dependence of ξ1 (blue circles) and ξ2 (pink 

triangles) on force f. f,g: Temporal evolution of two experimentally prepared networks with (f) 

low myosin concentration, RM = 0.005; or (g) high myosin concentration, RM = 0.02. Color 

corresponds to time. Times (tstart, tend) in minutes after initiation of actin polymerization: a. (2, 

43); b. (2,14). The network connectivity is the same in both cases ([actin] = 12 µM, RC = 0.02). 

See Supplementary Movies 8–10. h,i: Decomposition into clusters. j: Dependence of ξ1 (blue 

circles) and ξ2 (pink triangles) on myosin concentration, given by RM. Scale bars 1 mm. Error 

bars denote standard errors of the mean for repeat experiments: 5, 14, and 5 experiments for RM 

= 0.005, 0.01, and 0.02, respectively. Dashed lines depict f-1 (panel e) and RM-1 (panel j). 

Figure 5: The critically connected regime broadens with increasing force. a: Schematic of 

proposed phase diagram in force-connectivity space, where the critically connected regime 

separates the local contraction and global contraction regimes. b, c: Dependence of ξ1 (b) and ξ2 

(c) simulated over a broad range of force and connectivity.
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S U P P L E M E N T A R Y  I N F O R M A T I O N

Methods

Protein preparation. Monomeric (G-) actin and myosin II were purified from rabbit psoas 

skeletal muscle1. G-actin was purified with a Superdex 200 column (GE Healthcare, Waukesha, 

WI, USA) and stored at  −80 °C in G-buffer (2 mM  tris-hydrochloride pH 8.0, 0.2 mM  disodium 

adenosine triphosphate, 0.2 mM calcium chloride, 0.2 mM dithiothreitol). Myosin II was stored 

at −20 °C in a high-salt storage buffer with glycerol (25 mM  monopotassium phosphate pH 6.5, 

600 mM potassium chloride, 10 mM  ethylenediaminetetraacetic acid, 1 mM  dithiothreitol, 50% 

w⁄w glycerol). Creatine phosphate disodium and creatine kinase were purchased from Roche 

Diagnostics (Indianapolis, IN, USA), all other chemicals from Sigma Aldrich (St. Louis, MO, 

USA). Magnesium adenosine triphosphate was prepared as a 100 mM  stock solution using 

equimolar amounts of disodium adenosine triphosphate and magnesium chloride in 10 mM 

imidazole pH 7.4. 

Sample Preparation. Fresh myosin solutions were prepared by overnight dialysis into 

myosin buffer (20 mM imidazole pH 7.4, 300 mM potassium chloride, 4 mM magnesium 

1 FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
2 Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands



chloride, 1 mM dithiothreitol) and used within four days. All frozen protein stocks (actin, 

myosin, fascin) were clarified of aggregated proteins upon thawing at 120,000 g for at least 5 

min and used within four days. The proteins’ concentrations in the supernatant were determined 

by measuring the solution absorbance at 280 nm with a NanoDrop 2000 (ThermoScientific, 

Wilmington, DE, USA) and using extinction coefficients, in M-1 cm-1, of 26600 (actin2), 249000 

(myosin3) and 66280 (fascin, computed from amino acid sequence4). Fluorescently  labeled 

proteins were mixed with unlabeled proteins to yield a 10% molar ratio of dye to protein. During 

sample preparation, myosin and Alexa-488-myosin were mixed at high salt and then mixed into 

a tube containing fascin and buffer. This solution was mixed into a second tube containing actin 

and Alexa-594-actin to initiate polymerization and immediately inserted into glass flowcells 

passivated by  poly-L-lysine-polyethylene-glycol (Surface Solutions AG, Dübendorf, 

Switzerland).

Preparation of flow cells. Glass flow cells were assembled by  sandwiching strips of 

ParaFilm between a long cover slip (24 mm x 60 mm) and 2.5-mm-narrow glass strips which 

were manually cut from 40-mm-long cover slips. This yielded 2.5 x 2.5 x 0.1-mm3-large 

chambers (corresponding to ~0.6 µL). All glass was cleaned with piranha solution, rinsed in 

MilliQ water, and stored in isopropanol. Assembled flow cells were then passivated by applying 

1M potassium hydroxide for 5 min, rinsing with MilliQ, drying with N2, applying 0.2 mg mL-1 

poly-L-lysine-polyethylene-glycol (Surface Solutions AG, Dübendorf, Switzerland) for 30 min, 

rinsing with MilliQ, and drying with N2.

Simulation. The values taken for the simulations are: the system size W=100, koff,0=10, 

T0=1, kon d/ µ=10, k=1. The buckling is implemented by vanishing force of a bond for a 

compression strain below 0.1. The stiffening is implemented by  increase of the stretching 

constant by 100-fold for extension strain above 0.2.
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Algorithm for determining cluster size

We developed a MATLAB algorithm to determine sizes of contracting clusters from time-

lapse images of contractile actomyosin networks. Actin filaments and myosin motors were 

fluorescently  labeled to appear in separate channels. In short, this technique begins with the final 

frame of acquisition (Fig 5a), determines clusters, and tracks the expansion of these clusters 

back in time until the first frame of acquisition. The result is a decomposition of the initial 

network into clusters.

Step 1: the final acquired image from the actin channel (Fig 5b) was median-filtered with 

a radius of 1px (Fig 5c). This step filters out noise.

Step 2: the median-filtered image was thresholded using Otsu’s method5 (Fig 5d). The 

result of this step  is a binary image of only  black or white pixels. Contiguous groups of white 

pixels are called connected components. Each connected component corresponds to a cluster of 

actin and myosin.

Step 3: the final acquired image from the myosin channel (Fig 5e) was also median 

filtered with a radius of 1px (Fig 5f).

Step 4: the median-filtered image was thresholded using Otsu’s method (Fig 5g), again 

yielding a black-and-white image of connected components that correspond to clusters of actin 

and myosin.

Step 5: the thresholded image was morphologically  opened (successive dilation and 

erosion) using a 1-px-radius-disk as a structuring element (Fig 5h). This step serves as an 

additional filter, removing connected components smaller than the structuring element.

Step 6: connected components from step 5 were assigned to connected components from 

step 2 (Fig 5i). Note that the connected components from step 2 (actin) are usually  large, and 
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contain many smaller connected components from step 5 (myosin). Without this step, the 

disjoint connected components from step 5 could be erroneously treated as separate clusters.

Step 7: domains were defined around each cluster, using the MATLAB function bwdist, 

which performs a distance transform (Fig 5j). This step  decomposes the entire image into a 

Voronoi-like diagram, where domain boundaries occur halfway between connected components.

Step 8: steps 3-7 were repeated for the myosin channel, starting with the final acquired 

frame (Fig 5k), looping through successive acquired images backwards in time (Fig 5l), and 

finally arriving at the first acquired frame (Fig 5m). The end result is the first acquired frame, 

where the actin and myosin signals are uniformly distributed, and decomposed into clusters. 

During the loop, steps 3-7 were unchanged, except for step 6: myosin connected components 

were joined not by  using actin connected components, but by  the domains from the previous 

iteration of step 7.

Step 9: finally, the image of domains produced from step 7 of the final loop was cropped 

to the largest rectangle contained by the network.

In two cases, adjustments to this routine were necessary. In one case, during step  2, Otsu’s 

threshold sometimes yielded large connected components that spanned the image (Fig 6a). This 

resulted in the network being erroneously represented as one large cluster (Fig 6b). This artifact 

was eliminated by choosing a more restrictive threshold (Fig 6c), which resulted in accurate 

domains (compare panels d and e). In another case, during step 5, morphological opening 

sometimes filtered out small, dim clusters (Fig 6f). This led to their corresponding domains to 

disappear, and small, neighboring clusters were reported as bigger clusters (Fig 6g). This artifact 

was eliminated by omitting step 5 (Fig 6h), yielding accurate domains (compare panels i and j).
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Adjustment of domains

We performed two types of adjustments to the cluster decompositions produced by our 

algorithm. First, we removed long edge domains from our analysis. These domains could be the 

result of enhanced interactions with the edge of the confining geometry, in addition to internal 

driving by myosin activity. We first search for domains that touch the border of the cropping 

rectangle (Fig 5m, dashed line). We next compute the major and minor axis of the ellipse that 

has the same normalized second central moment of each domain, as well as the orientation of the 

major axis. Finally, we consider edge domains which satisfy the following two conditions: (i) the 

major-axis-to-minor-axis ratio is greater than two; (ii) the major axis is oriented along the edge 

that the domain touches to within 45º. (Condition ii is dispensed for corner domains that touch 

two edges.) Edge domains that satisfy these two conditions are then omitted from the sums in the 

definition of ξ1 and ξ2, as well as when plotting distributions.

Second, we compensated for fast clusters. Sometimes the displacement of a cluster 

between two successive frames was greater than the half-way distance to a neighboring cluster. 

Clusters would then leave their own domain and erroneously enter neighboring domains. This 

artifact mostly affected networks in the global contraction regime, where the global build-up  of 

stress led to fast relaxation events. This artifact cannot be addressed by modifying the algorithm. 

We therefore manually  corrected contraction domains to accurately reflect network evolution. A 

total of five corrections were performed, all of which are reported in Fig 7.

These two adjustments to domain size affect our results for the global contraction regime. 

This is evident by inspecting the effect of the two adjustments on cluster size distributions (Fig 

8a). However, the local contraction and critically connected regimes are largely unaffected. The 

power-law exponents determined from experiment are robust to the two adjustments described 

above (Fig 8b).
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Statistical analysis of domain sizes

In order to determine whether cluster size distributions were consistent with a power law, 

we employed a recently developed, rigorous statistical analysis6. This technique first fits 

observed data to a power law, determining both the best exponent and best lower cut-off. The 

lower cut-off is the minimum value above which the power law is fitted. It then compares the 

observed dataset  with multiple synthetic datasets (generated from a power-law distribution using 

the best fit parameters) by computing the Kolmogorov-Smirnov statistic, which quantifies the 

“distance” between a dataset  and the true power-law distribution. Finally, it computes a p-value, 

which is defined as the fraction of synthetic datasets whose distance is greater than the observed 

dataset. Therefore, larger p-values correspond to an increased likelihood that the observed 

dataset is consistent with a power law. A power law can be ruled out for p < 0.1.

Percolation model

Our model is based on three-dimensional network of N straight  filaments of length L 

placed in a W x W x W box. The filaments are placed such that their position and orientation is 

uniformly distributed. Two filaments are considered to be intersecting if the shortest distance 

between them is less than a certain value which is taken to be of the order of size of the cross 

link. At this intersection these two filaments can be connected by a freely hinging crosslink. The 

probability  that  such a crosslink exists is denoted by p. Periodic boundary conditions are 

assumed in all directions. The line density  NL/W3 is obtained from the experiments, and 

estimated to be ~20 µm-2. Our simulations show that the connectivity percolation occurs in the 

vicinity of p=0.33.
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Figure Captions

Figure 1: Confocal image of actin (red) and myosin (cyan) in the absence of crosslinks ([actin] 

= 12 µM, RM = 0.01, t ~ 2 h after the initiation of actin polymerization). Myosin motors form 

small foci, which are separated approximately 30 µm apart.

Figure 2: Simulated histogram (open circles) and corresponding cumulative probability 

distribution (closed circles) of cluster areas, a / l02, for the three conditions shown in the main 

text, Fig 3d-f. Solid red lines denote a power law with exponent −2.0.

Figure 3: Increased myosin activity results in smaller clusters. a: Scatter plot of samples with 

different RM in ξ1-ξ2-space (see legend, top left). Crosslink concentration is constant (RF = 0.02). 

Boxes delimit different regimes: local contraction (ξ1 < 300 µm), critically connected (ξ1 ≥ 300 

µm and ξ2 ≥ 300 µm), and global contraction (ξ1 ≥ 1500 µm and ξ2 < 300 µm). b: Histogram 

(circles) and corresponding cumulative probability distribution (solid lines) of cluster areas, a / 

µm2, for the three regimes. For the critically connected regime, data across more than two orders 

of magnitude are consistent with a power-law distribution with an exponent of –1.90 ± 0.06 (p = 

0.12, amin = (20 ± 8) 103 µm2).

Figure 4: Bent filaments induce tension on crosslinks. a: Two straight filaments (black lines) are 

crosslinked (purple circle) at their intersection. If forces (orange arrows) are balanced, the 

crosslink experiences zero tension. This is evident because if the crosslink unbinds (right), no 

relaxation occurs. b: A straight filament and a bent filament are crosslinked. Although forces are 

balanced, the crosslink here experiences tension. This is evident because if the crosslink unbinds 

(right), the bent filament relaxes to a straight conformation.
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Figure 5. Cluster-size algorithm. See Supplementary Movie 11. a: Final image of a time-lapse 

acquisition of a contractile actomyosin network (t = 80 min). Alexa-594-actin is shown in red, 

DyLight-488-myosin in green. [actin] = 12 µM, RF = 0.02, RM = 0.02. b: Close-up of the actin 

channel, corresponding to dashed box, a. c: Median filter of b. d: Otsu threshold of c. e: Close-

up of the myosin channel, corresponding to dashed box, a. f: Median threshold of e. g: Otsu 

threshold of f. h: Morphological opening of g. i: Superposition of d (red) and h (green). Note that  

some disjoint green clusters are contained within one large red cluster. In this case, they are 

treated as one large cluster. j: Superposition of original myosin signal (white) with domains 

(shades of beige), which result from a distance transform, implemented in MATLAB as the 

bwdist function. k: Myosin signal (white) and domains (shades of beige) for the entire sample 

before looping the algorithm, beginning with the final frame (t = 80 min). l: Close-up of k 

(dashed box) at three representative stages of loop progression as clusters expand in -t  (from left 

to right: t = 20 min, 8 min, 4 min). m: Myosin signal and resulting clusters for the first acquired 

frame (t = 2 min). Note that myosin is distributed homogeneously across the entire network at 

the beginning of acquisition, and is fully decomposed into clusters. n: Clusters (outlined in 

black) after cropping to dashed box, k, with largest and second-largest clusters denoted in blue 

and pink, respectively. Scale bars: a: 1 mm, b-j: 200 µm, k: 1 mm, l: 500 µm, m: 1 mm.

Figure 6. Two modifications of the cluster-size algorithm. a-e: First modification: skipping step 

2 when it erroneously yields large, system-spanning connected clusters. a: Actin channel of 

original image (RF = 0.01, RM = 0.01, local contraction regime). b: Result of step 2. Note that the 

thresholded image does not resemble the individual clusters visible in the original image. c: 

Result of continuing the algorithm, which erroneously represents the sample as one large cluster. 

d: Result of the algorithm, skipping steps 1 and 2. Note that this image correctly represents 
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individual clusters. e: Overlay of acquired data, where color corresponds to time (calibration bar, 

top right). tstart = 1 min; tend = 20 min. Note that this image qualitatively captures cluster 

evolution, and is obtained independently of the cluster-size algorithm. Comparing to panels c 

and d shows that panel d more accurately represents true cluster size. f-l: Second modification: 

skipping step 5 when it removes small, dim myosin clusters. f: Result of step 4 (RF = 0.01, RM = 

0.01, local contraction regime). g: Close-up of f, green dashed box. h: Result of step 5. i: Close-

up of h, green dashed box. Note that morphological opening removes very small clusters. j: 

Result of continuing the algorithm, which erroneously joins together many small clusters in one 

large cluster. k: Result of the algorithm, skipping step 5. Note that this image correctly 

represents individual clusters. l: Time overlay, as in e. tstart = 2 min; tend = 30 min. Comparing to 

panels j and k shows that panel k more accurately represents true cluster size.

Figure 7: Manual correction of five experiments. True sample dynamics is depicted in the time 

overlay (first column). For these five experiments, the algorithm produces excessively large 

domains (second column). Upon careful visual inspection of the original data, erroneous 

domains were manually corrected to their apparent true size (third column). Scale bar 1 mm.

Figure 8: Results from modifying algorithm output. a: Distributions of cluster sizes (RM = 0.01) 

that result when either removing long edge domains (rows) or manually correcting domains 

(columns). Distributions are divided according to global contraction (top), critically connected 

(center), and local contraction (bottom) (see main text, Figure 2).

Movie Captions

Movie 1: Experiment depicting the time-lapse of a weakly connected network (RF = 0.01, RM = 

0.01). The initially homogeneous actomyosin network breaks up into small clusters. Actin is 
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shown in red, and myosin is shown in cyan (white denotes overlap). Time after initiation of actin 

polymerization is shown at the top-right corner in hours:minutes:seconds.

Movie 2: Experiment depicting the time-lapse of a medially connected network (RF = 0.02, RM = 

0.01). The initially homogeneous actomyosin network breaks up into large and small clusters. 

Actin is shown in red, and myosin is shown in cyan (white denotes overlap). Time after initiation 

of actin polymerization is shown at the top-right corner in hours:minutes:seconds.

Movie 3: Experiment depicting the time-lapse of a strongly connected network (RF = 0.01, RM = 

0.01). The initially homogeneous actomyosin network contracts into one large cluster. A slower, 

secondary contraction subsequently occurs. Actin is shown in red, and myosin is shown in cyan 

(white denotes overlap). Time after initiation of actin polymerization is shown at the top-right 

corner in hours:minutes:seconds.

Movie 4: Custom MATLAB algorithm for determining cluster size. Sample depicted 

corresponds to Movie 11. White pixels correspond to myosin clusters. Beige regions correspond 

to domains around myosin clusters. The algorithm tracks cluster evolution backwards in time, 

yielding the original network, decomposed into clusters.

Movie 5: Experiment depicting a typical rupture event (RF = 0.02, RM = 0.01). Myosins exert 

forces that rupture the actin network, decreasing connectivity. Actin is shown in red, and myosin 

is shown in cyan (white denotes overlap). Time after initiation of actin polymerization is shown 

at the top-right corner in hours:minutes:seconds.
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Movie 6: Simulation depicting the time-lapse of a locally contracting network (c = 0.025). The 

initially well-connected network breaks up into many small clusters. Nodes of a triangular lattice  

representing crosslink points (black dots) are connected by line segments representing actin 

filaments (red lines).

Movie 7: Simulation depicting the time-lapse of a critically connected network (c = 3). The 

initially well-connected network breaks up into small and large clusters. Nodes of a triangular 

lattice  representing crosslink points (black dots) are connected by line segments representing 

actin filaments (red lines)

Movie 8: Simulation depicting the time-lapse of a locally contracting network (c = 10000). The 

initially well-connected network breaks primarily due to large crack. Nodes of a triangular lattice  

representing crosslink points (black dots) are connected by line segments representing actin 

filaments (red lines)

Movie 9: Experiment depicting the time-lapse of a network with very few motors (RF = 0.02, RM 

= 0.002). The actomyosin network does not contract. Rather, it exhibits slow rearrangements on 

macroscopic length scales, reminiscent of breathing, and indicative of a well-connected network. 

Actin is shown in red, and myosin is shown in cyan (white denotes overlap). Time after initiation 

of actin polymerization is shown at the top-right corner in hours:minutes:seconds.

Movie 10: Experiment depicting the time-lapse of a network with few motors (RF = 0.02, RM = 

0.005). The actomyosin network contracts into one large cluster. Actin is shown in red, and 

myosin is shown in cyan (white denotes overlap). Time after initiation of actin polymerization is 

shown at the top-right corner in hours:minutes:seconds.
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Movie 11: Experiment depicting the time-lapse of a network with many motors (RF = 0.02, RM = 

0.02). The initially homogeneous actomyosin network breaks apart into clusters. Actin is shown 

in red, and myosin is shown in cyan (white denotes overlap). Time after initiation of actin 

polymerization is shown at the top-right corner in hours:minutes:seconds.
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