Stochasticity of metabolism and growth at the single-cell level

Daniel J. KivietT*#~, Philippe NgheT#$, Noreen Walker#, Sarah Boulineau#, Vanda Sunderlikova” & Sander J. Tans "
1 equally contributing authors

* corresponding authors

# FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.

~ Department of Environmental Systems Science, ETH Zurich, and Department of Environmental Microbiology,
Eawag, Switzerland

$ current address: Laboratoire de Biochimie, UMR 8231 CNRS/ESPCI, Ecole Supérieure de Physique et de
Chimie industrielles, 10 rue Vauquelin, 75005 Paris, France

Elucidating the role of molecular stochasticity’ in cellular growth is central to understanding
phenotypic heterogeneity2 and the stability of cellular proliferation3. The inherent stochasticity of
metabolic reaction events® should have negligible effect, because of averaging over the many
reaction events contributing to growth. Indeed, metabolism and growth are often considered to be

I of metabolic

constant for fixed conditions™®. Stochastic fluctuations in the expression leve
enzymes could produce variations in the reactions they catalyze. However, whether such

molecular fluctuations can affect growth is unclear, given the various stabilizing regulatory
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mechanisms™ °, the slow adjustment of key cellular components such as ribosomes™ ™", and the

secretion®® and buffering'®"’

of excess metabolites. Here, we used time-lapse microscopy to
measure fluctuations in the instantaneous growth rate of single E. coli cells, and quantified time-
resolved cross-correlations with the expression of lac genes and enzymes in central metabolism.
We show that expression fluctuations of catabolically active enzymes can propagate and cause
growth fluctuations, with transmission depending on the limitation of the enzyme to growth.
Conversely, growth fluctuations propagate back to perturb expression. Accordingly, enzymes were
found to transmit noise to other unrelated genes via growth. Homeostasis is promoted by a noise-
cancelling mechanism that exploits fluctuations in the dilution of proteins by cell-volume
expansion. The results indicate that molecular noise is propagated not only by regulatory

proteins®'? but also by metabolic reactions. They also suggest that cellular metabolism is

inherently stochastic, and a generic source of phenotypic heterogeneity.



To investigate the dynamics of cellular growth, we followed individual Escherichia coli cells growing
on different nutrients. Among them was the synthetic sugar lactulose®, which is imported and
catabolized by the LacY and LacZ enzymes like its analog lactose, but unlike lactose does not induce
lac operon expression (Fig. 1a). Mixtures of lactulose and the gratuitous inducer IPTG thus allowed us
to vary the mean lac expression level independently and hence to explore different regimes of noise
transmission. We determined the instantaneous growth rate p(t) of individual cells within
microcolonies at sub-cell-cycle resolution for various growth conditions, using time-lapse
microscopy™ at high acquisition rates and automated image analysis (Supplementary Information).
We found that u(t) varied significantly in time, both within one cell-cycle and between different cell-
cycles (Fig. 1b-c, Extended Data Fig. 1), with noise intensities (standard deviation over the mean)
ranging between 0.2 and 0.4 (Fig. 1d). Consistently, the growth rates of sister cells were significantly
correlated (Extended Data Fig. 2). We found that the typical timescales of the fluctuations were
somewhat smaller than the mean cellular doubling time, as quantified by the autocorrelation
functions RW(T) (Fig. 1e-f). Such a scaling with doubling time is typical for protein concentration
fluctuations®'. Thus, the data indicated randomly fluctuating growth limitations, and suggested they

could be caused by concentration fluctuations of cellular components.

To study the relation between growth and lac enzymes, we quantified the fluctuations in the lac
production rate p(t) and concentration E(t) using GFP labeling (Fig. 1a, g-i and Extended Data Fig.
1). We computed the cross-correlation functions R,,(7) and Rg,(t), which indicate whether
expression fluctuations correlate with p-fluctuations occurring time t later, and thus inform on the
direction of transmission®??. Both R,,(7) and Rg, (1) showed positive correlations regardless of the
IPTG concentration (Fig. 2a, e-g). Their shapes and symmetries did depend on IPTG however. At low
and intermediate IPTG, R, (7) was nearly symmetric around t=0 while Ry, (T) was asymmetric with
larger weight at T > 0 (Fig. 2e-f and Extended Data Fig. 3). This would indicate that p fluctuations on

average correlated more strongly with u fluctuations that occur later. Such a delay in u is consistent



with the idea that lac expression fluctuations produce variations in lactulose catabolism, which in

turn propagate through the metabolic network and perturb growth.

At high IPTG REH(‘L') displayed a positive peak at T < 0 (Fig. 2g and Extended Data Fig. 3). Thus, E
fluctuations correlated more strongly with u fluctuations occurring earlier, which suggested
backward transmission from growth to expression. Such a growth-to-expression coupling could be
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caused by specific regulatory interactions™ ">

, or more generally by growth fluctuations that cause
variations in general components that are required for transcription and translation. Overall, the

data suggested that noise not only propagated forward, from expression to growth, but also

backward, from growth to expression.

To determine whether back-and-forth transmission could explain the correlations we developed a
stochastic model. A black-box approach was followed, in which noise propagation is represented by
phenomenological transmission coefficients that do not specify molecular details (Fig. 2b). Despite
the circulating noise, the system could be decomposed into distinct noise transmission modes; here
termed the /ac catabolism, common noise, and dilution modes (Fig. 2d). The cross-correlation curves
for all induction levels (Fig. 2e-g) were fitted jointly, using the transmission strength from the

common noise source to p as a single free parameter (Fig. 2h-j).

The effects of induction could be explained by altered intensities of the modes. At low and
intermediate IPTG, the /lac catabolism mode was dominant, with lac noise causing up to 30% of the
growth noise (Extended Data Table 1). At higher IPTG this mode weakened because of decreased
transmission from E to u. This decrease is plausible, as catalyzed reactions are less dependent on
catalyst when the latter is abundant, consistent with the observed relation between the mean E and
1 (Fig. 2c). On the other hand, the rather constant RW(O) (Fig. 2e-g) indicated that the common-

noise mode had an almost fixed intensity for all IPTG concentrations. To further probe the generality



of this mode we made a number of genetic modifications. We found that it remained active when we
knocked-out the lac repressor, changed the GFP position within the operon, altered the type of
fluorescent protein, or used an exogenous constitutive promoter (Extended Data Fig. 4a-d). These
data suggest that common noise transmits to expression in general, which does not exclude

additional coupling by specific regulatory interactions.

Next, we tested key findings. First, if the asymmetry in Rpu(T) (Fig. 2e-f) is indeed caused by lac
catabolism, this asymmetry should be suppressed when carbon enters central metabolism via
another pathway. Growth on acetate was similarly slow as on lactulose and low induction, but
R, (t) was now indeed nearly symmetric (Fig. 3a-b, Extended Data Fig. 3). At the same time, Rg, (1)
became more asymmetric as predicted for a dominant common noise mode transmission (Fig. 3a-b,
Extended Data Fig. 3). When growing on other natural substrates including lactose, the Rg, peak-
width scaled roughly with doubling time consistent with dilution setting the transmission delay
timescales (Fig. 3b, Extended Data Fig. 5). To test further whether /ac fluctuations could be causal in
the growth noise, we exposed the cells to IPTG pulses in a microfluidic device. The resulting pulses in
lac expression were indeed followed by a pulse in growth (Extended Data Fig. 6a). Next, we aimed to
mimic common noise fluctuations by growing cells on glucose minimal medium and pulsing with
amino acids. These pulses indeed produced transient increases in 4 and p (Extended Data Fig. 6b),

consistent with common noise propagating to enzyme expression and to growth.

Second, the network structure implied a homeostatic control mechanism: upward fluctuations in
common noise increase E when transmitted via p, but also decrease E when transmitted via u (Fig.
2b). These opposing effects offer a direct prediction: if the positive pathway dominates, REu(‘L’)
should be positive, as is the case so far. If the negative pathway would dominate however, REu(‘L’)
should become negative (Fig. 3c). One cannot manipulate how volume changes affect dilution. To tilt

the balance, we thus looked for constructs with a weaker coupling to common noise in the positive



pathway, as measured by R, (0). A constitutively expressed mCherry with a two-fold lower R+, (0)
indeed displayed negative RE*u(T) (Fig. 3d and Extended Data Fig. 3). Thus, two parallel antagonistic
pathways that together form a so-called incoherent feed-forward network motif®® can partially
cancel noise. This cancelling also explains why Rg,(0) is low even though R,,(0) is high at high
induction where common noise dominates (Fig. 2g). Interestingly, while up-fluctuations in u are

associated with up-fluctuations in E (Fig. 2g), increases in mean u lead to decreases in E (Extended
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Data Fig. 5e)™™"". These opposing dependencies suggest that different mechanisms underlie these

two types of expression variations.

Third, if lac enzymes transmit to growth and growth transmits to expression in general, then lac
enzymes ought to transmit also to other genes. Hence we quantified p*(t) of mCherry controlled by
promoters with no known functional interactions with the lac system. For lactulose and low
induction, mCherry fluctuations indeed occurred after lac fluctuations on average (Fig. 3f, Extended
Data Fig. 7a-b) in accordance with predictions (Fig. 3e). In contrast, this delay was absent for acetate,
which is consistent because /ac then does not transmit to growth (Extended Data Fig. 7c-d). Noise in

lac expression can thus couple to other genes without specific regulatory interactions.

For the lac genes, the lac catabolism mode transmitted to growth only when the mean lac expression
was kept artificially low and limited the mean growth rate. Hence, we wondered whether limiting
enzymes in central metabolism could similarly perturb growth. For growth on lactose, glycolysis is
considered limited by pfkA, and the TCA cycle by icd but not by g/tA, while in acetate, g/tA is limiting,

icd may be limiting, but pfkA is not®28

. We indeed observed positive time delays in R, for pfkA and
icd in lactose, and for gltA and icd in acetate, but not in the other cases (Fig. 3g, Extended Data Fig.
7e). This pattern of correlation delays is consistent with the mechanism found for lac, in which

growth limitation in steady-state resulted in noise transmission to growth. Notably, the differences in

noise transmission behavior were observed for enzymes catalyzing nearby reactions in the pathway.



For instance, icd acts almost directly after g/tA, but icd displayed delayed correlation in lactose while
gltA did not. This excludes the possibility that the delayed correlations are caused by synchronous
fluctuations of pfkA, gltA, icd, and other central metabolic genes. Together, the results indicate that

expression-to-growth noise propagation occurs more generally for limiting genes.

Our study shows that fluctuations in gene expression can affect the growth stability of a cell, and in
turn, growth noise affects gene expression. This entanglement between growth and expression noise
reflects the inherent auto-catalytic nature of self-replicating systems: metabolic enzymes help
synthesize the building blocks for their own synthesis. The results raise the question how different
fluctuating metabolic activities within the cell are coordinated, and which regulatory mechanisms are
implicated in maintaining growth homeostasis. Metabolic stochasticity could allow clonal cells in a
population to adopt a wide spectrum of metabolic states, and hence enable bet-hedging strategies to
optimally exploit new conditions. Metabolic stochasticity could represent a generic source of cellular
heterogeneity®®, but also prevent optimal growth®® and limit efficient biosynthesis. Novel approaches
are required to incorporate noise transmission within the current theoretical framework of

metabolism.



Supplementary Information is available in the online version of the paper.

Acknowledgments Work in the laboratory of S.J.T. is part of the research program of the Stichting
voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse
Organisatie voor Wetenschappelijke Onderzoek (NWOQ). D.J.K. was partly supported by an ETHZ
Postdoctoral Fellowship. We thank Tom Shimizu, Jeroen van Zon, Huib Bakker, Kobus Kuipers, Martin
Ackermann, Pieter-Rein ten Wolde, Matthias Heinemann, and members of the Tans group for critical
reading of the manuscript.

Author Contributions D.J.K. and S.J.T. conceived and designed the experimental approach. D.J.K.,
P.N., N.W,, V.S. and S.B. performed the experiments. P.N. developed the theoretical model. D.J.K,,
P.N., and S.J.T. wrote the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints.
The authors declare no competing financial interests. Correspondence and requests for materials

should be addressed to S.J.T (tans@amolf.nl) or D.J.K (kiviet@env.ethz.ch).



References:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Wilkinson, D. J. Stochastic modelling for quantitative description of heterogeneous biological
systems. Nat Rev Genet 10, 122-133 (2009).

Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167-173
(2010).

Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg Effect: The
Metabolic Requirements of Cell Proliferation. Science 324, 1029-1033 (2009).

Lu, H. P., Xun, L. Y. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877-1882
(1998).

Fell, D. Understanding the control of metabolism. (Portland, 1997).

Herrgard, M. J., Covert, M. W. & Palsson, B. O. Reconstruction of microbial transcriptional
regulatory networks. Curr Opin Biotechnol 15, 70-77 (2004).

Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single
cell. Science 297, 1183-1186 (2002).

Ferguson, M. L. et al. Reconciling molecular regulatory mechanisms with noise patterns of
bacterial metabolic promoters in induced and repressed states. Proceedings of the National
Academy of Sciences of the United States of America 109, 155-160 (2012).

Munsky, B., Neuert, G. & van Oudenaarden, A. Using Gene Expression Noise to Understand
Gene Regulation. Science 336, 183-187 (2012).

Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the bacterial cell : a molecular
approach. (Sinauer Associates, 1990).

Rodriguez, M., Good, T. A., Wales, M. E., Hua, J. P. & Wild, J. R. Modeling allosteric regulation
of de novo pyrimidine biosynthesis in Escherichia coli. Journal of theoretical biology 234, 299-
310 (2005).

Hart, Y. et al. Robust Control of Nitrogen Assimilation by a Bifunctional Enzyme in E. coli. Mol
Cell 41, 117-127 (2011).

Klumpp, S., Zhang, Z. & Hwa, T. Growth rate-dependent global effects on gene expression in
bacteria. Cell 139, 1366-1375 (2009).

Yun, H. S., Hong, J. & Lim, H. C. Regulation of ribosome synthesis in Escherichia coli: effects of
temperature and dilution rate changes. Biotechnol Bioeng 52, 615-624 (1996).

el-Mansi, E. M. & Holms, W. H. Control of carbon flux to acetate excretion during growth of
Escherichia coli in batch and continuous cultures. Journal of general microbiology 135, 2875-
2883 (1989).

Wilson, W. A. et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS
microbiology reviews 34, 952-985 (2010).

Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proceedings of the
National Academy of Sciences of the United States of America 104, 9224-9229 (2007).
Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307,
1965-1969 (2005).

Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the
single-cell level. Science 307, 1962-1965 (2005).

Dean, A. M. A molecular investigation of genotype by environment interactions. Genetics
139, 19-33 (1995).

Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608-611
(2006).

Dunlop, M. J,, Cox, R. S., 3rd, Levine, J. H., Murray, R. M. & Elowitz, M. B. Regulatory activity
revealed by dynamic correlations in gene expression noise. Nature genetics 40, 1493-1498
(2008).

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell
growth and gene expression: origins and consequences. Science 330, 1099-1102 (2010).



24

25

26

27

28

29

30

Goerke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most
out of nutrients. Nat Rev Microbiol 6, 613-624 (2008).

Shen-Orr, S. S., Milo, R.,, Mangan, S. & Alon, U. Network motifs in the transcriptional
regulation network of Escherichia coli. Nature genetics 31, 64-68 (2002).

Walsh, K. & Koshland, D. E., Jr. Characterization of rate-controlling steps in vivo by use of an
adjustable expression vector. Proc Nat/ Acad Sci U S A 82, 3577-3581 (1985).

Wagner, A. et al. Computational evaluation of cellular metabolic costs successfully predicts
genes whose expression is deleterious. Proceedings of the National Academy of Sciences of
the United States of America 110, 19166-19171 (2013).

Oh, M. K., Rohlin, L., Kao, K. C. & Liao, J. C. Global expression profiling of acetate-grown
Escherichia coli. J Biol Chem 277, 13175-13183 (2002).

Balazsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise:
from microbes to mammals. Cell 144, 910-925 (2011).

Wang, Z. & Zhang, J. Impact of gene expression noise on organismal fitness and the efficacy
of natural selection. Proceedings of the National Academy of Sciences of the United States of
America 108, E67-76 (2011).



* e ? CRN )11 R R
B Bt (RO A FATRRRETAR

lacl lacZ lacY GFP time (h)
C 1.0} e—— 1 d e f s
o| ——d S
T 08 5 2
s N 5 =3 °
206 1 3 3 e
N i 8
0.4 = 5 L
. . : 0 olm€® . |
g ¥ h i o
~ 204 2
S 25 S o £ o
s z 0.0 ] £ °
W 002 ° o 8 e
20 » = = ()
2 3 5
c w w .'
15 0 0
5 6 7 8 9 0 0.3 0.6 09 0 4 8 12 16 0 2 4
time (h) u(h™) time delay (h) doubling time (h)

Fig. 1. Growth rate variability in single E. coli cells. a, Schematic diagram of the studied system.
Lactulose is metabolized by the lac enzymes, but does not induce lac expression. Mean lac
expression can hence be varied independently by the inducer IPTG. GFP is fused transcriptionally in
the lac operon (Extended Data Table 2). b, Aligned phase contrast images for two lineages.
Microcolonies were grown on polyacryl pads (0.1% lactulose and 200 uM IPTG) for 8 to 9
generations. Up to 48 images were taken per hour. Red line: cell boundary from image analysis. c,
Instantaneous growth rate u(t) against time, determined by fitting exponentials to the cellular
length. Four lineages are colored for clarity. Black bar: mean division time. Light points: division
events. d, Top: Histograms of u values for different IPTG levels. Bottom: Noise intensity (standard
deviation over the mean). e, Autocorrelation function of u(t) for low (4 uM, green), intermediate (6
uM, ochre), and high (200 uM, brown) IPTG levels. For clarity, error bars denoting the standard
deviation are indicated only for a fraction of the points. Black lines: exponential fits that provide the
correlation time. Correlation functions were determined along the branched lineages (Extended Data
Fig. 8). f, u(t) correlation time versus mean doubling time. Colors are as in e, black points are for

growth on defined rich, lactose, succinate, and acetate (in order of increasing doubling time). g-i, as
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a

cross-correlation ® CRAT

cross-correlation =

panels c, e, and f, but for the fluorescence intensity reporting for E(t) within single cells. Protein

concentrations were determined by the mean fluorescence per unit area (Extended Data Fig. 1e-g).
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Fig. 2 Cross-correlation functions and mathematical model. a, Instantaneous growth rate against lac
enzyme concentration from one microcolony, corresponding to the cross-correlation value REM(O) in
panel e. b, Model of the coupling between expression and growth noise. Two noise sources are
specific to p and u, one is common to p and u. Correlations arise when noise emitted from one
source is received by two observables (p, E, or u). Analytical solutions revealed all contributing
pathways, and showed they were finite despite the looped network structure (Supplementary
Information). ¢, The mean growth rate versus the mean expression level, as measured for different
levels of IPTG induction. Line: fit to a Monod growth model. d, Three classes of noise transmission
modes. As an example, a noise source (left) emits a block wave, giving rise to signals u, p, and E
(middle) and their cross-correlations (right). Other pathways contribute as well. For instance,
common noise can also drive the catabolism mode. e-g, Cross-correlation functions RW(T) for the
enzyme production rate p(t) and growth rate u(t) (thin line), as well as Rg,(7) for the enzyme
concentration E (t) and u(t) (thick line). Growth is on lactulose (0.1 %) with IPTG: 4 uM (e), 6 uM (f),
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200 uM (g). Top triangles indicate mean division time. Error bars denoting the standard deviation are
indicated for some data points only. The main features were robust to changing the growth
determination method and taking the cell width into account (Extended Data Fig. 4e-h). Growth and
expression differences typically did not correlate with location within the microcolony (Extended
Data Fig. 4i). Protein production rates were determined by the time-derivative of the total

fluorescence per cell (Extended Data Fig. 1e-h). h-j, Fits to the experimental data (panels e-f).
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Fig. 3 Model predictions and experimental tests. Top: re-wired noise transmission networks with
predicted dominant pathways (black). Colored genes indicate labeling with GFP and mCherry.
Middle: predicted cross-correlation with mean doubling time (triangle). Bottom: measured cross-
correlation. a-b, For growth on acetate the lac enzymes are catabolically inactive. c-d, Gene with a
weaker coupling from common noise to expression (compared to the lac operon), leading to
dominant dilution. e-f, Transmission from the /ac genes to another gene via growth. When the lac
genes do not transmit because cells grow on acetate, the correlation is symmetric (Extended Data
Fig. 7c-d). g, Time delays for lac, pfkA, gltA, and icd in lactose (not boxed) and acetate media (boxed),
as derived from the correlation functions RW(T) (Extended Data Fig. 7e). Small square boxes

indicate which gene is considered limiting in steady-state in a particular medium (see main text).
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