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Probing the electrodynamic local density of states with magnetoelectric point scatterers
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In a scattering experiment, the induced dipole moments of a magnetoelectric point scatterer in response to
driving fields are given by its polarizability tensor α. Its linewidth will be dictated by the local density of
optical states (LDOS) at the scatterer’s position. To retrieve the magnetoelectric cross-coupling components
of α for an archetypical magnetoelectric scatterer—a split ring resonator—we study the frequency-dependent
extinction cross section σext as a function of distance to an interface. Rather than following a purely electric or
purely magnetic LDOS, we find a dependence which reflects the interplay of both dipole moments in a “mixed”
magnetoelectric LDOS. For a strongly magnetoelectric cross-coupled microwave scatterer, we compare analytical
point dipole with finite element method calculations.
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I. INTRODUCTION

While electricity and magnetism are inextricably connected
in optics, the interaction of light with matter is generally
considered to be almost entirely mediated by the photon’s
electric field and the electric polarizability of matter.1 In the
last decade, this paradigm has shifted with the emergence of
the field of metamaterials.2–4 In this field of research, complete
control over the flow of light is promised by transformation
optics,5 provided one can engineer arbitrary AC (optical
frequency ω) permittivity ε(ω) and permeability μ(ω) of the
medium it passes through. To reach this goal, many workers
nanostructure materials that intrinsically have μ = 1 and ε �= 1
to create effective media that spoof a magnetic response μ.
The workhorse object in the field is the so-called split ring
resonator (SRR),6–16 a metallic ring of an overall size of around
λ/10 with a single cut that provides a magnetic response
through a circulating charge mode that corresponds to an
LC resonance. At telecom frequencies, experiments indicate
that split rings, and similar metamaterial building blocks,
have a strong magnetic polarizability of several times their
physical volume.10,13,14 Therefore, it is possible to induce
a strong magnetic dipole in such scatterers upon driving
with the incident magnetic field of light. At the same time,
metamaterial scatterers often feature a strong electric, and
a so-called “magnetoelectric” polarizability, whereby electric
driving sets up a strong magnetic response and vice versa.17

Parallel to the development of metamaterials, interest
has recently emerged in engineering magnetic fluorescent
transitions.18–21 Just as the response of materials to light is
dominated in nature by ε, the fluorescence of deeply sub-
wavelength objects like atoms, quantum dots, and molecules
is usually entirely dominated by electric dipole transitions.22

Thus, researchers in the field of spontaneous emission control
conventionally take the local density of optical states (LDOS),
which quantifies how many photon states are available for an
emitter to decay into, as strictly meaning the local density of
electric field vacuum fluctuations. This electric field LDOS not
only governs spontaneous emission, but is also commonly as-
sociated to, e.g., light generation by cathodoluminescence,23,24

or the radiative damping of plasmonic, i.e., purely electrically
polarizable, scatterers as measured by Buchler et al..25 While
in the context of spontaneous emission, the magnetic LDOS,

i.e., the local density of magnetic field vacuum fluctuations,
usually plays a negligible role, it was already recognized to
be as important as the electric LDOS in determining the local
energy density of the thermal field as reviewed by Joulain
et al..26–28 Very recently Taminiau et al.21 demonstrated that
in rare-earth elements magnetic transition dipoles can be
sufficiently strong for magnetic LDOS to be cleanly observed.

In this paper, the two developments described above come
together in a single question and its answer. If a scatterer
such as a split ring is indeed a magnetic, or even a magneto-
electric scatterer of mixed electric-magnetic character, which
LDOS actually sets the radiative linewidth? To formalize this
question, we ask how radiation damping affects a split ring
if we abstract it to a point scatterer with a formally 6 × 6
polarizability7,29 of the form

(
p

m

)
=

(
αE αC

αT
C αH

)(
E

H

)
. (1)

Here, the electric response to electric fields and magnetic
response to magnetic fields are given by the 3 × 3 tensors
αE and αH , respectively. The off-diagonal quantifies how
strongly a magnetic dipole can be set up by an electric field
and vice versa. A polarizability such as Eq. (1) contains very
nontrivial features, such as optical activity, pseudochirality,
and handed radiation patterns, depending on the amount of
magnetoelectric cross coupling αC (Refs. 17, 30, and 31).
In how far this polarizability truly describes the experiments
is a matter of debate. The matching of far-field transmission
spectra of periodic arrangements of such metamaterial scat-
terers to a lattice model for point dipoles is excellent,32 but
one may wonder if the dipole picture stands up to scrutiny
in a near-field experiment. A particular near-field experiment
would be to test if a split ring responds to the LDOS, a
quantity specific to dipole transitions and scattering. In this
paper, we first answer the question how a split ring’s radiative
linewidth is modified by the LDOS, and show that in addition
to the electric and magnetic LDOS, a third quantity emerges
in the form of a magnetoelectric LDOS. Second, we show that
controlled variations in LDOS should allow one to measure
the magnitude and test the conceptual validity of the point
scatterer’s polarizability. Finally, we benchmark our proposal
to finite element calculations.
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II. MAGNETIC LDOS NEAR METALLIC
AND DIELECTRIC INTERFACES

The effect of the LDOS on a point scatterer is well
understood by first considering a polarizable dipole in front
of a perfect mirror. As first demonstrated in a groundbreaking
experiment by Buchler et al.,25 the scattering resonance of a
plasmon particle can be modified in width by mechanically
approaching a planar reflective substrate. This effect can be
interpreted in exactly the same manner as the explanation
usually given to Drexhage’s experiment on the radiative
transition rate of a fluorophore near a mirror.33–37 The
scattering resonance carries an electric dipole that hybridizes
with its mirror image, which for a dipole moment parallel
(perpendicular) to a perfect mirror interface has reverse
(identical) orientation according to image charge analysis
(Fig. 1). The two electric dipoles together correspond to either
a subradiant or superradiant configuration, depending on the
dipole orientation and distance. Consequently, the radiative
linewidth oscillates with distance to the mirror in proportion
to the electric LDOS. It is not immediately obvious that this
method can be useful to also probe linewidth changes in objects
with both an electric and magnetic dipole moment. While the
rule for choosing the image dipole orientation reverses in the
magnetic case, compared to the electric case, one should also
consider that in a split ring the electric and magnetic dipole are
at 90◦ relative orientation. In most experiments, the magnetic
dipole is perpendicular to the substrate (labeled z oriented
from hereon), while the electric dipole is in plane (x oriented).
An image dipole analysis assuming a perfect mirror predicts
essentially no discernible difference between the linewidth
of an in-plane electric dipole and an out-of-plane magnetic
dipole. That electric and magnetic LDOS have essentially the
same dependence for the perpendicular dipole orientations in
a mirror charge analysis was also noted by Karaveli et al..18

Discerning magnetic and electric LDOS effects hence either
implies that one rotates the scatterer (Fig. 1, right) to have
both electric and magnetic dipoles in plane, or requires that
one finds an LDOS with distinct electric and magnetic spatial
dependence for the desired polarizations.

In Fig. 2, we plot the electric and magnetic LDOS for
vacuum/Si and vacuum/Ag interfaces for both parallel and
perpendicular dipole orientations with the aim of obtaining a

FIG. 1. (Color online) Split ring resonators with two distinct
orientations are placed above a perfect mirror. In the point dipole
picture each split ring is described by an electric dipole p along the
split ring gap (blue) and a magnetic dipole m pointing out of the split
ring plane (red). The mirror images for both split ring orientations
are depicted together with their respective image dipoles p′ and m′.
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FIG. 2. (Color online) Relative electric (x-oriented dipole p,
blue) and magnetic (z-oriented dipole m, red) LDOS for distance
d from a vacuum/Ag (dashed lines) and vacuum/Si (solid lines)
interface at a vacuum wavelength of 1.5 μm. Especially at close
distances d < 0.2 μm, a vacuum/Si interface provides a higher LDOS
contrast of x-oriented electric dipoles and z-oriented magnetic dipoles
than a vacuum/Ag interface.

large difference between the LDOS for x-oriented electric
dipoles and z-oriented magnetic dipoles. To specify the
calculation method for the LDOS at a position r above the
interface, we calculated the imaginary part of the Green
function G(r,r), as described by Novotny and Hecht,22 using
the complex wave-vector integration contour of Paulus et al..38

From hereon we suppress the argument of the Green function.
We generalize the calculation to encompass the electric LDOS
ImGEE , the magnetic LDOS ImGHH , and the crossed Green
dyadic ImGEH , as specified in the Appendix. Notably, the
calculation of magnetic and electric LDOS is comparable
in methodology to the report by Joulain et al.,27 with the
distinction that we do not average over dipole orientation,
specify how to implement the full Green function G(r ′,r) at
arbitrary distinct source and detector coordinate, and include
the magnetoelectric cross term. We take ε = 12.11 for silicon
and ε = −121.53 + 3.10i for silver, as tabulated for the
resonant wavelength of 1.5 μm (Refs. 39 and 40), typical for
200 × 200-nm split rings, and plot LDOS normalized to the
LDOS in a vacuum (Fig. 2). For the vacuum/Ag interface we
observe that the magnetic z-oriented and electric x-oriented
LDOS are quite similar in magnitude, except within 50 nm of
the interface. As anticipated from the perfect mirror intuition,
a dielectric interface is advantageous in providing a higher
contrast of magnetic electric LDOS contrast compared to a
metal. Continuity conditions on E‖ and H‖ ensure that the
electric and magnetic LDOS are highly distinct. The range
over which a large distinction remains away from the interface
extends well into the regime beyond the first oscillations in
LDOS at 200 nm, as shown in Fig. 2. Therefore, scanning the
separation distance between split ring and interface allows to
independently vary the electric and magnetic LDOS over a
substantial range.

III. RADIATIVE LINEWIDTH NEAR AN INTERFACE

Now we proceed to examine the radiative linewidth of a
point scatterer described by a magnetoelectric polarizability,
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as proposed by Sersic et al.,17 which is based on the static
polarizability introduced by Garcia-Garcia et al.7 generalized
to include radiation damping. The induced dipole moments
of a scatterer in a vacuum are entirely set by its full 6 × 6
dynamic polarizability tensor α

dyn
free that is of the form Eq. (1).

In a quasistatic description of the scatterer, one starts from an
LC circuit to obtain a static polarizability αstat

free that consists

of a Lorentzian frequency dependence L(ω) = ω2
0V

ω2
0−ω2−iωγ

(resonant at the LC frequency ω0, damping rate γ set by
the Ohmic resistance R) multiplying a frequency independent
2 × 2 matrix

αstat
free = L(ω)

(
ηE,xx iηC,xz

−iηC,zx ηH,zz

)
, (2)

where ηE,ηH ,ηC are real parameters simply set by geometry.
For an ideal, infinitely thin SRR all other elements of the
6 × 6 polarizability are zero. To end up with an energy
conserving scatterer, a radiation damping term must be
added:

α
dyn
free

−1 = αstat
free

−1 − iImG, (3)

where G is shorthand for the 6×6 Green function G(r,r ′)
evaluated with both r and r ′ equal to the position of the
scatterer. In a vacuum the correction amounts to the usual
radiation damping term iImG = 2/3ik3I, where k = ω/c,
and I the identity matrix, which is standard in the field of
plasmonics. In front of the interface, however, the Green
function is modified according to Fig. 2. For the effectively
2×2 polarizability of the split ring, the relevant ImG tensor is
also only 2 × 2, containing on the diagonal only the electric
LDOS for x-oriented dipoles ImGEE,xx , and the magnetic
LDOS for z-oriented dipoles ImGHH,zz, while the off-diagonal
contains ImGEH,xz. The off-diagonal term, but at distinct
spatial coordinates, i.e., ImGEH (r,r ′), was already recognized
to be relevant by Agarwal26 in the context of fluctuating
electromagnetic fields. In that context, the term quantifies
coherence in blackbody fluctuations, i.e., as cross-spectral
correlation function between electric field at position r and
magnetic field measured at position r ′. In the thermal energy
density near simple interfaces as treated by Joulain et al.,27

this cross term does not appear, owing to the fact that it does
not contribute to the thermal energy density if the fluctuating
electric and magnetic currents from which the thermal energy
density arises are independent. In this case only the trace of the
Green function enters, i.e., the sum of the dipole-orientation
averaged electric and magnetic LDOS. However, as soon as
bi-(an)isotropy (evident as optical activity) is at play this
assumption breaks down and the ImGEH term will enter
in the transition rates of emitters, radiative linewidths of
scatterers, and thermal energy density. Indeed, bianisotropy
is the hallmark of the LC model for a split ring, in which
electric and magnetic dipoles derive from the same charge
motion, at fixed quarter wave phase difference. We refer to
Ref. 41 for a recent treatment of fluctuational electrodynamics
in chiral bi-isotropic media.

We obtain the radiative linewidth as one would measure it
in an extinction experiment, by calculating the extinction cross

section in the following manner. The scatterer is driven by a
plane wave impinging from above, plus its Fresnel reflection
due to the interface. We take the incident beam as normal to
the interface with the electric field polarized along the gap. We
calculate the work done per unit cycle on the scatterer via

W =
〈
ReE · Re

d p
dt

+ ReH · Re
dm
dt

〉
. (4)

The plots of the work show an oscillatory dependence with the
distance of the split ring to the interface due to two effects.
First, the driving field forms a standing wave. Second, the
polarizability varies with the oscillating LDOS. To obtain
a true extinction cross section we divide out the local field
strength of the driving

σext = 2Z

|E|2 W, (5)

with Z the impedance of the host medium, in this case the
vacuum. As the inset to Fig. 3(a) shows, the retrieved extinction
cross section is of Lorentzian spectral shape and varies in
width and central frequency as the scatterer is approached
to the interface. We extract the resonance width, which is
the sum of the radiative and absorptive damping rate of the
scatterer.

As a benchmark, Fig. 3 shows the linewidth of the
extinction cross section of a purely electric scattering sphere,
i.e., taking ηE = 1, ηH = 0 and ηC = 0, resonant at 1.5-μm
wavelength, with Ohmic damping rate γ = 8.3 × 1013s−1 and
a particle volume of V = 100 nm3. As the scatterer approaches
the interface, its extinction linewidth oscillates, and almost
doubles when the scatterer is close to the interface. We find
that the linewidth � follows to great accuracy the dependence
� = �abs + �rad × LDOSEE,xx . Analogous to the calibration
of quantum efficiencies of fluorophores,35–37 this dependence
allows to extract the radiative and Ohmic damping rate of the
particle, and thereby also the LDOS-dependent albedo of the
scatterer. For the sphere studied here, the albedo in the absence
of the interface is a = 0.41. This benchmark calculation shows
that our model reproduces the experimental observation by
Buchler et al..25 Similarly, a calculation for a purely magnetic
scatterer verifies that the damping rate of a magnetic scatterer
traces the magnetic LDOS (calculation not shown).

In Fig. 3, as a measure for �, we examine the extinction
linewidth for objects that have both an electric and a magnetic
character. For demonstration purposes, we take the electric
and magnetic polarizability equally large at ηE = ηH = 1. If
no cross coupling, i.e., no bianisotropy is present in the object
(ηC = 0), the extinction linewidth simply traces the electric
LDOS, provided excitation is normal to the sample so that the
magnetic dipole is not directly driven at all (curve not shown) .
As cross coupling is introduced, and increased to its maximum
value, the extinction linewidth shifts away from the purely
electric LDOS and towards the magnetic LDOS curves. At
maximum cross coupling (ηC = 1), the extinction linewidth
exactly traces the mean of the electric and magnetic LDOS
consistent with the fact that electric and magnetic dipoles
are equal in size. Generally, for this geometry and excitation,
the averaging is weighted by the magnitudes of the dipole
moments, i.e., | p|2 and |m|2. We conclude that an experiment
such as the one performed by Buchler et al.,25 but applied
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FIG. 3. (Color online) (a) Analytical calculation of the FWHM-linewidth of the extinction cross section normalized to driving field intensity
as a function of distance d to a vacuum/Si interface for a purely electric (ηE = 1,ηH = ηC = 0) sphere resonant at 1.5 μm wavelength, with
Ohmic damping rate γ = 8.3 × 1013s−1 and a particle volume of V = 100 nm3 (dots) in comparison to the purely electric LDOS lineshape
for this interface. (b) The dots represent the same quantitity as before, but for realistic split ring resonator (ηH = 0.7,ηE = 0.3,ηC = 0.4)14

that is oriented with the SRR plane parallel to the surface. Electric, magnetic and magnetoelectric LDOS are shown as lines. (c) Maximally
cross-coupled split ring resonator (ηE = ηH = ηC = 1) parallel to and with the gap pointing away and pointing towards the interface,
respectively.

to a split ring can indeed provide a quantitative test of the
magnetic and bianisotropic dipole responses of a single object,
and a calibration of the magnitude of polarizability tensor
elements.

IV. MAGNETOELECTRIC LDOS

That a weighted average of electric and magnetic LDOS
is obtained for a scatterer with both an electric and magnetic
dipole moment may seem a likely general description of the
physics describing radiative linewidths. However, we note that
in a split ring the electric and magnetic dipole are coherently
coupled through the magnetoelectric coupling, and hence may
also probe the off-diagonal term in ImG. Moreover, in a split
ring the electric and magnetic responses have a fixed phase
relation, necessarily being a quarter cycle out of phase since
the current inducing m and the charge separation inducing
p are related by charge conservation. This coherence, for
instance, results in a strongly handed response under certain
viewing angles.17,31 We predict that the coherence also affects
the strength of the interaction between the split ring and its
mirror image in the substrate, i.e., the radiative linewidth. In
the example we examined in Fig. 3, this effect was fortuitously
obscured due to the fact that the cross term GEH,xz by
symmetry happens to be exactly zero. Microscopically, the
radiation emitted by an x-oriented electric dipole in front of a
planar surface does not cause any magnetic field along z to be
reflected to the split ring to provide back action. If we rotate the
split ring to stand with arms up, or point with arms down, cross
coupling becomes important as GEH,xy �= 0. Microscopically,
this indicates that an x-oriented electric dipole will receive
a y-oriented magnetic field as parts of its reflection in the
interface, which in turn will drive the object if it has a
y-oriented magnetic polarizability. In Fig. 3 we report the
radiative linewidth for a point scatterer oriented to exactly
represent this case, i.e., that of a split ring that stands up with
its legs normal to the plane. The radiative linewidth in this
case does not trace a weighted combination of magnetic and
electric LDOS. It will depend on GEH,xy instead. Remarkably,

this dependence is different for the split ring pointing upwards
to the split ring pointing downwards although the object has the
same electric and magnetic polarizability. A recent paper by
Andersen et al.42 reported a similar effect, but for the radiative
rate of self-assembled III-V quantum dots. Depending on
the orientation of the trapezoidally shaped dots relative to
a plasmonic interface their decay rate is different, although
the transition electric dipole moment strength and orientation
is invariant. In the quantum dot case, this difference is due
to the fact that the highly extended wave functions also
introduce an electric quadrupole character to the transition.
While quadrupole effects are limited to strong field gradients
and hence short distances (<100 nm) from the interface, for the
split rings we expect the orientation asymmetry to persist over
longer distances as it is set by dipolar contributions only. As in
the experiment reported by Andersen, the key to the asymmetry
is that while the electric and magnetic polarizability are
invariant upon the reversal of the split ring, coherence between
the electric and magnetic contributions is important. Indeed,
when reversing the split ring orientation, the only difference
is the sign of the cross-coupling polarizability, i.e., whether
the quarter cycle phase difference between the magnetic and
electric responses is a lag or an advance. Thus the fact that
radiation reaction is a coherent effect means that the linewidth
provides a direct way to measure phase relations between
polarizabilities, and not only absolute values. For instance, one
could measure if the quarter wave phase difference between
αE,αH on the one hand and αC on the other hand, which
is generally surmised from quasistatic ciruit theory for split
rings, in fact carries over to real scatterers that are not
negligibly small compared to the wavelength and that are not
composed of ideal conductors. To our knowledge, this is the
first proposition that a new property of the structure that can
potentially be engineered independently of the well-known
electric LDOS and the recently evidenced magnetic LDOS
may enter radiative linewidth modifications for dipole objects.
We term this a magnetoelectric LDOS effect. Generally, as
soon as multiple multipole moments are relevant, not only the
separate multipole LDOSs, but also the coherences between
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the different terms will be key to control the overall radiative
rates and linewidths for the emitters and scatterers.

V. FINITE ELEMENT MODELING EXAMPLE

Our predictions for the effect of the magnetic and magneto-
electric LDOS on the linewidth of metamaterial scatterers are
all subject to the assumption that the scatterers can actually
be described in a point dipole picture. An important question
that is yet to be tested in the experiment and simulations is if
this assumption holds at all for metamaterial scatterers, and
if so for what classes of optical experiments. Therefore, we
perform a numerical experiment and compare the radiative
linewidth found from finite element method calculation with
the point dipole predictions. To optimally discriminate for
magnetic LDOS effects, we choose an omega-shaped particle
that earlier surface integral equation simulations (SIE31,43)
predicted to have a very large magnetic and magnetoelectric
response. In Ref. 31, the polarizability was quantitatively
retrieved by projecting calculated scattered fields for the
scatterer held in free space on vector spherical harmonics.
We have performed full-field finite element calculations of the
omega-shaped scatterer, which is resonant in the microwave
regime, again above a high-index substrate (n = 3.5). The
scatterer geometry is that of a 60-nm thin flat loop of inner
radius 0.74 μm and outer radius 1.19 μm radius. Before the
loop closes, the arms smoothly curve to be parallel over a
length of 390 nm, leaving a gap of 520 nm across. As material
we use a Drude model for gold (ε(ω) = εb − ω2

p/[ω(ω + iγ )]
with εb = 9.54,ωp = 2.148 × 1015 s−1 and γ = 0.0092ωp).
We employ the commercial COMSOL three-dimensional (3D)
finite element method (FEM) solver with elements of quadratic
order and a grid finesse down to 5 nm. Perfectly matched layers
enclose a cylindrical simulation domain (cylinder axis normal
to the substrate) that extends 10 μm around the scatterer. We
perform a total field-scattered field simulation where, as in the
point dipole model, the scatterer is excited by the superposition
of a plane wave and its Fresnel reflection. We extract the extinct
power as the sum of scattered power (obtained from a near-field
flux integral over a surface enclosing the particle) and absorbed
power, and normalize the extinct power to the local driving
strength. This procedure was tested on Mie scatterers to give
cross sections to better than 1%.

Extinction spectra show a Lorentzian linewidth at all
separations, with a varying width and a slightly varying
center frequency around a wavelength of 13.5 μm. The center
frequency varies because Eq. (3) in its most general form also
contains ReG, corresponding to a real frequency shift due
to the hybridization of the scatterer with its mirror image.
We focus on the linewidth, plotted in Fig. 4. Evidently, the
linewidth shows oscillations increasing in amplitude when
approaching the interface, and is twofold larger close to the
interface than away from it. To move beyond this qualitative
resemblance with the point dipole prediction, we also plot
the linewidth found from point dipole calculations. No ad-
justable parameters are used for the comparison, as we insert
the polarizability values extracted from the SIE calculations in
Ref. 31, which are characterized through αH /αE = 0.3511 and
αC/αE = 0.596. We note that the object has an on-resonance
electric polarizability |αE | = 3.9 μm3, approximately 30 times
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FIG. 4. (Color online) FWHM linewidth of the extinction cross
section normalized to the local driving field intensity for a zero arm-
length omega particle oriented parallel to a Si interface as a function of
distance d . Retrieved FWHM linewidths from FEM simulation (dots)
vs. point dipole calculation (lines). Insets show extinct power (left)
as well as normalized extinction cross section (right) as a function of
frequency f and distance d as acquired from FEM simulation.

the particle volume. The point dipole model is seen to satis-
factorily agree with the linewidth in simulations. Thereby, we
establish that the point dipole approach not only describes far-
field measurements on arrays of split rings, but is also directly
applicable for split rings in the near-field of structures that
modify LDOS. We propose that the residual deviations contain
interesting physics to pursue. First, whether a metamaterial
scatterer actually traces the magnetic and magnetoelectric
LDOS can be seen as a fundamental test in the discussion in
how far a spoof magnetic scatterer is actually a true magnetic
scatterer. Second, if one accepts that a scatterer that largely
radiates according to the magnetic and magnetoelectric LDOS
is a bona fide magnetic dipole, one can assess on basis of the
residual deviations between simulation and analytical model
in how far multipolar corrections are important.

VI. CONCLUSION

To conclude, we have examined the dependence of the
radiative linewith of split ring scatterers on their distance to
an interface that modifies the electric LDOS, the magnetic
LDOS, and a new quantity that we term magnetoelectric
LDOS. We propose that this linewidth, i.e., the backaction
of the field radiated by the scatterer on itself, can serve
as a calibration probe of the complex polarizability tensor
and as a fundamental test of the proposed dipolar nature
of metamaterial scatterers. Of particular note is the concept
of magnetoelectric LDOS, whereby the electric dipole of an
object radiates magnetic field that back-acts on the magnetic
dipole. It is an interesting question to explore whether such
a magnetoelectric LDOS will also affect quantum mechanical
transitions. While in the recent breakthroughs by Taminiau
et al. and Karaveli et al. magnetic-only transitions in rare-earth
ions are enhanced,18,19,21 it is an open question if transitions
with a clear simultaneous electric and magnetic character can
be found. Conversely, we propose that coupling single emitters
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with a purely electric response to magnetoelectric scatterers
may allow to spoof quantum mechanical transitions with a
magnetoelectric character, as antennas tend to imbue their
polarization characteristics on emitters. Such emitters would
likely have interesting chiral properties since magnetoelectric
cross coupling implies optical activity.44,45
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APPENDIX: GREENS FUNCTION

To calculate LDOS, we require the 6 × 6 dyadic Green
function near a planar interface where source r ′ and observa-
tion point r are in the same half-space. We separate the Green
function in a free part (in the absence of an interface) and a

reflected part

G(r,r ′) = Gfree(r,r ′) + Greflected(r,r ′),

with

Gfree(r,r ′) =
(
Ik2 + ∇∇ −ik∇×
ik∇× Ik2 + ∇∇

)
G(r,r ′), (A1)

where k = ωn/c is the wave number in the medium of index n

that contains both r and r ′, c is the speed of light, and G(r,r ′)
is the scalar Green function. The reflected part of the Green
function reads

Greflected(r,r ′) = ik2

2

∫ ∞

0
k||dk||[j0(k||R)M0

+ j1(k||R)M1 + j2(k||R)M2]eikzZ, (A2)

where if r = (x,y,z) and r ′ = (x ′,y ′,z′) we define the cylindri-
cal coordinates through (R cos φ,R sin φ,Z) = (x − x ′,y −
y ′,z + z′). With kz we denote

√
k2 − ||k||||2, while jn(x) is

the Bessel function of order n. The 6 × 6 matrices M i contain
the k||-dependent Fresnel reflection coefficients rs and rp for s

and p polarization. In detail,

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rs/kz − rpkz 0 0 0 rp − rs 0

0 rs/kz − rpkz 0 rs − rp 0 0

0 0 2k2
||rp/kz 0 0 0

0 rp − rs 0 rp/kz − rskz 0 0

rs − rp 0 0 0 rp/kz − rskz 0

0 0 0 0 0 2rsk
2
||/kz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

M1 = 2ik||

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −rp cos φ 0 0 −rs/kz sin φ

0 0 −rp sin φ 0 0 rs/kz cos φ

rp cos φ rp sin φ 0 rp/kz sin φ −rp/kz cos φ 0

0 0 rp/kz sin φ 0 0 −rs cos φ

0 0 −rp/kz cos φ 0 0 −rs sin φ

−rs/kz sin φ rs/kz cos φ 0 rs cos φ rs sin φ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and finally also

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(rs/kz + rpkz) cos 2φ (rs/kz + rpkz) sin 2φ 0 (rs + rp) sin 2φ −(rs + rp) cos 2φ 0

(rs/kz + rpkz) sin 2φ −(rs/kz + rpkz) cos 2φ 0 −(rs + rp) cos 2φ −(rs + rp) sin 2φ 0

0 0 0 0 0 0

−(rs + rp) sin 2φ (rs + rp) cos 2φ 0 (rskz + rp/kz) cos 2φ (rskz + rp/kz) sin 2φ 0

(rs + rp) cos 2φ (rs + rp) sin 2φ 0 (rskz + rp/kz) sin 2φ −(rskz + rp/kz) cos 2φ 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Throughout we have used the units of Ref. 17
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