
Sparse Techniques for Emission Imaging

Andrei Kharchenkoa, Julia H. Jungmanna, Luke MacAleesea,b, Ron M. A. Heerena,∗

aFOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
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Abstract

Emission imaging is based on scanning an object with a photon beam or a stream of particles
having high kinetic energy, amplifying the emitted particles with an intensifier device, and
guiding its output secondary particles onto a position-sensitive detector which sometimes
comprises a high frequency clock which provides additional separation of the sensed events
in time. We show that the image is always a set of elliptical loci of secondary particles
with some noise, and that the positions of the primary particles can be efficiently recognized
from the intensifier’s output image and all the geometric noise separated. It requires ad
hoc data analysis due to the redundancy of the raw event stream which becomes under-
sampled after filtering. A two-phase technique to filter geometric noise and to visualize
the acquired structures addresses the redundancy and under-sampling/filtering problems.
Our filtering is based on the statistical properties of particle beams which allows us to
efficiently “clean” the acquired 2D images by handling all the types of inherent artifacts based
on the parameters of the spatial distribution of an individual particle beam. The filtered
images suffer from significant under-sampling which should be handled by some missing pixel
recovery procedure, usually an interpolation. We present an overview of various interpolation
approaches from 3D approximation to manifold learning, and show that the reconstruction
of the corrupted spectrum sampled at the locations of beam positions produces the best
image recovery.

Keywords: emission imaging, image reconstruction, Hough transform, sparse recovery,
point set, simplicial complex

1. Introduction

Recent technological progress in the development of high-resolution, high-sensitivity and
high-speed positional detection systems has enabled the detection of individual particle
events in time and space [1] [2]. These detectors assist in the observation and registration
of rapid phenomena that cannot be observed with conventional optical instruments. The
development in this field is predominantly driven by high energy physics [3], astrophysics
and X-ray imaging [4]. Recently, imaging mass spectrometry [5] has been added to the list
of technology push factors.
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All these applications have in common that they target an accurate positional detection of
transient particle induced events. In most cases also accurate time tracing of these events
is required which adds to the complexity of the required information. The application areas
vary significantly in particle loads or count-rates arriving on the detector system.
Biomolecular imaging mass spectrometry [6] [7] is employed predominantly in biomedical
studies where optical imaging cannot provide any detailed information without targeted la-
beling with fluorescently labeled antibodies or other radioactively labeled pharmaceutical
or exogenous compounds. In these cases it is imperative to examine native endogenous
biomolecules directly from cells or tissue sections. The operating principle is based on the
desorption and ionization of intact biomolecules, immediately followed by mass spectromet-
ric separation and structural analysis. In selected cases the spatial distribution is kept intact
and direct molecular images can be acquired [8]. Biomolecular ion detection as well as UV
or X-ray photon detection are based on a combination of a local conversion of the ion into
one or more electrons and a subsequent amplification step on an image intensifier device,
e.g. a micro-channel plate (MCP).
In this article, we present a theoretical treatment of emission imaging with the under-
sampling artifact and propose an approach to retrieve maximal information from sparse
imaging data sets. The approach is two-fold: First, image noise and artifacts are distin-
guished from the events originating from the object imaged via finding centers of elliptic
envelopes of secondary event positions in a multi-dimensional parametric space. Second, the
centers, insufficient for creating an image, are used for sampling the acquired image pixels’
spectrum which is then reconstructed via l0-optimization with additional criteria. A compar-
ison with alternative methods is presented: B-spline approximation and homology learning.
The presented approach is highly generic and applicable to virtually any type of sparse data
set. Boundary conditions, experimental guidelines and algorithm limitations are provided
to the reader. The novel method is successfully applied to benchmark data (on a resolution
mask) and to “real” biomolecular imaging mass spectrometry data to demonstrate the ready
applicability of the algorithms.

2. Experimental data

Two types of experimental data are used to test and illustrate the concepts developed
for sparse emission imaging. Both types of experimental data are acquired with a chevron
microchannel plate stack in combination with a novel type of imaging detector, an active
pixel detector of the Medipix/Timepix detector family [9]. This chip consists of 256×256
pixels of 55×55 µm2. On the single pixel level, this pixelated chip can measure (1) the
number of particles impinging on the pixel, (2) the time-of-flight of a particle with respect
to an external trigger, or (3) the time-over-threshold, i.e. the time interval during which the
charge generated from a particle event remains above the detection threshold (i.e. a measure
of particle energy). Typically, a sample is “imaged” by illumination/ablation of a specimen
with a probe, e.g. photons, primary ions etc. The “image particles” are guided towards
the detection system. Whenever a particle impinges on this detection system, the intensifier
converts this event into an electron shower such that a one-particle-event is transformed into
an electron shower of thousands to millions of electrons. This shower covers multiple pixels
on the Timepix chip. Fig. 1 gives a schematic representation of the imaging setups.
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The first type of experimental data, the “benchmark” data, is generated by illumination
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Figure 1: Principle of imaging setup: The specimen under investigation is illuminated by a
particulate probe as, for instance, electrons, photons, primary ions etc. “Image particles”
-secondary particles or non-absorbed photons- are guided towards the detection system.
The image particles impinge on the first detector stage, the microchannel plates, which
translate the event into a shower of electrons. This secondary electron shower spans multiple
elements on the second detector stage, a pixelated detection system. The pixel address (x,y)
provides spatial information on the particle event. Additionally, the active pixel detector
provides information on, for instance, the time-of-flight of the particle (t). Successive cycles
of specimen illumination result in multiple measurement frames whose information can be
combined.

of a target mask with UV photons. In particular, the experimental test setup combines a
2×2 chip bare Timepix detector with a chevron-shaped stack of the intensifier channels. The
distance between the intensifier MCP stack and the Timepix is about 2.5 mm. The pores of
the intensifier have a diameter of 12 µm on a 15 µm centre-to-centre spacing. This detector
assembly is mounted in a vacuum chamber and illuminated homogenously with photons from
a 254 nm UV lamp (Pen-Ray, EW-97606-00, 4400 µW/cm2). The lamp is mounted outside
the chamber at a distance of about 20 cm from the detector assembly. The photons enter
the chamber through a fused silica window and a 100 µm pinhole. A USAF 1951 resolution
target (Edmund optics, Barrington, USA) was placed in direct contact with the front side of
the intensifier. The resolution target pattern is deposited as a reflective chromium layer on a
1 mm thick fused silica plate (2”×2”). The resolution pattern size is about 15 mm×14 mm.
The line pattern corresponds to “standard resolution” meaning that minimum frequency of
line pairs is found in group 0 at element 1 and that the maximum frequency of line pairs
is found in group 7 at element 6. The voltages applied to the intensifier back and front
side, i.e. the MCP gain and the acceleration voltage between the intensifier’s back side
and the Timepix detector, can be tuned in order to optimize the experimental settings for
maximum spatial resolution. The presented data set is acquired in time-over-threshold mode
and consists of 150,000 acquisition frames of 0.2 s each.
For the second type of experimental data, the authors choose a “real application” sample,
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i. e. a data set generated by biological mass spectrometry imaging, as to demonstrate the
applicability of the presented method. The sample is a nickel hexagonal thin bar transmission
electron microscopy (TEM) grid (700 mesh, G2760N, 3.05 mm diameter, 37 µm pitch, 8
µm bar width; Agar Scientific Limited, Stansted, UK) placed on top of a 2 µl droplet of
1 mg/ml Peptide Calibration Standard II (Bruker GmbH, Bremen, Germany; pepmix in
50% Acetonitrile (ACN), 50% H2O, 0.1% trifuoroacidic acid (TFA)) mixed with 10 mg/ml
α-Cyano-4-hydroxycinnamic acid (HCCA in 50% ACN, 50% H2O, 0.1% TFA) on an indium-
tin-oxide (ITO) coated glass slide. The sample was measured on the AMOLF ion microscope
with a MCP/Timepix detection system previously described in [5]. The Timepix chip was
operated in “time-of-flight” mode, i.e. the pixels measure the time-of-flight (and hence mass-
to-charge ratio) of the analyte ions with respect to the ionization laser. The data set consists
of 85 data frames, each of which contains the events corresponding to a single laser shot.

3. Principle of emission imaging

The idea of imaging mass spectrometry based on a position-sensitive particle detector
is simple: since the individual image intensifier channel tubes confine the primary particle
pulse, the spatial pattern of electron pulses at the rear of the intensifier surface preserves
the pattern of primary ion image incident on the front surface. See Fig. 1 . The common
property of all such devices is that due to the Central Limit Theorem emission channels (e.g.
individual intensifier channels) always produce circular or close to circular electron signal
image.
Due to scattering inherent to the operation principle, the coordinate sensor input contains
several types of noise:
(1) geometric – we should distinguish spurious non-circular spots and speckles from quality
elliptical clusters of higher intensity;
(2) positional – variations of shape can occur, but still an ellipse;
(3) uneven intensity – usually, the internal background count, or dark noise, is uniformly
distributed across the intensifier plate. The number of electrons arriving on adjacent pixels
within a cluster, i.e. belonging to the same event, is not equal due to the random nature of
secondary electron emission and electronic noise. See Fig. 2, 1.

4. Recovering ion positions via detecting scattering centroids

Since each primary particle is registered as a series of secondary events in a form of con-
stant time packets, their positions can be determined up to the secondary source resolution.
In turn, the secondary source’s amplification cycle produces events dispersed in space and
time and belonging to multiple adjacent time frames making it impossible to use just one
frame to determine the dispersion envelope of a secondary shot.
A single primary event which was successfully registered by the intensifier creates a large
number of secondary events. Denote J – the unknown image on the inlet of the intensifier,
I = J ∗ H – the image on the outlet of the segmented coordinate detector which we can
without loss of generality represent as a convolution of the undistorted image J and a point
spread function H. Let X = (X1, X2) – a random vector of Cartesian coordinates X1 and X2

registered with the coordinate detector, X ⊂ I. We assume that the the physical properties
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Figure 2: (a) – multiple electron reflections and scattering in the intensifier channel cause
the elliptic pattern on the detector plane. (b) – types of noise in a typical emission imaging
acquisition: a – irregular intensity of pixels in blob contours preventing straightforward
center detection approaches e.g. center of mass from working correctly; b and c – non-
elliptic shapes; c – false blobs of infinitely small radius. (c) – Centroiding challenge caused
by overlapping ellipsoids.

of the segment intensifier affecting the trajectories of secondary particles do not fluctuate
over time at least within amplifying a single primary particle, thus X1,2 are generated by the
same probability distribution. For any sufficiently large number n of identically distributed
random values, as we know, the following (Central Limit) theorem states [20] that

P

{∑n
i=1Xi −mn√

nσ2
< l

}
→
n→∞

Φ(x) (1)

where Φ(x) =
∫ x
−∞ p(t,m, σ

2)dt – the cumulative function of the standard normal distribu-

tion p(t,m, σ2) with mean m and variance σ2, and l – some probability, l = const. The
distribution function of random variable Xi, in its turn, is:

pXi
(x) =

1√
2πσ2

i

exp

[
−(x−mi)

2

2σ2
i

]
(2)

where mi = E(Xi) and σi = D(Xi) are the expectation and standard deviation. Since X1

and X2 are independent random values, we can use the theorem

pX1,X2(x1, x2) = pX1(x1)pX2(x2) (3)

to express the joint probability density as

pX1,X2(x1, x2) =
1

2πσ1σ2

exp

[
−(x1 −m1)2

2σ2
1

− (x2 −m2)2

2σ2
2

]
. (4)

Due to the presence of stray electrical and magnetic fields and errors in the coordinate
registration equipment caused by temperature fluctuations, registered events deviate from
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the expected scattering distribution (4). Such events cannot be detected without knowl-
edge of centers of the involved intensifier channels’ distributions in the form of parameters
m1,m2, σ1, σ2. However, they can be separated as geometric noise (Fig. 2, 1) by estimating
parameters of distribution cross-sections in the corresponding space of ellipse parameters.
Geometrically, pX1,X2(x1, x2) describes some surface in the 3-dimensional Cartesian space
whose contour line in the x1x2-plane is pX1,X2(x1, x2) = a where a = const – some probabil-
ity. (4) can be expressed as

σ2
2

σ2
1

(x1 −m1)2 +
σ2

1

σ2
2

(x2 −m2)2 = −ln(2aπσ1σ2), (5)

or
σ2

2

σ2
1

x2
1 +

σ2
1

σ2
2

x2
2 − 2

σ2
2

σ2
1
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1

σ2
2
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2
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2, (6)

which, after denoting c1 =
σ2
2

σ2
1
, c3 =

σ2
1

σ2
2
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2

σ2
1
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1
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2), and c2 = 0, is the conic section equation

c1x
2
1 + c2x1x2 + c3x

2
2 + c4x1 + c5x2 + c6 = 0 (7)

which after meeting the condition c2
2 − 4c1c3 < 0 becomes the equation of ellipse with

parameter a. Technically, coordinates of the primary particles incident to the intensifier
can be found by recognizing elliptical loci of secondary particles emitted by the intensifier
detected with the coordinate detector. Such a recognition is done in a space of ellipse
parameters, for example c1-c6. This will allow us to filter out the geometric noise as shapes
that are non-elliptical and will be able to handle nested and overlapping elliptical event
loci like in Fig. 2, 3. A popular approach for grouping points into geometric shapes is
the Hough transform [15],[13] which identifies points defining shapes that can be expressed
parametrically. The Hough transform maps each non-blank point separately in the image
onto a curve of constant intensity in the multi-dimensional Hough space of shape parameters
that represents all possible shapes through this point. If p = (c+

1 , c
+
3 , c

+
4 , c

+
5 , c

+
6 ) is a tuple

of discretized parameters c1, c3, c4, c5, c6 where symbol + denotes discretization, for points
located on the same shape, their Hough space image curves HT (p) intersect in a common
point (c∗1, c

∗
3, c
∗
4, c
∗
5, c
∗
6) which gives rise to a local maximum

(c∗1, c
∗
3, c
∗
4, c
∗
5, c
∗
6) = arg max

c1,c3,c4,c5,c6

HT (c+
1 , c

+
3 , c

+
4 , c

+
5 , c

+
6 ). (8)

Considering the intensifier image I as the input to our scattering ellipse detection via their
simultaneous parameter estimation in the Hough space, we can see that the angle θ =1

/2 arctan 2ρσ1σ2
σ2
1−σ2

2
between the main ellipse axis and the x1 axis is not necessary for estimating

the ellipse center (x0, y0). This suggests using a simpler form of the ellipse equation than
the implicit form 7 e.g.

(x1 − x1C)2

d2
1

+
(x2 − x2C)2

d2
2

= 1 (9)

where x1C and x2C are coordinates of the center that we are ultimately looking for, and d1 and
d2 are semi-diameters, which reduces the initially planned 5-dimensional Hough space to the
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4-dimensions. Second, best practices with implementing the Hough transform algorithmi-
cally suggest using binary labeled images. Accordingly, we can examine a derivative Ig = I ′

instead of the original image I, usually obtained via the convolution I ′(x, y) = I(x, y) ∗K
where K is a specific 2-dimensional convolution kernel e.g. Robert, Sobel, Prewitt, or Canny
kernels [12]. Third, unlike in the original Hough transform, we only deal with complete shapes
while the original Hough’s approach also recognizes ellipse segments.
Let’s incorporate the image gradient into an algorithm which will reduce the whole parameter
locus to a line. Let v = x1 − x1C , w = x2 − x2C , then (9) becomes

v2

d2
1

+
w2

d2
2

= 1 (10)

and
d

dv

[
v2

d2
1

+
w2

d2
2

]
=

2v

d2
1

+
2w

d2
2

dw

dv
= 0. (11)

Remembering that dw
dv

= δ is available via the pixel difference,

2v

d2
1

+
2v

d2
2

dw

dv
= 0⇔ v2 =

(
d2

1

d2
2

δ

)2

w2. (12)

Now by substituting this into 10 we get:

w2

d2
2

(
1 +

d2
1

d2
2

δ

)
= 1 (13)

and

w = ± d2
2√

1 +
d21
d22
δ2

and v = ± d2
1√

1 +
d22
d21
δ2

(14)

and then x1C and x2C . This somewhat complicates the solution by the need to decide upon
its four possible locations by analyzing the sign of dv and dw – see algorithm 1. Finally,
let V be the image of size k × l blank everywhere except at coordinates of centers produced
with the algorithm 1. Every x1C and x2C in the algorithm output vector S is overlaid to
synthesize V : Vx1,x2 = 0 everywhere except x1 = bx1Cc and x2 = bx2Cc where Vx1,x2 = 1.
An example of applying the algorithm to real image is presented in Fig. 5, left.

5. Forming the image from scattering centroids

The output of the centroiding algorithm 1 is a set of centers having real-valued coordi-
nates that should be resolved to intensities on a regular pixel grid from it via spatial binning
as the centroid overlay image V . This image is significantly undersampled compared to its
original.
The intensifier inlet image is always sparse due to the non-continuous mode of laser opera-
tion, loss of events on the coordinate detector caused by its electronic circuit, and deflection
of charged particles caused by stray electric fields. Accordingly inevitable absence of gra-
dient continuity in adjacent pixels after centroiding is usually addressed as the inpainting
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Algorithm 1 Gradient elliptic Hough transform

Require: I – k × l sized image
Ensure: pairs (x1C , x2C) of enveloping ellipses’ centers, pairs (d1, d2) of their diameters

Temp structure: S – 4-dimensional accumulator array
Initialize S
for all pixel (x,y) in I do
v ← I[x+ 1, y]− I[x, y]
w ← I[x, y + 1]− I[x, y]
for all d1 ∈ [0, xmax] step ∆d1 , d2 ∈ [0, ymax] step ∆d2 do
α← arctg

(
w
v

)
− π

2

δ ← tg(α)

dx← signX(v, w)
d21(

1+
d22
d21
δ2

)1/2

dy ← signY (v, w)
d22(

1+
d21
d22
δ2

)1/2

x0 ← x+ ∆d1

y0 ← y + ∆d2

Update S(x1C , x2C , d1, d2)← S(x1C , x2C , d1, d2) + 1
end for

end for
NC ← 0
for all S(x1C , x2C , d1, d2) do
if S(x1C , x2C , d1, d2) > T then

output S(x1C , x2C , d1, d2)
NC ← NC + 1

end if
end for
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Figure 3: Image and 2D Fourier spectrum of an original benchmark image (a,d) and its
centroid overlay (b,e). Note the sparsity of the spectrum of the original image compared
to the second spectrum’s density and shift in the frequency scale. (c) displays part of the
resolution target as illuminated by UV photons. (f) distorted frequencies in a centroided
image compared to its optical version.

problem of image analysis aimed at the recovery of missing pixels in an image, which can be
implemented in a number of ways.
The simplest approach is treating the point set of known centroid coordinates V = {vi} ∈ Rn

and their intensities Z = {zi} ∈ R as a 2-dimensional interpolation problem where a con-
tinuous (global) function f : Rn 7→ R can be found interpolating a given centroid image
at the sample points, f(vi) = zi, and preserving higher order derivatives. This approach
relies on the absence of anisotropy and on the homogeneous sampling density. In contrast,
local interpolation is free of the latter shortcoming and can be implemented in a number of
ways based on the knowledge of the natural neighborhood of sampled points e.g. via the
Voronoi partitioning of the 2-dimensional Euclidean space (Fig. 4, a) into convex polygons
TV = {v ∈ Rn|d(v, vi) 6 d(v, vj)}, i 6= j, where vi and vj – a pair of adjacent natural
neighbors and d(·, ·) – Euclidean distance on Rn. Another approach originates in the field
of manifold modeling which is aimed at recognizing local topology based on sample data
by connecting elements. Central to this field is the concept of simplicial complex that is a
set of connected points, lines, and triangles (Fig. 4, b). Applied to the inpainting problem,
the idea is to connect centroids in an intuitive way by recognizing irreducible triangles (sim-
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plexes) and their connections. Such a procedure will give a representation of the point set
in the form of a set of elements having a certain area. However its weakness is that it will
not predict area elements beyond edge centroids.
Looking at spectra of the optical versus the centroid overlays, we observe that the spectrum

(a) (b) (c)

Figure 4: Reconstruction of an image defined by a point set with the Voronoi segmentation
(a), manifold learning (b), and sparse reconstruction in the image frequency domain with 10
harmonics (c).

of the original image is rather sparse and that the overlay’s spectrum is dense, distorted and
forms a U-shaped pattern – Fig. 5 (f). This observation suggests another approach for the
reconstruction under-sampled images – having started with the (incorrect) overlay’s spec-
trum, iteratively adjust its spectral components to find a better representation keeping the
error between the resulting inverse transform image at known centroid locations and the
centroid overlay within some tight bound. This approach is motivated by the observation
that the discrete Fourier spectrum of the centroid overlay is noticeably less sparse than its
optical original (Fig. 5).

6. Problems with the spatial approaches

While providing with the rapidly growing signal-to-noise ratio as a function of cardinality
of the sample point set, the Voronoi-based segmentation/interpolation is rather impractical
computationally for real-life images due to having complexity O(n) where n is the sample
set cardinality [14], and n = NX ×NY , the total number of pixels in the image.
Apart from the Vietoris-Rips complex presented on 5 (c) there are other suitable simplicial
complexes capable of representing an unknown manifold behind a centroid point cloud –
alpha, Cech, and Smale to name a few. Unfortunately they come with even bigger computa-
tional overhead than the Voronoi segmentation. For example, constructing a Vietoris-Rips
complex [19] is known to have O(n2) peak time complexity. But no matter how compu-
tationally efficient the construction of an interpolating simplicial complex is, it will fail to
represent shapes without pronounced phase boundaries. On the other hand, such a difficulty
is trivially represented as low frequency spectral elements in a 2D Fourier spectrum H (the
third approach) whose time complexity is better: O(nlogn).
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(a) Imge after centroiding (b) Spline interpolation

(c) Representation by Voronoi
segmentation

(d) Representation of highly noisy im-
age by a simplicial complex

Figure 5: Reconstruction of a highly undersampled imge with the Voronoi segmentation and
manifold learning. Refer to Fig. 8 for reconstruction accuracy comparison of these methods.
(a) – centroid overlay of sample size 103. (b) – its cubic spline reconstruction. (c) – bounded
Voronoi segmentation efficiently covers co-localized informative points and filters noise. (d)
– manifold learned on the undersampled image with the Vietoris-Rips-complex.

For generality, let’s consider the problem in the 1-dimensional form, b = sum(Ax) where
A is some dictionary of directions and w is vector which is necessarily sparse as a result of
detecting the principal directions. A needs to have the property of a uniform coverage of the
direction space, and the Fourier basis is known to meet this requirement.
The spectral sparsity property is addressed by the l0 pseudomeasure, so we can write the
whole problem as:

min ||g− b||l2 subject to min ||w||l0 . (15)

which is known to be NP-hard (very expensive computationally), but thanks to Candes,
Romberg and Tao [10] we can substitute it with an almost dual convex programming problem

min ||g− b||l2 subject to min ||w||l1 (16)

which can be successfully solved via convex optimization. Indeed, recent results [11] state
that a sparse vector x0 ∈ RN can be recovered from a small number of linear measurements
b = Ax0 ∈ RK , where K << N . More formally, a sparse vector x0 ∈ RN can be recovered
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from a small number of linear measurements b = Ax0 ∈ RK by solving a convex optimization
problem

(P1) : min ‖x‖1 subject to Ax = b (17)

also known as basis pursuit. The Fourier spectrum of the image is small at this point but
the image is not necessarily locally continuous. We can try to pursue the local continuity as
a constraint to the optimization program (P1).
Following Rudin et al. [18], the latter requirement can be implemented as minimizing the
integral gradient over the entire reconstructed image. The variation norm defined as

D(x, y) =
[
(ux+1,y − ux,y)2 + (ux,y+1 − ux,y)2

]1/2
where ui,j – pixel value at (i, j) on the regular grid, can be used in denoising as the regularizer

min
b
||g− b||l2 + λD(b).

or form an optimization program

minTV (x) subject to ||Ax− b||2 ≤ ε

where ε – tolerance, and TV (x) – the discrete total variation of image x: TV (x) =
∑

ij Dijx.
Finally, this program can be enhanced with the sparse basis pursuit feature:

(PTV ) :


minTV (x)

||Ax− b||2 ≤ ε

min card(Ω(x))

where Ω(x) is the Fourier transform of image x.

7. How much under-sampling is tolerable in a centroid overlay

Any practical centroid image V is undersampled and ideally we would like to have its
every element available in the secondary image V 0 acquired with the coordinate detector.
However, the theory of compressed sensing states that sampling the full image is wasteful
in the sense that the whole signal acquired is then compressed into a small useful piece of
information. Compressed sampling combines acquisition and compression into one step.
Let x0 - n-dimensional vector of all pixels in V 0, n = k× l which we would like to reconstruct
from V , and y0 = Ux0 - vector of coefficients of orthogonal transform U , card(y0) = n. Vector
x0 is called S-sparse if at most S components are non-zero meaning the corresponding pixels
of V 0 non-blank. x0 can be identically recovered as x0 = 1/nU∗y0. If Ω is a sample of the
transform coefficients, card(Ω) < card(y0), then some approximation y = UΩx is possible,
for example, in the discrete Fourier basis yk =

∑n
t=1 x(t)e−2iπ(t−1)k/n = FΩx where k ∈ Ω. A

theorem [11] states that if
card(Ω) > CS log n (18)

then the recovery is exact with overwhelming probability controlled by the probability of
success C. We see that factors behind the accuracy of sparse reconstruction are the constant
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(a) Uncentroided image (b) Centroid overlay (c) Sparse TV-reconstruction.

Figure 6: A sparse l1-minimization spectral reconstruction with the TV-regularization (c)
applied to a noisy overlay of 104 centroiding samples (b) versus the raw (uncentroided)
coordinate sensor input image.

C and the specific way that elements of y0 are indexed by Ω. Tuning these factors as well as
their correlation with parameters of spatial techniques (Voronoi segmentation and manifold
representation) is the subject of work in progress.
In this paper, we showcase our image reconstruction techniques on deconvolving microscope

mode MS images generated with the novel Timepix detector. Fig. 7 presents an application
of this approach to a practical imaging mass spectrometry task. In this MSI experiment,
a TEM grid on top of a peptide solution is imaged (as described in section 2). The image
displays the peptide signal from underneath the honeycomb metal grid. Fig. 7a displays the
raw MSI image (centroided?!), i. e., the intensity of the total ion current originating from
85 laser shots on one position on the sample surface is displayed. Fig. 7b shows the same
data set after reconstruction with a three-dimensional cubic spline. For comparison, Fig. 7c
displays the total variation reconstruction of the same data set. As apparent from Fig. 7, the
centroided image is rather sparse such that incomplete analytical information is displayed.
After reconstruction with either the 3D cubic spline or the total variation method, the full
analytical information becomes available.

Fig. 8 compares the performance of the presented reconstruction approaches, i. e., it
compares the signal-to-noise ratio (SNR) of the images reconstructed by the bounded Voronoi
(blue), the xxx (red) and the sparse total variation reconstruction, respectively. This figure
reveals that manifold segmentation techniques, like the natural neighborhood segmentation
method or manifold modeling via a simplicial complex, are most suitable for very sparse,
undersampled images. These techniques have a pronounced phase separation but fail to
utilize the directional information contained in the data set. Contrarily, techniques based on
sparse spectral representations can both address the directional information of the data set
and represent halftones better. These techniques are more suitable for more dense images.
Finding the exact duality between manifold modeling and sparse spectral representations and
combining them is a topic of our ongoing work. Practically, and particularly interesting to
mass spectrometry imaging and other sampling techniques, the presented analytical approach
can determine the optimum, least-time consuming experimental approach. For instance, this
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(a) Centroided image (b) Cubic spline reconstruction (c) Sparse TV-reconstruction

Figure 7: The mass spectrometry image of a TEM gird is displayed as an example of the
reconstruction of a real biomolecular imaging acquisition. The data is treated by centroid-
ing binned on the 512×512 grid (left), by reconstruction with a 3-dimensional cubic spline
(center), by total variation reconstruction (right).

method can predict (on the basis of an optical image of the sample under investigation) the
number of image frames that need to be acquired to obtain an analytically complete image!

Figure 8: Performance of the reconstruction approaches.

8. Conclusion

Based on recent advances in detector instrumentation, emission imaging techniques can
produce datasets of high-precision positional information with the extra time dimension.
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Imaging temporal phenomena particularly is particularly useful to the imaging mass spec-
trometry community. Mass spectrometry imaging exposes a sample with an energy source
(e. g. emitting primary charged particles), guiding them through an intensifier which creates
a beam of registrable secondary particles which are detected with the positional sensor.
However, the sensor’s high precision is only available after surmounting a number of image
processing challenges caused by scattering inherent to emission imaging like interpreting de-
tector events as credible shapes, filtering out geometric noise, and producing human-readable
images from extremely under-sampled point sets. We observed that sensor images consist
of ellipsoidal loci of time-resolved events sharing specific geometric properties due to the
statistical nature of scattering of large amounts of particles. We propose to translate those
loci back to coordinates of corresponding primary events via detecting elliptical loci in the
parametric space via the ad hoc Hough transform thus efficiently addressing the first two
challenges in one step.
The resulting point set is a high-resolution sample of the original image with a significant
degree of sparseness whose missing pixels can be recovered with the interpolation. Sev-
eral techniques can be applied to solve this problem and reveal the optimum amount of
information from a sparse emission data set. In this work, we demonstrate that manifold
segmentation techniques are most suitable for sparse, undersampled images , while tech-
niques based on sparse spectral representations can also address directional information and
represent halftones which makes them suitable to more dense images.
Mass spectrometry imaging and generally sampling techniques can benefit from the pre-
sented analytical methods to optimize the experimental sampling. The presented method
can predict the least-time consuming experimental approach by analyzing how many sparse,
experimental data frames are required for an analytically complete set of information. This
can significantly reduce the measurement time, which is beneficial to the analysis of biologi-
cally degrading samples or clinical applications. In addition, the spatial blurring introduced
by the nature of emission imaging is reduced by the presented reconstruction methods. The
presented methods and mathematical algorithms reveal the full information contained in
sparse emission images/data sets, which makes these methods a powerful tool that is of in-
terest to the mass spectrometry imaging community as well as the users of other sampling
techniques.
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