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Measuring the spatial extent of individual localized photonic states
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We measure the spatial extent of individual photonic states that are localized by residual disorder in a slow-light
photonic crystal waveguide. The size of the states is measured by locally perturbing them individually through
an electromagnetic interaction with a near-field probe. We identify localized states that are not observed in
transmission and show that they are shorter than the waveguide length. We also obtain near-field measurements
of the participation ratio, from which the size of the states is also derived, in quantitative agreement with the size
measured with the perturbation method.
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Waves in disordered media can undergo multiple scattering,
resulting in the formation of Anderson-localized states with an
associated impeded wave transport. Anderson localization is a
universal wave phenomenon, with manifestations in electron
transport,1 sound,2 matter waves,3,4 and light.5,6 The spatial
extent of localized states, or localization length, is of primary
importance. For example, in systems of finite size, when this
length is larger than the length of the sample, disorder has,
on average, little effect on wave propagation.7 Conversely,
when this length is smaller than the sample length, strongly
confined states with typical lengths shorter than the sample
size are likely to occur and wave transport may be severely
disrupted. The localization length is an ensemble-averaged
quantity, typically obtained by averaging over frequency or
many realizations of disorder.

Here we show measurements of the spatial extent of
individual localized photonic states for a single realization
of disorder in a photonic crystal waveguide. To emphasize the
difference between the ensemble-averaged localization length
and the measured spatial extent of an individual localized
state for a single optical frequency for a single realization
of disorder, we will use the symbol Lind for the length that
we measure. The spatial extent of localized photonic states
has been measured before in a two-dimensional waveguide
with embedded impurities.8 In that waveguide the spectral
width of the localized resonances is on the order of 10 nm.
Close to the band edge of a photonic crystal waveguide,
in the technologically important slow light region, localized
resonances can have spectral widths on the order of 0.1 nm,
associated with small mode volumes. Measuring spectrally
narrow resonances with a near-field microscope is a challenge
because the tip of the near-field microscope influences the local
dielectric constant in its vicinity. This dielectric constant has
a paramount influence on the spectral position of a resonance.
We show a method to measure the length of a localized
state in a photonic crystal waveguide by using the spectral
shift to our advantage. We measure Lind with two different
methods, a local perturbation method and one based on the
inverse participation ratio (IPR), and show that the results
are in quantitative agreement. We identify states for which
Lind is smaller than the length of the waveguide and show
that these states are not observable in traditional transmission

measurements, although such states with their small volumes
are arguably the most useful for applications in quantum
computing and sensing.

The idea that disorder in photonic crystals can be used
as a model system for the study of localization is as old as
the research field of photonic crystals itself,9 and photonic
crystal waveguides have been shown to be a good example
of truly disordered systems in which Anderson localization
occurs.10,11 For one-dimensional (1D) periodic systems, lo-
calization always occurs for any nonzero disorder, a fact well
established for electrons in 1D potentials.1 As a model system
we investigate a 1D photonic crystal waveguide (PCW) for
a range of frequencies (wavelengths) near the band edge, as
depicted in Fig. 1(a). The calculated dispersion of our PCW
is shown in Fig. 1(b). At wavelengths close to 1567.5 nm,
the slope of the dispersion becomes shallow, indicating a
decreased group velocity and an increase in the photonic
density of states.

Although our PCW is fabricated with state-of-the-art
techniques to nominally ideal designs, some residual disorder
always remains, resulting in photon scattering. The amount
of backscattering into the waveguide scales with the density
of states, proportional to the group index squared,12 and so
increases dramatically near the band edge.13 Backscattering
dominates in the slow-light/multiple scattering regime, as it
scales with n2

g , whereas out-of-plane scattering only increases
with ng .12 Since the localization length decreases with
increasing backscattering,7 near the band edge the localization
length may be expected to decrease. For typical device
lengths (≈100 μm), multiple scattering starts to dominate
the transport at group indices ng ≈ 65,11,13 depending on the
fabrication quality.

Localized states of light arising from disorder possess
a resonance behavior similar to that of engineered pho-
tonic microcavities.14 In photonic crystals such microcavities
consist of deliberately engineered defects that confine light
to small volumes with high quality factors.15 In Anderson
localization such cavities form through the wave interference
resulting from multiple scattering by random configurations
of disorder in the waveguide. As such, the individual cavities
occur at unpredictable positions, with unpredictable qual-
ity factors and resonance frequencies. To investigate these
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FIG. 1. (Color online) Schematic representation of the sample

and near-field probe. (a) An aluminum-coated near-field probe (inset)
is scanned over the surface and collects a fraction of the light. The
magnetic field of light interacts with the aluminum coating to shift
the resonance of localized states. (b) Calculated dispersion curve for
the nominal design.

Anderson localized states we use a near-field probe consisting
of a tapered glass fiber of diameter ∼200 nm, coated with
aluminum of thickness ∼150 nm [Fig. 1(a), inset]. Usually,
in near-field microscopy, such a probe is introduced into the
evanescent field of an optical mode and the electric field of
light in photonic eigenstates is detected with high resolution
without significantly perturbing the states.16 Above a photonic
crystal cavity with a reasonably high quality factor, however,
the probe may shift the frequency of the states due to the
light-matter interaction between it and the light in the cavity.
Previous studies have introduced such probes into the near
field of engineered photonic crystal microcavities, deducing
properties of the cavity and/or probe from the well defined
shifts of the cavity resonance.17–19 The electric part of the
interaction typically leads to an increase in the effective volume
of the cavity, resulting in a redshift of the resonance, the
magnitude of which is inversely proportional to the volume
of the photonic state.17 In the magnetic part of the interaction,
a nanoscopic manifestation of Lenz’s law causes an induced
magnetic field that opposes the magnetic field of light in the
cavity, resulting in a blueshift of the resonance frequency of
the cavity, again with a magnitude inversely proportional to
the volume of the state.18,19 This magnetic interaction can be
larger than the electric one,18 resulting in an overall blueshift
of the resonance frequencies. By inserting the probe into the
near field of the localized states and measuring the resultant
blueshift we will determine the state volume and thus measure
Lind directly on each instance of localization.

First we measure a transmission spectrum of the un-
perturbed waveguide, with the probe far from the sample
[Fig. 2(a)]. Three spectral regions can be discerned. For a free-
space wavelength λ ∼< 1561.6 nm, the transmission is high,
as light is transported through the modes of the waveguide.
For 1561.6 nm ∼< λ ∼< 1563.2 nm the transmission drops, but
many large and wide peaks are apparent. Finally, for λ ∼>
1563.2 nm, the transmission is very low, with a few narrow
(typical width of 0.01 nm) and sparse peaks appearing,
typically a manifestation of Anderson localization.20,21

Next we scan our near-field probe in the near field of the
sample and measure the electric field above the waveguide.
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FIG. 2. (Color online) Waveguide transmission, near-field am-
plitude, and dispersion. (a) Transmission spectrum T of the PCW.
(b) Near-field amplitude collected through the probe as a function
of wavelength and probe position along the center of the waveguide.
Light enters the PCW from the left, at position x = 0. (c) Band
structure of the waveguide. Waveguide modes appear as lines in the
spectrum. The almost vertical line around k = 0.33 is the light line
in the silicon slab. (d) Closeup of the near-field region indicated with
a dotted white box in (b).

After the electric field is measured over the length of the
waveguide, we change the wavelength with a step of 0.01 nm.
The amplitude of the electric field, as a function of laser
wavelength and probe position, is depicted in Fig. 2(b). We
observe that the magnitude of the measured electric field at
the exit of the PCW (position x = 82 μm) correlates with
the measured far-field transmission for all wavelengths: For
λ ∼< 1561.6 nm (top of the image), we operate far above the
band edge, light propagates in the Bloch modes of the periodic
structure, and the electric-field amplitude at the exit is similar
to that at the entrance. For 1561.6 nm ∼< λ ∼< 1563.2 nm, the
magnitude of the measured electric field at the exit decreases
on average. However, we also occasionally observe sharp
increases in the amplitude in the waveguide, corresponding
to the localized states that span the length of the sample
(see, for example, close to λ ≈ 1562.0 or 1563.35 nm). At
longer wavelengths (λ ∼> 1563.2 nm), instances of populated
states become rare. Nevertheless, we observe light located
and localized inside the waveguide at wavelengths for which
transmission is negligible. At these wavelengths, the light
has more intensity close to the entrance of the waveguide
than at the exit, indicating localized states that are shorter
than the waveguide and are populated by the light incident
from the input waveguide on the left. Since the states are
populated from the left and are shorter than the waveguide,
the intensity at transmission on the right is small. States
that are localized on the right side of the waveguide could

155153-2



MEASURING THE SPATIAL EXTENT OF INDIVIDUAL . . . PHYSICAL REVIEW B 86, 155153 (2012)

also be excited, although with less efficiency. However, the
measured amplitude of such states would be small because
they would have good coupling to the output waveguide. At
long wavelengths, the bandwidth of localized states decreases
due to an increasing Q factor.11 As we approach the band
edge, we expect the bandwidth to decrease below the spectral
resolution of our laser and thus we expect that there exist states
that we fail to excite or that some states are excited away from
the center of the peak. In either case, there is no reason to
believe that the bandwidth has an influence on the analysis
and interpretation that follow. It is noteworthy that the periodic
amplitude modulation owing to beating between forward- and
backward-propagating Bloch modes persists throughout the
localization regime, an indication that at all frequencies the
light retains much of the Bloch nature of the nominal, perfect
structure despite being multiply scattered.

Figure 2(c) depicts the dispersion of the waveguide mode,
obtained via a Fourier transform of the real-space data.22 The
measured dispersion curve of the photonic crystal waveguide
follows the behavior expected from calculation [Fig. 1(b)]. It is
noteworthy that the measured band structure follows that of the
nominal perfect structure throughout the localization regime.
In the band structure, horizontal lines spanning reciprocal
space indicate the presence of localized states; the broad
distribution of wave vectors results from the high spatial
confinement. Away from the band edge (top of the image), the
dispersion curve can be approximated by a parabola (dashed
yellow line). The group index, shown on the right-hand axis,
is obtained by taking the first-order derivative of the fit.
Theory and measurements involving statistical averaging11

have shown that the average length of localization instances,
for the batch of samples from which this waveguide was taken,
becomes of the order of the waveguide length at ng ∼ 65.
Although the appearance of localization instances is a random
process, this group index corresponds very well with our first
observation of a localized state, at λ = 1562 nm.

As the near-field probe collects the electric field with high
resolution, we observe its interaction with the electric and
magnetic fields as shifts in the spectral position of the localized
resonances. This shifting is most evident for long wavelengths
(λ > 1563.5 nm), i.e., at the bottom of Fig. 2(b). We observe
that for certain spatial positions of the probe, the maximum of
the collected electric field is shifted from its original spectral
position towards shorter wavelengths. One such position is
indicated by a white dot in the image. A closeup of the region
with the strongest shifts, indicated by a dotted white box in
Fig. 2(b), is given in Fig. 2(d). The spatial periodicity of
the shift highlights the remnants of the Bloch nature of the
localized states.

For engineered photonic crystal microcavities, using a
rigorous solution of Maxwell’s equations, the spectral shift
was shown to be given by17,18

�λ(rpr)

λ
≈ αe

eff
|E0|2
U0

+ αm
eff

|B0|2
U0

= αe
eff

2ε0Vcav
βE + αm

eff

2μ0Vcav
βH , (1)

where U0 is the energy of the unperturbed cavity field; E0 and
B0 are, respectively, the total electric and magnetic fields of

the unperturbed cavity; αe
eff is the effective polarizability of

the probe; αm
eff is the magnetic polarizability of the probe; Vcav

is the cavity volume [(area) × (length)]; ε0 is the permittivity
of free space; μ0 is the magnetic constant; βE is the ratio of
the intensity the electric field at the probe position |E(rpr)|2 to
its maximum in the sample max|E|2; and βH is the ratio of the
magnetic-field component pointing into the probe |Hz(rpr)|2
to its maximum in the sample max|Hz|2.

The electric and magnetic polarizabilities of our probes
were measured by Burresi et al.18 to have values of
αe

eff = 3 × 10−21 m3ε0 and αm
eff = −12 × 10−21 m3/μ0,

respectively. The probes used here are similar to those of
Burresi et al. (i.e., same aperture size, coating thickness, etc.).
To estimate the other parameters in Eq. (1) we calculated the
eigenmodes of the unperturbed photonic crystal waveguide by
using the MIT Photonic-Bands Package.23 The eigenmodes at
the wavelengths of our study have an effective cross-sectional
area A = 1.12a2 (with a the period of the photonic crystal
lattice) and the ratios βE = βH = 0.22 at the height of the
probe. We calculate with modes of the unperturbed waveguide
because measurements of dispersion indicate that even in
the localization regime, the light populates Bloch modes of
the waveguide. It has been shown before, through calculations
that use only modes of the unperturbed waveguide, that the
area that light occupies in a PCW spreads as expected.24,25

Also, eigenmodes of the unperturbed system were used in
studies of losses due to roughness in PCWs.26 We are now in
a position to determine the length of each individual localized
state Lind as

Lind = 0.22
λ

�λ

αe
eff + αm

eff

2A
, (2)

where we have used Vcav = LindA and, because of the
persistent Bloch nature of light, we take A to be the same as that
of the unperturbed Bloch mode, see Supplemental Material.27

We present these measured localization lengths as a function
of wavelength and group index by the blue points in Fig. 3.
These measurements of the individual localized state length
in a disordered microphotonic system are shown directly. As
expected, the localization length generally becomes smaller
at higher ng , as the backscattering of waves increases.12 With
our method we can precisely determine that for this particular

FIG. 3. (Color online) Dispersion of the localization length. The
blue dots are points measured with the near-field interaction method.
The green data points are measured with the IPR method. The
horizontal dashed line indicates Lwav, the length of the waveguide.
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waveguide, multiple scattering and Anderson localization
dominate transport when Lind < Lwav, at ng > 80. At higher
nominal values of ng , we still observe localized states in
the near field of the waveguide, but they are significantly
shorter than the waveguide and do not contribute to
transmission.

Alternatively, we can also determine the degree of local-
ization by measuring the IPR, also in the near field, as the
IPR is proportional to localization length.28 The IPR is a
quantity related to Lind, often used as a measure of disorder.
For example, the ensemble-averaged IPR has been used to
measure quantum eigenfunctions in ensembles of metallic
grains,29 disorder in two-dimensional photonic lattices,30 and
to diagnose malignancy in biological cells.31 In one dimension
and normalized to the length of the waveguide, the IPR I takes
the form

I ∝ 1

Lind
=

∫ |E(r)|4dr
(∫ |E(r)|2dr

)2 . (3)

As we have measured the electric field as a function of
position, we determine Lind using Eq. (3). We plot the Lind

obtained with this IPR method in green in Fig. 3. We find
excellent quantitative agreement between the two methods.
Taking Figs. 2 and 3 as a whole, we now conclude that three
transport regimes can be identified. In the regime at the lowest
frequencies, where an Lind as small as approximately Lwav/3
is found, populated localized states do exist with lengths
significantly shorter than the length of the waveguide. It is
exactly these states that are useful for applications requiring
strongly localized fields, such as quantum optics.10 In the next
regime, for wavelengths decreased away from the band edge,
the localization length increases and becomes on the order
of the waveguide length at λ ≈ 1563.5 nm (ng ≈ 80). Here
sharp dips in transmission occur, indicating nondeterministic
instances of Lind < Lwav, and photon transport becomes
unpredictable, with almost equal probability of high or low
transmission at any given wavelength. In the third regine,
λ < 156 nm (ng < 55), Lind ≈ Lwav for all wavelengths,
indicating extended states. In all regimes of transport, our
method of measuring the Lind from the probe-field interaction
gives the same result as the IPR method, which is commonly
used to measure the statistically averaged degree of disorder
in various systems.30,31 Note that in disordered systems,
spectrally overlapping resonances known as necklace states
sometimes occur.20,32 Such an occurrence in our system
would result in a measurement of the combined length of

the overlapping states rather than measurements of individual
state length. Although we do not exclude the possibility that
we observe necklace states, it is highly unlikely given that
these states are extremely rare in long samples20 and that we
use only one sample.

Our work shows that a key parameter in localization
studies can be measured directly for a single realization of
disorder. The Lind of a single instance cannot be measured by
observing transmission and states for which Lind < Lwav are
often not even observable in transmission. Our measurement
approach can be extended to investigate and understand the
behavior of any disordered system where electromagnetic
waves are present at the surface. The technique can easily
be extended to finite-size 2D systems, which are far from
trivial and in which the interplay between localization and
out-of-plane scattering still has to be fully understood. Notably,
we do not need to perform the measurement over the entire
length or volume of the state in order to determine Lind.
Our method could thus be used to determine the volume of
localized states just below the surface of a 3D disordered
(photonic crystal) structure. From an application point of
view, a recent study shows that localization in photonic crystal
waveguides can initiate lasing from quantum dots.33 The gain
of random lasers has been theoretically predicted to depend
exponentially on localization length,34 but shown numerically
to have a power-law dependence on localization length.35

Our technique provides an ideal method to resolve such dual
predictions by allowing studies of gain and state length for
each individual localized state. We further expect our local
perturbation method to also work for other wave phenomena
such as acoustics. The fact that we exploit the magnetically
induced light-matter interaction also reveals the fascinating
opportunity to study disorder in systems with a strong magnetic
field at optical frequencies, such as metamaterials.36,37

Note added. We have recently become aware of similar
work by Huisman et al.38
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