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ABSTRACT: Digital staining for the automated annotation of
mass spectrometry imaging (MSI) data has previously been
achieved using state-of-the-art classifiers such as random
forests or support vector machines (SVMs). However, the
training of such classifiers requires an expert to label exemplary
data in advance. This process is time-consuming and hence
costly, especially if the tissue is heterogeneous. In theory, it
may be sufficient to only label a few highly representative
pixels of an MS image, but it is not known a priori which pixels
to select. This motivates active learning strategies in which the
algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a
suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification
accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed
active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over
random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the
classification of MS images.

Mass spectrometry imaging (MSI)1,2 allows a detailed
analysis of the spatial distribution of proteins, peptides,

lipids, or metabolites.3,4 With recent efforts to standardize
proteomics experiments,5−8 MSI continuously moves closer to
clinical application.3,9−11 In many of these recent studies, the
MS image is spatially partitioned into coherent regions
associated with cancer or healthy tissue or into regions
corresponding to different cell types. Manual analysis requires
the expert to inspect multiple m/z channel images. Moreover,
analyzing the channel images independently may not even be
sufficient for discriminating tissue types with similar molecular
signatures. For these reasons and with data sizes of up to
several gigabytes,12 direct manual analysis becomes tedious or
infeasible, emphasizing the need for automated methods.
Previous studies have shown that unsupervised methods such

as hierarchical clustering,13 principal component analysis
(PCA),14 or probabilistic latent semantic analysis (pLSA)15

are useful for segmenting MS images into spectrally coherent
regions based on their molecular signatures only. At the same
time, they are intrinsically limited by their inability to learn
from expert annotations. One consequence is the lack of clear
criteria for model optimization.16 If the underlying mathemat-

ical assumptions are inept for the data at hand, the user has very
limited influence on the segmentation outcome.
Many recent studies have thus considered supervised

approaches and demonstrated that, given a set of spatially
resolved annotations or (immunohistochemical) expert labels,
supervised classifiers can be used for automated discrimination
of tissue types.17−21 Even so, technical and biological variability
between experiments often remains significant.22 Depending on
the precise application, this limits the classification accuracies
that can be achieved, especially in studies where the size of the
training set is small. In such scenarios, where training of
classifiers that generalize well to new MSI data is difficult, more
robust and reliable results might be obtained by training the
classifier anew for each separate MSI set. However, labeling of
MSI data is time-consuming and consequently very expensive.
It is thus desirable to reduce the number of required labels (i.e.,
labeling time for the expert) without jeopardizing classification
accuracy. This motivates the application of semisupervised
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learning (SSL) techniques,23−25 active learning (AL) strategies
(see Settles26 for a review), or hybrid approaches.27

SSL methods typically base their classification output on two
sources of information: the labels given by the user and the
underlying structure of the unlabeled data points. An
interesting and highly interactive method for matrix-assisted
laser desorption ionization (MALDI) MSI analysis was recently
published by Bruand et al.25 While SSL approaches can exploit
the information hidden in the unlabeled observations, they lack
a concept for guiding the labeling expert. In contrast, in active
learning, the algorithm iteratively queries the expert to label
that observation for which additional knowledge may be most
beneficial for improving the classifier’s performance. By labeling
the samples (observations) of a data set in a smart order, a high
performance level can often be obtained with fewer training
samples. Although AL methods have shown excellent perform-
ance in many fields such as speech recognition,28 image
classification,29 remote sensing,30−32 and biomedical imag-
ing,33,34 only a few researchers have applied them to MS
data.35−37 None of these publications is on MSI.
In this paper, we generalize a recently proposed AL strategy38

to the multiclass setting and combine it with the random forest
classifier,39 which has previously been used for efficient
classification of MSI data.21 We show on real world MS images
that our approach results in high classification accuracies after
only a few learning steps and is thus suitable for efficient
annotation of MSI data sets. We further demonstrate that the
algorithm has an inbuilt capacity for novelty detection, alerting
the expert to previously unlabeled but distinct classes rather
than blindly making a prediction. Given the same number of
labels, our querying strategy outperforms traditional nonactive
learning by up to 10% in sensitivity and 2−4% in positive
predictive value. In our experiments, random sampling requires
more than twice as many labels to achieve the same
performance level. Finally, our strategy does not suffer from
the high variability between runs that are characteristic for the
random sampling approach.

■ METHODS

Active Learning. Active learning (AL) aims at achieving
steep learning curves, that is, high classification accuracies after
seeing as few labeled training examples as possible. It is
motivated by the observation that a classifier can benefit more
from judiciously chosen and informative training examples than
from large numbers of redundant and hence less informative

examples.40 Typically, AL approaches are iterative and “guide”
the labeler in the sense that the algorithm chooses observations
for which it needs labels.26 In each round, the algorithm
requests a label for that observation (pixel) x of an (MS) image
that has the maximum training utility value (TUV) in the set U
of all unlabeled observations and is thus expected to contribute
most to improving the classifier’s performance. After label
assignment, the classifier is trained with the augmented label
set, all unlabeled observations are reclassified, and the algorithm
continues by presenting its next query. These steps are repeated
until either the human expert is satisfied with the classification
result or a predefined stopping criterion is met.
A meaningful TUV function balances two strategies:

exploration of the feature space and ref inement of the current
decision boundary. The aim of exploration is to sample from
those regions of feature space from which so far only a few
training examples are available. The rationale is that a test
sample can only be classified well if enough (local) evidence is
available. Whereas exploration thus seeks good sample coverage
of the whole feature space, the refinement strategy tries to
improve the classifier by sampling points that are close to the
decision boundary, that is, for which approximately equal
probability for two or more classes is present. Figure 1
illustrates these strategies for the binary case.
The proposed active querying strategy can be illustrated with

the following thought experiment: consider three different
points in a feature space, and do not assume that the true
decision boundary comes from a simple parametric class, such
as a hyperplane. Points 1 and 2 lie on the currently estimated
decision boundary, and point 3 lies far away from it. There are
many labels available in the vicinity of point 1, a few in the
neighborhood of point 2, and none surrounding point 3. Let
x(i) with i ∈ {1, 2, 3} denote the three points.
A pure refinement strategy would favor points {1, 2} over 3.

An exploratory strategy would take more interest in 3 than in
{1, 2}. We use a strategy that prefers {2, 3} over 1, for the
following reasons: Point 3 is interesting, because we know
nothing about its true class (remember that we do not assume a
simple parametric model for the decision boundary). Point 2 is
interesting because the location of the decision boundary is
based on an estimate of p ̂(Y|x(2)), which being a random
variable of itself is of necessity imprecise when based on only
few labeled points. There is thus some potential to be informed,
or surprised, by an additional label at point 2. Point 1 is
uninteresting because its estimate p ̂(Y|x(1)) is based on a large

Figure 1. Training utility value (TUV) of a candidate point in a binary classification setting. In (pure) decision boundary refinement, or uncertainty
learning, candidate points with equal amounts of evidence for either class are preferred, regardless of how much evidence there is. In (pure)
exploration, the candidate points receive a high score if the (local) evidence for both classes is low. Only the absolute “amount” of evidence is
considered; its consistency is neglected. On the right, the newly proposed TUV function is shown for different parameter settings, where the
evidence for classes 1 and 2 is measured by α1 ∈ {1, ..., 25} and α2 ∈ {1, ..., 25}. We observe that our TUV function reconciles exploration and
decision boundary refinement (also see the Supporting Information, part B).
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number of nearby training examples and we do not expect the
decision boundary to change substantially in response to yet
another label at that point. Finally, we factor the marginal
density p ̂(x) of all labeled and unlabeled points into the
proposed training utility value. The reason is that estimating the
decision boundary well is only relevant in populated regions of
feature space. The vehicle used to capture the above intuition is
a second-order distribution, that is, the distribution of the
probabilistic point estimate p ̂(Y|x). This distribution and its use
in a training utility value are defined next.
Training Utility Value Function. Above, we have

informally discussed favorable properties of the TUV function.
This section approaches the problem from a more theoretical
perspective and may be skipped by the less mathematically
interested reader.

Let = x y x y( , ) {( , ), ..., ( , )}N N(1) (1) ( ) ( ) be the set of N
training samples, that is, mass spectra x(k) with M channels and
corresponding class labels y(k) ∈ {1, ..., d}. Let further L be a
loss function, that is, a function that quantifies the penalty
associated with an incorrect classification. The lowest
achievable classification error, for a given loss function L, data
distribution p(x, y), and classification rule θ, is given by the
overall expected risk ∫ πR x p x x( ( )) ( )d . The conditional risk for

misclassifying a point at position x is given by

π θ π= =|R x L Y y x( ( )): ( ( , ( ( ))))Y x (1)

π = = | = |x p Y x p Y d x( ): [ ( 1 ), ..., ( )]T
(2)

Here, L(y, z) is the loss associated with a prediction z if the true
class label is y; π ∈ x( ) d is the vector of class conditional
probabilities for each of the d classes which, thanks to the
normalization constraint ∑ | =∈ p y x( ) 1y , lies in the unit

simplex d with d vertices (see Figure 2 for an example with d =
3 vertices). Finally, θ is a classification rule → d{1, ..., }d that

maps any point in the simplex to one of the d classes. The
canonical mapping function θ employs the winner-takes-all
strategy, i.e. maps each point from the simplex to its closest
vertex (and hence to the class associated with that vertex).
In practice, the true class conditional probabilities π(x) are

not known but need to be estimated from training data.41

Classifiers such as logistic regression or polychotomous logistic
regression offer point estimates qy

0(x): = p̂(Y = y|x), ∈y
which can be compiled in a d-dimensional vector

= ̂ = | ̂ = | ∈ q x p Y x p Y d x( ) [ ( 1 ), ..., ( )] d0 . Plugging this
point estimate into the conditional risk gives

∑ θ= ·
∈

R q x L y q x q x( ( )): ( , ( ( ))) ( )
y

y
0 0 0

(3)

This quantity is the key ingredient of uncertainty sampling,
which has been presented in many variants.42−44 This class of
active learning algorithms seeks to reduce the estimated
expected risk by querying additional labels near the decision
boundary, where the conditional risk is greatest. The implicit
hope is that additional labels may drive the updated class
conditional probability toward one of the simplex vertices, that
is, to obtain unequivocal evidence for the dominance of one
class. Uncertainty sampling is very simple to implement and
widely used, but it is a pure exploitation/refinement strategy: it
will never explore uncharted regions of feature space. Indeed, it
will spend all of its queries around the current decision
boundary. In addition, uncertainty sampling only relies on a
point estimate of the posterior distribution and does not
consider the uncertainties of the class conditional probability
estimates themselves. This “second-order” uncertainty is
implicitly taken into account in schemes such as error reduction
sampling.45,46 However, such look-ahead schemes require a
(rank-one) update of the current classification boundary and
turn out to be relatively expensive.
The novelty in ref 38 is that it makes explicit, and capitalizes

on, the uncertainty of the class-conditional probability itself.
The latter, like any estimate that is obtained from finite training
data, is subject to uncertainty. The prerequisite for their
procedure is that the classifier must provide not merely a point
estimate q0(x) for the class conditional probability but a full
second-order distribution over q(x) as expressed by a probability
density function g(q(x)). More specifically, an estimated
second-order distribution over the class-conditional probability
can be written as

=
∂

∂
g q x

G q x
q x

( ( )):
( ( ))

( ) (4)

= ̂ = | ≤ ∧ ∧ ̂ = |

≤

G q x Pr p Y x q x p Y d x

q x

( ( )): ( ( 1 ) ( ) ... ( )

( ))d

1

(5)

with density g and cumulative distribution function G.
If such a second-order distribution is available, the point

estimate q0(x) can be identified with ≡ q x q x( ) ( ( ))q
0 and

R(q0(x)) from eq 3 can be rewritten as R q x( ( ( )))q .
Now, in ref 38, we argue that this estimate is overly

conservative and tends to overrate the utility of samples whose
intrinsic (i.e., Bayesian) uncertainty is high. We contrast it with
the following distributional estimate, which measures the risk at
location x arising from intrinsic uncertainty and insufficient
training combined:

Figure 2. Each vertex of the simplex 3 corresponds to one of the d =
3 classes of interest. The mapping function θ (cf. eq 3) maps each
point on the simplex to one of these classes. In the canonical case, each
point is assigned to the closest vertex and hence to the class associated
with that vertex. Figuratively, threshold point T (which lies in the
center of the simplex) is used to partition 3 into three parts j

3, j = 1,
..., 3. j

3 is the Voronoi region associated with the j-th vertex. The
posterior estimate for a test point can now be interpreted as a point on
this simplex. In the TUV for Random Forests section, we further
describe how a Dirichlet distribution can be employed to describe the
second-order distribution of the posterior. Color-coding is used to
show an example for such a second-order distribution, where blue
indicates low and red indicates high probability. A uniformly colored
simplex would correspond to an uninformative prediction. In contrast,
in the example the plotted Dirichlet distribution is concentrated in part
2
3 of the simplex, indicating a preference for class two.
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∫∑ θ= · ·
∈

 R q x L y q x q x g q x q x( ( ( ))): ( , ( ( ))) ( ) ( ( ))d ( )q
y

y

(6)

We further argue that the extent by which these estimates
differ, when weighted with the estimated marginal density p̂(x)
(to take into account the importance of location x), is a good
TUV, or measure of interestingness, for yet unlabeled
observations. Specifically, we posit

= ̂ − x p x R q x R q xTUV( ) ( )( ( ( ( ))) ( ( ( ))))q q (7)

and show superior active learning curves when averaging over a
large number of data sets.
This TUV function can be seen to naturally balance both

exploration and refinement, see Figure 1. In particular, unlike
uncertainty sampling strategies, this criterion eventually desists
from querying further labels near the decision boundary in
areas where multiple labels are already available: these areas
exhibit high intrinsic uncertainty that cannot be removed by
additional label queries. Also, the proposed criterion does not
have additional parameters as required by heuristic strategies
that alternate between exploration and exploitation phases.47

To summarize this discussion, in areas with few labels and in
the absence of a parametric model that is known to govern the
true posterior probability of a class, the estimate of the class
conditional probability is of necessity imprecise. This
uncertainty is reflected in a broad second-order distribution,
which leads to lower values of  R q x( ( ( )))q as compared to the

more conservative R q x( ( ( )))q . If, on the other hand, the local
evidence is high, the second-order distribution is narrow,
yielding similar values for both terms. An example is given in
Supporting Information part A.
Random Forests. The random forest39 (cf. Figure 3) is a

state-of-the-art ensemble classifier that comprises ntree decision
trees. Each individual tree constitutes a crisp classifier and is
constructed from a bootstrap sample of size N of all available
training samples. Tree construction starts at the root node and
proceeds down toward the leaf nodes. In each node, a subset of
the M features (i.e., mass channels) is chosen at random (a
typical subset size being √M), and the feature that allows for
the best class separation of the samples in the node is selected.
After splitting the node, the algorithm continues on the next
level until all nodes are pure, that is, contain samples with
consistent class labels. All samples that are not part of the
bootstrap sample, the so-called out-of-bag samples, can be used
to obtain a performance estimate for the classifier. A query
sample is classified by putting it down each of the trees in the
ensemble until it reaches the leaf nodes. The distribution over
classes obtained for a single query sample cannot strictly be
interpreted as a posterior probability but does give an
indication of how certain the classifier is in its prediction.
Many studies have shown that the random forest classifier is

robust to overfitting and label noise,39,48 delivers state-of-the-art
prediction accuracy,49,50 can handle a large number of input
variables,51,52 allows for fast training, and is robust with respect
to the exact choice of the two hyperparameters: number of
trees and size of the random feature subset evaluated at a
node.53

TUV for Random Forests. We now combine the TUV
with the random forest classifier in a multiclass setting. As
discussed above, given a test sample, the random forest
classifier provides a distribution over tree votes. To obtain both

a density estimate and a meaningful measure for the uncertainty
(pure leaves suggest perfect certainty and are hence
misleading), we train the random forest with all labeled
examples from previous learning rounds plus a predefined
fraction of samples from a uniformly distributed auxiliary class
“0”. After training, all hitherto unlabeled MSI samples are
classified. Among these points, the next query candidate is
selected.
The number of trees vi(x) voting for the d + 1 classes (i = 0,

1, ..., d) can now be interpreted as an indicator for how certain
the classifier’s assessment for x is. Simply put, the more trees
vote for the auxiliary class, the weaker the local evidence for the
other classes and thus the higher the uncertainty of the
classifier. At the same time, the relative number of votes for the
remaining classes is an indicator of how far x lies from the
decision boundary. Generalizing the Beta distribution from ref
38 to multiple classes, we model the probability density
function g(q) (cf. eq 5) with a Dirichlet distribution, which is
parametrized by the number of trees voting for classes 1 to d.
This yields g(q) = Dir(q|α) where α α∈ = ++ v x, 1 ( )d

y y and
∑i=1

d αi = d + ntree (see Figure 2). The complete mathematical
derivation is detailed in Supporting Information part B.
Figure 1 and Supporting Information part C show that this

choice yields a TUV function that obeys both exploration and
refinement principles. Computation of the TUV requires
Monte Carlo integration over parts of the simplex. An efficient
implementation is discussed in the Supporting Information,
parts D and E; MATLAB code is available from http://hci.iwr.

Figure 3. Random forest classifier is an ensemble of decision trees
where the single trees are constructed from bootstrap samples. At each
node of a tree, the feature that allows for the best class separation is
chosen (with respect to the subset of features selected for that node).
The corresponding partitioning of the feature space is shown with the
decision boundary plotted in purple. The collection of trees forms the
random forest whose classification is based on the majority votes of the
individual trees.
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uni-heidelberg.de/MIP/Software. An overview of the active
learning method is given in algorithm 1:
Query label for observation x with the largest density in feature
space
for k = 1 to maxIterations do
1. Uniformly sample from the bounding box enclosing all
observations in feature space and label the obtained auxiliary
samples as “0” (frequency controlled by resampling parameter)
2. Combine user-labeled samples and “0”-samples to train a
random forest classifier with d + 1 classes
3. Classify all unlabeled observations x ∈ U, i.e. all observations
to which the user has not yet assigned a label
4. Drop random forest votes for class “0” to obtain d-
dimensional vectors α for all unlabeled observations x ∈ U with
αi = 1 + vi(x), i = 1, . . . , d where d is the number of classes and
vi(x) is the number of trees that vote for class i given
observation x
5. Query user label for that observation x that has the highest
training utility value (TUV) among all yet unlabeled
observations (i.e. maxx∈U TUV (x), cf. eq (7) and Supporting
Information D)
end for

■ EXPERIMENTS
Data. We used secondary ion mass spectrometry (SIMS)

data acquired from orthotopic human breast cancer xenografts
(MCF-7) grown in mice. For data acquisition, a Physical
Electronics TRIFT II TOF SIMS equipped with an Au+ liquid
metal ion cluster gun was used. The tumor samples were
embedded in gelatin, flash-frozen, cryo-sectioned to ≈10 μm,
and thaw-mounted on a cold indium tin oxide coated glass
slide. The tissues were not washed prior to SIMS analysis,

which was confined to a mass range of 0−2000 Da. The
spectral resolution was rebinned to 0.1 Da, and the range
between 0 and 400 Da was selected, resulting in 4009 mass
channels. Due to the large amount of data processed in this
study, short acquisition times of 2 s per spot were used.
Consequently, the spatial resolution had to be rebinned to 35 ×
35 μm2 per pixel in order to guarantee a reasonable number of
ion counts in each mass spectrum.
Three out of the six slices used in a previous study15,21 were

selected for evaluation of our active learning method: one from
the bottom (entitled S4), middle (S7), and top (S11) of the
stack of available parallel slices of the tumor. The spectra in the
three data sets were baseline corrected by channelwise
subtraction of the minimum and normalized by their total
ion count, and features were extracted with a peak picker based
on local maximum detection. The dimensionality of the
resulting spectra varied from 64 to 69 for the three sets.
Crisp gold standard labels were obtained by Hematoxylin−
Eosin (HE) staining of parallel slices, and five classes of interest
were identified: necrotic tumor, viable tumor, tumor interface,
gelatin, glass/hole (see ref 21 and the Supporting Information
part F for a more detailed description). All observations
(pixels) for which label information is available were used in the
evaluation of the methods. The class distribution among the
labels corresponding to these observations determines the
(maximum) number of different regions/classes in the
segmentation result. Since section S4 only contains labels for
four of the five classes, S4 was segmented into four regions. In
contrast, S7 and S11 were segmented into five regions.

Evaluation Criteria. We compared our active learning
approach (AL-RF) to random sampling (RS) that, in each
learning step, randomly queries the label of a hitherto unlabeled

Figure 4. Learning curves obtained for random sampling (RS, blue) and our active learning approach (AL, red). Accuracies are measured by
sensitivity (top row) and positive predictive value (bottom row). In each learning step, one additional label is queried. The plots show the median as
well as the band between the 95% quantile and the 5% quantile for the 100 repeats. In contrast to RS, our AL approach exhibits significantly lower
variance between the different learning runs, and the band around the median gets thinner over the course of iterations. At the same time, it
significantly outperforms RS.
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observation. Random sampling was used for comparison as it is
known to be “surprisingly effective, being competitive with
more complex approaches”54 and performs reasonably well in
many studies.55,56 It has thus been established as the de facto
baseline strategy to compare new AL algorithms to. Prediction
accuracy was measured by sensitivity (SE) and positive
predictive value (PPV). Sensitivity is defined as SE = (TP)/
(TP + FN) where TP is the number of true positives and FN is
the number of false negatives. The positive predictive value
estimates the ratio of samples that are correctly classified as
class k among all samples that are classified as k, that is, PPV =
(TP)/(TP + FP) where FP is the number of false positives. We
averaged the obtained SE and PPV rates over all four (slice S4)
or five classes (slices S7 and S11).
Due to the nondeterministic nature of the RS strategy and

the Monte Carlo integration, we repeated the AL method and
the RS approach 100 times and averaged the obtained results in
each learning step. To obtain reliable quality estimates, in
addition, we repeated the random forest training and
classification in each learning step five times. We drew 300
samples to perform the Monte Carlo integrations and
employed stratified sampling to balance the labels in the
training set. In both approaches, the learning was started with
an empty set of labeled points (in practical applications a
number of initial labels might already be given, such as it is, e.g.,
possible in AMASS25), exactly one label was queried in each

active learning step where the ground truth label map served as
oracle, and a 0−1 loss function was assumed.

■ RESULTS

Figure 4 and Supporting Information parts G and H report the
obtained classification accuracies on the three MSI data sets.
Results are given for both querying strategies and an increasing
number of learning steps. Ideally, the learning curves are steep,
such that high classification accuracies are obtained after only a
few learning steps. Since this is typically achieved by first
querying the labels that have the highest potential of increasing
the classifier’s performance, it is also insightful to examine
which training points the methods select within a fixed number
of learning steps (here, 100). Intuitively, some of the classes are
easier to distinguish than others, which is likely to manifest
itself in the training point selection of the AL strategy. Results
are shown in Figure 5, and a step-by-step example for slice S7 is
given in Supporting Information part I. In detail, the following
results were obtained for slices S4, S7, and S11.

Slice S4. Figure 4 and Supporting Information part G reveal
that our active learning scheme (AL-RF) performed similarly to
RS in the first few learning steps and significantly outperformed
RS as soon as more than ≈20 learning steps were executed.
Due to the steeper learning curve, AL-RF improved on RS by
about 10% in sensitivity after 100 iterations. RS needed more
than 200 learning steps (i.e., twice as many labels) to achieve

Figure 5. Classification results after 100 learning steps with our active learning method (AL-RF) and random sampling (RS). To obtain the crisp
classification, we first averaged the probability maps gathered in the 100 repeats and then took the maximum likelihood estimate in each pixel. On
the right, the selected training points for a representative learning run are plotted (we refrain from plotting the training points for all 100 repeats to
keep the images uncluttered). Since the area of the necrotic class is comparatively small in slices S7 and S11, RS only selects very few training points
for that class, leading to a bad classification result. In contrast, AL-RF requests more training samples for that class, yielding a superior classification.
At the same time, it samples less points from the gelatin and glass classes, which have less overlap with the other classes in feature space than, e.g.,
necrotic and viable tissue, and are thus easier to learn.
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the same performance level. For a large number of learning
steps, RS eventually collected a sufficient number of samples
from all classes and hence converged toward the sensitivity
rates obtained with AL-RF. However, the margin was still more
than 5% after 200 iterations (cf. Supporting Information part
H). Regarding positive predictive value, AL-RF slightly
outperformed RS in the first ≈70 learning steps, that is, in
the regime which is most interesting for a learning from sparse
annotations.
Slice S7. Over the whole range of the first 200 iterations and

especially for low numbers of learning steps, our approach
outperformed RS with respect to PPV. At the same time, it
significantly outperformed RS regarding sensitivity, leading to a
gain of more than 10% after 100 and also after 200 learning
steps. Again, RS required more than twice as many labels to
reach the performance level of AL-RF after 100 steps. The
sensitivity of the RS algorithm increased very slowly such that
after 500 iterations the sensitivity was still at a comparably low
level of 86%.
Figure 5 reveals that RS resulted in a classifier that mostly

confused the necrotic class (indicated in red) with the viable
class (light green). In contrast, AL-RF yielded significantly
better results. Gelatin and glass spectra did not pose a challenge
for either strategy.
Slice S11. Regarding sensitivity as well as positive predictive

value, the results obtained for slice S11 proved to be highly
similar to the results for slice S7. AL-RF again outperformed RS
with respect to both sensitivity and positive predictive value.
After 100 and 200 learning steps, it resulted in SE and PPV
rates that were approximately 9% respectively 4−6% higher
than the results yielded with RS. Figure 5 shows that RS again
failed to achieve good classification performance for the
necrotic class. AL-RF performed significantly better but still
confused several necrotic samples with viable cancer and some
with glass. Apparently, additional learning steps are necessary to
learn to reliably discriminate necrotic and viable tumor in this
data set.

■ DISCUSSION
Classification Performance. Given a fixed number of

learning steps, AL-RF resulted in positive predictive values that
were slightly higher or comparable to the ones obtained with
RS. At the same time, AL-RF significantly outperformed RS
with respect to sensitivity by up to 10%, as soon as more than
15−20 labels were queried. It also exhibited significantly lower
variance between runs, as can be seen from Figure 4. The main
conclusion is that AL-RF has the potential to reduce labeling
times without trading for classification accuracy.
Training Point Selection. Figure 5 shows that RS largely

failed to discriminate necrotic from viable tumor tissue. The
necrotic area has only small spatial extent, such that RS only
selected a few corresponding training points. In comparison,
AL-RF selected more than twice as many necrotic samples on
slices S7 and S11. This choice seems reasonable, since
discriminating viable and necrotic tumor is the most
challenging task of our classification problem. In any case,
AL-RF yielded a significantly better classification result with
respect to these classes (cf. Figure 5). Whereas the necrotic and
viable tumor samples are rather close in feature space, the
nontissue classes gelatin and glass have little spectral overlap,
which simplifies their classification. Indeed, AL-RF queried far
fewer samples from these classes than RS, and the
corresponding areas in Figure 5 are less densely sampled. We

conclude that AL-RF seems to construct training sets that are
consistent with our expectations and prior knowledge about the
classification task at hand.

Influence of the Number of Trees. There is some
freedom in the exact choice of the second-order distribution.
The Dirichlet, as a member of the exponential family with the
correct support, is a canonical choice. While it allows the
combination with the successful random forest classifier, using
the tree votes as parameters introduces a certain shortcoming:
when increasing the overall number of trees in the ensemble,
the parameters specifying the Dirichlet distributions grow
larger, which results in a narrower distribution. Thus, ultimately
the uncertainty estimate is dependent on the number of trees.
However, the number of trees in a random forest is fixed,
typically between 100 and 200. Our experiments demonstrate
that, for this choice, our criterion works well in practice.

Method’s Assumptions. Supervised learning can only be
as good as the labels provided, and it is thus important for the
expert to ensure that the assigned labels are correct. This
requires a certain level of interaction between the AL approach
and the microscopy software.

Unsupervised Segmentation Can Assist the Labeling
Process. Alternatively, PCA or pLSA scores may be used as
overlays when assigning labels. These low-dimensional
summaries of the MSI data often reveal structures that are
not apparent from individual channel images but are often
visible in the stained images (see Supporting Information part J
for details).

Computation Time. Training of the random forest and
subsequent classification took less than 1 s on a standard
desktop PC (2 GHz dual core processor with 2 GBytes of
RAM). Computing the risk estimates for all unlabeled
observations (cf. Supporting Information part C) required
another 1.5−2 s. Performance improvements may be achieved
by employing an online version of the random forest
classifier48,57 or by querying multiple labels in each iteration,58

but this is beyond the scope of this paper. While a speed-up is
always desirable, the measured computation times are clearly
below the time that an expert typically needs for labeling the
query point.

Future Work. Since AL-RF is based on the random forest
classifier, which was repeatedly shown to work well on complex
MALDI signatures (see e.g., ref 59), and since the results for
discriminating similar tissue classes such as viable and necrotic
tissue are encouraging, we expect that AL-RF may also become
an interesting tool for MALDI MSI analysis. Confirming or
refuting this belief is an interesting avenue of future research.
Also, the analyzed xenograft tumors are rather homogeneous in
nature. Thus, it will be interesting to analyze tissue types that
are characterized by spectrally more overlapping signatures.
Due to the reasons given above, we believe that AL-RF is
suitable for this task.

■ CONCLUSIONS
Due to the enormous amount of data produced by modern-day
instruments, routine clinical application of MSI will not be
possible without computational analysis.60 Robust training of
supervised classifiers requires a set of expert labels that reflects
the variability between patients and instrument settings. The
high variability encountered in practice jeopardizes reproduci-
bility and motivates the collection of expert labels for each
newly acquired MSI data set. However, labeling is time-
consuming and thus expensive. Consequently, novel algorithms
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are needed that yield the highest possible classification
accuracies and at the same time require as little user interaction
as possible. We have demonstrated how AL can be used for the
efficient annotation and classification of SIMS data. We have
further demonstrated that it outperforms RS by a large margin
if only a small number of labels are made available for training.
Harvesting this potential is worthwhile as MSI is moving closer
to clinical application.
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