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Spatial heterogeneity is a hallmark of living systems, even at the
molecular scale in individual cells. A key example is the parti-
tioning of membrane-bound proteins via lipid domain formation
or cytoskeleton-induced corralling. However, the impact of
this spatial heterogeneity on biochemical signaling processes is
poorly understood. Here, we demonstrate that partitioning
improves the reliability of biochemical signaling. We exactly
solve a stochastic model describing a ubiquitous motif in mem-
brane signaling. The solution reveals that partitioning improves
signaling reliability via two effects: it moderates the nonlinearity of
the switching response, and it reduces noise in the response by
suppressing correlations between molecules. An optimal partition
size arises from a trade-off between minimizing the number of
proteins per partition to improve signaling reliability and ensuring
sufficient proteins per partition tomaintain signal propagation. The
predicted optimal partition size agrees quantitatively with exper-
imentally observed systems. These results persist in spatial simu-
lations with explicit diffusion barriers. Our findings suggest that
molecular partitioning is not merely a consequence of the complex-
ity of cellular substructures, but also plays an important functional
role in cell signaling.

information transmission | reversible modification | stochastic modeling

The cell membrane is a nexus of information processing. Once
regarded as a simple barrier between a cell and its sur-

roundings, it is now clear that the membrane is a hot spot of
molecular activity, where signals are integrated and modulated
even before being relayed to the inside of the cell (1). Moreover,
the membrane itself is structurally complex. Regions enriched in
glycosphingolipids, cholesterol, and other membrane compo-
nents, often called lipid rafts, transiently assemble and float
within the surrounding bilayer (2), providing platforms for
molecular interaction (3). Additionally, interaction of the mem-
brane with the underlying actin cytoskeleton forms compartments
in which molecules are transiently trapped (4, 5). These mem-
brane subdomains create a highly heterogeneous environment in
which molecules are far from well mixed, and it is currently un-
clear what effect this heterogeneity has on cell signaling.
Membrane subdomains are thought to play a dominant role in

the observed aggregation of signaling molecules into clusters (6).
Interestingly, these clusters have a characteristic size of only a few
molecules. For example, the GPI-anchored receptor CD59 is
observed to form clusters of three to nine molecules upon in-
teraction with the cytoskeleton and lipid rafts (7, 8). Similarly, the
well-studied membrane-bound GTPase Ras forms clusters of six
to eight molecules, which also depend on interactions with the
cytoskeleton and rafts (9, 10). Despite the important findings that
aggregation of proteins induced by subdomains can affect reaction
kinetics (11), enhance oligomerization (1), modulate downstream
responses (12, 13), and enhance signal fidelity (13, 14), the origin
of this characteristic size remains unknown. Although it is quite
possible that these domains owe their size to a thermodynamic or
structural origin, we here address the question of whether this size
can be optimized for signaling performance. We find that the
partitioning imposed by subdomains gives rise to a trade-off in cell
signaling, from which an optimal size of a few molecules emerges

naturally, suggesting that reliable signaling is intimately tied to the
spatial structure of the membrane.
We study via stochastic analysis and spatial simulation a model

that is directly motivated by both CD59 and Ras signaling at the
membrane. Stimulated CD59 receptors induce the switching of
several Src family kinases from an unphosphorylated to a phos-
phorylated state (7, 8). Similarly, stimulated EGF receptors in-
duce the switching of Ras proteins from an inactive GDP-loaded
state to an active GTP-loaded state (13). We therefore study the
simple and ubiquitous motif of coupled switching reactions, in
which the activation of one species (the receptor) triggers the
activation of a second species (the downstream effector).
We exactly solve this stochastic model of coupled switching

reactions, and we use the solution to compare signaling reliability
in a spatially partitioned system to that in a well-mixed system.
We demonstrate that partitioning can improve signaling per-
formance by generating a more graded input–output relationship
and by reducing the noise in the signaling response. This latter
effect comes about because partitioning reduces the correlations
between the states of the different output molecules. However,
the stochastic exchange of proteins between partitions can gen-
erate configurations that isolate molecules and exclude them
from the signaling process, thereby reducing the dynamic range
of the response and increasing the output noise. The trade-off
between these two effects results in an optimal partition size that
agrees well with cluster sizes of signaling proteins that are ob-
served experimentally (7–10), suggesting that cluster sizes are
tuned so as to maximize information transmission.

Results
We model two coupled molecular species at the membrane, as
depicted in Fig. 1A. A membrane-bound receptor (e.g., CD59 or
EGF receptor) is activated via ligand stimulation, and the active
receptor in turn activates a membrane-bound effector (e.g.,
a Src family kinase or Ras). A reaction scheme representing
these processes is shown in Fig. 1B and consists of two protein
species: the receptor X and the downstream effector Y. The
switching of X molecules from the X to the X* state is driven by
an external signal of strength α. Active X* molecules act on
inactive Y molecules and promote switching to the Y* state.
Deactivation of both active protein species occurs spontane-
ously and independently.
We will be concerned with how the network response, the

number of active Y* molecules as a function of the input signal α,
is affected by the spatial structure of the system. In particular, we
ask how partitioning of the reaction system into noninteracting
subdomains affects the reliability of signal transmission, which is

Author contributions: A.M., F.T., and P.R.t.W. designed research; A.M. performed re-
search; A.M. contributed new reagents/analytic tools; A.M., F.T., and P.R.t.W. analyzed
data; and A.M., F.T., and P.R.t.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: tenwolde@amolf.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1218301110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1218301110 PNAS | April 9, 2013 | vol. 110 | no. 15 | 5927–5932

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

mailto:tenwolde@amolf.nl
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218301110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218301110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1218301110


determined by two principal factors: the input–output response
and the output noise; together these properties determine to
what extent different input signals can be reliably resolved from
the network response. We focus on two system configurations,
shown in Fig. 1C. In the first case, we assume that all molecules
are present in a single well-mixed reaction compartment. In the
second case, we consider a system partitioned into π compart-
ments between which no interactions are permitted; here, we
take the output of the system to be the total number of active Y*
molecules in all compartments. This choice of output corre-
sponds to a readout of the Y* signal by, e.g., a cytosolic com-
ponent whose diffusion is much faster than the diffusion and
signaling of X and Y on the membrane. In the partitioned sys-
tem, we will for simplicity first assume that the molecules are
uniformly and statically distributed among compartments. How-
ever, recognizing that this scenario will not generally be realized
inside cells, we will later relax this assumption and consider ex-
change of molecules among partitions.
We model the dynamics of the well-mixed system, as well as

each compartment within the partitioned system, using a stochas-
tic equation of the same form. We denote the total numbers of X
and Y molecules by M and N, respectively, and the numbers of
active X* and Y* molecules by m and n, respectively. To param-
eterize the system, we scale units of time by the deactivation rate
of X*, such that the effective deactivation rate is 1. Then α
denotes the rescaled activation rate of X; γ is the rate of de-
activation of Y* relative to that of X*; and γβm is the activation
rate of a given Y molecule for a particular concentration of X*
molecules. The parameter α incorporates the effective strength of
the input signal and determines the mean X* activity via the oc-
cupancy q ≡ 〈m〉/M = α/(α + 1). The precise m-dependence of
the coupling function βm will depend on the exact nature of the
interactions between X* and Ymolecules. We take βm ∝m/v, with
v as the volume of the compartment in which the reactions are
taking place. However, our conclusions are unaffected if we instead
take a Michaelis–Menten form βm ∝m/(m + vK) (SI Appendix, Fig.
S1). The total system volume V is assumed to scale with the total
number of X molecules, such that M/V is constant. The coupling
function in partition i ∈ {1, . . ., π} is then determined by
mi, the number of X* molecules in partition i, according to
βðiÞm ∝mi=ðV=πÞ= βπmi=M for constant β.
The probability of having m proteins in the X* state and n

proteins in the Y* state evolves according to the chemical master
equation (CME),

_pmn = − ½Lmðα;MÞ+ γLnðβm;NÞ� pmn; [1]

subject to suitable boundary conditions. The nature of the
particular set of reactions in our model (Fig. 1B) means that
the operators Lm and Ln have the same form,

Lmðα;MÞ= α
�
1−E−1

m

�ðM −mÞ+ �
1−E+1

m

�
m; [2]

where Ei
mf ðmÞ= f ðm+ iÞ defines the step operator. Despite the

appearance of terms containing the product mn in the operator
Ln(βm, N), which make the direct calculation of moments of pmn
from the CME impossible, an exact solution to Eq. 1 can be
found for arbitrary βm using the method of spectral expansion
(15, 16) as described in SI Appendix.

Partitioning Leads to a More Graded Response. We begin by ana-
lyzing the behavior of a minimal system with M = N = 2. In the
well-mixed system, all molecules are contained within π = 1 do-
main of volume V. In the partitioned system, π = 2 subdomains
with volume V/2 each contain one X and one Y molecule.
We first focus on the mean response 〈n〉. In the limits of small

or large α, the mean response is the same in both the partitioned
and mixed systems, 〈n〉/N → 0 and 〈n〉/N → β/(β + 1), re-
spectively. However, at all intermediate values of α, the mean
response of the well-mixed system is larger than that of the
partitioned system; equivalently, the partitioned system exhibits
a more graded response than the well-mixed system to changes
in the input signal (Fig. 2A, thick solid and dashed curves). The
more graded response is due to higher fluctuations in X* ac-
tivity. When α → 0 or α → ∞, all X molecules are inactive or
active, respectively; however, at intermediate values of α, the
number of active X* molecules fluctuates. Partitioning reduces
the number of X molecules per reaction compartment, in-
creasing the relative size of these fluctuations according to
σ2m=ðM=πÞ2 = πqð1− qÞ=M. These fluctuations are passed through
the concave dependence of n on m, resulting in a smaller mean
[via Jensen’s inequality (17)], and therefore a more linear re-
sponse curve (SI Appendix, Fig. S2A).

A B

C

Fig. 1. Schematic depiction of the model system. (A) We consider a model
representative of signal detection by receptors and signal transmission at the
cell membrane. (B) The model consists of two molecular species (X and Y),
which can each exist in active (X*, Y*) or inactive (X, Y) states. Molecules in
the X state are activated by the external signal of strength α, and active X*
molecules subsequently activate Y molecules. (C) We consider these reac-
tions taking place in a single domain with all components well mixed, or in
a domain consisting of smaller compartments, which are each individually
well mixed but between which no interaction is possible. The total system
volumes in the two scenarios are equal and assumed to scale with the
number of X molecules.

A B

Fig. 2. Spatial partitioning improves signaling performance. (A) The mean
response〈n〉/N as a function of the mean X* activity q =〈m〉/M = α/(α + 1),
and (B) the output variance σ2n as a function of the mean response, plotted for
a well-mixed system with M = N = 2 (thick solid) and a partitioned system of
π = 2 compartments, each containing oneX and one Y molecule (thick dashed).
Partitioning linearizes the output response and reduces noise across the full
range of responses, leading to a higher transmitted information. The thin
solid curves show the mean field response〈n〉/N = βq/(βq + 1) in A and the
binomial noise limit (3) in B. Allowing exchange of molecules between
compartments (thick dot-dashed) compresses the output response and in-
creases the noise compared with the perfectly partitioned system, dramati-
cally reducing information transmission. Here, β = 20 and γ = 1.
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A more graded input–output relationship can potentially en-
hance signaling by expanding the range of input signals which the
network is able to transmit without saturating the response.
However, to determine whether this larger input range can be
resolved in the network it is crucial to examine how the noise in
the response is affected.

Partitioning Reduces Noise. Fig. 2B shows the variance of the
output σ2n as a function of the mean response 〈n〉 for the system
with M = N = 2, as the input signal strength α is varied. We see
that the output noise is reduced in the partitioned system relative
to the well-mixed system across the full range of response levels.
The noise reduction is surprising: one might expect that the in-
creased fluctuations in X* activity that come with partitioning
would propagate to fluctuations in Y* activity. Indeed, this is the
case: in a single compartment, as the number of X molecules is
reduced, the noise in the output increases (SI Appendix, Fig.
S2B). However, this effect is overcome by a second effect: par-
titioning reduces correlations among output molecules.
To see the effect of partitioning on correlations, we consider

the expressions for the variance. In the partitioned case, because
the two Y molecules switch independently, the variance of n is
simply that of a pair of independent binomial switches with ac-
tivation probability 〈n〉/N,

σ2n
N

=
hni
N

�
1−

hni
N

�
: [3]

In contrast, in the well-mixed case, the two Y molecules are
not independent. Because both are driven by the same set of X
molecules, fluctuations in βm lead to correlations between the
states of the two Y molecules as their switching becomes more
synchronized (Fig. 3). This in turn leads to an increase in the
variance, which can be written as follows:

σ2n
N

=
hni
N

�
1−

hni
N

�
+
Δ
N
; [4]

where Δ is a correction term accounting for the correlation be-
tween Y molecules, which is due to “extrinsic” fluctuations in the
input m(t). The functional form of Δ for any M and N follows
directly from the spectral solution of the CME (SI Appendix, Eq.
68); for M = N = 2, one finds by inspection that Δ is manifestly
positive, meaning that correlations increase the noise across all
values of the mean. Importantly, this effect is independent of the
parameters of the switching reactions.
The reduction of noise upon partitioning extends beyond

the case of one Y molecule per partition. Indeed, the same

phenomenon is observed if we consider larger molecule num-
bers M > π and N > π, and compare the well-mixed system to
a system with uniform partitioning of the X and Y molecules
into the π compartments. In the well-mixed case, all Y mole-
cules respond to the same signal m(t) and hence are correlated
with all other Y molecules in the system. By contrast, in the
partitioned case, the N/π > 1 Y molecules within each partition
are correlated, and indeed because the fluctuations in mi(t) will
be larger than m(t) for the mixed system, such correlations will
be stronger; yet the Y molecules in different partitions are
uncorrelated. This latter effect is sufficient to overcome the
increase in correlations within each partition, such that the
total noise is reduced.
To see the noise reduction explicitly, we again consider the

expression for the variance. Because the dynamics of different
partitions is independent, assuming that both M and N are
multiples of π, the variance can be written as follows:

σ2n
N

=
hni
N

�
1−

hni
N

�
+ π

Δ
�
~M; ~N

�
N

; [5]

where ~M ≡M=π and ~N ≡N=π are the numbers of X and Y mol-
ecules per compartment, respectively. Here, as before, Δð ~M; ~NÞ
represents the additional fluctuations due to correlations be-
tween the states of Y molecules within each compartment. The
N-dependence of Δð ~M; ~NÞ, which reflects the number of corre-
lated pairs of Y molecules, can be straightforwardly factored
out as Δð ~M; ~NÞ= ~Nð ~N − 1Þ ~Δ ð ~MÞ, where ~Δ ð ~MÞ describes how
strongly correlated are Y molecules within each compartment.
The exact form for ~Δ ð ~MÞ, although straightforward to calculate
for a given ~M, is difficult to generalize for all ~M; nonetheless,
inspection of numerical and analytic results for specific combi-
nations of ~M and ~N reveals in all cases that increasing π leads to
an overall reduction in σ2n. Additionally, if the switching of Y
molecules is much slower than that of X molecules, γ � 1, then
~Δ ð ~MÞ takes the following form:

~Δ
�
~M
�
≈

αβ2γ
~Mð1+ α+ αβÞ3 : [6]

Inserting this expression into Eq. 5 with ~M =M=π and ~N =N=π,
one can straightforwardly see that the variance is a decreasing
function of π for π < N, indicating that the noise is reduced as the
system is more finely partitioned.

Partitioning Increases Information Transmission. We have seen that
partitioning has two beneficial effects on signal propagation: the

A

B
Fig. 3. Partitioning reduces correlations between
output modules. (A) In the partitioned system, each
Y molecule receives an independent signal mi(t).
The variance is simply that of independent two-
state switches. (B) In the well-mixed system, each Y
molecule reacts to the same m(t), which leads to
correlations between in the states of different Y
molecules and an increase in the variance σ2n.
Sample trajectories are generated using param-
eters as in Fig. 2, with α = 1.
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input–output response becomes more graded, and the output
noise at a given response level is reduced. Together, these effects
mean that a larger number of distinct input signals can be
encoded in the network response. To quantify the ability of the
network to transmit signals, we calculate the mutual information
I [α, n] (18) between the input and the number of active Y*
molecules, as described in SI Appendix, Methods. The mutual
information quantifies the number of resolvable output signals
given a particular distribution of input signals. We find that, in-
deed, in the case of M = N = 2 (Fig. 2), I [α, n] is significantly
larger for the partitioned system (I = 0.463 bits) than for the
well-mixed system (I = 0.332 bits), confirming that signal trans-
mission is dramatically improved by partitioning.

Exchange Between Partitions Compromises Signaling Reliability.
Thus far, we have considered only the perfectly uniform and
stationary partitioning of molecules. In reality, physical transport
processes such as diffusion will also give rise to a variety of
configurations with different numbers of proteins in each com-
partment, as depicted in Fig. 4. Each of these configurations will
have different properties for the transmission of the signal from
α to n. It is therefore important to consider whether the benefits
of partitioning described above persist once these additional
configurations are taken into account.
Single-molecule tracking experiments have revealed that the

timescale of diffusive mixing within a compartment (∼100 μs) is
two orders of magnitude faster than the timescale of molecular
exchange between compartments (∼10 ms) (19). This observation
allows us to treat each configuration as static on the timescale of
mixing, and then compute the total response by averaging over all
configurations. Inherent in this treatment is the assumption that
the timescale of signaling is also faster than that of exchange be-
tween compartments. We later relax this assumption using spa-
tially resolved simulations and nonetheless find similar results.
The total response is computed by first enumerating the pos-

sible configurations of M X molecules and N Y molecules dis-
tributed among π partitions. For each such configuration c, we
then solve for the distribution pmnjc and combine these distri-
butions, weighted by the probability pc of each configuration
occurring if molecules are randomly assigned to different par-
titions with uniform and independent probability, to give the
overall distribution pmn =

P
cpmnjcpc.

Fig. 2B (dot-dashed curve) shows that the exchange of mole-
cules between compartments increases the noise relative to the
perfectly partitioned system considered previously when M = N =
2. This is because many of the alternative configurations gener-
ated by exchange lead to significant correlations between the
states of the different Y molecules. Nevertheless, we see that the
noise remains lower than that of the well-mixed system, because
of the existence of some configurations in which the Y molecules
are independent. However, the appearance of alternate config-
urations also affects the mean response (Fig. 2A); in particular, the
appearance of configurations in which X and Y molecules do not

occupy the same partitions, and hence no signal can be propa-
gated, means that the maximal output level is reduced. Given this
simultaneous change in both the input–output function and the
noise, it is not immediately clear whether signaling reliability is
improved relative to the well-mixed system. Computing the
mutual information, we see that the information transmitted by
the system with exchange (I = 0.213 bits) is significantly lower
than that for the well-mixed system (I = 0.332 bits), showing that
the reduction of the output range compromises signal trans-
mission to an extent that cannot be overcome by the corre-
sponding reduction in noise.
The decrease in information transmission upon incorporating

molecule exchange in the system with M = N = 2 is the result of
the appearance of suboptimal protein configurations, for which
signal propagation is compromised (or even impossible). How-
ever, the number and performance of such configurations will in
general depend on the relative values ofM, N, and π (which need
not equal M or N). Although molecule exchange may make
partitioning unfavorable in the extreme case of M = N = 2, for
systems with higher protein numbers it can be beneficial to
partition the system into π > 1 compartments, as we will see next.

Optimal Partition Size. To study the performance of systems with
higher protein numbers and different partition sizes, we compare
the information transmission, including molecule exchange, for
different partition numbers π as the number of proteins in the
system is varied while holding M = N. Fig. 5A shows that for M =
N > 3 protein copies, systems with π > 1 partition do indeed
outperform the well-mixed system. Furthermore, as M = N is
increased, the optimal partition number also increases such that
the optimal number of proteins per partition M/π* = N/π* ∼ 3 is
roughly constant (Fig. 5B). This result is robust to variations in β
and γ: changing each over several orders of magnitude results in
optimal partition sizes in the range M/π* = N/π* ∼ 1–10 (SI
Appendix, Fig. S3 A and B). The assumption of M = N is also not
crucial for this result. In fact, we find that the value of M/π* has
only a weak dependence on N (SI Appendix, Fig. S4).
The optimal partition size arises from a trade-off between the

reliability and efficiency of signaling. Increasing the number of
partitions decreases the typical number of proteins per partition,
which leads to the beneficial effects of a more graded response
and reduced noise, increasing signaling reliability. However, due
to molecule exchange, reducing the number of molecules per
partition also increases the probability that any partition contains
proteins of only one species that are therefore excluded from the
signaling process, which leads to a reduced maximal response,
reducing signaling efficiency.
The optimal size revealed by our study of ∼1–10 molecules per

species per partition shows good quantitative agreement with the
observed aggregation of CD59 receptors [3–9 molecules (7, 8)]

0 0.1 0.2 0.3 0.4 0.5
information (bits)

2 4 2 4 4 (perfect)

well-mixed

Fig. 4. Exchange between partitions leads to different configurations of
the system with a range of signaling performance. Multiplicities listed above
each configuration are due to symmetry. Parameters are as in Fig. 2.
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Fig. 5. An optimal partition size. (A) For M = N > 3 molecules, a system with
π > 1 partitions achieves higher information transmission that a well-mixed
system (π = 1). (B) As M = N is increased, the optimal partition number also
increases such that the optimal number of proteins per partitionM/π* = N/π*
∼ 3 is roughly constant. Parameters are as in Fig. 2.
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and Ras proteins [6–8 molecules (9, 10)], which each signal via
the present motif and are known to interact with rafts and the
cytoskelton. It is of further interest that a recent experiment in
which T-cell receptors were artificially partitioned on supported
membranes found that the minimum number of agonist-bound
receptors per partition necessary for downstream signaling is
approximately four (20).

Explicitly Spatial Model. Last, we confirm that the effects observed
in these minimal model systems, where the contents of each
compartment are well mixed and exchange can occur between
any pair of compartments, persist in a more realistic model in
which the diffusion of molecules in space is included explicitly.
We simulate the diffusion and reaction of X and Y molecules on
a 2D lattice, as described in SI Appendix, Methods. The system is
partitioned into a number of subdomains by the introduction of
diffusion barriers, which are crossed with a reduced probability
phop relative to regular diffusion steps on the lattice. Results of
such simulations are shown in Fig. 6.
Fig. 6A andB reveal that as the strength of the diffusion barriers

is increased, the mean response becomes more graded, and the
variance of Y* activity is reduced, analogous to the two effects
observed in theminimal model system (Fig. 2).When phop= 0, one
molecule of each species is permanently confined to a compart-
ment, producing the graded response predicted for the perfectly
partitioned system (Fig. 6A) and the associated minimal, binomial
noise (Fig. 6B). Low but finite phop allows exchange of molecules
between neighboring compartments but preserves a separation
of timescales between intracompartment and intercompartment
mixing. This results in a graded mean response whose maximal
level is reduced (Fig. 6A) and reduced noise (Fig. 6B), precisely the
features observed in the minimal model of partitioning with ex-
change (Fig. 2). When phop = 1, there are no barriers, and the
system approaches the well-mixed limit (CME). Interestingly,
however, the response remains more graded and the noise remains
lower than the predictions of the CME due to the finite speed of
diffusion (Fig. 6 A and B), with agreement only reached when the
ratio of diffusion to reaction propensities is much greater than 1.
This observation reveals that finite diffusion imposes an effective

partitioning even when no actual partitions exist: molecules re-
main correlated with reaction partners within a typical distance
set by diffusion, but uncorrelated with partners beyond this dis-
tance. As such, in the context of coupled reversible modification,
we find that slower diffusion can linearize the response and re-
duce the noise, thereby improving information transmission.
Interestingly, this result is in marked contrast to the case of
boundary establishment in embryonic development, where faster
diffusion reduces noise within each nucleus by washing out bursts
of gene expression in the input signal (21). Although in the
present system faster diffusion will similarly reduce any super-
Poissonian component of the noise within each partition in-
dividually, this averaging does not reduce the noise in the total
output across all partitions. In fact, the latter noise is enhanced
with faster diffusion by virtue of increased correlations between
partitions.
While slower diffusion can lead to effective partitioning in

a system without explicit diffusion barriers, the noise reduction in
such a system is much smaller than that in a system with actual
partitions. Fig. 6B shows that finite diffusion reduces the maxi-
mal noise by (1.25 − 1)/1.25 = 20%, whereas strong partitioning
(phop = 0.001) reduces the maximal noise by (1.25 − 0.4)/1.25 ∼
70%. Therefore, partitioning, which introduces not only a slower
effective “hop” diffusion but also a separation of tiescales be-
tween intracompartmental and intercompartmental mixing, is far
more effective at conveying an information enhancement.
Fig. 6C confirms that the transmitted information varies non-

monotonically with the number of barriers in a fixed area, in-
dicating that an optimal partition size also appears in systems
where space is modeled explicitly. Like in the minimal model, this
optimum persists with changes in β and γ, spanning the range of
∼1–10 molecules per partition (SI Appendix, Fig. S3 C and D).
Fig. 6C also provides a measure of the scale of information
transmitted by this motif. In absolute terms, the optimal in-
formation (1.35 bits) is consistent with values recently measured
for signaling via the TNF–NF-κB pathway (∼0.5–1.5 bits) (22)
and for patterning in the Drosophila embryo (1.5 ± 0.15 bits) (23).
In relative terms, we see that partitioning increases information
over the unpartitioned system by (1.35–1.04)/1.04 ∼ 30% (Fig.

A

B C

Fig. 6. The effects of partitioning persist in simu-
lations with explicit diffusion. As the probability of
crossing a diffusion barrier phop is decreased, (A) the
mean response becomes more graded, and (B) the
output noise decreases. (C) The information trans-
mission has a maximum as a function of the parti-
tion size. HereM = N = 49, β = 20, γ = 1, the system is
λ = 70 lattice spacings squared, and the ratio of
diffusion to reaction propensities is pD/pr = 1. In A
and B, π = 49; in C, phop = 0.001, and the partition
size is varied by taking

ffiffiffi
π

p
from 25 to 1.
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6C) and decreases the maximal noise by (1 − 0.4)/1 = 60% (Fig.
6B). Thus, in both absolute and relative terms, we see that par-
titioning plays a critical role in producing informative and reliable
membrane signaling.
As a final test, we use simulation to confirm that the effects of

partitioning persist in the presence of features that are more re-
alistic for signaling systems at the membrane, including extrinsic
noise in the input (SI Appendix, Fig. S5) and receptor dimerization
(SI Appendix, Fig. S6). The fact that the effects of partitioning,
including the emergence of an optimal partition size, are robust to
these details further underscores the generality of our findings.

Discussion
We have seen that the partitioning of a biochemical signaling
system into a number of noninteracting subsystems improves the
reliability of signaling via two effects. First, the nonlinear re-
sponse of the network means that a reduction in the number of
input molecules translates into a more graded input–output re-
sponse. Second, partitioning significantly reduces the noise in the
response by eliminating correlations between the states of the
different output molecules, an effect that, remarkably, overcomes
the increase in noise associated with fewer input molecules in
each subsystem. However, we have seen that the introduction of
diffusion or exchange of molecules between partitions enhances
the variance and reduces the range of the response, thereby re-
ducing signaling performance. This result is due to the presence
of configurations in which the two species are isolated from one
another, compromising or even arresting signal transmission in
certain partitions. The interplay between these two effects leads
to a partition size that optimizes information transmission, cor-
responding to a few molecules per partition on average, in
quantitative agreement with experiments. These effects are ge-
neric, and hence the emergence of an optimal partition size is
robust to the specific parameters of the model. Notably, the
underlying mechanism revealed here, namely the removal of
correlations, differs fundamentally from that based on coopera-
tivity in protein activation, which has been argued to underlie
optimal cluster size in sensory systems (24, 25).

Reversible modification reactions are ubiquitous in cell sig-
naling, and interactions with the cytoskeleton and lipids provide
general mechanisms for the formation of subdomains. We there-
fore expect the results revealed by our study to be applicable to
a wide class of signaling systems at the membrane. We have fo-
cused in this paper on coupled single-site modification reactions
because this motif governs pathways specifically known to be af-
fected by the formation of membrane subdomains. However, the
effects we uncover also pertain to multisite modification reactions,
which are very common in cell signaling (26–29). Moreover, we
have focused on systems where the reactant species are confined
by a boundary that limits diffusion. However, similar effects could
be observed in systems where proteins are localized to raft
domains, or even scaffolds or large macromolecular complexes. In
the latter case, each complex would effectively provide an in-
dependent reaction “compartment,” and the exchange between
compartments would be the result of rare dissociation events, after
which proteins could diffuse rapidly through the cytoplasm to a
different complex. Even if the signal within each complex was not
mediated via diffusive encounters, but rather via cooperative or
allosteric interactions, the fundamental mechanism that we reveal
here—that partitioning into subsystems removes correlations be-
tween subsystems—remains at play. The presence of scaffolds and
macromolecular complexes at early stages of signaling pathways is
extremely common (30), suggesting that the effects discussed here
are of wide biological relevance.

Materials and Methods
The CME (1) is solved using the method of spectral expansion (15, 16). Details
of this method, the computation of mutual information, and the spatial sim-
ulations are described in SI Appendix. Source code, written in MATLAB, C++,
and Mathematica, used to generate all results and figures in the main text and
SI Appendix, is freely available at http://partitioning.sourceforge.net.
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1 Methods

1.1 Spectral solution of the master equation

The chemical master equation (CME) is solved using the method of spectral expansion [1, 2], described in
detail in the next section. Briefly, the structure of of the CME, in which the dynamics can be separated into
two operators that act only on m or n but not both, allows for its solution to be written in the form pmn(t) =∑M
j=0

∑N
k=0Gjk(t; β̄)φjm(α)φkn(β̄), where φjm(α) is the jth eigenvector of the operator Lm(α) and similarly

for φkn(β̄), and β̄ is an expansion parameter on which pmn does not ultimately depend. The expansion
coefficients Gjk(t; β̄) can be calculated straightforwardly, as shown in the next section. Importantly, this
spectral expansion dramatically decreases the computational complexity of calculating pmn: rather than
solving the (M + 1)(N + 1) × (M + 1)(N + 1) system of the original CME, it is only necessary to solve

N linear systems of size (M + 1) × (M + 1) for the vectors of coefficients ~Gk. We emphasize that since
the system has a finite state-space, no approximations are made in using the spectral expansion, and the
solution remains exact. Furthermore, the moments of the steady-state distribution pmn can be conveniently
expressed in terms of the expansion coefficients Gjk; in particular, 〈n〉 = G01 and 〈n2〉 = 2G02 +G01.

1.2 Mutual information

The mutual information between network input and response is given by the standard expression [3] I [α,m] =
〈log{p(α, n)/[p(α)p(n)]}〉, where the average is taken over the joint distribution p(α, n) = p(n|α)p(α), and

p(n|α) =
∑M
m=0 p(m,n|α) is given by the steady state of the CME. The calculation of the mutual information

requires specification of the distribution of input signals p(α). We choose Nα values of α such that q =

α/(α + 1) = 〈m〉/M is uniformly-spaced over the range 0 ≤ q ≤ 1; then p(n) =
∑Nα
i=1 p(n|αi)p(αi) and

p(αi) = N−1
α . H̊owever, our conclusions are unaffected if we instead take a input distribution that is

unimodal or bimodal (Fig. S7). We take Nα > 30, for which I [α,m] converges to within 1% of its large-Nα
limit (Fig. S8).
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1.3 Spatial simulations

The diffusion and reactions of M X molecules and N Y molecules are simulated on a two-dimensional square
lattice of side length λ using a fixed-time-step integration scheme. During each step of duration δt, each
particle is moved to a random neighboring lattice site with probability pD = (D/`2)δt, where D is the
diffusion constant, and ` is the lattice spacing. Molecules have steric interactions on the lattice, such that
only one molecule can be present at each lattice site at any time. Attempted moves to an occupied site are
rejected, with the particle remaining at its original position. If a molecule in the X∗ state is adjacent to a
molecule in the Y state, the latter is converted to the Y ∗ state with probability pr = γ(βλ2/M)δt. To make
π partitions, linear diffusion barriers are placed at iλ/

√
π in each direction, where i ∈ {0, 1, . . . ,√π − 1}. A

diffusion step which crosses such a barrier is accepted with probability reduced by a factor phop. The time
step δt is chosen sufficiently small that no probability exceeds one.

2 Solution of the master equation by spectral expansion

This section describes the solution via the method of spectral expansion, or the ‘spectral method’, of the
CME introduced in the main text. The spectral method has been used fruitfully in the context of gene
regulation to solve CMEs describing cascades [1], bursts [2], and oscillations [4], and a pedagogical treatment
is available in [5]. Here we apply the spectral method to coupled reversible switching.

From Eqns. 1-2 of the main text, the stochastic dynamics of the system under study are given by the CME

ṗmn = − [Lm(α,M) + γLn(βm, N)] pmn, (1)

where both operators Lm and Ln have the form

Lm(α,M) = α
[
1− E−1

m

]
(M −m) +

[
1− E+1

m

]
m, (2)

with Eimf(m) = f(m+ i) defining the step operator. The CME describes the evolution of the probability of
having m X proteins in the active state and n Y proteins in the active state, with βm the coupling function
by which X drives the activation of Y.

2.1 The moments do not close

We first demonstrate that direct computation of the moments from the CME is not possible because the
moments do not close. The reason is that a nonlinearity is present in the first term of Eqn. 2 in the form of
the factor βmn. As a result, the first moment depends on a higher moment, which in turn depends on an
even higher moment, and so on.

To see explicitly that the moments do not close, we consider computing the dynamics of the first moment of
the driven species, the mean 〈n〉, by summing the CME over m and n against n. We obtain

1

γ
∂t〈n〉 = −〈n〉+N〈βm〉 − 〈βmn〉, (3)

where averages are taken over pmn. We see that indeed the final term carries the nonlinearity. Even for the
simplest coupling function, i.e. linear coupling βm = cm, one finds a hierarchy of moment dependencies that
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does not close:

∂t〈n〉 = −γ〈n〉+ γcN〈m〉 − γc〈mn〉, (4)

∂t〈mn〉 = αM〈n〉 − (α+ γ + 1)〈mn〉+ γcN〈m2〉 − γc〈m2n〉, (5)

∂t〈m2n〉 = . . . (6)

That is, the dynamics of 〈n〉 depend on 〈mn〉, whose dynamics depend on 〈m2n〉, and so on.

The fact that the moments cannot be computed—indeed, not even the mean output 〈n〉—makes it particu-
larly important to actually solve the CME in order to learn about the statistical properties of this system.

2.2 The spectrum of the switch operator

The CME is a linear equation. Even when the rates are nonlinear functions of the molecule numbers, the
CME is still linear in its degree of freedom, the joint probability. The most straightforward way to solve a
linear equation is to write its solution as an expansion in the eigenfunctions of the linear operator. Although it
is difficult to derive the eigenfunctions of the coupled operator Lm(α,M)+γLn(βm, N), it is straightforward
to derive the eigenfunctions of the uncoupled operator Lm(α,M), which we call the switch operator. Indeed,
we will see that expanding the joint probability in eigenfunctions of the uncoupled operator greatly simplifies
the form of the CME, yielding an exact solution in terms of matrix algebra.

The switch operator governs the CME for the first species X ; explicitly,

ṗm = −Lpm = α[M − (m− 1)]pm−1 + (m+ 1)pm+1 − [α(M −m) +m]pm, (7)

where for notational simplicity we have taken Lm(α,M)→ L. Its eigenvalue relation is written

Lφjm = λjφ
j
m, (8)

for eigenvalues λj and eigenvectors φjm.

2.2.1 Eigenvalues

The matrix form of the operator L can be read directly from Eqn. 7:

L =



Mα −1
−Mα (M − 1)α+ 1 −2

−(M − 1)α (M − 2)α+ 2 −3
. . .

. . .
. . .

−3α 2α+ (M − 2) −(M − 1)
−2α α+ (M − 1) −M

−α M


. (9)

The tridiagonal structure follows from the fact that molecule numbers only increase or decrease by one
at a time. Practically speaking, the eigenvalues can be obtained using the fact that the determinant of a
tridiagonal matrix can be computed recursively. Performing the computation for M = 0, 1, 2, . . . reveals the
pattern

λj = (α+ 1)j, j ∈ {0, 1, 2, . . . ,M}. (10)

However, Eqn. 10 can be derived more rigorously by making use of a generating function. We present
this derivation next, since the generating function formalism will also prove quite useful in deriving the
eigenvectors and solving the CME.
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The generating function is an expansion in any complete basis for which the probability distribution provides
the expansion coefficients [6]. Choosing as our basis the set of polynomials in some continuous variable x,
the generating function is defined

G(x) =
M∑
m=0

pmx
m. (11)

The probability distribution is recovered via the inverse transform

pm =
1

m!
∂mx [G(x)]x=0. (12)

A key utility of the generating function is turning the CME, which is a set of ordinary differential equations
(ODEs), into a single partial differential equation. Indeed, summing Eqn. 7 against xm yields

Ġ = −(x− 1)[(αx+ 1)∂x − αM ]G, (13)

where the appearances of x and ∂x arise from the shifts m−1 and m+ 1, respectively. Eqn. 13 directly gives
the form of the operator in x space: L = (x − 1)[(αx + 1)∂x − αM ]. The eigenfunctions are then obtained
from the relation Lφj(x) = λjφ

j(x) by separating variables and integrating:

φj(x) = (α+ 1)−M (x− 1)λj/(α+1)(αx+ 1)M−λj/(α+1). (14)

Here, the constant factor (α + 1)−M is determined by application of the normalization condition G(1) = 1
to the steady state solution, which is obtained by setting λj = 0:

G(x) =

(
αx+ 1

α+ 1

)M
. (15)

We will solve Eqn. 13 in two ways: by the method of characteristics and by expansion in the eigenfunctions;
together these solutions will reveal the eigenvalues.

First, the method of characteristics [7] posits that the dependence of G on x and t occurs via some parametric
variable s, i.e. G(x, t) = G[x(s), t(s)]. The chain rule then gives dG/ds = (∂G/∂x)(dx/ds)+(∂G/∂t)(dt/ds),
which when compared term by term with Eqn. 13 yields three ordinary differential equations:

dt

ds
= 1,

dx

ds
= (x− 1)(αx+ 1),

dG

ds
= αM(x− 1). (16)

The first identifies s = t, with which the second is solved by

z =
x− 1

αx+ 1
e−(α+1)t, (17)

where z is a constant of integration. The crux of the method is that Eqn. 17 defines a characteristic curve
on which G must depend, i.e. G(x, t) = f [z(x, t)]g(x, t), where f and g are unknown functions, and z has
been promoted to a characteristic function of x and t. The function g is identified by realizing that steady
state is reached as t → ∞, for which f(z) → f(0) no longer depends on x or t. Therefore, g must be the
steady state function given in Eqn. 15:

G(x, t) =

(
αx+ 1

α+ 1

)M
f(z). (18)

Although we still do not know f , we may Taylor expand it around the point z = 0, yielding

G(x, t) =

(
αx+ 1

α+ 1

)M ∞∑
j=0

cjz
j =

(
αx+ 1

α+ 1

)M ∞∑
j=0

cj

(
x− 1

αx+ 1

)j
e−(α+1)jt, (19)

where cj ≡ ∂jz [f(z)]z=0/j!.
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Second, because Eqn. 13 is linear, we may also write down its solution as an expansion in the eigenfunctions
of its linear operator:

G(x, t) =
∑
j

Cj(t)φ
j(x). (20)

Under the assumption that the eigenfunctions are orthogonal (which will be shown in the next section),
inserting Eqn. 20 into Eqn. 13 yields an independent ODE for each Cj , Ċj = −λjCj , which is solved by
Cj(t) = cje

−λjt for initial conditions cj . Inserting this functional form and that for φj(t) (Eqn. 14) into Eqn.
20 yields

G(x, t) =

(
αx+ 1

α+ 1

)M∑
j

cj

(
x− 1

αx+ 1

)λj/(α+1)

e−λjt. (21)

Comparison of Eqns. 19 and 21 reveals both the expression for the eigenvalues, λj = (α + 1)j, and a limit
on their domain, the nonnegative integers j ∈ {0, 1, 2, . . . ,∞}. Of course, the domain can be a subset of
the nonnegative integers; then some cj in Eqn. 21 would be zero. Indeed, since L is a finite matrix of size
M + 1 by M + 1 (Eqn. 9), it is spanned by M + 1 linearly independent eigenvectors, meaning we expect only
M + 1 eigenvalues. In fact, the only set of M + 1 nonnegative integers that satisfies the requirement that
the trace of L,

∑M
m=0[(M −m)α+m] = (α+ 1)M(M + 1)/2, equals the sum of the eigenvalues,

∑
j(α+ 1)j,

is j ∈ {0, 1, 2, . . . ,M}. Thus, we arrive at the result

λj = (α+ 1)j, j ∈ {0, 1, 2, . . . ,M}, (22)

as proposed by inspection in Eqn. 10.

2.2.2 State space notation

The linear algebraic manipulations we have done thus far can be cast in the more abstract notation of state
spaces, commonly used in quantum mechanics [8]. We will find this notation useful in later sections, for
example in transforming between the molecule number basis and the eigenbasis. Specifically, we introduce
a state |p〉 that can be projected into 〈m| space to give the probability distribution, or into 〈x| space to give
the generating function:

〈m|p〉 = pm, 〈x|p〉 = G(x). (23)

In the same way, the jth eigenstate |j〉 is projected into 〈m| space to give the jth eigenvector, or into 〈x|
space to give the jth eigenfunction:

〈m|j〉 = φjm, 〈x|j〉 = φj(x). (24)

This notation offers new insight into our definition of the generating function. For example, Eqn. 11 can
now be written

〈x|p〉 =
M∑
m=0

〈x|m〉〈m|p〉, (25)

where we have recognized
〈x|m〉 = xm (26)

as the projection of the state |m〉 into 〈x| space. Eqn. 25 has a clear interpretation: we have inserted a
complete set of |m〉 states. Similarly, Eqn. 12 can now be written

〈m|p〉 =

∮
d̄x

G(x)

xm+1
=

∮
d̄x〈m|x〉〈x|p〉. (27)

In the first step, we have rewritten Eqn. 12 using Cauchy’s theorem, where d̄x ≡ dx/2πi, and the contour
surrounds the pole at x = 0. In the second step, we have recognized

〈m|x〉 =
1

xm+1
(28)
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as the conjugate to 〈x|m〉. Eqn. 27 has the clear interpretation of inserting a complete set of |x〉 states, under
an inner product defined by the complex integration. The choice of inner product and of conjugate state
are made such that orthonormality is preserved, a fact which we may confirm by again employing Cauchy’s
theorem:

〈m|m′〉 =

∮
d̄x〈m|x〉〈x|m′〉 =

∮
d̄x

xm
′

xm+1
=

1

m!
∂mx

[
xm

′
]
x=0

θ(m > 0) = δmm′ . (29)

Finally, the dynamics in Eqn. 13 can be written in state space as

|ṗ〉 = −L̂|p〉 = −(â+ − 1)[(αâ+ + 1)â− − αM ]|p〉, (30)

where we have defined the operators â+ and â− whose projections in x space are 〈x|â+ = x and 〈x|â− = ∂x.
These are analogous to the raising and lowering operators in the well known treatment of the quantum
harmonic oscillator. This operator formalism for the generating function was first developed in the 1970s;
for a review see [9].

2.2.3 Eigenvectors

The state space notation facilitates a derivation of the functional form of the eigenvectors:

φjm = 〈m|j〉 =

∮
d̄x〈m|x〉〈x|j〉 =

∮
d̄x

1

xm+1

(x− 1)j(αx+ 1)M−j

(α+ 1)M
. (31)

Here we have inserted the eigenfunctions

φj(x) = 〈x|j〉 =
(x− 1)j(αx+ 1)M−j

(α+ 1)M
(32)

from Eqn. 14, with eigenvalues given by Eqn. 22. We use Cauchy’s theorem to perform the integration and
recognize that derivatives of a product follow a binomial expansion:

φjm =
1

(α+ 1)M
1

m!
∂mx
[
(αx+ 1)M−j(x− 1)j

]
x=0

(33)

=
1

(α+ 1)M
1

m!

m∑
`=0

(
m

`

)
∂`x
[
(αx+ 1)M−j

]
x=0

∂m−`x

[
(x− 1)j

]
x=0

(34)

=
1

(α+ 1)M
1

m!

m∑
`=0

m!

(m− `)!`!

[
(M − j)!α`

(M − j − `)!θ(` ≤M − j)
] [

j!(−1)j−m+`

(j −m+ `)!
θ(m− ` ≤ j)

]
(35)

=
(−1)j−m

(α+ 1)M

∑
`∈Ω

(
M − j
`

)(
j

m− `

)
(−α)`. (36)

Here the domain Ω results from the derivatives and is defined by max(0,m− j) ≤ ` ≤ min(m,M − j). Eqn.
36 gives the expression for the eigenvectors. For j = 0 the expression reduces to the binomial distribution
in terms of the occupancy q = α/(α+ 1), as it must, since this is the steady state of the uncoupled process:

φ0
m =

(
M

m

)
αm

(α+ 1)M
=

(
M

m

)
qm(1− q)M−m. (37)

This function has one maximum, and in general the jth eigenvector has j+1 extrema, making the eigenvectors
qualitatively similar to Fourier modes or eigenfunctions of the quantum harmonic oscillator.

The switch operator L̂ is not Hermitian. A consequence is that its conjugate eigenvectors ψjm = 〈j|m〉
(row vectors) are not complex conjugates of its eigenvectors φjm = 〈m|j〉 (column vectors). Rather, they
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are distinct functions that must be constructed to obey an orthonormality relation in order to constitute a
complete basis. The orthonormality relation can be used to derive their form in x space, ψj(x) = 〈j|x〉:

δjj′ = 〈j|j′〉 =

∮
d̄x〈j|x〉〈x|j′〉 =

∮
d̄x ψj(x)

(x− 1)j
′
(αx+ 1)M−j

′

(α+ 1)M
=

∮
d̄z0 z

j′

0 fj(z0). (38)

Here we have defined z0 ≡ (x− 1)/(αx+ 1) and fj(z0) ≡ ψj(x)(αx+ 1)M+2/(α+ 1)M+1 in order to draw an

equivalence between Eqn. 38 and Eqn. 29, which then implies fj(z0) = 1/zj+1
0 = (αx+ 1)j+1/(x− 1)j+1, or

ψj(x) =
(α+ 1)M+1

(αx+ 1)M−j+1(x− 1)j+1
. (39)

Eqn. 39 gives the form of the conjugate eigenfunctions in x space, which can be used to derive the expression
for the conjugate eigenvectors as in Eqns. 31-36:

ψjm = 〈j|m〉 =

∮
d̄x〈j|x〉〈x|m〉 =

∮
d̄x

(α+ 1)M+1

(αx+ 1)M−j+1(x− 1)j+1
xm (40)

=
∑
`∈Ω

(
M − j + `

`

)(
m

j − `

)
(−α)`(α+ 1)j−`. (41)

Here Ω is defined by max(0, j −m) ≤ ` ≤ j. Eqn. 41 gives the expression for the conjugate eigenvectors.
They are jth order polynomials in m.

2.3 Expanding the coupled problem in uncoupled eigenfunctions

We now solve the CME by expanding the solution in the eigenfunctions of the uncoupled operator. This
procedure is most easily done in state space, in which the CME reads

|ṗ〉 = −[L̂x(α) + γL̂xy]|p〉 (42)

where

L̂x(α) = (â+
x − 1)[(αâ+

x + 1)â−x − αM ], (43)

L̂xy = (â+
y − 1)[(β̂xâ

+
y + 1)â−y − β̂xN ], (44)

as in Eqn. 30, and we have introduced the operator β̂x whose action on the state |m〉 yields the coupling

function, β̂x|m〉 = βm|m〉. The first step is to write the full operator as two uncoupled operators plus
a correction term. Introducing the constant β̄ to parameterize the second uncoupled operator, the CME
becomes

|ṗ〉 = −[L̂x(α) + γL̂y(β̄) + γΓ̂x∆̂y]|p〉 (45)

where we have explicitly denoted the fact that the correction term L̂xy−L̂y(β̄) factorizes into two operators
that act on each of the x and y sectors alone:

Γ̂x ≡ β̂x − β̄, (46)

∆̂y ≡ (â+
y − 1)(â+

y â
−
y −N). (47)

The second step is to expand the solution in the eigenfunctions of the two uncoupled operators. Introducing
k as the mode index for the eigenstates of L̂y(β̄), we write

|p〉 =
M∑
j=0

N∑
k=0

Gjk|j, k〉. (48)
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Inserting this form into the CME, projecting with the conjugate state 〈j′, k′|, and summing over j and k
yields the dynamics for the expansion coefficients Gjk:

Ġjk = −[(α+ 1)j + γ(β̄ + 1)k]Gjk − γ
M∑
j′=0

Γjj′
N∑
k′=0

∆kk′Gj′k′ . (49)

Here the first term is diagonal and reflects the actions of the uncoupled operators on their eigenstates. The
second term contains the corrections Γjj′ = 〈j|Γ̂x|j′〉 and ∆kk′ = 〈k|∆̂y|k′〉. The first correction is directly
evaluated by inserting a complete set of m states:

Γjj′ =
M∑
m=0

〈j|(β̂x − β̄)|m〉〈m|j′〉 =
M∑
m=0

〈j|m〉(βm − β̄)〈m|j′〉 (50)

=
M∑
m=0

ψjm(βm − β̄)φj
′

m. (51)

We see that Γjj′ is the simply the difference between the coupling function and the constant parameter,
rotated into eigenspace. Notably, for linear coupling, Γjj′ is tridiagonal (see Sec. 2.5). The second correction
is most easily evaluated by inserting a complete set of y states; the result, derived in Sec. 2.5, is

∆kk′ = kδkk′ − (N − k + 1)δk−1,k′ . (52)

We see that ∆kk′ is subdiagonal in k, which simplifies the dynamics of Gjk to

Ġjk = −
M∑
j=0

Λkjj′Gj′k + γ(N − k + 1)
M∑
j=0

Γjj′Gj′,k−1, (53)

where we define the matrix acting on the diagonal part as

Λkjj′ ≡ [(α+ 1)j + γ(β̄ + 1)k]δjj′ + γkΓjj′ . (54)

The subdiagonality allows one to write the steady state of Eqn. 53 as an iterative scheme, by which the kth
column of Gjk is computed from the (k − 1)th column:

~Gk = γ(N − k + 1)Λ−1
k Γ~Gk−1. (55)

The scheme is initialized with
~G0 = δj0 (56)

(see Sec. 2.5), and the joint distribution is recovered via

pmn =
M∑
j=0

N∑
k=0

Gjkφ
j
mφ

k
n, (57)

which is the projection of Eqn. 48 into 〈m,n| space.

Eqn. 57 constitutes an exact steady state solution to the CME, with Gjk computed iteratively via Eqns.
55 and 56, auxiliary matrices defined in Eqns. 51 and 54, and the eigenvectors given by Eqns. 36 and 41.
Importantly, the computational complexity of the solution has been dramatically reduced: rather than solving
the original CME (Eqn. 1), which requires inverting its operator of size (M + 1)(N + 1)× (M + 1)(N + 1),
Eqn. 55 makes clear that it is only necessary to invert N smaller matrices of size (M + 1)× (M + 1), i.e. the
matrices Λk for k ∈ {1, 2, . . . , N}.
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2.4 Exact expressions for moments

Now that we have an exact solution to the CME in terms of a spectral expansion, moments take an exact
form in terms of the expansion coefficients. We thus circumvent the problem of moment closure, instead
arriving at compact expressions that require only the inversion and multiplication of finite matrices via Eqn.
55.

Moments are most easily computed from the generating function, G(x, y). For example, the νth moment of
the output is

〈nν〉 = [(y∂y)
ν
G(x = 1, y)]y=1 . (58)

In terms of the expansion, the generating function is G(x, y) = 〈x, y|p〉 =
∑M
j=0

∑N
k=0Gjk〈x|j〉〈y|k〉, and

using the fact that 〈x = 1|j〉 = δj0 (Eqn. 32), we have

〈nν〉 =
N∑
k=0

G0k [(y∂y)
ν 〈y|k〉]y=1 . (59)

Inserting the expression for 〈y|k〉 (Eqn. 32) and defining w ≡ log y, we obtain

〈nν〉 =

N∑
k=0

G0k∂
ν
w

[
(ew − 1)k(β̄ew + 1)N−k

(β̄ + 1)N

]
w=0

. (60)

At this point we recall that β̄ is a constant we introduce to parameterize the expansion. The expression
for the moments therefore cannot depend on β̄: if we change β̄, the expression in brackets changes, but the
expansion coefficients G0k also change, such that Eqn. 60 evaluates to the same β̄-independent form. We
are therefore free to set β̄ to any value, and the choice β̄ = 0 makes the derivative easiest to evaluate. Thus
we have

〈nν〉 =
N∑
k=0

G0k∂
ν
w

[
(ew − 1)k

]
w=0

, (61)

where it is now understood that G0k is computed with β̄ = 0. Evaluating the derivative yields

〈nν〉 =

N∑
k=0

G0k

min(k,ν)∑
`=1

{
ν
`

}
k!

(k − `)!e
`w(ew − 1)k−`


w=0

(62)

=
N∑
k=0

G0k

min(k,ν)∑
`=1

{
ν
`

}
k!

(k − `)!δk` (63)

=

min(ν,N)∑
k=1

G0k

{
ν
k

}
k! (64)

in terms of the Stirling numbers of the second kind,{
ν
k

}
=

1

k!

k∑
`=0

(−1)k−`
(
k

`

)
`ν . (65)

For example, the first moment, second moment, and variance are

〈n〉 = G01, (66)

〈n2〉 = G01 + 2G02, (67)

σ2
n = 〈n2〉 − 〈n〉2 = G01 + 2G02 −G2

01. (68)

9



These are exact expressions for the moments in terms of the expansion coefficients G0k, which are obtained
by matrix inversion and multiplication via Eqn. 55, e.g. in Mathematica.

An informative special case is immediately revealed when N = 1, for which G02 does not exist, i.e. 〈n〉 = G01

and σ2
n = G01 −G2

01, or
σ2
n = 〈n〉(1− 〈n〉) (N = 1). (69)

Here there is only one output molecule. The relationship between its mean activation and the associated
noise must therefore obey the known result for a single binary switch, Eqn. 69.

2.5 Auxiliary calculations

Here we show that Γjj′ is tridiagonal for linear βm = cm:

Γjj′ = 〈j|Γ̂x|j′〉 (70)

= 〈j|(câ+
x â
−
x − β̄)|j′〉 (71)

= −β̄δjj′ + c

∮
d̄x〈j|x〉〈x|â+

x â
−
x |j′〉 (72)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x∂x〈x|j′〉 (73)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x∂x

(x− 1)j
′
(αx+ 1)M−j

′

(α+ 1)M
(74)

= −β̄δjj′ + c

∮
d̄x〈j|x〉 x

(α+ 1)M

[
j′(x− 1)j

′−1(αx+ 1)M−j
′

+(x− 1)j
′
(M − j′)(αx+ 1)M−j

′−1α
]

(75)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x(x− 1)j

′−1(αx+ 1)M−j
′−1

(α+ 1)M
[j′(αx+ 1) + (x− 1)(M − j′)α] (76)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉x(x− 1)j

′−1(αx+ 1)M−j
′−1

(α+ 1)M
{
j′(αx+ 1)2

+[α(M − j′) + j′](αx+ 1)(x− 1)

+α(M − j′)(x− 1)2
}

(77)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉

{
(x− 1)j

′−1(αx+ 1)M−j
′+1

(α+ 1)M
[j′]

+
(x− 1)j

′
(αx+ 1)M−j

′

(α+ 1)M
[α(M − j′) + j′]

+
(x− 1)j

′−1(αx+ 1)M−j
′+1

(α+ 1)M
[α(M − j′)]

}
(78)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉 {〈x|j′ − 1〉j′ + 〈x|j′〉 [α(M − j′) + j′] + 〈x|j′ + 1〉α(M − j′)} (79)

= −β̄δjj′ +
c

α+ 1
{〈j|j′ − 1〉j′ + 〈j|j′〉 [α(M − j′) + j′] + 〈j|j′ + 1〉α(M − j′)} (80)

=
cj′

α+ 1
δj,j′−1 +

{
c[α(M − j′) + j′]

α+ 1
− β̄

}
δjj′ +

cα(M − j′)
α+ 1

δj,j′+1. (81)

Eqn. 71 recognizes that β̂x = câ+
x â
−
x is the operator representation of βm (since â+â− is the number operator,

i.e. â+
x â
−
x |m〉 = m|m〉), and Eqn. 77 uses the algebraic fact that x[j′(αx+ 1) + (x− 1)(M − j′)α](α + 1) =

j′(αx+ 1)2 + [α(M − j′) + j′](αx+ 1)(x− 1) + α(M − j′)(x− 1)2, which is straightforward to verify.
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Here we derive Eqn. 52:

∆kk′ = 〈k|∆̂y|k′〉 (82)

= 〈k|(â+
y − 1)(â+

y â
−
y −N)|k′〉 (83)

=

∮
d̄y〈k|y〉〈y|(â+

y − 1)(â+
y â
−
y −N)|k′〉 (84)

=

∮
d̄y〈k|y〉(y − 1)(y∂y −N)〈y|k′〉 (85)

=

∮
d̄y〈k|y〉(y − 1)(y∂y −N)

(y − 1)k
′
(β̄y + 1)N−k

′

(β̄ + 1)N
(86)

=

∮
d̄y〈k|y〉 (y − 1)

(β̄ + 1)N

[
yk′(y − 1)k

′−1(β̄y + 1)N−k
′
+ y(y − 1)k

′
(N − k′)(β̄y + 1)N−k

′−1β̄

−N(y − 1)k
′
(β̄y + 1)N−k

′
]

(87)

=

∮
d̄y〈k|y〉 (y − 1)k

′
(β̄y + 1)N−k

′−1

(β̄ + 1)N
[
yk′(β̄y + 1) + y(y − 1)(N − k′)β̄

−N(y − 1)(β̄y + 1)
]

(88)

=

∮
d̄y〈k|y〉 (y − 1)k

′
(β̄y + 1)N−k

′−1

(β̄ + 1)N
[
k′(β̄y + 1)− (y − 1)(N − k′)

]
(89)

=

∮
d̄y〈k|y〉

[
k′

(y − 1)k
′
(β̄y + 1)N−k

′

(β̄ + 1)N
− (N − k′) (y − 1)k

′+1(β̄y + 1)N−(k′+1)

(β̄ + 1)N

]
(90)

=

∮
d̄y〈k|y〉 [k′〈y|k′〉 − (N − k′)〈y|k′ + 1〉] (91)

= k′〈k|k′〉 − (N − k′)〈k|k′ + 1〉 (92)

= k′δkk′ − (N − k′)δk,k′+1 (93)

= kδkk′ − (N − k + 1)δk−1,k′ . (94)

Here we derive Eqn. 56:

~G0 = Gj0 (95)

= 〈j, k = 0|p〉 (96)

=
M∑
m=0

N∑
n=0

〈j|m〉〈k = 0|n〉〈m,n|p〉 (97)

=
M∑
m=0

N∑
n=0

〈j|m〉pmn (98)

=
M∑
m=0

〈j|m〉pm (99)

=
M∑
m=0

〈j|m〉〈m|j = 0〉 (100)

= 〈j|j = 0〉 (101)

= δj0. (102)

Eqn. 98 uses Eqn. 41 to obtain 〈k = 0|n〉 = 1, and Eqn. 100 recognizes that pm is the steady state of the
uncoupled operator, pm = φ0

m = 〈m|j = 0〉.
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Figure S1: The effects of partitioning persist for Michaelis-Menten coupling. The coupling is described by

β
(i)
m = βmi/[mi + (V/π)K] = βmi/(mi + φM/π), where mi is the number of X∗ molecules in partition
i ∈ {1, . . . , π}, and φ ≡ KV/M is a constant. Here β = 20, φ = 1/2, and γ = 1.

A, B As in Fig. 2 of the main text, with M = N = 2, perfect partitioning linearizes the input-output relation
and reduces the noise, transmitting more information than the well-mixed system; further, allowing exchange
among partitions compresses the response and increases the noise compared to the perfectly partitioned
system, transmitting less information than the well-mixed system.

C, D As in Fig. 5 of the main text, an information-optimal partition size, here M/π∗ = N/π∗ ≈ 2, emerges
due to the trade-off between optimizing signaling reliability and avoiding unfavorable configurations.
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Figure S2: Reducing the number of input molecules linearizes the input-output response and increases the
noise in the output. Here π = 1, β = 20, and γ = 1.

A The output (the mean activity of N = 2 Y molecules) vs. the input (the mean activity of M X molecules)
for several values of M . As M is reduced the response becomes more linear, deviating more strongly from
the mean-field response 〈n〉/N = βq/(βq + 1). Symbols show 20 uniformly spaced values of q to highlight
the effect of saturation on the state space.

B The noise vs. the mean for the output, shown for the same values of M . As M is reduced the noise
increases for all values of the mean.
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Figure S3: The emergence of an optimal partition size is robust to parameter variations.

A, B Results from the minimal system, described by the chemical master equation, as in Fig. 5B of the main
text. The information-optimal partition number π∗ is plotted as a function of molecule number M = N
for various values of β (A) and γ (B). Linear fits provide estimates of the optimal partition size M/π∗, as
indicated in the legends. In A, γ = 1; in B, β = 20.

C, D Results from the lattice simulation, in which space is accounted for explicitly, as in Fig. 6C of the
main text. The information is plotted as a function of the partition size, directly revealing an optimum, for
various values of β (C) and γ (D). Parameters are as in Fig. 6C: M = N = 49, phop = 0.001, λ = 70, and
pD/pr = 1. In C, γ = 1; in D, β = 20.

As discussed in the main text, the optimum arises due to a tradeoff between two key effects of partitioning:
on the one hand, partitioning removes correlations in the states of Y molecules, reducing noise; on the other
hand, partitioning isolates molecules, reducing the maximal response. The first effect favors few molecules
per partition, while the second effect favors many molecules per partition.

As seen here in both the minimal system (A, B) and the simulated system (C, D), lowering β or γ increases
the optimal number of molecules per partition. This result has an intuitive explanation in terms of the above
tradeoff: lowering either β or γ slows the rate of switching from the Y to the Y ∗ state, with respect to the
timescale of X switching. As a result, Y molecules are less sensitive to individual fluctuations in the state
of X molecules. The states of the Y molecules therefore exhibit weaker correlations, which in turn weakens
the benefit that partitioning imparts in terms of the removal of these correlations. The opposing effect of
molecular isolation thus begins to dominate, pushing the optimum toward a larger number of molecules per
partition.
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Figure S4: The optimal partition size has only a weak dependence on the number of output molecules. The
information-optimal partition number π∗ is plotted as a function of the number of X molecules M and the
number of Y molecules N . The dependence of π∗ on N is weak, such that the partition size M/π∗ ≈ 3− 4
is roughly constant over the range of N values.
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Figure S5: The effects of partitioning are robust to extrinsic noise.

A Simulations are performed with extrinsic noise introduced to the input parameter α. To keep α ≥ 0, the
quantity z ≡ logα is described by the simple mean-reverting Ornstein-Uhlenbeck process dz = r(µ− z)dt+
η
√
rdtξ, where ξ is a Gaussian random variable with mean 0 and variance 1; this results in a log-normal

distribution for α. The quantity 1/r is the autocorrelation time, and the choices µ = log[ᾱ3/(ᾱ+ c)]/2 and
η =

√
2 log(1 + c/ᾱ) ensure that the mean of α is ᾱ and that the variance of α scales with the mean via

σ2
α = cᾱ.

B As the magnitude of the extrinsic noise (set by c) increases, the information I[ᾱ, n] decreases for all
partition sizes, while the presence of an information-optimal partition size persists.

Here M = N = 25, β = 20, γ = 1, phop = 0.001, the system is λ = 50 lattice spacings squared, the ratio of
diffusion to reaction propensities is pD/pr = 1, and r = 1 in units of the X∗ → X reaction rate (which sets
the timescale of switching). In A, ᾱ = c = 1 and time is scaled by 1/r. In B, when c = 0, the information
transmission is lower than that in Fig. 6C of the main text because M = N is lower.
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Figure S6: The effects of partitioning are robust to receptor dimerization. Two dimerization schemes are
simulated, which are paradigmatic for receptor tyrosine kinases, including EGF receptor [10]: A Dimerization
is receptor-mediated (left, inset), meaning two active receptors X∗ form a complex C, or B dimerization is
ligand-mediated (left, inset), meaning an active receptor X∗ and an inactive receptor X form a complex C.
The latter scheme admits a “dead-end” state at ligand saturation, when all receptors are ligand-bound and
no complexes can form, leading to a non-monotonic response curve (B, left), as observed e.g. for the Ret

receptor [11]. Both schemes are described by the reactions X
α−⇀↽−
1
X∗, C + Y

γβ−−→ C + Y ∗, and Y ∗
γ−→ Y ,

with dimer formation described by X∗ +X∗
χε−⇀↽−
χ
C in A, or X∗ +X

χε−⇀↽−
χ
C in B. Here M = N = 25, β = 20,

χ = γ = 1, the system is λ = 50 lattice spacings squared, and the ratio of diffusion to reaction propensities
is pD/pr = 1. In A, ε = 20; in B, ε = 5.

Left As in Fig. 6A of the main text, as the probability of crossing a diffusion barrier phop is decreased,
the maximal value of the mean response decreases. In A, the response also becomes more linear, but
to less of a degree than in Fig. 6A of the main text. Note that due to both finite diffusion and finite
molecule number, even the unpartitioned response (phop = 1) deviates from the mean-field response (black
solid line), which is given by 〈n〉/N = βf/(1 + βf), where f is the fraction of X molecules in the dimer

state; in A, f = εg2 with g ≡ 〈m〉/M = (
√

1 + 8εq2 − 1)/(4εq), while in B, f = εg(1 − g)/(2εg + 1) with

g ≡ 〈m〉/M = [
√

1 + 8εq(1− q)− 1]/[4ε(1− q)]. Here π = 25. Legends in middle panels apply to left panels
as well.

Middle As in Fig. 6B of the main text, as the probability of crossing a diffusion barrier phop is decreased,
the output noise decreases. Black dashed line shows the binomial noise limit σ2

n/N = (〈n〉/N)(1− 〈n〉/N).
In B, lines connecting data points are provided to reveal that, as there are two values of q that give the same
mean 〈n〉/N (left), the noise is higher for the smaller value of q. Here π = 25.

Right As in Fig. 6C of the main text, the tradeoff between reliable signaling (reduced noise) and efficient
signaling (maintaining a high maximal response) leads to an information-optimal partition size. Here phop =
0.001. Here, the information transmission is lower than that in Fig. 6C of the main text because M = N is
lower and additionally, in B, because of the non-monotonic mean response.
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Figure S7: The effects of partitioning are robust to the shape of the input distribution. As in Fig. 5 of the
main text, which takes a uniform input distribution p(q), an information-optimal partition size M/π∗ = N/π∗

persists with an input distribution that is A unimodal or B bimodal.
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Figure S8: Computation of the mutual information converges as the input is more finely discretized. The
relative error |I − I0| /I0, where I0 is the information at Nα = 100, is plotted against the number Nα of
values of α [uniformly spaced in q = α/(α + 1)] used in the computation. Five conditions are tested, as
indicated in the legend. It is seen that the relative error falls below ∼1% in all conditions for Nα & 30.
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