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Abstract: We experimentally demonstrate spatiotemporal focusing of
light on single nanocrystals embedded inside a strongly scattering medium.
Our approach is based on spatial wave front shaping of short pulses, using
second harmonic generation inside the target nanocrystals as the feedback
signal. We successfully develop a model both for the achieved pulse
duration as well as the observed enhancement of the feedback signal. The
approach enables exciting opportunities for studies of light propagation in
the presence of strong scattering as well as for applications in imaging,
micro- and nanomanipulation, coherent control and spectroscopy in com-
plex media.
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1. Introduction

Achieving optimal control of light propagation in any type of complex scattering medium is
highly desirable for applications such as in imaging, micro- and nanomanipulation, coherent
control and spectroscopy. However, in numerous systems of interest of current research, for
example in thick biological specimens, random multiple scattering is a major obstruction for
the performance of conventional optical techniques.

Recently, Vellekoop and Mosk demonstrated that random multiple light scattering can be ex-
ploited to increase rather than hamper the control of light propagation [1]. The approach, named
’wave front shaping’ (WFS) is based on spatial modulation of the complex amplitude of the
light incident on the medium. With an adaptive algorithm the optimal wave front is determined,
which matches the medium such that coupling of light to a desired output mode is maximized,
e.g. a focal spot behind the medium. In this way the scattering medium can be turned into a lens
to focus light for trapping nanoparticles or for high-resolution imaging as recent applications
have demonstrated [2, 3]. Requiring only an intensity measurement as feedback signal makes
the approach powerful and versatile, enabling focusing on fluorescent beads embedded inside
a complex medium [4] without the need for phase-sensitive measurement techniques.

For acoustic waves and for microwaves, related experiments have demonstrated broadband
focusing in complex scattering media using a time reversal mirror [5]. Based on this technique,
Lerosey et al. [6] focused electromagnetic waves onto a small antenna inside a dense assembly
of resonant scatterers with precision far below the wavelength of the radiation. However, for
optics, the realization of an optical time reversal mirror remains challenging, requiring both an
accurate broadband measurement and the synthesis of a complex electric field. The existing
optical analog, phase conjugation, is effectively limited to monochromatic light [7–9].
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Fig. 1. Schematic illustration of the experiment. (Ti:Sa) Ti:sapphire laser, (MI) Michelson-
type interferometer, (SLM) spatial light modulator, (NA) numerical aperture, (EMCCD)
electron-multiplying CCD camera.

While the initial optics experiments were performed with monochromatic light, WFS was
recently extended to the broadband regime. Spatial wave front shaping in combination with a
scattering medium allows both spatial and temporal control of the transmitted scattered light
using optical gating as feedback [10] or pulse compression through the medium using two-
photon fluorescence [11].

However, spatiotemporal focusing onto nanoparticles embedded inside a strongly scattering
medium has not been demonstrated yet. For this, nanoparticles with a nonlinear optical re-
sponse, such as two-photon fluorescence or second-harmonic generation [12], need to be em-
bedded inside the medium. Candidates for these probe particles are fluorescent dyes such as
are commonly used for two-photon microscopy or quantum dots [13]. Especially interesting is
second harmonic generation (SHG) in nanoparticles [14], and in nanocrystals from wide band-
gap materials with a high SHG efficiency in particular [15,16]. Providing a stable and coherent
signal, and flexibility for use in a wide spectral range, these class of particles recently gained
considerable attention as markers for novel microscopy techniques [17] and makes them ideal
probes for WFS experiments.

Here we experimentally demonstrate spatiotemporal focusing on single nanocrystals embed-
ded inside a strongly scattering medium. Our approach is based on wave front shaping of short
pulses, using second harmonic generation inside the target nanocrystals as feedback signal. We
develop a model both for the achieved pulse duration at the particle position as well as the ob-
served enhancement of the feedback signal which is in good agreement with the experiment.
Our approach has implications for applications in which for control of light propagation in com-
plex media is required and provides a powerful tool to study light propagation in the presence
of strong multiple scattering.

This paper is structured as follows. At first we describe the experiment in section 2. It is
followed by a detailed and extensive theory section 3 before we provide the experimental results
in section 4.

2. Experiment

The general idea of the experiment can be described as follows. The pulse front impinges on the
surface of a thick multiple scattering medium. The light reaching positions inside the medium
at depths larger than a few mean free paths has been multiply scattered such that the spatial
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structure of the incident beam is lost and temporally the pulses are elongated to random speckle
pulses. The goal is to partially reverse this effect and to focus the light spatiotemporally on a
single point in the medium at a single moment in time. For this, we apply spatial wave front
shaping, using second-harmonic active nanocrystals to deliver the feedback signal. The particles
act as a local probe of the light intensity, converting the present light from the fundamental
wavelength to the second-harmonic wavelength, which can be readily detected separately from
the fundamental light. Since the particle is a local probe, we can expect that the algorithm will
locally maximize the light intensity. The local second-harmonic generation not only acts as a
spatial filter, but is also biased towards shorter pulse durations, leading to additional temporal
focusing.

The experiment is illustrated in Fig. 1. The light from the Ti:sapphire laser (repetition rate
80MHz, output power 1.2W, center wavelength 841nm, bandwidth 19nm, pulse duration 67fs)
is sent through a Michelson-type interferometer. One interferometer arm is of fixed length,
the other has a variable delay (Newport XMS100). Subsequently the beam is expanded 6:1
(not shown) to fill the surface of a two-dimensional phase-only spatial light modulator (SLM,
Hamamatsu X10468). The SLM pixels are grouped into N independent segments each of which
induces a controllable phase shift. Two lenses project the SLM surface onto the back focal
plane of an air-immersion objective (numerical aperture (NA) 0.9, x100). The focal plane of
the objective is a conjugate plane of the SLM surface, with a total magnification of 1/300. The
sample is placed in the focal plane of the objective. The transmitted light through the sample
is collected by an oil-immersion objective (magnification 100x, NA 1.4). After filtering (short-
pass filter 675nm and bandpass filter 420nm), only the generated second harmonic is imaged by
an electron multiplying CCD camera (Andor DV885, frame rate 0.25−2Hz, total magnification
93.5/1). Optionally the laser light can be directly coupled into a Fourier transform spectrometer
instead of entering the setup (not shown).

The sample, depicted in the inlay of Fig. 1, consists of a disordered layer of silica beads
with a rough surface which covers sparsely distributed second-harmonic active nanocrystals on
a standard glass coverslip (thickness 0.17mm). The layer of silica spheres (diameter 400nm
to 500nm) has been fabricated by spray-coating a colloidal dispersion in ethanol, which af-
ter drying forms a rough surface with a layer thickness between L = 25 μm and L = 50 μm.
The mean free path of this medium (l = 3.5 μm) has been determined by measuring the en-
hanced backscattering cone. The second-harmonic active nanocrystals consist of barium ti-
tanate (BaTiO3) with a tetragonal crystal structure and an average diameter of 200nm. Pre-
pared using the method described in [18], about 90% of the nanocrystals are not clustered and
are well-separated from other particles, which we confirmed by imaging a sample of nanocrys-
tals without the scattering medium. During the application of the silica dispersion with the
spray-coating technique most of the barium titanate nanocrystals are detached from the glass
coverslip, but remain in the vicinity of the substrate interface within the first few layers of sil-
ica beads (rather than diffusing deep into the silica layer) such that they can be identified as
individual sources of second harmonic generation.

For every wave front shaping experiment presented in this paper we follow the following pro-
cedure. At first, we take the average image of a large number of images of random wave fronts
(with a segmentation of SLM into 768 segments), which serves as a reference measurement
for the obtained enhancement of the feedback signal. Then a flat phase pattern is applied to the
SLM, and we perform a spatially resolved second-harmonic auto-correlation measurement [19]
by recording images while the movable arm of the Michelson interferometer is scanned in dis-
crete steps. The step resolution of the delay stage (10nm) allows us to record the full interfer-
ometric auto-correlation trace. To speed up the data acquisition we measure only parts of this
trace, applying a two-step algorithm. After a large step (2.5 μm or 5 μm), the stage samples one
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optical cycle (841nm) in eight steps, from which the cycle-averaged intensity auto-correlation
is calculated. Then the wave front shaping algorithm is started. We use a sequential algorithm; it
addresses segment by segment one by one, scanning the phase from ϕ = 0 to ϕ = 2π in Nϕ = 8
steps. For each step we record the time-integrated second-harmonic radiation from a single
nanocrystal retrieved from the camera image as feedback signal. The phase value which maxi-
mizes the feedback signal is determined by fitting the measured behavior of the feedback signal
vs. phase with a cosine function. We perform several consecutive sequences over all segments
of the SLM, starting with a low segmentation of the SLM (48 segments) which is increased
twice after the first sequences (to 192 and 768 respectively), always starting the new sequence
with the phase pattern obtained from the previous one. After the algorithm has finished, another
auto-correlation measurement is performed.

3. Theory

3.1. Intensity-intensity auto-correlation of speckle pulses

Our experimental setup enables us to measure the second-harmonic autocorrelation AC(τ) [19]
spatially resolved at the particle position as a function of delay τ introduced in the Michelson
interferometer. For the discussion, we consider ensemble averaged intensity auto-correlation
(AC) with background, which are

〈AC(τ)〉=
∫

dt 〈I2(t)〉+2
∫

dt 〈I(t)I(t + τ)〉. (1)

where I(t) denotes the intensity at the fundamental frequency and the brackets denote the en-
semble average over all realizations of the scattering medium. For short pulses the observed
contrast ratio between the maximum and the background is AC(τ = 0) : AC(τ → ∞) =3:1, re-
gardless of the exact temporal shape of the intensity I(t).

Characteristic for the time-dependent average diffuse transmission 〈Id(t)〉 through a strongly
scattering disordered layer is an exponential decay with the diffuse decay time τd (or Thouless
time [20]) as characteristic time scale. It is approximately related to the thickness of the medium
by τd = L2/6D, where D is the diffusion constant [21]. An exact expression for the temporal
behaviour of 〈Id(t)〉 for the diffuse transmission through a slab is given in [22]. For a sin-
gle experimental realization, the transmitted intensity Id(t) is dominated by temporal speckle.
Characteristically for such a speckle pulse, it has a limited temporal coherence time τc, which
is given by the Fourier transform of its intensity spectrum. Therefore, the speckle pulses can
be described as a random sequence of short pulses, each approximately of the duration τc,
distributed randomly in a time window of the diffuse decay time of the medium τd.

The particular shape of the AC of a speckle pulse, observed after transmission through a
slab of turbid material, can be described as follows. The maximum of the AC for τ = 0 decays
on the time scale τc, since for larger delay times the intensities Id(t) and Id(t + τ) within a
speckle pulse are uncorrelated random variables given by the Gaussian statistics of the trans-
mission process. However, for thick scattering media with τd � τc, the average intensity 〈Id(t)〉
is approximately constant on timescales of τc. E.g. for τ > τc the value of the integral on the
right-hand side can be approximated by separating the product into 〈Id(t)〉〈Id(t+τ)〉. Therefore
the correlation term does not directly decay to the background level, but shows an intermediate
regime resulting from the incoherent part of the speckle pulse. Since for Gaussian statistics
〈Id(t)〉2 = 0.5〈Id(t)2〉, the coherent peak is separately visible on top of the diffuse peak with a
contrast ratio 3:2:1 over the background. Altogether, we can model the normalized AC of the
speckle pulses by

〈AC(τ)〉
〈AC(τ = 0)〉 = 1+

∫
dt 〈Id(t)〉〈Id(t + τ)〉∫

dt 〈Id(t)〉2 +

∫
dt I0(t) I0(t + τ)∫

dt (I0(t))2 . (2)
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The second term on the right-hand side of Eq. (2) is the normalized contribution of the average
diffuse transmission 〈Id(t)〉, the third term is the normalized contribution from the non-scattered
bandwidth limited short pulse I0(t) provided by the laser.

3.2. Enhancement of the time-integrated second harmonic intensity

3.2.1. Enhancement vs. number of segments

The wave front shaping algorithm maximizes the time-integrated second-harmonic intensity
generated at the particle position. In the following, we derive an expression for the average
enhancement of this feedback signal which is achieved after wave front shaping.

In the first step, we derive the enhancement expected from a hypothetical monochromatic
experiment with the second-harmonic intensity as feedback. The polarization at the second
harmonic frequency P2ω at the particle positioned at point b can be calculated by

P2ω = χ(2)E
2
b = χ(2)

N

∑
a=1

tabEa

N

∑
a′=1

ta′bEa′ . (3)

The complex transmission coefficients tab describe the propagation of the electric field E
from SLM segment a to the particle position b. Here, we have made a number of simplifications;
we neglect the polarization of the light, as well as the tensor character of the second-order
susceptibility χ(2) of the nanocrystals. Furthermore we assume that the volume speckle inside
the medium is larger than the particle size, and the particle radiates like a dipole at the second
harmonic frequency. The radiated second harmonic power can be calculated by

W2ω =
ck4V 2

12πε0
|P2ω |2, (4)

with the speed of light c, the particle volume V and the vacuum permittivity ε0. In a wavefront
shaping experiment, the electric field on each SLM segment a, Ea = Aaeϕa , is adapted with the
aim that all contributions are in phase at the particle position, e.g. ϕa = −arg(tab) for all seg-
ments a. In our experiment, the phase-only SLM does not significantly modify the amplitudes
Aa. As described above, we use a sequential algorithm for the WFS experiment; it addresses all
segments one by one, scanning the phase term ϕ from 0 to 2π in discrete steps. Given that the
segment of interest contributes the field E1eiϕ ≡ tabAaeiϕ at the point of interest, while the sum
of unmodified segments contributes E2 ≡ ∑N

a′,a′ 	=a ta′bEa′ , the second harmonic power during
the phase scan is given by

W2ω(ϕ) ∝ |E2
1 |2 + |E2

2 |2 +4|E1|2|E2|2 +ℜ
{

4E1E∗
2 |E1|2eiϕ}+ (5)

ℜ
{

2E2
1 (E

∗
2 )

2e2iϕ}+ℜ
{

4E1E∗
2 |E2|2eiϕ})

Typically |E2| � |E1| holds, such that the last term on the right hand side dominates the varying
terms, and the behavior of W2ω(φ) is well described by a cosine function with a constant offset.

By evaluating the right hand side of Eq. (3) , the ensemble averaged second harmonic power
can be calculated,

〈W2ω〉= 2N(N −1)〈|tab|2〉2 +N〈|tab|4〉. (6)

For simplicity, we dropped the constants from Eq. (3) and Eq. (4) and set the field amplitudes
to one.

The average resulting second harmonic intensity after WFS writes as

〈W2ω〉wfs = 〈W2ω〉 (7)

+N(N −1)〈|tab|2〉2
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+6N(N −1)(N −2)〈|tab|2〉〈|tab|〉2

+4N(N −1)〈|tab|3〉〈|tab|〉
+N(N −1)(N −2)(N −3)〈|tab|〉4.

Taking only the highest order terms in N into account, the observed enhancement is approxi-
mately given by

ηcw ≡ 〈W2ω〉wfs

〈W2ω〉 ≈ 0.5

( 〈|A|〉2

〈|A|2〉
)2( 〈|tab|〉2

〈|tab|2〉
)2

N2, (8)

where we reintroduced the distribution of the contributing field amplitudes A from each of the
N segments.

3.2.2. Enhancement for speckle pulses

In our experiment, the measured second-harmonic signal is not generated from a continuous
wave, but from speckle pulses at the particle position. Effectively the wave front shaping op-
timization affects the original speckle pulse only within a time window of duration of the co-
herence time τc around the point in time at which the optimized pulse is formed. Within this
temporal window, the enhancement is given by Eq. (8). At earlier or later moments, the speckle
pulse will be modified in a random fashion, but on average it will be unaffected by the opti-
mization.

Since this non-optimized part will always contribute to the time-integrated second-harmonic
intensity (i.e. energy), the enhancement of the energy ηpulsed will be lower compared to the
hypothetical continuous-wave case. We define the reduction factor cτ by

cτ ≡ ηpulsed

ηcw
. (9)

In a first approximation, we expect the enhancement to be lowered by the effective number
of independent temporal speckle grains within a speckle pulse, which is approximately given
by the ratio cτ ≈ τc/τd. As the diffuse decay time is proportional to the thickness squared (see
section 3.1), cτ approximately scales with L−2. However, the ratio τc/τd does not exactly reflect
the temporal distribution of the second harmonic intensity. For a known average intensity of the
fundamental light at the particle position〈I(t)〉we can calculate the correction factor cτ more
precisely. The average generated second harmonic intensity is consequently proportional to
〈I(t)〉2. The reduction factor cτ for the enhancement compared to the monochromatic case is
calculated from the ratio of the energy of the generated second harmonic in a time-window τc

around the time tmax of the maximum of 〈I(t)〉2 and the total second harmonic energy,

cτ =

∫ tmax+τc/2
tmax−τc/2 dt〈I(t)〉2

∫ +∞
−∞ dt〈I(t)〉2

. (10)

3.2.3. Susceptibility tensor

In our model we treat the nanocrystal as a single radiating dipole. For a detailed analysis,
the light polarization and the second-order susceptibility tensor needs to be considered. The
second-order polarization at the second harmonic frequency can be calculated by the matrix
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equation [15, 23]

P2ω =

⎡
⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤
⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

E2
cx

E2
cy

E2
cz

2EcyEcz

2EcxEcz

2EcxEcy

⎞
⎟⎟⎟⎟⎟⎟⎠
, (11)

where the Eci are the orthogonal components of the electric field along the three axis in the
crystal frame and the di j are the second-order susceptibilities of the bulk BaTiO3 crystal. The
considered values are d15 =−41 ·10−9esu, d31 =−43 ·10−9esu and d33 =−16 ·10−9esu [23].
Note that the second-harmonic response is independent of a rotation around the z-axis. The
position of the latter in the lab frame is sufficient to describe the second-harmonic response
of the nanocrystals, assuming that they are spherical. From Eq. (11) we can see that all com-
ponents of the vector on the right hand side of Eq. (11) with a non-zero second-harmonic re-
sponse (E2

cx,E2
cy,E2

cz,2EcyEcz,2EcxEcz) compete for optimization during the wave front shaping
optimization. We assume that the transmission coefficients connecting the SLM segments with
each of the crystal axis are independent.

For an illustrative purpose we first analytically analyze the case in which the algorithm opti-
mizes all contributions in the Ecx component. Assuming that the detection efficiency is equal for
the second harmonic radiation from all crystal axis, and that before optimization the ensemble
averaged fields on the three crystal axis 〈|Eci|〉 are equal, the average generated second harmonic
power is proportional to (2d2

31+d2
33+4d2

15). Since only the Ecx components, which are generat-
ing second harmonic proportional to α2

31, are enhanced (with a factor given by the formulas
above), the total enhancement is modified by the factor cα = d2

31/(2d2
31 + d2

33 + 4d2
15) ≈ 0.17.

We thereby assume that the optimized component is significantly larger than Ecz after optimiza-
tion, such that the cross-terms EcyEcz and EcxEcz can be neglected.

In order to obtain a correction factor close to our experimental situation, we performed nu-
merical simulations of the WFS experiment. For each run of the simulation, we generate a set of
random transmission coefficients connecting each of the SLM segments with the three orthogo-
nal field contributions at the crystal position, assuming that the average fields 〈|Eci|〉,{i= x,y,z}
are equal. To calculate the feedback signal, we first apply Eq. (11) to calculate the second-order
polarization in the crystal frame. Secondly, the polarization vector is calculated in the lab frame,
depending on the orientation of the nanocrystal. Finally, we calculate the second-harmonic in-
tensity as it is collected by a high-NA (NA = 1.4) objective corresponding to our experimental
parameters. We apply the sequential optimization algorithm, such as applied in our experiment.
As a result, we observe that the algorithm in generally optimizes both the Ecz and the Ecx

or Ecy component, with a ratio which varies slightly with crystal orientation. Averaged over
all crystal positions, we find that the enhancement of the feedback is modified by the factor
cα = 0.28±0.04 compared to the scalar model (Eq. (8)). Due to the large collection angle, the
light radiated from all crystal axis is approximately collected with equal efficiency. The depen-
dence of the factor cα on the crystal orientation is superseded by variations caused by random
variations of the transmission coefficients.

3.2.4. Correction for tight focus

In the introduction of our model we assumed nanocrystals which are much smaller than the
focal volume after the optimization. However, the focus is created in a high index medium (n
= 2.3) and the medium effectively acts as a lens with a large acceptance angle of about 90◦.
To a first approximation, the optimization will minimize the focal volume, since it leads to the
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highest peak intensity and consequently the highest efficiency for the SHG process. Therefore,
for a correct description of our experiment we have to consider that the focal volume after
WFS will be smaller than the particle volume, whereas before WFS the whole particle volume
contributes equally to the average feedback signal. However, the exact shape and polarization
state of the tight focus which is formed during a WFS experiment depends on the particle
size and shape, the crystal orientation and the specific realization of the photonic environment.
Modeling the exact shape of the optimal focus and consequently the generated second harmonic
signal in a barium titanate nanocrystal with a size beyond the electrostatic limit is far from
trivial, considering that ’simpler’ systems with centrosymmetric materials already require an
extensive theoretical treatment [24].

In the following we assess the problem in a simplified treatment. Similar to calculations by
van Putten et. al for a linear feedback [25], we calculate the correction factor of the enhancement
for second-harmonic generation by

cR ≡ 1
V

R∫

0

π∫

0

2π∫

0

I2ω(φ ,θ ,r)
I2ω,peak

r2sinθdrdφdθ , (12)

where V is the particle volume of the nanocrystal, and the fraction is the position-dependent
intensity I2ω(φ ,θ ,r) of the second harmonic radiation integrated over the three crystal axis,
normalized to its peak intensity I2ω,peak at the center of the focus. To assess the focal volume
quantitatively, we assume that the focus on the nanocrystal has the same profile as a focus cre-
ated with a high NA lens with and acceptance angle of 90◦. From [15] we can conclude that the
crystal orientation determines whether linearly or circularly polarized light is more efficient for
the SHG process. We assume that the WFS process always converges to the optimal polariza-
tion state. We calculate the field distribution of the fundamental radiation at the focus according
to [26]. Using the field distribution, we obtain I2ω(φ ,θ ,r) using the susceptibility tensor given
in Eq. (11). We perform this calculation for a sufficient number of polarization states between
linearly and circularly polarized light. We calculate cR, averaged over all orientations of the
crystal c-axis. For each angle we thereby consider only the respective polarization state which
maximizes the SHG process. We used the parameters of the particle radius R = 100nm, and the
refractive index n = 2.3. We find cR = 0.57±0.05. We observe that cR is approximately propor-
tional to the radius in the considered size regime. For the crystals used in our experiment, we
estimate a size polydispersity of 25%, which will result in equivalent variations of cR.

Note that the simplification of our approach in Eq. (12) is twofold. Firstly, photonic effects
from the spherical shape are neglected. Secondly, the second harmonic intensities within the
volume are integrated, and not the electric fields, neglecting interference between different
dipole radiating at the second harmonic frequency. We assume that both effects will affect
both the numerator of Eq. (12) (optimized focus) and the denominator (reference signal from
the average wave field) in the same fashion and therefore tend to level out. Given that the
correction factor calculated with our simplified model is rather moderate with 0.57 (compared
to the value 1 for a sphere smaller than the focal volume), we do not expect a drastic deviation
of the correction factor if these effect would be taken into account.

3.2.5. Noise

The presence of noise on the measurement of the feedback will reduce the observed enhance-
ment. For segments whose contribution to the feedback is on the order or below the noise level,
the correct phase value will not be found. Taking this effect into account, we extend Eq. (8) to

ηcw ≈ 0.5

( 〈|Aatab| · γ(|Aatab|,σa,Nϕ)〉2

〈|Aatab|2〉
)2

N2. (13)
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The function γ(|Atab|,σ ,Nϕ) is the correlation between the optimal phase φa = −arg(tab) and
the phase in the presence of noise φσ for a given noise level σa and the magnitude of the
contribution given by |Atab|.

In the following we describe how γ(|Atab|,σa,Nϕ) is calculated. The phase which is obtained
from the fit of the feedback signal with a cosine function (see sections 2 and 3.2.1) is equivalent
to the phase of the first non-zero frequency component of a discrete Nϕ -point Fourier transform
of the feedback scan. Component k of the Fourier transform is given by

FTk,a ≡∑
Nϕ
n=1{I2ω,a(ϕn)}e−i2π k

N n. (14)

If a single oscillation of a cosine signal with amplitude |Atab| is sampled with Nϕ steps,
the amplitude in the first non-zero frequency component of a discrete Fourier transform is
s = 1

2 Nϕ |Atab|. Gaussian white noise with a standard deviation σa results in a mean amplitude
in same component of n =

√π
4

√
Nϕ σa. However, the noise n has a random phase with respect

to the signal s, leading to the mentioned deviation from the optimal phase. The probability
density function of the phase deviation θ = φσ −φa is given by [27]

p(θ ;k) =
e−

1
2 k2

2π
+

kcos(θ)√
2π

e−
1
2 k2sin2θ Ψ(kcos(θ)) (15)

with k = s/n and

Ψ(x) =
1√
2π

x∫

−∞

dye−
1
2 y2

. (16)

Consequently the phase correlation can be calculated by

γ(|Atab|,σa,Nϕ) =

2π∫

0

dθ cos(θ) p(θ ;k(|Atab|,σa,Nϕ)). (17)

When both contributions are present, the ensemble averaged squared amplitude of the first non-
zero frequency Fourier component is written as

〈|FT1,a|2〉= 1
4

N2
ϕ〈|Aatab|2〉+Nϕ〈σ2

a 〉. (18)

Similarly, the second component squared, 〈|FT2,a|2〉, will be the sum of the contribution of
the noise, Nϕ〈σ2

a 〉, and, according to Eq. (5), a contribution proportional to 〈|Aatab|〉4. The
latter contribution, since it is amplified less by the other segments (see Eq. (5)), is expected to
be about a factor N2

s lower compared to the first term on the right hand side of Eq. (18) and
should therefore be negligible. Experimentally determined values 〈|FT2,a|2〉 can therefore be
used to calculate the noise level, with which 〈|Aatab|2〉 can be determined from Eq. (18) using
the experimental values 〈|FT1,a|2〉.

4. Results and discussion

4.1. Spatiotemporal focus on a single nanocrystal

Figure 2(a) depicts the experimentally observed average image of several nanocrystals at the
sample backside, which is the average of 200 images, each with a different randomly generated
illuminating phase pattern. A number of isolated sources of second harmonic radiation are
visible in the field of view. The spot sizes are larger than the nanocrystals themselves, which
we explain by scattering from neighboring silica particles.
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Fig. 2. Sample backside imaged at the second harmonic wavelength λ = 420nm. (a) Av-
erage image obtained from 200 images, each with a different randomly generated illumi-
nating phase pattern. Several nanocrystals are visible in the field of view. (b) Image after
wave front shaping. The feedback signal for the optimization was the average count rate in
a square of 1μmx1μm around the position of the selected particle, indicated by the dashed
square. Here, the feedback signal was enhanced by a factor of ηexp = 3.0 ·102.
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Fig. 3. Second harmonic auto-correlation (AC) measured on an individual nanocrystal at
the backside of the sample. The graphs show the mean count rate in a 1μmx1μm square
around particle position. In particular, the measurements for particle 5 are shown (see Table
1). (a) AC before wave front shaping. The data shows a 3:2:1 contrast ratio between the
quickly decaying correlation of the coherent part of the speckle pulse followed by a slower
decay of the incoherent part of the speckle pulse towards the background. The data is fitted
according to that model of Eq. (2). The only free parameter of the fit is the thickness of
the medium. (b) AC measured on nanocrystal at the backside of a slab of disordered silica
after wave front shaping. The FWHM of the fit based on the AC of a sech2 shaped pulse is
168fs, indicating a pulse duration of the fundamental pulse of 109fs at the particle position.
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Table 1. Summary of the results of six wave front shaping experiments, each with a different
particle visible in Fig. 2. The pulse duration τpulse is calculated from the Gaussian fit to the
AC curve after optimization. The experimentally observed enhancement ηexp is calculated
by the ratio of the average count rate in a 1μmx1μm square around the particle position
after and before optimization. For each particle we calculated the enhancement ηmodel of
the time-integrated SH according to our model, calculated by ηmodel = cτ cα crηcw. The
theoretical enhancement of the SH in a hypothetical continuous wave experiment ηcw, is
calculated based on the experimentally determined amplitude contribution. The factor cτ ,
which corrects the enhancement for speckle pulses, was calculated using Eq. (10), where
the sample thickness to model 〈I(t)〉is determined from the fits of the AC in Fig. 3(a). The
particles 1-5 were all located in close vicinity, where we assume a constant thickness and
an average value cτ = 0.12 was determined. Particle 6 was located on a different spot on
the sample, where we obtained cτ = 0.17. The factors cα = 0.28 and cR = 0.57 include the
polarization and the susceptibility tensor and the focal volume, respectively (see sections
3.2.3 and 3.2.4).

Part. # τpulse(fs) ηexp ηmodel ηcw

experiment

1 110 2.5 ·102 3.1 ·102 1.6 ·104

2 102 0.7 ·102 3.2 ·102 1.7 ·104

3 111 2.7 ·102 2.7 ·102 1.4 ·104

4 104 0.7 ·102 2.9 ·102 1.5 ·104

5 109 3.0 ·102 3.8 ·102 2.0 ·104

6 109 5.5 ·102 6.5 ·102 2.4 ·104

We performed the WFS experiment for five of the particles in the field of view and a sixth
particle at a different position on the sample (not shown). As feedback signal we use the average
count rate from a square of 1μmx1μm around the position of the selected particle. The size of
the feedback area was chosen to balance between the collection of the largest possible amount
of the scattered SHG signal and the increasing influence of camera noise with an increasing
feedback area. The feedback signal increases largely during the first three WFS sequences and
typically converges to its maximum value after the second sequence with the highest chosen
segmentation (N=768).

For all particles the integrated feedback signal was significantly increased (by a factor
ηexp = 0.7 ·102 to 5.5 ·102, see Table 1). The image after optimization for one of the particles
is shown in Fig. 2(b). We observed that for different nanocrystals the focus of the detection
objective had to be moved towards the scattering medium (estimated adjustment in the range
of up to a few μm by the manual adjuster) to obtain the smallest spot size on the camera af-
ter optimization. For different particles we observed spot sizes (FWHM of a two-dimensional
Gaussian fit) from 0.2 μm (close to the diffraction limit) to about 0.6 μm, where bigger spots
were typically more of an irregular shape rather than a homogeneous spot. These observations
reflect the distribution of the nanocrystals in the silica layer and the resulting scattering of the
SHG radiation by surrounding silica particles.

The AC measurements from the particle in Fig. 2(b) before and after WFS are shown in
Fig. 3. The behavior of the AC before WFS is fitted with the speckle AC model explained
above (see Eq. (2)). The AC fit function is calculated based on average time-resolved transmis-
sion 〈Id(t)〉 at the particle position according to [22] using the experimental parameters (mean
free path l = 3.5 μm, extrapolation length ratio at silica-air interface ze1 = 1.38 and ze2 =0.71
at the silica-glass interface, effective refractive index neff = 1.25, beam waist of illumination
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Fig. 4. Fourier analysis of the feedback signal as a function of phase ϕa per segment during
a sequence of the wave front shaping experiment. The graph on the left (a) shows the
squared amplitude of the first non-zero frequency Fourier component |FT1|2 calculated by
Eq. (14), the graph on the right (b) depicts the second component |FT2|2. The distributions
are used to determine the amplitude distribution of the contributing segments and the noise
level (see sections 3.2.5 and 4.2).

wI = 150nm and detector size wD = 100nm). Since the thickness of the sample varies be-
tween about 25− 50 μm, we use the thickness L as fit parameter. After WFS, the AC shows a
sharp peak, demonstrating that the light is focused as a short pulse. A contribution of the non-
optimized part of the pulse (see section 3.2.2), which could be expected as a small signature
next to the correlation peak of the focused part, is not visible due to a present higher noise level.
The measured AC can be fitted very well with the AC based on a sech2 pulse shape. We calcu-
late the pulse duration from the fit with the well-known deconvolution factor τpulse = 0.65τAC,
τAC being the FWHM of the fit. We have summarized the results obtained from all six particles
in Table 1. For all pulses, the pulse shape changed from speckle pulse before the optimization
to a single short pulse after WFS with a duration τpulse ranging between 102fs to 111fs.

4.2. Comparison of the measured and the modeled enhancement

In the following we compare the measured enhancement with the model introduced above. In
order to evaluate Eq. (13) and Eq. (10), we determine the amplitude distribution |Aatab| and the
average time-resolved transmission 〈Id(t)〉 from the experimental data.

In order to calculate ηcw from Eq. (13), we determine the amplitude distribution |Aatab|,
the noise σa and the phase correlation γ(|Atab|,σa,Nϕ) from the data following the consid-
erations of section 3.2.5. In particular, we analyze the recorded feedback values during the
WFS experiment, during a sequence after the algorithm already has converged. We calculate
the Fourier transform of the phase scan for each segment by Eq. (14) . The calculated compo-
nents |FT1,a|2and |FT2,a|2 on the SLM for particle 5 are shown in Fig. 4. The distribution of the
components |FT1,a|2 reflects the Gaussian spatial profile of the illuminating beam on the SLM
and the random transmission through the sample. The components |FT2,a|2 show a weak depen-
dence on the segment position, with slightly higher average values for the center segments of the
SLM. Furthermore, we find the phase values of FT1,a and FT2,a to be uncorrelated. Using Eq.
(18), we obtain 〈|Aatab|2〉 by fitting the values of |FT1,a|2 in Fig. 4(a) with a two-dimensional
Gaussian after subtracting the noise 〈σ2

a 〉, which itself was determined from a two-dimensional
Gaussian fit of |FT2,a|2. In order to calculate γ(|Atab|,σa,Nϕ), we numerically evaluate Eq. (17)
for each segment using the noise σa and the amplitude 〈|Aatab|〉 obtained from the fits. We suc-
cessfully tested our analysis on a simulated WFS experiment (vector model, monochromatic
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light). In the simulation the enhancement is correctly calculated with an accuracy of about 20%
for all noise levels as long as the convergence of the optimization is not spoiled by the noise.

It is noteworthy that the components |FT2,a|2 in Fig. 4(b) show a weak dependence on the
segment position, which can be caused by several effects. Firstly, cross-talk between pixels
of the SLM and diffraction effects for larger phase shifts between neighboring segments can
cause a noise term which depends on the intensity present on the segment. Secondly, non-linear
effects which are not considered in the above model might be present, such as two-photon
absorption in the disordered medium. For all cases, we assume that the linear transmission will
be affected by noise or a noise-like contribution of the same magnitude and therefore treat the
contributions |FT2,a|2 as noise term to analyze Eq. (18).

In order to evaluate the integral in Eq. (10) the speckle correlation time τc is calculated as the
half width at half maximum of the measured Fourier transformed laser spectrum. We model the
average time-resolved transmission 〈I(t)〉 at the particle position according to [22] as described
above, with the thickness L obtained from the fit to the AC measurements (Fig. 3(a)).

With the calculated amplitude enhancement ηcw, and the factors cτ , cα and cR, we calculate
the enhancement predicted by our model, ηmodel = cτcαcrηcw. For all particles, the calculated
values are listed in Table 1. For the particles 1, 3, 5 and 6 the modeled enhancement predicts
the experiment value within the accuracy of our model. For particles 2 and 4 it overestimates
the enhancement by a factor 4.6 and 4.1 respectively. An overestimation of this magnitude
occurs, if two or more particles are placed in direct vicinity, a case which is difficult to iden-
tify from the camera images. All particles would contribute to the average reference signal,
which would decrease the calculated enhancement accordingly. Furthermore, an overestima-
tion of the enhancement is not surprising considering the composition of the signal which is
being optimized. For a given experimental realization of the sample and the nanocrystal in
our experimental setup, the feedback signal is solely a function of the phase values set on the
SLM. However, next to a global maximum, for which we perform our calculations, the feed-
back function has a vast number of local maxima into which the algorithm will converge for a
given set of starting phase values. A specific example is the factor cτ which is calculated for the
ideal case, that the optimized pulse is formed exactly at the moment in time where the average
time-resolved transmission has its maximum. However, in the experiment the point in time at
which the optimized pulse is formed will most likely not coincide with the maximum, leading
to a lower observed enhancement. Applying different algorithms for the wave front shaping
optimization, e.g. a genetic algorithm [28, 29], could be a way to increase the experimentally
achieved enhancement. We assume that a similar experiment with lower complexity, e.g. by use
of nanoparticles with a less complex second-order susceptibility (see section 3.2.3) or by using
quasi-monochromatic light, will produce enhancement values which are predicted even more
accurately by our model.

4.3. Pulse duration after WFS

Here we discuss the observed duration of the focused pulses after WFS. The pulse duration, de-
rived from the AC after optimization varies only slightly for different particles, between 102fs
to 111fs. Altogether the values are longer than the correlation time τc = 52fs calculated from
the measured spectrum of the laser. This observation resembles that made by the first study of
(far-field) spatiotemporal focusing through a turbid medium [10]. As shown in [10], the opti-
mization process leads to spectral narrowing. The spatial optimization with the SLM, which for
each segment induces a phase-shift independent of frequency, cannot optimize all frequencies
equally well. The optimization is biased towards those frequencies, which contribute higher to
the feedback signal, e.g. in average the frequencies in the center of the spectrum. In the ap-
proach of [10], linear time-resolved optical gating is applied to generated the feedback signal,
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and the resulting spectrum of the focused pulse can be quantitatively predicted exactly from the
known laser spectrum.

Following this consideration, we can give an upper limit for the final pulse duration for the
present experiment. Here the feedback signal is based on second-harmonic generation, of which
the intensity is proportional to the field amplitude at the fundamental frequency to the power of
four. Using this dependence as the weighting factor for the transmission of the original spectral
amplitude results in a calculated pulse duration of 122fs, assuming that the focused pulses are
bandwidth limited. However, this calculation simplifies the fact that spectral amplitude of the
second harmonic radiation depends both on the spectral amplitude and spectral phase function
of the fundamental radiation. The exact duration of the part of the speckle pulse which is op-
timized and respectively its spectral composition at the beginning and their dynamics during
the optimization procedure depends in a complex way on the starting conditions and the ex-
act transmission coefficients. From the experimental observations we conclude that the spectral
function will in general not converge to the calculated limit but remain slightly broader, re-
sulting in shorter pulse duration than the calculated value. Any pulse duration in between the
original bandwidth limit and the upper limit can be reached, with the most likely final pulse
durations in the observed range.

4.4. Peak-to-background ratio

For future applications of the presented experiment, it is useful to estimate the temporal peak-
to-background ratio of the focused pulses. The focused pulses are concentrated in a narrow time
window as discussed above, but will still be preceded or followed by a small diffuse speckle
contribution. For the generated second-harmonic pulse, the theoretical value for the ratio is
given by the calculated enhancement at a single point in time (Eq. (8)) . From the experimen-
tal enhancement values divided by the effective number of independent speckle grains cτ , we
calculate a peak-to-background ratio between 6 ·102 and 3.2 ·103 for the investigated particles.
The analog peak-to-background ratios for the fundamental intensity are approximately given
by the square root of these values.

5. Conclusions

In conclusion, we have demonstrated spatiotemporal focusing inside scattering media using
second-harmonic generation in nanocrystals as a feedback signal for wave front shaping. We
developed a model which predicts the observed increase of the feedback signal and the pulse
duration at the focus well. Our method provides a means to locally generate a short coherent
light pulse with a high signal to background ratio inside a complex scattering medium. This
provides an exciting tool for various applications of the control of light propagation in complex
and especially nonlinear media, and to study light propagation in the presence of strong multiple
scattering.
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