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Abstract: We demonstrate that interference of absorption pathways
can be used to control resonant coupling of light to guided modes in a
manner analogous to quantum coherent control or electronically induced
transparency. We illustrate the control of resonant coupling that interference
affords using a plasmonic test system where tuning the phase of a grating is
sufficient to vary the transfer of energy into the surface plasmon polariton
by a factor of over 106. We show that such a structure could function as
a one-way coupler, and present a simple explanation for the underlying
physics.
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1. Introduction

Interference phenomena are central throughout optical physics and can lead to exciting ef-
fects such as quantum coherent control [1], electromagnetically induced transmission [2], time-
reversed lasing [3], and the rich behavior of Fano-resonances [4]. In these roles interference can
be used in a variety of nanophotonic applications. A textbook example of the applications of
interference is the well known diffraction of light from periodic structures, a paradigmatic il-
lustration of the wave nature of light [5]. Surprisingly, the full significance of interference on
grating-mediated coupling has so far not been realized. In resonant coupling, gratings provide
the momentum necessary to couple light to guided modes such as those of dielectric waveg-
uides [6] or to surface plasmon polaritons (SPPs) [7]. That is, gratings can be used to match
the wavevectors of different modes, providing a channel which couples the different modes.
Consequently, traditional design of grating couplers focuses on their periodicity and amplitude,
ensuring that resonant coupling can occur and maximizing the transfer of energy. Consequently,
in describing the resulting flow of energy that can occur the role of the phase of the coupling
process is typically neglected, and only the amplitude of the resultant field is considered.

In this work we demonstrate the degree of control that is achievable over a resonant coupling
process simply by tuning the geometry of the coupler and thereby the phase of the coupling.
Using a plasmonic system as an example, we show that control over just two coupling chan-
nels connecting free-space and SPP modes is sufficient to tune the absorption of energy into
the plasmonic channel over 6 orders of magnitude, as numerically calculated using rigorous
electromagnetic theory. That is, we show that just by changing the relative phase between the
two components we can design a coupler that selectively excites SPPs from light that is either
incident with a positive or a negative angle, but not both.

We start, in Sec. 2, by considering plasmonic coupling in single component gratings and in
particular look for a signature of the role that phase may play in this coupling. In Sec. 3 we
turn to double component gratings, where two coupling pathways are simultaneously available,
and discuss the consequences of varying the relative phase between these two channels. We
place this work within the current framework, highlighting the new aspects with respect to the
literature, in Sec. 4, and we then conclude with a brief outlook in Sec. 5.
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2. Single component coupling

We begin by considering the grating-mediated resonant energy transfer from an initial mode,
with a wavevector component ki parallel to the surface, to a final mode, associated with k f , that
occurs when an integer multiple of the grating wavevector, G, spans their difference,

k f = ki +mG, (1)

where m is an integer and G = 2π/Λ for a grating with period Λ. We sketch out this process
in Fig. 1(a), showing two pathways for the coupling: for the top pathway two G transitions
are required to couple to the guided mode [m = 2 in Eq. (1)], while for the bottom pathway
only one 2G transition is needed (m = 1). Physically, the difference between the two cases
would be the period of the grating, which would have to double for the situation shown on top,
relative to the bottom. We explicitly note that if either, or both, of ki and k f represent a guided
mode such as a SPP then the coupling is resonant; in this case, even for an arbitrary grating
profile, only the component that fulfills Eq. (1) with the smallest possible m need be considered
to accurately model the coupling, even for relatively large amplitude gratings with coupling
efficiencies in excess of 80% [8]. This is in contrast to non-resonant phenomena such as grating
diffraction, where many scattering amplitudes can be of the same magnitude, and hence must
all be included in calculations [9–12].

Fig. 1. Grating mediated resonant coupling. A schematic of the process in (a) k-space and
(b) real-space, showing the coupling between free-space radiation and a SPP mode. (c) The
specular reflection as a function of angle of incidence for the lower pathway shown in (a),
showing first order plasmonic coupling (sharp dip) near -16.7 degrees. (d) The different
reflected orders as functions of the angle of incidence for the longer period grating (upper
pathway from (a)), which show second order plasmonic coupling at the same angle of
incidence.

To illustrate the consequences of having two coupling pathways we chose the simplest pos-
sible test system, an air-gold interface with a sinusoidal gold grating, where the guided mode
is a SPP with the wavevector ksp = k0

√
εm/(εm +1) [7]. Here, k0 = 2π/λ is the wavevector

of light in a vacuum and εm is the complex dielectric function of gold. We first consider the
case where only one coupling pathway is available, where λ = 1500 nm and Λ = 1200 nm or
2400 nm, corresponding to the lower and upper pathways of Fig. 1(a), respectively. Note that
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when Λ = 2400 nm we expect several diffracted orders, as well as the SPP to result from the
grating diffraction as depicted in Fig. 1(b).

We calculate the reflectivities, R(n) associated with the different reflected orders, using a co-
ordinate transformation method [9,10] and show the results in Figs. 1(c) and (d). The plasmonic
feature is clearly visible in both the specular reflection [R(0), (c) and top panel of (d)] and in
the 1-order diffraction [R(1), bottom of (d)] but, surprisingly, it appears in a different manner
the different reflectivities. In the example of the shorter period grating (Λ = 1200 nm) where
there are no diffracted orders, energy that would otherwise reflect is coupled to SPPs, and we
observe a dip in the reflectivity for angles near −16.7 degrees. A similar transfer of energy to
SPPs occurs for the longer period grating (Λ = 2400 nm), where a dip in R(1) indicates that
energy that would otherwise be diffracted is coupled into the SPP. But for the longer period
grating the specular reflection is enhanced by the presence of the SPP, as energy flows from
the SPP to this order and we observe a peak in R(0). This suggests that in the example of the
longer period grating we can view both the dip in R(1) and the peak in R(0) as a flow of energy
between the SPP and the reflected orders, but with a different phase, such that the interference
is constructive for R(0) and destructive for R(1).

We understand the phase relations exhibited by the spectra shown in Fig. 1(d) by considering
the situation depicted in Fig. 1(a). We can write any arbitrary periodic grating profile h(y) as

h(y) = ∑
p

hpGeipGy, (2)

and hence, in k-space, the amplitude of a grating component with wavevector pG will be rep-
resented by Fourier coefficients which we write as h±pG. To ‘see’ the plasmonic field, the
diffracted field must first excite the plasmonic field through interactions with the grating in a
+G transition, and then ‘return’ through a −G transition. And, as we have previously shown,
the effect of the SPP on the diffracted order will be proportional to hGh−G, which results in a π
phase shift [8]. Similarly, the specularly reflected field must gain, and then lose, 2G and hence
the effect will be proportional to h2

Gh2
−G and hence results in a 2π phase shift.

Likewise, it is important to consider the SPP field that is excited due to the presence of the
grating, when either of the two pathways shown in Fig. 1(a) are available. For the 2400 nm

grating the plasmonic coupling amplitude can be written as Γ(G)
± = ch±Gh±G, where c is a

constant that depends on the geometry and material properties of the system, and likewise for

the 1200 nm grating the coupling amplitude is Γ(2G)
± = c′h±2G [8]. However, in these cases the

transfer of energy to the SPP is proportional to
∣∣∣Γ(pG)

±
∣∣∣, where the + is for the situation depicted

in the figure, and the − is for its mirror image. That is, such resonant coupling is inherently
left-right symmetric and shifting the grating with respect to the incident beam has no effect on
the amplitude of the excited SPP.

3. Double harmonic gratings

The signature of interference in the reflectivities suggests that we look for a situation where
we can exploit the phase degree-of-freedom to control the resonant coupling; we do this by
considering a two component grating where we can control the relative phase between the
components. Consequently, we turn to the double harmonic grating with the profile

h(y) =
aG

2
cos(Gy+ϕG)+

a2G

2
cos(2Gy+ϕ2G) , (3)

where the amplitudes aG and a2G are related to the Fourier harmonics h±G and h±2G, respec-
tively, and ϕG,2G are the spatial phases of the two harmonics, which in turn control the phases
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of the plasmonic coupling coefficients Γ(G,2G). Hence, and in analogy with quantum coherent
control experiments [1], we expect the relative phase parameter

ϕ = ϕ2G −2ϕG, (4)

to control the overall plasmonic coupling. In what follows, we set ϕG = 0 and so ϕ = ϕ2G.
Figure 2(a) shows the reflection spectra of the different diffracted orders for a grating with

parameters aG = 90 nm, a2G = 5 nm, and ϕ = 0 degrees, where the amplitudes have been
carefully selected to match the coupling strength of the components. In this case, both transi-
tions from the incident radiation to the SPP shown in Fig. 1(a) are available simultaneously.
We emphasize that the two coupling channels – the G and the 2G pathways – excite the same

Fig. 2. Double harmonic plasmonic coupling. (a) Reflection spectra for the different
diffracted orders of a double harmonic grating. (b) The corresponding absorption spec-
trum for this grating, exhibiting a clear plasmonic absorption resonance near -16.7 degrees.
The peak absorption into the plasmonic mode, ΔA, is shown with respect to the ambient
background absorption of the grating (horizontal dashed line).

plasmonic mode, albeit with different phases, and hence we expect that they interfere. Indeed,
we observe a dispersive line-shape in the reflectivity, which is reminiscent of a Fano resonance,
and which clearly demonstrates that the phases of the excited SPPs play an important role in the
overall plasmonic coupling. The source of the interference is particularly obvious if we again
consider the energy flow into the SPP. When the two pathways are available, then the coupling

is proportional to
∣
∣∣Γ(G)

± +Γ(2G)
±

∣
∣∣
2
, which contains the interference term Γ(G)

± Γ(2G )∗
± + c.c.

The complex shape of the reflectivities brought about by the interference in the plasmonic
coupling make it difficult to identify how much energy couples to the SPP, and consequently
we look at the absorption of the grating coupler,

A = 1−∑
n

R(n), (5)

where n denotes the different diffracted orders. In this manner, the absorption includes both
the direct ohmic losses as well as the energy which is first coupled into the SPPs and therefore
does not re-radiate into free-space. Figure 2(b) shows this absorption and allows for the clear
separation of the two mechanisms: the direct ohmic losses appear as a relatively flat ambient
value of ∼ 0.019, while the plasmonic coupling appears as a sharp spectral bump near -16.7
degrees which peaks at a value ∼ 0.040. The difference between the two values, ΔA, represents
the portion of energy which couples to the SPPs. While the interference between the coupling
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channels can manifest as either an amplitude increase or decrease of the different diffracted
modes, the net absorption is always increased due to the plasmonic coupling.

The most dramatic effect that we observe is the degree to which the plasmonic coupling can
be controlled by simply tuning ϕ , as shown in Fig. 3. Even with this simple geometry, it is
possible to suppress the energy that flows into SPPs by a factor of over 106. For example, for

Fig. 3. Phase dependent resonant coupling. (a) Absorption spectra for negative incidence
angles for the cases of maximum (ϕ =−92◦) and minimum (ϕ = 88◦) coupling, corre-
sponding to points 1 and 4 in part (c). The inset shows that, in the region near the angle of
optimal plasmonic coupling, for ϕ = 88◦, only 5×10−8 of the energy couples to the SPP
mode. (b), The absorption spectra for both positive and negative angles of incidence for
ϕ = 88◦, corresponding to points 3 and 4 in part (c), showing that only light that is incident
with positive angles couples to SPPs. (c), The energy absorbed into the plasmonic mode as
a function of the relative phase of the grating components. (d), Schematic representations
of points 1-4 of (c), where points 1 and 4 corresponds to the situation shown in Fig. 1(a).
All situations include diffracted beams which are omitted for clarity.

negative angles of incidence near -16.7 degrees [Fig. 3(a)], when the 2G grating component
lags behind that of the G grating by almost a quarter period, we find that the SPPs coupled by
the two grating components are in phase and ΔA peaks above 0.04. Conversely, it is possible
to minimize ΔA to 5×10−8 when the 2G component leads by a quarter period and destructive
interference quenches the plasmonic coupling. Remarkably, the suppression of the coupling
occurs for all angles of incidence, peaking at values of ΔA < 6×10−8 as shown in the inset of
this figure.

We now investigate the left-right coupling symmetry of our grating structure by fixing ϕ at
88◦ and determining the absorption spectrum for both positive and negative angles of incidence.
As Fig. 3(b) shows, for this relative phase light that is incident at +16.7 degrees is maximally
coupled to SPPs, while almost no coupling occurs for light incident from the negative direction.
In essence, we break the coupling symmetry of this structure merely by properly setting the
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relative phase of the two grating components: when light is incident from the positive direction
the coupling G and 2G coupling channels constructively interfere, while for negative incidence
the two channels interfere destructively and no coupling occurs. This symmetry breaking is
shown in Fig. 3(c), where we map the phase-dependence of ΔA. As expected the structure, and
hence the coupling, is symmetric for ϕ = 0, ±180 degrees. The extreme cases, denoted by 1
through 4, are shown schematically in Fig. 3(d), and are found near ϕ =±90 degrees; here we
explicitly show when plasmonic coupling occurs (1, 3, dark state) and when it does not (2, 4,
perfect-diffractor), appearing as a sort of plasmonic diode. We attribute the 2 degree offsets with
respect to ±90 degrees to the inclusion of higher-order coupling processes in our calculations.

At a first glance, this sort of directional coupling might appear to violate reciprocity, which
essentially states that in a linear system one should be able to swap the source and the detector
and obtain the same optical response. Consider, for example, situations 3 and 4 of Fig. 3(d),
whose corresponding absorption spectra are shown in part (b) of this figure. Their absorption
spectra differ greatly, due to SPP excitation for light incidence from the left and not from the
right. Thus one might naively expect that the coefficients of reflection in the two situations
would also differ greatly and, since the two situations correspond to a swap of source and
detector, that this would violate reciprocity.

The calculations presented in Fig. 4 show that reciprocity is actually not violated, as expected
for our time independent, linear system [13]. Despite the fact that the coupling into the SPP is
roughly a million times stronger for positive incident angles (case 3) than for negative angles
(case 4), the specular reflection spectra of the two cases are identical, respecting reciprocity.
The ‘missing’ energy can be located in the diffracted orders. In Fig. 4(b), which shows the

Fig. 4. The (a) 0- and (b) -1-order reflection spectra for both positive and negative incidence
when the relative phase of the grating components is 88 degrees, corresponding to cases 3
and 4 of Fig. 3(c) and (d). Although the plasmonic coupling of the two cases differ by 6
orders of magnitude, their 0-order spectra are identical while only the -1-order spectra for
positive incidence shows a significant plasmonic feature.

1-order reflection, we observe a plasmonic feature for incidence near 16.7 degrees but not
near -16.7 degrees. Remarkably, the interference in the coupling processes essentially acts to
suppress energy transfer from the specular reflection to the SPP, while maximizing that from
the diffracted orders. Not only is it possible to tune the magnitude of the plasmonic coupling
using the relative phase (ϕ) of the two grating components, but varying this parameter also
allows us to change which of the diffracted orders provides the energy for the SPP.

Finally, we briefly turn to the importance of the height parameters, aG and a2G, of Eq. (3).
Generally, increasing the amplitude of a grating component leads to a corresponding increase
of the plasmonic coupling. Consequently, if we wish to effectively interfere the different cou-
pling channels, an increase or decrease of one component must be accounted for with a similar
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change of the other component. However, since the 2G channel is a first-order coupling mech-
anism, while the G coupling is a second-order event, there is no linear correspondence to the
relative changes of the components. Figure 5 shows the phase-dependent plasmonic absorp-
tion for different grating heights As expected, by increasing the a2G amplitude and suitably

Fig. 5. Dependence of the plasmonic absorption on the grating amplitudes. ΔA as a function
of phase for both positive and negative angles of incidence for a2G = 5, 10, 20 and 30 nm.
The corresponding aG amplitudes are 90, 126, 174, and 208nm.

matching aG we are able to fix the minimum coupling near zero while increasing the maximal
coupling. In fact, by increasing a2G from 5 to 30 nm (and aG from 90 to 208 nm) we triple the
plasmonic coupling, from 0.042 to 0.12. However, as this figure shows, the achievable gain in
plasmonic coupling saturates with increasing amplitudes. This is perhaps unexpected since sin-
gle component gratings can couple in excess of 0.9 of the energy to plasmonic modes. However,
we note that at the peak, the energy couples from the diffracted modes to the SPP and hence
the effectiveness of this coupler is limited by its diffraction efficiency. Further, we hypothesize
that for the large grating amplitudes, and in particular for a large aG component, higher order
processes can no longer be neglected. That is, with these large amplitudes it might not be pos-
sible to optimize both the minimum and maximum achievable coupling with only two grating
components, and third or fourth grating harmonics might be required.

4. Historical context

In order to highlight the new concepts in our work, we now attempt to place it within the context
of previous literature pertaining to grating diffraction in general, and to plasmonic coupling in
particular. This section is by no means a comprehensive review of this subject, and is rather
meant to highlight the new concept introduced in this work.

Our proposed structure might seem simply to constitute the plasmonic equivalent of a blazed
grating, where an asymmetric profile such as a tilted sinusoid or triangle is used to optimize
diffraction into a specific free-space order [14]. But while there are similarities between our ap-
proach to plasmonic coupling and blazed diffraction gratings – in both cases there are multiple
grating harmonics with an interplay that determines the coupling or diffraction efficiencies –
there are fundamental differences.

First, in our scenario we consider a resonant coupling process, and as such only the first
few grating harmonics are needed and, more importantly, only the propagating fields (in our
case, the incident, diffracted, and SPP) are considered [8]. In contrast, for blazed gratings,
the non-resonant diffraction into free-space modes necessitates the inclusion of fields at many
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(often hundreds of) wavevectors to accurately describe the interaction between the light and the
grating [9, 11].

More importantly, our protocol differs in a fundamental way from the practice of blazed
gratings in its use of the different grating harmonics. In our approach, the amplitudes of the
two harmonics have been carefully matched so that, individually, they couple the same amount
of energy to the SPPs. Consequently, the height of the G component is much larger than that
of the 2G component, for example in the cases shown in Figs. 2 and 3 aG = 90 nm and a2G =
5 nm. Hence, in our case we have two coupling pathways of equal amplitude interfering, which
affords us the extreme degree of control over the plasmonic coupling that has been demonstrated
above. In contrast, for blazed diffraction gratings, where there there is no resonant coupling,
the amplitudes of the first couple higher harmonics tend to be comparable to the fundamental
component. Here, the higher grating harmonics fine-tune the diffraction. Alternatively, a very
asymmetric profile can be used to, for example, maximize the h−G Fourier component with
respect to the hG component and in doing so diffract, or even couple [15] preferentially in one
direction. However, in this case the phases of the different components do not play a significant
role as they do not interfere.

Finally, there have been many studies on the influence of the grating profile on plasmonic
coupling, of which the works of Sambles and co-workers [16,17] are excellent examples. There,
as in our work, the grating profile is broken into its harmonics and equations reminiscent of
Eqs. (2) or (3) can be found. In fact, in many of these works the fundamental (G) grating com-
ponent couples directly to the SPP and hence the higher grating harmonics (2G, 3G, etc.), which
have smaller amplitudes, are the ones that provide higher order coupling pathways. Again, as
with the blazed gratings, the higher harmonics provide a way to fine-tune the plasmonic cou-
pling, in contrast to our work where the coupling pathways of the two harmonics interfere with
equal amplitudes. In essence, we introduce the concept of using the phase between the grat-
ing components to completely change the way a grating couples light to SPPs, rather than just
controlling the fine details.

We note that bi-periodic gratings have appeared in other branches of the literature, for exam-
ple as an element of a distributed feedback laser where the introduction of the second grating
component was shown to reduce radiative losses [18]. However, in this case the amplitudes of
both components are equal, and only one of the component resonantly couples to laser modes to
free-space radiation. The second gating component introduces a Bragg reflector to the structure,
which opens up a photonic bandgap [16] and hence reduces the radiative losses. Again, this is
fundamentally different than our approach where the two grating components offer coupling
pathways which interfere.

5. Conclusion and outlook

To conclude, we have demonstrated that unprecedented control of plasmonic coupling is pos-
sible by exploiting a previously neglected degree-of-freedom, the relative phase parameter of
different grating components, which allows for the interference of different coupling channels.
This is in stark contrast to previous advances in plasmonic coupling, where gratings are clev-
erly designed with profiles that are highly asymmetric [15] or quasi-periodic [19, 20] in order
to control single component plasmonic coupling. Even in instances where many such channels
are present, they operate independently from each other; for example, the different components
of a quasi-periodic array may simultaneously couple light of different frequencies to SPPs. In
our work what allows us to achieve coupling contrasts of over 106 is the interference between
the different channels. In principle, our design is only limited by the diffraction efficiency of
the grating structure, which routinely approaches 0.8 in commercial gratings. This suggests
that with optimization, grating couplers based on our paradigm could essentially act like pho-
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tonic diodes, where energy is only coupled to a specific channel for one direction of incidence.
Further, although for our demonstration we used a single bi-harmonic grating, similar control
over the plasmonic coupling should be achievable using more easily fabricated structures such
as one where the grating harmonics are layered. This control could be made even more pow-
erful if one could actively control the phase of one of the grating components, perhaps in a
linear [21] or nonlinear [22] all-optical manner, or electrically [18,23]. Another powerful alter-
native would be to combine our approach with all-optical coherent control in hybrid plasmonic
systems, where the structure is passive but an additional control pulse is introduced [24]. In
these cases is should be possible to both choose the directionality as well as tune the magnitude
of the coupling on ultrafast time scales.

Although we demonstrated that the coupling of free-space modes to SPPs can be controlled
through the interference of two coupling channels with gratings, this interference based ap-
proach is much more general. Essentially, one can control the coupling of any two modes in
this fashion as long as there is a resonant energy transfer, and hence this approach can be used
with any combination of waveguide modes, (long-range) plasmonic modes, and free-space ra-
diation. In this sense, this approach to geometric control of resonant coupling should find use in
diverse on-chip applications, from the coupling of light to SPPs as demonstrated herein, to cou-
pling different photonic crystal waveguide modes. Finally, it is worth noting that even though
we have demonstrated the potential of this approach to plasmonic coupling, we have in no way
tailored our structures for these applications. Rather, our focus has been the introduction of a
new photonic tool, and consequently we predict that substantial improvements can be made
during the design of any device that relies on our approach.
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