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Living cells often need to extract information from biochemical signals that are noisy. We study how
accurately cells can measure chemical concentrations with signaling networks that are linear. For
stationary signals of long duration, they can reach, but not beat, the Berg-Purcell limit, which relies on
uniformly averaging in time the fluctuations in the input signal. For short times or nonstationary signals,
however, they can beat the Berg-Purcell limit, by nonuniformly time averaging the input. We derive the
optimal weighting function for time averaging and use it to provide the fundamental limit of measuring
chemical concentrations with linear signaling networks.
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Cells measure concentrations of chemicals via receptors
on their surface. These measurements, however, are inevi-
tably corrupted by noise that arises from the stochastic
arrival of ligand molecules at the receptor by diffusion
and from the stochastic binding of the ligand to the recep-
tor. Biochemical networks that transmit the information on
the ligand concentration from the surface of the cell to its
interior often have to filter this noise extrinsic to the cell as
much as possible. However, how the capacity of signaling
networks to remove extrinsic noise depends on their de-
sign, and what the fundamental limits to this capacity are,
remain open questions.

Several studies have addressed the question of how
accurately the ligand concentration ¢ can be estimated
from the time trace of the number of ligand-bound recep-
tors, S(¢), over some integration time 7 [1-8]. Berg and
Purcell assumed that the estimate ¢ with least error is the
one that matches the observed time average of the stochas-
tic signal S(z), § = 1/T [T S(t)dt, giving all the signal
values equal weight in the average [1]. When S(7) is sta-
tionary, with mean ug, variance o3, and correlations that
decay exponentially over a time 7., the estimate ¢ has
variance (error) [3,9,10]:

ot o}/(dus/dc)’
(dps/de)* L (1 — Loplimd)-

o8] = )

More recently, Mora, Endres, and Wingreen showed
that, when 7 > 7., maximum likelihood estimation
produces an estimate that is better by 50%, since the
time average includes noise from stochastic ligand un-
binding, which provides no information about the ligand
concentration [5,8].

While these previous studies have considered how much
information about the ligand concentration is encoded in
receptor-occupancy time traces, they do not address the
question of how much information biochemical networks
can actually extract from these time traces. To extract all
the information, the biochemical networks downstream of
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the receptors would need to construct a maximum like-
lihood estimate [5,8]. However, it is not clear that typical
biochemical networks do this, nor is it clear that they time
average signals uniformly as in the Berg-Purcell estimate.
Moreover, the previous analyses [1-8] assumed an integra-
tion time 7, but what time scales in the processing network
actually set the integration time remains unclear. We there-
fore study how accurately biochemical networks can esti-
mate the ligand concentration from receptor time traces.

We focus on a simple but broad class of signaling
networks, linear networks [11]. Many networks respond
linearly over the range of fluctuations in their input (e.g.,
Ref. [12-14]) and a systematic study can be done analyti-
cally. Since the effects of noise intrinsic to the molecular
interactions inside cells have been well studied [14—17],
we focus on networks in the deterministic limit. This
enables us to understand the unique effects due to the noise
in the input signal.

Linear networks time average the input signal, but do not
generally give rise to uniformly weighted time averages.
We study how different signaling motifs sculpt the weight-
ing of the signal as a function of time, and how this affects
the precision of ligand sensing. While linear networks
cannot extract all of the information in the input signal
(i.e., the maximum likelihood estimate [5]), they can,
surprisingly, reach the Berg-Purcell limit and even exceed
it by 12%; this is because the optimal weighting is nonuni-
form, in contrast to the Berg-Purcell estimate. We show
that a simple network based on a feed-forward loop, a
common motif in biochemical networks [18], can reach
the bound for linear signaling networks, and we elucidate
the combination of time scales that sets the effective inte-
gration time. We conclude by studying how reliably bio-
chemical signaling networks can extract information from
nonstationary signals.

We consider a cell that responds after a finite time 7, to a
change in its environment which happens at time ¢ = 0.
This time T, is the observation time, which, as we discuss
below, provides an upper bound to the integration time.
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As before, the receptor time trace provides the signal to
the cell, S(¢). To compare to previous results, we initially
assume that the change in the environment, and therefore
the ligand concentration, is instantaneous, and that the
receptors immediately adjust. Moreover, we assume that
the fluctuations in S(¢) decay exponentially with correla-
tion time 7. [19,20]. We neglect stochasticity in the time
T,, and, as mentioned above, the intrinsic noise in the
processing network. The capacity of the cell to respond
is then limited by the information in the stationary input
S(r) from time O to T, [Fig. 1(a)].

As a measure of how much information the cell can
extract, we determine how accurately the ligand concen-
tration can be estimated from the molecular output X of the
processing network at the time 7', of the response, assum-
ing the response is made instantaneously based on X(T,).
As illustrated below in examples, the output of a linear
signaling network is X(T,) = [To f(T, — )S(¢)dr,
where the unnormalized weighting (response or transfer)
function f(Ar = T, — ') reflects how the processing net-
work at time T, weights the signal at an earlier time ¢/ [21].
To compare to previous results, we assume that either:
(1) f(T, — 1) = 0 for t <0, which corresponds to a sce-
nario where the response time 7, of the network is shorter
than T, or, equivalently, the network reaches steady state
by the time T, [Fig. 1(b)]; or (2) S(z) = 0 for r < 0, which
corresponds to a scenario in which the cell is initially in a
basal state [Fig. 1(c)]. In both cases, we then have X(T,) =
fg" f(T, — t")S(¢')dt'. When neither f(T, — t) nor S() are
zero for ¢+ <0, then previous states of the environment,
corresponding to ¢ < 0, influence the state of the signaling
network at time 7,. Such previous environmental states
can be a source of additional noise in X(7,), complicating
inference of the current environmental state, as well as a
source of information, helping inference, if environmental
transitions are correlated.

<X(t)>

O<X(t):

o T, o T,
FIG. 1. Responding to noisy environments. (a) The environ-
ment changes instantaneously at time ¢ = 0, and the number of
bound receptors, S(7), adjusts instantaneously. S(¢) is stationary
between time O and the time T,, when the cell responds. The
signaling network is either in a steady state by time T,, inde-
pendent of the initial condition (b), or in a basal state at time
t =0 (¢). X(r) denotes the number of X molecules at time 7.
The solid and dashed lines in panel (b) represent different initial
conditions.

We start by considering a simple linear signaling net-
work, a reversible one-level cascade, in which the output
molecule X is directly activated by the receptor with
rate constant k; and can be degraded with rate constant
k, (Fig. 2(a)). Then, deterministically, dX/dt=
kS — kpX. The response of this network at time 7|, is
X(T,) = [¢" f(T, = DSt + g(T,)X(0) with f(Ar) =
kyexp(—k,At) and g(T,) = exp(—k,T,) (Fig. 2(a)). We
neglect the term g(7,)X(0) for the reasons mentioned
above: either because T, is larger than the response time
7, = 1/k, in which case g(T,) = 0, or because the initial
state is ligand-free and X(0) = 0. We note that the weight-
ing function f(Ar) decays with increasing At, which means
that more weight is placed on more recent values of the
input signal. This is because the decay reaction is least
likely to have degraded the most recently produced X
molecules.

We now address the question how the departure from
uniform weighting affects the error in the estimate of the
concentration. Following the derivation of Eq. (1) [1], an
estimate of the ligand concentration from X(7T,) has
variance

U%[X(To)] = U?((TO)/(dlu'X(T(,)/dc)z: (2

where the mean wy(,) of X(T,) is a linear function of ¢
over the range of fluctuations in X(7,). Using X(T,) =
[te (T, — ¢')S(t")dr', we then arrive at [22]

oAX(T,)]
= a;[s] L " ﬁ) T, — 1), )T, — t)dnydty.
(3)

Here, o%[S] = 0%/(dug/dc)* is the error of an estimate
based on an instantaneous observation of the signal S(z).
The reduction in error, resulting from averaging the fluc-
tuations in the input signal over time, depends on the
normalized correlation function of the input fluctuations,
C(t), t,) = exp(—|t, — t;1/7.), and on the normalized
weighting function, f(Af) = f(Ar)/ fg" F(AY)dATY.
Figure 2(b) shows that the one-level reversible cascade
extracts less information from the input signal than a net-
work that averages the input uniformly over time. Only
when k;, goes to zero, and f(Ar) « exp(—k,At) = 1, does
the network, which now becomes an irreversible one-level
cascade, implement uniform time averaging and does it
extract the same amount of information. Intuitively,
degrading X destroys information. While degradation is
required to make a signaling network responsive to new
environments, this example shows that it may be useful to
make degradation as weak as possible or to physically
separate the receptors and deactivating enzymes (e.g., in
different domains on the membrane [23]), such that X is
deactivated only after the response has been made.
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FIG. 2. Extracting information from noisy input signals with linear signaling networks. (a),(c),(e),(g) The weighting functions
corresponding to different signaling networks are not uniform. (b),(d),(f),(h) The ability of a signaling network to measure ligand
concentration depends on its weighting function. The typical error (variance) in the estimate of ligand concentration is plotted as a
percentage increase over the error of an estimate based on uniform weighting, assumed in the Berg-Purcell limit [Eq. (1) with T = T ,].
(a) Reversible, one-level cascades selectively amplify late (r = T,) values of the signal, (b) leading to worse performance than the
uniform average. (c) Irreversible, N-level cascades amplify early (+ = 0) values of the signal, (d) leading to worse performance than
the uniform average. (e) The optimal weighting function, given by Eq. (4), averages the signal, selectively amplifying less correlated
values. The delta functions are truncated for illustration. (f) The optimal weighting function outperforms the uniform average.
(g) A signaling network consisting of two branches, which selectively amplify late (+ = T,) (left branch) and early (¢t = 0) (right
branch) values of the signal, approximates the optimal weighting function (k; = 4.4k3k4T,; ky = 20/T,; ks = 0.35ks; f independent
of ky,ks; kg > T, 1). (h) The network in (f) can outperform the uniform average.

Signaling networks typically consist of more than one
layer, which makes it possible to sculpt the weighting
function f(Arf). As an illustration, we first consider an
irreversible cascade consisting of N layers or species:
dl;/dt = kyl;—y, where i=1,...,N and I,=S.
Assuming X(0) = 0, X(T,) = fg" f(T, — 1)S(t)dt, where
the weighting function now behaves as f(Ar) = AN~
Such cascades place more weight on early values of the
input signal, which have had more time to propagate
through the network [Fig. 2(c)]. As a result, they under-
utilize (down-weight) the most recent information in the
signal, and indeed, these cascades perform worse than a
strict average of the input [Fig. 2(d)].

The above formalism can be generalized to arbitrarily
large linear signaling networks. Multilevel reversible cas-
cades have weighting functions that peak some finite time
in the past, balancing the down-weighting of the signal
from the distant past due to the reverse reactions, with the
down-weighting of the signal from the recent past resulting
from the multilevel character of the network [22]. More
generally, linear combinations of the weighting functions
for reversible and irreversible cascades can be achieved
with multiple cascades that are activated by the input in
parallel and which independently activate the same effec-
tor molecule, as we demonstrate below. Clearly, signaling
networks allow for very diverse weighting functions.

This raises the question whether there exists an optimal
weighting function f*(Ar) that minimizes the error in the

estimate of the ligand concentr_ation. To this end, we differ-
entiate Eq. (3) with respect to f using Lagrange multipliers
that constrain the integral of f to 1, to find the optimal
(normalized) weighting function:
- N 0(Ar) + 6(Ar—T,
f*(At)z(l—w*)T—wLw* (49 2( 0).

o

“

The first term places equal weight on all prior values of the
input, as assumed in previous studies [1-4,7]. The second
term, however, places greater weight on the first and last
observed values of the signal, which are the two signal
values that are the least correlated. Indeed, this is the
central result of this manuscript: the optimal weighting
function does not correspond to uniform weighting of
all signal values. How much weight is placed on the first
and last points is determined by w* = m, which

decreases from one to zero as the response time 7, over
the correlation time 7, increases.

The optimal weighting function can be implemented
using common network motifs. For example, the com-
monly observed feed-forward loop [18] in Fig. 2(g) con-
tains two branches which independently activate X. The
left branch, a one-level reversible cascade, amplifies later
values of the signal (¢t — T,); the right branch, a multilevel
irreversible cascade, amplifies earlier ( — 0) values of the
signal. Together, they produce a weighting function which
selectively amplifies less correlated values of the input
(Fig. 2(g) and 2(h)), outperforming the uniform average
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that could be obtained by reading out node I, directly.
This simple network illustrates how a spectrum of protein
lifetimes and cascade levels can be used to shape weighting
functions.

The optimal weighting function f* also provides the
fundamental limit on the ability of linear signaling net-
works to measure chemical concentrations:

o7lS]

XTI = e S5

&)

which is obtained by combining Egs. (3) and (4).
Equation (5) has a simple interpretation: a time series of
length T, contains an independent observation every time
period of the order of the correlation time, plus one
corresponding to the observation at ¢+ = 0. Equation (5)
is then the formula for the variance of the mean of
N =T,/(27.) + 1 independent, identically distributed
random variables.

The improvement of the optimal weighting function
over uniform weighting [Eq. (1)] is maximal when the
observation time is about three correlation times. The
maximum improvement over the sample average is 12%
[Fig. 2(f)]. While this improvement over the Berg-Purcell
estimate is modest, and smaller than the 50% improvement
that could in principle be obtained by maximum likelihood
[5,8], it does show, for the first time, that simple signaling
networks can indeed reach the Berg-Purcell limit, and even
exceed it.

Equally important, our analysis provides a clear per-
spective on the integration time. Clearly, T, the time on
which the cell must respond, provides an upper bound on
the integration time. Yet, the processing network weights
the input signal by f(T, — ), which may become zero for
t <T,. In this case, the effective integration time T is
limited by the range over which f(T, — t) is nonzero.
For example, the weighting function of the one-level re-
versible cascade becomes zero on the time scale k;l = Ty,
the lifetime of the output component. This can be (much)
smaller than 7', in which case T is limited by 7y: Tei ~
7x <T,. Essentially, degradation of the output erases
memory of the input. However, our study of multi-level
reversible cascades shows that in general the range over
which f(Ar) is non-zero can be longer than the lifetime
of the individual components. Additional intermediate
layers not only change the form of f(Az), but also
extend the range over which it is nonzero, increasing the
integration time over which the output remembers past
signals [22].

Values for the correlation time 7, of the input signal and
the observation time 7, vary widely across biological
systems. Ligand-receptor half-lives, a key determinant of
T., vary at least over more than an order of magnitude, i.e.
from milliseconds to an hour [6,24]. The cell-cycle time
provides an upper bound on 7, [25] (e.g., 45 min in E. coli
[25] and 100 min in yeast [26]), but signaling modules and

transcriptional responses can make decisions sooner.
Indeed, T, is not always significantly larger than 7., so
that the regime in which linear networks can beat the Berg-
Purcell estimate is biologically relevant. For example, both
the MAPK response to EGF stimulation [27,28] and the
NF-«B response to TNF stimulation [29] peak on the time
scale of ligand-receptor debinding (10 min [24] and 30 min
[30], respectively). Additionally, correlation times for gene
expression are of the order of the cell cycle time in both E.
coli and human cells [25,31], suggesting the finite 7, limit
is also important for scenarios in which intracellular pro-
teins act as receptors for intracellular signals [2].

Interestingly, when T, < 7., the equilibration time of
the signal must be taken into account, since the equilibra-
tion time is, according to the fluctuation-dissipation theo-
rem, given by the correlation time, at least when the change
in ¢ is small. Therefore, we end by studying how signaling
networks can extract information from nonstationary sig-
nals. We study an input signal generated by J = § with
S(0) = 0 and forward and reverse rates k,c and k.S,
respectively. This signal increases to its steady state value
on a time scale 7 = 1/k,, which also equals the steady-
state correlation time 7.. Extending the procedure in
Egs. (3) and (4), the minimal estimation error with a linear

oS

T{,/(27(,)+1nz£7]e’rﬂ/70)/2
[22]. This shows that less information can be extracted
from nonstationary signals than from stationary ones. To
avoid the detrimental effect of correlations, the optimal
weighting function places more weight on the initial and
final points, as for stationary signals. However, because
there is no information at t = 0, the amplification of early
time points is spread over time points ¢ < 7. (Fig. S2 [22]).
Additionally, the relative amplification of the Ilast
time point increases with decreasing T,. Indeed, when
T, < 7., no previous signal values are sufficiently uncor-
related with the most recent one, and almost all weight is
placed on the final time point S(T,).

We have studied the ability of linear signaling networks
to extract information from noisy input signals. While the
data processing inequality suggests that it is advantageous
to limit the number of nodes in a signaling network to
minimize the effect of intrinsic noise [14], here we show
that there can be a competing effect, in terms of informa-
tion processing, in favor of increasing the number of nodes:
better removal of extrinsic noise. Additional nodes make it
possible to sculpt the weighting function for averaging the
incoming signal, allowing signaling networks to reach and
even exceed the Berg-Purcell limit. Our predictions could
be tested experimentally in a controlled setting by using
in vitro or in vivo synthetic signaling networks [32]. Dual
reporter constructs can be used to isolate the effects of
extrinsic noise, studied in this Letter, from noise intrinsic
to the signaling machinery itself [33,34].
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signaling network is o3[X*(T,)] =
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