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CHAPTER1
Introduction

The central topic of this thesis concerns the interaction between sources of electromagnetic

radiation and complex multiple scattering media. Both of these two elements span a vast field

in the natural sciences themselves. Our treatment of the matter in this introductory chapter is

aimed at putting forward only the essential physics and background required to understand the

experiments and theory described in this thesis. First, the various mechanisms for generation

of electromagnetic radiation are described in Sec. 1.1. Second, the physics behind both single

and multiple scattering of waves is briefly reviewed in Sec. 1.2. In Sec. 1.3, random lasers and

infinite range correlations are introduced as two central research subjects that combine sources

and multiple scattering. The contents of this thesis and our contribution are then outlined in

Sec. 1.4.

1.1 Sources of electromagnetic radiation

Due to its importance in the everyday human perception of the world, light has inevitably

been studied and put to use since ancient times. The wave nature of light was put forward

by several natural philosophers of whom Christiaan Huygens (1629-1695) is generally ac-

credited the most. His Traité de la lumière provides a fascinating look onto the status of

optics during the early stages of the modern era [1]. By drawing an analogy with sound

waves, Huygens concludes that light must be a wave that propagates via the mediation of

tiny masses. In the original formulation of the famous principle named after him these tiny

masses, the ether, indeed feature prominently:

De sorte qu’il faut qu’autour de chaque particule il se fasse une onde dont cette

particule soit le centre [1] (So it arises that around each particle there is made

a wave of which that particle is the centre [2]).

This formulation has often been rephrased in terms of secondary sources instead of par-

ticles, although it would technically be more correct to view the “particles” as scatterers
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since no new light is generated. In fact, Huygens postulated that the generation of light

was the consequence of matter in rapid motion which, as we shall see shortly, is not far from

our modern day understanding of light sources. The intuitive concept of an ether remained

prevalent among scientists, but had finally to be refuted due to experimental results ob-

tained by Michelson and Morley at the end of the nineteenth century. Their experiments

indicated that the speed of light is constant thereby contradicting predicted anisotropies

from ether based theories.

However, the wave concept of light has remained as one of the foundations of modern

science and technology. The work of Faraday and Maxwell led to the discovery that light

is an electromagnetic wave whose characteristics are well described by solving the Maxwell

equations. These four equations describe how the electric field E and the magnetic field H

depend on the volume density of electric charge ρc, the polarization of a medium P, the

magnetization of a medium M, and the current density J [3]:

∇ ·E = − 1

ε0
∇ ·P+

ρc
ε0
, (1.1)

∇ ·H = −∇ ·M, (1.2)

∇×E = −µ0
∂H

∂t
− µ0

∂M

∂t
, (1.3)

∇×H = J+ ε0
∂E

∂t
+
∂P

∂t
. (1.4)

Here ε0 and µ0 are the permittivity and permeability of the vacuum. In this thesis only

nonmagnetic electrically neutral media are considered, therefore M = 0, ρc = 0, and

B = µ0H. By taking the curl of Eq. (1.3) and then inserting Eq. (1.4) on the right hand

side, the equation for electromagnetic waves is found

∇× (∇×E) +
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
− µ0

∂J

∂t
, (1.5)

−∇2E+
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
− µ0

∂J

∂t
. (1.6)

Where in the last step the vector identity ∇× (∇×V) ≡ ∇ (∇ ·V)−∇ · (∇V) was used

together with ∇ ·E = 0, and c = 1/
√
ε0µ0 is the speed of light in vacuum. Wave Eq. (1.6)

lies at the heart of photonics research. It is used, e.g., in the design of antennas on the

nanometer scale [4–6], the development of higher resolution microscopes [7], the discovery

and fabrication of optical metamaterials [8–10], and the understanding of the propagation of

waves in complex photonic media [11]. With increasing complexity of photonic structures,

solving the equation numerically can be a tremendous computational exercise and we shall

often find the need to simplify matters considerably.

The right hand side term in Eq. (1.6) shows that electromagnetic waves are scattered,

generated or absorbed by the acceleration of charges. The acceleration of charges can

either take place by a changing current, µ0
∂J
∂t , as is the case in metals, or a change in the

polarization of the medium, µ0
∂2P
∂t2 , as is the case in insulators, or by a combination of

both as is the case in semiconductors. The frequency of the wave determines the type of

electromagnetic radiation that is generated. Light forms just a small portion of the entire

electromagnetic spectrum. Although light has the obvious advantage of being visible, it

requires photonic structures to be in the nanometer range making the construction of these

structures a serious technological challenge. Waves with a smaller frequency than light

10



1.1. Sources of electromagnetic radiation
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Figure 1.1: (a) An electromagnetic dipole consisting of two opposite charges q separated by distance

d radiates to point r. The distances from the two charges to the observation point are r+ and r
−

respectively. (b) The radiation pattern for a vertically aligned dipole, an iso-intensity contour is

plotted in the rθ-plane. (c) oscillating dipole sources for light can be formed by atoms in which a

negatively charged electron cloud oscillates around the positively charged nucleus.

enable us to study similar phenomena on larger length scales while the underlying physics

remains the same. In this thesis we describe experiments performed with visible light

(400-790 THz) and microwaves (10 GHz).

To first order, electromagnetic sources are described by oscillating dipoles. An isotrop-

ically radiating point source is well approximated in the far field by an oscillating dipole.

A classical dipole is therefore one of the most frequently used sources in photonics. In Sec.

1.1.1, the expressions of the fields for a point dipole are derived following a standard refer-

ence [12]. Oscillating dipoles can be induced in a variety of ways depending on the desired

frequency. Dipole sources can be created by inducing oscillating currents in an antenna in

the case of microwaves or by thermal and spontaneous emission in the case of light. The

latter will be discussed in Sec. 1.1.2 and Sec. 1.1.3, and will be followed by a discussion on

stimulated emission and absorption in Sec. 1.1.4.

1.1.1 Radiating point dipole

The wave equation deduced from the Maxwell equations showed that sources of radiation

stem from either accelerating charges or changing currents. The oscillating dipole is the

easiest example of such a source and it is frequently used to describe experimental config-

urations with atomic and molecular light sources. In this section the expressions for the

fields of a radiating point dipole are derived [12] at a distant point r away from the dipole.

Consider two metal spheres connected by a thin wire of length d aligned along the z-

axis with its center located at the origin as illustrated in Fig. 1.1(a); one sphere contains

a charge q(t), while the other sphere contains an opposite charge −q(t). The charge on

the spheres oscillates with angular frequency ω. The two spheres then form a dipole with

oscillating dipole moment p(t) = p0cos (ωt) ẑ where the amplitude is given by p0 ≡ q0d.

For an ideal point dipole it is assumed d � λ � r. In electrodynamics, the electric and

magnetic fields at point r can be expressed in terms of the potential V and the vector

potential A

E = −∇V − ∂A

∂t
, (1.7)

B = ∇×A. (1.8)

11
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The retarded potential of the dipole is given by

V (r, t) =
1

4πε0

{

q0cos [ω (t− r+/c)]

r+
− q0cos [ω (t− r−/c)]

r−

}

, (1.9)

V (r, θ, t) ∼= − p0ω

4πε0c

(

cos θ

r

)

sin[ω(t− r/c)]. (1.10)

The second equation is the result of applying geometrical and Taylor approximations to

Eq. (1.9) that follow from the criterion d � λ � r. The vector potential is given by the

integral of the current density over the volume of the wire.

A(r, t) =
µ0
4π

∫

J(r′)

|r− r′|dτ
′, (1.11)

A(r, θ, t) ∼= −µ0p0ω
4πr

sin [ω(t− r/c)] ẑ, (1.12)

= −µ0p0ω
4πr

sin [ω(t− r/c)] (cos θr̂− sin θθ̂). (1.13)

In the second step we used |r− r′| ≈ r when d � r. Putting the expressions for V and A

into Eqs. (1.7) and (1.8) and discarding all higher order terms in 1/r, returns the radiated

electric and magnetic field by an ideal dipole.

E(r, t) = −µ0p0ω
2

4π

(

sin θ

r

)

cos[ω(t− r/c)]θ̂, (1.14)

B(r, t) = −µ0p0ω
2

4πc

(

sin θ

r

)

cos[ω(t− r/c)]φ̂. (1.15)

From these two equations, the radiated intensity is found by calculating the cycle-averaged

Poynting vector µ0S = (E×B)

〈S(r, θ)〉 =
(

µ0p
2
0ω

4

32π2c

)

sin2 θ

r2
r̂. (1.16)

From this equation one understands that the intensity profile is shaped like a donut and

the intensity falls off with r2. In order for the dipole to act as a true source of radiation
∮

〈S〉da > 0 where the integration runs over a closed surface containing the dipole, in

words this condition implies radiation is created by the source. The divergence theorem,
∮

〈S〉da =
∫

∇ · 〈S〉dτ , allows us to analyze the divergence of the Poynting vector instead.

Since ∇ · r−2r̂ = 4πδ(r) with δ(r) the Dirac delta function, the divergence of a classical

dipole reads

∇ · 〈S〉 = µ0p
2
0ω

4

12πc
δ(r), (1.17)

from which we conclude a classical point dipole indeed acts as a source for electromagnetic

radiation. However, reciprocity implies that a classical dipole can also be excited by radia-

tion. An excited dipole will of course also radiate. Conservation of energy dictates that for

an excited dipole without dissipation
∫

∇·〈S〉dτ = 0. Hence, the oscillating dipole, although

described by the same equations, has turned from a source into a scatterer. Scattering ob-

jects that are much smaller than the wavelength are well described by dipole scattering and

are referred to as Rayleigh scatterers [13]. The physics of these relatively small scatterers is

all around us and can be witnessed every day. The frequency dependence of the scattered

power in Eq. (1.16) leads to the blue color of the sky, while the angle dependence causes

scattered light from the sky to be partially polarized. We will come back to the physics of

scattering particles in Sec. 1.2.1.
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1.1. Sources of electromagnetic radiation

1.1.2 Spontaneous emission and vacuum fluctuations

Since the frequency of dipole radiation is simply given by the frequency of the oscillating

charges, low frequency waves can easily be generated electronically at arbitrary frequencies

with the right circuit design. The engineering and fabrication of antennas has become a

major industry that covers the low end of the electromagnetic spectrum consisting of ra-

diowaves and microwaves. The difficulty of fabricating higher frequency sources by this

method is one of the main reasons for the fact that the THz part of the electromagnetic

spectrum was relatively hard to study in the past [14]. For infrared and visible light, high

frequency oscillating dipoles can be formed by oscillating electron clouds in molecules and

atoms as illustrated in Fig. 1.1(c) [15]. In nature, the main source for accelerating charges

that emit light is due to thermal excitation. Every object with a nonzero absolute tem-

perature radiates electromagnetic waves in thermal equilibrium, the sun and incandescent

light bulbs are two everyday examples of these so-called black body radiators. Spontaneous

emission of radiation can occur when excited atoms and molecules fall back to a lower

energy state.

Until now we have described the physics of electromagnetism classically. However,

spontaneous emission requires a quantum mechanical treatment of both the field and the

atom in order to be in correspondence with experiment [16, 17]. A semiclassical description

of spontaneous emission, in which the fields are treated classically and the atom quantum

mechanically, essentially fails because according to such a model an atom in the excited state

|ψ2〉 is in an unstable equilibrium and would therefore never fall back to the ground state |ψ1〉
[16]. In quantum electrodynamics even vacuum modes contain fluctuating electromagnetic

fields that perturb an excited atom. These perturbations will sooner or later force the

atom to leave its unstable equilibrium and to undergo a transition to the ground state

while simultaneously sending out radiation in the form of a photon1. The precise moment

an atom decays by spontaneous emission is unpredictable, yet the average rate at which

an atom decays is well described by quantum electrodynamics. Obviously the higher the

number of modes that interact with the atom, the shorter it takes on average for an atom to

decay. When the electromagnetic modes form a continuum, the average radiative decay of

an excited atom at position r and transition dipole moment d is described by an exponential

of which the decay rate γr is given by Fermi’s Golden Rule

γr(r, ω, d̂) =
πd2ω

hε0
ρ(r, ω, d̂). (1.18)

In this expression, ρ is the local density of electromagnetic radiative states (LDOS). The

LDOS gives the number of states per unit volume to which an atomic oscillating dipole

positioned at r, oriented along d̂, and with frequency ω can couple.

Fermi’s Golden Rule yields another cornerstone of the field of photonics. The first part

of Eq. (1.18) πd2ω
hε0

is an atomic factor, which in practice can hardly be altered without

operating at the Ångstrom scale. However, by engineering the LDOS photonically one can

gain control over the emission characteristics of an emitter with structures on the order of

a wavelength [18]. The LDOS might appear an exotic quantity at first glance, yet a plain

mirror can already change the LDOS significantly. The decay rate of an atom in proximity

1Since spontaneous emission is a fully quantum mechanical process, the term photon in this context is

justified. Occasionally and mainly to increase the readability of the text, we shall use the term photon when

in principle a semiclassical description suffices and there is in principle no need for speaking about photons

instead of energy density.
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(b) (c)(a)

Figure 1.2: The emission spectrum from a collection of molecules or atoms can be broadened by (a)

homogeneous broadening processes or (b) inhomogeneous broadening processes, or a combination of

both. In the case of homogeneous broadening the linewidth is broadened for each individual emitter

(gray lines) in a similar fashion. The output spectrum for a collection of emitters (black line) is

therefore identical to the output spectrum of an individual emitter. Inhomogeneous broadening is

caused by emitters having different center frequencies (gray lines). (c) In a four-level system the

emitter quickly relaxes to the lower level of the excited state (wiggly arrow) from which it can

undergo a radiative transition (straight arrows) to several vibrational sublevels of the ground state.

From these vibrational sublevels the molecule relaxes back to the lowest level of the ground state.

The spread in sublevels of the ground state is responsible for a significant homogenous broadening

of the emission spectrum.

(∼ λ) of a mirror oscillates as a function of its separation distance [19, 20]. In 3D photonic

crystals with a high enough photonic contrast the LDOS vanishes completely leading to

a photonic band gap in which atoms theoretically cease to decay at all. Recently it was

shown experimentally that a photonic band gap can reduce the average decay rate by more

than a factor 10 [21].

1.1.3 Non-radiative decay: quantum efficiency and spectral broadening

Besides undergoing a radiative transition from a higher energy state to a lower energy state

via the process of spontaneous emission, atoms and molecules can, in general, also relax

to a lower energy state by non-radiative transitions. Examples of processes that cause

non-radiative transitions include lattice vibrations and molecular collisions [15, 16]. The

quantum efficiency φ is a quantitative measure for how much energy flows into the radiative

decay channel in comparison to non-radiative decay channels and is defined by

φ ≡ γr
γr + γnr

, (1.19)

where γnr is the non-radiative decay rate. From an experimental point of view high quantum

efficiency sources are often the emitters of choice in photonics. Not only because they simply

return more light, but also because they are more convenient probes for measuring changes

in the LDOS by performing lifetime measurements. A change in the LDOS results in a

different value for the radiative decay rate and thereby changes the ratio between radiative

and non-radiative decay. However, when the non-radiative decay channels are strongly

dominating over the radiative channel, any change in the radiative decay rate will be hard

to detect since lifetime measurements probe the total decay rate γtot = γr + γnr, which is

then hardly affected.

Non-radiative transitions within an emitter also have a significant impact on its emission

spectrum. The spectrum of an ideal two-photon emitter with amplitude decay rate γtot/2 is

given by the Fourier transform of an exponential which has a complex Lorentzian line shape

14



1.1. Sources of electromagnetic radiation

with a characteristic Full-Width at Half-Maximum (FWHM) linewidth of γtot [15, 22]. In

practice and especially at room temperature, the width of an emission spectrum is broader

than this value. The spectrum collected from an ensemble of emitters can broaden due to

the spectral broadening of each individual emitter, or because the individual emitters emit

at different center frequencies as illustrated in Fig. 1.2(a) and (b). The first case is referred

to as homogeneous broadening, the second case is called inhomogeneous broadening.

The light sources used in this thesis are dye molecules which form a four-level system.

Figure 1.2(c) provides a schematic illustration of the decay processes in such a four-level

system. An excited four-level emitter relaxes to the lowest level of the excited state by

non-radiative transitions from which it decays (partly) radiatively to a vibrational sublevel

of the ground state. The presence of these vibrational sublevels of the ground state are

the main broadening mechanism for these type of emitters [23, 24]. Although the lifetime

of the lowest excited state is relatively long (order of nanoseconds) and would give rise

to a narrow spectrum (∆λ ∼ 1 nm), the vibrational sublevels enable each molecule to

undergo radiative transitions with widely varying energies leading to a broader spectrum.

Typical four-level emitters therefore exhibit a long lifetime and a homogeneously broadened

frequency spectrum (∆λ ∼ 50 nm).

1.1.4 Stimulated emission, absorption, and elastic scattering

Just as vacuum fluctuations of the electromagnetic field modes are able to induce radiation

from an atomic or molecular dipole, so are higher energy eigenstates of the electromagnetic

modes with the same frequency. We then speak of stimulated transitions and in contrast to

spontaneous emission, these transitions are not intrinsically quantum mechanical, they are

as accurately described in a semiclassical framework. In the semiclassical picture, the inci-

dent field creates an oscillating dipole in the atom, which originates from the superposition

of two atomic eigenstates |ψ1〉 and |ψ2〉 with different energies, E2 > E1. As a consequence

the oscillating dipole starts radiating itself and this radiation can either be in-phase or

out-phase with the incident radiation. A collection of in-phase oscillating dipoles interferes

constructively with the incident field leading to an enhancement of the field, whereas a

collection of out-phase dipoles interferes destructively and leads to an attenuation of the

incident field [15]. These coherent processes are referred to as stimulated emission for the

in-phase case and stimulated absorption for the out-phase case, yet they stem from the

same dipole excitation and therefore have equivalent transition probabilities. Stimulated

absorption lets the atomic system end up in the energetically excited state |ψ2〉, while stim-

ulated emission let the atomic system end up in the energetically lower state |ψ1〉. When

a population of atoms is considered with N1 atoms in the ground state and N2 atoms in

the excited state stimulated emission and absorption occur simultaneously. If N1 initially

exceeds N2 incident radiation is attenuated, if however the situation is reversed radiation

is amplified. In the latter case of amplification, the population is said to be inverted.

When either of these two processes occur the original phase of the field is preserved by

the oscillating dipoles of the atoms or molecules. The oscillating dipoles can easily loose

their phase information however by non-radiative transitions, collisions, and spontaneous

emission. This process is called dephasing and for the experiments described in this thesis,

dephasing happens on order of magnitude shorter time scales than the stimulated radiative

processes. Due to dephasing, the emission from a collection of in-phase excited molecules

will be due to incoherent spontaneous emission.
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Figure 1.3: Illustration of the different interactions of light and a collection of atoms for (a) sponta-

neous emission, (b) and (c) stimulated transitions and (d) elastic scattering. (a) Atoms populating

the higher energy state can fall back to the ground state while radiating light due to perturbations

caused by vacuum fluctuations. (b) When the population of atoms in the lower energy state is

higher than the population of atoms in the higher energy state, incident radiation is attenuated

because stimulated absorption dominates over stimulated emission. (c) Population inversion leads

to amplification of the incident radiation where the radiated waves are in-phase with the incident

waves. (d) When atoms scatter light, the population of the lower energy level does not change.

Excitation of virtual energy levels is followed by immediate reradiation.

The change in energy level of the atom clearly distinguishes stimulated transitions from

elastic scattering processes. Elastic scattering is also due to oscillating dipoles that are

induced by an electromagnetic field. However, in the case of elastic scattering the energy

of the particle does not change. In order to describe scattering in terms of energy states,

the particle is said to be excited by the incident light to a virtual energy state from which

the particle immediately falls back to its real state while reradiating. Since the atom never

populates a higher energy state in reality, dephasing does not occur and the reradiated light

is in phase with the incident light. The difference between scattering, stimulated emission,

stimulated absorption, and spontaneous emission is summarized in Fig. 1.3. For closely

isotropically packed scattering atoms in a dielectric (separation distance � λ) incident

light is therefore hardly affected apart from obtaining a different speed, which can be

derived from Maxwell’s equations by considering a homogeneous polarizability [3]. When

scatterers are randomly positioned in a medium with separation distances on the order of

a wavelength or longer, the propagation of waves is drastically altered. The propagation of

waves through such an inhomogeneous, scattering medium is the subject of Sec. 1.2, but we

will first discuss how stimulated emission is utilized in a laser, one of the most important

contemporary artificial sources of radiation.

1.1.5 Lasers

The term laser is an acronym for “Light Amplification by Stimulated Emission of Radi-

ation”. The idea of amplifying radiation by stimulated emission was originally conceived

and put to practice in the microwave part of the electromagnetic spectrum [25]. Theodore

Maiman built the first operating laser for visible light in 1960 [26] using a flash lamp and

a ruby crystal as an amplifying medium.

Although lasers vary widely in design and operation, they all consist of three essential

ingredients: a gain medium that leads to amplification of radiation, a spectrally selective

feedback mechanism that enhances the interaction between light of a certain frequency

and the gain medium, and a pump that provides the energy for the excitation of the gain

medium.

In practice, most conventional lasers have a gain medium that consists of a collection of

atoms or molecules that is population inverted [27] and a cavity consisting of high-quality
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Figure 1.4: (a) Illustration of a conventional laser. A pump mechanism (small black arrows) is used

to create a population inversion in the gain medium (gray block). Two mirrors form a cavity which

provides feedback for its modes. Light is amplified by stimulated emission in the gain medium. A

small part of the amplified radiation is transmitted through one of the mirrors. (b) The output

power of a laser for two different values of the spontaneous emission factor β. For β = 1 (gray line)

there is no threshold in the output power. For β < 1 (black line) a threshold can be defined by the

crossing of the extrapolated above threshold output power (dotted line) and the x-axis as indicated

by the black dot.

mirrors that provides the feedback for the resonant cavity mode as shown in Fig. 1.4(a).

The dynamics of the number of molecules in the upper laser level and the energy in the

cavity mode are related. For a single-mode laser with a unit quantum efficiency four-level

gain medium, the number of photons q in the cavity mode and the number of molecules in

the upper laser level N are given by [15]

dq

dt
= −γcq + βNγrq + βNγr, (1.20)

dN

dt
= R− βNγrq −Nγr, (1.21)

with steady-state solution

q = − 1

2β
+

R

2γc
+

1

2

√

(

1

β
− R

γc

)2

+ 4
R

γc
. (1.22)

Here γc is the cavity decay rate, R is the pump rate, and β is the spontaneous emission

factor, which describes what the probability is that a spontaneously emitted photon ends up

in the cavity mode. For a conventional laser this β-factor lies between 10−7 and 10−10 [15].

Spontaneous emission is essential in most lasers, since it provides the seed for amplification.

A plot of the steady-state solution to rate Eqs. (1.20)-(1.21) in Fig. 1.4(b) reveals

that the number of photons is strongly dependent on the pump rate when β < 1. A

pump threshold can be defined, Rth = (1/β − 1)γc, above which the number of photons

starts to increase rapidly as a function of pump power. At threshold the gain in the

system compensates for the losses in the cavity mode. Above threshold, stimulated emission

has become the most important source of radiation and the laser mode thereby prevents

that excited molecules “loose” there energy to unwanted spontaneous emission outside the

cavity mode. Since radiation induced by stimulated emission is in phase with the incident

radiation, the laser light can become highly coherent in both time and space. For the

peculiar case of β = 1, the situation is different. Every emitted photon ends up in the

cavity mode by definition and therefore the threshold in the output power disappears.
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1.2 Random photonic media

The strive for perfectly ordered and clean structures has been deeply entrenched in optics.

Scattering due to structural inhomogeneities or particles is indeed detrimental to many

optical devices, such as glass lenses, metallic mirrors, and conventional lasers, and therefore

preferably avoided. In our encounter with nature, however, scattering of electromagnetic

radiation is all around us and simply cannot be neglected. Not surprisingly, the research on

multiple light scattering has long been dominated by astrophysicists for whom knowledge

of electromagnetic wave scattering is needed to uncover essential information about stellar

systems [11, 28].

Despite the ongoing experimental efforts to fabricate nearly perfectly ordered photonic

structures, it is inevitable that any man-made structure contains disorder to some extent.

This unavoidable presence of disorder limits the performance of, e.g., photonic crystals

whose design is based intrinsically on order [29, 30]. The exciting promises of the field of

metamaterials such as cloaking and negative index materials are also based on the assump-

tion of perfect order, and it remains to be seen whether these promises are feasible when

some disorder is taken into account [31, 32].

Instead of taking order as a starting point of science and technology, one might as well

accept the presence of disorder from the beginning and try to use it to one’s advantage.

This idea of perceiving disorder as a strength rather than a weakness, has become more

widespread in recent years. Introducing disorder by design has enabled a strong interaction

between single photons and single quantum emitters via Anderson localized modes [33] and

has led to the observation of transverse Anderson localization [34]. In the microwave regime,

the time-reversal of scattered waves originating from a point source was shown to lead to

focussing beyond the diffraction limit [35]. In optics, where time-reversal of waves is far from

trivial, it was shown that manipulating the amplitude and phase of a wavefront by spatial

light modulators and appropriate feedback algorithms can lead to sharp focussing outside

[36, 37] and inside [38] a scattering medium. This wavefront shaping technique has been

further developed and in combination with high refractive index scattering media it allows

for sub-100 nm microscopy [39]. Using the technique of wavefront shaping the transmission

matrix describing the transmission of light through random media was determined, allowing

for the imaging of objects through opaque media [40].

Besides the development of these revolutionary disorder based technologies, the physics

of wave transport through disordered systems is exciting and worth studying in itself. A

better understanding of the propagation of waves in multiple scattering media explains the

appearance of many objects surrounding us and the transition from metals to insulators.

Rather than solving Maxwell’s equations by brute force as for example done by Finite-

Difference Time-Domain calculations (FDTD) [41], which in principle would lead to precise

predictions of light transport in random media, we prefer to seek accurate analytical de-

scriptions by reducing the complexity of the system from the start. In this section we first

study how single particles scatter light in Subsec. 1.2.1. The transport mean free path is

introduced as the essential quantity for describing multiple scattering of light in Subsec.

1.2.2. We then discuss how both a particle and wave like description of electromagnetic

radiation passing through a collection of single scatterers lead to diffusion in Subsec. 1.2.3

and Subsec. 1.2.4, and finally how the incorporation of interference leads to Anderson

localization in Subsec. 1.2.5.
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(a) (b) (c)

Figure 1.5: The size of a scatterer determines its scattering function. (a) For particles much smaller

than the wavelength the scattering is governed by Rayleigh scattering. The scattering is isotropic in

the plane perpendicular to the polarization. (b) Particles with a size on the order of the wavelength

are in the Mie-regime. The scattering function is very dependent on angle. (c) When the size of

the particle is much larger than the wavelength ray optics can be used to describe the scattering

process.

1.2.1 Single scattering

The way scattering from a particle is described depends on its size with respect to the

wavelength and the refractive index contrast between the particle and the surrounding

medium. We define the size parameter x ≡ ka with a the characteristic length of the

particle and k ≡ ω/c the wave number of the wave. For spherical particles a is given by

the radius. The three regimes of single particle scattering are illustrated in Fig. 1.5 and

explained below. When a scattering particle is much smaller than the wavelength (x < 1),

the particle is said to be in the Rayleigh regime and can be treated as a dipole for which

we have already calculated in Sec. 1.1.1 that the radiation pattern is isotropic in the

plane perpendicular to the orientation of the dipole. The polarizability α of the particle2

determines the strength of the induced dipole moment by

p = αE. (1.23)

The cross section of a scatterer is a quantitative measure for the strength of a scatterer.

The scattering cross section σ` is defined as the ratio between the power taken out of an

incident wave by scattering and the intensity I0 of the incident wave [28]. By the same

token we can define an absorption cross section σa by considering the power taken out of

an incident wave by absorption. By using Eq. (1.23), Eq. (1.17), and I0 ≡ 1
2cε0E

2
0 , we find

the scattering cross section of a Rayleigh scatterer

σs ≡
P

I0
=

|α|2k4
6πε20

. (1.24)

This relation emphasizes again that in the Rayleigh regime the scattering of particles be-

comes stronger for shorter wavelengths.

When particle sizes become on the order of a wavelength, the dipole approximation

used for Rayleigh scatterers breaks down. One can still view the particle as a collection of

dipoles and determining its scattering properties essentially comes down to adding up the

contribution from every individual dipole while taking into account interactions between the

dipoles themselves [13]. The scattered radiation will show strong fluctuations with angle

due to constructive and destructive interference, and will therefore be very anisotropic.

2In general the polarizability of a particle is a tensor. Here we only consider particles that have isotropic

polarizability, in which case the tensor can be treated as a scalar.
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(a) (b)

Figure 1.6: The scattering cross section of a sphere normalized to its geometrical cross section versus

size parameter on (a) a linear plot and (b) a log-log plot. The linear plot shows how resonances

appear when x > 1. The logarithmic plot illustrates the λ−4 dependence of the cross section when

x < 1. When x � 1 the scattering cross section becomes twice the geometrical cross section. The

plots are calculated using Mie-theory with n = 1.33 for the sphere and n = 1 for the environment.

The exact radiation pattern and the scattering cross section of such a scatterer can only

be calculated analytically for spheres and cylinders by using Mie-theory [13, 28, 42]. The

strong dependence on wavelength for these type of scatterers results in spectral resonances

of the scattering cross section as shown in Fig. 1.6 where we have plotted the calculated

scattering cross section as a function of size parameter. In these plots the Mie-regime

can be clearly identified by the numerous valleys and peaks. The logarithmic plot of the

cross-section highlights the λ−4 dependence of the cross-section in the Rayleigh regime.

Scatterers much larger than the wavelength fall within the geometrical optics regime

and can be analyzed by ray optics. For example, the scattering from rain droplets is

described by this regime and enables us to explain the intricate structure of rainbows. A

main somewhat paradoxical feature of large scatterers is the fact that their scattering cross

section is twice their geometrical cross section [28] due to the diffraction of waves at the

edges of its geometrical shadow. The calculations shown in Fig. 1.6 indeed indicate that

the scattering cross section becomes twice the geometrical cross section for x� 1.

1.2.2 Multiple scattering and random walks

When a system with characteristic length scale L contains more than one scatterer, waves

have the possibility of scattering more than once. This probability increases when the

density n of scatterers is increased or when the scattering cross section of the individual

scatterers becomes larger, because the average path length between two scattering events

then decreases. This length is called the scattering mean free path `s and is given by

`s =
1

nσs
. (1.25)

A sample is in the multiple scattering regime when `s < L. In the previous section we have

seen that particles do not necessarily scatter isotropically. Mie-spheres for example scatter

preferentially in the forward direction. It therefore can take more than just one scattering

event to completely randomize the wave’s direction. The traversed length that is required

to loose all information about the input wave’s initial direction, is called the transport mean

free path `. This important quantity can be found by normalizing the scattering mean free
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(a) (b)

Figure 1.7: Random walks in (a) 1D and (b) 2D with unit step size. The light gray curves are

examples of 10 random walks in 1D and 8 in 2D with 5000 and 500 steps respectively. The black

curves are the ensemble averages over 100 samples. The dark gray curves indicate the root mean

square of the displacement, which has been parameterized in the 2D case. The black bar equals 10

unit steps.

path with the average cosine of the scattering angle:

` =
`s

1− 〈cos θ〉 . (1.26)

A medium remains (partly) transparent as long as ` > L. For opaque media on the other

hand the transport of waves is dominated by multiple scattering. Describing the exact wave

propagation through such a complex medium obviously becomes a hopeless endeavor, which

only the naivety of a computer might resolve. We shall need to introduce approximations

and secondly mainly study the properties of ensemble averages, in order to not leave the

physical understanding out of sight.

A simple description of wave transport in random media can be obtained by ignoring

the wave character of electromagnetic radiation altogether. In this picture, the radiation is

treated as a particle and the scatterers simply change the direction of these particles from

one k-vector to another as if the multiple scattering medium is playing a pinball game with

the wave. The radiation “particle” undergoes a random walk [43, 44] through the medium

with an average step size `. At every step i the wavevector changes direction which we

indicate by a unit vector with random orientation k̂i. Figure 1.7 shows examples of random

walks in 1D and 2D. By averaging over a large numberN of these stochastic processes, one is

able to obtain accurate approximations for the energy density in a random medium in many

situations. For example, one can deduce that for isotropic random walks the mean position

〈r〉 after n steps is the starting point by realizing 〈r(n)〉 = 1
N

∑N
i=1

[

ri(n− 1) + `k̂i

]

=

〈r(n−1)〉 = 〈r(0)〉, because k̂i averages out to zero. A similar argument for the mean-square

of the position yields 〈|r(n)|2〉 = 1
N

∑N
i=1

[

|ri(n− 1)|2 + 2`k̂i + `2
]

= 〈|r(n−1)|2〉+`2 = n`2,

which shows that the average distance to the starting point scales with the square root of

steps [44]. These two properties of isotropic random walks can also clearly be seen in the

ensemble averaged curves in Fig. 1.7.

1.2.3 Particle diffusion

If the concentration C(r, t) of particles that undergo a random walk is not spatially uniform,

the flow per unit area J of particles is towards creating spatial homogeneity. This general
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property of a collection of randomly walking particles is known as Fick’s first law and is

mathematically formulated as

J = −D∇C, (1.27)

where D is the diffusion constant which is proportional to both the step size of the random

walks and the speed of the particles. In a medium where no particles are created or

annihilated any change of concentration at a certain point must be due to a net flow of

particles through the infinitesimal surface surrounding the point:

∂C

∂t
= −∇ · J, (1.28)

∂C

∂t
= D∇2C. (1.29)

Here we have used Eq. (1.27) to obtain Fick’s second law in Eq. (1.29), better known as the

classical diffusion equation. This versatile equation is omnipresent in all exact sciences, its

applications vary from describing heat conduction [45] and molecular transport in cells [43]

to price fluctuations in stock markets [46]. A source term S can be incorporated by adding

it up to the right hand side of Eq. (1.29). If a time-independent unit source is placed at

the origin δ(r−r′) of an infinite medium, Eq. (1.29) reduces to the Poisson equation whose

solution is given by C(r) = 1
4πD|r| .

1.2.4 Wave diffusion

Diffusion is an unavoidable phenomenon in the case of a collection of particles performing

an isotropic random walk. Any random-walk-like description of radiation will therefore

inevitably end up with some form of the diffusion equation after averaging over disorder.

However electromagnetic radiation is a wave in the first place and we have not yet justified

that Eq. (1.29) applies to wave propagation in random media. Coherent waves propagating

through random media give rise to a very irregular intensity pattern known as speckle, that

is caused by constructive and destructive interference at random positions. In order to

understand why waves diffuse, the wave nature needs to be taken into account from the

start and speckles need to be averaged out. Rather than using the vector wave Eq. (1.6)

found in Sec. 1.1, we treat the waves as a scalar3 by considering the Helmholtz equation

for monochromatic wave amplitude Ψ(r, t) = ψ(r)eiωt + c.c.

∇2Ψ− ε(r)

c2
∂2Ψ

∂t2
= 0, (1.30)

−∇2ψ − ω2

c2
ε(r)ψ = 0, (1.31)

with ε(r) the dielectric constant and ω the frequency of the wave. The solution to Eq.

(1.31) depends on the variation of dielectric constant over space and our goal is to find it

in a multiple scattering medium in which the dielectric constant fluctuates strongly and

where a unit source is placed at the origin. In the wave equation above, it is implicitly

assumed that the scatterers and the surrounding medium have a constant, but different,

dielectric constant. This assumption allows us to neglect a term containing the gradient of

the dielectric constant [47]. A more extensive treatment of the theory in this section can

3By writing the electromagnetic waves as a scalar, the polarization of the waves is ignored.
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be found in the review by Van Rossum and Nieuwenhuizen [48] and the article by Van der

Mark et al. [49]. We adopt the same sign convention as Ref. [50]. For simplicity reasons,

point scatterers embedded in an environment with ε = 1 are assumed in what follows. Thus

for a scatterer at position Rj we have ε(r) = 1 + µδ(r − Rj) where µ is a constant with

dimension volume.

Amplitude propagation

Before considering the propagation of waves from a unit source in a multiple scattering

medium, let us first study the propagation from a unit source in free space. The free space

propagator is also known as the bare Green function and due to its importance this function

receives its own symbol g(r)

−∇2g − ω2

c2
g = δ(r), (1.32)

g(r) =
ei

ω
c
|r|

4π|r| , (1.33)

where the solution has been obtained after solving the first equation in Fourier space and

transforming back. The solution for the wave amplitude when a collection of sources S(r)

is present is then simply given by the superposition principle

ψ(r) =

∫

g(r, r′)S(r′)dr′. (1.34)

If a single point scatterer with V (r) ≡ V δ(r −Rj) = µω2

c2
δ(r −Rj) is introduced into the

system at point Rj, one can rewrite Eq. (1.31) as −∇2ψ − ω2

c2 ψ = V (r)ψ. By using V (r)ψ

as the source term in Eq. (1.34), we find an iterative equation for the wave amplitude at

point r

ψ(r) = ψ0(r) +

∫

g(r,Rj)V δ(r
′ −Rj)ψ(r

′)dr′, (1.35)

= ψ0(r) + g(r,Rj)V ψ(Rj), (1.36)

= ψ0(r) + g(r,Rj)tψ0(Rj). (1.37)

Here ψ0 is the solution of the wave equation without the scatterer present, and t has been

introduced as part of the single particle scattering matrix tj given by4

tj(r1, r2) = δ(r1 −Rj)δ(Rj − r2)t, (1.38)

t = V + V g(Rj,Rj)V + V g(Rj,Rj)V g(Rj,Rj)V + . . . (1.39)

The scattering matrix contains the properties of a single scatterer as described in Sec. 1.2.1.

For a point scatterer this t as given by Eq. (1.39) is ill-defined, because the real part of

g(Rj,Rj) blows up. The t-matrix is therefore often approximated by considering only the

first two terms and by replacing the infinite real part of the second term by a finite term.

In the remainder of this section, we will simply describe a single scatterer by its t-matrix

without making its form explicit.

4The polarizability of a real scatterer depends strongly on frequency as discussed in Sec. 1.2.1. The

t-matrix is therefore also frequency dependent. To keep the notation concise we do not show this frequency

dependence explicitly in the text.
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With the description of single scattering at our disposal, let us now seek expressions for

the wave amplitude inside a medium containing N scatterers with a unit source at r ′. The

amplitude full Green function G(r, r′) is the solution to

−∇2G(r, r′)−





ω2

c2
+

N
∑

j=1

Vj(r)



G(r, r′) = δ(r− r′). (1.40)

Again, this equation can be rewritten as an iterative equation

G(r, r′) = g(r, r′) +

∫

g(r, r1)

N
∑

j=1

Vj(r1)G(r1, r
′)dr1. (1.41)

This equation considers all possible combinations of scattering from particle to particle.

Some of these combinations have already been encountered in building up the t-matrix of

a single scatterer, namely the repetitive scattering of waves from one scatterer. To simplify

matters considerably, we neglect all recurrent scattering terms in Eq. (1.41): a wave does

not return to the same scatterer once it has encountered another scatterer. An insightful

way of visualizing this so-called Independent Scattering Approximation (ISA) is by using

Feynman diagrams

GISA(r, r
′) = + × + × ×

+ × × × + . . . (1.42)

The lines indicate the bare Green function and the crosses are the t-matrices of the indi-

vidual scatterers. Implementing the ISA in Eq. (1.41), we find

GISA(r, r
′) = g(r, r′) +

∫∫

g(r, r1)

N
∑

j=1

tj(r1, r2)Gj(r2, r
′)dr1dr2, (1.43)

= g(r, r′) +
N
∑

j=1

g(r,Rj)tGj(Rj, r
′), (1.44)

where Gj denotes the ISA Green function of the same system excluding scatterer j, the

replacement of G with Gj is a consequence of the fact that we restrict ourselves to the ISA.

Repetitive scattering from one scatterer is included in the t-matrix.

Since the aim of this section is to find diffusion of waves, the average over disorder

realizations needs to be considered which we denote by angular brackets 〈·〉. The averaged
Green function has to be translationally invariant 〈G(r, r′)〉 ≡ G(r − r′). Moreover for a

scattering medium in the thermodynamic limit Gj(r− r′) = G(r− r′), which follows from

assuming that taking away a single scatterer does not alter the averaged system’s behavior

significantly. The average of any function is found by integrating the function over space

and dividing by the volume Vtot, thus for the N scatterer functions the averaging procedure

is given by
∫
∏N

j=1
dRj

Vtot
. If this averaging over disorder procedure is applied to element x of

the sum in Eq. (1.44) one finds

∫

g(r,Rx)tGx(Rx, r
′)

N
∏

j=1

dRj

Vtot
= t

∫

g(r−Rx)





∫

Gx(Rx, r
′)

N
∏

j=1,j 6=x

dRj

Vtot





dRx

Vtot
(1.45)

=
t

Vtot

∫

g(r−Rx)G(Rx − r′)dRx, (1.46)
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which applied to the whole sum in Eq. (1.44) results in

GISA(r− r′) = g(r− r′) +
N
∑

j=1

t

Vtot

∫

g(r−Rj)G(Rj − r′)dRj, (1.47)

= g(r− r′) + nt

∫

g(r −Rj)G(Rj − r′)dRj, (1.48)

where n = n/Vtot is the density of scatterers and all scatterers have identical t-matrices.

The remaining integral is a convolution, which suggests this equation is again easier to solve

in Fourier space. In real space the solution is approximated by

G(r) =
eiK|r|

4π|r| , (1.49)

where the effective complex wave number is given by K =
√

ω2/c2 + nt ≡ keff + i/(2`s)

with keff = neffω/c and neff the effective refractive index.

Equation (1.49) describes how the average wave amplitude propagates through a random

medium: it decays exponentially with the scattering mean free path. Yet, the exponential

decay does not resemble the result obtained for the concentration in the classical diffusion

equation. If we would simply study the intensity by 〈G〉〈G∗〉 only the intensity which is

left in the incident radiation is described. In fact, we have derived Lambert-Beer’s law that

describes how a coherent beam decays due to scattering.

Intensity propagation

In order to describe diffusion of waves, the averaging needs to be done at the intensity

level: after the multiplication of the amplitude with its complex conjugate. To do so, let

us return to the iterative Eq. (1.44) obtained in the independent scattering approximation,

but instead study G(r1, r2)G
∗(r3, r4)

G(r1, r2)G
∗(r3, r4) =



g(r1, r2) +

N
∑

j=1

g(r1, rj)tjGj(rj, r1)



×



g∗(r3, r4) +
N
∑

j=1

g∗(r3, rj)tjG
∗
j (rj, r4)



 . (1.50)

Obviously this equation becomes very complicated due to the multiplication of two sums

and the iteration terms. The Feynman diagram visualizes the above equation in a more

insightful manner,

G(r1, r2)G
∗(r3, r4) = [ + × + × × + . . .]×

[ + × + × × + . . .]∗

=

//

oo

+

× //

oo

+

× //

oo ×
+

× × //

oo × ×
+ . . . (1.51)

Here multiplication of an amplitude with a complex conjugate amplitude is symbolized

by writing them underneath each other with arrows pointing in opposite directions and
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scattering from the same scatterer is indicated by the dotted lines. Note that recurrent

scattering has again been ignored. The trick in analyzing the ensemble averaged form

of this equation, lies in knowing which diagrams to consider and which ones to neglect.

For example, ensemble averaging over all diagrams in which the amplitude and complex

amplitude do not share any scatterer results in the coherent propagation of waves as already

found in the amplitude section. The second simplest diagrams to analyze are those that

have one or more scatterers in common in a sequential manner, the so-called ladder terms.

If we let a triple line denote the ensemble averaged dressed Green function we obtain5

〈L(r1, r2)L∗(r3, r4)〉 =
× _*4

_jt ×
+

× × _*4

_jt × ×
+

× × × _*4

_jt × × ×
+ . . . (1.52)

=
_jt

L
_*4

, (1.53)

with

L ≡
×

×
+

× ×

× ×
+

× × ×

× × ×
+ . . . (1.54)

=

×

×
+

×

×
L . (1.55)

In real space the Bethe-Salpeter like expression for this ladder vertex reads

L(r) = ntt∗δ(r) + ntt∗
∫

e−r′/`s

(4π|r′|)2L(r− r′)dr′. (1.56)

Here for the dressed Green function Eq. (1.49) was used. Conservation of energy allows

us to find a relation between the scattering cross section and the t-matrix of an individual

scatterer: ntt∗ = 4π/`s. With help from this relation and by transforming to Fourier space,

one finally obtains

L(r) = 4π

`s
δ(r) +

3

`3s|r|
. (1.57)

The second term in this equation describes how the intensity drops off in a multiple scatter-

ing environment. If we want to know the intensity 〈I〉 measured at point r originating from

a unit source at rs, the ladder diagram needs to get connected by dressed Green functions

to the source and the observation point [51]

〈I(r)〉 =
^

^

L
~

~

. (1.58)

5Technically the ensemble averaged Green functions given by the triple lines do not contain all scatterers,

because any ensemble average would then lead to a completely connected diagram. For a large number

of scatterers however we can ignore this technicality and treat all dressed Green functions equally and

independently.
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1.2. Random photonic media

(a) (b)

Figure 1.8: Two-dimensional representation of (a) a ladder term and (b) a most crossed term

connected to both a source and an observation point. Straight arrows: dressed Green functions.

Dashed arrows: complex conjugate Green functions. Ensemble averaged ladder terms give rise to

diffusion. Ensemble averaged cross-terms are responsible for interference effects. Intuitively this

interference can be understood by realizing that when the source and the observation point overlap

the path length difference between the regular path and the complex conjugate path becomes zero.

Therefore, the two paths interfere constructively at the source position.

Where we have introduced ^ to denote the observation point and ~ to denote the source.

Defining r = |r1 − rs|, the two short-range vertices connecting the ladder diagram to the

source and the observation point are given by

∫

G(r1 − rs)G
∗(r1 − rs)dr1 =

4π

16π2

∫

e−r/`sdr =
`s
4π
. (1.59)

By treating these short-range vertices as points and thereby letting the ladder term run

from the source to the observation point, diagram (1.58) simplifies from an integral to a

straightforward multiplication

〈I(r)〉 =
(

`s
4π

)2

L(r− rs) =
3

16π2`s|r− rs|
. (1.60)

Thus the ensemble averaged intensity’s r dependence is analogous to the stationary solution

of the classical diffusion equation. We conclude that the ladder vertex is responsible for

the diffusion of waves. In hindsight this should not come as too big of a surprise: ladder

terms represent random walks of intensity through a random medium as illustrated in Fig.

1.8(a). By ensemble averaging these random walks one describes diffusion, just as in the

particle case. Solution of the time-dependent Bethe-Salpeter like Eq. (1.56) enables us to

find an expression for the diffusion constant in a random medium: D = 1
3ve` with ve the

energy velocity [52].

1.2.5 Anderson localization

In the previous section, we have deliberately limited our discussion to those diagrams that

give rise to diffusion of light, namely the ladder terms. Other diagrams are of course also

present in reality and they give rise to other phenomena. Among the most studied diagrams

are the so-called “most-crossed” diagrams. In these diagrams, the shared scatterers between

the amplitude and complex conjugate amplitude are encountered in a time-reversed manner

as shown in Fig. 1.8(b). The intensity at the observation point now becomes strongly
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dependent on its relative position to the source. If the source and the observation point

overlap, the amplitude and the complex amplitude following the most crossed paths always

interfere constructively and thereby lead to an enhanced intensity at this particular position.

By a similar reasoning the most crossed diagrams lead to an enhanced intensity in the

exact backscattering direction when illuminating a finite multiple scattering sample. This

interference effect is known as enhanced backscattering (EBS) or weak localization, and has

been observed for a wide variety of waves [53–56]. Over the years EBS has grown from an

intriguing interference effect into a technique that enables the characterization of multiple

scattering samples [57–60]. In particular because the width of the EBS cone is inversely

proportional to the transport mean free path.

In lower dimensions (d = 1, 2), random walks have unit probability of returning to the

point of origin. Therefore, interference cannot be ignored when describing the transport

of waves in one-or two-dimensional media. Rather than showing a diffuse behavior, the

waves are exponentially localized around the source position. The absence of diffusion due

to interference is known as Anderson localization, named after the man who theoretically

discovered it for electron waves in 1958 [61]. In three dimensions, the situation is more

complex [62]. For weakly scattering media diffusion remains a valid approximation: the

probability of a wave returning to its initial position is negligible. With an increase in scat-

tering strength, however, interference effects become more important. When the scattering

mean free path is of similar magnitude as the wavelength of radiation (k`s ∼ 1 [63]), the

waves scatter so strongly near the source position that interference cannot be ignored6. The

diffusion of waves is brought to a complete standstill and the diffusion constant becomes

zero.

Observing Anderson localization in three dimensions with classical waves is extremely

challenging [64]. Partly because the potential in Helmholtz Eq. (1.31) depends quadrati-

cally on frequency, in contrast to the potential for de Broglie waves that is frequency inde-

pendent [11, 65]. Increasing the wavelength in a system thus does not automatically lead to

a smaller value for k`s and a significant effort needs to be put in designing strongly scatter-

ing samples for a particular frequency range [65]. Experiments with light have additionally

been hindered by the presence of absorption, which makes it difficult to make unambiguous

claims on the absence of diffusion [66–68]. Recent experiments with ultrasound and metallic

beads have led to convincing results that do show signatures of Anderson localization in

three dimensions [69]. Together with an experiment that visualized the localized electronic

states with a scanning tunneling microscope, this experiment made it possible to study the

fascinating spatial structure of localized wave functions [70, 71].

1.3 Interaction between sources and random media

Multiple scattering of radiation and the science of light generation have traditionally been

studied on their own. The effect of scattering on the propagation of waves generated from

a far away source, is what primarily interested the astrophysicists who initiated the field of

multiple scattering of light [13, 28]. For that purpose, it suffices to assume that the incident

radiation is a plane wave which also conveniently simplifies the underlying mathematics.

Parallel to the efforts of understanding multiple scattering, a very successful combination

of science, engineering, and business has led to an incredible development in man-made

6Fulfilling the criterion k`s ∼ 1 is by no means a guarantee for having localization effects in a sample. It

should rather be seen as a quantity that indicates when localization effects are expected to become important.
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1.3. Interaction between sources and random media

Figure 1.9: Illustration of a random

laser. Radiation (light gray arrows)

originating from a spontaneous emission

event (white disks) is amplified through

stimulated emission by the excited gain

medium (gray area). Scatterers (dark

gray disks) provide feedback to the light

by lengthening the path length traveled

through the gain medium. The light

generated by a random laser is omni-

directional, but spectrally narrow com-

pared to the spontaneous emission spec-

trum.

sources of light over the past two centuries [72, 73]. First, by the introduction of electric

light sources at the end of the nineteenth century, and second by the continuous innovations

in the field of laser physics starting from the second half of the twentieth century. In this

section, we discuss how sources embedded in multiple scattering media can give rise to

exciting new phenomena. We introduce the concept of a random laser in Subsec. 1.3.1 and

show how a source can give rise to infinite range correlations in Sec. 1.3.2.

1.3.1 Random lasers

Whereas in a conventional laser mirrors are used as a feedback mechanism, a random laser

uses multiple scattering of light as a feedback mechanism. A cartoon of a random laser

is shown in Fig. 1.9. In a random laser, a spontaneously emitted photon gets amplified

by stimulated emission while at the same time its path length in the gain medium is

lengthened due to the feedback provided by multiple scattering. As a consequence the

emission spectrum narrows for increasing pump powers and the output power for the peak

of the spectrum shows typical threshold behavior. In contrast to a conventional laser the

emitted light from a random laser is omnidirectional.

The idea of generating light inside a scattering medium by stimulated emission was

already thought of in 1968 by the Soviet scientist Letokhov [74]. After some initial exper-

iments on ground laser crystals [75, 76], the field really started in the mid 1990’s due to

a dispute on a paper by Lawandy et al. describing laser action from supposedly strongly

scattering samples [77, 78]. The dispute centered around the question whether the sam-

ples were truly in the diffusive multiple scattering regime or whether the samples were just

redirecting some amplified light by single scattering. The Nature editor dealing with the

scientific correspondence, coined the term “random laser” which has been in use ever since.

A random laser can either be conceived as a multiple scattering medium with gain or as

a laser system with a complex cavity configuration. In fact, both well-known laser physics

effects are observed with random lasers, e.g., relaxation oscillations [79], intensity fluctu-

ations [80], and mode coupling [81], as well as prominent multiple scattering phenomena,

e.g., enhanced backscattering [82] and speckle [83].

In pioneering experimental studies by Cao et al. [84, 85], narrow features were detected

29



Introduction

in the output spectrum of ZnO random lasers. The interpretation of these narrow spectral

features has turned out to be far from straightforward and the community has not yet

converged to a particular explanation. Impressive theoretical efforts [86, 87] have mainly

focussed on two-dimensional random laser systems. Yet, it remains to be seen how these

theoretical concepts translate to three dimensional systems and how these theories can

be connected directly to experimentally relevant parameters. Anderson localization [85],

Fabry-Pérot resonances [88, 89], absorption induced confinement [90], and photons traveling

exceptionally long light paths through the gain medium [91], are all examples of explanations

put forward that illustrate the plethora of interpretations to be found in the literature.

Terminology such as “coherent random lasing” and “non-resonant feedback” has become

widespread [92], but often conceals the underlying physics [93]. We therefore prefer to

refrain from using this kind of terminology in this thesis.

1.3.2 C0-correlation

Irregular intensity patterns that appear when coherent radiation is scrambled by a static

random medium, display all kinds of intensity correlations [48]. The fact that these cor-

relations arise indicate that the speckle patterns caused by constructive and destructive

interference are not as random as we might initially think. The best-studied and easiest

to observe correlation, the C1 also known as the “memory-effect”, describes how speckle

patterns are correlated under rotation of the sample when both illumination and detection

are limited to a single k-vector (this configuration is typically referred to as “one channel

in, one channel out”). This correlation is short-ranged, meaning that it decays exponen-

tially with rotation angle. The two other well-known correlations, the C2 and C3 [94, 95],

describe long-range and infinite range correlations respectively. The C2 shows that the

total transmitted intensity is also correlated to the k-vector of the incident radiation (“one

channel in, all channels out”) or vice versa. The C3 is the optical analog of universal con-

ductance fluctuations and describes how much the total transmitted intensity fluctuates

when radiation is incident under all possible angles (“all channels in, all channels out”).

Since the study of intensity correlations was largely initiated by scientists working in

the field of condensed matter physics, it is not surprising that all these three correlation

refer to samples analyzed in a transmission configuration. In contrast to electromagnetic

radiation, electrons cannot be created out of nothing inside a sample. In 1999, B. Shapiro

[51] calculated a new type of correlation by considering intensity generated from within

random media. He considered two diffusive intensities originating from the same unit

source at Rs propagating to r and r+∆r that share one scatterer in close proximity to the

source. Diagrammatically the correlated intensity product is given by

〈Ic(r)Ic(r+∆r)〉 =
^

^

^

^

L

L

~

× ~

× ~

~

(1.61)

This diagram is evaluated by first isolating and calculating the short-range vertex U , so

that afterwards the diffusion ladders can be treated as if emerging from the source position.
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The vertex U reads

U =

� ~

� × ~

� × ~

� ~

(1.62)

If we let Rx denote the position of the shared scatterer and r1 and r2 denote the connection

points to the ladder, the number U is given by

U =
4π

`

∫∫∫

G(r1 −Rs)G
∗(r1 −Rx)G

∗(Rx −Rs)

×G(r2 −Rx)G(Rx −Rs)G
∗(r2 −Rs)dRxdr1dr2, (1.63)

where the factor 4π/` originates from the shared scatterer at Rx. The integrations over r1
and r2 are similar and most easily handled in Fourier-space. These two integrations return
`
4π

sink0r
k0r

exp
(

− r
2`

)

, with r = |Rs −Rx|. Inserting these expressions in integral Eq. (1.63)

gives

U =
4π

`

`2

16π2

∫

G∗(Rx −Rs)G(Rx −Rs)e
−r/`

(

sin k0r

k0r

)2

dRx (1.64)

=
`

4π

∫

e−r/`

(4πr)2
e−r/`

(

sink0r

k0r

)2

dRx (1.65)

=
`

32π
. (1.66)

In the last step we have approximated exp(−r/`) by 1, since the integrand is dominated by

the region r � `. Using this number for the vertex U , expression (1.59) for the short-range

objects connecting the ladders to the observation points, and the fact that an equivalent C0

diagram can also be obtained by placing the shared scatterer in the outer Green functions

of the diagram, the contribution of diagram (1.61) to the intensity correlation becomes

C0(∆r) =
〈Ic(r)Ic(r+∆r)〉
〈I(r)〉〈I(r +∆r)〉 (1.67)

= 2
`

32πk0
L(r−Rs)L(r+∆r−Rs)

(

`

4π

)2
/

L(r−Rs)L(r+∆r−Rs)

(

`

4π

)4

(1.68)

=
π

k0`
. (1.69)

From which we conclude that scattering close to the source induces a correlation with

infinite range. Such a type of correlation means that for some realizations of disorder the

speckle pattern as a whole has a higher or lower intensity than the average intensity as

illustrated in Fig. 1.10. This result might come as a surprise since for all configurations of

disorder the intensity originates from the same source. Apparently, random media change

the output power of the source.
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r

I

Figure 1.10: The C0-correlation is an infinite

range intensity correlation caused by a scatterer

placed in close proximity to a unit source. In this

figure the effect of C0 on three speckle patterns

is illustrated. Rather than fluctuating around the

ensemble average (dashed lines), the averages of

the individual speckle patterns for different real-

izations of disorder show an offset (black, gray,

and light gray lines).

1.4 Outline of this thesis

In chapter 2, we argue how different types of molecular light sources can lead to surpris-

ingly different outcomes of experiments in photonics. Random lasers are shown to be great

model systems for studying the consequences of using different types of sources experimen-

tally. A new classification scheme for sources is introduced in close analogy to the source

classification in electronics. The implications of this classification for the C0-correlation

are discussed and illustrated with a transfer matrix calculation of a source inside a one-

dimensional random stack of layers with alternating refractive indices.

By extruding such a one-dimensional system along one direction, the dynamics of An-

derson localization can be studied. In chapter 3, we explain how this so-called transverse

localization scheme maps a spatial coordinate onto time. Using a microwave setup, we

are able to measure when the ensemble averaged wave functions localize. An eigenmode

analysis of the system’s Hamiltonian is performed, in order to explain the results.

In chapter 4, diffusion inside an amplifying random medium is studied. By making use of

a side-imaging technique, the random lasing threshold becomes visual in space. The system

is analyzed numerically by coupling the time-dependent diffusion equation to the time-

dependent equation for the population inversion. Both experimentally and numerically, we

observe that gain leads to an expansion of the diffusive volume.

This expansion in volume can cause remarkable spectral effects in a random laser as

illustrated by experimental studies in chapter 5. By carefully controlling the absorption of

light emitted by a random laser, we are able to shift the output spectrum of a random laser

by several line widths. This tunability is analyzed by describing the random laser emission

spectrum with one effective cavity decay rate.

The narrow spectral features that have dominated the field of random laser are studied

in chapter 6. We introduce new ways of studying these features systematically. First, the

spatial structure belonging to a certain spectral feature is measured using a spectrally and

spatially selective detection apparatus. Second, a wide range of random laser samples is

studied to find out how the transport mean free path and the gain length influence the

appearance of spikes. A conceptual model is introduced based on two laser modes that

explains the results qualitatively.

Finally, in chapter 7 we conclude and put forward several subjects and applications

naturally following from our research.

32



CHAPTER2
Classification of light sources and their interaction with active

and passive environments

The central theme of this chapter is the dependence of a light source on its optical surroundings.

Four-level light sources are classified in two types and this classification is used to describe their

responses to both changes in the LDOS and stimulated emission. Random lasers are shown to

be particulary illustrative in showing how different sources can lead to different experimental

outcomes in photonics. By analyzing the random lasers with an extended set of rate equations,

properties of the used sources are retrieved. Our results require a revision of studies on sources

in complex media and put the C0-correlation in a different perspective. An example of such a

revision is given by a numerical calculation of a source in a 1D stack of layers with alternating

refractive indices.

2.1 Light sources in the natural sciences

Atomic and molecular light sources are essential tools in the natural sciences. Physicists

use these light sources in a great variety of situations, for example to study light-matter

interactions in the context of cavity quantum electrodynamics [33, 96], to probe vacuum

fluctuations inside and around photonic and plasmonic nanostructures [97, 98], or as build-

ing blocks for lasers [86]. In the life sciences, fluorescent proteins have quickly become one

of the most important workhorses soon after their discovery [99]. Major engineering efforts

are nowadays devoted to inventing light-source based microscopy techniques, in order to

obtain improved resolution and sensitivity [100, 101].

The prominence of light sources in scientific experiments solicits for a well-defined classi-

fication of different types of sources. We propose such a classification analogous to the field

of electronics where every circuit design incorporates a well defined source. In electronics,

ideal sources are classified as Constant Current Sources (CCS) or Constant Voltage Sources

(CVS) depending on their response to a certain load [102].
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Figure 2.1: (left) Radiative and non-radiative transitions in a four level system. Straight black

arrows: radiative transitions. Dark gray wiggly arrows: non-radiative transitions. Light gray wiggly

arrows: incident radiation. Black wiggly arrows: output radiation. Gray bars: population level.

(right) The photon production rate from level 2 to level 1 is determined by the cumulative processes

of spontaneous emission, stimulated emission, and stimulated absorption.

Mathematically, a point source (sink) is incorporated by a positive (negative) divergence

(S = ∇ · J) of a certain vector quantity in space. In order to be classified as a source for

light, light should either be created by conversion from a different type of energy, e.g., by

electroluminescence, or by a photochemical process in which the absorbed excitation photon

differs in frequency from the emitted photon, e.g., in three- and four-level systems. In

contrast, ideal two-level systems cannot be considered as light sources, they are scatterers

instead. In this chapter, we limit ourselves to a discussion of four-level systems. Our

approach is general however and can also be applied to other light generation mechanisms.

In a four-level system there are two decay channels from the lowest vibrational sublevel of

the excited state to a vibrational sublevel of the ground state: a radiative and a nonradiative

channel. These two relaxation mechanisms are competing for the number of molecules in

the excited state, in a similar way as two parallel resistances are competing for current in

a simple electronic CVS circuit. As discussed in Sec. 1.1.3, the quantum efficiency φ of

the molecule describes the ratio between the radiative and total decay rate. The quantum

efficiency is therefore an essential parameter in describing the response of light sources.

For a collection of emitters, four rate equations describe the population of the different

energy levels. These levels are illustrated in Fig. 2.1. Molecules are excited from the

ground state (level 0) to the excited state (level 3) with pump rate γp. Rapid nonradiative

transitions let molecules decay from this excited state to the lowest vibrational sublevel

of the excited state (level 2). Molecules can then decay either radiatively by spontaneous

or stimulated emission with rate γr and W21 respectively, or nonradiatively with rate γnr
to a vibrational sublevel of the ground state (level 1)1. These sublevels either depopulate

nonradiatively to the ground state with rate γ10 or radiatively by stimulated absorption to

level 2 with rate W12. The radiative transitions from level 2 to level 1 constitute our light

1The stimulated transitions between level 1 and 2 are assumed to be due to an applied electromagnetic

field. The radiated photons by the molecules of course contribute to this field, but these contributions are

neglected in the current discussion. They do of course play a significant role in lasers as will be shown in

the next section. The values for W21 and W12 are determined by the Einstein B coefficient and the spectral

electromagnetic energy density ρω by W12 = W21 = Bρω [16].
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source. The rate equations2 for the four levels read

dN0

dt
= −γpN0 + γ10N1 (2.1)

dN3

dt
= γpN0 − γ32N3, (2.2)

dN2

dt
= γ32N3 − (γr +W21 + γnr)N2 +W12N1, (2.3)

dN1

dt
= (γr +W21 + γnr)N2 − (γ10 +W12)N1. (2.4)

We are now particularly interested in finding the stationary rate of photon production,

(γr +W21)N2, expressed in terms of the pump rate and the radiative and non-radiative

decay rates. Putting (γ10 +W12)N1 = (γr +W21 + γnr)N2 obtained from Eq. (2.4) in Eq.

(2.1) gives

N2 = N0
γ10 +W12

γ10

γp
γr +W21 + γnr

, (2.5)

and hence for the net photon production rate Γph

Γph = (γr +W21)N2 −W12N1 =

(

γ10 +W12

γ10

γr +W21

γr +W21 + γnr
γp −

W12

γ10
γp

)

N0, (2.6)

≈
(

γr +W21

γr +W21 + γnr

)

Γe (2.7)

In the second step, a moderate pump rate is assumed such that the system is far away

from saturation. In that case the depopulation of the ground level N0 is negligible and the

factor Γe ≡ γpN0 is taken as the effective excitation rate. In addition, fast non-radiative

relaxations are assumed to dominate over stimulated absorption in level 1: γ10 �W12.

Based on Eq. (2.7), we are able to distinguish two classes of light sources. The rate of

radiative decay can be enhanced by an increased rate of spontaneous or stimulated emission,

where changing the spontaneous emission rate comes down to manipulating the LDOS at

the source position. However, Eq. (2.7) shows that in the absence of a nonradiative decay

channel the output power is independent on the rates of radiative decay. Every photon that

comes in, comes out. An unsaturated unity quantum efficiency source is thus a Constant

Power Source (CPS). On the other hand, for sources with a large non-radiative decay

channel, the number of transitions is conserved, but the power emitted by the source is

dependent on the rates of the radiative decay channel. These sources are named Constant

Amplitude Sources (CAS) which stems from a Green function analysis discussed in Sec.

2.4.

In this chapter, the influence of light source typology on the generation of light in com-

plex media is studied. We provide a clear demonstration of the relevance of our classification

with new random laser experiments, where different kinds of light sources act as different

gain media. The experimental methods and results are described in Sec. 2.2. In Sec. 2.3,

a model is developed to analyze the sources used in experiment. Besides these new experi-

mental results, we show in Sec. 2.4 how the output power of a classical dipole source, a CAS

2The population can either be described in terms of densities or in terms of total number of molecules,

since in the latter the volume of the system can be divided out.
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(a)

(b)

sample lens

to spectrometer

color filter

(c)

(d)

Figure 2.2: Illustration of emission directionality below threshold (black arrows) and above threshold

(red arrows) in (a) a conventional laser and (b) a random laser. In a random laser the emitted light

by an ensemble of sources is always omnidirectional. (c) Experimental apparatus for random laser

experiment. Pump light (green arrow) generated by an OPO is focussed onto the sample by a

lens. The fluorescent light (red arrow)is filtered from the pump light and analyzed by a grating

spectrometer. (d) The three suspensions used as samples in the experiment. From left to right:

Rhodamine 640 P, Cresyl Violet, and Nile Blue. All samples contain 1% titania particles in volume.

by definition, is dependent on its environment by performing a Green function analysis of a

single scatterer and a source. This calculation allows for discussing the impact of CPS and

CAS in studies on light sources and passive multiple scattering media and an expression

for a CPS is given. Using a transfer matrix calculation, the intensity profile inside a 1D

localizing sample is analyzed in Sec. 2.5. The type of source used in the computation turns

out to be crucial in order for the ensemble averaged data to converge.

2.2 Random laser experiment

In a random laser [93] the role of sources is twofold: first, they are seeds of spontaneous

light emission; second, they amplify light by stimulated emission of radiation. Due to

the multiple-scattering feedback mechanism, random lasers form a unique laser system.

In contrast to conventional lasers, they have a statistically isotropic mode selectivity as

illustrated by the cartoons in Fig. 2.2(a) and (b). The mode selection is solely determined

by the spectral shape of the gain curve. In a random laser, measuring the emitted energy

into a large enough solid angle corresponds to measuring the total emitted intensity: it

is as if diffusion mimics an integrating sphere. In our experiments, we utilize this much

neglected property of random lasers to study the energy emitted by light sources with

different quantum efficiencies for varying pump rates.

Samples

Three molecular light sources were studied in a random laser configuration by suspending

titania particles (R900 DuPont, volume fraction 1%, ` ≈ 5 µm) into three different 1 mM

solutions of organic dyes in methanol. The three dye solutions acted as gain media and were

chosen based on their quantum yields (φ) reported in literature [15, 103–105]: Rhodamine
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2.2. Random laser experiment

Figure 2.3: Normalized experimental emission spectra below and narrowed spectra above random

laser threshold for three different light sources: Rhodamine 640 P (red dashed lines), Cresyl Violet

(purple solid lines), and Nile Blue (blue dotted lines). The β-factor is determined by the quotient

of the area of the normalized spectra above and below threshold.

640 P (φ = 1), Cresyl Violet (φ = 0.54), and Nile Blue (φ = 0.27). A photograph of the

samples is shown in Fig 2.2(d). Experiments with Rose Bengale samples (φ = 0.11 [106])

were also explored, but these samples turned out unsuitable since the random laser threshold

could not be reached. To prevent aggregation and sedimentation of titania particles all

samples were treated in an ultrasonic bath before and spinned during measurement, and a

small amount of CaCl2 (0.06 g/L) was added to the Nile Blue sample. Experiments were

then performed within 30 min. after preparation of the sample, in order to make sure that

sedimentation effects were negligible. In fact, at these dye and titania concentrations, we

did not measure changes in the diffusive profile of the random laser for over 2 hours. Quartz

cuvettes were used as experimental cells (Hellma, inner dimensions 10×10×45 mm, wall

thickness 1.25 mm). After experiment, the samples were inspected by eye to ensure the

high pump powers did not damage the cuvettes.

Optical measurement scheme

The experimental apparatus is schematically shown in Fig 2.2(c). Excitation light generated

by an optical parametric oscillator (Opolette, 20 Hz, 5 ns) was focussed onto the samples

by an aspherical lens (F/#=1.5). The same lens collected the emission which was then

spectrally analyzed using a spectrograph (Oriel MS-257) connected to an EMCCD camera

(Hamamatsu, C-9100). The power of the pump beam was measured with an Ophir power

meter (PD300-3W). By placing calibrated neutral density filters in between the sensor and

the beam, it was ensured that the power meter did not saturate. The pump wavelength

was set at 535 nm for the Rhodamine and the Cresyl Violet sample, and at 563 nm for the

Nile Blue sample.
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Figure 2.4: Input-output diagrams for random lasers consisting of light sources with low and high

quantum efficiencies. (a)-(b) peak spectral radiance versus pump power for three random lasers with

different molecular light sources on (a) a linear and (b) a log-log scale. The solid lines are fits to the

experimental data. (c)-(d) integrated spectral radiance versus pump power for three random lasers

on (c) a linear and (d) a log-log scale. The solid lines are theoretical calculations. The Rhodamine

640 P random laser does not show a clear threshold. All data points in (a)-(d) were normalized to

the values at 2.1 µW and the results for the Nile Blue and Cresyl Violet random lasers were shifted

vertically for clarity.

Results

For all random laser samples, the fluorescent emission spectra were recorded for different

values of the pump fluence below and above threshold. In Fig. 2.2(c) normalized emission

spectra far below and far above threshold are plotted. The spectra above threshold are

narrower by a factor ∼ 10 compared to the spectra below threshold and the peaks are

slightly red shifted due to reabsorption. In this chapter this reabsorption effect is of minor

importance, but we will revisit this effect in chapter 5 and show how reabsorption can lead

to spectrally tunable random lasers.

Figure 2.4 shows (a)-(b) the peak and (c)-(d) the integrated spectral radiance versus

the excitation power. To compare the threshold behavior of the three random lasers, the

intensities were normalized to the value at 2.1 µW. The normalization constants for the peak

spectral radiance were 47, 105, 291 counts/s for Nile Blue, Cresyl Violet, and Rhodamine

respectively. As expected the highest quantum efficiency gain medium thus returns the

highest absolute output power below threshold. We note though that differences in absolute

output power are also caused by varying absorption cross sections. The peak spectral

radiance shows a clear threshold for all the three random laser systems around 100 µW.

After crossing the threshold, the spectral peak values become comparable and are all on the

order of 1·106 counts/s at a pump power of 840 µW. The increase in absolute peak spectral

radiance is thus higher for the Nile Blue and Cresyl Violet random lasers compared to the
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2.3. Random laser model

Rhodamine random laser. As a consequence the threshold of these low quantum efficiency

lasers is more pronounced in Fig. 2.4(a) and (b).

In a conventional laser angular redistribution of light emission causes a threshold in the

spectrally integrated power of the output beam irrespective of the chosen gain medium.

However, in the experimental results shown in Fig. 2.4(c)-(d) we observe that for the ran-

dom laser with the highest quantum efficiency gain medium (Rhodamine) such a threshold

in the integrated spectral radiance is absent. The integrated spectral radiance increases

linearly for all excitation powers. The random lasers made of lower quantum efficiency

sources do show a threshold in the total output power versus input power graph.

2.3 Random laser model

Standard lasers are described with rate equations [15] describing the number of photons in

the cavity mode, q(t), and the number of molecules in the upper laser level, N(t). For a

four-level system it is usually assumed that only the population of the ground state and

the upper-laser level are significant. This assumption significantly simplifies the population

rate equations of Sec. 2.1. In a conventional laser, the cavity mode and its cavity decay

time are well-defined. In contrast, the number of modes that contribute to lasing in a

diffusive random laser is very high (typically on the order of a few thousand). All these

modes have different center frequencies and different cavity decay times. In our random

laser model, the lasing modes are lumped together into a single “mode” with an effective

cavity decay rate. Furthermore, to monitor the total output energy of the random laser, we

extend the laser rate equations with an equation describing the number of photons, w(t),

emitted outside the lasing mode

dq

dt
= −qγc + βγrNq + βγrN, (2.8)

dw

dt
= −wγc + (1− β)γrN, (2.9)

dN

dt
= R−Nγtot − βγrNq. (2.10)

Here, R is the pump photon rate, γc is the effective cavity decay rate and γtot is the total

decay rate with γtot = γr + γnr where γr and γnr are the radiative and nonradiative decay

rates respectively.

As discussed in Sec. 1.1.5, the spontaneous emission factor β describes what fraction

of spontaneous emission events contributes to lasing [107]. Due to the absence of angular

mode selection in a diffusive random laser, the β-factor of the effective laser “mode” reduces

to describing what part of the spectrum contributes to the laser light. The above threshold

spectrum thus suffices for distinguishing photons inside and outside the lasing mode: for

photons emitted in the wings of the spectrum stimulated emission is neglected in rate Eq.

(2.9), whereas for photons emitted into the peak of the spectrum, Eq. (2.8), stimulated

emission is added to the spontaneous emission rate. The random lasers considered here have

a smooth spectrum above threshold and are well in the diffusive regime: `� L where L is

the characteristic system length. The particular cases of random lasers outside the diffusive

regime or with narrow spectral features [85] require different formulations [86], which we

discuss in more detail in chapter 6. In short, these type of random lasers do not have

an isotropic mode selectivity and the β-factor ceases to be only spectrally dependent. We

determine the β-factor for the three random lasers by calculating the ratio of the integrated
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spectra above and below threshold after normalizing to the peak value [107]: for Rhodamine

β = 0.099, for Cresyl Violet β = 0.088, and for Nile Blue β = 0.0763.

To infer the threshold, the steady-state solutions to Eqs. (2.8)-(2.10) for the number of

photons in the peak and the wings of the spectrum are calculated

q = − 1

2βφ
+

R

2γc
+

1

2

√

(

1

βφ
− R

γc

)2

+ 4
R

γc
, (2.11)

w =

(

R

γc
− q

)

1− β

φ−1 − β
. (2.12)

Above threshold the slope of the solution for q changes and the β-factor and φ determine

the “smoothness” of the transition. Far below and far above threshold, q and q+w depend

linearly on R. Analytical expressions for the threshold for the peak and integrated spectral

radiance are obtained by extrapolating the linear expressions for the far above threshold

number of photons to q = 0 and q + w = 0:

Rpeak
th =

[

(βφ)−1 − 1
]

γc, (2.13)

Rint
th =

[

(βφ)−1 − β−1
]

γc. (2.14)

Thus, it is wrong practice to use Rint
th to find the threshold of a random laser, because

Rint
th → 0 when φ → 1. A unit quantum efficiency random laser that is analyzed by its

integrated spectral radiance falsely suggests a thresholdless laser, one of the holy grails in

laser physics [108, 109]. Equation (2.13) and (2.14) also emphasize that a clear definition

of the quantity that is plotted versus the input power is required to be able to compare

thresholds of different random lasers.

A fit of the experimental peak spectral radiance with Eq. (2.11) gives φ and R/γc. This

second fit parameter scales the power axis. A third fit parameter scaled the y-axis. These

fits are shown in Fig. 2.4(a)-(b) and yielded the following values for the quantum efficiency:

Rhodamine φ = 1± 0.09, Cresyl Violet φ = 0.57 ± 0.04, and Nile Blue φ = 0.25 ± 0.02. A

systematic deviation might be caused by the method used for estimating the β-factor [107].

A single random laser experiment thus suffices for analyzing the quantum efficiency of a

light source in a complex medium. Using Eq. (2.12) and the measured values for β and φ

we can make a theoretical prediction for the integrated spectral radiance versus excitation

power. These theoretical curves are plotted in Fig. 2.4(c)-(d) and are in great agreement

with the experimental data.

As a rule of thumb the β-factor and φ can be determined directly without fitting from

the logarithmic input-output plots. Fig. 2.5 illustrates this rule of thumb procedure by

considering curves for the peak and integrated spectral radiance calculated using Eqs.

(2.11)-(2.12). To find β and φ in these log-log plots, the line connecting the far below

threshold output intensities needs to be extrapolated to the above threshold region. The

extrapolated line runs parallel to the line connecting the above threshold data points. The

ratio between the extrapolated below threshold line and the above threshold line returns

φ in the case of the integrated spectral radiance, and βφ in the case of the peak spectral

3By using the spectra below threshold rather than the neat dye spontaneous emission spectra of the gain

media, the β-factor is reduced to describing the narrowing of the spectrum. The main advantage of using

only spectra obtained from the multiple scattering samples, is that, to a large extent, they automatically

take into account reabsorption. Therefore reabsorption in Eqs. (2.8)-(2.10) can be neglected. Technically,

this β-factor ceases to be the true spontaneous emission factor, although deviations are only of order 1.

40



2.3. Random laser model

βφ
φ

βφ φ

(a) (b)

Figure 2.5: Theoretical illustration of the rule of thumb for determining the quantum efficiency and

the spontaneous emission factor in random lasers. Values used: β = 0.1 and φ = 0.05. (a) log-log

plot of the peak spectral radiance (black line) versus pump rate. Gray line: extrapolated below

threshold peak spectral radiance. The ratio between the below threshold peak spectral radiance

and the peak spectral radiance equals βφ as illustrated in the lower panel. (b) log-log plot of the

integrated spectral radiance (black line) versus pump rate. Gray line: extrapolated below threshold

integrated spectral radiance. The ratio between the below threshold peak spectral radiance and the

peak spectral radiance equals φ as illustrated in the lower panel.

radiance. Using a Taylor expansion for low pump rates, one can confirm these ratios an-

alytically from Eqs. (2.11)-(2.12). Applying the rule of thumb to our data in Fig. 2.4(b)

and (d) gives values for β and φ that lie within a factor 2 from the fitted values. From this

procedure one understands that log-log input-output graphs are more insightful than linear

plots in the field of random lasers.

The remarkable observation of a different behavior of the integrated spectral radiance,

that is the total emitted power, for the three random lasers as a function of input power

is well explained by the concept of CPS and CAS. The random laser threshold indicates

the transition from spontaneous emission to stimulated emission as the main mechanism

of radiation. In the case of a gain medium consisting of sources with near unity quantum

efficiency, this transition does not influence the ratio between the number of excitation

photons that are absorbed and the number of photons that are emitted: the total emitted

power scales linearly with the total absorbed power. Hence, we classify these high quantum

efficiency dye molecules as CPS for light. The threshold in the peak spectral radiance simply

indicates the energy is spectrally redistributed from the wings to the peak of the spectrum.

For a gain medium consisting of sources with a low quantum efficiency, the transition

from spontaneous emission to stimulated emission also changes the ratio between the non-

radiative and the radiative decay channels. The number of transitions is conserved but the

load of the radiative decay channel is decreased causing the total emitted power to scale

non-linearly with the pump power. Low quantum efficiency molecules should be classified
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as CAS for light as will be discussed in the following section.

2.4 A classical dipole source in a complex environment

In the previous section we showed how in a random laser invoking stimulated emission of

radiation changes the “impedance” of a radiative transition, thereby changing the output

power in the case of a low quantum efficiency source. An alternative knob for changing the

impedance of the radiative transition is by changing the spontaneous emission decay rate.

Such a change can be achieved photonically by engineering the LDOS at the position of

the source. In this section, we analyze the output power of a widely used classical dipole

source in a complex medium and argue that it is equivalent to a source with a low quantum

efficiency. Then a generalized expression for a four-level source is introduced that is based

on the rate equation analysis in Sec. 2.1. This generalized expression incorporates both

high and low-quantum efficiency sources.

For a point source with constant amplitude, a CAS by definition,

j(r, t) = j0δ(r −Rs)exp(−iωt) + c.c. (2.15)

the output power can be calculated by using Green functions. A Feynman representation

of the Green function4 Gω describing propagation to r from a unit source (j0 = 1) located

at Rs in presence of a scatterer at Rx is

Gω(r,Rs) = ~+ × ~. (2.16)

In a homogeneous background, this Green function is given by

Gω(r,Rs) = gω(r−Rs) + gω(r−Rx)t(ω)gω(Rx −Rs). (2.17)

Here gω is the bare Green function and t(ω) is the t-matrix of the scatterer. To find

out the power, Psrc, radiated by the source in Eq. (2.15) we integrate the divergence of

the cycle-averaged current 〈J〉cycle = 〈
(

∂Ψ
∂t

)∗∇Ψ〉cycle for an infinitesimally small volume

around the source, where the wave amplitude is related to the Green function by Ψ(r, t) =

j0Gω(r)e
iωt + c.c.. The cycle-averaged current and its divergence read

〈J〉cycle = iω|j0|2Gω∇G∗
ω − iω|j0|2G∗

ω∇Gω, (2.18)

∇ · 〈J〉cycle = iω|j0|2Gω∇2G∗
ω − iω|j0|2G∗

ω∇2Gω. (2.19)

With definition (1.40) of the Green function at hand, ∇2Gω(r) = −k2ε(r)Gω(r)− δ(r), the

above expression simplifies to

∇ · 〈J〉cycle =− iω|j0|2Gωk
2ε(r)G∗

ω − iω|j0|2Gωδ(r)

+ iω|j0|2G∗
ωk

2ε(r)Gω + iω|j0|2G∗
ωδ(r), (2.20)

=2ω|j0|2δ(r)ImGω. (2.21)

The last step is only valid when ε is real. However, these ε terms vanish in any case when

integrating over an infinitesimal volume around the source as long as they do not contain

4In contrast to chapter 1 the spectral dependence of the Green functions is important here, since light

sources often involve multiple frequencies. We therefore denote the frequency of the Green functions explic-

itly in this section by using a subscript.
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delta functions at the source position. Using Eq. (2.20), the output power normalized to

the output power in vacuum is found

PCAS
src

/

P0 =

∫

V→0
∇ · Jdτ

/
∫

V→0
∇ · J0dτ =

4πc

ω
ImGω(Rs,Rs) ≡

4π2c3

ω2
ρ(Rs, ω),

(2.22)

where P0 is the emitted power without the scatterer present and ρ is the LDOS. The final

step is only valid for absorption-free environments. We prefer to phrase our discussion in

terms of LDOS, but the reader is notified that external absorption can easily be included by

replacing the LDOS with5 ω
πc2

ImGω. The emitted power is thus dependent on the LDOS,

which acts as the inverse of a load on the source. This dependence of the output power

on the environment is valid for any complex system. Since the emitted power can both be

higher and lower compared to the vacuum situation, the CAS we introduced in Eq. (2.15) is

clearly different from a CPS. This result might be counterintuitive, but can be interpreted

as follows. Feedback onto the source induced by scattering requires the source to radiate

more or less energy, in order to keep the amplitude of the source constant.

Source (2.15) with a constant amplitude is precisely the source that was used to derive

the C0-correlation in Sec. 1.3.2. When the LDOS of a medium exhibits strong spatial

fluctuations, the output power of a CAS will depend on the source position correspondingly.

As a consequence these fluctuations in the output power result in speckle patterns with an

offset in intensity compared to the ensemble averaged intensity. These offsets yield the

infinite range correlations induced by a source. The equivalence of the C0-correlation with

fluctuations in the LDOS [110] is thus a natural outcome of starting the analysis with a

CAS in the first place.

2.4.1 Generalized expression for a source

The steady-state rate equation analysis in Sec. 2.1 showed that the photon production rate

for a source with nonradiative and radiative decay channels in the absence of stimulated

emission is proportional to Γe
γr

γr+γnr
. When γnr � γr, the output power normalized to the

output power in vacuum equals γr/γ
(0)
r = ρ(Rs, ω)

4π2c3

ω2 , where we have applied Fermi’s

Golden Rule to express the radiative decay rate in terms of LDOS. This power is precisely

the expression found for the CAS in Eq. (2.22). Therefore we conclude that a low quantum

efficiency source is accurately described by a CAS. Our goal is to generalize the axiomatic

expression for CAS, in such a way that the new expression incorporates high quantum

efficiency sources as well. To do so, we adjust the source term such that the resulting power

becomes proportional to Γe
γr

γr+γnr
, that is

Psrc/P0 =
γr

γr + γnr

/

γ
(0)
r

γ
(0)
r + γnr

=
4π2c3

ω2
ρ(Rs, ω)

γ
(0)
r + γnr
γr + γnr

. (2.23)

This equation implies the original expression (2.15) for a CAS needs to be adjusted to

j(r, t) =

√

Γe

γr + γnr
δ(r − r0)exp(−iωt) + c.c.. (2.24)

5The relationship between the LDOS and the imaginary part of the Green function sometimes appears

in the literature with an additional minus sign. This sign is caused by multiplying the scalar Helmholtz Eq.

(1.31) with a factor -1.
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This is our generalized expression for a light source. In the case of a CPS (γnr = 0), the

output power is independent of the environment, whereas in the case of a CAS (γnr � γr)

the output power depends on the radiative decay rate and thus the local environment of

the emitter. The amplitude of a CAS is given by
√

Γe/γnr. In our derivation we have

assumed a constant, non-photonic excitation rate and a rapidly decaying atomic coherence.

Our analysis needs to be expanded when the system is pumped into saturation, since in

the case of saturation a change in the total decay rate will also change the excitation rate.

To find the correct wave function from a single source or collection of sources,

ψ(r) =

∫

Gω(r, r0)j{Gω(r0, r0)}dr0, (2.25)

then becomes very involved since it requires knowledge of the Green function for both the

propagation and the generation of light. Although this dramatically hinders analytic cal-

culations, it should be straightforward to correctly adjust the source strength in numerical

calculations as we show in the next section. Introducing stimulated emission into our anal-

ysis and eventually into Eq. (2.24) leads to an increase in the radiative decay rate. This

increase leaves a CPS unaltered, but a CAS will start to look more like a CPS. Stimulated

emission and the LDOS can thus both be used to engineer light sources with γr/γnr as

control parameter.

2.5 Numerical example: 1D localization

In this section it is shown how a CAS and CPS lead to very different results in numerical

calculations. A clear definition of the used source is therefore essential. Our goal is to

find a theoretical estimate for the localization length in a 1D random system from the

ensemble averaged intensity distribution of an embedded source. Figure 2.6 illustrates the

system. This system becomes experimentally relevant in the next chapter, when microwave

propagation is studied in a (1+1)D system. To find the localization length, we set up a

transfer matrix model [111, 112]. The transfer matrix S relates the incoming electric field

E0 to the transmitted electric field in layer m+ 1 Em+1.

[

E+
0

E−
0

]

=

[

S11 S12
S21 S22

] [

E+
m+1

E−
m+1

]

. (2.26)

Here the + and − denote a forward and a backward propagating wave respectively. The

total transfer matrix is calculated by multiplying transfer matrices of the interfaces Ijk

between the bars and air with diagonal propagation matrices Lj :

S =

m
∏

v=1

I(v−1)vLv =

[

e−iβjdj 0

0 eiβjdj

]

; Ijk =
1

tjk

[

1 rjk
rjk 1

]

, (2.27)

where rjk and tjk are the Fresnel complex reflection and transmission coefficients respec-

tively. The electric field at position x in layer j of the medium can be calculated by using

the transfer matrices to the left S′
j and right side S′′

j of the layer:

Ej(z) =
S′′
j11e

−iβj(dj−z) + S′′
j21e

iβj(dj−z)

S′
j11S

′′
j11e

−iβjdj + S′
j12S

′′
j21e

iβjdj
E+

0 , (2.28)
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Figure 2.6: (left) The transfer matrix model calculates the intensity distribution inside a 1D dielectric

stack with refractive indices n0 and n1 due to a source at z0 (dashed line). (right) The dressed Green

function describing propagation from the source z0 to z inside the hostlayer has four contributions.

The higher order terms due to repetitive scattering from the left and right stack are included by

geometric series.

where βj = k0nj with k0 the vacuum wave number and nj the refractive index of the layer,

and dj is the thickness of layer j.

The above formalism only considers side excitation. In order to take the excitation from

a source into account we expand our analysis with a Green function approach. We assume a

unit CAS at position z0 in the middle of a hostlayer with thickness Ld that is surrounded by

a stack on the left and right side. This amplitude source radiates a propagating wave with

amplitude i
2βh

exp(iβh|z − z0|), where βh denote the propagation constant in the hostlayer.

The reflection coefficient of the left rL and right stack rR can be calculated with transfer

matrices. The dressed Green function inside the hostlayer at position z is then constructed

out of four parts [113], as depicted graphically on the right side of Fig. 2.6:

G(z, z0, ω) =
i

2βh
(a1 + a2 + a3 + a4), (2.29)

a1 =
exp(iβ|z0 − z|)

1− rLrRexp(iβ2Lp)
(2.30)

a2 =
rRexp(iβ(Lp − z0 − z))

1− rLrRexp(iβ2Lp)
(2.31)

a3 =
rLexp(iβ(Lp + z0 + z))

1− rLrRexp(iβ2Lp)
(2.32)

a4 =
rRrLexp(iβ(2Lp − |z − z0|))

1− rLrRexp(iβ2Lp)
. (2.33)

These four elements are all the sum of a geometric series as seen by the denominator,

while the numerator describes how the wave can reach point z without having made a full

round trip in the host layer: namely without reflecting from the boundaries (a1), with one

reflection from either the left (a3) or the right boundary (a2) or by reflecting once from

both the left and the right boundary (a4).

Since we now know the forward and backward propagating wave entering the left and

right stack, we can use the transfer matrix model, Eq. (2.28), to recover the electric field

in the whole sample. The forward propagating wave E+
0 for the right sample consists of

i
2β (a1(

1
2Lp) + a3(

1
2Lp)) and for the left sample of i

2β (a1(−1
2Lp) + a2(−1

2Lp)).

A system consisting of 50 layers on the left side and 50 layers on the right side of the

host layer is considered. The frequency of the radiation is set at 9 GHz and the layers have
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(a) (b) (c)

Figure 2.7: (a) Calculated output power versus imaginary part of the Green function for 100 1D

stacks of air and nylon layers on a log-log plot at 9 GHz. Both quantities are normalized to their

values in vacuum. Light gray disks: power calculated using net current generated by the source.

Gray open circles: power calculated using intensity in the outer layers. The black line indicates

equality between the y-and x-axis. (b) Ensemble averaged amplitude profile for 100 (black) and

1000 (gray) samples obtained with a CAS. (c) Ensemble averaged amplitude profile for 100 (black)

and 1000 (gray) samples obtained with a CPS.

refractive indices of 1 (air) and 1.73 (nylon). The thickness of the air layers is given by a

Poissonian distribution with mean 10 mm. The thickness of the nylon layers is fixed at 3

mm. Figure 2.7(a) shows a plot of the output power of the source versus the imaginary

part of the Green function for 100 different realizations of disorder. The output power was

evaluated by both calculating the net current around the source and by calculating the

intensity in the outer layers. The two methods yielded identical results. As expected from

our analysis in Sec. 2.4 the output power is linearly related to the imaginary part of the

Green function at the source position.

Next, we consider the ensemble averaged amplitude distribution of 100 and 1000 samples

obtained with a CAS as plotted in Fig. 2.7(b). The amplitude profiles do not converge,

which becomes particularly clear at the right side of the profiles. Instead, the ensemble

averaged amplitude profiles are dominated by a handful elements of the ensemble that

happen to have a high LDOS at the source position. In the case of a CAS ensemble

averaging is of little use. For a CPS on the other hand, displayed in Fig. 2.7, the ensemble

averaged intensity profile converges. The profiles can be used to fit a localization length

ξ. For the parameters under consideration, we find ξ = 6.1 cm in the case of a CPS.

Remarkably the localization length obtained in case of the CAS ensemble averaged data

is significantly higher, namely ξ = 9.7 cm, which again stresses the importance of using a

well-defined source.

2.6 Conclusion and discussion

We have developed a new classification scheme for four-level light sources. Sources with

unit quantum efficiency are classified as constant power sources for light and those with

a low quantum efficiency are classified as constant amplitude sources. We demonstrated

that this classification directly influences the interpretation of photonic experiments. In

the case of a CAS, both stimulated emission and changes in the LDOS alter the load of

the radiative transition and thereby the output power. Full control over sources could be

achieved when the LDOS is made artificially small, e.g., by constructing photonic crystals

around the source, and at the same time the power of a control beam is used to engineer

the radiative decay rate by stimulated emission.
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In random lasers, stimulated emission leads to an increased output power for low quan-

tum efficiency sources. An extended rate equation model enables us to extract the quantum

efficiency from the development of the integrated spectral radiance as a function of pump

power. Our experimental studies emphasize the importance of a clear definition of the

reported threshold and illustrate a possible application of random lasers in the future.

In passive random media, recently predicted infinite range correlations are caused by an

interaction between a CAS and a nearby scatterer [51]. Since for a classical dipole source

this C0 correlation is equivalent to fluctuations in the LDOS [110, 114], it is very likely that

a CPS will yield different results. For a CPS the equivalence between intensity fluctuations

and decay rate fluctuations [115] disappears and as a consequence decay rate fluctuations

cannot be used to measure the C0-correlation. Experimentally, infinite range intensity

correlations are probably easier to observe by a fluctuating LDOS at the excitation rather

than the emission frequency. Since in such a situation the use of high quantum efficiency

sources also leads to different output power. In practice, this requires a more complicated

measurement scheme since emission can then no longer be used to simultaneously measure

the LDOS and the C0-correlation [116]. Our work assists in choosing the right type of

source for the desired measurement. Studying how other type of sources such as three-

level systems and second harmonic generation fit within our framework might lead to new

insights on the behavior of sources in random media.
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CHAPTER3
Probing the dynamics of Anderson localization through spatial

mapping

In this chapter (1+1)D transverse localization of electromagnetic radiation at microwave fre-

quencies is studied by two-dimensional spatial scans. Since the longitudinal direction can be

mapped onto time, our experiments provide unique snapshots of the build-up of localized waves.

The ensemble averaged evolution of the wave functions is in great agreement with numerical

calculations. The excitation of the system with a source in its close vicinity leads to oscillatory

behavior of the wave functions. These oscillations are explained in terms of a beating between

the system’s eigenstates.

3.1 Transverse localization

Recent years witnessed a renaissance in experimental studies on Anderson localization.

This phenomenon, introduced in Sec. 1.2.5, originally described the absence of diffusion

of electrons in random lattices due to interference [61]. Since Anderson localization is in

essence a wave phenomenon, physicists have successfully extended the scope of localization

studies to electromagnetic waves [117–120], ultrasound [69], and matter waves [121–123].

Similar to other phase transition phenomena, dimensionality plays an important role.

For d ≤ 2, all states are localized, whereas for d = 3 a phase transition from diffusive to

localized behavior occurs at a critical scattering strength [62]. In the special case of trans-

verse localization, formulated by De Raedt et al. [124], one dimension is designed not to

be disordered, whereas disorder is introduced in the other dimension(s). As a consequence,

waves spread out in the disorder-free dimension, but are confined in the other dimensions.

Waves are always localized in the transverse directions as long as the transverse system

length L is larger than the localization length ξ. In the paraxial limit transverse localiza-

tion is described by an equation which closely resembles the time-dependent Schrödinger
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equation [124] where z plays the role of time

i
∂ψ

∂z
=

1

2kn0
Hψ, (3.1)

with ψ the wave field and k the vacuum wave number. The effective index of refraction is

given by n20 ≡ L−1
∫

L n
2(x)dx. The Hamiltonian is defined as

H ≡ ∂2

∂x2
+ k2[n2(x)− n20]. (3.2)

Effectively, transverse localization reduces the number of spatial coordinates in the system:

the coordinate along which the sample is extruded can be seen as the time-axis in the time-

dependent Schrödinger equation. Stationary transverse localization experiments could thus

provide a unique insight into how a localized wave develops over time. Studying and

understanding this intriguing aspect of transverse localization experimentally is the central

topic of this chapter.

Pivotal experiments on weakly scattering disordered photonic lattices [34, 125, 126] have

focussed on the observation of localized wave functions after a certain fixed propagation dis-

tance and the effect of nonlinearity on the transverse localization length. Both theoretical

and experimental studies have revealed interesting dynamical properties of the periodically

kicked quantum rotator which bears close resemblance to Anderson localization [127, 128],

suggesting that studying the dynamics of localization itself is important. The unique prop-

erty of transverse localization experiments that enables us to map one spatial dimension

onto time is ideally suited for this purpose.

The experimental apparatus used to study transverse localization with microwaves is

discussed in Sec. 3.2. Ever since localization was introduced for classical waves, the issue

of absorption has been the subject of immense discussions and various opinions [117, 129].

Tackling this issue has shown to be unavoidable in any experiment [66, 67, 130–132]. Our

measurements are performed on samples consisting of scattering bars placed parallel to

each other in an open system. In such samples out-of-plane scattering plays the role of

dissipation and we therefore analyze what the impact of these losses is on our experiment.

The size of the nylon bars is small compared to the wavelength and therefore guided modes

are leaky in x-direction. As a consequence our system cannot be analyzed in terms of a

coupled set of discrete Schrödinger equations [125]. The experimental results on disordered

samples are presented in Sec. 3.3. Instead of probing the intensity at the end of our samples,

our experiment allows us to study the evolution of the extent of the waves as a function of

propagation distance. In Sec. 3.4, the experimental results are compared with numerical

solutions to the 2D Schrödinger-like equation. Interesting non-stationary behavior of single

wave functions is observed. These oscillations are analyzed by decomposing these functions

into the system’s eigenstates semi-analytically. We discuss how the source of radiation that

is used to excite the system influences the dynamics of the wave functions.

3.2 Experimental methods

Figure 3.1 shows a sketch of the experimental apparatus. Samples were fabricated by placing

nylon bars (3 mm × 10 mm × 1000 mm) on top of an oxygen free copper plate (500 mm ×
1000 mm). These nylon bars (n = 1.73 at 10 GHz [133]) are the scatterers in our system.

Disorder was introduced into the system by varying the spacing between the nylon bars.
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x

z

L

y

Figure 3.1: Experimental set-up. Nylon bars (red) are placed on top of an oxygen free copper plate,

the distance between the bars is random in the transverse x-direction. The z-direction is disorder

free. One of the two microwave antennas (black disks) is scanned over the sample and a vector

network analyzer is used to measure the transmitted spectrum between the two antennas. Each

scan along the x-axis is equivalent to a snapshot in time.

The spacings were chosen randomly from a Poissonian distribution with a mean of 10 mm,

and a minimum of 1 mm. Introducing Poissonian disorder makes sure that the presence of

stop band effects is negligible [134]. Styrofoam spacers ensured parallel alignment of the

nylon bars. The samples were studied by measuring the microwave transmission spectrum

around 10 GHz using a vector network analyzer (Rhode and Schwartz ZVA 67). Two coax-

to-waveguide adapters functioned as antennas. The detection antenna was scanned over

the sample by using a stepper motor (Newport ESP 301) and a home-built scanning stage.

A typical two-dimensional scan (40 cm × 40 cm with ∼4000 spatial measurement points

and 200 spectral points) took approximately 2.5 hours. The excitation antenna was aligned

along the z-axis, whereas the detection was aligned along the y-axis.

The end facets of both antennas are placed in the near-field of the sample. This mea-

surement scheme has two advantages. First, the source radiates over a large range of solid

angles that is caused by diffraction of waves at the end facet of the waveguide adapter. In

contrast to plane wave excitation, such a source has the capability of exciting modes with

different k-vectors at once. Second, the evanescent waves that are due to wave guiding in

the nylon bars can be detected.

3.2.1 Measurement characterization

To test our experimental apparatus and to investigate the photonic strength of the nylon

bars, periodic structures were used. An ordered sample was fabricated with a lattice spacing

of 20 mm. The transmission spectrum of such a Bragg stack [135, 136] was measured in

a waveguide configuration by putting a second copper plate on top of the sample and by

placing the two antennas opposite to each other perpendicular to the position of the bars.

The spectrum of an empty waveguide was taken as a reference. Figure 3.2(a) shows that the

transmission of the Bragg stack drops significantly around 7, 13, and 20 GHz. In 1D, the

spectral and angular positions of the stopbands in a periodic structure can be calculated

analytically [136]. The calculated stopbands at normal incidence are shown by the gray

shaded areas in the spectrum of Fig. 3.2(a). The minima in transmission correspond with

the position of the calculated stopbands, from which we conclude our sample is photonic

and the refractive index of the nylon bars is in agreement with the used literature value.
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Figure 3.2: (a) Measured transmission spectrum for a Bragg-stack of nylon bars and air layers.

The small cartoon illustrates the position of the two antennas with respect to the alignment of the

nylon bars. The gray shaded areas indicate the calculated stop bands. The structure consists of

alternating air (n = 1, d = 17 mm) and nylon (n = 1.73 and d = 3 mm) layers. (b) Calculated

band diagram for TM and TE polarized waves. Black dashed line: frequency of spatial scan. (c)

False color image of the measured amplitude distribution above the surface of the Bragg stack at

12.2 GHz. White lines: angular position of the TM stop band. White scale bar: 100 mm.

The complete band diagram, Fig. 3.2(b), shows that TM and TE polarized waves behave

differently when the angle of incidence becomes larger. For TE modes propagation along

the bars (corresponding to an incident angle of 90◦) is impossible for frequencies larger than

∼10 GHz, whereas for TM modes propagation along the bars is allowed until ∼15 GHz.

Moreover, around 11 GHz waves are allowed to propagate in nearly all directions for TM

modes. The two-dimensional scanning scheme enables us to study the full band diagram

experimentally. Figure 3.2(c) provides the distribution of the field amplitude obtained by

a two-dimensional spatial scan above the surface of the Bragg stack at 12.2 GHz. The data

was normalized for every row to enhance the visibility of the wave function far away from

the source. Most of the measured radiation propagates in forward direction parallel to the

orientation of the bars. For a small range of angles the radiation is suppressed. These

angles correspond with the calculated stopbands of the TM modes. Thus, the orientation

of our detection antenna is such that it primarily picks up the evanescent waves of the TM

mode, which is a consequence of the perpendicular alignment of the detection and excitation

antenna.

The impact of losses

Our “open” experimental configuration requires that we analyze the role of out-of-plane

scattering in our experiment. In Fig. 3.3(a), the integrated transmitted intensity between

the two antennas is plotted versus propagation distance for a 1D photonic crystal with

2 cm lattice spacing at 9.2 GHz and 12.2 GHz. For the measurement at 12.2 GHz, the

integrated intensity drops by about 50% in the first 10 cm. After 300 mm of propagation

the integrated intensity flattens off. A similar trend is observed for the data at 9.2 GHz.

The first 100 mm witnesses a drop in intensity of a factor 4, but from that point onwards

the integrated intensity hardly decreases anymore. These trends indicate that contributions

from out-of-plane scattering are foremost present close to the excitation antenna. Far away

from the excitation antenna, the main contribution of the detected fields stems from the

evanescent waves surrounding the nylon bars. These waves experience very low loss and

therefore the integrated intensity hardly decreases anymore.

Theoretically the role of homogeneous dissipation or out-of-plane scattering can be an-

alyzed by adding a term −iα to H in definition (3.2) creating an effective Hamiltonian
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3.3. Results on disordered samples

α = 0

α = 0.5

α = 1

(b) (c)(a)

Figure 3.3: (a) Integrated transmitted intensity versus propagation distance measured for a 1D

photonic crystal at 12.2 GHz (black dots) and at 9.2 GHz (gray dots). The data for 9.2 GHz has

been scaled down with a factor 10. (b) Calculated mode amplitude profile versus transverse distance

for different values of the loss coefficient α after 350 mm of propagation. Red: α = 0 cm−2. Blue:

α = 0.5 cm−2. Black: α = 1 cm−2. (b) Calculated integrated output versus loss coefficient on a

semilog scale.
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Figure 3.4: Experimentally determined amplitude distribution for (a) an ordered and (b) a dis-

ordered sample at 9.2 GHz . Every row is normalized independently. The scale bar denotes 100

mm.

that also describes losses. The amplitude profile is calculated after 350 mm of propagation

for a single realization of disorder for various values of α. To calculate the amplitude,

partial differential Eq. (3.1) is rewritten as a set of ordinary differential equations in z by

using the method of lines [137]. After separating the real and imaginary part of ψ, we use

MatLab to solve the equation numerically by means of a Runge-Kutta algorithm. The xz-

plane is discretized in 600×200 steps. Figure 3.3(b) plots the amplitude profile for different

values of α. For higher values of the absorption coefficient, the amplitude decreases, but

the wave function shape does not alter. We conclude from these curves that absorption

merely scales the wave intensity thereby supporting our experimental approach of study-

ing transverse localization in the possible presence of out-of-plane losses. In Fig. 3.3(c),

the integrated output is plotted versus the absorption coefficient. The output intensity

clearly attenuates exponentially, confirming that homogeneous dissipation only introduces

an exponential scaling [130].

3.3 Results on disordered samples

The propagation of waves within an ordered and a disordered sample is shown in Fig.

3.4. The excitation frequency was set at 9.2 GHz. At this frequency the angular position
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(a) (b)z (mm)

Figure 3.5: (a) Participation ratio versus propagation distance at 9.2 GHz for an ordered sample

(blue) and a disordered ensemble (red). Red line: calculation for an ensemble of 100 disordered

samples. Blue line: linear fit. (b) Transverse ensemble averaged amplitude distribution for different

propagation distances. Red line: exponential fit.

of the stop gap hardly affects the diffraction from the excitation antenna. The data was

normalized for every row in the xz -plane to enhance the visibility of the wave function far

away from the source. In the ordered sample, Fig. 3.4(a), waves spread out ballistically

as a function of propagation distance. However, for the disordered sample, Fig. 3.4(b),

the wave propagation is strikingly different: the wave initially spreads out, but at a certain

stage stays confined to a bounded region. In contrast to the amplitude distribution in

the ordered sample, the amplitude in the disordered sample is not symmetric around the

source position. These type of two-dimensional spatial scans provide us with exceptional

data for analyzing transverse localization in unprecedented detail. In this section, we start

by studying ensemble averaged data and then focus on single realizations.

3.3.1 Ensemble averaged data

In order to quantify the transverse confinement of wave intensity as function of propagation

distance, the inverse participation length (IPL) [138] is calculated. The IPL for a one-

dimensional intensity distribution I(x) is defined as

P (z) ≡
∫

I2(x, z)dx
(∫

I(x, z)dx
)2 (3.3)

and has a unit of inverse length. The IPL is inversely proportional to the spread of the

wave function: a homogeneously extended wave spread out over the entire sample length

L leads to an IPL of 1/L. To obtain a reliable value for the spread of wave functions, the

ensemble averaged intensity profiles were determined by averaging over 20 realizations of

disorder.

Figure 3.5(a) shows how the inverse of the IPL develops with increasing propagation

distance for both the ordered sample and the ensemble of disordered samples at 9.2 GHz.

In agreement with the qualitative picture we obtained from Fig. 3.4, we see that the

extent of the wave intensity given by the inverse of the IPL increases linearly for the

ordered sample. For the disordered ensemble on the other hand the IPL flattens off after a

certain propagation distance. This settling of the IPL to a finite value constitutes a direct

experimental observation of the spatial evolution of transversely localized waves.
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Figure 3.6: (a) Experimental and (b) numerically calculated plots of the normalized wave function

intensity in transverse direction after 365 mm of propagation along the z-direction for different

positions of the excitation antenna at 9.2 GHz. The white lines indicate the position of the excitation

antenna. The dashed box marks an anti-diagonal wave profile. Scale bar denotes 100 mm. (c)-(e)

show calculations using mode decomposition for the area marked with the dashed box in (a) for 180,

365, and 1950 mm of propagation respectively. Beating of eigenmodes can result in (c) circular, (d)

anti-diagonal, or (e) diagonal patterns.

Besides a different evolution of the waves’ extent, the eventual spatial shape of the en-

semble averaged wave function changes while propagating through the sample. In contrast

to Gaussian shaped extended wave functions, ensemble averaged localized wave functions

obtain exponential tails. Figure 3.5(b) shows the ensemble averaged wave function profile

for three different propagation distances on a semi-logarithmic scale. Close to the excitation

source, the ensemble averaged wave function is strongly peaked in the transverse dimension.

For longer propagation distances, the intensity in the wings of the wave function increases

and the peak becomes less pronounced. The ensemble averaged wave function quenches

once the IPL saturates. Its shape is well described by an exponential. However we note

that the decay in amplitude is too little to make conclusive statements on its shape. From

an exponential fit to the data we find a characteristic length of 192 ± 6 mm. This length

might come as a surprise since in the previous chapter we calculated localization lengths for

the same type of structures that were on the order of 100 mm. The deviation between this

experimental value and this transfer matrix result is due to the excitation of the sample

by a source in the near-field. Analyzing the system by one k-vector as done in the transfer

matrix model is then invalid. In that sense, the characteristic length found by fitting the

data in Fig. 3.5(b) does not represent the localization length, but rather a localization

length averaged over several k-vectors. In the next sections, we will see how the near-field

excitation leads to another unexpected result

3.3.2 Single realizations of disorder

After having studied these ensemble averaged properties of our system, we now aim to

understand the propagation of waves for single realizations of disorder. To map a sam-

ple completely, two-dimensional scans were taken for different positions of the excitation
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Figure 3.7: Three eigenstates of the transverse localization Hamiltonian. The eigenstates are nor-

malized such that 〈un|un〉 = 1.

antenna. This measurement procedure allows us to construct excitation maps.

In Fig. 3.6(a), the spatial profile for 17 different excitation positions in one sample

after 365 mm of propagation is plotted. Based on Fig. 3.5, this distance ensures we are

looking at wave functions of which the IPL is saturated. The individually measured spatial

profiles are strongly dependent on the position of the excitation antenna. To a large extent

the detected radiation follows the position of the excitation antenna as indicated by the

white diagonal. The excitation map displays a high degree of symmetry along the diagonal.

Naively, one might expect for a localizing sample clearly isolated regions of higher intensity

that are independent on the position of excitation. Such patterns would appear as vertical

stripes in Fig. 3.6(a) and represent the localized modes of the sample. However, much to

our surprise, the spatial patterns of these isolated regions along the transverse dimension x

are dependent on the excitation position. In fact, for the measurement shown in Fig. 3.6,

some patterns appear to be anti-diagonal.

3.4 Model

In order to build a basis for understanding the ensemble averaged data and the remarkable

excitation dependence of localized wave functions in single realizations of disorder, the

system is analyzed numerically and semi-analytically. Numerically, the system is solved by

rewriting the Schrödinger like Eq. (3.1) as a set of ordinary differential equations and using

a Runge-Kutte routine, as explained in Sec. 3.2. The initial wave at z = 0 is modeled

as a Gaussian with a width of 1.15 cm given by the aperture of the excitation antenna.

To compare the numerical calculation with experiment, we convolved the intensity of the

calculated wave function with the aperture of the detection antenna.

In Fig. 3.5(a), the mean of the participation length for an ensemble of 100 realizations

of disorder was shown. This theoretical value for the waves’ extent falls within the stan-

dard deviation of the experimentally determined values. Motivated by the experimentally

observed and unforeseen excitation dependence of the wave functions, we also calculated

the excitation-detection patterns. In Fig. 3.6(b), it is shown that the position and shape

of these patterns roughly correspond with the measurements. The anti-diagonal shapes are

also clearly present in our numerical calculation, indicating that they are not caused by

spurious effects such as mode perturbation due to the proximity of the receiver antenna.

An alternative analysis of the system in terms of eigenstates rather than the previous

“brute force” numerical calculation has the advantage of reducing the problem’s complexity.

When α = 0, the solutions to Eq. (3.1) can be written as a linear combination of the Hamil-

tonian’s eigenstates un(x): ψ(x, z) =
∑

n cnun(x)exp(−iλnz), where λn is the eigenvalue
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Figure 3.8: (a) Experimental and (b) calculated oscillations in the intensity profile for one sample

excited at 10.2 GHz. Every column is normalized independently. (c) Expansion coefficients for

the different eigenstates. Only two eigenstates, indicated by the stars, contribute significantly. (d)

Center of mass of the intensity versus propagation direction for both the calculated and experimental

data shown in (a) and (b).

belonging to eigenstate un and cn is the n’th expansion coefficient given by cn = 〈ψ|un〉.
The eigenstates and eigenvalues are calculated by diagonalizing a 598 × 598 matrix. The

diagonal of the matrix contains the potential k2[n2(x)−n20] and the derivative in x is approx-

imated by using central differences creating a tridiagonal matrix when assuming absorbing

boundary conditions. In principle, diagonalizing a N ×N matrix results in N eigenvalues

and eigenstates. However, most of these eigenvectors contain too high spatial frequencies,

kn > k, that are not excitable in our system. Figure 3.7 shows three calculated eigenstates

for one of the disordered samples used in experiment. By calculating the Fourier spectrum

of these eigenstates, one can analyze whether the states are excitable. As a result of this

Fourier analysis, we end up with only 30 eigenstates that obey the relation kn ≤ k for

f = 9.2 GHz. This number could have been anticipated, since the total number of modes

in our 1D system is given by 2Lf/c ≈ 30. The number of modes that are excited depends

on the source used in experiment.

The small number of modes in the system can lead to observable beatings of the sys-

tem’s eigenstates in our two-dimensional spatial scans. A prerequisite for the occurrence

of such beating effects is that more than one mode is excited in the first place. In our ex-

periment this condition is fulfilled, because we use a spatially confined source radiating in

all directions in close proximity to the sample. Alternatively, defects or scattering particles

inside the structure provide a different method for exciting modes with different k-vectors.

Figure 3.8(a) shows a clear example of beating behavior of the wave intensity in exper-

iment. The image of the scan has been rotated by 90 degrees with respect to the spatial

scans shown in Fig. 3.4. A decomposition into the system eigenstates for this particular

sample reveals just two eigenstates contribute significantly to the wave function as shown

in Fig. 3.8(c). Using only these two eigenstates and their corresponding eigenvalues, we
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calculated the z-development of the wave function in Fig. 3.8(b). To compare experiment

with theory, the center of mass was calculated for all z-positions as shown in Fig. 3.8(d).

The calculated oscillations are quantitatively similar to those observed in experiment.

In general, the number of significantly contributing eigenvectors is often higher than

two, which makes the beatings less visible. Yet, the anti-diagonal patterns shown in Fig.

3.6(a) and (b) are another observable consequence of the beating between the system’s

eigenstates. Depending on the accumulated phase during propagation, these anti-diagonal

excitation-detection patterns can in fact become circular or diagonal as shown in Fig. 3.6(c-

e). The patterns are to a large extent point-symmetric which originates from a flip in sign

of the expansion coefficients when the excitation antenna crosses the central position of the

beating oscillation.

3.5 Conclusion and discussion

We have measured how electromagnetic wave functions develop over time in localizing

samples by carrying out a (1+1)D transverse localization experiment. Because of the limited

number of modes in our system, excitation by a source in the near-field can be described

as a superposition of a few of the system’s eigenstates. The different eigenvalues and

simultaneous excitation of these eigenstates lead to observable beatings in wave functions.

Out-of-plane scattering was used as an experimental analog of energy dissipation. The

ensemble averaged extent of the wave profiles is in quantitative agreement with calculations

from a numerical solution to a Schrödinger type of equation. By introducing homogeneous

dissipation into this model, we deduce that dissipation is of no influence to the occurrence

of transverse localization except for an exponential attenuation.

Since the transverse localization scheme allows for measuring snapshots of wave func-

tions in time, it is a very convenient tool for studying the effect of different forms of disorder

on wave propagation as put forward by recent work on photonic quasicrystals [126, 139].

Our work on transverse localization and dissipation suggests that transverse localization

can also be an excellent platform for studying the influence of perturbations and partial

incoherence on localization [140]. Transverse localization experiments require samples to

be ordered in one dimension. Introducing scatterers at random positions inside the sam-

ple might reveal how strict the condition of a well aligned system is in experiment. A

single scatterer excites modes with widely varying k-vectors probably leading to beating

effects even in the case of plane wave excitation. It would be interesting to study when a

description in terms of eigenstates of the transverse localization Hamiltonian breaks down.
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CHAPTER4
Spatial threshold in amplifying random media

In this chapter the transport and generation of light in multiple scattering media with optical

gain is studied both experimentally and numerically. By imaging the spatial distribution of

light escaping from the side of the sample, the propagation depth is analyzed. Far below and

far above random laser threshold the spatial profile of emission light is independent on pump

intensity, while around threshold the spatial distribution of emission light changes profoundly.

The experimental results are explained by interpreting the numerical solutions to a set of coupled

time-dependent diffusion equations on a non-uniform spatial grid. Our studies provide a new

and easily accessible method for observing the random laser threshold.

4.1 Transport of light inside random media

Understanding the transport of light inside multiple scattering media is of paramount im-

portance for both life scientists [141] and physicists [64]. Recently, the study of light sources

inside disordered media has attracted much interest [33, 51]. In the previous chapter, the

propagation of radiation in transverse localizing samples originating from a source in the

near-field was studied. We now focus on the propagation of light in amplifying random

media where sources generate light by both spontaneous and stimulated emission.

The majority of experimental random laser studies have focussed on spectral analysis

[92, 93, 142]. The spatial distribution of random laser light inside the scattering medium is

largely uncharted territory. Understanding the propagation of light in amplifying random

media is of relevance, since it determines the number of modes involved in the lasing process

and the distribution of gain inside the medium. New side imaging techniques enabled the

determination of important transport parameters in passive random media, such as the

transport mean free path and the extrapolation length [143], and were essential in explaining

the directionality of lasing in weakly scattering active media [88]. The extrapolation length

is an important parameter in diffusion studies. This parameter depends on the reflectivity
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Figure 4.1: Schematic top-view of the experimental apparatus. Green: pump beam. Red: emission

light. The orange bars represent color filters.

at the boundaries of a diffusive sample and indicates at what distance outside the sample

the extrapolated diffusive intensity becomes zero.

In this chapter, we exploit these new techniques to study the effect of gain on the

spatial profile of emission light inside scattering samples. The experimental methods are

presented in Sec. 4.2. In Sec. 4.3, the extrapolation length and the transport mean free

path of the sample are determined. The spatial profile of emission light is studied as

function of pump power. A remarkable expansion in emission volume is observed around

the threshold. The spatial distribution of emission light in a random laser is described by

a set of diffusion equations. In Sec. 4.4, we explain how this set can be solved in three

dimensions using cylindrical coordinates. The results of the numerical calculation and the

experiment are compared in Sec. 4.5. The experiments are shown to be in qualitative

agreement with diffusion theory. The implications of our studies on other work in random

lasers is discussed in Sec. 4.6. We note beforehand that some constants in this chapter

slightly deviate from the ones in Ref. [144] due to the accumulation of knowledge over the

years. These differences have however no effect on the conclusions of our work.

4.2 Experimental methods

In Fig. 6.2 the experimental apparatus is schematically shown. Excitation light generated

by an optical parametric oscillator (Opolette, 20 Hz, 5 ns, λ = 563 nm) is focused onto

the sample by a microscope objective (Leitz, 0.25 NA). By slightly defocusing the sample

the pump spot size could be controlled. The emission collected in reflection is spectrally

analyzed using a spectrograph (Oriel MS-257, resolution 0.5 nm) connected to an EMCCD

camera (Hamamatsu, C-9100). The emission in reflection was also used to determine the

diffuse fluorescence Full-Width at Half-Maximum diameter by imaging the diffuse spot on

a CCD camera.

We extended the conventional random laser setup with the sample side imaging tech-

nique shown by the lower arm in Fig. 6.2. An aspherical lens (F/# = 1.5) collects the

light exiting the sample from the side and another lens images the sample surface onto a

CCD camera (Mightex or AVT Pike). Color filters were used in both detection paths to

remove excitation wavelengths. The sample was placed on a translation stage in order to

control the distance between the focus spot and the edge of the sample. The aspherical

lens was also placed on a translation stage to ensure the sample surface remained in focus

on the CCD camera. Figure 4.2(a) shows a typical CCD image obtained from the side
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4.2. Experimental methods

(a) (b)
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Figure 4.2: (a) CCD-image of emission from the side of the cuvette below random laser threshold.

The scale bar denotes 100 µm. (b) cut along the z-axis through the middle of the diffusive spot

normalized to the peak value. Black dashed line: cuvette boundary. Gray line: linear fit to the data

points around z = 0. The interception of the fit with the line z = 0 gives the extrapolation length.

of a sample. At the edge of the sample the intensity drops, although a hue of the diffuse

intensity remains visible. During experiments care was taken that the CCD camera did

not saturate by placing neutral density filters in front of the camera and by adjusting the

exposure time.

Samples were fabricated by suspending TiO2 particles (R900, DuPont, median particle

size 410 nm according to specifications, volume fraction 1%) in an acidic solution of 1 mM

Rhodamine 640 P in methanol. The experimental cell was a quartz cuvette (Hellma, inner

size 10×10×45 mm, wall thickness 2.5 mm). Experiments were performed within one hour

after treatment in an ultrasonic bath before significant sedimentation of TiO2 particles

occurred.

The side images of the diffusive samples allow us to analyze the sample’s extrapolation

length. Figure 4.2(b) shows a cut along the z-axis through the middle of the diffusive spot

displayed in Fig. 4.2(a). The intensity profile shows a kink at the boundary of the sample.

We determine the extrapolation length ze of the sample by first fitting the first five data

points for z > 0 with a line. The interception of this line with z = 0 then returns the

extrapolation length ze = 13.5 ± 2 µm.

The relationship between the extrapolation length and the transport mean free path is

determined by the internal reflection coefficients at the boundaries of the sample. In the

case of glass cuvettes, both the reflection at the sample-glass and the glass-air interface

need to be taken into account. This second interface causes a relatively large extrapolation

ratio ze/` of 1.77 [145]. From this ratio, we deduce that ` = 7.6 µm ± 1 µm. Enhanced

backscattering experiments [59] were also performed on the sample. The width of the cone

provides us with an alternative way of determining the mean free path. We find ` = 6.0

µm at λ = 610 nm with an estimated error of 3 µm, which is mostly due to a reduced value

for the enhancement factor [146]. These two values are also comparable with extrapolated

values found in the literature (` = 8.3 ± 1.3 µm) [147], where we note that the size of the

R900 titania particles was reported to be different from the manufacturer values [147, 148].

We conclude that the transport mean free path is at least an order of magnitude shorter

than the system length and the absorption length of the gain medium. The sample is thus

clearly in the multiple scattering regime.
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4.3 Experimental results and analysis

(a)

(d)

(b)

(c)
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Figure 4.3: (a) the peak spectral radiance (left axis, black squares) and the FWHM of the spectrum

(right axis, gray dots) versus the pump power on a loglog and a semilog scale respectively. The dark

gray line is a fit of the peak spectral radiance with the rate equations. The light gray solid line is

a sigmoidal fit to the FWHM of the spectrum and serves as a guide to the eye. (b) Contour plot

of the spatial distribution of emission light below threshold (0.2 µW). The contour interval is 0.1

times the maximum value in the plot. (c) Contour plot of the spatial distribution of emission light

above threshold (140 µW). The contour interval is 0.1 times the maximum value in the plot. (d)

Cuts along the z-axis through the center of the contour plots below (gray line) and above threshold

(black line).

The photoluminescent emission spectrum centered around 610 nm was measured for

various values of the pump fluence. Figure 4.3(a) show the peak spectral radiance and the

width of the output spectrum versus the averaged pump power. A fit of the peak spectral

radiance with the rate equations discussed in Sec. 2.3 returns a narrowing factor of 0.13.

This value is larger than the one found in Sec. 2.3. The difference is caused by the fact

that in this chapter the spectra below threshold are narrower (∼ 10 nm) due to excitation

with a smaller pump spot. Such a smaller pump spot reduces the effect of reabsorption and

thereby spectral broadening [89]. The peak spectral radiance and the spectral width show

a clear threshold around 20 µW.

The side imaging technique makes it possible to study the propagation of light in active

random media directly. The spatial profile of the random laser emission exiting the medium

from the side was monitored for all values of the pump fluence. When the focus of the pump
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4.4. Diffusion theory with gain

(a) (b)

Figure 4.4: (a) Width of the diffusive side image along the y-direction versus pump power. The

line is a guide to the eye. (b) Width of the diffusive side image along the z-direction versus pump

power. The line is a guide to the eye.

is brought in close proximity to the edge of the sample (at half the FWHM of the diffuse

fluorescent spot, ∼30 µm) the spatial distribution of emission light exiting the random laser

from the side changes around the threshold. Figure 4.3(b) and (c) show contour plots of

the spatial profile below (0.2 µW) and above threshold (140 µW). Compared to the below

threshold spatial profile, the above threshold profile of the emission light is expanded in

both y- and z-direction. The cuts along the z-axis through the center of the diffusive side

image in Fig. 4.3(d) clearly show that the maximum of the emission profile lies deeper

within the sample above threshold.

We made sure that the observed changes around threshold are not due to possible

sedimentation effects by minimizing the time between the experiments. For larger distances

between the spot and the edge of the sample the spatial distribution remains unaltered for

all pump fluences, which is another clear indication that the passive transport properties of

the sample remain constant during experiment. Moreover, once the random laser is pumped

above threshold increasing the pump rate has no effect on the distribution of emission light.

In Fig. 4.4, the widths of the diffusion profile along the y-and z-direction are shown as a

function of pump power. For the y-direction these widths were obtained after fitting the

profile with a Gaussian. For the z-direction such a straightforward fitting procedure is not

possible due to the presence of the boundary and the asymmetric lineshape. Therefore

the widths along the z-direction were determined by hand after extrapolating the data.

The graphs demonstrate that around the random lasing threshold the diffusive volume

expands, whereas far below and far above threshold the volume remains the same. The

largest changes occur between 1 and 10 µW, that is at the beginning of the threshold region

according to Fig. 4.3(a).

4.4 Diffusion theory with gain

In chapter 2, a space independent rate equation model was used to describe the input-

output characteristics of a random laser. To understand the spatial distribution of light

inside a random laser such an approach does not suffice.

To explain the experimental results of this chapter, we need to model transport of

light with diffusion equations in which gain and absorption are incorporated. Instead of

phrasing the equations in terms of number of photons q in the laser mode and the number
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of molecules N in the upper laser level, the local energy and population densities need

to be considered [89, 149]. The three equations that describe the diffusion of laser photon

density1, Wq(r, t), pump photon density, Wp(r, t), and the density of molecules in the upper

laser level, n1(r, t), are:

∂Wq

∂t
= D∇2Wq + (σecn1 − σrcn0)Wq +

β

τ
n1, (4.1)

∂Wp

∂t
= D∇2Wp − σacn0Wp +

1

`
Iin, (4.2)

∂n1
∂t

= σacn0Wp − (σecn1 − σrcn0)Wq −
1

τ
n1. (4.3)

Here D is the diffusion constant, σe, σr, and σa are the emission, reabsorption, and ab-

sorption cross-section of the dye molecules, τ is the spontaneous emission lifetime, and

n0 is the density of molecules in the ground state. The source term for the pump light,

`−1Iin(r, z, t), is a pulse with width τp and decays exponentially in z with an extinction

length `−1
ext = `−1

a + `−1 (with `a the absorption length). Here Iin(r, z = 0, t) is the local and

instantaneous intensity, which refers to the number of pump photons per unit area per unit

time incident at position (r, z = 0). In our system scattering is responsible for most of the

extinction (`� `a) and hence the source term is treated as power independent.

Comparing the diffusive rate Eqs. (4.1)-(4.3) with the single mode cavity rate Eqs.

(1.20)-(1.21), identifies several important differences. First, the Laplacian D∇2 takes the

role of the cavity decay rate γc. This replacement illustrates that the local “loss” of energy

density in a random laser is due to diffusive transport. Second, the spontaneous emission

factor β is not part of the stimulated emission term. Instead, the stimulated emission cross

section appears. The appearance of this factor is caused by the fact that the stimulated

emission rate has to be replaced by the stimulated emission rate per unit energy density

[89]. In essence, the cross section represents the Einstein B coefficient, which is proportional

to the Einstein A coefficient by the inverse of the LDOS [16, 150]. Third, in the diffusive

random laser the pump rate σacn0Wp is not a constant but varies locally and its spatial

distribution is also given by a diffusion equation. Fourth, reabsorption of emission light

is explicitly included. Although the reabsorption cross section is typically two orders of

magnitude smaller than the stimulated emission cross section at the random laser output

frequency, it does influence the propagation of emission light inside the sample. Despite

these significant differences, the effective cavity approach and this diffusive approach have

one important point in common. They both split up the spectrum in a lasing and a non-

lasing part by use of the effective spontaneous emission factor. In chapter 5 the spectral

shape of random lasers receives more attention.

4.4.1 Numerical solution to diffusive random laser equations

To solve the set of diffusive laser rate equations, the method of lines is used. In this method a

partial differential equation is converted into a set of ordinary differential equations (ODE’s)

in time by introducing a spatial grid and by approximating the spatial derivative at every

grid point with finite differences. Below threshold a steady state solution can be found by

matrix inversion, where the non-diagonal matrix elements are due to the finite difference

approximation of the spatial derivatives and the energy and population densities are vectors.

1For convenience the energy densities at frequency ω are normalized to the energy of one photon ~ω.
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4.4. Diffusion theory with gain

Around threshold this method method breaks down, because the matrix to be inverted

becomes singular [89].

The set of equations thus has to be solved numerically. For that purpose, we use the

ode15s function from MatLab’s extensive ODE library, which is particularly suited for

solving stiff ODE’s [137]. The experimental configuration is obviously threedimensional.

Unfortunately, the required computational power increases substantially for every added

dimension. To be able to perform our calculations on a reasonable timescale (order of

hours), we reduce the number of dimensions in our system by using cylindrical coordinates

and impose rotational symmetry. As a consequence the boundary in the yz-plane close to

the center of the diffusive spot is ignored.

Moreover, the cylindrical grid is made non-uniform to allow the calculation of a relatively

large system in two dimensions and at the same time have detailed spatial information close

to the origin. Defining h+ ≡ xi+1 − xi and h− ≡ xi − xi−1, the finite difference form of the

first and second derivative read [151]

∂f

∂x
→ f(x+ h+)− f(x− h−)

h+ + h−
, (4.4)

∂2f

∂x2
→ h−f(x+ h+)− (h+ + h−)f(x) + h+f(x− h−)

0.5h+h−(h+ + h−)
. (4.5)

The well-known equations for central differences are retrieved when h+ = h− = h. In

cylindrical coordinates with rotational symmetry the Laplacians in Eqs. (4.1) and (4.2)

become

∇2W =
∂2W

∂z2
+
∂2W

∂r2
+

1

r

∂W

∂r
. (4.6)

Due to the factor 1/r in the third term and the boundary condition ∂W
∂r

∣

∣

r=0
= 0, the

equation for the Laplacian becomes indeterminant at r = 0. To circumvent this problem

we invoke l’Hôpital’s rule [137] to rewrite

lim
r→0

1

r

∂W

∂r
=
∂2W

∂r2
. (4.7)

Besides the 1/r factor, the analysis around r = 0 is further complicated by the fact that

central differences cannot be applied because r ≥ 0 by definition. However, since at r = 0

the derivative of any quantity vanishes in the absence of δ-functions, the central difference

equation for the first derivative shows that f(x + h) = f(x − h). Where we have used a

uniform step size. Central difference formula (4.5) for the second derivative can then be

written as
∂2W

∂r2

∣

∣

∣

∣

r=0

= 2
W (h)−W (0)

h2
. (4.8)

To solve the set of ODE’s, boundary conditions need to be implemented. The two

differential equations describing the laser light and the pump light, Eqs. (4.1) and (4.2),

obey mixed boundary conditions. The photon densities are assumed zero at a characteristic

length scale, the extrapolation length, outside the sample. The equation describing the

population of the upper laser level obeys a Dirichlet boundary condition, which means n1

and n0 are both zero outside the sample.

The sample is modeled as a cylinder with dimensions r = 150` and z = 150`. Both

the r and the z axis are divided into a coarse and a fine interval which results in a rz-grid
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Figure 4.5: (a) Time-integrated contour plot of the emission intensity below threshold (P = 10−3

µW). The contour interval is 0.1 times the maximum value (18·10−4) in the plot. (b) Time-integrated

contour plot of the emission intensity above threshold (P = 103 µW). The contour interval is 0.1

times the maximum value (18·103) in the plot. (c) Cuts along the dashed lines in (a) and (b). (d)

theoretical and experimental characteristics of the spatial profiles along the dashed lines in (a) and

(b) versus pump power. Black open squares (�): the numerically calculated values of the FWHM of

the cut of the spatial distribution of laser light. Black closed squares (�): experimentally determined

values from the profile cut. Gray open disks (◦): numerically determined position of the laser light

maximum in depth. Gray closed disks (•): the experimentally determined values.

that is divided into four segments. In the calculation all spatial parameters were scaled

to the transport mean free path and the dynamical parameters to `2/D. The time taken

into consideration spans 40 ns. Realistic experimental situations (` = 7 µm, ze = 14 µm,

ρ = n1 + n0 = 6 · 1023 m−3, σa = 3.7 · 10−20 m2, σr = 0.058 · 10−20 m2, σe = 3.8 · 10−20

m2, β = 0.07, τp = 5 ns, τ = 4 ns, r = 15 µm) were calculated on a 40×50×57 (t× r × z)

grid. Using slightly different parameters did not significantly change the outcome of the

numerical calculation. The calculation was performed on an Intel 2.67 GHz Quad processor

with 4.00 GB of RAM with Windows XP 64-bit as an operating system. Below threshold,

the computation time is approximately 10 minutes. For pump powers around and above

the threshold the computation time increases to several hours.

4.5 Numerical results and analysis

In Fig. 4.5(a) and (b) contour plots of the numerically determined time integrated diffusive

emission photon density profile in the rz-plane below and above threshold are shown. The
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Figure 4.6: Calculated contours of the excited state profile in the zt-plane at r = 0 for different pump

powers far below and far above threshold. The contour interval is 0.1 times the maximum value in the

plot. Below threshold (the two upper graphs) an increased pump rate results in more spontaneous

emission events, but does not lead to a change in population profile. Above threshold (the two lower

graphs) stimulated emission has become the main mechanism of radiation. The maximum value for

the population inversion is determined by the diffusive loss close to the boundary.

profile above threshold is expanded compared to the profile below threshold. In order

to compare experiment and theory, we analyze cuts from the numerical data at r = 34

µm in the rz-plane. Two of these cuts are shown in Fig. 4.5(c). The cuts show that

the trends in the numerical data match the trends in experiment. The values for z at

which the intensity profile reaches its maximum and the width of the intensity profile are

plotted versus the pump power for both the numerical calculation and the experiment in

Fig. 4.5(d). In agreement with experimental observations the spatial width of the laser

light profile increases around threshold, but remains constant far above threshold. The

inclusion of reabsorption is important in order to make the results agree quantitatively

with experiment.

To understand why the spatial profile is fixed far below and far above threshold, we

analyze the contribution of spontaneous and stimulated emission to the total emission in

time. Figure 4.6 shows calculated contours of the population of the upper laser level for

pump powers below and above threshold in the zt-plane at r = 0 µm. Far below threshold,

the origin of the emitted light is spontaneous emission. In this regime, the set of equations

is linear: an increase in the pump fluence simply leads to more spontaneous emission events
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everywhere in the sample, but does not change the normalized spatio-temporal profile of

the population.

Above threshold, stimulated emission is responsible for most (> 99% for P/Pth > 1,

where Pth is the pump power threshold) of the light emitted by the dye molecules. Gain

compensates for the losses in the system, but the gain can never, except for temporal fluc-

tuations, exceed the losses. The main losses in a random laser are due to the diffusive loss

term, ∇2Wq, which is only non-zero close to the origin. As a consequence, the gain length

in a random laser is strongly spatially dependent. Once above threshold, the stronger the

system is pumped, the deeper inside the sample reabsorption losses are compensated for.

The cancelation of reabsorption hardly changes the diffusive laser light profile, since the

required gain is small compared to the gain needed to compensate the diffusive losses. Anal-

ogous to conventional laser systems the gain saturates above threshold [15]: the maximum

density of excited molecules, n1/ρ, is fixed for all pump powers above threshold.

The numerical calculation succeeds in explaining the main experimental features. Yet

Fig. 4.5(d) shows that the changes in the numerical data are smaller than in the experiment.

We attribute these differences to the main limitation in our model: the system is modeled

in cylindrical coordinates, whereas in experiment the sample configuration is not radially

symmetric. An extra loss factor that is induced by the presence of the boundary from which

light escapes at the side of the sample, is thus not taken into account. Taking all boundaries

into account properly would imply a three-dimensional model, which is computationally

intensive.

4.6 Conclusion and discussion

In conclusion, we have introduced a new approach for studying the transport and generation

of light originating from light sources inside a multiple scattering medium. Our side imaging

method is a novel experimental way to determine and study the random laser threshold.

Around the random lasing threshold, the spatial distribution of emission light expands. Far

below threshold, each pump photon increases the number of excited molecules following a

pump power independent spatial profile. Far above threshold, each pump photon eventually

results in a stimulated emission event following again a pump power independent spatial

profile. Our analysis emphasizes that the gain length in a diffusive system is a spatially

dependent variable [152]. Moreover, above threshold the minimal gain length is determined

by the diffusive loss inside the system and is not easily tuned by the excitation power. Our

observations relate to random laser systems in which spectral spikes are observed. The

expansion of the lasing volume rather than a decrease in gain length is an important factor

not yet taken into account for explaining the observation of increasing number of spikes

with increasing pump power [85]. In the next chapter, a direct consequence of the expansion

in emission volume becomes evident.
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CHAPTER5
Tuning random lasers by engineered absorption

Spectral control over the emission wavelength of a random laser is the central theme of this

chapter. For that purpose the amount of absorption at the emission frequency is adjusted. Ex-

perimentally, the system consists of elastic scatterers in a high quantum efficiency gain medium

to which a non-fluorescent dye is added. This non-fluorescent dye shifts the net gain curve and

thereby the emission peak of the random laser. Competition effects are observed and explained.

Our results are interpreted by a model that describes the spectral response of the system as a

function of the effective cavity decay time and (re)absorption processes.

5.1 Emission wavelength of a random laser

So far our treatment on random lasers has relied on the use of an effective β-factor for de-

scribing both the input-output response in chapter 2 and the distribution of diffuse emission

light in chapter 4. Although such an approach proved to be very powerful, it is ill-suited for

describing the frequency output of a random laser. This frequency output is precisely what

interests us in this chapter as we seek control over the emission wavelength of a random

laser.

Analogous to conventional lasers, the frequency at which an amplifying random media

starts to lase is determined by the net balance between gain and loss. Better control over

these emission properties of a random laser has been a central issue in the field [142, 153–

155]. The diffusive laser rate Eqs. (4.1)-(4.3) show that the loss term is governed by a

combination of diffusive losses and reabsorption losses, whereas the gain term is simply de-

termined by the stimulated emission cross section of the gain medium. This decomposition

of the rate equations suggests three routes for manipulating the output wavelength of a

random laser: (1) by making the diffusive loss term spectrally dependent, (2) by changing

the frequency dependence of the reabsorption term, or (3) by changing the spectral shape

of the gain curve. The last suggestion can be accomplished in a trivial manner by simply
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changing the gain medium altogether as shown in, e.g., Fig. 2.3.

In a convincing series of recent experiments, Gottardo et al. [156] have shown that

Mie resonances of the individual scatterers can shift the peak wavelength of a random laser

by a few line widths. These Mie resonances introduce a wavelength dependent diffusion

constant. The diffusive loss term thereby becomes spectrally dependent as well, leading

to a spectral shift in the net gain curve. By creating a random laser out of liquid crystal

scatterers, Wiersma and Cavalieri [153] were able to switch off a random laser by increasing

the temperature. Again, this control is due to a change over the diffusive properties of the

sample.

5.1.1 Exploiting absorption

Surprisingly, the much easier alternative of controlling the amount of absorption at the

emission wavelength has never been used to tailor intrinsically disordered lasers. Perhaps

absorption has been overlooked, because it is generally regarded as unwanted in the optics

community. Absorption shares with scattering of light that it is detrimental to most optical

devices, since both processes lead to extinction of an incident light beam [28]. Absorption

is therefore preferably minimized, for instance in the field of surface plasmon polaritons

[157, 158] and in the field of random media [66, 67, 159]. A notable exception is the

field of photovoltaics [160], where small percentages of increased absorption of sunlight can

mark significant progress. As we discussed in introductory Sec. 1.2, disordered scattering

media are currently being exploited to overcome fundamental limits of conventional optics

[33, 37, 161]. These experimental studies emphasize that scattering is transforming from an

annoyance into a tool. Similarly, absorption received more attention recently as it enables

the detection of single non-fluorescent molecules at room temperature [162–165] and forms

the basis of the anti-laser [166, 167].

Optically pumped random lasers [92, 93, 142, 168] rely on absorption for creating a

population inversion. The gain curve of the emission molecules is the main mode selection

mechanism in a random laser [107, 169] as we have also extensively discussed in chapter

2. Above threshold most light is emitted close to the maximum of the gain curve. Re-

absorption, however, slightly shifts the emission to the red of the gain curve maximum.

In this chapter, additional absorption is introduced as a means of controlling the output

wavelength. First, the sample fabrication is discussed in Sec. 5.2. The shift in emission

frequency is demonstrated experimentally in Sec. 5.3 and then analyzed in Sec. 5.4.

5.2 Samples

Random laser samples were fabricated using a Rhodamine 640 P (Rh640) solution in

methanol as a gain medium and titania particles (R900, Du Pont, 1% vol.) as elastic

scatterers. We added different quantities of Quinaldine Blue (Qblue), a non-fluorescent dye

(quantum efficiency 0.1% [170]), in methanol to control the random laser emission with

absorption. The absorption and emission spectrum of both a 5 µM solution of Rh640 and

Qblue in methanol were measured using a UV-VIS spectrophotometer and a 535 nm pulsed

optical parametric oscillator (Opolette, 20 Hz, 5 ns, 535 nm) respectively. These absorption

and emission spectra are shown in Fig. 5.1. The emission cross section was calculated using

σe(λ) =
λ4L(λ)
8πcτη2 . Here

∫

L(λ)dλ = φ where φ is the quantum efficiency and η is the effective

refractive index. We assumed a radiative lifetime of 4 ns in solution [77] and a quantum
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0% 25%QBlue content

Figure 5.1: (left) Absorption (red line) and emission (red dashed line) spectra of Rhodamine 640 P

and absorption spectrum of Quinaldine Blue (blue line) dissolved in methanol. (right) Photographs

of samples 1-4 containing varying percentages of the absorber dye Quinaldine Blue.

efficiency of 1 for Rhodamine 640 P as determined in chapter 2 [169]. The maximum ab-

sorption cross section of Qblue lies around the maximum emission cross section of Rh640,

which makes Qblue very suited for engineering a Rh640 random laser. Moreover, Qblue has

a stimulated emission cross section that is ∼100× smaller than the emission cross section

of Rh640. Therefore we can attribute all emission in the random laser experiments directly

to emission originating from Rh640 molecules. We prepared four samples by combining a 1

mM solution of Rh640 with a 1 mM solution of Qblue such that nRh640 + nQblue = 1 mM:

sample 1 (100% Rh640), sample 2 (96% Rh640 and 4% Qblue), sample 3 (90% Rh640 and

10% Qblue), and sample 4 (75% Rh640 and 25% Qblue). A photograph of these samples is

shown in Fig. 5.1. The samples become more blue when adding more Qblue, since Qblue

absorbs most of the red part of the spectrum. A fifth sample was made by adding Qblue

in crystalline form to a 1 mM solution of Rh640 (molar ratio QBlue/Rh640 = 0.4). To

prevent aggregation and sedimentation of titania particles all samples were treated in an

ultrasonic bath before measurement.

The experimental setup used was similar to the one in chapter 2. Excitation light

generated by the optical parametric oscillator was focused onto the samples by a lens (f = 5

cm). The size of the fluorescent spot could be varied by moving the sample in and out of the

focal plane. The same lens collected the emission which was then spectrally analyzed using

a spectrograph (Oriel MS-257) connected to an EMCCD camera (Hamamatsu, C-9100).

5.3 Experimental results

For all random laser samples, the emission spectrum was monitored for different values

of the pump fluences. Above a certain pump value, the threshold, the emission spectrum

narrows. We analyze the wavelength of the peak of the emission spectrum for the different

samples. In Fig. 5.2(a) the spectra above threshold are plotted for the samples 1-4. The

peak wavelength for a pure Rh640 random laser lies at 607 nm and shifts gradually to the

blue when more Qblue molecules are added. When the ratio between Rh640 and Qblue

molecules lies around 10:1 (sample 3), the peak is already shifted by about 2 line widths to

598 nm.

The spectrum of sample 4 is shifted by 14 nm compared to sample 1, which corresponds
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(a) (b)

1234

Figure 5.2: (a) emission spectrum above threshold for random laser samples 1-4. Pump powers:

465 µW for sample 1, 930 µW for sample 2 and 3, and 1114 µW for sample 4. (b) Width of the

spectrum versus pump power for random laser samples 1-4.

to 3-4 line widths. The spectra of sample 1, 2, and 3 are significantly narrower than the

spectrum of sample 4. To understand why the spectrum of sample 4 is relatively broad, it is

insightful to plot the width of the spectra versus pump power as shown in Fig. 5.2(b). The

widths were determined by the FWHM of the raw spectra, except for the first nine data

points of sample 4 where two Lorentzians were fitted from the data from which the width

was extracted. This fitting procedure was applied because these nine spectra consisted of

two overlapping peaks. From this figure, we conclude that the threshold increases when

the density of absorbers becomes larger. Sample 4, having the largest concentration of

absorbers, has such a high threshold that the width is not yet converged to the far above

threshold value at the maximum available input fluence.

5.3.1 Mode competition

When the concentration of the absorber is further increased, the random laser responses

strikingly different. In Fig. 5.3(a), the normalized spectra below and above threshold are

plotted for sample 5. Below threshold, two peaks can be observed in the emission spectrum:

one around 590 nm and another lower one around 650 nm. For higher pump powers around

the threshold, this situation is reversed: the peak at 650 nm dominates over the peak at

590 nm. Figure 5.3(b) shows the peak spectral radiance for the two peaks versus excitation

power. The pump power was increased monotonically to avoid irreversible artifacts. The

ratio of the two peaks (peak at 590 nm/ peak at 650 nm) first increases with increasing

pump power and then drops dramatically far above threshold. While the pump power

increases, the peak emission wavelength changes significantly as shown in Fig. 5.3(c). The

peak at the blue side of the spectrum shows a blue shift of 3 nm, whereas the peak at the

red side of the spectrum shows a red shift of 9 nm.

5.4 Model

To describe and understand our experimental findings, we present an analytical expression

for the peak wavelength of the random laser. In principle, for a constant mean cavity decay

time and negligible depletion of the ground state, the peak wavelength of a random laser

does not change as a function of pump power. Therefore, to describe the spectral response
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(a)

(b)

below 
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peak 2

peak 1

(c)

Figure 5.3: (a) spectra below (black, 84

µW) and above (gray, 2230 µW) thresh-

old for sample 5. The absolute peak

spectral radiance is a factor ∼30 higher

for the spectrum above threshold. Peak

indicated by black square: peak 1. Peak

indicated by gray disk: peak 2. (b)

peak spectral radiance for peak 1 (black

squares) and peak 2 (gray disks) nor-

malized to the data point at 4.6 µW ver-

sus pump power. The black line is the

ratio of the absolute values of the two

peaks. (c) Wavelength of peak emission

versus pump power for sample 5. Peak

1 (black squares), located at the blue

side of the spectrum (left y-axis) shows

a blue shift, whereas peak 2 (gray disks),

located at the red side of the spectrum

(right y-axis), shows a red shift. The

solid lines are guides to the eye.

of the different random laser samples we study the steady-state solution of the rate equation

for the photon density qω below threshold

dqω
dt

= −γcqω − cn1σ
a,1
ω qω − cn2σ

a,2
ω qω + γrnLω, (5.1)

qω =
[

γc + cn1σ
a,1
ω + cn2σ

a,2
ω

]−1
γrnLω. (5.2)

Here n is the density of molecules in the upper laser level, γc is the effective cavity decay

rate [80], γr is the radiative decay rate, c is the speed of light, σa,1
ω is the absorption cross

section at frequency ω for the Rh640 molecules with density n1, σ
a,2
ω is the absorption cross

section at frequency ω for the Qblue molecules with density n2, and Lω is the probability

of a spontaneous emission event at frequency ω with a certain frequency bandwidth ∆ω.

In the above equations we assume n� n1, which is valid below threshold. Equation (5.2)

describes how the spontaneous emission spectrum of a pure dye, Lω, is affected by the cavity

decay rate and (re)absorption processes by the form factor
[

γc + cn1σ
a,1
ω + cn2σ

a,2
ω

]−1
.

The effective cavity decay time, γ−1
c , can be approximated by the Thouless time, τT =
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Figure 5.4: (a) Experimental and theoretical normalized emission spectra below threshold for sam-

ple 1 (bottom curve) to 5 (top curve). The number a denotes the ratio nQBlue/nRh640. Excitation

powers: 9.3 µW sample 1-4 and 18.6 µW for sample 5. Normalization constants for experimental

curves: 851, 606, 356, 150, and 5.6 counts/s. To reproduce the experimental spectra in the cal-

culation, the experimental concentrations were used with varying cavity decay times as indicated

in the figure. (b) Calculated normalized emission spectra below threshold for a = 0.4 and linearly

increasing values for the cavity decay time. The red peak becomes more pronounced for increasing

cavity decay times.

1
π2

L2

D , which describes the average time a photon spends in a slab with diffusion constant D

and thickness L [171]. In our experimental configuration the exact value for the Thouless

time is not known, since the excitation spot does not resemble a slab. If we assume the

FWHM of the diffuse fluorescent spot on the sample surface to be the characteristic length

scale (FWHM ≈ 130 µm) and a transport mean free path of ≈ 5 µm, the Thouless time is

on the order of picoseconds.

Figure 5.4(a) shows experimental spectra below threshold and calculated spectra for

different values of the ratio a = ρQblue/ρRh640. For the calculation the expression for the

form factor was used together with the experimentally determined cross section spectra of

Fig. 5.1. The effective cavity decay times in the theoretical plots were estimated manually

by optimizing the correspondence between the theoretical and experimental spectra. We

typically find cavity decay times of about 1 ps, which is of the same order of magnitude

as values for the decay time as determined from relaxation oscillations in random lasers

[172] and our estimation of the Thouless time. It should be noted that while our model is

able to reproduce the shape of the experimental spectra, it does not reproduce the absolute

intensities. In order to do so, the effect of the absorber on the number of excited molecules

needs to be taken into account as well. For increasing concentrations of Qblue the peak

emission shifts to the blue as is both observed in experiment and theory. Moreover, for

increasing concentrations of the absorber the cavity decay time in the calculation needs to

be decreased in order to obtain spectra that correspond with experiment. This decrease is

due to shrinking of the emission volume at higher absorber concentrations.

In Fig. 5.4(b) calculated spectra are shown at a fixed concentration and various cavity
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decay times. The dominant peak in the spectrum changes from the blue part to the red

part of the spectra for a cavity decay time of 1.15 ps. At lower concentrations of Qblue,

this shift in peak position occurs at higher cavity decay times

This theoretical analysis on the role of the cavity decay time on the output wavelength

enables us to understand the experimentally observed mode competition effect. In chapter

4, we showed experimentally and numerically [144] that around the random lasing threshold

the emission volume expands. Such an expansion in volume leads to a larger mean cavity

decay time and can thus lead to a spectral switch of the main random laser peak. For spectra

measured above threshold the switch becomes more pronounced than the calculated spectra

shown in Fig. 5.4(b), because the two peaks compete with each other for the same gain.

The dominant peak “eats” all the gain, thereby leading to a suppression of the second

peak. This conclusion very likely also holds for other observations of mode competition

in the literature [156]. In addition, expansion of the lasing volume explains the gradual

change of the peak emission wavelength for increasing pump powers that is observed in

most random lasers. Looking at the expression of the form factor in Eq. (5.2) suggests that

a change in the concentration of molecules in the ground state also affects the form factor.

However, such a depletion of the ground state cannot explain our experimental results since

it would lead to less reabsorption and hence spectral shifts towards the gain maximum.

5.5 Conclusion and discussion

We have shown that introducing absorption leads to control over the peak emission wave-

length of a random laser. A simple theoretical model enables to predict the position of the

peak for various concentrations of the absorber. Our studies can be extended to absorbers

other than non-fluorescent dyes, such as metal complexes and plasmonic metal nanoparti-

cles [173, 174], in order to increase the flexibility in the output of a random laser. A very

interesting twist to our work would be to pump around the gain medium in a random laser

sample thereby enabling a change of the absorber concentration in situ.

In our analysis, the effective cavity decay time is considered to be constant over the

whole spectrum. For increasing concentrations of the absorber, this assumption becomes

invalid. Inclusion of a spectrally dependent effective cavity decay time is then necessary.

Introducing a spectrally dependent cavity decay time in the analysis also enables a better

understanding of Mie-tailored random lasers.
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CHAPTER6
Narrow spectral features in random lasers

In this chapter, we systematically study the presence of narrow spectral features in a wide variety

of random laser samples. The occurrence of narrow spectral features is shown to be strongly

dependent on the sample preparation and configuration. By interpreting our data in terms of

mode competition, we are able to explain the observed experimental trends. Smooth random

laser spectra are a consequence of competing modes for which the loss and gain are proportional.

Spectral spikes are associated with modes that are uncoupled from the mode competition in

the bulk of the sample.

6.1 A short history of spikes: a scattered field

In the previous chapters on amplifying random media, the combination of multiple scat-

tering and gain led to narrowing of the emission spectrum with increasing pump powers

[74, 77, 93]. The introduction of new experimental and analytical methods, enabled us to

determine the quantum efficiency of the gain medium in chapter 2, to discover the expan-

sion of lasing volume in chapter 4, and to tune the output wavelength in chapter 5. In

all these experiments the measured output spectra were smooth curves with at most two

peaks.

These smooth spectra stand in sharp contrast with the spectrally narrow emission fea-

tures that have been found in a subset of the experiments on random lasers [84, 85, 91].

The experimental discovery of amplifying random media that exhibit several peaks in the

emission spectrum by Cao et al. [85] has truly boosted the field of random lasing as a

whole. In fact, about one third of the random laser literature1 deals with these features.

The origin of these so-called spikes remains much debated even after more than a decade

1This fraction was estimated by counting the number of articles dealing with narrow spectral features

out of all articles that appeared when using the keyword “random laser” at www.webofknowledge.com on

February 23, 2012.
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of research. Understanding this intriguing phenomenon promises to give more insight in

random lasers and multiple scattering of light in general [93].

Historically, experimental groups have been divided between two schools of thought

attributing spikes to either localized [84] or extended modes [91, 175]. A fundamental

difference appeared between systems in which spikes reproduce at a fixed spectral position

[85, 176] and systems in which the positions of spikes are uncorrelated from shot-to-shot [91].

In the case of fixed spectral positions, a spatial structure inside the sample can be associated

with a spectral spike [87]. In several experimental papers, the spatial extent of these random

laser “modes”2 was studied [176–179]. The observation of structures confined in space

has led to the interpretation of random lasing as a manifestation of Anderson localization

[85, 178]. No experiments have been performed that show Anderson localization in both

passive and active random media simultaneously. Therefore, an explanation of random

lasing in terms of Anderson localization remains elusive.

More recently, three pioneering experiments have led to alternative explanations for the

observation of spikes in random lasers. Fallert et al. [178] argue that localized and extended

modes can co-exist while reaffirming that strong scattering of light is a prerequisite for

random lasing. Tulek et al. [180] on the other hand attribute lasing to resonators inside

the sample [179] and argue that strong scattering is detrimental to random lasing. In the

work of Leonetti et al. [181] the explanation in terms of extended and localized modes is

abandoned all together and mode coupling is suggested to be decisive in order for narrow

spectral features to appear. Parallel to the ongoing experimental research, great progress

has also been made in understanding random lasers theoretically. Several groups have

shown that even the low quality modes of a weakly scattering sample can end up as lasing

modes in lower dimensional systems [86, 87, 182]. An ab-initio self-consistent theory based

on strong mode interactions has been worked out by Türeci et al. [86, 183] that is able to

explain spectral spikes in random lasers for weakly scattering media without the need to

invoke the concept of Anderson localization. Despite these numerous studies in both theory

and experiment, it remains a challenge to link insights in theory to experiment and vice

versa.

6.2 Systematically studying narrow spectral features

Puzzled by the rich variety of interpretations in the random lasing community, we decided

to unscramble the vast amount of literature on random lasers that are made by dispersing a

colloidal scattering material in a solution of laser dye [77, 184]. Unique to dispersive random

lasers is the ability to independently control the scattering strength and the gain strength

by controlling the concentrations of scattering particles and dye molecules separately. We

ordered the available literature by the type of reported spectra and by extracting the mean

free path and gain length [77, 89, 91, 144, 156, 168, 184–191]. We conjecture that the

mean free path and gain length are the decisive quantities in understanding the physics of

a random laser, because together they represent the two essential ingredients of any laser:

feedback and gain. We shall see later on that neglecting the dependence on the size of

the excitation area is oversimplified. For those experiments where the mean free path and

2Mathematically, a “mode” refers to an element of an orthogonal set of eigensolutions to a particular

equation in a closed system. Experimental studies on random lasers are done in open environments by

definition. Therefore, the use of the term “mode” is technically incorrect. We use the term in this chapter

rather loosely, to refer to the electromagnetic intensity distribution associated with a narrow spectral feature.
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Figure 6.1: Overview of spike observations

in the literature plotted in the gain length

(`g) versus mean free path (`) plane. Every

point represents a measurement on a disper-

sive random laser system. Filled disks (•):
spikes reported. Open squares (�): no spikes

reported. The gray shaded area is a guide to

the eye that indicates the region of smooth

spectra.
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gain length have not been reported, an estimation was made based on the concentration of

scatterers and dye. The literature survey, summarized in Fig. 6.1, suggests a remarkable

trend: spectral spikes are predominantly reported in systems where the mean free path

is large with respect to the gain length, i.e. where scattering is weak compared to gain.

This trend might already come as a surprise, since many studies hint at strong multiple

scattering being a requirement for spikes.

The ordering of the literature illustrates how a systematic study on narrow spectral

features [192] enables the discovery of remarkable experimental trends. Part of the difficulty

in understanding the occurrence of spikes in random lasers is caused by the wide variety

of samples and interpretations used in the literature. The experiments described in this

chapter show that observing random laser spikes often relies on subtleties in the used

experimental methods.

In the first part of this chapter, we experimentally study random lasing phenomena in

a strongly scattering porous semiconductor (GaP) infiltrated with and surrounded by laser

dye in Sec. 6.3. We choose this type of sample, discussed in Sec. 6.3.1, as it has been put

forward [176] as an ideal system for studying random lasers in which the narrow spectral

features reproduce. Using a new experimental arrangement, based on confocal microscopy

techniques, we gain access to the microscopic mode structure at the surface of this random

material. In Sec. 6.3.2, the experimental apparatus is discussed. Measured spatial profiles

associated with random lasing spikes are presented and analyzed in Sec. 6.3.3. The spatial

structure of random lasing modes is compared to speckle in a passive medium. Several

key parameters are identified, such as pump power and pump area, which influence the

presence of reproducible spikes in the emission spectrum. Quantitative tools to study the

reproducibility of spectral spikes are given and discussed. We carefully study how laser dye

located outside the random medium influences the random lasing emission in Sec. 6.3.4.

In the second part of this chapter, we elaborate on our literature survey and investigate

systematically how the gain length, `g, and the mean free path, `, affect the occurrence of

spikes in random lasers in Sec. 6.4. For this purpose, random laser samples were fabricated

over a wide range of gain and scattering strengths as we discuss in Sec. 6.4.1. Statistical

information on the properties of spikes is important for the connection between new theories

and experimental observations. However, only a small number of articles present such

an analysis [176, 180, 186, 189, 192–195]. We characterize our random laser spectra by
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Figure 6.2: (a) top SEM image of a porous GaP sample. (b) a slightly tilted side view of a porous

GaP sample. (c) sample configuration. A light spring pushes the sample onto a sapphire window.

analyzing every spike individually in Sec. 6.4.2. This analysis provides us with a rich data

set on the distribution of the height, line width, spectral position, and spectral spacing of

spikes, which we discuss in Sec. 6.4.3.

Our interpretation of the narrow spectral features is discussed separately at the end of

this chapter. By introducing a two-mode model that includes gain competition in Sec. 6.5

we are able to explain our results qualitatively.

6.3 The spatial structure of random laser modes

6.3.1 Sample fabrication and configuration

Random laser samples were made by infiltrating strongly scattering porous GaP with an

acidic solution of 20 mM Rhodamine 640 perchlorate in methanol. The dye solution was

put in an ultrasonic bath for 30 minutes to ensure the dye was completely dissolved.

The porous GaP samples were fabricated by electrochemically etching a 9×9 mm2 piece

of a 0.5 mm thick crystalline GaP wafer (MTI corporation, carrier concentration = 2-8×1017

cm−3, n-type, S-doped, (100) orientation) in a 0.5 M aqueous solution of H2SO4 under dark

conditions. In general, the size of the pores, the pore density, and the shape of the pores

depend on the dopant density, the potential at which the sample is etched, and the used

electrolyte [196]. A highly reflective top layer is formed during the etching process. To

remove this top layer we used an intermediate etching step at a high potential lying in the

regime of passivation [176]. After fabrication, the samples were cleaved and inspected with

a Scanning Electron Microscope (SEM). Figures 6.2(a) and (b) show two SEM images of one

the porous GaP samples used in our experiments. From a two-dimensional autocorrelation

analysis of the top SEM image, we find the typical correlation length at the surface of the

sample to be 100 ± 50 nm.

The transport mean free path of the porous GaP samples in air was determined by an

enhanced backscattering experiment [53, 54]. Infiltration of the porous structure with the

dye solution slightly increases the transport mean free path, due to a lower refractive index

contrast. After correcting for this lower refractive index contrast [197], we determined the

transport mean free path in the two used random laser samples to be ` = 0.5 ± 0.1 µm and

` = 1.4 ± 0.1 µm at λ = 632.8 nm. Since the disorder in porous GaP is quenched (that

is: the position of the scatterers does not change in time), the samples are well suited for

static speckle and random laser experiments.

For the experiments, the samples were placed in a sample holder which was filled with

the 20 mM dye solution, see Fig. 6.2(c). A spring was used to press the porous GaP sample

against a 3 mm thick sapphire window. Both pumping and collection of the random laser
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Figure 6.3: (left) Schematic overview of the experimental apparatus. The dashed line represent

a flip mirror. (right) Interference fringes due to space between the porous GaP sample and the

sapphire window. The sample was illuminated by a white-light supercontinuum source. The shape

of the spectrum is corrected for the spectrum of the white light source.

emission was done via this sapphire window. The holder was mounted onto two translation

stages to allow for selecting different areas on the sample manually.

6.3.2 Apparatus for spatially resolved spectral measurements

Figure 6.3 shows a schematic overview of the experimental setup. The excitation scheme

is similar to the one in chapter 4. The wavelength of the pulses was selected in a range

between 555 and 565 nm at an energy below the indirect band gap of GaP (548 nm),

in order to prevent damage due to absorption. Light emitted by the random laser was

collected using the excitation microscope objective and filtered by a 567 nm long pass filter

(Semrock). To enable two-dimensional spatial mapping of the random laser emission at

the sample surface, we introduced a spatially and spectrally selective detection scheme as

shown by the red shaded region in Fig. 6.3. This detection path consisted of a bi-directional

steering mirror (FSM-300, Newport), two achromatic lenses (f = 100 mm) and a pinhole

(20 µm). Two 200 mm relay lenses placed before the steering mirror prevented the beam

from walking in the detection path. The scanning experiments were done with a 0.55 NA

microscope objective (CFI LU Plan Epi ELWD 50x, Nikon). The spatial resolution was 750

± 50 nm. All other experiments were done with a 0.25 NA microscope objective (Leitz).

After passing the detection path, the light was detected using a spectrograph (Oriel MS-257,

resolution 0.5 nm) and an EMCCD camera (C9100-02, Hamamatsu).

Determination of distance between sample and sapphire window

In the geometry of our experiment, it is unavoidable that a thin fluid layer is present

between the multiple scattering sample and the sapphire window. The thickness of this

fluid layer is a crucial parameter in our random laser studies since it determines how much

amplification of light takes place outside the multiple scattering sample. Typical values for

this thickness lie between 5 and 15 µm. The distance between the sample and the window
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Figure 6.4: Emission spectra of a porous GaP random laser above threshold for two different ex-

citation conditions. The black line shows the spectrum above threshold for a random laser with a

fluorescent profile of 8.6 µm in radius. Clear spikes are observed. The gray line shows the spectrum

above threshold for a random laser with a fluorescent profile of 104 µm in radius. The emission

spectrum is narrowed, but no spikes are observed.

depends on the particular configuration of the sample inside the sample holder and cannot

be controlled manually. In order to determine the thickness of the fluid layer we used

the method of white light interferometry. Light from a white light supercontinuum source

(Fianium SC-450) was coupled into the setup and subsequently analyzed with a broadband

fiber spectrometer (Ocean Optics USB 4000). An example of a reflection spectrum is shown

on the right side of Fig. 6.3. In this figure the reflected intensity is shown as a function

of wave number. Clear interference fringes are visible. The intensity has been corrected

for the spectral shape of the white-light source. The fringes are due to multiple reflections

between the sapphire window and the porous GaP sample and their visibility is not constant

for all sample positions. Fringes with higher visibility are observed when crystalline GaP

is illuminated. The spacing of the fringes, the free spectral range, is dependent on the

distance between the sample and the window, L, by [135] ∆νfsr = c/ (2nL). Here ∆νfsr is

the free spectral range, c is the speed of light in vacuum, and n is the refractive index of

the medium enclosed by the two reflecting surfaces.

6.3.3 Results on GaP random laser

In this section we discuss the outcome of three different experiments with porous GaP

random lasers. In general, a power threshold is present around which the emission spectrum

changes. For small excitation areas (< 1000 µm2) the emission spectra above threshold

become dominated by spikes, whereas for large excitation areas the output spectrum is

narrowed but smooth. The different character between the spectra above threshold is

striking in Fig. 6.4 in which normalized single-shot spectra 1.3 times above threshold are

plotted for a small excitation spot (8.6 µm in radius, 0.078 µW/µm2) and a large excitation

spot (104 µm in radius, 5.2 ·10−3
µW/µm2). For the small pump spot, clear spikes are

visible. For the large pump spot, the output spectrum consists of a smooth narrowed

amplified spontaneous emission (ASE) spectrum.

In a first experiment, the spatial structure of random laser modes associated with spec-

tral spikes is measured using confocal microscopy techniques. The size of random laser

modes is compared to the size of speckles. Two experiments to investigate the presence and
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Figure 6.5: Experimentally determined spatial mode maps for seven modes at seven different wave-

lengths. (a) 603 ± 0.2 nm, (b) 604.3 ± 0.2 nm, (c) 607 ± 0.2 nm, (d) 607.8 ± 0.2 nm, (e) 609.5

± 0.2 nm, (f) 610.8 ± 0.2 nm, (g) 613.3 ± 0.2 nm. The black dotted line is the 50% intensity

contour of the diffuse fluorescence spot. The color coding for each plot is independent. In (h) an

OPO speckle pattern (605.1 nm) is shown. (i) The black histogram denotes the percentage of pixels

on which a spike with a certain wavelength is detected (left y-axis). The red dashed-dotted line is

the correlation coefficient between two subsets (PS , right y-axis) that indicates the stability of the

measurement.

reproducibility of spectral spikes under various experimental conditions are presented and

discussed.

Spatial structure of random laser modes

We studied the spatial structure of random laser modes in the regime where spikes are

clearly visible in the output spectrum. Spatial maps of the entire region excited by the

pump spot in the random laser sample were made by confocal scanning (excitation energy:

0.5 ± 0.1 µJ per pulse). The x -position of the detection area on the sample was scanned

in steps of 330 nm, the y-position in steps of 440 nm. The total scan comprised 41×41

pixels. At every pixel in the scan, 25 spectra were measured with an exposure time of 0.2

s. The spectra were smoothed by adding four adjacent data points in order to average

out the read-out noise of the EMCCD camera. Figure 6.5 shows spatial intensity maps for

spikes at seven different wavelengths together with the 50% intensity contour of the diffuse

fluorescence spot (diffusion of both the pump and fluorescence light increases the excited

volume inside the sample). The profile of the fluorescence spot follows the profile of the

population inversion in the gain medium. The diffuse fluorescence spot is slightly elliptical

which allows us to study the effect of this asymmetry on the mode structure. The maps

are constructed by adding the spike intensity for the 25 measured spectra at one pixel.

The spatial mapping experiment gives an insight in how random lasers work. Figure 6.5

reveals three key characteristics of modes in GaP random lasers. First, modes of different

frequency have a significant spatial overlap at the surface. Second, the intensities of the

modes fluctuate in space. Third, the positions of the modes do not always coincide with
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the peak intensity of the pump spot.

Stability analysis of spatial mode maps

Spatial mode maps can be constructed from the raw data for every wavelength. In this

rather technical subsection, we determine at which wavelengths the spatial mode maps are

reproducible, in order for us to be able to separate useful information from noise.

The Pearson correlation coefficient between two different data sets, x and y, is defined

as [198]

P ≡

∑

i

(xi − x̄) (yi − ȳ)

√

∑

i

(xi − x̄)2
∑

i

(yi − ȳ)2
. (6.1)

The correlation coefficient is one when the data sets are fully correlated, and zero when they

are not correlated at all. For every wavelength, we now construct two spatial mode maps:

the first map is calculated using 12 out of the 25 available spectra per pixel, the second map

is calculated using the remaining 13 spectra. The Pearson correlation coefficient between

these two maps, PS , is calculated for every wavelength. In this case, the subscript i in Eq.

(6.1) denotes a particular pixel in the map.

Figure 6.5(i) shows PS as a function of wavelength together with a histogram of the

percentage of pixels that contain a certain spike. We consider spatial maps at wavelengths

where PS is higher than 0.5 to be sufficiently stable for further analysis. Seven modes fulfil

this criterion, namely all the modes shown in Fig. 6.5(a)-(g).

Size of random laser modes and speckle

The grainy intensity profile of random laser modes might at first glance resemble speckle.

To compare the size of random laser modes with the size of speckles we study the intensity-

intensity autocorrelation

C(∆r) ≡

∑

x,y

[I(x, y)− 〈I(x, y)〉]
[

I(x′, y′)− 〈I(x′, y′)〉
]

∑

x,y

[I(x, y)− 〈I(x, y)〉]2
. (6.2)

Here I(x, y) denotes the measured intensity at pixel (x, y) and (∆r)2 = (x′−x)2+(y′−y)2.
The triangular brackets denote ensemble averaging. Figure 6.6 shows the 2D ensemble

averaged autocorrelation of the seven converged random laser modes and of twenty speckle

patterns in reflection obtained by illuminating the sample with light (605.1 nm) generated

by the optical parametric oscillator (OPO). The ensemble average for the random laser

modes was constructed by averaging the seven stable mode profiles. The mode profiles

were shifted laterally to let their centers of mass overlap. Not performing this centering

procedure does not affect the outcome significantly. For the speckle pattern the ensemble

average is obtained by averaging over twenty different realizations of disorder.

In Fig. 6.6, two-dimensional ensemble averaged autocorrelations and cuts through

this data are given for both random laser modes and speckle. The red line is a theo-

retical prediction from Shapiro for the speckle size inside a random medium [199], given

by [sin k0∆r/ (k0∆r)]
2 exp (∆r/`), convolved with the microscope’s point spread function.
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Figure 6.6: Two-dimensional ensemble averaged normalized autocorrelation plot for (a) random

laser modes and (c) speckle. Cuts along the x-direction and y-direction are given for (b) random

laser modes and (d) speckle. The red solid line is a theoretical prediction for the speckle size. The

bars represent the standard deviation.

In this theoretical curve we neglect the minor adjustments made by Freund and Eliyahu

[200] for correlations on the surface of a random medium. The point spread function was

corrected for the presence of the thick sapphire window, which changes the exit pupil and

thereby decreases the effective numerical aperture of the microscope objective from 0.55 to

0.3 as was determined from HeNe speckle measurements (as a side remark we note that

polarization does not influence the normalized autocorrelation of speckle). The first point

in the random laser autocorrelation graph accumulated all remaining experimental noise

due to the intrinsic fluctuations in intensities of spikes, therefore the second point in the

graph was used to normalize the data. From the Full-Width at Half-Maximum (FWHM)

values of the autocorrelation graphs we find the size of random laser modes to be 3.0 ±
0.7 µm and the size of the speckles to be 0.8 ± 0.1 µm. This measured size of the random

laser modes is also an order of magnitude larger than the correlation length of the material

disorder in porous GaP. The size of the speckles is in good agreement with the theoretically

expected value. The asymmetry that was present in the profile of the pump spot, also

appears in the autocorrelation of the random laser modes. This asymmetry in the autocor-

relation indicates that the spatial structure of the measured random laser modes is to some

extent influenced by the size of the pumped volume. Furthermore, in contrast to speckle in

a passive medium, random laser modes do not span the entire excited area, instead random

laser modes are confined.

Statistics and reproducibility of spectral spikes

In general, spectral spikes require a careful tailoring of experimental conditions. The inten-

sities of the spikes and in some case the spectral positions differ from shot-to-shot. Studies

on the chaotic behavior of spikes have recently been initiated by Mujumdar et al. [185] and
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Figure 6.7: (a) Role of excitation area on statistics of spectral spikes. The number of spikes per

spectrum (in black) and the relative height of a spike (in red) are plotted versus the excitation

area in a semilog plot. The data points represent the mean of the data, the bars the standard

deviation. (b) Reproducibility of spike spectral position for different distances between the sample

and sapphire window. The black squares represent the mean values of the Pearson correlation

coefficient between single-shot spectra, the bars represent the standard deviation. The red dots

represent the fraction of coefficients between two single-shot spectra that is higher than 0.5. The

gray bar indicates the fraction of coefficients that are higher than 0.5 between single-shot spectra

taken at different positions on the sample.

Wu and Cao [201]. To find out more about the nature of the spikes we conducted two ad-

ditional experiments where no pinhole was present in the setup. In the first experiment, we

analyze for the first time the role of the excitation area on spike statistics. Fifty single-shot

emission spectra were measured for different excitation areas at a fixed value for the pump

fluence, namely 0.07 ± 0.01 µW/µm2. Second, to understand the role of light amplification

outside the random medium, the reproducibility of spectra containing spikes were studied

for different distances between the sample and the sapphire window using a similar data

analysis as used by Mujumdar et al. [185].

Figure 6.7(a) shows the relative height of the spikes in the spectrum versus the excitation

area. Peaks in the spectra were named a spike when the spike intensity was higher than

eight times the standard deviation of the noise and when data-points adjacent to the spike

within the spectral resolution were lower than the spike value itself. The relative height of

spikes increases when the excitation area decreases. However, for all values of the pump

spot area we find spikes in the spectrum. Similar experiments were performed for different

spots on the sample and yielded the same trends.

The reproducibility of spikes in spectral position is studied by calculating the Pearson

correlation coefficient as defined in Eq. (6.1) for several distances between the sample and

the sapphire window. Now i in Eq. (6.1) denotes a particular position in the spectrum.

The correlation coefficient is one when the spectra are fully correlated, and zero when they

are not correlated at all. For every distance, 50 single-shot spectra above threshold were

recorded, the fluorescence background was subtracted, and the spectra containing spikes

were selected for further analysis.

In Fig. 6.7(b) the calculated mean of the correlation coefficient is represented by the data

points and the standard deviation is used as an error estimate. For all distances between the

sample and the sapphire window, the correlation coefficient between the different spectra

is small (< 0.5) except for the one data point at 15 µm. It is therefore tempting, but

incorrect, to conclude from this analysis that the spikes appear chaotically in the spectrum

and reproduce poorly. In fact, spikes do reproduce in spectral position as can be deduced
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from a high value (> 0.5) of the correlation coefficient of some spectra pairs. Therefore,

the fraction of coefficients that is higher than a specified value is a better way to study

the reproducibility of spectral spikes. The fraction of coefficients higher than 0.5 is plotted

in Fig. 6.7(b). The gray bar represents the fraction of correlation coefficients higher than

0.5 between spectra taken at different positions on the sample. Above a distance of 8 µm

the fraction of highly correlated spectra taken at one position becomes significantly higher

than this background value. We conclude the reproducibility of spikes slightly increases for

larger values of the distance between the window and sample.

6.3.4 Influence of dye surface layer on random laser emission

The relative height of spectral spikes decreases with excitation area. The spikes, in other

words, disappear in the Amplified Spontaneous Emission (ASE) background for larger pump

spots. It has been suggested in the original paper by Letokhov [74] and more recently by

Yamilov et al. [90] that a reduction of the system volume indeed facilitates the observation

of spectral spikes due to a decrease in the total number of modes. There is however a

second, experimental, reason for the decrease of the spike height for larger pump spots that

obscures this effect. The small layer of dye solution located between the sample surface and

the window can also give rise to ASE. In fact, we observed ASE in the cases of non-etched

GaP and weakly scattering samples. The threshold for observing ASE in this thin dye layer

decreases for larger excitation areas due to the presence of longer paths that receive more

gain. For excitation areas larger than 1000 µm2 the threshold for ASE in this dye layer is

lower than the threshold for observing spikes. This dye layer thus prevents studying effects

taking place inside the porous GaP for large excitation spots.

The high concentration of dye molecules in our system causes the gain length in the

system to be small (∼2 µm when all dye molecules are simultaneously excited to the upper

laser level, quenching effects can be ignored, and σe = 4 · 10−20 m−2). Therefore, spikes

in the emission spectrum could already arise due to lasing between two weakly reflecting

interfaces. For example, a distance of ∼5 µm between crystalline GaP (R = 0.2) and the

aforementioned sapphire window (R = 0.02) results in a tiny dye laser under the conditions

of our experiment. The reflection coefficient of porous GaP is much lower than the reflection

coefficient of crystalline GaP, because scattering randomizes the reflection direction and the

effective refractive index of porous GaP is lower than the refractive index of crystalline GaP.

In the case of porous GaP (R = 0.05) a spacing of ∼7 µm between the sample and the

window is needed for coherent lasing outside the sample. This value for the spacing is an

underestimation, because the quantum efficiency of Rhodamine dyes significantly decreases

for concentrations higher than 10 mM [202]. This reduction in quantum efficiency leads to

longer minimal gain lengths and therefore to larger required spacings. Based on Ref. [202],

the required spacings become twice as large. It also explains why a further increase in dye

concentration was to no avail for inducing more spikes in Ref. [172].

Experimentally, we observe spikes for all thicknesses of the fluid layer between the

sample and the sapphire window. At the same time, the reproducibility of spectral spikes

is slightly enhanced for larger thicknesses of the fluid layer. However, some of the measured

thicknesses for the dye layer are still too short to explain the spikes by standard lasing

action caused by the averaged reflectivity of the sample and the reflectivity of the window.

Hence, we attribute spikes to lasing originating partly from within the porous GaP. The

alternative possibility, i.e. lasing between the window and areas on the sample that have
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a higher than average reflection coefficient, is highly unlikely, since the measured ensemble

averaged random laser mode size is an order of magnitude larger than the correlation length

of the microscopic disorder in porous GaP. The spectral spacing between the spikes typically

remains between 1 and 2 nm for all thicknesses of the fluid layer, which is another clear

indication that the amplification takes part partly within the porous GaP and is not solely

due to lasing between the sample interface and the sapphire window.

The experiments do show that surface effects play a more important role than was

previously assumed. For small distances (in terms of the gain length) between the sample

and the sapphire window, most amplification takes place inside the random medium. Due

to the high number of modes (order of thousands) available in such a medium [15], there

are many possible laser modes. Therefore, which of the available modes turn “on” depend

on statistical fluctuations inside the dye solution and change from shot-to-shot. In such a

situation the spectral position of the spikes cannot be determined a priori. The focus in

the remainder of this chapter lies mostly on explaining the occurrence of spikes themselves,

rather than these statistical fluctuations.

6.3.5 Conclusion on random lasing in and around porous GaP

In the field of random lasing three distinct forms of lasing have been reported in the past:

lasing in the form of narrowing of the emission output spectrum, lasing in the form of a

chaotic appearance of spectral spikes, and lasing in the form of reproducible spectral spikes.

We observed these three different types of lasing in and around a porous GaP sample

infiltrated with laser dye. For large excitation volumes (i.e. large compared to the transport

mean free path and the gain length), Amplified Spontaneous Emission (ASE) dominates the

emission spectrum. This ASE is due to a layer of dye between the sample and the sapphire

window. For small pump spots that are comparable to the gain length and the transport

mean free path, spectral spikes start dominating over the ASE spectrum. Depending on

the distance between the sample and the holder window the spikes reproduce in spectral

position or appear chaotically in the spectrum. The reproducibility of spectral spikes is

enhanced for larger distances, indicating that the relatively large extent of modes outside

the random medium is a key property of stable random laser modes. This key property

put forward by us [193] has in fact recently been used to tailor a random laser by directed

stimulated emission [181, 203].

The intense debate in the experimental literature on the origin of spikes [85, 91, 176, 178]

can partly be attributed to the fact that in these studies very different systems were taken

into consideration. The outcome of our experiments emphasizes that spikes in random

lasers are predominantly an effect occurring near the boundary of the multiple scattering

system [86, 183]. The results apply to many random laser experiments, since pumping of

random laser systems is almost always done via the outside, and the result is monitored

in reflection. The combination of multiple scattering and short pump absorption lengths

prevents random laser action to take place in the bulk of the sample. In such experimental

configurations the leakiness of random laser modes to the outside is bound to play an

important role.

By studying the spatial intensity-intensity autocorrelation of the random laser modes

that are associated with spectral spikes, we are able to compare random laser modes directly

with diffusive phenomena for the first time. The structure of these modes on the surface

of the sample deviates from speckle. Our approach has recently been employed to study
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another type of random laser and led to similar results [204]. The gain in an active medium

acts as a selection mechanism that chooses a subset of the modes available in the medium

to start lasing. The modes are shown to have a significant spatial overlap at the surface,

making gain competition effects such as spatial hole burning very plausible.

From an experimental point of view, applying our spatially and spectrally selective

detection scheme to random lasers with a smooth emission spectrum is also of relevance

as it allows for studying the spatial dependence of the cavity decay rate. We showed

in chapter 5 that differences in the effective decay rate appear as spectral shifts in the

emission spectrum. By doing so, we incorporated the distribution of path lengths in a

random medium into a single quantity. The proposed experiment, possibly in combination

with the side imaging technique of chapter 4, probes spectral shifts locally and thereby

enables us to retrieve the distribution of path lengths in a random laser.

6.4 Constructing a random laser phase diagram

6.4.1 Sample fabrication

From the interpretation of the available literature presented in Sec. 6.2, we conclude that

the appearance of spikes critically depends on the amount of scattering and gain in the

system. In the experiment presented in this section, we aim to find the transition from

spiky to smooth spectra in the `-`g plane by applying a bisectional algorithm with respect

to the scattering strength of our samples. At a fixed dye concentration, we start with a

weakly and a strongly scattering sample. A new sample is then prepared after measuring

these two samples. The scattering strength of the new sample is chosen such that it lies

halfway in between those of the two closest measured samples that show opposing spiking

behavior. This way, we minimize the difference between the scattering strength of our

sample and the scattering strength for which the transition from smooth to spiky spectra

occurs.

The studied random laser system is a dye solution (Rhodamine 640 P in methanol) in

which elastically scattering titania particles (Ti-Pure R-900, DuPont) are dispersed. The

characteristic interaction length scales are calculated using ` = 1/ρσ. In this formula ` is

the gain length (mean free path), ρ is the concentration of particles, and σ is the stimulated

emission cross section (scattering cross section). The stimulated emission cross section of

the dye is (4 ± 0.5) · 10−20 m2 at λ = 600 nm, see chapter 5 [169]. The scattering cross

section of the colloids is ∼ 7 · 10−13 m2. The suitability of using 1/ρσs for the scattering

particles under consideration was previously shown to be reasonable [147]. The gain lengths

reported in this section assume all dye molecules are excited to the upper laser level and

are therefore minimal values. In reality the gain length will be spatially dependent and

longer than these reported gain lengths.

The bisectional algorithm is applied on systems having calculated minimal gain lengths

of 4, 8, 16, 24, 32, and 40 µm (dye concentrations ranging from 10 to 1 mM). For high

dye concentrations (> 1 mM), the suspensions of TiO2 become highly unstable. The tita-

nia particles sediment within minutes when the concentration is around 10 mM. To ensure

dispersive stability over several hours, a small amount (0.1 g per 10 mL) of polyvinylpyrroli-

done (PVP K-30) was added to all samples.

Samples are pumped with OPO light at a wavelength of 535 nm, using 5 ns long pulses

at a repetition rate of 20 Hz. Emitted light is collected by the same lens that is used to
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Figure 6.8: (upper panel) Example of

a fitted high-resolution spectrum. The

black line is the original data, the blue

curves are the individual components

used to fit the data and the red curve is

the fitted sum of all components. The fit

parameters, height (I0), width (γ), and

position (x0) are shown. (lower panel)

Residuals between the fit and the data.

The grey area indicates a 5% deviation.

focus the pump light on the sample. All experiments are conducted above threshold, with a

pump power of 1.5 mW. The area of the slightly elliptical pump spot is (6.8±1.4) ·103µm2.

For every sample, 100 single shot spectra are recorded using a spectrometer that is operated

at a spectral resolution of either 1 nm or 0.1 ± 0.05 nm.

6.4.2 Data analysis and spike detection

The measured spectra are either smooth narrowed curves with respect to the below thresh-

old spectrum or narrowed curves with distinct spikes superimposed on them. The relative

height of the spikes is typically a factor 10 lower compared to the spikes obtained with

porous GaP random lasers, which makes their detection somewhat more involved. We have

therefore fitted all these individual spectra with Lorentzian lineshapes. After smoothing

the data to remove noise, the number and position of spikes is found by analyzing the sec-

ond derivative of the data. The locations of minima in the second derivative correspond to

spikes in the spectrum. Only minima that are considerably deviating (10% of the difference

between the global extrema) from their nearest maxima (larger than 0.1% of the original,

smoothed data) are selected as corresponding to spikes. Using this method, we find the

width, amplitude, and position of every function representing either a spike or the narrowed

background.

Figure 6.8 shows an example of a decomposed emission spectrum. The deviation of

the original data to the fit is within 5% for the majority of the spectrum. This level of

accuracy is typical for all spectra that have been analyzed. From this analysis, we conclude

the fitting routine is able to reliably fit the elements of spiky spectra.

6.4.3 Results on dispersive systems

To study whether or not samples exhibit spikes, we analyze the average of the number of

detected peaks. The inset in Fig. 6.9 shows the number of detected peaks per sample. A

clear distinction is visible that separates spiky from smooth spectra as indicated by the
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Figure 6.10: (a) Distribution of the central emission wavelength of spikes (open bars) and broad

background peaks (filled bars) for our model sample. Both distributions are fitted with Gaussian

profiles (black curves). (b) The mean of the spectral distribution of spikes with respect to that of

the corresponding background peak. The length of the error bars is determined by the width of the

distributions. The dotted line indicates equality of the wavelengths.

dashed line. Sometimes more than one peak is detected in samples that on average are

considered to be smooth. These deviations are due to unavoidable uncertainties in the

fitting routine. Therefore, we only consider samples that on average have more than two

detected peaks per spectrum as “spiky” samples.

In Fig. 6.9, the appearance of spikes is shown as function of the sample parameters

` and `g. A clear trend is observed in this graph: spikes appear only in samples on the

right-hand side of the diagram. This result directly implies that strong multiple scattering

is not a critical necessity for inducing spikes. On the contrary, the more diffusive the sample

becomes the less likely it becomes that spikes appear in the output spectrum. We note that

both an increase in transport mean free path and a decrease in gain length lead to a less

diffusive sample (` ≈ L with L the system length), because a decrease in gain length makes

samples more absorbing and therefore leads to a shorter system length.

The obtained values for the fitting parameters allow us to study the statistics of spikes

in much more detail. We limit ourselves to studying the high-resolution data to make

sure all spikes are well separated. We analyze the spectral position of spikes and the

broader background on which they reside. In Fig. 6.10(a), we show the spectral position
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Figure 6.11: A distribution of spec-

tral spacing values collected from one

sample (bars). The curve represents

Wigner’s surmise fitted to the data. In-

set: mean mode spacing as found by fit-

ting Wigner’s surmise to all collections

of mode spacings. Samples with ∆ = 0

cm−1 have smooth emission spectra.

distribution of both the fitted spikes (white bars) and the fitted broader background (grey

bars) for one sample. The spectral spread for the position of the spikes is larger than the

spectral spread for the position of the underlying spectrum. Moreover, the spikes reside

predominantly on the blue side of the broad profile. In order to compare the statistics of

the different samples, these distributions have been fitted with Gaussians. In Fig. 6.10(b),

the mean and variance of the spectral positions for the spikes are plotted versus the mean

and variance of the underlying broad background. From this graph, we deduce that the

emission wavelength of spikes is on average smaller than the central emission wavelength

of the broad underlying profile for all samples.

The spectral spacing between neighboring random laser spikes is retrieved from the

fitted Lorentzian profiles. A typical distribution of spacing values for one sample is given

in Fig. 6.11. The spectral spacing between the spikes is clearly peaked around 10 cm−1.

We therefore deduce that level repulsion is present. This phenomenon has previously been

reported for random lasers [81, 176]. We fit the spectral spacing distribution to a Wigner’s

surmise with mean mode spacing (∆) as fit parameter. The fitted values for ∆ are collected

for several samples and are shown in the inset of Fig. 6.11. Surprisingly, we observe that the

mean mode spacing is comparable for all systems that show spikes: ∆ = 10.2 ± 0.9 cm−1.

Since this analysis is performed for systems with different concentrations of scatterers and

gain molecules, we conclude that the extent of level repulsion does not significantly depend

on the strength of scattering or gain.

The fitted values for ∆ make it possible to compare our experimental results with

theoretical random matrix calculations. Zaitsev studied the mode spacing of a two mode

random laser theoretically [205]. He concluded that for wide gain profiles, the spacing of the

lasing modes does not depend on the spacing statistics of the passive system. His conclusion

matches with our experimental observation of a constant spacing for a wide range of sample

parameters.

6.5 Two-mode model with gain competition

In order to comprehend the transition from smooth to spiky spectra in our dispersive

samples and the occurrence of spikes in our GaP random laser, we set up a model consisting

of just two laser modes. Although a two-mode model obviously represents a reductionist’s
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approach of modeling a random laser, it nevertheless provides insight behind the physics

of random lasers. In addition, a two-mode model has the advantage of being analyzable

analytically. The quasi-modes in a diffusive sample have a wide range of decay times and

overlap spatially on intensity level. We therefore postulate that in a random laser, modes

with different decay rates compete for the same gain. The number of photons in the two

modes, q1 and q2, with cavity decay rates γ1c and γ2c are described by two rate equations

that both depend on the same number of molecules in the upper laser level N [15]:

dq1
dt

= −q1γ1c + β1γrNq1 + β1γrN, (6.3)

dq2
dt

= −q2γ2c + β2γrNq2 + β2γrN, (6.4)

dN

dt
= R− γrN − β1γrNq1 − β2γrNq2. (6.5)

Where we have considered a unit quantum efficiency gain medium with decay rate γr. The

factors β1 and β2 differ from the effective β-factor in earlier chapters in this thesis, because

here they describe which part of the spontaneous emission contributes to the lasing process

of a single mode. As discussed in Sec. 1.1.5, this single mode β-factor in a conventional

laser is dependent on both the angular, βΩ, and spectral, βω, overlap between spontaneous

emission and the mode [206]: β = βΩβω. We propose the solid angle participation ratio of

the mode with scattering function f(θ, φ) as a convenient way to determine the geometrical

part of the β-factor in a random laser by

βΩ =

[∫

fdΩ
]2

4π
∫

f2dΩ
. (6.6)

One of the unique properties of a truly diffusive random laser is the fact that on average

no angular mode selectivity takes place [107, 169]. Individual diffusive modes are speckle-

like and as a consequence a single mode is omnidirectional as well. Given the speckle

intensity Rayleigh distribution, all modes have a similar solid angle participation ratio,

and therefore βΩ is constant for all modes. In this particular case of constant βΩ, the

differences in β-factor stem only from the spectral dependence of the β-factor. For the high

gain modes with their spectrum centered around the peak of the gain curve, the β-factor

then becomes proportional to the cavity decay rate. If we consider such a diffusive random

laser by putting γ1c /β1 = γ2c /β2 = κ, we find from a steady-state analysis of Eqs. (6.3)-

(6.5): q1 = q2 = γrN/ [κ− γrN ]. Surprisingly, the two modes with widely varying decay

time thus contain the same number of photons. In popular terms: modes that waste but

also earn a lot become just as rich as frugal modes that earn very little. Extrapolation of

the model to a system with n modes sharing the same gain medium, leads to the conclusion

that a smooth random laser spectrum is a direct result of the cavity decay rate and the

β-factor being proportional to each other for n modes. In this framework, the spectral

narrowing observed in diffusive random lasers is explained by the fact that modes in the

wings of the gain curve have a smaller βω than modes in the center of the gain curve. Very

lossy modes with large cavity decay rates located in the peak of the gain curve also have

smaller values for βω, because the spectral wings of these modes simply fall outside the

gain bandwidth. As a consequence the effective cavity rate decreases above threshold as

was observed in chapter 4 and put to use in chapter 5.

To explain the observed spikes in random lasers we return to the simple model of two

modes. Starting from a situation where γ1c /β1 = γ2c /β2 = κ, there are two ways to let one
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mode end up with more photons than the other mode. First, by simply changing the ratio

γc/β for the two modes. This ratio is decisive in determining which laser mode ends up with

the majority of photons and thus profits the most from the available gain. The mode with

the smallest ratio eats up the gain for the other mode, sometimes leading to a complete

quenching of the second mode. Second, one mode can become more prominent when the

gain competition is reduced by splitting up the gain in more than one reservoir. For a

completely uncoupled system, the number of photons in a lasing mode above threshold is

given by R/γc + 1/β, which shows that in such a situation the mode with lowest cavity

decay rate eventually becomes most prominent in the spectrum.

To determine which of the two mechanisms is responsible for inducing spikes in our

experiment, we have another look at the results shown in Fig. 6.10(b). The fact that

spikes appear systematically on the blue side of the spectrum, indicates that photons in the

modes responsible for the spikes have traversed relatively short paths in the medium. Since

longer light paths experience more reabsorption and are therefore red shifted as discussed

in chapter 5 [207]. The path length s is related to the cavity decay rate by s = c/γc.

Apparently and somewhat counterintuitive, spectral spikes represent modes with a large

cavity decay rate. In a typical spectrum, several spikes appear simultaneously at the blue

side of the spectrum, while a broader smooth peak remains present at the red side. From

this observation, we conclude that mode competition cannot be ignored for modes with low

cavity decay rates, while at the same time mode competition starts to play a less dominant

role for the high cavity decay rate modes.

Our experimental phase diagram shows that spectral spikes appear when the sample

becomes less diffusive. At the same in our porous GaP random laser, it became clear that

amplification outside the multiple scattering medium cannot be ignored. Once a random

laser becomes less diffusive, that is ` ≈ L with L the system length, βΩ ceases to be constant

for all modes. It is therefore likely that a compact mode with a short cavity decay time, but

high βΩ, is privileged over long cavity decay time modes. Moreover, the confinement of this

mode also allows it to escape from the mode competition present among the other modes,

further enhancing its output. Multiple spikes can then appear in the spectrum representing

other well confined modes. However, the more extended modes with low cavity decay rates

are still competing for the same gain in the bulk of the sample, which leads to a broader

but smooth peak in the spectrum. Reports in the literature on the spatial structure of

random laser modes [176, 178, 193] showing that the extent of the modes associated with

spikes are small compared to the excitation region, also support our interpretation of the

narrow spectral features as due to confined modes with a high βΩ.

6.6 Conclusion and discussion

Our experimental observation of spikes being restricted to weakly scattering systems un-

ambiguously shows that multiple scattering of light prevents the appearance of spikes. The

results imply that spikes are caused by a process including only a low number of scattering

events. We introduce a phase diagram that confirms previous indications of the importance

of the ratio between the gain length and the mean free path in the literature [180, 188].

The statistics of the narrow spectral features is still largely uncharted territory. Our work

reveals how rich the physics of random lasers becomes when studied systematically. We

believe these statistical analyzes are key for creating more satisfying connections between

theory and experiment in the future.
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The analysis of a simple two-mode model is able to explain the trends of our experiments

qualitatively. The combination of a shared gain medium and the absence of angular mode

selectivity in a purely diffusive random laser, leads to the simultaneous lasing of those

modes close to the gain maximum. This simultaneous lasing in its turn creates a smooth

output spectrum. Increasing either the gain or decreasing the transport mean free path

moves the system away from the diffusive regime and thereby destroys the assumption

of no angular mode selectivity and a completely shared gain medium. Individual modes

become visible in the output spectrum that are characterized by short cavity decay times

and high spontaneous emission factors.

Our interpretation of random lasing in terms of mode competition also explains the re-

sults of some beautiful recent experiments [181]. Selectively feeding the modes in a random

medium from the outside, as done, e.g., in Ref. [181] by a non-isotropic excitation scheme

or in our porous GaP random laser, allows some modes to escape from the competition for

gain inside the sample and to start lasing independently from the other modes. Our model,

in which two modes are entirely dependent on the same gain reservoir, is undoubtedly an

oversimplification of a random laser. In a typical random laser thousands of modes are

present with various spatial extent. We have implicitly made the assumption that such a

system can effectively be studied by having one gain reservoir. Studying the break down of

this assumption will surely lead to new interesting insight in random lasers.
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CHAPTER7
Outlook and applications

Based on the work presented in this thesis, several ideas for new research directions and applica-

tions are put forward. Some of these ideas are based on the experimental techniques developed

in this thesis, whereas others build upon the concept of studying a source inside a random

medium. First, the technique used to unravel the spatial structure of random laser modes is

shown to be a promising method for analyzing paint layers in greater detail in Sec. 7.1. Second,

we propose an apparatus that measures the turbidity of suspensions by using the side imaging

technique of Chapter 4. Third, a new line of research is suggested in Sec. 7.3 by combining

random lasers with wavefront shaping. Fourth, in Sec. 7.4 studying sinks rather than sources

in random media is discussed.

7.1 A new tool for studying paint

Characterization of multiple scattering media is of tremendous importance in the paint

industry. The most expensive component in conventional paint is titania. Optimizing the

hiding power of a paint, defined as “its ability to hide the color or color differences of a

substrate” [208], while using as little pigment as possible therefore significantly reduces

the paint’s cost. For coating applications, the paint is also required to prevent exposure

of the underlying material to its surroundings, e.g., to make sure that no rust is formed

in vulnerable parts of a ship. To analyze the quality of a coating, non-invasive techniques

for studying the substrate while covered by the coating are needed. In this section, we

introduce Frequency Correlation Imaging (FCI) as a new method for characterizing the

opacity of paint. Moreover, this method is potentially able to reveal the structure of a

multilayered paint sample and the optical properties of its substrate.

In passive randommedia, the scattering strength of samples is primarily characterized by

angularly resolved techniques such as enhanced backscattering [53, 54] or total transmission

and reflection measurements. The width of the enhanced backscattering cone is inversely
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Figure 7.1: (a) Illustration of the principles behind Frequency Correlation Imaging. A paint sample

is excited by coherent white light. Due to multiple scattering inside the sample, the excitation light

diffuses away from the excitation focus. The average path length traversed in the sample is relatively

short close to the focus of excitation and becomes longer when moving away from the focus. As a

consequence, the spectral speckle collected far away from the focus contains information about light

paths reaching deep into the sample. In this case, the spectral speckle collected far from the focus

is influenced by another paint layer that is covered by the top layer. (b) Experimental realization

of FCI technique.

proportional to the transport mean free path, which makes enhanced backscattering a

great tool for studying strongly scattering samples. Information on long paths traversed in

the sample accumulates in the tip of the cone, whereas the wings of the cone only convey

information about the short paths traversed in the sample. Thus, enhanced backscattering is

foremost a sensitive technique for studying short light paths. In the biomedical community,

diffuse optical imaging [209] has proven to be a versatile tool for non-invasive imaging

inside weakly scattering tissue, but its resolution has been limited to the centimeter scale.

In chapter 6, a confocal detection scheme was introduced to measure the spatial structure

associated with narrow spectral features in random lasers. The beauty of this technique

resides in that it provides spatially resolved spectral information on the micrometer scale.

At the same time, the advance of supercontinuum white-light laser technologies in the

past decade allows for extending multiple scattering analyzing tools to a large range of

wavelengths [59, 210].

The combination of excitation by a supercontinuum laser and spatially resolved spectral

detection results in a powerful apparatus for analyzing paint samples. Figure 7.1 shows an

illustration behind the idea of the FCI technique. Coherent white light generated by the

supercontinuum laser (Fianium SC-450) is tightly focussed onto the surface of a paint

sample. Multiple scattering results in diffusion of light. The diffuse light escaping the

sample is collected in reflection. The average path length traversed through the sample

depends on the distance between the point of excitation and the point of detection. Close

to the focus, the average path length is short, whereas far away from the focus the average

path length is long. This difference in path length changes the spectral intensity speckle.

These changes in spectral speckle are measured by using our confocal detection scheme

that allows for measuring the spectrum at different regions on the surface of the sample.

Speckle due to long light paths in the sample decorrelates stronger than speckle due to

short light paths, because the longer the traversed path in the medium the larger the phase
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Figure 7.2: (a) Spectrally averaged contour plot of the diffuse spot measured in reflection. The

contour lines are logarithmic. (b) Intensity versus radius for a diffuse spot in reflection. Black

disks: experimental data points for parallel polarized light. Black line: fit to diffusion theory. Gray

triangles: experimental data points for perpendicular polarized light. Gray line: fit to diffusion

theory. (c) Experimental spectra around λ = 604 ± 25 nm for different radii. (d) Experimental

spectral intensity-intensity autocorrelation for different radii.

shift for a given frequency bandwidth. If long light paths are somehow attenuated, e.g., by

the presence of a hidden absorptive layer of paint, the correlation of the spectral speckle

collected far away from the focus changes. The fact that FCI is both spectrally and spatially

resolved then enables to find out which layers are hidden underneath the top layer.

Figure 7.2 shows some first results obtained with the FCI technique on a 14 ± 1 µm

thick layer of dried white paint. The experimental apparatus that was used is sketched in

Fig. 7.1(b). The spatial scan covered 54 × 77 microns and the spectrum was measured

from 518 to 724 nm. In Fig. 7.2(a) the iso-intensity contour lines of the diffuse spot in

reflection are shown. Spatial speckle has been averaged out by averaging over a frequency

interval. The focus of the white-light light source is smaller than 2 µm. By fitting the

diffuse spot profile with diffusion theory, as shown in Fig. 7.2(b), the transport mean free

path (` = 2 ± 0.1 µm), the extrapolation ratio (ze/` = 2.4), and the absorption length

(`a = 11 ± 1 µm) are retrieved. In addition, the spatial profile of the diffusive spot turns

out to be strongly dependent on the measured polarization channel. Close to the focus

of the white-light source, the intensity of the parallel polarization channel is higher than

the perpendicular polarization channel due to a strong single scattering contribution. Far

99



Outlook and applications

Figure 7.3: Turbidimeter based on the

method of extrapolation. Light from an in-

coherent light source is incident on a turbid

sample. A detector placed at 90 degrees with

respect to the incident beam forms a conven-

tional nephelometer. This part of the appara-

tus is used to measure the turbidity of weakly

scattering samples. For multiple scattering

media (samples with high turbidity), the tur-

bidity is measured by imaging the side of the

sample onto a CCD camera. Extrapolation

of the diffuse intensity to zero intensity, as

illustrated in the graph, returns the extrapo-

lation length indicated by the gray dot. From

the extrapolation length the transport mean

free path is deduced which is a direct measure

for the turbidity of the sample.
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away from the focus, both polarization channels have equal intensity, because multiple

scattering inside the sample scrambles the input polarization and thus results in a complete

depolarization. Examples of measured spectra at different radii of the diffusive spot are

shown in Fig. 7.2(c). Clear speckle intensity fluctuations are visible. By calculating the

intensity-intensity spectral autocorrelation C(δω) in Fig. 7.2(d), we conclude that the

speckle indeed decorrelates faster on a spectral scale for larger radii.

These promising initial results show that FCI is a great way to characterize paint sam-

ples. In future experiments, the sensitivity of the technique to absorbing layers buried

underneath a white paint layer needs to be investigated. The fact that our setup has a

good signal-to-noise ratio for radii up to 15 times the transport mean free path indicates

that the apparatus is capable of measuring effects of absorption on relatively long light

paths. Depending on the sensitivity of the technique, FCI might even be able to recover

images obscured by a white layer of paint, for example by performing the above mentioned

experiment for different positions of the focus spot.

7.2 Turbidimeter based on the method of extrapolation

The clarity of liquids is often used as an indication for their quality. The industrial method

for measuring the turbidity of suspensions relies on so-called nephelometers or turbidime-

ters. The measured turbidity is expressed in terms of the Nephelometric Turbidity Unit

(NTU), which is a measure for the turbidity of the sample with respect to a standard so-

lution of Formazin in water. The basic design of a nephelometer consists of an incoherent

white light source and a detector placed at 90 degrees from the beam path that measures

the light scattered out from a sample placed in the beam path. These type of nephelometers

return accurate results for weakly scattering suspensions, but become useless for multiple

scattering media. More complicated designs involving more than one detector exist that in-

crease the turbidity range. Yet, dilution of samples remains required for strongly scattering

samples [211, 212].

100



7.3. Controlling random lasers by wavefront shaping

In the framework of this thesis the turbidity of a sample is expressed by the inverse of

the transport mean free path rather than in terms of the NTU. These units are however in

principle inversely proportional to each other. In chapter 4, we showed that knowledge of

the extrapolation ratio and a side imaging technique enabled us to retrieve the transport

mean path of a strongly scattering suspension. We propose a new type of turbidimeter

based on this method of extrapolation that is able to measure both weakly and strongly

scattering samples.

A sketch of the apparatus is shown in Fig. 7.3. The design is an extension to a con-

ventional nephelometer, in which the diffuse intensity is imaged onto a CCD camera. By

extrapolating the diffuse intensity at the edge of the sample to zero intensity, the extrapo-

lation length is found. This extrapolation length is related to the transport mean free path

via the extrapolation ratio. Since this ratio is well-known for water based suspensions in

a cuvette, the transport mean free path can be deduced. The method of extrapolation is

based on diffusion of light and is therefore limited to multiple scattering media. By com-

bining this method with a conventional nephelometer however, a wide range of turbidity

samples can be covered. This measurement device therefore reduces the need for dilution

of samples.

7.3 Controlling random lasers by wavefront shaping

The spectral output of a random laser has been of the main topics in this thesis. Introducing

an absorber was shown to lead to more control over the emission wavelength in chapter 5.

Our approach of tuning a random laser by absorption has recently been extended to the

domain of random lasers with narrow spectral features [213]. Yet, controlling the number

and spectral position of these spikes in the spectrum has remained very much out of reach

for experimentalists. We have seen in chapter 6 that the spectral position of spikes is often

chaotic and differs from shot-to-shot. The situation is remotely similar to ordinary speckle

patterns where the spatial position of an intensity maximum is difficult to predict a priori.

Wavefront shaping of the incident light, that is modulating the amplitude and phase profile

of a plane wave, has led to incredible control over the scattered light from a passive random

medium [36]. Here, we suggest that wavefront shaping the pump beam in a random laser

enables engineering of the spectral narrow features in random lasers.

A sketch of the proposed experimental configuration is given in Fig. 7.4. Pump light

is guided towards a spatial light modulator (SLM). Typically, a beam expander needs to

be put in the beam path to match the size of the beam with the size of the SLM. The

light reflected by the SLM is incident on a random laser sample. In wavefront shaping

experiments, one either focusses the excitation light directly onto the sample or one images

the separate SLM-pixels onto the surface of the sample [214]. The latter method has the

advantage that it becomes possible to compare the wavefront shaping experiment with our

work on the spatial structure of random laser modes in chapter 6, where we have measured

the spatial distribution of emission light at the surface of the sample. The emission light is

analyzed using a high-resolution spectrometer. Depending on the sample, spectral narrow

features might appear in the emission spectrum. The spectral intensity of one of these

features is selected by the experimenter as a feedback signal of the spatial light modulator.

An optimization algorithm is then employed to modulate the amplitude and phase of the

SLM, in order to increase the intensity of the selected feature in the spectrum.

Ideally, this pumping scheme leads to the enhancement of one of the narrow spectral
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Figure 7.4: Sketch of experimental setup

for wavefront shaping random lasers. The

wave profile of the pump light (gray arrows)

is modulated by a Spatial Light Modulator

(SLM). The modulated phase front is pro-

jected onto the random laser sample. The

emission light (dark gray arrows) is detected

using a spectrometer. The intensity of a nar-

row spectral feature is used as a feedback sig-

nal for the amplitude and phase distribution

on the SLM. An optimization algorithm is

then employed to increase the signal of the

selected narrow spectral feature.

phase plate

sample

beam splitter

spectrometer

feedback

features at the cost of others and to an increased stability of random laser spectra. A serious

complication is formed however by the fact that random laser spectra have the tendency

to fluctuate strongly from shot-to-shot. These fluctuations stand in sharp contrast with

wavefront shaping experiments in passive random media, where the used speckle patterns

are stationary. To circumvent this complication, one might reduce the number of lasing

modes from the start. For example, by using amplification of light by stimulated emission

outside the gain medium [181, 193] or by taking only small samples into consideration

[178]. After such a preselection of modes, averaging over multiple shots increases the output

stability and hence the possible success rate of the optimization routine.

Our proposal for employing wavefront shaping in random lasers does not only lead to

better control over the output of random lasers, it also promises to give more insight in

the working principles behind a random laser. When the SLM is imaged onto the sample

surface, the amplitude profile of the SLM after optimization corresponds with the excitation

structure of a single random laser mode. Using our confocal detection scheme then allows

for a direct comparison between the excitation and emission structure of a random laser

mode. Moreover, a wavefront shaping experiment on a random laser sample very likely

contains quantitative information about how much of the gain medium is shared between

the different modes. To that end, the presence and intensity of narrow spectral features

other than the one chosen for optimization need to be monitored as well. A complete

suppression of the other spectral features is strong indication for little mode overlap inside

the random laser sample. Successful implementation of the above brings random lasers

closer to the realm of applications as it allows for the selection of a very narrow emission

line at a random frequency.

7.4 Sinks in random media: the black shades of white

Researchers in the field of multiple scattering of light have shown a strong preference for

nonabsorbing systems in the past [215]. This thesis considered systems in which radiation

was not just conserved, but also created. We have seen how the interaction of sources

with a multiple scattering random medium leads to fascinating phenomena such as random

lasing and infinite range intensity correlations. The mathematical symmetry between gain

and absorption has recently inspired a team of physicists to construct a so-called coherent
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perfect absorber (CPA), in which interference of two coherent light beams results in almost

complete (99 %) absorption of light in a slab of silicon [166, 167]. In essence, a CPA is the

time-reversed analogy of a laser: in a conventional laser a standing wave pattern inside a

leaky cavity filled with gain leads to the creation of coherent radiation outside the cavity;

in a CPA two sided coherent illumination leads to a standing wave pattern in an absorbing

cavity and subsequently to annihilation of the excitation light. The technique of CPA

relies on resonances inside the cavity and the coherence of illumination. The technique is

therefore intrinsically narrowband. A broadband strongly absorbing sample is one of the

holy grail in the field of photovoltaics as such a material promises to drastically increase

the efficiency of solar cells. Spherical scatterers placed on top of a silicon wafer show great

potential for photovoltaic applications as they guide light into the wafer and thereby lead

to enhanced absorption [216].

These studies illustrate how the focus in the field of nanophotonics is gradually enlarged

towards including absorption. Three subjects follow naturally from the work described in

this thesis when the role of sources is replaced by sinks. First, absorption might lead to

intensity correlations that are similar to the ones as induced by a classical dipole source

in a random medium. The source in the diagrammatic expression for the C0-correlation

is then replaced by an absorber located in close vicinity to a scatterer. In this view an

absorbing particle is essentially a miniature version of a detector. If the analogy with the

C0-correlation holds, certain configurations of disorder lead to more extinction of incident

light than others. In fact, in might well have been this C0-correlation induced by absorption

that has led to the observation of intensity fluctuations from a source in the literature

[116]. Second, introducing local absorbers in our transverse localization experiment might

enable a further selection of participating modes and thereby diminish the observed beating

effects. Third, weakly absorbing random media might be made strongly absorbing when the

amplitude and phase of the input light are altered using wavefront shaping. The feasibility

of such an extension of CPA to the field of random media has recently been evaluated

theoretically [217]. Our discovery that diffusion in random lasers make a multiple scattering

medium act as an integrating sphere might be of use here since it reduces the need to shape

the wavefront over a 4π solid angle.
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This thesis deals with the interaction between sources of electromagnetic radiation and

disordered photonic media. Three concepts arising from this interaction form its main

thread. In the first concept, the combination of multiple scattering media with amplification

of light by stimulated emission leads to random lasing. In the second concept, the excitation

of a localizing random medium by a source enables the excitation of multiple eigenstates

simultaneously. In the third concept, fluctuations in the local density of states influence

the output of an embedded light source.

In the first chapter, an introduction into both electromagnetic sources and the theory

of multiple scattering of waves is given that forms the framework for the remainder of

the thesis. Diffusion is described using random walk arguments and a Green function

formalism. Interference effects such as enhanced backscattering and Anderson localization

are discussed. Speckle intensity correlations that are due to a source inside a random

medium are reviewed as well as the field of amplifying random media.

The second chapter focusses on the role of the quantum efficiency in the outcome of

photonic experiments involving molecular light sources. In the case of a unit quantum

efficiency, every excited emitter will eventually send out electromagnetic radiation, whereas

in the case of lower quantum efficiencies the sending out of radiation has to compete with

nonradiative transitions. Changes in the local density of states or invoking stimulated

emission of radiation, cause an increase in the power output of such a low quantum efficiency

source. We argue that a random laser forms an excellent system to study the power balance

of sources due to their omnidirectional output and the transition from spontaneous to

stimulated emission as the main mechanism of radiation around the threshold. A random

laser experiment with dye molecules with a range of quantum efficiencies, indeed illustrates

that knowledge of the source is essential for correctly interpreting experimental results.

With the help of an effective cavity model, the quantum efficiencies of the gain media

are retrieved and analytic expressions for the threshold are given. It is shown that the

theoretically derived infinite range intensity correlations rely on low quantum efficiency

sources. For unit quantum efficiency sources, the calculations have to be extended to

include sources with a constant power output.

In the third chapter, transverse localization of microwaves is studied with an excitation

source in vicinity of the sample. This experimental scheme leads to the excitation of several

eigenmodes simultaneously. The similarity of the paraxial wave equation describing our
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experiment and the time dependent Schrödinger equation allows for a mapping of the

longitudinal coordinate onto time. The waves are confined in the transverse dimension

due to one-dimensional Anderson localization, but the superposition of eigenstates leads to

beating effects in the longitudinal dimension.

The fourth and the fifth chapter treat some essentials of diffusive random lasers. First,

the diffusive volume is shown to increase both experimentally by using a side imaging

technique and numerically. This expansion in volume is a consequence of the fact that

gain in a random laser compensates for diffusion, which acts as a loss term in the diffusive

random laser rate equations. Absorption is another loss mechanism in random lasers, and

by carefully engineering the amount of absorption at the emission frequency, control over

the emission wavelength of random lasers becomes possible.

The field of random lasers has long been dominated by studies on narrow spectral

features. Yet the community has not reached consensus on their origin. In chapter six,

narrow spectral features are systematically studied both in samples with quenched disorder

and in suspensions. Using a confocal detection apparatus, we are able to measure the spatial

profile of random laser modes at the surface of a sample. The scattering and gain strength

in a random laser are shown to be two crucial parameters in explaining the transition from

smooth spectra to spectra containing narrow features experimentally. A model consisting

of just two competing laser modes explains why in a diffusive sample emission spectra are

smooth, whereas in weakly scattering samples narrow spectral features appear.

We conclude by discussing several new research directions and ideas for applying the

used experimental techniques industrially in the seventh chapter. The combination of wave-

front shaping with random lasers promises to yield interesting results in the future and un-

precedented control over their spectral output. Our side imaging technique is put forward

as a way to extend the scope of conventional turbidimeters. Confocal spectral detection

and coherent white light excitation are shown to form a powerful couple that enables a full

characterization of paint samples, and that can possibly reveal the layers hidden beneath

an opaque layer of white paint.
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Samenvatting

Elektromagnetische straling speelt een onmisbare rol in een mensenleven. Niet voor niets

neemt de bekendste vorm van deze straling, zichtbaar licht, een zeer prominente en po-

sitieve plaats in bij beschavingen en in talen over de hele wereld. Tegelijkertijd zijn de

technologische toepassingen van elektromagnetische straling niet meer weg te denken uit

onze maatschappij. Mobiele telefonie, razendsnel internet, de magnetron, het zijn maar een

paar voorbeelden van veelgebruikte toepassingen van dit soort straling.

Vanzelfsprekend is de opwekking van elektromagnetische straling dan ook van groot be-

lang. De frequentie van de elektromagnetische velden bepaalt het type straling dat wordt

gegenereerd. Microgolven, zoals gebruikt in een magnetron, kunnen worden gemaakt door

antennes die elektrisch worden aangedreven. De frequentie van zichtbaar licht is daaren-

tegen dusdanig hoog dat we het licht niet op een vergelijkbare wijze elektrisch kunnen

opwekken. Om licht te maken zijn we daarom vaak afhankelijk van aangeslagen mole-

kulen, dat wil zeggen molekulen in een hogere energietoestand, die hun overtollige energie

kwijtraken door straling uit te zenden.

Het uitzenden van elektromagnetische straling door een molekuul gebeurt echter niet

zomaar. Zonder een duwtje vanuit het elektromagnetische veld in de directe omgeving van

het molekuul gebeurt er niets. Zelfs als het veld gemiddeld genomen nul is (we spreken

dan van een elektromagnetisch vacuüm) vinden dit soort duwtjes plaats door fluctuaties in

het veld. Deze zogeheten vacuümfluctuaties spelen een belangrijke rol in de natuurkunde.

Als vacuümfluctuaties verantwoordelijk zijn voor de emissie van licht, dan zegt men dat

het licht spontaan is uitgezonden. Licht kan ook worden uitgezonden door straling met

precies de juiste frequentie op het molekuul te laten schijnen. Deze straling forceert het

molekuul dan om uit zijn aangeslagen toestand te komen. Deze wijze van licht maken,

wordt gestimuleerde emissie genoemd.

Dit proefschrift behandelt hoe lichtbronnen zich gedragen in ondoorzichtige materialen.

Voorbeelden van ondoorzichtige materialen vinden we overal om ons heen. Denk bijvoor-

beeld aan verf, melk of papier. Als licht binnentreedt in een dergelijke stof, dan raakt het

al heel snel de weg kwijt. De deeltjes waaruit deze materialen zijn opgebouwd sturen het

licht namelijk telkens een willekeurige richting op. Dit proces noemen we verstrooiing. In

tegenstelling tot licht heeft verstrooiing een veel minder positieve connotatie in de meeste

talen. Dat is ook niet zo vreemd, want verstrooiing leidt er vaak toe dat optische appara-

ten niet meer goed werken en dat je eigen zicht je ontnomen wordt. Een klein verstrooiend
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Figuur S.1: (a) Schematisch overzicht van een conventionele laser. Licht dat grotendeels opgesloten

zit tussen twee spiegels wint aan intensiteit door de aanwezigheid van een gepompt versterkend me-

dium. De rechterspiegel laat een klein beetje licht door: het laserlicht. (b) In een wanordelijke laser

zorgt terugkoppeling middels verstrooiing voor een langere verblijftijd van licht in het versterkende

medium. In tegenstelling tot een conventionele laser, gaat het laserlicht nu alle kanten op (grijze

pijlen). (c) Hoofdbestanddelen van een typische wanordelijke laser: links het versterkende medium

in de vorm van een kleurstof en rechts de verstrooiende deeltjes in de vorm van titania poeder.

vuiltje op de spiegel van een laser, kan er voor zorgen dat de laser in zijn geheel stopt met

werken. De laatste decennia proberen verscheidene wetenschappers echter om verstrooiing

tot een nieuwe bouwsteen te maken. In plaats van dat verstrooiing iets louter ongewenst

is, blijkt het nu opeens een heel krachtig middel om optica robuuster te maken.

De wanordelijke lasers die uitvoerig behandeld worden in dit proefschrift zijn een duide-

lijk voorbeeld van deze verschuiving in het denken over verstrooiing. Een conventionele laser

bestaat uit twee spiegels met daartussen een medium waarin licht wordt versterkt door ge-

stimuleerde emissie. Figuur S.1(a) illustreert het werkingsprincipe van een dergelijke laser.

Hoe meer energie er in het versterkende medium wordt gestopt door een pompmechanisme,

hoe meer licht wordt versterkt door dit medium. De spiegels vormen een trilholte voor

het licht waarin het licht als het ware gevangen zit. De combinatie van deze trilholte en

het versterkende medium ertussen leidt tot een enorme hoeveelheid licht binnenin de laser.

Doordat één van de spiegels een klein beetje transparant is gemaakt, ontsnapt er wat van

dit licht naar buiten. Dit licht verandert van karakter naarmate er meer energie wordt

gestopt in het versterkende medium. Boven de zogenaamde laserdrempel, krijgt het licht

een zeer goed gedefinieerde kleur en vaak ook een goed gedefinieerde richting. Maar wat

gebeurt er nu als de spiegels worden vervangen door verstrooiende deeltjes, met andere

worden als die vervelende stofdeeltjes een essentieel onderdeel worden van de laser? Het

blijkt dat er dan ook een laser ontstaat. Karakteristieke eigenschappen van een normale

laser zijn ook zichtbaar in deze vertrooiende laser, zoals het ontstaan van een heldere kleur

boven de laserdrempel.

Als de verstrooiing binnen zo een wanordelijke laser sterk genoeg is, ontstaat er echter

wel een belangrijk verschil. Waar in een normale laser het licht een heel duidelijke rich-

ting heeft, gaat in een wanordelijke laser het licht alle kanten op. In Figuur S.1(b) staat

schematisch weergegeven hoe zo een wanordelijke laser werkt, in Figuur S.1(c) staan de

belangrijkste ingrediënten van een dergelijke laser naast elkaar: het versterkingsmedium en

de verstrooiers. In hoofdstuk 2 van dit proefschrift, wordt zowel experimenteel als theo-

retisch aangetoond hoe deze bijzondere eigenschap ons in staat stelt om meer te weten te

komen over de lichtbronnen die het versterkend medium vormen. De resultaten van een

experiment blijken erg afhankelijk van het type lichtbron dat wordt gebruikt. Deze afhan-

kelijkheid blijkt daarnaast grotendeels genegeerd te zijn in de theoretische verstrooiings-

108



Samenvatting

literatuur. Sommige type lichtbronnen blijken onafhankelijk voor optische veranderingen

in de directe omgeving, terwijl andere lichtbronnen veel meer licht gaan uitzenden als de

hoeveelheid vacuümfluctuaties of de hoeveelheid invallende straling verandert.

De verspreiding van licht in verstrooiende materialen kan meestal zeer goed worden be-

schreven met behulp van diffusietheorie. Licht spreidt zich dan op een vergelijkbare manier

uit als de inkt die uitloopt van een vulpen op een poreus papiertje. In tegenstelling tot deze

inkt is licht echter een golf. Als twee golven elkaar tegenkomen kunnen ze elkaar uitdoven

of versterken, dit wordt interferentie genoemd. Als dit fenomeen in verstrooiende media erg

dominant wordt, kan het er voor zorgen dat de diffusie beschrijving niet meer correct is. In

lager dimensionele systemen zorgt interferentie ervoor dat het licht gelokaliseerd wordt in

plaats van diffuus uitspreidt. In het derde hoofdstuk van dit proefschrift laten we zien hoe

lokalisatie zich opbouwt in de tijd met behulp van microgolven. Als de straling afkomstig

is van een kleine bron, ontstaan er allerlei oscillaties in de lokalisatiepatronen.

In hoofdstuk vier, wordt diffusietheorie juist gebruikt om de transport van licht in

een wanordelijke laser te begrijpen. Met behulp van een nieuwe meetmethode wordt een

vergroting van het emissievolume waargenomen. Deze vergroting staat aan de basis van

een goed begrip van de resultaten in hoofdstuk vijf, waar we de kleur van een wanordelijke

laser laten veranderen door een stofje toe te voegen die bepaalde kleuren absorbeert.

In het vakgebied van wanordelijke lasers is er veel discussie over resultaten waarin heel

goed gedefinieerde kleuren tegelijkertijd worden waargenomen. Door al deze resultaten

te ordenen en nieuwe experimenten uit te voeren komen we tot de ontdekking dat de

verstrooiingsterkte en de mate van versterking bepalen hoe een wanordelijke laser zich

gedraagt. Hoe diffuser de wanordelijke laser is, hoe voorspelbaarder het spectrum er uit zal

zien.

Hoewel het proefschrift behoorlijk fundamenteel van aard is, blijken er ook interessante

mogelijkheden te zijn om enkele van de experimentele opstellingen te gebruiken in een indu-

striële context. Deze toepassingen staan centraal in het laatste hoofdstuk. De ontwikkelde

opstellingen in dit proefschrift leiden mogelijk tot een betere karakterisering van lagen verf

en troebele suspensies.
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Context of discovery: a behind-the-scenes story of a thesis

Wat is wetenschap? Wetenschap is de titanische poging van het menselijk in-

tellect zich uit zijn kosmische isolement te verlossen door te begrijpen.

W. F. Hermans, Nooit meer slapen (1966)

Science is much more than the collection of scholarly articles, theses, and books. One might

give very different answers to the question what science entails depending on one’s viewpoint.

Philosophers of science often make a useful distinction between the “context of justification”

and the “context of discovery” when analyzing science. The “context of justification” refers to

the rational arguments put forward by scientists that explain why their research belongs to the

body of scientific reasoning. The backgrounds of a study, e.g., questions related to why studies

are conducted or where a scientist received inspiration for his work, fall within the “context

of discovery” [218]. A thesis in physics is mostly written and judged within the “context of

justification”. In this section, which does not belong to the academic part of my thesis, I

sidetrack a little bit and I describe how scientific research comes into being from the perspective

of a graduate student.

The contents of a dissertation in the natural sciences can often only be grasped by a small

group of specialized scholars. I am afraid my thesis forms no exception to that rule. For the

uninitiated the text of a dissertation is too technical and if it contains a lot of mathematics

it might even appear mysterious. A popular saying among physics PhD students goes that

the Acknowledgments form by far the most important part of a thesis, simply because it

is the only part understandable to everyone. Similarly, the structure and style of scientific

articles barely reflect the moments of glory and excitation every scientist feels when making

a new discovery. For outsiders, these technical and dry pieces of communication are doomed

to remain unattractive prose. For insiders, these texts written in broken English enriched

with loads of formulas and graphs possibly reveal beautiful new aspects of nature.

In her 2009 Jan Hanlo-lecture [219] Marita Mathijsen, professor in Dutch literature

at the University of Amsterdam, encouraged to introduce all kinds of literary techniques,

such as emotion and rhetoric devices, into scientific texts in order to make works of science

accessible to a larger audience. This lecture led to vivid discussions in our own laboratory
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and culminated in an exchange of ideas between Marita Mathijsen and my promotor Ad

Lagendijk in the Dutch daily NRC Handelsblad [220].

To a large extent the difference of opinion originated from alternative interpretations

of what scientific texts are about. Natural scientists are trained to write their reports in a

factual and logical manner. Phrases, graphs, and formulas are constructed with utmost care

to make sure ambiguity is minimized. The reports on their discoveries are primarily aimed at

justifying and placing their newly found knowledge into the existing framework of science.

The bulk of scientific literature deals with this so-called “context of justification”. By

focussing on the context of justification, scientists leave out a lot of interesting information

about the backgrounds of their study that describe how a piece of science comes into

existence. For example, from reading a scientific article in a specialized journal it is very

hard to understand why a particular study was conducted by scientist A or B in the first

place and how and where he conceived the idea for doing so. Analyzing these backgrounds

is done in the “context of discovery” [218]. In contrast to reports dealing with the context

of discovery, the very nature of reports written in the context of justification does not allow

for a lot of flexibility in the way a text is written1. Mathijsen’s plea for using literary

techniques boils down to incorporating more context of discovery elements into scientific

correspondence.

The central part of my dissertation, namely the numbered chapters, are written in

the context of justification. In this section however, I want to focus on the context of

discovery of some parts of my thesis. My aim is thus to give the reader some insights in

how experimental science unfolds in practice. More importantly, I hope to show what has

motivated me as a PhD student. As a consequence, this section is free of formulas and

mind boggling graphs, and I have tried to use as little scientific jargon as possible. Every

now and then I allow myself to employ rhetorical techniques to increase readability.

Conceiving ideas: a bike ride to the rescue

What to do in four years? Part of the fun of doing a PhD is that you do not have a clear

answer to that question. Most graduate students in physics start off their PhD period with

a project that is thought of by one of their supervisors. Yet a lot of them end up doing

something else in the end. In fact, eventually a PhD student is required to be able to

perform research independently which, in my opinion, includes the generation of new ideas.

Unfortunately, good ideas for new experiments do not pop up out of nothing.

Paradoxically, not understanding something completely might help in getting on the

right track. After all, if you think you understand it all, then there is not much left to

find out. One of the fascinating topics that stayed somewhat of a mystery for me for

a long time, concerned the behavior of a minuscule light source embedded in a strongly

scattering medium. I heard post-docs and professors talking about it, but reading the

original theoretical paper on the subject [51] did not help in gaining a better understanding.

The article was full of mathematical diagrams and terminology I had never heard of during

my studies. I put the subject to rest and focussed on the topic of my Master’s thesis

instead. A talk by my supervisor during one of our meetings with the Complex Photonics

Systems (COPS) group on the third of October 2008 reignited my curiosity on the subject.

1Although the distinction between the context of discovery and justification is not always straightforward

to make [221], I do think the distinction describes quite accurately the difference between what we read in

the scientific literature and the day-to-day experience in the lab.

112



Context of discovery

Theoreticians in multiple scattering media completely overlooked the fact that how much

comes out of a light source does not only depend on its optical environment, but also on the

type of source that is used. His remarks were in complete disagreement with the theoretical

paper I had failed to understand initially.

Intrigued by my advisor’s talk I started thinking about an experiment that could reveal

the consequences of having different light sources in experiment. I presented an experi-

mental scheme to measure the power balance of sources in random media at one of the

brainstorming sessions in our group Photon Scattering in March 2010. The scheme was

based on integrating spheres. These hollow spheres typically have a diameter of 10 cen-

timeters and are either coated with white powder or a thin layer of gold. They are often

used to measure the total transmitted light through a sample and I thought they would

be great instruments for measuring the total emitted power by a light source. One of my

senior colleagues Patrick Johnson immediately remarked that this experiment was going to

be much harder than I thought. Nevertheless I decided to give it a try. Based on chemical

literature I selected some molecular light sources with beautiful names like Rose Bengale

and Nile Blue that were suited for the experiment.

After several days of stubbornly trying out the experiment, I concluded however that

Patrick’s experience had overruled my naive enthusiasm. There was no way I could make

sure that what I measured probed the total emitted intensity. I felt disappointed and was

about to return to the subject of random lasers with which I was more acquainted. The

cloudbursts that tempered Amsterdam those days did not help in improving my mood ei-

ther. Naturally, I was already thinking what new random laser experiments to do. During

my bike ride home, while getting soaking wet, I suddenly realized that a random laser ex-

periment with different type of sources would be a great way to prove my supervisor’s point.

Multiple scattering inside the sample would mimic an integrating sphere. This realization

was a thrilling experience. In the next month I conducted random laser experiments, which

indeed showed the behavior I expected and eventually led to the work described in chapter

2 of this thesis.

The importance of group discussions and meetings in generating ideas can hardly be

overestimated. The third chapter of my thesis followed from a group talk given by fellow

PhD student and dear friend Sanli Faez. In his quest for measuring Anderson localization

with electromagnetic waves, he had decided to move from light to microwaves. Working

with microwaves has two distinct advantages in photonics. First, photonic structures in the

microwave regime are on the order of centimeters, which means you can just use a pair of

scissors and scotch tape to create your samples. So whereas in optics the radiation is visible,

while the sample structure is not, it is precisely the other way around in microwaves: the

radiation is invisible, but you do not need a fancy electron microscope to study the spatial

structure of the sample. Second, in this wavelength range, materials show a much larger

spread in refractive index. I wondered what other types of experiments would be feasible

and interesting with this new equipment, so I asked Sanli: why not look at a related

phenomenon, namely transverse localization, as well? This topic was very much in fashion

at that time due to the fact that some first claims were made regarding its observation. Ad,

Sanli, and I were convinced that new physics would arise when studying it in more detail.

A new project was born.

Another source of inspiration is of course formed by the scientific literature that is

already out there. Unfortunately, staying up to date with the literature has become quite

a struggle. The number of interesting articles that appear in scientific journals has grown
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tremendously. Moreover, the number of journals that might publish relevant work has also

grown in recent years. For example the Nature Publishing Group has launched at least five

journals that are of interest to my community since 2002. It is therefore nearly impossible

to read and understand every article in your field from top to bottom. Still, reading articles

can be a great way for getting new ideas, because those articles often approach the field

under a slightly different angle. Combined with you own knowledge, this angle might just

be what is needed to create an insight.

Such an insight occurred to me while I was carefully reading a paper in which the output

color of a random laser was manipulated [156]. I liked the paper a lot, because normally

the color that comes out of a random laser is beyond control. To induce a preference for

a certain color, the authors had made multiple scattering media out of spherical particles

with a fixed size. As a consequence some colors remain longer inside the medium than

others, and these are then the colors that are generated inside the laser. The formula on

which their work was based, was very familiar to me, yet I kept staring at it for minutes.

Out of experimental experience and by reading the thesis of Gijs van Soest [89] over and

over again, I knew that the color of a random laser changes due to reabsorption. To my

surprise, there was however no absorption term in the equations of the paper. Clearly, by

engineering the absorption inside the sample, the output color should become tunable as

well. I ordered a suitable absorbing material named Quinaldine Blue and about two weeks

later the first tuning effects became apparent in experiment.

Experiments: when the unexpected becomes the subject

Not every experiment however turns into a success that easily. Unforeseen effects can either

be exciting or a nuisance, but in both cases they require extra work and cause sleepless

nights for the researcher. After all, unwanted “trivial” artifacts such as spurious reflections

or fluorescence from a host medium are not particularly exciting.

While doing the microwave experiment on transverse localization I thought I encoun-

tered precisely such an annoying side effect. The experiment consisted of a lot of nylon

bars placed parallel to each other. These nylon bars were supposed to interact with the

microwaves in such a way that the wave remained confined and would not spread out in

all directions. The experimental results indeed showed this localizing behavior when we

studied an ensemble of samples. So far so good: Ad, Sanli, and I were proud of these first

results.

But when the initial position of the wave changed in one single sample, the confined

output moved in exactly the opposite direction. This observation puzzled us, and for a

long time we thought that the detectors were somehow interfering with the phenomenon

we aimed to observe. In a somewhat naive moment I decided to remove one of the copper

plates covering the sample to see whether we could measure the wave intensity inside the

sample. Nobody of us believed this approach would work, because the job of the copper

plate was to reduce the losses in the system. Removing the plate, we thought, would lead to

a dramatic increase in loss thereby possibly killing the whole effect we were after. Surprise,

surprise, it worked. The losses were lower than anticipated due to waveguiding in the nylon

itself. Not only remained the localizing behavior intact, clear oscillations in wave intensity

were revealed as well.

So the next question cropped up: what on earth were these oscillations? The data

was very convincing, so there was no real need for new experiments. I focussed instead
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on modeling the system. At first I solved the relevant equations by a brute force method,

which worked but did not give me any real insight. The equations were very similar to

Schrödinger’s equation, one of the iconic equations in quantum mechanics. I knew quantum

mechanics from my undergraduate courses, but my knowledge had become a little rusty

over the years. I redid some exercises that I did in my second year at the University of

Twente. The answer was to be found in one of the first chapters, where it was explained in

an exercise how adding up several of the system’s characteristic states leads to oscillations.

I calculated these characteristic states for my samples and indeed the wave oscillated in

exactly the same manner as it did in experiment.

A little understanding

For me, the thrill of seeing one’s own model in agreement with one’s own experimental data,

is only rivalled by seeing a sought after experimental effect for the first time. Together they

make up for all hours in the lab when things did not work as planned and for all hours

spent behind the desk when integrals, impossible equations, and crashing computers test

your patience to the maximum. At first glance, it appears that understanding a problem

in physics comes down to understanding the maths that describes the phenomenon. The

maths can however easily get out of control and although a numerical solution probably

yields the correct answer, it does not necessarily lead to understanding. Playing with the

input parameters increases the insight obtained with numerics somewhat, but the risk of

playing with parameters for weeks without significant progress is a serious danger.

Due to these limitations of numerical calculations, simple, approximate analytical so-

lutions are very much preferred in our group. Sanli referred to this preference explicitly

when I showed my first results on light sources and random lasers. He was impressed by the

experimental data, but believed an analytical model would be much more powerful than

the numerical solution I had presented. He was right. Later on, our analytical expressions

showed directly how light sources influence the outcome of the experiments. It still amazes

me that our experiments are encapsulated in an expression containing just a handful of

characters. All of a sudden, you find yourself with one line that describes the essence of an

experiment. To experience such beauty, is the pleasure of doing natural science.
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Mijn proefschrift had nooit tot stand kunnen komen zonder de oprechte ondersteuning op

zowel wetenschappelijk als sociaal vlak van vele mensen. Ik zou hier graag de bijdragen van

sommigen nader willen toelichten.

Allereerst wil ik mijn promotor Ad Lagendijk danken voor vele inspirerende gesprekken.

Of deze discussies nou gingen over wetenschap, maatschappij of technologie, ze leiden altijd

tot een heel vruchtbare uitwisseling van ideeën. Ook wil ik je in het bijzonder bedanken

voor het expliciet uitspreken van jouw begrip en vertrouwen in het eerste wat turbulentere

jaar van mijn promotieperiode.

De groep waar ik deel van uit maakte, Photon Scattering, bestaat uit kleurrijke ka-

rakters. Allemaal zijn ze behoorlijk eigenwijs, koppig, maar bovenal nieuwsgierig. De

werkbesprekingen en lunches zijn voor buitenstaanders wellicht onnavolgbaar, maar ik zal

ze zeker gaan missen. Waar hebben we het eigenlijk niet over gehad? Bergin, Patrick, Jo-

chen, Paolo, Timmo, Otto, Mohamed, Ronald, Sanli: het was een genoegen om met jullie te

mogen samenwerken. Otto, jouw enthousiasme voor onderzoek is een belangrijke drijfveer

voor mij geweest om te gaan promoveren. Dank. Ronald, mede dankzij jouw toewijding

is het zesde hoofdstuk een compleet verhaal geworden, heel veel dank daarvoor. Sanli, jij

was vanaf het eerste project in Twente een dierbare vriend, kameraad en inspiratiebron.

Daarnaast ben ik heel trots op het wetenschappelijk werk dat we samen hebben uitgevoerd.

Ontmoetingen met andere wetenschappers zijn essentieel voor een promovendus. De

COPS en center for nanophotonics bijeenkomsten waren voor mij dan ook onmisbaar. Het

machismo gehalte van beide bijeenkomsten is wellicht wat afgenomen met de jaren, maar de

goede inhoudelijke discussies zijn er niet minder op geworden. Dank allen voor de nuttige

terugkoppeling op mijn werk. Allard, jouw wetenschappelijke ingevingen zijn vaak bijzonder

origineel. Onze discussies over random lasers waren bovendien heel erg productief. Het was

een genoegen om met je samen te werken. Willem, ik heb onze gesprekken sinds mijn komst

bij COPS altijd erg gewaardeerd. Ik hoop dat de band tussen de oud COPS leden nog lang

sterk zal blijven.

Tijdens mijn tijd op AMOLF heb ik me altijd omringd geweten door fantastische kamer-

genoten. Aan Bart en Merel in kamer 1.39 in het oude gebouw, en aan Ernst-Jan, Paolo,

Yichen, Grzegorz en Benjamin in 2.51 in het nieuwe gebouw, ben ik dan ook veel dank ver-

schuldigd. Menigmaal werd de vrijdagmiddag gelukkig gebruikt om het over andere zaken

dan wetenschap te hebben.
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Tot slot zijn er mijn vrienden en familie die mij zo lief zijn en ik zeker niet mag ver-

geten. Ik voel me gezegend met de vele bijzondere vriendschappen die zijn voortgekomen

uit mijn middelbare school periode, mijn Enschedese studententijd en mijn Amsterdamse

jaren. Samen zorgden jullie voor de nodige ontspanning op de juiste momenten. Dardiry

gatherings, whether in Alexandria, Cairo, Amsterdam, or San Fransisco, are legendary by

definition. My Dutch and Egyptian family share their love for food, life, and openness. De

familie Bogaers is onderscheidend door haar verscheidenheid. Wat is het heerlijk om dat in

één familie bij elkaar te hebben. In Amsterdam, is het altijd een groot plezier om bij Ruud

en Betty te zijn, jullie gastvrijheid is weergaloos. Met Felix en Yousef heb ik ongetwijfeld de

meeste tijd doorgebracht in Amsterdam. Onze lach is daarbij ons gedeelde wapen. Ik ben er

trots op dat jullie mijn paranimfen zijn. Timor, jouw inzichten in werk, relaties, schrijven,

reizen en muziek laten me altijd weer net wat verder kijken. Veel van mijn ontdekkingen

heb ik dan ook aan jou te danken. Ik hoop dat we snel weer een mooi stuk schrijven samen.

Dankzij de rust, het vertrouwen en de liefde van mijn ouders kan ik de wereld beetje bij

beetje verkennen. Mama, misschien begrijp je niet veel van dit proefschrift, je begrijpt wel

heel goed waarom ik het geschreven heb. Papa, mijn wetenschappelijke reis begon bij jou

met 3-4-5 en eerst denken dan doen. Duizendmaal dank. Het grootste geluk ontdekte ik

op AMOLF met Ramses Shaffy aan mijn zijde: Laila, met dat ene lied in ons achterhoofd

is het leven samen een groot plezier.
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