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C 1

I

1.1 Cellular communication

e basic building blo of all living organisms is the cell. Indeed, a single cell can be a living
organism by itself, like the unicellular bacteria from the kingdom of the prokaryotes. Next
to these unicellular organisms, multicellular organisms exist. In these organisms multiple
cells group, act and communicate in order for the organism to survive. e realization that
cells are the fundamental units dates ba to the German biologists eodor Swann and
Mahias Sleiden, who in 1839, formulated a theory whi posits that the cell, both in
animals and plants, is the fundamental unit of life [1].

Since then more than a 170 years have passed in whi our knowledge of these cells
has increased dramatically. One important realization is that cells, although being coined
the building blo of life, themselves consist of many other smaller structures. e main
difference between these structures — e.g. membranes, the nucleus, DNA, motors — and
the cell is that a cell is capable of reproduction, while the individual building blos them-
selves are not. A cell therefore is alive, while its building blos are lifeless — a fascinating
observation on its own. e building blos themselves consist of molecules like proteins,
lipids, receptors and amino-acids, whi are the essential lego-parts of all cellular structures
and thus the cell.

ese smaller building cellular structures are essential for any cell to survive. If we focus
on a single cell, for example a bacterium, we observe that it has to overcomemanyallenges
in its struggle for survival. Only looking at the process of cell-division, it is directly clear
that the cells faces allenges su as: When does the cell “know” that division should take
place? How does the cell spatially divide itself in equal halves, and as important, ensure that
essential proteins and organelles are equally distributed over ea hal? Where and why do
structures form that were not present before, like the FtsZ-ring in bacterial cell-division?

Not only for cell division these kinds of questions arise. Bacteria (e.g. E. coli) are capable
of detecting sugar concentrations in their environment and even move to locations with a
larger abundance of sugar, a process calledemotaxis [2]. is is a remarkable aievement,
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recognizing the limited size of the bacterium. e same bacterium is capable of surviving
on many different sugar sources [3], including glucose and lactose, but in general only the
enzyme for the conversion of glucose to energy (ATP) is present. is means that if only
lactose is available, the bacterium has to ange its internal metabolism path, e.g. produce
new enzymes that can act on lactose. Another example of sensing is provided by yeast
(S. cerevisiae) a-cells, whi secretes small pheromone molecules (a-factor), to mark their
presence to yeast α-cells, whi eventually leads to mating of these two cells [4].

Clearlymany processes continuously take place in cells, a small list based upon the above
examples could include: the sensing of the environment by membrane proteins (receptors),
initiation or termination of gene expression by proteins (transcription factors), activation of
motors (myosin, kinesin), or the anges in the cellular structure by protein (actin, dynein).
All of these processes are vital for the cell in its order to survive.

Many, if not all, of these processes require some form of communication or signal trans-
fer between the cell and its environment, or between processes entirely within the cell.
Considering the above examples, here sugar levels lead to cell motility, sensing a or α factor
leads to mating, and the start of division leads to an internal re-organization of cellular com-
ponents. Cells have developed special networks that essentially have this task: transmit-
ting signals from the extracellular to the intracellular environment or transmiing signals
within the cell. ese networks are referred to as signaling cascades (or signal transduction
cascades) and these cascades are the main topic of this thesis.

1.1.1 Signaling cascades

e goal of a signaling cascade is to transmit a signal, through multiple intermediate steps
to a response. e concept of passing a signal around through multiple steps leading to a
response is very well mimied in a very famous ildren’s game: the telephone game.

In the telephone game a group of ildren sit in half a circle. At one end, a ild gets a
message — in general a complicated or hilarious sentence — and has to whisper this message
to his or her neighbor, but su that the otherildren can not hear it. is process continues
until the last ild has to inform everyone what the original message was. Of course, the
message is corrupted (one could argue that this is the goal of the game), since at every step
in the cascade, there is a probability that the message is altered. However, beforehand, it
is unclear what the final message precisely will be. Probably the final message will have
a resemblance to the original input, but it will have anged. As importantly, repeating
the same game with different ildren will lead to a different final message, but this final
message will also be different from the final message of the first group of ildren. is
variability in the final message, originating in the random anges of the message at ea
step of the cascade, is intrinsically present in every signaling cascade in the cell.

In living cells there are many of these signaling cascades. And, as important, many pro-
cesses in cells are stoastic. e diffusion of molecules both extracellular and intracellular
is a random process, but also the binding, unbinding, activation or deactivation dynamics of
proteins are random. ese cellular signaling cascades therefore suffer from the same prob-
lem as the telephone game; in every step there is a probability that the message is corrupted.
e simple example of the ildren’s game is elegantly paraphrased by the data-processing
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inequality [5]. is inequality loosely states that

“the information between input and output in a sequence of steps can only go down,
but never go up.”

erefore, signal processing in cells is a complicated process, where, due to the stoasticity
of the networks, it is difficult to maintain the original signal.

is problem becomes evenmore pronounced if we take into account the low-copy num-
bers whi are typical for cellular signaling cascades. e central limit theorem states that
fluctuations around the average response in any random process become insignificant with
respect to the average response, if the average response becomes very large. However, the
actual output of a signaling cascades can be very small, as small as only 10 copies of a spe-
cific molecule. Indeed, rhodopsin, the receptor for photons (light) in the eye can accurately
measure the difference between 1 and 2 photons [6], eukaryotic cells can measure a concen-
tration difference of order nanomolar (nM) between the front and ba side [7], while gene
transcription is sensitive to concentrations of nM, whi in bacteria like E. coli corresponds
to only a handful of molecules [8, 9].

e stoasticity leading to the inevitable uncertainty in the response of signaling cas-
cades is a major allenge for cells. And yet, for the survival of a cell, an accurate response
to incoming messages is important. An incorrect transfer of the measurement of a sugar
concentration, could result in moving away from abundances of sugar, while the misin-
terpretation of the a-factor signal in yeast, prevents mating. To overcome these problems,
signaling cascades have specific features.

Indeed, studies of complete protein (and gene) interaction networks have shown that
specific aritectures of coupled interactions are over-represented, and these are called net-
work motifs [10, 11, 12]. e over-representation of these motifs has driven many studies,
since this suggest that these motifs have an actual function, or at least an evolutionary
advantage for cells [13, 14, 15, 16]. Let us consider what the evolutionary advantages of
signaling cascades could be. Two advantages, or criteria, naturally arise: reliability and
cost. Of course, many different advantages can be thought of, like transmission speed [17],
memory-capability, both short-term [18] or long-term [19], robustness [20], ange of tem-
poral structure [21, 22] or timing [23, 24], but we argue that for a signaling cascade reliability
and cost are essential.

Let us start with the second criterion: cost. As every process — e.g. gene expression,
active transportation or phosphorylation — in the cells consumes energy, whi is limited, it
seems natural for a cell to try to reduce the energy consumption while transmiing signals
through the cells. ere are essentially two ways of reducing cost: 1) making less compo-
nents and 2) share components between different tasks. Clearly, signaling cascades that rely
on a small number of protein copies may have an evolutionary benefit, since they require a
smaller production cost of making molecules. e other way of reducing the cost of main-
taining a signaling cascade is to re-use the same proteins in multiple signaling cascades.
Different signals then share a common cascade to transduce information. is principle,
commonly referred to as multiplexing, is also at the heart of our modern macroscopic com-
munication systems: indeed, many telephone calls are transmied through the same wire
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and the European and American internet is connected through the main transatlantic glass
fiber babone. Both ways of reducing cost share an important drawba, the possible loss
of correspondence between signal and response. In the case of the shared pathway there
is the possibility of interference between the different signals that travel through this path-
way, while in the case of the low copy number the correspondence can be lost due to the
large impact of fluctuations. is directly brings us ba to the first criterion: reliability.

Arguably, the most important property for a signaling cascade is to create a reliable
connection between signal and response. Let’s think ba of the telephone game one more
time. To increase the likelihood of a perfect passing around of the message, instead of
whispering, ildren could tell or, even more extreme, shout the message from one ild to
the next. is increase in amplitude of the voice in this game is similar to our definition of
the gain of a signaling cascade. e gain is the amplification of the signal throughout the
cascade and a large gain increases the reliability of the cascade as a whole. e counterpart
of the gain is the noise: the uncertainty that is present in every bioemical process, be it
protein production, activation, deactivation or degradation [25, 26, 27, 28, 29]. A large noise
reduces the fidelity in the final message. In forthcoming sections, we will discuss the gain
and the noise in mu more detail.

e over-representation of these motifs suggests benefits for the cell, and since the gain
and the noise are important aracteristics of signaling cascades, indeed many studies have
been devoted to the gain and noise properties of simple motifs [30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44]. However, as we stress here, to understand the reliability of signal
transmission the gain and the noise should be studied simultaneously, since it is the relation,
in fact their ratio, between the two that ultimately describes the information transmission
capacity. Curiously, we have now introduced a new quantity, whi might make sense
to every reader intuitively, but, at first sight, seems hard to define quantitatively, namely
information. Yet, it is precisely this quantity, information that quantifies the reliability of a
signaling cascade. erefore we now, in the next section, first discuss this in detail.

1.2 Information theory

In 1948 Claude Shannon published a paper whi would shape the face of communication
science for the rest of the century.In fact, one could state that that paper created a whole
new scientific field: information theory [45]. An important part of information theory studies
the reliability of communication systems. e allenge for every communication system
is formulated by Shannon as

“e fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.”

Shannon was able to study this problem in a quantitative manner, whi was an important
aievement. To do this, he introduced and, importantly, quantified two important concepts,
entropy and information.

Assume I have a very special dice, whi has 8-sides, listing the numbers 1, 2, 3, . . . , 8. I
would allenge you for a guessing game, in whi I roll this special dice, but I hide the out-
come from you. How many closed (yes/no) questions do you need on average, to know the
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a)

Gene

Signal

Response

W W

W

b)

S V X

c)
S

V X

Figure 1.1: a) Example of a signaling cascade, b,c) typical motifs. S is the input signal and X is the
response, V,W are an intermediate components b) feed-back motif, c) incoherent feed-forward
motif. The motifs in panel b,c are studied in more detail in Chapter 2 and Chapters 3, 7, 8
respectively.

outcome of the roll with absolute certainty? It is the answer to this question, that captures
the quantification of information as defined by Shannon.

e correct answer is three questions. Assume I have rolled a 7. You start by asking
if the outcome is larger than 4, thereby dividing the number of possible outcomes in two.
e outcome is either 1, 2, 3, 4 or 5, 6, 7, 8. If my answer is yes, you apply the same tri by
asking if the outcome is larger than 6, again dividing the set of possible outcomes in two
equal halves. Aer your next question, you know, with absolute certainty that the outcome
is 7. What is the relation between this process of “asking questions” and information?

In a mathematical framework, the outcome of the roll is a stoastic variable. Assuming
I play fair and the dice is fair, all outcomes are as probable and the variable has a uniform
probability distribution,

p (X = x) =
1

8
(1.1)

where X is the stoastic variable and x is one of the eight different outcomes. e en-
tropy of the stoastic variable X , or more precisely, the entropy of the distribution p (X)
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is defined as

H (X) ≡ −
x=N∑
x=1

p (X = x) log2 p (X = x) bits (1.2)

e entropy is oen presented in units of bits, whi is reflected by the use of log2. e en-
tropy can be defined for any probability distribution and is bounded by 0 ≥ H (X) ≥
log2 N . e entropy is zero if there is only a single possible outcome with probability
p (X = x) = 1. e entropy is maximal for a uniform distribution of the outcomes, su
that all outcomes have equal probability, or equivalently all outcomes are as likely. e
entropy is thus a measure for the uncertainty I have about the stoastic variable (Fig. 1.2).

For a continuous variable the entropy is ill-defined. From a mathematical perspective,
the value of a continuous real variable has infinite precision. No maer how accurate your
derivation is, or how many questions you ask, you will never discover the full precision of
the number. For all practical purposes, continuous variables are discretized into bins and
the entropy for the resulting discrete distribution is derived.

e entropy for our stoastic variable X , the outcome of the dice roll,

H (X) = −
x=8∑
x=1

p (X = x) log2 p (X = x) = 3 bits (1.3)

Strikingly, or maybe not, this exactly corresponds to the three questions you had to ask to
obtain the answer. Phrased differently, and more precisely, this is the minimum number of
questions required to obtain with absolute certainty the value of any stoastic number, on
average. Of course, you could have guessed, and maybe even have guessed right, but on
average guessing would have taken you more questions, than the bi-sectioning procedure
described before [46].

1.2.1 Mutual information

e entropy is an important quantity in information theory. Instead of defining the entropy
for X alone, we can also define the conditional entropy H (X|Y )

H (X|Y ) = −
∑

y

p (Y )
∑

x

p (X|Y ) log2 p (X|Y ) (1.4)

with p (X) = p (X = x) and p (Y ) = p (Y = y). e inner sum reflects the uncertainty in
X for a specific value of Y . If X and Y are independent, p (X ,Y ) = p (X) p (Y ) and
p (X|Y ) = p (X), and as a result, the conditional entropy H (X|Y ) = H (X). is
indicates that Y is not informative on X . However, if X and Y are not independent,
H (X|Y ) < H (X), and on average the uncertainty about X is reduced by knowledge
of Y . is insight provides the idea for the definition of a new quantity, the mutual infor-
mation. e mutual information is a unique measure of interdependency between X and
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Y [45]. Its definition is

I (X;Y ) ≡ H (X) − H (X|Y ) (1.5)

= H (X) + H (Y ) − H (X ,Y ) (1.6)

= −
∑

y

∑
x

p (X ,Y ) log2 p (X) +
∑

y

∑
x

p (X ,Y ) log2
p (X ,Y )

p (Y )
(1.7)

=
∑

y

∑
x

p (X ,Y ) log2
p (X ,Y )

p (X) p (Y )
, (1.8)

e mutual information is the difference of the entropy in X , H (X), and the conditional
entropy H (X|Y ), whi is the uncertainty in X given a specific Y averaged over the prob-
ability distribution p (Y ). e mutual information reflects the decrease in the uncertainty
of the variable X upon knowledge of the value of the variable Y . More informally said, the
mutual information aracterizes the information that is shared between Y and X .

Tkačik lists some importantwell-known properties of themutual information [46]. First,
the mutual information is symmetric in X and Y , as is readily observed from Eq. 1.6 by
interangingX and Y . e reduction in uncertainty inX due to the knowledge of Y is thus
equivalent to the reduction in uncertainty of Y upon knowledge of X . is is an intriguing
property of the mutual information. Second, the mutual information can be defined for
both discrete and continuous variables. Although the entropy for a continuous variable is
ill-defined, the mutual information is not. ird, the mutual information obeys the data-
processing inequality. For example for a cascade of three stoastic variables, where X
regulates Y and Y regulates Z , X → Y → Z , then I (X;Z) ≤ I (X;Y ).

More in depth information on the mutual information can be found in the original pa-
per by Shannon [45] or the books by Cover and Clover [5] or MacKay [47]. e mutual
information as defined in Eq. 1.5 is used in Chapters 7 and 8.

In the neuroscience community information theory has been used for a few decades (see
for a review [48]). But Ziv et al [49] were, arguably, the first to use information theory for a
bioemical network, in this case a gene regulatory network. Since then many more studies
have been performed, all using information transmission as the main quantity to describe
the signaling properties of the network [50, 51, 52, 53, 54, 55, 56, 57, 58].

Noisy channel theorem
Let us take a look at the following process. We consider a system where Arthur J. (A) sends
a single signal S through a annel, where at the other end of the annel G. Bomans (B)
receives a response X . A selects his signal from a probability distribution p (S). If the
annel is perfect, or in other words deterministic or noiseless, the response X and signal
S are uniquely related and B would know precisely what S is, if B has received X .

Most natural systems (unfortunately¹) are not noiseless. As a result, the unique rela-
tion between S and X disappears, and B can only estimate what S is using the response

¹Many studies have been devoted to the advantages of noise in natural systems, some of whi are the intro-
duction of heterogeneity in populations [59], stoastic amplification [60], stoastic resonance [61], increase in
growth rate [62] or excitable systems [63]
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Figure 1.2: The entropy of a binary variable p(X=0)=1−p(X=1). For p(X=1)=1 or p(X=1)=0,
the entropy is zero, since there is only a single possible outcome. The entropy is maximal for
p(X=1)=p(X=0)=1/2 since then both outcomes are as likely.

X . For these annels, what is the maximum amount of information that can be transmit-
ted? inking ba of the telephone game, the information is transmied more reliably if
the participants would not whisper, but talk or even shout. In reality however, there is a
physical limit to shouting, since it drains energy from anyone. Using this analogy loosely,
any annel can transmit infinite information, but considering the cost of using energy, I
constrain the average amplitude of the signal 〈A2

S〉 ≤ v. With this knowledge alone, we
can not determine the maximal information through the annel; for this we also require
the noise aracteristics of the annel. I assume that the noise η in the annel has the
three following properties: 1) η has a Gaussian distributed amplitude (η ∼ N (0,σ2

η))

N
(

y;µ,σ2
)
= p

(
y|µ,σ2

)
=

1√
2πσ2

e
(y−µ)2

2σ2 , (1.9)

2) η is spectrally white and 3) η is independent of the signal S . is type of annel is called
an additive Gaussian annel.

e maximal mutual information, defined as the annel capacity C , that can be trans-
mied through an additive Gaussian annel is

C = max I (S,X) =
1

2
ln
(
1 +

AS

σ2

)
nats. (1.10)

eannel capacity is a function of the ratio of the signal amplitude and the noise strength,
whi is commonly referred to as signal-to-noise-ratio (SNR). e annel capacity is ob-
tained if the input distribution p (S) is Gaussian distributed; N (0,AS) [47, 64]. is is an
important observation, whi I will rephrase: given a specific variance of the input distribu-
tion p(S) and a Gaussian annel, the mutual information between S and X is maximized
if S has a Gaussian distribution. Very related to this observation is the following statement:
for a annel with a Gaussian distribution for the input signal the mutual information is
minimal if the conditional distribution between signal and response p(x|s) is Gaussian [64].
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e origin of this lower bound is that, for a given variance, a Gaussian distribution has the
maximum entropy. erefore, theannel with a Gaussian conditional distribution between
signal and response “creates” the largest possible uncertainty between signal and response
and therefore a lower bound on the mutual information.

Mutual information for time-varying signals
Aswe have seen the mutual information is a measure for the statistical dependence between
two single univariate stoastic variables X and Y . But a straightforward extension to
this analysis provides the mutual information between two multivariate stoastic variables
V = (V1,V2, . . . ,VNv )

T ,W = (W1,W2, . . . ,WNw )T [61, 64, 65, 66, 67]. is extension is
the connection we require to obtain the mutual information between time-varying signals.

Assume we have a stoastic process whi provides us with a continuous time trace
V (t). is trace has Gaussian fluctuations su that multiple realizations of the process are
different, and we can write V (t) = 〈V (t)〉+v (t), with 〈V (t)〉 the time-dependent average
and v (t) the fluctuations around the average.

We sample the signal v (t) = V (t) − 〈V (t)〉 at N evenly spaced time points to obtain
the vector v = (v (t0) , v (t1) , v (t2) , . . . , v (tN ))T (we thus assume the fluctuations to be
the signal). e correlation matrix C for v is defined as

Cij =
〈
v (ti) v

(
tj
)〉

=

∫
v (ti) v

(
tj
)

p (v) dv (1.11)

Since the fluctuations in the signal are Gaussian, the joint probability distribution for the
vector v is

p (v) =
1√

(2π)N |C|
e−1

2v
T C−1v , (1.12)

where C−1 is the inverse of the correlation matrix and |C| is the determinant of the corre-
lation matrix. With the definition of the probability distribution for the vector v (Eq. 1.12),
we can define the differential entropy for the multivariate stoastic continuous variable v
following Eq. 1.2

H (v) =

∫
dvp (v) ln p (v) [ nats] . (1.13)

Note that, for later convenience, we have anged the base of the logarithm, and as a result,
the differential entropy has units [ nats]. Further, we observe that the differential entropy
H(v) is not necessarily larger than zero. Since the joint probability distribution p (v) for all
the elements v (ti) has Gaussian statistics, we can actually obtain an analytical expression
for the entropy H (v). Since the correlation matrix C is a real, symmetric matrix, we write

C−1 = QDQT , with Q−1 = QT and Q−1Q = I, (1.14)

where I is the identity matrix. e matrix Q has the eigenvectors of C−1 as column vectors.
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e matrix D is a diagonal matrix with the eigenvalues of C along the diagonal. e ma-
trix Q also transforms the vector components vi into new variables ui:⇒ u = QTv. e
differential entropy of the distribution p(v) is

H (v) = −
∫

1√
(2π)N |C|

e−1
2u

T D−1u ln

 1√
(2π)N |C|

e−1
2u

T D−1u

 du (1.15)

=
1√

(2π)N |C|

∫
e−1

2u
T D−1u

(
ln
(√

(2π)N |C|
)
+

1

2
uTD−1u

)
du (1.16)

Since D is diagonal, we simplify Eq. 1.16 by substituting

∫
e
1
2u

T Dudu =
N∏

i=1

∫
duie

−1
2λiu2

i =

√√√√(2π)N
N∏

i=1

1

λi
=

√
(2π)N

|D|
(1.17)

where λi is the ith eigenvalue of D. Since |D| =
∣∣∣C−1

∣∣∣ = 1/|C|, we obtain

H (v) = ln
(√

(2πe)N |C|
)

= ln

(
N√

2πe

N∏
i=1

√
λi

)
(1.18)

Eq. 1.18 gives the differential entropy for a multivariate, Gaussian distribution. e deriva-
tion of Eq. 1.18 can easily be extended to the joint probability distribution of two multivari-
ate, Gaussian processes v andw. Introducing the new vector z = (v,w)T with correlation
matrix Z

Z =

(
Cvv Cwv

Cvw Cww

)
, (1.19)

an equivalent derivation holds. As a result, since we have analytical expressions for the
differential entropies H (v) ,H (w) and H (v,w), following Eq. 1.6 we write the mutual
information between the multivariate, Gaussian distributions v and w as [67]

It (v;w) = H (v) + H (w) − H (v,w) =
1

2
ln
(

|Cvv| |Cww|
|Z|

)
. (1.20)

As a simple example let us focus on the situation where N , the number of time points,
is 1. en the vectors v and w reduce to v (t0) ,w (t0) and the correlation matrices reduce
to the instantaneous (co)variances, σij = 〈i (t0) j (t0)〉, with i = v,w and j = v,w. With
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these following Eq. 1.20 we obtain the instantaneous mutual information

It (v;w) =
1

2
ln
(

σ2
vvσ2

ww

σ2
vvσ2

ww − σ4
vw

)
= −1

2
ln
(
1 − σ4

vw

σ2
vvσ2

ww

)
(1.21)

=
1

2
ln
(
1 +

σ4
vw

σ2
vvσ2

ww − σ4
vw

)
(1.22)

Comparing Eq. 1.21 with Eq. 1.10 we observe that [67]

signal-to-noise =
σ4

vw

σ2
vvσ2

ww − σ4
vw

≡ g2

N
σ2

vv (1.23)

where we have defined the instantaneous gain g2 ≡ σ4
vw/σ4

vv and noise N ≡ |Z| /σ2
vv =

σ2
ww − σ4

vw/σ2
vv = σ2

ww − g2σ2
vv . e noise therefore is that part of the variance in w, that

is not “explained” by the input variance (the signal) multiplied with the instantaneous gain
g2.

The mutual information rate
We are almost there. In this last section on information theory we derive the mutual infor-
mation rate R(ω), whi is used extensively in Chapters 2 and 3.

In the previous section we have derived the general expression for the mutual infor-
mation between multivariate, Gaussian distributions (Eq. 1.18) for time-discretized signals.
However, bioemical signals are not discretized in time, but are continuous. Here we make
the connection to continuous signals from the time-discretized signals. To simplify the re-
sults we assume stationarity, meaning that 〈V (t)〉 = 〈V 〉 and 〈v(t)v(t′)〉 = 〈v (τ) v (0)〉,
where τ = t − t′ and similar expressions for W .

We sample the traces v (t) and w (t), with length T , at N points with spacing ∆ and,
again, assume that the multivariate joint distribution p(v,w) is Gaussian. We write the
general eigenvalue equation for the correlation matrix (Eq. 1.11) [61]∑

k

Cvv
(
tj , tk

)
e−iω0nk∆ = λne−iω0nj∆, (1.24)

with ω0 = 2π/T . Since we have assumed stationarity the elements of Cvv depend only
on the absolute time difference |j − k|, and therefore the correlation matrix has a Toepli
structure. In the limit T → ∞,N → ∞ this means that [5, 66]

lim
N ,T →∞

|Cvv| = 1

4πT

∫ ωmax

ωmax
lnSvv (ω) dω, (1.25)

where Svv (ω) is the power spectrum of the signal v (t) and ωmax = π/∆ is the angular
Nyquist frequency. With Eq. 1.25 we define the entropy rate hG as

hG (V ) = lim
N ,T →∞

HG

N∆
(1.26)
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Note that in the limit ∆ → 0, the entropy rate hG is ill-defined. To obtain the mutual
information rate, we require the joint entropy rate hG(V ,W ) (Eq. 1.6). Although (in gen-
eral) the correlation matrix Z is not Toepli, it is possible to obtain the mutual information
rate in terms of the (cross-) power spectra [61, 65, 67]

lim
N→∞

I (v;w)

N∆
= R (v;w) = − 1

4π

∫ ωmax

ωmax
dω ln

[
1 − |Svw (ω)|2

Svv (ω)Sww (ω)

]
(1.27)

≡ 1

4π

∫ ωmax

ωmax
dω ln

[
1 +

g2 (ω)

N (ω)
Svv (ω)

] [
nats s−1] .

(1.28)

emutual information rate is the sum over independent Gaussianannels, where for ea
frequency the (co)variance is given by the (cross-)power spectrum. For independent Gaus-
sian annels, the system should be linear, su that ea input at a specific frequency only
leads to an output at that same frequency. Since not every network is linear, a linearization
procedure is required, and for this we use the Linear-Noise Approximation [68] (see the sec-
tion: Linear-Noise Approximation). e mutual information rate is defined as a bit-rate, like
the bit-rate of traditional modems. In Eq. 1.28 a gain and noise are defined again, but here
these are frequency dependent.

g2 (ω) ≡
∣∣S2

vw (ω)
∣∣2

S2
vv (ω)

(1.29)

N (ω) ≡ Sww (ω) − g2 (ω)Svv (1.30)

We note the similarity in structure between Eq. 1.21 and Eq. 1.27, showing that (the) mutual
information (rate) in general is proportional to the signal-to-noise and/or gain-to-noise ratio.
e important difference between these two ratios is discussed in Chapters 2 and 3.

An example
Let’s assume that we have a set of signals, whi have a Gaussian distribution su that

p (S) = N
(

µS ,σ2
SS

)
. Ea independent signal leads to an output distribution of responses,

and the conditional distribution is Gaussian p (X|S) = N
(

µX|S ,σ2
X|S

)
. e mutual in-

formation can now be calculated through Eq. 1.5, aer specifying the (conditional) mean
and variance. For reasons that will become clear shortly, we assume the following forms

µS = 〈S〉 = k

λ
, σ2

SS =
k

λ
,

µX|S = 〈X|S〉 = ρ

µ 〈S〉
, σ2

X|S =
ρ

µ 〈S〉
(1.31)

Note here that although the distributions are Gaussian, the annel noise σ2
X|S depends

on the signal S . is is thus not an additive Gaussian annel, since the noise depends
on the signal, whi can be observed in Fig. 1.3a,b from the widening of the distribution
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p (S/〈S〉,X/〈X〉) for increasing S. In Fig. 1.4a we show the mutual information as func-
tion of µ for constant 〈S〉 = 100, with ρ = λ = 1. For increasing µ the mutual information
I(S;X) decreases. e origin of this decrease is the decrease of the value of the conditional
response 〈X|S〉, leading to an increase of the coefficient of variation (CV) σ2

X|S/ 〈X|S〉2.
is is shown in Fig. 1.3a,b, where for two values of µ (resp, µ = 0.1, 1), the probability dis-
tribution p(S/ 〈S〉 ,X/ 〈X〉) (gray contour), the dose-response relation (dashed light gray),
and most importantly the conditional distribution p(X/ 〈X|S〉 |S = 〈S〉) (red, logscale) are
shown. For larger µ, the conditional distribution is muwider, reflecting the larger CV and
therefore the smaller mutual information. We repeat that in Chapters 7 and 8 the mutual
information for time-independent input signals is used.
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Figure 1.3: The contourplot shows the joint probability distribution p(S/〈S〉,X/〈X〉) for two different
values of µ. Both the conditional mean 〈X|S〉 and variance σ2

X|S scale with µ−1. The coefficient

of variation (CV) σ2
X|S/〈X|S〉

2∝µ therefore increases with µ. Indeed, the conditional distribution
p(X/〈X〉|S/〈S〉=1) widens for an increase in µ (red line, logscale). Since the CV increases, the
mutual information I(S;X) decreases. a) µ=0.1 s−1 b) µ=1 s−1. Parameters: k=100 s−1, λ=ρ=

1 s−1.

Having observed what the mutual information is for constant signals, we swit to the
mutual information for time-varying signals. We take the, arguably, most simple signal-
ing cascade, consisting of a signal S and a response X, whi is governed by the following
bioemical reactions

Ø
k→ S, S λ→ Ø, S

ρ→ S+ X, X
µ→ Ø. (1.32)

As input signal we take the variations s (t) = S (t)− 〈S〉 and the output is x (t) = X (t)−
〈X〉. is system is described by the following set of Langevin equations [69]

ds

dt
= −µs (t) + ηs (t) (1.33)

dx

dt
= ρs (t) − µx (t) + ηx (t) . (1.34)

Here ηx(t) denotes the noise due to the production and degradation of X, while ηs(t) is
not a noise source in the usual sense, but rather defines the ensemble of input signals,
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whi is assumed to obey Gaussian statistics. ey both have the following two properties
〈ηα(t)〉 = 0, 〈ηα(t)ηα(t

′)〉 = Aαδ(t − t′), where α = s,x and As = 2µ〈S〉,Ax = 2λ〈X〉
[70] (see the section: Linear-Noise Approximation). For this simple system we calculate the
instantaneous mutual information (Eq. 1.21) and the mutual information rate (Eq. 1.27).

e steady-state responses are (compare with Eq. 1.31)

〈S〉 = k

λ
, 〈X〉 = ρ

µ
〈S〉 = ρk

λµ
, (1.35)

and the steady-state (co)variances are

σ2
ss

〈S〉
= 1,

σ2
xx

〈X〉
= 1 +

ρ

µ + λ
, σ2

sx =
ρ 〈S〉
µ + λ

, (1.36)

e instantaneous mutual information is (Eq. 1.21)

It (s;x) =
1

2
ln
[
1 +

σ4
sx

σ2
ssσ2

xx − σ4
sx

]
(1.37)

=
1

2
ln

[
(λ + µ) (λ + µ + ρ)

(λ + µ)2 + λρ

]
. (1.38)

e instantaneous mutual information gives the information between X at time t and S at
time t. For the system as described in Eq. 1.32 the response time of X is set by µ. We first
discuss some interesting limits. In the limit λ → ∞ It(s,x) = 0, since for λ → ∞, every
variation in s will decay, before a ange in x can be established. Indeed, the number of X
molecules produced in the lifetime of a single S molecule is ρ/λ, and in the limit λ → ∞,
ρ/λ → 0. In the opposite limit, λ → 0, the variations in s decay very slowly, and the
instantaneous mutual information saturates (It ∝ (µ + ρ)/µ), where the saturation value
depends on the relative production and degradation rates of X. In the limit ρ → ∞, the
instantaneous mutual information reaes a saturation value (It ∝ (µ + λ)/λ). In this
limit, the production of X molecules increases and therefore the influence of fluctuations
in the copy number of X decreases. Further, in this limit, we observe that an increase in
µ, reflecting faster traing of the signal, increases the saturation value. e instantaneous
mutual information is independent of k, the production rate of the signal (as long as k > 0).
A ange in k anges the mean level of 〈S〉, but the timescale for the decay of variations in
s only depends on λ, since the capacity of x to reliably tra the variations in s depends only
on the dynamics. As a function of µ, the instantaneous mutual information has a maximum,
whi is obtained for µmax =

√
λ(λ + ρ),

It,max (s;x) =
1

2
ln

[
λ +

√
λ (λ + ρ)

2λ

]
. (1.39)

For µ � λ, the intrinsic fluctuations in X are mu more rapid than variations in X due to
variations in S. As a result, the instantaneous statistics of X are those of a Poisson birth-
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death process with constant input S and conditional variance σ2
x|s ≈ 〈X〉 ∝ µ−1. is

increase in the noise is not compensated by a similar increase in the instantaneous gain
σ4

xs/σ4
ss ∝ µ−2. As a result the instantaneous mutual information scales with µ−1. In

the opposite limit, µ � λ, the response X is mu slower than the variations in S, and the
response integrates over the fluctuations in S. e actual value of x(t) therefore does not
reflect the instantaneous value of s(t), but the time-average of s(t) over a time-window
tint = µ−1; clearly, if µ → 0 all the variations in s are integrated and x will not respond
to anges in s. In Fig. 1.4b the instantaneous mutual information is shown as function of
µ for three different values of ρ, where λ = 1 s−1. First, the non-monotonic form with the
maximum at µmax is observed. Next, if ρ � 1, the mutual information is large, since this
implies a larger amplification of x following anges in the signal s.

We note here that the instantaneous mutual information and the mutual information
for constant signals are not equivalent. e instantaneous mutual information is influenced
by temporal correlations of the signal and the response, while the mutual information for
constant signals is not. In the limit λ → 0 and for equal conditional variances, the instan-
taneous mutual information approaes the constant mutual information (Fig. 1.4a, gray
dashed line).
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Figure 1.4: a) The difference between I(S;X) (red solid) and H(S) (red dashed), respectively the mu-
tual information and the entropy of the input signalS, for a discrete joint Gaussian distribution
p(S,X). I(S;X) decreases with increasing µ, since CV σ2

X|S/〈X|S〉
2∝µ. The maximal value of the

mutual information max I(S;X)=H(S) is obtained in the limit µ→0. The mutual information is
equal to the instantaneous mutual information in the limit λ→0 (gray line). For small µ the in-
stantaneous mutual information is larger, since the instantaneous mutual information is obtained
assuming continuous signals and therefore the conditional differential entropyH(s|x) can become
negative, reflecting infinite precision on the value of s given knowledge of x. b) The instantaneous
mutual information It(s;x) increases for ρ�λ since this implies that the amplification of x(t) by
the variations in s(t) is larger. In the limit λ→0 (red dashed, black solid) the input signal effec-
tively is constant and σ2

SX=〈X〉, It(s;x)=1/2 ln(1+ρ/µ)=1/2 ln(σ2
XX/〈X〉). In the limit λ→∞ the

variations in s decay before these are transmied to x leading to a small instantaneous mutual
information (gray dashed, dark red solid). For large µ , the instantaneous mutual information
scales as ρλ/µ. λ, ρ in s−1.

Finally, we look for this simple system at the mutual information rate R (s,x) (Eq. 1.27),
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the mutual information between complete trajectories s (t) ,x (t). e mutual information
rate R is obtained through the calculation of the (cross-)power spectra, whi are

SSS =
2k

ω2 + λ2
, (1.40)

SXX =
2ρk
λ

(
ω2 + λ (λ + ρ)

)
(ω2 + λ2) (ω2 + µ2)

, (1.41)

SSX =
2ρk

(ω2 + λ2) (iω + µ)
, (1.42)

and we obtain for R(s;x)

lim
T →∞

R (s;x) =
1

4π

∫ ∞

−∞
dω ln

(
ω2 + λ2

ω2 + λ2 + ρλ

)
=

λ

2

(√
1 +

ρ

λ
− 1

)
. (1.43)

Most striking about this result is that the mutual information rate does not depend on µ,
the degradation rate for the fluctuations in X. However reconsidering this observation, this
follows from the fact that the degradation events in X do not carry additional information
on the actual state of S, given that the production events of X are known [67], since the
degradation only depends on the current state of X. We take a closer look at the frequency-
dependent gain and noise for this simple system,

g2 (ω) =
|SSX (ω)|2

S2
SS (ω)

=
ρ2

ω2 + µ2
, (1.44)

N (ω) = SXX (ω) − |SSX (ω)|2

S2
SS (ω)

SSS (ω) =
2ρk
λ

ω2 + µ2
, (1.45)

whi lead to a constant gain-to-noise ratio

g2 (ω)

N (ω)
=

ρλ

2k
=

ρ

〈S〉
. (1.46)

e gain-to-noise ratio therefore does not depend on the dynamics of the signal s (t), but
only on the dynamics of the transmission of the signal to X. is is a property whi we
will explore in mu more detail in Chapters 2 and 3.

Lastly, we look at the frequency-dependent gain from another perspective. Assume we
have a signal s(t)whi is transferred through a bla box, of whi we have no knowledge.
We do however assume that the bla box has a noise-additive effect. Our main question
is, whether we can infer from x(t) the original signal s(t). at is, aer measuring the
response x(t), we estimate the signal sest (t). Following [48], we use a linear filter h(t) to
estimate sest(t) from x(t). In the frequency domain a linear filter operation is given by

Sest (ω) = H (ω)X (ω) (1.47)
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Minimizing the least square error between the estimated signal Sest and the true signal S

(min
[
〈(Sest (ω) − S (ω))2〉

]
) leads to the following form for the filter [48]

H (ω) =
SSX (ω)

SXX (ω)
. (1.48)

e noise is defined as the difference between the true signal and the estimated signal
Ne(ω) = S (ω) − Sest (ω) and with the noise the signal-to-noise ratio is defined as

SSestSest (ω)

N (ω)
=

〈
H (ω)X (ω)H† (ω)X† (ω)

〉
〈

Ne (ω)N
†
e (ω)

〉 (1.49)

=
H2 (ω)SXX (ω)

SSS (ω) + H2 (ω)SXX (ω) −
〈
H† (ω)X† (ω)S (ω)

〉
−
〈
H (ω)X (ω)S† (ω)

〉
(1.50)

=
|SXS (ω)|2

SXX (ω)SSS (ω) − |SXS (ω)|2
, (1.51)

where † denotes the complex conjugate. e signal-to-ratio in Eq. 1.49, with the gain and
noise as defined in respectively Eq. 1.44, Eq. 1.45, is equal to g2 (ω) /N (ω)SSS (ω). e
signal-to-noise ratio is thus equivalent to the best estimate of the signal given the output at
a specific frequency, or the reciprocal of the uncertainty in S (ω) given a particular X (ω).

1.3 Linear-Noise Approximation

As discussed in the previous sections, all bioemical processes are stoastic. A rigorous
way to describe stoastic processes is by formulating a master equation for the underly-
ing process [68], whi describes the time-evolution of the full probability distribution of a
process. Assume we have a simple birth-death process for a protein X, whi is described
by the following two processes

X
kf→ X + 1, X

kbX
→ X − 1 (1.52)

where X is the actual copy number of X. e master equation that describes the probability
to observe X X proteins is

dp (X)

dt
= −

(
kf + kbX

)
p (X) + kb (X + 1) p (X + 1) + kf p (X − 1) . (1.53)

e first term describes the two ways to leave the state X , either by the production or
degradation of X, while the other two terms describe the two options to enter the state
X . e master equation is a complete description to the underlying stoastic problem and
therefore analytic solutions captures all the statistics of the process (see e.g. [34]). However,
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analytical solutions are more oen than not very difficult to obtain, mostly due to the fact
that the processes are non-linear. Even the most simple enzymatic reaction

S+ E
k1−⇀↽−

k−1
ES, (1.54)

ES
k2→ E+ P, (1.55)

where S is the substratemolecule, E is the enzyme and P is the product, is described by a non-
linear master equation. It is well-known that many biological processes have even stronger
non-linear dependencies, like the dependence of the flagellar motor in E. coli on switing
proteins [71] or the dependence of the expression level of the PGAL1D12 promoter on its
repressor TetR [72]. While non-linear processes show very ri and fascinating dynamics
[73], they are difficult to solve analytically. In general many people resort to Stoastic
Simulations Algorithms (SSA) as has been pioneered for emical kinetics by Gillespie [74,
75]. A different approa is to look for approximations of the master equation that lead to
analytically tractable solutions

One of these solutions is the Linear-Noise Approximation (LNA), whi we now discuss
in more detail. e LNA provides us with a simple form for analytical approximations of the
noise in any non-linear stoastic process. Here we will follow the derivation as introduced
by Gillespie [69, 76], and directly apply it to an example.

We again start from the bioemical equations, as introduced in Eq. 1.32. We define the
vector Y (t) = (S(t),X(t)), where S(t),X(t) are the respective copy number of species
S,X at time t. Next we define the propensity functions aj , where aj (y) dt is the probability
that in time [t, t + dt], given Y (t) = y a reaction j of occurs, su that we have for our
example

a0 = k, a1 = λS (t) , a2 = ρS (t) , a3 = µX (t) (1.56)

Next to the propensity function we define the state-ange stoiiometry vector νj , with
νij is the ange in Yi given that reaction j occurs, su that we have v0 = (1, 0)T , v1 =

(−1, 0)T , v2 = (0, 1)T and v3 = (0,−1)T . With the propensity function and stoiiometry
vector the emical master equation can be formulated,

Yi (t + τ) = yt,i +

M∑
j=1

Kj (Y (t) , τ) νji, (1.57)

where Kj(Y (t), τ) is a random variable whi reflects the number of events N in ea
reaction annel j in a time τ and yt,i is the value of Yi at time t. Note that Eq. 1.57 is exact,
since Y (t) is time-dependent. Now we make two independent assumptions to obtain a
simpler expression for the random variables Kj(Y (t), τ). Suppose that we can define a
time τ > 0, whi

1. is su that the propensity functions aj(Y (t)) within the time window [t; t + τ ]
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are approximately constant, meaning that the propensity functions can be wrien as
aj(yt) where yt is the system state at time t, the start of the time window, and

2. is so long that a large number of events Q � 1 per reaction annel j occur in the
time interval [t, t + τ ]

We note that these two assumptions contradict ea other, since the first assumption re-
quires a small τ , while the second assumption requires a large τ . However, we argue, fol-
lowing [69], that for systems with large copy numbers a time τ can be constructed that
suffices both assumptions. Following the first assumption, the random variable Kj(yt, τ)
follow a Poisson distribution since all reactions are independent, Kj(yt, τ) ∝ P(aj(yt)τ),
where aj(yt)τ is the average number of events in reaction annel j. e second assump-
tion allows us to write the Poissonian random variables as normal random variables, due to
the law of large numbers. e mean and variance of these normal variables are equal, since
they originate from Poisson random variables. ese two assumptions allow us to write

Yi (t + τ) = yt,i +

M∑
j=1

νjiNj
(
aj (yt) τ , aj (yt) τ

)
(1.58)

= yt,i +
M∑

j=1

νjiaj (yt) τ
M∑

j=1

νji

√
aj (yt) τNj (0, 1) , (1.59)

since Nj(µ,σ
2) = µ+σNj (0, 1). In a final transition we rewrite τ → dt, and introduce the

noise source Γj (t), where 〈Γj (t)〉 = 0 and 〈Γj (t) Γj′
(
t′)〉 = δ(t − t′)(j − j′), to obtain

the Chemical Langevin Equation (CLE)

dYi (t)

dt
=

M∑
j=1

νjiaj (Y (t)) +
M∑

j=1

νji

√
aj (Y (t))Γj (t) . (1.60)

is leads for our example to

dS (t)

dt
= k − λS (t) +

√
kΓ0 (t) −

√
λS (t)Γ1 (t) , (1.61)

dX (t)

dt
= ρS (t) − µX (t) +

√
ρS (t)Γ2 (t) −

√
µX (t)Γ3 (t) . (1.62)

e CLE provides us with a clear description of the time-dependent noise strength (term(s)
involving Γj ), whi not necessarily is linear. e CLE (Eq. 1.60) implies a corresponding
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(forward) Fokker-Plan equation for the multivariate probability distribution p(S,X) [69]

∂p (y, t|y0, t0)
∂t

= −
N∑

i=1

∂

∂yi

 M∑
j=1

νjiaj (y)

 p (y, t|y0, t0)


+

1

2

N∑
i=1

∂2

∂y2i

 M∑
j=1

ν2jiaj (y)

 p (y, t|y0, t0)


+

N∑
i,i′=1,i<i′

∂2

∂yiyi′

 M∑
j=1

νjiνji′aj (y)

 p (y, t|y0, t0)

 , (1.63)

To continue, we make, following [70, 77], two additional assumptions. e first we describe
here, while the second is given below Eq. 1.64. e first assumption is that the ensemble
average is independent of time: 〈S(t)〉 = 〈S〉. We derive the time-dependence of the sta-
tionary (co)variances [70, 78, 79],

dC
dt

= AC+ CTAT + B, (1.64)

where C is the covariance matrix with entries Cij = σ2
ij , A is the Jacobian matrix for the

dynamics of the average process, with entries Aij = ∂/∂yi[(Σjνjiaj(〈y〉))], and B a matrix
whi describes the diffusion (or random) terms, that depend on the stoastic events in the
process, with entries Bik = Σjνjiνjkaj(〈y〉). Importantly, in the derivation of both A and
Bwe assume that at steady-state fluctuations around the steady-state can be ignored, whi
implies

〈SX〉 = 〈S〉 〈X〉 . (1.65)

We stress however that for the calculation of the (co)variances, Eq. 1.65 is not used. is as-
sumption is in general not valid for non-linear systems and application of the LNA therefore
should be done with care. However, it is well-known that the Linear-Noise Approximation
is accurate as long as the copy numbers > O(10) ([49] and Fig. 1.5). Since both A and B
now directly follow from the description of the process, Eq. 1.64 directly allows for the cal-
culation of the variance of every component around steady-state. For our example (Eq. 1.32)
we have

A=
(

−λ 0
ρ −µ

)
, B=

(
2λ 〈S〉 0

0 2µ 〈X〉

)
. (1.66)

is leads to the (co)variances as given in Eq. 1.36whi is as expected, since our example
system is linear. However, for non-linear systems, the LNA is not necessarily correct, as is
shown in Fig. 1.5.



1.4 Numerical optimization 21

a)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

lo
g
10
[σ

2 X
X
]

log10[<X>]

LNA
Sto.

b)

0

1

2

3

4

0 1 2 3 4

lo
g
10
[σ

2 X
X
]

log10[<X>]

LNA
Sto.
Pois

Figure 1.5: The Linear-Noise Approximation (LNA) (black circles) provides accurate predictions for
the variance compared with full stochastic simulations (red circles). a) In a system, equal to
Eq. 1.32, but with non-linear (cooperative) production of X S2

ρ→S2+XØ, where S2 is a dimer of two
S molecules. The LNA (black circles) captures the noise levels in X very good at all copy numbers
compared to the full stochastic system (red circles). Parameters: k=10 s−1, λ=1 s−1, ρ=20 s−1, µ
is varied to change the average response. b) In a birth-death system with non-linear (cooperative)

degradation Ø
k→X, X+X

µ→Ø, the LNA (black circles) slightly underestimates the noise levels in
X compared to the full stochastic system (red circles). Lines show analytical solutions (notes by
AndrewMugler). The use of the LNA should therefore be done with care. Parameters: k=400 s−1,
µ is varied to change the average response.

1.4 Numerical optimization

In this last in-depth section I describe two methods of computational optimization, whi
share many features, but are also somewhat different. Both methods are computational
tools and are intensively used in these thesis, whi merit a larger baground description.
But first a small general description as to why we use numerical optimization teniques.
In many of the problems that are studied in this thesis the capacity to perform a specific
function in a small minimal systems is assessed, like acting as a logic gate (Chapter 5) or
multiplexing bioemical signals (Chapters 7 and 8). Although the studied systems are
small, they comprise already a large parameter space (more than 10 parameters), whi
makes it difficult to, from scrat, analytically derive results. However, numerical results
can be obtained by performing computational optimization teniques, where numerically
the full parameter-space is explored and solutions to the problem at hand are returned.
Ideally, one would like to perform brute-force calculations, scanning over all parameter
space, but this, given the size of the parameter-space, is in generally unfeasible. erefore,
more elegant algorithms have been developed.

In general, in a multi-dimensional parameter space, the performance function (e.g. the
capacity tomultiplex) is a highly non-trivial function of all the parameters, showingmultiple
maxima (peaks) and minima (valleys). In both algorithms a system is a specific point in
this parameter space, and ea system is aracterized by its performance function. e
main problem of the optimization algorithms used in this thesis, simulated annealing and
numerical evolution, is that they not necessarily obtain the global minimum. Indeed, both
algorithms can optimize the system for a local minimum, but not necessarily the global
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minimum. Luily, in many studies in this thesis, I am not necessarily interested in the
global optimum, but in a sufficient optimum. In other words, for me it is satisfactory if a
specific system can perform a specific function, but not if it is the best system for the specific
function.

1.4.1 Simulated Annealing

efirst algorithm is simulated annealing (SA). In this method, ea point p of the parameter
space is analogous to a state of some physical system, and the function E(p) (the perfor-
mance function) to be minimized is analogous to the internal energy of the system in that
state. e goal is to bring the system, from an random initial state in parameter space, to
the state with the minimum possible energy (or lowest performance function). At ea step,
the SA algorithm compares its current state p with a neighboring point p′, by comparing
the function E(p) and E(p′). Based upon the comparison of these two states, two options
are possible:

1. If E(p′) < E(p) the new state p′ is accepted as a more optimal state

2. If E(p′) > E(p) the new state p′ is accepted following a probabilistic measure, where
the likelihood to accept is depends on exp(−β(E(p′)− E(p))), where β is an inverse
“temperature”.

e idea is that, due to the probabilistic acceptance of less optimal states, the simulated
annealing algorithm is able to overcome local minima and find the global minimum. e
inverse temperature β, whi is increased in time, allows for variation of the acceptance of
large moves in the uphill direction, thereby stimulating or preventing the algorithm to leave
the (local) minimum. e SA algorithm is used in Chapter 7.

1.4.2 Numerical Evolution

e second algorithm is Numerical Evolution. is algorithm in a sense follows the laws
of natural evolution for optimization. Instead of the SA algorithm, whi modeled a single
system, this algorithm models the evolution of a population. e algorithm is based upon
ideas of Wright and Fisher [80, 81]. Evolution occurs in discrete, synronous steps, where
the population size remains constant. At ea step, eamember of the population produces
offspring in proportion to its fitness. en, mutations occur, and the mutated offspring yield
the population for the next step.

In general, we have a “population” of S initial systems s (parameter points in the pa-
rameter space). Ea point has fitness E(s), and the total fitness for the population is
F = ΣsE(s). At ea step, S new systems (“offspring”) are drawn from the distribution
ps = E(s)/F , whi weights ea system by its fitness. Ea new system is then “mu-
tated” by anging a single parameter p in the parameter space, at whi point selection
starts again. Since initially the parameter space is randomly sampled and the assignment of
offspring is probabilistic, one expects that the NE algorithm is less prone to converge into
a local minimum; however, this is not guaranteed. More baground information on this
algorithm can be found in [82]. e NE algorithm is used in Chapters 5 and 8.
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1.5 Scope of this thesis

ework in this thesis focuses on signal transmission in bioemical networks, with a strong
emphasis on dynamical signals. In Chapters 2 and 3 we study the influence of network
topology on the information transmission capacity of a specific network. Many recurring
motifs are observed experimentally in signaling networks. We study the effect of eamotif
on the transmission of time-varying signals, the gain, noise and the information rate, whi
is proportional to the ratio of the signal-to-noise, all as a function of the frequency of the
incoming signal. In Chapter 2 we focus on networks with feedba loops and autoreg-
ulation, while in Chapter 3 we study networks with a feed-forward aritecture. ese
apters give insight in how eamotif transmits information as a function of frequency. In
Chapter 4 we swit gears. Instead of studying the information transmission, we study the
precision by whi a cell can estimate the concentration by monitoring the occupancy state
of a receptor. Indeed, this is an interesting problem; what is the fundamental lower limit
on the precision of measuring emical concentrations by time-averaging? e answer to
this question is provided in a seminal paper wrien by Howard Berg and Edward Purcell
[83], but since then however disputed in other publications. In this apter, together with
our co-workers from Japan, we reconsider this fundamental limit using a new analytical
approa as well as computer simulations. In Chapter 5 we focus on actual information
processing by single molecules. In recent years it has been shown that logic operations
can be performed by single molecules [84]. We wonder whether a receptor, by variation
of kinetic parameters, can perform all possible logic operations? While this question is in-
teresting on evolutionary timescales, we then focus down onto signaling timescales. Is it
possible for cells, by recombination of receptor monomers into dimers, to access all different
logic operations. In Chapter 6 we return to one of the original observations, namely that
signals are time-varying. is by itself is remarkable in the context of variability reduction,
since intuitively one would expect that oscillating signals tend to increase the variability
in a response, compared to constant signals. In Chapter 6 we study this question in more
detail for a simple model of gene-regulation, pinning down the question whether indeed
oscillating signals always increase the variability in a response as we naively expect.

e last two apters are reserved for the topic reflected in the title of this thesis: Mul-
tiplexing Bioemical Signals. It is commonly observed that within cells different signals
share a common signaling pathway. In other words, independent signals are transmied
through a common pathway, but ultimately they lead to their own unique response. is
raises an interesting question: can cells simultaneously transmit signals through a common
signaling network and yet, respond to each signal uniquely? We can think of this hypothesis
with respect to the telephone system. In this telephone system multiple calls are trans-
mied through the same wire, but every independent caller-receiver combination can have
a lively conversation without interference from any of the other calls in the network. In
Chapter 7 we study the idea of multiplexing bioemical signals for signals that are con-
stant in time. We discuss an encoding and decoding strategy that a cell could employ that
allows for multiplexing, with absolute fidelity in the signal transmission for ea signal. In
Chapter 8 we extend the ideas of Chapter 7 by looking not only at signals that are constant
in time, but also by studying signals that vary in time. Again we focus on possible encoding
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and decoding strategies that allow multiplexing of bioemical signals. We study a possi-
ble multiplexing network in more detail, especially looking at the influence of interference
from the different signals onto ea other, and the influence of noise on the information
transmission.
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C 2

E     
   
 

Living cells are continually exposed to environmental signals that vary in time.
ese signals are detected and processed by bioemical networks, whi are oen
highly stoastic. To understand how cells cope with a fluctuating environment, we
therefore have to understand how reliably bioemical networks can transmit time-
varying signals. To this end, we must understand both the noise aracteristics and
the amplification properties of networks. In this apter, we use information theory
to study how reliably signaling cascades employing autoregulation and feedba can
transmit time-varying signals. We calculate the frequency-dependence of the gain-
to-noise ratio, whi reflects how reliably a network transmits signals at different fre-
quencies. We find that the gain-to-noise ratio may differ qualitatively from the power
spectrum of the output, showing that the latter does not directly reflect signaling per-
formance. Moreover, we find that auto-activation and auto-repression increase and
decrease the gain-to-noise ratio for all of frequencies, respectively. Positive feedba
specifically enhances information transmission at low frequencies, while negative
feedba increases signal fidelity at high frequencies. Our analysis not only eluci-
dates the role of autoregulation and feedba in naturally-occurring biological net-
works, but also reveals design principles that can be used for the reliable transmission
of time-varying signals in synthetic gene circuits.

Based on manuscript W.H. de Ronde, F. Tostevin and P.R. ten Wolde (2010) Effect of feedba on
the fidelity of information transmission for time-varying signals. Physical Review E 82.
doi:10.1103/PhysRevE.82.031914
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2.1 Introduction

Living cells constantly have to respond and adapt to aanging environment. In some cases,
su as in response to a anging sugar concentration [85], a cell may wish to integrate out
rapid variations and only respond to slow variations of the environmental signal, while in
other cases, su as osmo adaptation [86] or bacterial emotaxis [87], the cell needs to do
the opposite — respond to rapid but not slow variations (adaptation). Indeed, to understand
how cells cope with a fluctuating environment, we have to understand how cells transduce
time-varying signals. Cells detect, process, and transduce signals via bioemical networks,
whi are the information processing devices of life. However, experiments in recent years
have demonstrated that bioemical networks are oen highly stoastic [25, 88]. is raises
the question how reliably bioemical networks can transmit time-varying signals in the
presence of noise.

Interestingly, bioemical networks exploit commonly recurring aritectures [10, 89],
su as autoregulation, cascades, and feedba, to process signals. ese network motifs of-
ten implement signal amplification in order to raise the level of the input signal relative to
the noise. Amplification can be aracterized by the gain, the fold-ange in the signal am-
plitude. However, it is important to recognize that su amplification can not only increase
the levels of the desired signal, but can also amplify the noise itself. erefore, to understand
the possibilities and limitations of different network motifs for enhancing the fidelity of sig-
nal transduction, we need to understand how both the signal and the noise are propagated
through these motifs. Specifically, information theory indicates that the reliability of signal
transmission is determined by the ratio of the gain of the network to the total noise in the
output signal — the gain-to-noise ratio. Moreover, to assess how reliably signals of different
temporal aracteristics are transduced, we have to understand the frequency dependence
of the gain and the noise. Importantly, we expect that different network aritectures will
affect the frequency-dependence of the gain and the noise differently, whi means that we
have to study both these quantities. In this apter, we study the frequency-dependence
of the gain-to-noise ratio for simple cascades, and for cascades employing autoregulation
and feedba. is allows us to elucidate how autoregulation and feedba can shape the
frequency range over whi signals can be transduced reliably.

Information theory provides a formalism for quantifying the reliability of information
transmission in the presence of noise [45]. A natural measure for the fidelity of signal
transmission from an input signal S, with copy number S to an output signal X (the network
response), with copy number X , is the mutual information between S and X , whi is
defined as

I(S,X) = H (S) − H (S|X) =

−
∫

dS p (S) log [p (S)] −
(

−
∫

dX p (X)

∫
dS p (S|X) log [p (S|X)]

)
. (2.1)

Here, p(S) and p(X) are the probability distributions of possible input and output sig-
nals respectively, and p (S|X) is the conditional probability of S once X is specified. e
mutual information quantifies the reduction in entropy of (or uncertainty about) the signal
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aer one obtains knowledge of the network response, averaged over all possible responses.
In other words, I(S,X) is how mu we learn (on average) about S by measuring X . For a
deterministic system, every S leads to a unique X (we assume no degeneracy). Measuring
X thus precisely specifies S, su that the uncertainty in S aer a measurement of X is
H(S|X) = 0 and I (S,X) = H (S). However, in the presence of noise in the network
ea input S will lead to a distribution of possible outputs X . As a result, an observed X
can correspond to multiple S values and I (S,X) ≤ H (S). For completely uncorrelated
S and X , I(S,X) = 0. By construction, the mutual information is symmetric, su that
I (S,X) = I (X ,S).

Recently, the mutual information has been used to study the reliability of information
transmission in bioemical networks [49, 50, 51, 52]. However, these studies considered
only the steady-state response of a network to a distribution of constant input signals, whi
do not ange on the timescale of the network response. Yet, in many biological systems, it
cannot be assumed that the input signal is constant on the timescale of the network response.

Indeed, in many systems the message is encoded in the temporal dynamics of the input
signal. A well-known example is bacterial emotaxis, where the concentration of the intra-
cellular messenger protein depends not on the steady-state ligand concentration, but rather
on the ange of this concentration in the recent past [90] — the response of the network
thus depends on the history of the input signal. Moreover, the extracellular signal may be
encoded in the temporal dynamics of the intracellular signal transduction pathway. An in-
teresting example is provided by the rat PC-12 system: while stimulation with a neuronal
growth factor gives rise to a sustained response of the Raf-Mek-Erk pathway, stimulation
by an epidermal growth factor gives rise to a transient response of this pathway [91]. In
all these cases, the message is encoded not in the concentration of some emical species at
a given moment in time, but rather in its concentration as a function of time. is means
that to understand how reliably the network can transmit information, we need to know
how accurately an input signal as a function of time — the input trajectory s (t) — can be
mapped onto an output trajectory x (t). We thus need to understand themutual information
between the two trajectories, I [s (t) ,x (t)].

e ability of a bioemical network to transduce a time-varying input signal depends
on the correlation time of the input signal and the aritecture and response dynamics of the
network. An instructive example is provided by the emotaxis network of the bacterium
E. coli. is network employs integral negative feedba [92], as a result of whi the intra-
cellular messenger protein can adapt to a constant extracellular ligand concentration. is
means that the signaling network cannot respond to anges in ligand concentration that
occur on time scales longer than the adaptation time. At the other end of the frequency
spectrum, anges in the messenger protein that occur on time scales shorter than the mo-
tor switing time will be integrated out; indeed, the network cannot respond reliably to
rapidly varying input signals [65]. e aritecture and the response dynamics of the pro-
cessing network thus determines the frequency range over whi signals can be transduced
reliably.

Recently, we have applied information theory to bioemical networks and studied the
mutual information between in- and output trajectories, I [s (t) ,x (t)] [65]. Here, we apply
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this framework to study the propagation of time-varying signals through a number of net-
work motifs—cascades, autoregulation, and feedba. It is known that for constant signals
(or, to be more precise, signals that do not vary on the time scale of the network response
time), the mutual information decreases as a function of cascade length [50]. e same also
holds true for time-varying signals. Indeed, the data-processing inequality states that in a
cascade with n nodes, the information about the input encoded in the signal at node i + 1
cannot be greater than the information at node i. Once lost, information about the input
cannot be recovered later in the cascade. Simply increasing the length of a signaling cascade
therefore can never increase the transmied information. Conversely, maximizing the total
transmied information cannot be the driving force behind the evolution of su cascades.

Cascades, however, oen employ autoregulation and feedba, whi can be used to
shape the response of the network to signals of different frequencies. Importantly, au-
toregulation and feedba affect not only the frequency-dependent gain, whi describes
how strongly an input signal at a particular frequency is amplified in the absence of any
bioemical noise, but also the frequency-dependence of the noise. While the frequency-
dependence of the gain [30, 93, 94] and the noise [95] have been studied separately, the
frequency-dependence of their ratio, the gain-to-noise ratio, has not. However, it is the
gain-to-noise ratio whi determines how reliably an input signal at a particular frequency
can be transmied [65]. In fact, as we will show, autoregulation and feedba affect the
frequency-dependence of the gain and the noise differently, whi means that it is essential
to study these quantities together.

In this apter, we study the frequency-dependent gain-to-noise ratio using a Gaussian
model. In the next section, we describe this model, and how we can use it to compute the
frequency-dependent gain-to-noise ratio and the information transmission rate, whi is
given by the integral of this ratio over all frequencies [65]. In the section: Results we discuss
the frequency-dependent gain-to-noise ratio of simple cascades, and cascades employing
feedba and autoregulation. Our results highlight the idea that the output power spectrum
is not a direct measure for the information content of the output signal—the output power
spectrum can differ qualitatively from the spectrum of the gain-to-noise ratio. We also show
(Fig. 2.1a) that positive regulation tends to increase the gain-to-noise ratio, while negative
regulation tends to decrease it. Moreover, we show that the frequency spectra of motifs with
negative feedba can exhibit windows in whi the gain-to-noise ratio is increased; these
motifs can thus act as band-pass filters for information transmission. Finally, we discuss
some of the implications of our findings and the limitations of our analysis.

2.2 Methods

We consider information transmission through a bioemical network from an input signal
s (t) to an output signal x (t). e dynamics of the network can be describedmathematically
by a set of coupled Langevin equations [69] for the signal, response and an arbitrary number
of intermediate components vi, in vector form v. In using the Langevin representation we
assume that the copy number of ea component is large su that the discrete number of
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Figure 2.1: a) A schematic drawing of the main conclusions of this chapter. The frequency of the
variations of the input is shown on the x-axis. For three different motifs the gain-to-noise ratio is
shown. The arrows indicate the specific frequency regime for which each motif performs beer
with respect to a simple cascade (fb is feedback, ar is autoregulation). b) The Jacobian matrix.
The entries of the Jacobian matrix encode the structure of the reaction network.

molecules can be approximated by a continuous concentration, and we obtain

ds

dt
= f+

s (s) + f−
s (s) + Γ (t) , (2.2)

dv

dt
= f+

v (s,v,x) − f−
v (s,v,x) + ηv (t) , (2.3)

dx

dt
= f+

x (s,v,x) − f−
x (s,v,x) + ηx (t) . (2.4)

Here, f+
i and f−

i contain all the reactions involving the production and degradation of
component i, respectively. f+

s and f−
s only depend on s, so that we restrict our analysis

to networks that do not feed ba onto s itself. In these cases, the gain-to-noise ratio is
independent of the input signal [96], as discussed in more detail below Eq. 2.11. Γ (t) is
a stoastic driving process that serves to define the ensemble of possible input signals.
e various noise sources ηi are taken to be independent and Gaussian-distributed [31, 77,
96], su that 〈ηi (t) ηj

(
t′)〉 = 〈|ηi|2〉δijδ(t − t′). Here, we note that the assumption of

independent noise sources is onlymade to simplify the analysis. (Anti)-correlations between
noise sources can affect noise propagation [96], and can be included by a straightforward
extension of the present discussion. Furthermore, we assume that 〈|ηi|2〉 = 〈f+

i 〉+
〈
f−

i

〉
=

2〈f+
i 〉 and 〈|Γ|2〉 = 2〈f+

s 〉 [97], the sum of the production and degradation terms.

We introduce the vector y = (s;v;x) and η = (Γ,ηv , ηx) and assume the network has
a steady state 〈y〉. Linearizing around this steady state we obtain

dỹ

dt
= J|y=〈y〉ỹ + η. (2.5)

Here ỹi = yi−〈yi〉 is the deviation of the concentration of component i from its steady-state



30 Effect of feedback on the fidelity of information transmission of time-varying signals

value, 〈yi〉, and J is the Jacobian evaluated at the steady state¹. Jij describes the response
of the component i to small anges in component j, while keeping all other components
at their steady-state levels. e diagonal element Jii = −τ−1

i is the relaxation time or dis-
sipative time scale of component i; it describes the time scale on whi component i relaxes
ba to its steady-state value aer a perturbation. Aer linearization, the aritecture of
the network is encoded in the structure of the Jacobian matrix (see Fig. 2.1b): the diagonal
terms correspond to autoregulation, the lower triangular part to downstream (feedforward)
regulation and the upper triangular part to upstream (feedba) regulation. Since we restrict
ourselves to systems without feedba from the network to the signal itself, we require that
all elements on the first row of J are zero but for Jss.

We take as our input signal the variations s̃. A linear system does not ange the fre-
quency of the transmied signal, but only the amplitude and the phase. Since Eq. 2.5 is
linear in ỹ, we can calculate exactly the power spectra of the network components [97],

P = [iωI − J]−1Q
[
−iωI − JT

]−1
, (2.6)

where Pij(ω) = 〈Ỹi(ω)Ỹj(−ω)〉 is the (cross-)power spectrum of ỹi and ỹj , Ỹi (ω) is the
Fourier transform of ỹi (t), I is the identity matrix, and Q is the noise matrix with entries
Qij = 〈ηi(ω)ηj(−ω)〉 = 〈|ηi|2〉δij . e power spectrum is a commonly used tool to study
time-varying signals, and describes how the total power of a signal is distributed over differ-
ent frequencies. Power at low frequencies is related to slow variations of the signal, while
power at high frequencies corresponds to rapid fluctuations. e integral of the power spec-
trum over all frequencies equals the total variance of the signal.

e information transmission rate for time-varying signals is [48, 61]

lim
T →∞

I [s (t) ,x (t)]

T
= R [s (t) ,x (t)] = − 1

2π

∫ ∞

0
dω ln [1 − Φsx(ω)] , (2.7)

where T is the length of the trajectory and Φsx(ω) is the coherence function, defined as

Φsx(ω) =
|Psx(ω)|2

Pss(ω)Pxx(ω)
. (2.8)

Φsx(ω) is a measure of the average correlation between the in- and output signals in the
frequency domain. For completely independent in- and output signals, Φsx(ω) = 0, while
for a noiseless system Φsx(ω) = 1.

e power spectrum of the output signal, Pxx(ω), can be decomposed as

Pxx (ω) ≡ Σ(ω) + N (ω) ≡ g2 (ω)Pss (ω) + N (ω) . (2.9)

Here, Σ(ω) ≡ g2 (ω)Pss(ω) is the transmied signal, g2(ω) ≡ |Psx(ω)|2 /P 2
ss(ω) is the

frequency-dependent gain, Pss(ω) is the power spectrum of the input signal and N(ω) is

¹ We note that with the osen expression for the size of the random events 〈ηiηj〉, the linearized Langevin
equations lead to the Fluctuation-Dissipation theorem or Linear Noise Approximation [68, 70]
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the frequency-dependent noise. With these definitions, the coherence function, Eq. 2.8, can
be recast as

Φsx(ω) =
Σ(ω)

N(ω) + Σ(ω)
, (2.10)

and the mutual information rate can be rewrien as [65]

R [s (t) ,x (t)] =
1

2π

∫ ∞

0
dω ln

[
1 +

g2(ω)

N(ω)
Pss(ω)

]
. (2.11)

We see that the information transmission rate depends on the power spectrum of the input
signal, Pss(ω), and on the gain-to-noise ratio g2(ω)/N(ω).

As discussed in Ref. [96], in a biological system the reaction that detects the input signal
can, depending on the nature of the detection reaction, introduce significant correlations be-
tween the variations in the input signal and the intrinsic noise of the reactions that constitute
the processing network. ese correlations are a consequence of the molecular aracter
of the components and are thus unique to bioemical networks. If the detection reaction
does not introduce correlations, then Eq. 2.9 is the spectral-addition rule [96]. e noise
N(ω) is then the intrinsic noise of the processing network and also g2(ω) only depends
on properties of the processing network. On the other hand, if the detection reaction does
introduce correlations, then the output power spectrum Pxx(ω) can be wrien in the form
of Eq. 2.9, but then N(ω) and g2(ω) depend not only on aracteristics of the processing
network, but also on the statistics of the input signal; conversely, the variations of the input
will also be affected by the noise in the processing network [96]. In what follows below,
we assume for simplicity that the spectral-addition rule holds, whi means that the gain,
noise and gain-to-noise ratio are independent of the input signal, and that the input does
not need to be specified.

Applying the linearization procedure, as outlined above, may, in general, qualitatively
ange the dynamics of the network being considered. However, previous studies [32, 49]
have shown that the Linear Noise Approximation provides an accurate description of many
systems if the average copy numbers are of order 10 molecules or more. For the networks
considered in this apter we also compared the power spectra calculated in the linear ap-
proximation with the results of stoastic simulations performed with Gillespie’s algorithm
[74], and again found good agreement when protein copy numbers are large (see App. 2.A.1).
We therefore expect that the linear analysis presented in this apter provides an accurate
description of the signaling aracteristics of these networks.

2.3 Results

First we study a simple cascade, where “simple” means that we consider a cascade where
ea component only regulates the activity of the next component in the cascade; a “simple”
cascade is thus a cascade without autoregulation, feedba or feedforward interaction. We
analyze this network in detail su that it can serve as an instructive example of the method
described above. In addition, we will highlight general features of the results whi recur
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in more complex networks. We then discuss network motifs including autoregulation and
negative feedba loops, whi are commonly observed in bioemical networks.

To understand the effects of autoregulation and feedba we will compare information
transmission in these motifs to a corresponding simple cascade with the same number of
components but without the additional regulation. In order to perform su a comparison
of different motifs on an equal footing we constrain the average production rate of every
component su that these are equal in the networks under comparison. We argue that from
a biological perspective the rate of protein production is a more significant constraint on
network design than average protein copy number, since the laer only depends on the ratio
of the synthesis and degradation rate, while it is the absolute synthesis and degradation rate
that determines the cost of having a protein at a particular copy number. is constraint
also enforces that the noise strength at ea level of the cascade 〈|ηi|2〉 = 2〈f+

i 〉 is the same
in the motifs being compared. When comparing two systems with many parameters, equal-
izing production rates is not a sufficient constraint to uniquely specify all parameter values.
To reduce this potential parameter space we will (unless otherwise stated) hold constant
as many of the network parameters as possible. For brevity we will only discuss networks
in whi all regulation occurs via the production reactions, with linear degradation of ea
component. However, our results are qualitatively unanged if we instead consider regu-
lation via protein degradation.

We aracterize information transmission through these motifs in terms of the gain,
noise and gain-to-noise ratio. Since we assume that the spectral-addition rule holds [96],
these quantities are intrinsic, signal-independent properties of the network. We also wish to
highlight differences between the information transmission aracteristics of the network,
as determined by the gain-to-noise ratio, and the output power spectrum Pxx(ω), since this
is commonly discussed in studies of signal transmission. Since Pxx(ω) depends not only on
the processing network but also on the input signal (see Eq. 2.9), we must therefore specify
Pss(ω); for this purpose we assume, for convenience, that the input signal s(t) is generated
via a Poisson birth-death process as in Eq. A2.9 (the section: e simple cascade).

2.3.1 The simple cascade

Initially we study a simple cascade with a single intermediate component. Extension of the
cascade with more intermediate components is straightforward. e appropriate reaction
seme is

ds

dt
=ks − µss + Γ (t) , (2.12)

dv

dt
=kvs − µvv + ηv (t) , (2.13)

dx

dt
=kxv − µxx + ηx (t) . (2.14)

We reiterate thatwe assume that there are no cross correlations in the noise; 〈ηα(t)ηβ(t
′)〉 =

δαβδ(t− t′) and 〈Γ (t) ηα
(
t′)〉 = 0. is means that the reactions are of the type s → s+v

and v → v + x, and not s → v and v → x, respectively; put differently, the firing of a reac-
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tion does not consume a molecule of the reactant, and hence does not affect the fluctuations
of the up-stream component [96]. In the section: Discussion, we will briefly address some of
the limitations of this assumption.

Fourier transformation gives

X̃(ω) =

signal︷ ︸︸ ︷
kxkvS̃

(iω + µx) (iω + µv)
+

︷ ︸︸ ︷
kxηv(ω)

(iω + µx) (iω + µv)
+

ηx(ω)

iω + µx
noise

. (2.15)

As indicated, we can identify the components of the output whi are due to the input
S̃ (“signal”) and components whi are due to intrinsic noise in the network. We obtain for
the power spectrum of x,

Pxx(ω) =
〈

X̃X̃∗
〉
=

g2(ω)︷ ︸︸ ︷
k2x

(ω2 + µ2
x)

k2v
(ω2 + µ2

v)

Pss(ω)︷ ︸︸ ︷
2ks

(ω2 + µ2
s)

+

N(ω)︷ ︸︸ ︷
k2x

(ω2 + µ2
x)

2kv 〈s〉
(ω2 + µ2

v)︸ ︷︷ ︸
Nv→x(ω)

+
2kx 〈v〉

(ω2 + µ2
x)︸ ︷︷ ︸

Nx(ω)

(2.16)

Figure 2.2a shows the output power spectrum of this network Pxx(ω) (dark red solid), as
well as its decomposition into the noise N(ω) (dark red dashed) and the transmied signal
Σ(ω) = g2(ω)Pss(ω) (bla dashed) (see also Eq. 2.9). Simple cascades are aracterized
by a number of “knee” frequencies (vertical dashed), corresponding to the aracteristic
relaxation rates of the different components of the network (in this case µs, µv and µx).
ese knee frequencies are the inverse of the response times of the components — e.g. µv =
τ−1
v .

In order for the processing network to tra variations in the input s on a time scale ω−1,
the network should be able to respond on this time scale. If any component of the process-
ing network has a longer response time, this variation in s will be filtered. is filtering
can be observed in the transmied signal Σ(ω), where at frequencies above the first knee
frequency, Σ(ω) scales with ω−2 and for every consecutive knee frequency, Σ(ω) decays
with an additional factor ω−2 (Fig. 2.2a). In effect ea level of the cascade acts as a low-pass
filter, because the incoming signal is averaged over the protein response time. Mathemati-
cally, the transmied signal Σ(ω) can be factored into the input signal Pss(ω) (bla solid),
and the total gain g2(ω) (Fig. 2.2b, gray solid), whi is independent of the input signal (be-
cause we assume that the network does not feed ba onto s). Moreover, the total gain of
the network is the product of the gain of ea cascade step: g2(ω) = g2s→v(ω)g

2
v→x(ω);

decaying as ω−4 for ω � µv ,µx (Fig. 2.2b). Consequently, the transmied signal Σ(ω)
decays as ω−6 for ω � µs,µv ,µx.

Since we assume that there are no cross-correlations between the different noise terms,
the total noise N(ω) (dark red dashed in Fig. 2.2a,b) is given by the noise-addition rule [70,
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96], whi means that N(ω) is simply given by the sum of two independent contributions,
Nv→x(ω) (Fig. 2.2b, red solid) and Nx(ω) (red dashed) (see Eq. 2.16). Here, Nx(ω) is the
noise in the concentration of x that arises from the intrinsic stoasticity in the production
and decay events of x; Nx(ω) would be the total variance in the concentration of x if v, the
input for x, would not vary over time. However, the upstream component v does vary in
time, not only because it is driven by variations in the input s, but also because it fluctuates
spontaneously due to the noise in its synthesis and decay events. is noise is propagated to
x. Its contribution to the total noise power of x is Nv→x(ω), whi is given by the noise in v,
Nv(ω), multiplied by how mu this noise is amplified at the level of x, given by g2v→x(ω):
Nv→x(ω) = g2v→x(ω)Nv(ω), where g2v→x = k2x/(ω

2+µ2
x). e “extrinsic” contribution to

the noise in x, Nv→x, decays as ω−4 since the noise in v, decaying as ω−2, is filtered by the
finite lifetime of the protein x. e “intrinsic” contribution, Nx(ω), decays as ω−2, meaning
that for ω � µv ,µx, N(ω) ≈ Nx(ω). Hence, while the transmied signal Σ(ω) decays as
ω−6 for ω � µs,µv ,µx, the noise N(ω) decays as ω−2 (Fig. 2.2b, dark red dashed). As a
result, for frequencies ω � µs,µv ,µx, the transmied signal Σ(ω) is completely obscured
by the noise and the output Pxx(ω) is simply given by the noise N(ω) (Fig. 2.2a). Finally,
the gain-to-noise ratio (Fig. 2.2b, bla solid) is

g2(ω)

N(ω)
=

kvkxµv

2〈s〉 (ω2 + µ2
v + µvkx)

. (2.17)

is expression shows that the simple cascade effectively acts as a low-pass filter for infor-
mation, meaning that it cannot reliably respond to signals that vary (mu) faster than a
aracteristic cut-off frequency ω2

c = µv (µv + kx). We note that the gain-to-noise ratio is
independent of µx, since both the gain and the noise have the same functional dependence
on µx. is is a general feature of the bioemical networks we will study: degradation of
the output species occurs independently of the upstream components, and therefore pro-
vides no additional information about the input [65].

2.3.2 Autoregulation

In this section we consider direct feedba of a component onto its own production, as
indicated in Fig. 2.3a and Fig. 2.4a. Autoregulation is one of the most common forms of
regulation in signaling networks. It is well known that negative autoregulation speeds up
the response time of components, whi can also ange the response time of the complete
signaling cascade [33]. Positive autoregulation slows down the response time and can lead
to bistability [33, 98].

Autoregulation alters only the diagonal entries of the Jacobian matrix (Fig. 2.1b). is
means that the aracteristic timescale for dissipation of small fluctuations — the response
time — anges, whi is as expected. For the steady state of the system to be stable we re-
quire that the diagonal of the Jacobian has only negative terms. us autoregulation cannot
qualitativelyange the form of the output power spectrum Pxx(ω). In fact, once linearized,
the dynamics of a network with autoregulation is equivalent to that of a simple cascade with
a different degradation rate. In terms of information transmission, however, this is not al-
ways true, as we shall see below.
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Figure 2.2: Typical power spectra for a linear cascade. a) The power spectra of x and s, Pxx(ω) and
Pss(ω), together with the signalΣ(ω) and noiseN(ω) components of the output, for the two-step
cascade shown in Eq. 2.12. b) The frequency-dependent gain g2(ω), noise N(ω) and gain-to-noise
ratio (g2/N). Red lines indicate the two noise contributions,Nv→x(ω) (solid) andNx(ω) (dashed).
Parameters: ks=10, kv=10, kx=1, µv=0.5 and µx=5. Vertical lines indicate the degradation rates
of the three components.

Autoregulation at the response X does not affect information transmission

We first consider autoregulation by the network output X on its own production, as de-
picted in Fig. 2.3a. For this motif the relaxation time of X is given by τx = −J−1

xx =
[µx − 〈∂/∂xf(x)s〉]−1, where f(x) describes the effect of the feedba of x onto its own
production (see Eq. 2.18 in Fig. 2.3b) For negative regulation |Jxx| > µx, while for positive
regulation |Jxx| < µx. Negative (positive) regulation therefore reduces (increases) the re-
sponse time of X to anges in s, compared to the equivalent simple cascade network for
whi f(x) =constant. In the output power spectrum Pxx(ω) this ange in timescale ap-
pears as a shi in the knee frequency corresponding to τ−1

x . A corresponding ange can
also be seen in both the gain and noise (see Eq. 2.20 in Fig. 2.3c).

However, despite theseanges in the response time, we find that the gain-to-noise ratio
for an autoregulatory network (Eq. 2.20c in Fig. 2.3c) is identical to the gain-to-noise ratio
for a simple (two-component) cascade. e effect of anging Jxx on the noise and gain
is identical (Eq. 2.20a,b in Fig. 2.3b) and therefore cancels in the gain-to-noise ratio (as we
also saw previously for the effect of µx in the simple cascade, Eq. 2.17). e autoregulation
by X of its own production alters the timing of production events. However, our constraint
of equal average production means that the mean rate of this process in the two cascades
is the same. Moreover, in the linearized regime the production of x is an identical Pois-
sonian process in both simple and autoregulated cascades. Hence, to the extent that the
system can be linearized, autoregulation at the output of a network does not affect infor-
mation transmission. It is conceivable that non-linear effects cause autoregulation of the
output component to affect information transmission, but a comparison of our analytical
results discussed here with results of Gillespie simulations of the full system, suggest that
the linearization approximation is surprisingly accurate (see App. 2.A.1).
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,
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, (2.20a)

N =
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Figure 2.3: Autoregulation of the output component. a) Schematic representation of the negative au-
toregulation motif, where s is the input signal and x the output signal, which negatively regulates
its own production. b) The Langevin equations of the network. c) The characteristic equations
for the gain, noise and gain-to-noise ratio (see also the section: Autoregulation).

Positive autoregulation within the cascade increases the gain-to-noise ratio
In a cascade with autoregulation by an intermediate component V the story is different
(Fig. 2.4a and Eq. 2.21 in Fig. 2.4b). First, we reiterate that since we compare the sim-
ple cascade and the cascade with autoregulation on the basis of equal average production
and degradation rates, the noise strengths 〈η2x〉 and 〈η2v〉 are the same for both cascades.
However, as noted above the effective relaxation timescale of component v, τv = −J−1

vv

(Eq. 2.5), decreases with negative autoregulation and increases with positive autoregula-
tion. is again leads to a reduction (increase) in both the gain (Fig. 2.4d, top le) and the
noise (Fig. 2.4d, top right) of the network for negative (positive) autoregulation, as has been
reported previously [34, 95]. However, unlike the case of autoregulation of the output X,
the gain-to-noise ratio (Fig. 2.4d, boom le) can ange as a result.

Negative autoregulation (Fig. 2.4d, red) leads to a decrease in the response time compared
to a simple cascade (gray), corresponding to an increase in |Jvv|. is leads to a decrease
in the gain of the autoregulated component g2s→v(ω) = J2

vs/(ω
2 + J2

vv) at frequencies
ω < |Jvv|. Negative autoregulation therefore tends to suppress slowly varying signals rel-
ative to the simple cascade. Noise whi is introduced upstream of or at the autoregulated
component is filtered by the feedba-modified gain in exactly the same way as the signal,
whereas noise introduced downstream of v is unaffected. Hence negative autoregulation
reduces both the total gain of the network, whi is the product of the individual reaction
gains g2(ω) = g2s→v(ω)g

2
v→x(ω), and the noise transmied from v to x, Nv→x(ω) =

g2v→xNv(ω), relative to the simple cascade. However, noise in the production and degra-
dation of x is unanged relative to the simple cascade. Since the total noise (Eq. 2.23b in
Fig. 2.4c) is the sum of independent noise contributions, N(ω) = Nx(ω) + Nv→x(ω), the
total noise decreases by a smaller factor than the gain, and the gain-to-noise ratio decreases
compared with the simple cascade.

Conversely, positive autoregulation (Fig. 2.4d, bla) increases the relaxation time of V,
whi increases g2s→v(ω) at frequencies ω < |Jvv|. We can therefore see that positive au-
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toregulation amplifies slowly-varying signals. is leads to an increase in the network gain
and the noise that is propagated from v to x. However, since the noise that is introduced at x
is unanged, positive autoregulation at V increases the gain-to-noise ratio compared to the
simple cascade. Fig. 2.4d shows the comparison between a simple cascade and cascades with
positive and negative autoregulation. Hornung and Barkai previously studied transmission
of a constant signal with additive noise through a deterministic (noiseless) network [99],
and found that positive autoregulation can increase the signal-to-noise ratio. Our results
for time-varying signals with intrinsic network noise parallel their results.

Given a network with autoregulation, our constraint of equal production of ea net-
work component does not define a unique “equivalent” simple cascade. at is, differ-
ent parameter combinations can be osen for a simple cascade whi satisfy the produc-
tion constraint. e results in the preceding discussion correspond to one su parameter
oice. Specifically, we oose the production rate of V in the simple cascade (Eq. 2.12) to
be kv = 〈f(v)〉, while taking the same value for µv in both networks. A consequence of
this oice is that the relaxation time τv anges between the two cascades, as discussed
above. One can equally well construct a simple cascade for whi the diagonal entries of
the Jacobian, Jαα, are equal to those of the autoregulated cascade, so as to hold constant the
relaxation time of ea component between the two cascades. is is aieved by seing the
spontaneous degradation rate for V in Eq. 2.12 to be µnew

v = µv −〈∂/∂vf(v)s〉. Byoosing
this new rate, the average protein number 〈v〉 anges in the simple cascade, and as a result
also the average production of x. To restore equal production of x we thus also require a
rescaling of the kinetic production rate knew

x = kxµnew
v /µv in the simple cascade (Eq. 2.12).

us, in this comparison, the diagonal entries of the Jacobian matrices of the autoregulated
and simple cascade are the same, while the off-diagonal entry Jxv = kx differs between the
two.

Compared to a cascade with positive autoregulation, this new kinetic production rate in
the simple cascade is smaller (knew

x < kx). e reduction in Jxv leads to a uniform decrease
in g2v→x(ω) at all frequencies. As described above, this affects the signal and also the prop-
agated noise Nv→x(ω) equally, but not the intrinsic noise at x, Nx(ω). us, compared to
a cascade with positive autoregulation, the gain-to-noise ratio is reduced at all frequencies
in the simple cascade, as can be seen in Fig. 2.5 (red dashed). Interestingly, the decrease in
the gain-to-noise ratio is most pronounced at high frequencies. is is because the propa-
gated noise Nv→x(ω) only has a significant contribution at frequencies ω < µnew

v ; at higher
frequencies the total noise is dominated by Nx(ω), as discussed in the section: e simple
cascade. us at these higher frequencies, the gain is reduced relative to the positively-
autoregulated cascade, but the noise is not, and so the ange in the gain-to-noise is largest.
For networks with negative autoregulation, the converse applies: the gain-to-noise ratio is
higher in the simple cascade at all frequencies, but by a larger factor for ω < µnew

v . Hence,
the effect of positive or negative autoregulation is qualitatively the same in both parame-
terizations.

More generally, even if we relax the production constraint on ea component, and in-
stead require only the total production in the two cascades to be the same (i.e., 〈f+

v 〉 +
〈f+

x 〉 = constant), we see the similar qualitative behavior for the gain-to-noise ratio (see
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Eqs. A2.21-A2.23). Positively-autoregulated cascades have a larger gain-to-noise ratio than
a simple cascade of the same length, while for a cascade with negative autoregulation the
gain-to-noise ratio is smaller. For longer cascades drawing su general conclusions is more
difficult. However, if the majority of parameters are kept the same between the simple and
autoregulated cascades, as in the cases discussed in detail above, then we again find that
positive autoregulation increases and negative autoregulation decreases the gain-to-noise
ratio. Furthermore, given a specific simple cascade one can always add positive autoregula-
tion to the network in su away as to aieve a larger gain-to-noise ratio while maintaining
the same total production cost.

We have here considered only autoregulation via the production of the intermediate
v. However, for autoregulation via the degradation of V we observe similar results for the
gain-to-noise ratio: if V suppresses its own degradation, the decrease in the effective turn-
over rate leads to a reduction of the noise strength Nv→x(ω), increasing the gain-to-noise
ratio; whenV enhances its own degradation rate the transmied noise is increased, reducing
signaling fidelity.

2.3.3 Feedback

Feedba, both positive and negative, corresponds to the upper-triangular part in the Jaco-
bian of the linearized system (see Fig. 2.1b). It is known that negative feedba allows for
adaptation as, for example, in the E. coli emotaxis pathway [87, 90, 100]. Feedba can
also shi noise to higher frequencies [95]. We will again consider separately the two cases
of feedba by the output X onto an upstream component and feedba by an intermediate
component onto a component higher up the cascade.

Feedback from X does not affect information transmission
For negative feedba from X to V (Fig. 2.6a and Eq. 2.27 in Fig. 2.6b), the power spectrum
of the response Pxx(ω) (Fig. 2.6d, dark red solid) can have a resonance peak while none
is present in the input signal (bla solid). Surprisingly, this peak does not correspond to
an increase in information transmission capabilities at the peak frequency (ωpeak), since no
peak is present in the gain-to-noise ratio (Fig. 2.6d, red solid). For positive feedba, no peak
is present in either Pxx(ω) or the gain-to-noise ratio.

For a system with negative feedba from X to V the gain and noise both show a peak,
but these can occur at different frequencies. We consider first the frequency dependence
of the gain. At low frequencies the negative feedba leads to destructive interference at v
between the input signal S̃(ω) and the signal that is fed ba, X̃(ω). On the other hand,
at high frequencies these two signals are exactly out of phase, and hence the interference
becomes constructive (since the feedba combines the two signals negatively). However,
at frequencies ω � µv ,µx the amplitude of the fed-ba signal decreases, due to averaging
over the lifetimes ofV and X; hence, even though the two signals interfere constructively, the
significance of this interference decreases. Together, these three effects lead to a maximum
in the gain. is maximum occurs at

ω2
res = −1

2

[
µ2

x + µ2
v + 2JvxJxv

]
, (2.25)
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a)

S V X
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dv

dt
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dx
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Figure 2.4: A two-step cascade with autoregulation (ar) of the intermediate component. a) Cartoon
of the negative autoregulationmotif, where the intermediate componentV negatively regulates its
own production. b) The Langevin equations describing the network. c) The characteristic equa-
tions for the gain g2(ω), noiseN(ω) and gain-to-noise ratio. d) The gain, noise, gain-to-noise ratio
(g2/N) and output power spectrum Pxx(ω) ploed as a function of frequency for three different
cascades: simple (gray), positive autoregulation (black) and negative autoregulation (red). Neg-
ative autoregulation reduces the gain, noise and gain-to-noise ratio. For positive autoregulation
the opposite holds. Positive autoregulation has a smaller knee frequency in the gain-to-noise ratio
than negative autoregulation (see also the section: Autoregulation). Parameters: ks=10, kv=100,
kx=10, µv=5, µx=0.5, K=〈v〉 and νa=200, νr=200.

whi depends on the relaxation rates µx, µv and the coupling (feedba) loop between v
and x, JvxJxv . is timescale corresponds to the imaginary part of the eigenvalues of the
Jacobian.

e frequency of the peak in the noise depends on the relative strengths of the two noise
sources, ηv and ηx. e two noise terms are propagated differently through the network,
because ηx originates at the regulator of the feedba loop, while ηv originates at the reg-
ulated component. We consider two limiting cases. If the total noise N(ω) (Eq. 2.28b in
Fig. 2.6c) is dominated by the transmied noise, Nv→x(ω), both the signal Σ(ω) and the
dominant source of noise originate upstream of the feedba loop. Effectively, therefore,
the feedba affects both the gain and noise of the network similarly. As a result the peak
frequencies of both the noise and the gain are the same. On the other hand, when the total
noise is dominated by Nx(ω), whi is located downstream of the regulated component V,
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Figure 2.5: The gain-to-noise ratio for a cascade with positive autoregulation (ar, black solid) and two
simple cascades (red solid, dashed). Solid: as in 2.4d, the degradation rate of the simple cascade
equals that of the cascade with positive autoregulation, µv=µarv . Hence |Jvv| is smaller in the
cascade with auto-activation, and the gain-to-noise ratio is larger at low frequencies. Dashed: In
the simple cascade we take µv=Jarvv , and instead increase the production rate Jxv . This decreases
the gain-to-noise ratio of the simple cascade with respect to the autoregulated cascade over the
full frequency spectrum. Inset: the ratio of the gain-to-noise ratio of the cascade with positive au-
toregulation to that of the simple cascade; solid: µv=µarv , dashed µv=Jarvv . The doed red vertical
line indicates Jarvv , the vertical solid red line µar

v , which shows the shi in frequency dependence.
Parameters: ks=10, kv=100, kx=10, µv=5, µx=0.5, K=〈v〉 and ν=200.

the feedba loop affects the signal and noise differently. As a result, the noise that is fed
ba has a different frequency profile than the signal, su that the peaks in the gain and
the noise occur at different frequencies (Fig. 2.6d, red dots).

One might therefore expect that when Nx(ω) � Nv→x(ω) a peak in the gain-to-noise
ratio is possible. However, an inspection of the expressions for the gain, Eq. 2.28a, and the
noise, Eq. 2.28b (both in Fig. 2.6c), shows that they have the same denominator, su that
the gain-to-noise ratio is a monotonically decreasing function of frequency (Eq. 2.28c in
Fig. 2.6c). e effect of the negative feedba is canceled. Ultimately, this is due to the fact
that the noise in the output x goes ba into the feedba loop, su that the peaks in the gain
and the noise cannot be controlled separately; in the next section, we show how this can be
done. Furthermore, we note that the gain-to-noise ratio is again identical to a simple three-
component cascade, as we also saw in the case of autoregulation of X. We conclude that
feedba from X onto the cascade also has no effect on information transmission through
the network.

is network (Eq. 2.28 in Fig. 2.6b) also highlights the idea that the power spectrum of
the output Pxx(ω) may not be indicative of the information that is transmied at different
frequencies. We see in Fig. 2.6d that due to the negative feedba Pxx(ω) can have a peak
at non-zero frequencies, even if none is present in the input signal. However, this peak does
not correspond to the frequency at whi the signal is transmied most reliably. Instead,
we can see that the peak is simply due to resonant amplification of both the signal and the
noise at the aracteristic frequency of the negative feedba loop.

It has been suggested [30] that a system where a negative feedba loop acts on the re-
sponse component can have a large peak in the gain, su that signals on specific timescales
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can be selected for. If we take in Fig. 2.6a not x but v to be the output of the network, we
obtain

g2(ω)

N(ω)
=

J2
vs

(
ω2 + µ2

x

)
J2

vx

〈
|ηx|2

〉
+ (ω2 + µ2

x)
〈

|ηv|2
〉 . (2.26)

We observe that the gain-to-noise ratio is a monotonically increasing function of frequency
and does not show a peak at any specific frequencies. Furthermore we note that as ω → ∞
the gain-to-noise ratio becomes equal to the gain-to-noise ratio for the one-step simple cas-
cade (Jvs/2〈s〉), since for large ω the noise from the downstream component is averaged
out. us this network motif has a higher gain-to-noise at all frequencies than the cas-
cade with x as the output. However, the information transmied at low frequencies is less
than if X were not present. Following the information processing inequality, the amount of
information about s whi is encoded in the dynamics of v is always larger than the cor-
responding information in x. By feeding ba x to v we thus do not add more information
to the signal, but essentially add an extra source of noise to the pathway from S to V. e
strength of this noise is highest at frequencies ω < µx, and hence the effect of the feedba
is to obscure the signal at these frequencies. As a result this motif acts as a high-pass filter
for information.

Negative feedback within a cascade can lead to a peak in the gain-to-noise ratio

In the section: Autoregulation we saw that the gain-to-noise ratio is sensitive to the precise
position of autoregulation in a cascade. In this section we therefore study a cascade where
the feedba is not from X to V, but between two intermediate components W and V (see
Fig. 2.7a and Eq. 2.33 in Fig. 2.7b). is also corresponds to taking the output of the previous
feedba cascade (Fig. 2.6a) as the input to another downstream process.

Expressions for the gain, noise and gain-to-noise ratio are given in Fig. 2.7c. For positive
feedba the gain, noise and gain-to-noise ratio are once again monotonically decreasing
with increasing frequency. However, we find that for a network with strong negative feed-
ba (Hill coefficient n > 1, see Eq. A2.35), the gain-to-noise ratio can have a maximum as
a function of frequency at

ω2
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is peak frequency depends on the aracteristic resonance frequency of the feedba
loop, ωres, whi is determined by the interactions between v and w: µv , µw , Jvw and
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Figure 2.6: Feedback (fb) from the output signal X to an upstream component, discussed in sec-
tion the section: Feedback. a) Cartoon of the negative feedback motif, where the output signal X
negatively regulates V. b) The Langevin equations describing the network. c) The characteristic
equations: gain g2(ω), noise N(ω) and gain-to-noise ratio g2(ω)/N(ω). d) Power spectra of the
output, Pxx(ω), input, Pss(ω), gain g2(ω) and noise N(ω). Pxx(ω), g2(ω) and N(ω) all exhibit
a peak due to the negative feedback, while the gain-to-noise ratio is monotonically decreasing.
The red dots indicate the peaks of the gain and noise, which occur at different frequencies (see
the section: Feedback). Parameters: ks=10, K=0.2〈x〉, ν=1260, kx=5, µv=5, µx=5 and n=3.

Jwv . It is additionally dependent on the relative strengths of the noise introduced into the
network at w and at x.

We can understand the appearance of this peak as follows. For a network with negative
feedba, g2(ω) (Fig. 2.7c, boom le) has a maximum as a function of frequency at ωres, the
aracteristic resonance frequency of the feedba loop. Input signals at this frequency are
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amplified by the constructive interference between the signal transmied to v from s and
the signal whi is fed ba from w to v. We note that the resonance frequency has the same
form as Eq. 2.25, and depends only on the interactions between V and W. e behavior of
the noise power spectrum (Fig. 2.7c, top right) is more complex. We consider two limiting
cases in whi different noise terms dominate. When the total noise is dominated by noise
introduced at v or w, the noise is processed through the feedba loop together with the
signal. As discussed in the previous section, N(ω) therefore shows a peak at a similar
frequency to the gain (light gray solid). ese two peaks cancel, and hence the gain-to-
noise ratio (Fig. 2.7c, top le, light gray solid) is monotonically decreasing with frequency.
On the other hand, when the total noise is dominated by Nx(ω) (top right, bla solid) the
noise in the network is not affected by the feedba loop. Hence no peak is found in the
noise power spectrum. In this limit, the peak in the gain-to-noise ratio corresponds to the
peak in the gain at ωres (top le, bla solid).

From these arguments we see that the peak in the gain-to-noise ratio becomes more
pronounced as the relative contribution of Nx(ω) to the total noise increases. Additionally,
increasing the strength of the negative feedba by reducing K or increasing n leads to
a more pronounced peak. However, this increase in the relative peak height comes at the
expense of a reduction in the value of the gain-to-noise ratio at all frequencies.

How does the gain-to-noise ratio of the network with feedba compare to the corre-
sponding (four-component) simple cascade? We examine the ratio of the gain-to-noise for
the network with feedba to the gain-to-noise of the simple cascade,

Gfb(ω) =

[
g2(ω)

N(ω)

]
fb
/

[
g2 (ω)

N(ω)

]
simple

, (2.31)

and find that (Fig. 2.8a,b)

Gpos(ω) > 1 if ω2 < µvµw

(
1 − n

2

Kn

Kn + 〈w〉n

)
, (2.32a)

Gneg(ω) > 1 if ω2 > µvµw

(
1 +

n

2

〈w〉n

Kn + 〈w〉n

)
. (2.32b)

Interestingly, for both types of feedba there is a range of frequencies over whi the
gain-to-noise ratio increases relative to the simple cascade. is contrasts to the results of
the section: Autoregulation, where we found that autoregulation affected the gain-to-noise
ratio in the same way at all frequencies.

is difference can again be understood in terms of the interference of the two signals
arriving at V. As described above at low frequencies the signal propagated from s to v
and the feedba signal from w to v are in phase, while at high frequencies the two signals
are exactly out of phase. Hence for a positive feedba loop (Fig. 2.8a,b; bla) the signals
combine constructively at low frequencies, increasing the gain, but destructively at high
frequencies, decreasing the gain. Recall that, since we are comparing networks with equal
production, the noise strengths 〈|ηv|2〉, 〈|ηw|2〉 and 〈|ηx|2〉 are equal in the regulated and
simple cascades. In an analogous way to the autoregulation discussed in the section: Au-
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toregulation, the presence of feedba between W and V affects both the signal and noise
introduced upstream of x, but not noise introduced at x. Hence, at low frequencies positive
feedba amplifies the signal and the noise introduced at the levels of V and W, but not
noise introduced at X. Hence at low frequencies the gain-to-noise ratio increases relative to
the simple cascade. At high frequencies, however, positive feedba reduces the gain and
the noise upstream of x, but not the intrinsic noise Nx(ω); consequently, the gain-to-noise
ratio is reduced compared to the simple cascade. Conversely, a network with negative feed-
ba (Fig. 2.8a,b; red) reduces the gain at low frequencies, reducing the gain-to-noise ratio.
However, at high frequencies, the feedba amplifies the signal but not Nx(ω), leading to
an increase in the gain-to-noise ratio.

From these results we conclude that if a cell is only concerned with low frequency input
signals, it is beneficial in terms of information transmission to add positive feedba within
the signaling cascade. If the system wishes to respond specifically to high-frequency sig-
nals, negative feedba can be used to increase the fidelity of transmission for these signals.
Additionally for a strong negative feedba (n � 1 or K � 〈w〉, see Eq. A2.43) the gain-
to-noise can have a peak in the regime where signaling is more reliable than for a simple
cascade, allowing the cell to focus on signals in a particular frequency band. We note that
the negative feedba motifs considered here do not lead to perfect adaptation to constant
input signals, whi is aracterized by g2(ω = 0) = 0 and is necessary for true band-pass
behavior. Perfect adaptation requires that the feedba to be implemented via a buffer node
or side bran [101]. An example of this network aritecture is the E. coli emotaxis path-
way [92], for whi the gain-to-noise ratio does indeed indicate a band-pass for information
[65].

2.4 Discussion

In this apter we have analyzed information transmission through a number of network
motifs, namely cascades, autoregulation and feedba. One of the most important conclu-
sions of our analysis is that to understand how reliably bioemical networks can transmit
time-varying signals, we have to study the frequency-dependent gain-to-noise ratio [65]. In
particular, the power spectrum of the output signal may not be a good measure for how bio-
emical networks transduce time-varying input signals. e power spectrum of the output
signal depends on the power spectrum of the input signal, the frequency-dependent gain,
and the frequency-dependent noise. Only the laer two quantities are intrinsic properties
of the network, provided that the network detects the input via bioemical reactions that
do not affect the statistics of the input signal [96]. Moreover, we have seen that the power
spectrum of the output signal may differ qualitatively from that of the frequency-dependent
gain-to-noise ratio. A striking example is provided by the network with negative feedba
from the output component, whi shows a peak in the output signal (see Fig. 2.6d): while
one might be tempted to conclude that input signals at this frequency are transduced most
reliably, our analysis shows that this peak in the output spectrum is simply the result of
resonant amplification of both the input signal and the noise in the network.

Our analysis leads us to draw the following conclusions on the effect of autoregulation
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a)

S V XW

b)
dv

dt
= f (w) s − µvv + ηv , (2.33a)

dw

dt
= βv − µww + ηw , (2.33b)

dx

dt
= γw − µxx + ηx, (2.33c)

f (w) =
νCn

Kn + wn

{
C = w, pos. .

C = K , neg. .
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g2 =
(JvsJwvJxw)

2

HxF (ω)
, (2.34a)

N =
(JxwJwv)

2
〈

|ηv|2
〉
+ J2

xwHv

〈
|ηw|2

〉
+ F (ω)

〈
|ηx|2

〉
HxF (ω)

, (2.34b)

g2

N
=

(JvsJwvJxw)2

(JxwJwv)
2
〈

|ηv|2
〉
+ J2

xwHv

〈
|ηw|2

〉
+ F (ω)

〈
|ηx|2

〉 , (2.34c)

where

F (ω) = ω4 +
(

µ2
v + µ2

w + 2JvwJwv

)
ω2 + (JvwJwv − µwµv)

2 , (2.35a)

with Hi = ω2 + µ2
i .

Figure 2.7: A three-step cascade with feedback (fb) from an intermediate component, discussed in
the section: Feedback. a) Cartoon of a negative feedback motif, where S is the signal and X the
response, and W negatively regulates V. b) The Langevin equations of this motif. c) The effect of
changing the strength of the intrinsic noise in x,Nx(ω), on the spectra of the gain, noise, and gain-
to-noise ratio of a cascade with negative feedback. Nx(ω) is varied by changing γ(=Jxw) and µx,
in such a way that 〈x〉 remains constant. Lines show: gray solid, γ=50; gray dashed solid, γ=10;
black solid, γ=0.01. Decreasing γ and µx in this way increases the relative contribution of Nx(ω)

to the total noise. We see that as γ is reduced the gain and noise decrease at frequencies ω<µx,
but the noise increases at lower frequencies. The gain-to-noise ratio decreases at all frequencies.
However, the peak in the gain-to-noise ratio becomes more pronounced. Parameters: ks=10,
β=10, ν=330, K=0.5〈w〉, n=5, µv=10, µw=10 (see App. 2.A.6) d) The characteristic equations:
gain g2(ω), noise N(ω) and gain-to-noise ratio g2(ω)/N(ω).

and feedba on the transmission of time-varying signals: 1) autoregulation of the output
component does not affect the gain-to-noise ratio, and hence does not affect information
transmission (Fig. 2.3c); 2) positive autoregulation of an intermediate component increases
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Figure 2.8: a) The spectra of the gain, noise, gain-to-noise ratio, and the output power, Pxx(ω) for
a cascade with feedback (fb). For small ω, positive feedback (black) enhances the gain, noise,
and gain-to-noise ratio, while negative feedback (red) decreases these. For higher frequencies,
negative feedback increases the gain, enhancing the gain-to-noise ratio. With negative feedback
a peak in the gain-to-noise ratio is present (denoted by the red dot), while none is present in
the output power spectrum Pxx(ω). Parameters: ks=10, µw=10, µv=10, µx=0.5, β=10, γ=10.
For positive feedback: K=0.5〈w〉, n=1 and ν=150. For negative feedback: K=0.5〈w〉, n=4 and
ν=1700. b) Solid lines show Gfb(ω) (le axis), the gain-to-noise ratio for networks with positive
(black) or negative (red) feedback divided by that of the corresponding simple cascade. Relative to
the simple cascade, positive feedback increases the gain-to-noise ratio at low frequencies, while
negative feedback increases the gain-to-noise ratio at high frequencies. Vertical lines indicate
the frequencies at which Gfb(ω)=1 (Eq. 2.32). Dashed lines show the gain-to-noise ratios for
the positive (black) and negative (red) feedback motifs (right axis). Parameters: ks=10, µw=10,
µv=10, µx=1, β=10, γ=1 and K=0.5〈w〉. For positive feedback: n=1 and ν=150. For negative
feedback n=5 and ν=3300.

the gain-to-noise ratio over all frequencies, while negative autoregulation tends to decrease
it over all frequencies (Fig. 2.4d); 3) negative feedba from the output component onto an
upstream component may lead to a peak in the power spectrum of the output, and those of
the gain and the noise; yet, even though the peaks of gain and the noise can be at differ-
ent frequencies, negative feedba from the output component onto an upstream compo-
nent can not lead to a peak in the spectrum of the gain-to-noise ratio (Fig. 2.6d); 4) positive
feedba between upstream components enhances the gain-to-noise ratio at low frequen-
cies, while negative feedba increases the gain-to-noise ratio at high frequencies (Fig. 2.8b).
Further, we note that it is possible to aieve a peak in the gain-to-noise ratio via negative
feedba between components that are upstream of the output component (Fig. 2.7c); how-
ever, this comes at the expense of a reduction in the gain-to-noise ratio for all frequencies.
We also note here that stronger band-pass filtering of information can be obtained with net-
works employing integral feedba in a side bran [65], as found in the networks of osmo
adaptation [86] or bacterial emotaxis [92]. Alternatively, band-pass filters for information
transmission can be obtained via feedforward loops, whi we will discuss in a forthcoming
publication.

Taken together these results reveal the following design principles for the use of feedba
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and autoregulation in signal transduction cascades (see the sematic drawing Fig. 2.1a).
Firstly, feedba and autoregulation can improve information transmission, but only if they
occur upstream of the dominant source of noise in the cascade. Feedba or autoregulation
downstream of the dominant noise source affects the gain and the noise similarly. Secondly,
if signals over the full frequency range have to be transmied reliably, positive autoregula-
tion is advantageous, while if the cell is concerned only with low- or high-frequency signals,
then positive or negative feedba can be employed.

e approa employed here has a number of limitations. Firstly, we have used the
linear-noise approximation, and the power spectra calculated using this approximation may
deviate from those of the full non-linear system. We argue that this effect does not signifi-
cantly affect our results, since we find excellent agreement between the power spectra calcu-
lated analytically using the linear-noise approximation and those obtained from stoastic
simulations of the full system (see App. 2.A.1). Secondly, we stress that the expressions for
the information transmission rate, Eq. 2.7 and Eq. 2.11, are exact only for linear Gaussian
systems; yet, the information rate calculated in this approximation provides a lower bound
on the information transmission rate of the full system [64]. In [65] , we showed how the
information transmission rate R can depend on the variance of the input signal. Here, we do
not provide su an analysis, because R indeed depends on the statistics of the input signal,
while we focus here on the processing network, whi is aracterized by the gain-to-noise
ratio.

Another limitation of our analysis is that to reduce the complexity of the problem, we
have assumed that the networks obey the spectral-addition rule [96], meaning that reac-
tants are not consumed during reaction events. However, irreversible modifications of a
substrate molecule are common in bioemical networks, and reactions of this type can
significantly ange the correlations between different network components. For instance,
in a cascade of the type X0 → X1 → . . . Xn−1 → Xn, where in ea reaction step the
reactant is consumed, correlations of the form 〈ηiηi+1〉 = −k〈Xi〉 appear between differ-
ent noise terms. As a result, for this cascade the covariance between different components
〈xixj 6=i〉 = 0 [96, 102], and hence the mutual information between instantaneous levels of
components Xi and Xj 6=i is zero [65]. is may suggest that these cascades cannot effec-
tively transmit information. Yet, the analysis of [65] indicates that this motif can, in fact,
reliably transmit time-varying signals. It would therefore be of interest to study the effect of
cross-correlations in the noise on the information transmission in the motifs studied here.
We leave this for future work.

Lastly, how could our predictions be tested experimentally? It is increasingly being rec-
ognized that stimulating bioemical networks with time-varying signals provides a wealth
of information on the dynamics of these networks [35, 86, 87, 103, 104, 105]. ese exper-
iments can also be used to study the reliability by whi bioemical networks can trans-
mit time-varying signals. By measuring not only the power spectra of the in- and output
signals, Pss(ω) and Pxx(ω), but also their cross-power spectrum Psx(ω), one can obtain
the frequency-dependent gain g2(ω) ≡ |Psx(ω)|2 /Pss(ω)

2 and the frequency-dependent
noise N(ω) (see Eq. 2.9), and hence the gain-to-noise ratio. Stimulating synthetic gene
circuits or existing signal transduction pathways and gene regulation networks of known
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aritecture with time-varying signals, for example using microfluidic devices, would make
it possible to test our predictions on the effect of feedba and autoregulation on information
transmission.
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2.A Supplementary Information

All cascades have the following linear birth-death process for the signal

ds

dt
= ks − µss + Γ (t) . (A2.1)

2.A.1 Gillespie Simulations

e linearization used in the derivation can ange the aracteristics of the frequency re-
sponse. A linearized system does not ange the frequency of the transmied signal. How-
ever, this may not be the case for a non-linear system. To study this, we performed Gillespie
simulations of the full system. e positive and negative regulation in our networks arises
from Hill-like interactions between components. In the Gillespie simulation we calculated
the propensities for every reaction with identical expressions. For example, in the network
with negative feedba from W to V, we model reactions like Eq. 2.33a in Fig. 2.7b as

S r−→ S+ V, (A2.2)

where r is

r =
νKns

Kn + wn . (A2.3)

In these equations the actual copy number w is used, and not 〈w〉, as in the linearized
expressions (Eq. 2.34 in Fig. 2.7c).

e power spectra are calculated using 211 (2048) exponentially distributed frequencies
from ω = 10−3 s−1 to ω = 103 s−1 and averaged over 24 neighboring frequencies to obtain
a single data point. In total we have 27 datapoints. e length of the simulation is 106

seconds, or a maximum of 109 events. For every run 50 blos are averaged.
e positive feedba loops considered here display bistability. For the positive feedba

loops a constant low level production is added to drive the system to the stable state with
high copy numbers, instead of the stable state where the copy number equals zero. e
positively autoregulated component thus is described by

dv

dt
= −µvv + ηv +


νvs

K + v
if v 6= 0

1

1000
if v = 0

. (A2.4)

Linearizing this we find that the fluctuations follow

dṽ

dt
= −µv ṽ + ηv − νK 〈s〉

K + 〈v〉
ṽ +

νK

K + 〈v〉
s̃, (A2.5)

whi is equivalent to the linearization of Eq. 2.18 in Fig. 2.4a. e addition of the basal
expression therefore drives the system to a specific steady state, but does not ange the
dynamical behavior around this steady state. For positive feedba within the cascade, the
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motif is described by

dw

dt
= a + kwv − µww + ηw . (A2.6)

Taking different values for a = 0.1, 1, 10 does not lead to qualitatively different answers
(see Fig. 2.11). Again, the basal production anges the steady state, but not the dynamical
behavior around the steady state. All results are shown in Figs. 2.9-2.11.
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Figure 2.9: The results (symbols) of the Gillespie simulations together with the results of the linear
noise approximation (lines) as employed in the main text. a) For the linear cascade (Eq. 2.12),
Kinetic rates as in figure Fig. 2.2. b) For a network with negative feedback from X to V (Eq. 2.27
in Fig. 2.6b), Kinetic rates as in Fig. 2.6d. c) For a network with negative feedback from W to V
(Eq. 2.33 in Fig. 2.7b), Kinetic rates as in Fig. 2.7d with negative feedback.
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Figure 2.10: The results (symbols) of the Gillespie simulations together with the results of the linear
noise approximation (lines) as employed in the main text. a) For the network with positive au-
toregulation of V (Eq. 2.21 in Fig. 2.4b) (kinetic rates as in Fig. 2.4c with positive autoregulation),To
drive the system to the non-zero steady state, basal production of V is present (Eq. A2.4). The
steady state of the full non-linear Gillespie simulation is slightly different from the steady state
derived from themathematical expressions for s,v and x. This causes the slight difference between
the results of the linearization and the simulations. b) For a network with negative autoregulation
on V (Eq. 2.21 in Fig. 2.4b), kinetic rates as in Fig. 2.4d with negative autoregulation.

2.A.2 Linear cascades

e one step linear cascade is described by

dx

dt
= kxs − mxx + ηx (t) (A2.7)
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Figure 2.11: The results (symbols) of the Gillespie simulations for a network with positive feedback
from W to V (Eq. 2.33 in Fig. 2.7b), together with the results of the linear noise approximation
(lines) as employed in the main text. Kinetic rates as in Fig. 2.7d with positive feedback. To drive
the system to the non-zero steady state, basal production ofw is present (Eq. A2.6), a)with a=0.1,
b) with a=1, c) with a=10.

with the following aracteristic equations

g2 (ω) =
k2x

ω2 + m2
x
, (A2.8a)

N (ω) =

〈
|ηx|2

〉
ω2 + m2

x
, (A2.8b)

g2

N
=

k2x〈
|ηx|2

〉 , (A2.8c)

with 〈|ηx|2〉 = kx〈s〉 + mx〈x〉 = 2kx〈s〉.
e two-step linear cascade is described by

dv

dt
= kvs − mvv + ηv (t) , (A2.9a)

dx

dt
= kxv − mxx + ηx (t) , (A2.9b)

with the following aracteristic equations

g2 (ω) =
k2vk2x

(ω2 + m2
x) (ω

2 + m2
v)

, (A2.10a)

N (ω) =
k2x

〈
|ηv|2

〉
+
(
ω2 + m2

v

) 〈
|ηx|2

〉
(ω2 + m2

x) (ω
2 + m2

v)
, (A2.10b)

g2

N
=

k2vk2x

k2x

〈
|ηv|2

〉
+ (ω2 + m2

v)
〈

|ηx|2
〉 . (A2.10c)

e linear cascades are used as a reference. For the kinetic rates of the linear cascades we
use roman symbol (k and m). For the kinetic rates of the cascades with feedba regulation
we use Greek symbols.
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2.A.3 Autoregulation

Autoregulation by X

e process andaracteristic equations (gain, noise, GNR) are listed in Fig. 2.3b,c. For equal
average production, as the simple two-step cascade, (production rate kx), we ose

〈f (x) s〉 ≡ f (〈x〉) 〈s〉 = kx 〈s〉 , (A2.11)

where the definition expresses the fact that we assume that the average rates can be ex-
pressed by the rates at the deterministic steady state, thus ignoring fluctuations. us

kx = Jxs =
∂f (〈s〉 , 〈x〉)

∂ 〈s〉
=

νκ

(K + 〈x〉)
, (A2.12)

and 〈|ηx|2〉 = 2kx〈s〉. Expressed in terms of the kinetic rates of the one-step linear cascade,
the autoregulated cascade has the following form

g2

N
=

k2x
2kx 〈s〉

=
kx

2 〈s〉
(A2.13)

whi is identical to Eq. A2.8c. e power spectrum of x for the autoregulated cascade is

Pxx (ω) =
J2

xs

〈
|Γ|2

〉
+
(
ω2 + µ2

s

) 〈
|ηx|2

〉
(ω2 + µ2

s)

(
ω2 +

(
µx − ∂f(〈s〉,〈x〉)

∂〈x〉

)2) . (A2.14)

Following a rescaling of the kinetic degradation rate µx, su that µnew
x = µx − Jxx, we

observe that the power spectrum of the simple cascade and the autoregulated cascade agree.
is is because the noise term ηx depends on the mean rate of the production and degra-
dation events. In steady state the average number of production events equals the average
number of degradation events. Since by the rescaling the production is not anged, the
noise ηx is constant. e ange in µx → µnew

x will lead to a new steady state value 〈x〉,
but not to a different number of degradation events.

2.A.4 Autoregulation by V

For autoregulation of one of the intermediate components the network and aracteristic
equations (gain, noise,GNR) are listed in Fig. 2.4b,c. We equalize the production of v between
the autoregulated cascade and the two-step simple cascade (with rates kv and kx) to obtain

kv = Jvs =
νκ

(K + 〈v〉)
, (A2.15)
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and the GNR for the autoregulated cascade expressed in terms of the kinetic rates of the
simple cascade (thus using kv , kx and mv ,mx where applicable) is

g2

N
=

(JvsJxv)
2

β2
〈

|ηv|2
〉
+ (ω2 + J2

vv)
〈

|ηx|2
〉

=
k2vβ2

β2
〈

|ηv|2
〉
+

(
ω2 +

(
µv − ∂f(〈s〉,〈v〉)

∂〈v〉

)2)〈
|ηx|2

〉 . (A2.16)

We keep all kinetic rates equal in the autoregulated and simple cascade that do not influence
the constraint condition (Eq. A2.15) (thus µv = mv and β = kx). We obtain

g2

N
=

k2vk2x

k2x

〈
|ηv|2

〉
+

(
ω2 +

(
mv − ∂f(〈s〉,〈v〉)

∂〈v〉

)2)〈
|ηx|2

〉 . (A2.17)

We note that for positive autoregulation |Jvv| < µv while for negative autoregulation
|Jvv| > µv . us the GNR is larger for the positively autoregulated than the two-step
cascade, especially for ω < Jvv . For the negatively autoregulated cascade the opposite
holds.

e constraint does not lead to a unique relation between an autoregulated and a non-
autoregulated cascade. An alternative oice would be a simple two-step cascade for whi
the degradation rate µv is equivalent to the ”effective” degradation rate in the autoregulated
cascade. us mv = Jar

vv . e production of x is then

autoregulated︷︸︸︷
β

kv

µv
=

two-step cascade︷ ︸︸ ︷
kx

kv

mv
(A2.18)

Equalizing this leads to

β
kv

µv
= kx

kv

mv
⇒ kx = β

mv

µv
. (A2.19)

And we obtain

g2

N
=

(
β

µcasc
v
µv

kv

)2
(

β mv
µv

)2 〈
|ηv|2

〉
+
(

ω2 + m2
v

〈
|ηx|2

〉)
=

(βkv)
2

β2
〈

|ηv|2
〉
+
(

µv
mv

)2 (
ω2 + m2

v

〈
|ηx|2

〉) (A2.20)

for the GNR of the two-step simple cascade. Since for positive feedba mv < µv , the GNR
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of the positively autoregulated cascade is larger than that of the simple cascade, especially
if ω � mv or ω2 � β2〈|ηv|2〉.

If we allow for even more differences between the kinetic rates, but require equal pro-
duction, we obtain the following equations (we still assume the signal to be identical in both
cases)

µv = Cmv and β = Ckx, (A2.21)

where C is an arbitrary constant. We note that the mean level of v differs between the
autoregulated and the simple cascade

〈v〉ar = 1

C
〈v〉simple . (A2.22)

As a result we derive for the gain-to-noise ratio for the regulated cascade (using Eqs. A2.16,
A2.21, and A2.22)

g2

N
=

(Ckxkv)
2

(Ckx)
2
〈

|ηv|2
〉
+

(
ω2 +

(
Cµv − ∂f(〈s〉,〈v〉)

∂〈v〉

)2)〈
|ηx|2

〉
=

(kxkv)
2

k2x

〈
|ηv|2

〉
+

(
ω2

C2 +
(

µv − 1
C

∂f(〈s〉,〈v〉)
∂〈v〉

)2)〈
|ηx|2

〉 (A2.23)

For small ω the conclusions on positive and negative feedba are still valid, but for ω → ∞
the ratio of the GNR for positive feedba and a two-step cascade is a function of C . Similar
arguments can be made about comparing negative and positive feedba for ω → ∞, where
again the ratio of the gain-to-noise ratio’s depends on C .

2.A.5 Feedback

Feedback from X to V
For feedba of the response onto the intermediate components the network and aracter-
istic equations (gain, noise, GNR) are listed in Fig. 2.6b,c. e power spectrum is

Pxx (ω) =
(Jvsβ)2 Pss (ω) + β2

〈
|ηv|2

〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉
(ω2 + µ2

v) (ω
2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
, (A2.24)

where

Jvx =
∂ 〈f (x) s〉

∂ 〈x〉
=

∂
ν 〈κ〉n 〈s〉

Kn + 〈x〉n

∂ 〈x〉
. (A2.25)

We note that the GNR is independent of Jvx. e peak in Pxx only exist if Jvx < 0, since
the numerator is independent of Jvx, while the denominator is monotonic increasing for
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Jvx > 0. Only for negative feedba a peak can exist in the power spectrum, gain and noise
(since the same argument applies to gain and noise).

e frequency of the maximum of the gain can easily be obtained, since it coincides with
the minimum of the denominator D

D =
(

ω2 + µ2
v

)(
ω2 + µ2

x

)
+ Jvxβ

[
Jvxβ + 2

(
ω2 − µxµv

)]
. (A2.26)

is frequency, where the gain has a maximum, is

ω2
res = −1

2

[
µ2

v + µ2
x + 2Jxvβ

]
, (A2.27)

su that we require µ2
v + µ2

x + 2Jxvβ < 0. As a e we note that D > 0 for ωres so
divergence is not possible. e maximum frequency for the noise is not the minimum of D,
due to the ω-dependence in the numerator. If β2〈|ηv|2〉 � 〈|ηx|2〉, the ω-dependence in
the noise is less strong, and the frequency of the peak of the noise shis to the frequency of
the peak in the gain. Although a peak in Pxx can be derived analytically (dPxx/dω is 4th

order in ω2), it is not insightful. We note that Pxx is the sum of the noise (N(ω)) and the
signal (Σ(ω)), su that if one of these two dominates in Pxx the peak is likely to coalesce
with the peak of the dominating term. We also note that the signal Σ depends on µs, so
the peak in Pxx is not likely to coincide exactly with the peak in the gain, since the gain is
independent of µs.
Compared with a two-step cascade (rates kv , kx) , requiring equal production, we note that

kv =
νκn

Kn + 〈x〉n (A2.28)

and the two-step cascade has an identical GNR as the cascade with regulation.

Feedback from W to V

For feedba of an intermediate onto another intermediate component the network and
aracteristic equations (gain, noise, GNR) are listed in Fig. 2.7b,d. e GNR (Eq. 2.34c)
is described by C/a (ω), i.e. a constant divided by a function of ω. For this to have an
extremum, the denominator should have an extremum. We differentiate and obtain

ω2
peak = −1

2

γ2

〈
|ηw|2

〉
〈

|ηx|2
〉 + µ2

v + µ2
w + 2Jvwβ

 . (A2.29)
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Since this expression is negative, to have ω2 > 0 we require negative feedba. Explicitly
writing JwvJvw , we have for the requirement that a peak exists

2JwvJvw =2
νn 〈w〉n Kn 〈s〉

〈w〉 (Kn + 〈w〉n)2
β >

γ2

〈
|ηw|2

〉
〈

|ηx|2
〉 + µ2

v + µ2
w

 (A2.30)

〈w〉 =β 〈v〉
µw

=
β

µvµw

νKn 〈s〉
Kn + 〈w〉n , (A2.31)

whi gives n solutions for 〈w〉 (of whi only one is real and positive). If we constrain the
production rate of v and w to be constant — and we assume 〈v〉 = (kv〈s〉) /mv — then we
obtain

νKn

Kn + 〈w〉n = kv ,

and the following expression for Eq. A2.31

〈w〉 = β 〈v〉
µw

=
kvβ 〈s〉
µwµv

. (A2.32)

We rewrite the coupling strength

J
pos
vw = −J

neg
vw =

νn 〈w〉n−1 Kn 〈s〉
(Kn + 〈w〉n)2

, (A2.33)

and substitute 〈w〉

J
pos
vw =

n 〈s〉 kv

〈w〉
Kn

Kn + 〈w〉n =
n 〈s〉 kv

〈w〉
(µwµvK)n

(µwµvK)n + (kvkw 〈s〉)n
, (A2.34a)

J
neg
vw = −n 〈s〉 kv

〈w〉
〈w〉n

Kn + 〈w〉n = −n 〈s〉 kv

〈w〉
(kvkw 〈s〉)n

(µwµvK)n + (kvkw 〈s〉)n
. (A2.34b)

For K � 〈w〉 positive regulation is maximized and J
pos
vw is maximal, while negative regu-

lation is greatly suppressed and
∣∣Jneg

vw

∣∣ is minimal. e limit n → ∞ is more complicated.
If K < 〈w〉, J

neg
vw → −∞, while J

pos
vw → ∞ for 〈w〉 < K . In the opposite scenario’s the

limits tend to zero. is is only valid if while anging n, 〈w〉 remains constant, whi is
true due the constraint.
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With Eq. A2.34b we can study ωpeak in more detail and we obtain

2
νn 〈w〉n Kn 〈s〉

〈w〉 (Kn + 〈w〉n)2
β >

(
γµw + µ2

v + µ2
w

)
2kvβn 〈s〉

〈w〉
〈w〉n

Kn + 〈w〉n >
(

γµw + µ2
v + µ2

w

)
2

〈w〉n

Kn + 〈w〉n µvµwn >
(

γµw + µ2
v + µ2

w

)
, (A2.35)

whi, interestingly, only has a solution for n > 1.
e power spectrum of x is

Pxx (ω) =
J2

vsβ2γ2Pss + γ2β2
〈

|ηv|2
〉
+ γ2

(
ω2 + µ2

v

) 〈
|ηw|2

〉
+ F (ω)

〈
|ηx|2

〉
(ω2 + µ2

x)F (ω)
,

(A2.36)

whi depends on µs through Pss and therefor has a peak for a different ω than the GNR.
e GNR for a simple three-step cascade is

g2 (ω)

N (ω)
=

(kvkwkx)
2

k2x

[
k2w

〈
|ηv|2

〉
+ (ω2 + m2

v)
〈

|ηw|2
〉]

+ (ω2 + m2
v) (ω

2 + m2
w)
〈

|ηx|2
〉

(A2.37)

=
(kvkwkx)

2

D
, (A2.38)

where we ose ν su that

kv =
νκn

Kn + 〈w〉n , (A2.39)

to obtain equal production. We obtain for the ratio of the GNR of the feedba cascade and
a simple cascade

G =

[
g2/N

]
fb

[g2/N ]simple
=

D

D + Jvwβ [Jvwβ + 2 (ω2 − µvµw)]
〈

|ηx|2
〉 . (A2.40)
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So that the feedba is larger if Jvwβ
[
Jvwβ + 2

(
ω2 − µvµw

)]〈
|ηx|2

〉
< 0.

e result of this inequality is

Gpos(ω) > 1 if ω2 < µvµw

(
1 − n

2

Kn

Kn + 〈w〉n

)
, (A2.41)

Gneg(ω) > 1 if ω2 > µvµw

(
1 +

n

2

〈w〉n

Kn + 〈w〉n

)
. (A2.42)

whi is Eq. 2.32 from the article. e peak for the negative feedba occurs at ωpeak
(Eq. A2.29). e negative feedba cascade is larger than the three-step simple cascade if
ω > ωswitch (Eq. 2.32). us if ωpeak > ωswitch the GNR for the negative feedba at the
peak is larger than the three-step cascade

ω2
peak > µvµw

[
1 +

n

2

(kvβ 〈s〉)n

(µvµwK)n + (kvβ 〈s〉)n
]

γ2

〈
|ηw|2

〉
〈

|ηx|2
〉 + µ2

v + µ2
w + 2Jvwβ

 < −µvµw

[
2 + n

(kvβ 〈s〉)n

(µvµwK)n + (kvβ 〈s〉)n
]

nµvµwM > (µv + µw)2 + 2γ2

〈
|ηw|2

〉
〈

|ηx|2
〉 , (A2.43)

whi is possible for large n and large M = 〈w〉n/(〈w〉n + Kn), whi indicates that
K � 〈w〉, in both cases representing a strong negative feedba.

2.A.6 Comments on Fig. 2.7c

Here we list some additional explanation on Fig. 2.7c. In this figure, we keep the parameters
µv , µw , ν, β (= Jwv) and K constant, since they dictate the feedba cycle (Eq. 2.34 in
Fig. 2.7b). We vary Jxw and µx, so that in this case, not the average production rate of x is
constrained, but the average copy number 〈x〉.

To understand the dependence of the gain, noise and gain-to-noise ratio on γ = Jxw

and µx,we note that g2 ∼ γ2g2s→w/(µ
2
x + ω2) and N ∼ γ2/(µ2

x + ω2)Nv(ω) + γ2/(µ2
x +

ω2)Nw(ω)+Nx(ω) , where Nv(ω) and Nw(ω) are independent of γ and µx and Nx(ω) =
2γ〈w〉/(µ2

x + ω2) (with 〈w〉 being independent of γ and µx).
For ω � µx, the contributions of v and w to N(ω) are proportional to γ2/µ2

x, while
the contribution of x is given by Nx(ω) ∝ γ/µ2

x. Hence, for ω � µx, the contributions of
v and w to the noise are constant, while the contribution of x decreases with increasing γ
and µx, leading to a decrease of N(ω). Since the gain is constant in this regime, the gain-
to-noise ratio increases with increasing γ and µ for ω � µx. For ω � µx, the gain, and
the contributions of v and w to the noise increase with γ2 while the contribution of x to the
noise increases with γ, meaning that also in this regime the gain-to-noise ratio increases
with γ and µx.
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C 3

I  
  
   

Using a Gaussian model, we study the transmission of time-varying bioemical sig-
nals through feed-forward motifs and diamond motifs. To this end, we compute the
frequency dependence of the gain, the noise, as well as their ratio, the gain-to-noise
ratio, whi measures how reliably a network transmits signals at different frequen-
cies. We find that both coherent and incoherent feed-forward motifs can either act as
low-pass or high-pass filters for information: the frequency dependence of the gain-
to-noise ratio increases or decreases with increasing frequency, respectively. Our
analysis of diamond motifs reveals that cooperative activation of the output compo-
nent can increase the gain-to-noise ratio. is means that from the perspective of
information transmission, it can be beneficial to split the input signal in two and re-
combine the two propagated signals at the output. Cooperative activation can be im-
plemented via the formation of homo- or heteromultimers that then bind and activate
the output component or via the binding of individual molecules of the intermediate
species to the output component.

Based on manuscript W.H. de Ronde, F. Tostevin and P.R. ten Wolde. Feed-forward loops and
diamond motifs allow for tunable information transmission Submied.
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3.1 Introduction

Cells live in a highly dynamic environment. While in some cases cells may wish to ignore
rapid fluctuations and only respond to persistent anges, in other cases they may have to
do the opposite. For example, in the case of emotaxis or osmo-adaptation, cells respond to
anges in the stimulus but are insensitive to the absolute level of the stimulus. In contrast,
in response to a anging sugar concentration, cells respond to the absolute steady-state
sugar level, but may wish to integrate out rapid fluctuations of the sugar level. In general,
to understand how cells cope with a anging environment, we have to understand how
cells transduce time-varying signals. Moreover, given the observation that the bioemical
networks whi process the signals are stoastic in nature, we have to understand how
reliably bioemical networks can process time-varying signals in the presence of noise.

Cells use recurring network motifs to specifically respond to temporal aracteristics
of the input signal. Negative feedba or incoherent feed-forward loops may be used to
only respond to rapid variations and not to slow anges in the environment [101], while
coherent feed-forward loops can be used to filter out transient fluctuations in the input and
only respond to persistent anges in the environment [106]. To understand how specifi-
cally and reliably these motifs can respond to inputs with distinct temporal dynamics, we
have to understand how they amplify input signals as a function of their frequency [65],
whi is aracterized by the frequency-dependent gain. Moreover, we have to understand
how they propagate bioemical noise as a function of frequency [65]. Indeed, information
theory [45] tells us that the fidelity by whi a signal of a given frequency is transmied,
is determined by the gain-to-noise ratio at that frequency [65]. We have recently shown
for motifs with different types of feedba regulation that different network aritectures
affect the frequency dependence of the gain and the noise differently [107], whi means
that both of these quantities have to be studied together in order to understand how reliably
a network transmits time-varying signals.

In this apter, we use a Gaussian model to study the frequency dependence of the gain,
noise and gain-to-noise ratio [65, 107] of feed-forward loops and diamond motifs. Both are
common motifs in bioemical networks [11, 98]. Feed-forward motifs have been shown
to regulate many different cellular processes, and, indeed, they exhibit very ri dynam-
ics. Feed-forward motifs can act as sign-sensitive circuits [17], perform adaptation [101],
provide fold-ange detection [108] or aenuate extrinsic noise [109].

While the mean-field response [11, 17, 98, 101, 108, 109] and the noisearacteristics [37,
41] of feed-forward loops and diamond motifs have been well aracterized, how reliably
they propagate time-varying signals has not been studied. is is of specific interest since
the data-processing inequality dictates that information transmission decreases with the
length of the cascade. If information transmission is the only constraint, the shortest cascade
is the most reliable solution. However, as discussed above, cells may wish to respond to
specific frequencies in the input signal and it may have to do so reliably. is is precisely
what feed-forward loops and diamond motifs can aieve, in contrast to simple cascades.

We find that coherent feed-forward motifs and diamond motifs typically act as low pass
filters for information: they transmit input signals of low frequency more reliably than
input signals of high frequency. In contrast, incoherent feed-forward motifs tend to act as
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high-pass filters for information. ese results are not surprising: while for the coherent
motifs the gain is large at low frequencies, for incoherent motifs the gain is large at high
frequencies. We also show that, in contrast to the intuitive expectation, a coherent feed-
forward loop can also act as a high-pass filter, while an incoherent feed-forward loop can
also act as a low-pass filter for information. Our results also reveal that diamond motifs can
have a higher gain-to-noise ratio over all frequencies than simple two-level cascades, when
the total cost of making the proteins is the same in the two networks under comparison.
is means that from the perspective of information transmission, it is beneficial to split
the signal in two and combine the two transmied signals again at the output. is could
be considered as a form of coincidence detection. Interestingly, a diamond motif is not
necessary: e same effect can also be aieved via cooperative activation of the output
via an intermediate component. For example, the input may stimulate the formation of a
homodimer or a homomultimer, whi then activates the output; alternatively, the input
activates a messenger, for example a transcription factor, whi then activates the output,
the gene promoter, in a cooperative fashion. Our analysis suggests that the gain-to-noise
ratio increases with the level of cooperativity.

3.2 Methods

In this section, we briefly discuss the mathematical baground of our analysis. A more
in depth analysis is presented in [65, 67, 107]. e bioemical network consists of the
components S,Vi (intermediate(s)) and X. Here S is the input and X is the output. We model
the time evolution of these components using a set of coupled Langevin equations [69],
whi can be non-linear, e.g:

ds

dt
=fs (s) − µss + Γ (t) , (3.1)

dvi

dt
=fvi

(s,v) − µvi
vi + ηvi

(t) , (3.2)

dx

dt
=fx (s,v,x) − µxx + ηx (t) . (3.3)

For simplicity, we assume linear degradation of ea component. e various noise sources
(ηi, ηx) in Eqs. 3.2,3.3 are assumed to be independent and Gaussian distributed [31, 77, 96].
We take the noise strength 〈|ηvi

|2〉, 〈|ηx|2〉 as the sum of the average number of production
and degradation events per unit amount of time for component vi,x [68, 70, 97]. We assume
the noise source Γ (t) to be a Gaussian white noise. It generates an ensemble of input tra-
jectories s (t) with Gaussian statistics. e “forces” fs,vi,x (s,v,x) model all the reactions
involving the production events of s, vi and x.

We assume that the network has a steady state and linearize about this steady state, so
that we get a dynamical equation for the fluctuations of ea component, ṽi (t) = vi (t) −
〈vi〉, and similarly for the input s and output x. In the linearized form, the relation be-
tween the components i, j is described by the coupling coefficient J , whi are the Jacobian
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elements, e.g.

Jvivi
=

∂
dvi
dt

∂vi
= −µvi

, Jxvi
=

∂ dx
dt

∂vi
. (3.4)

We take as the input signal the variations of s (t) around its mean 〈s〉, s̃ (t), and as the output
the variations x̃ (t) of x (t) around its mean 〈x〉. e mutual information rate between the
in- and output trajectories, s(t) and x(t) respectively, is defined as [65]

R [s̃ (t) , x̃ (t)] =
1

2π

∫ ∞

0
dω ln

[
1 +

g2 (ω)

N (ω)
Pss (ω)

]
, (3.5)

where Pss is the power spectrum of the signal,

Pss (ω) = 〈s̃ (ω) s̃ (−ω)〉 . (3.6)

e gain g2 (ω) and noise N (ω) are defined through the power spectra

g2 (ω) ≡ |Psx (ω)|2

P 2
ss (ω)

, (3.7)

N (ω) ≡ Pxx (ω) − g2 (ω)Pss (ω) . (3.8)

ese definitions are prescribed by using Eq. 3.5. A large gain-to-noise ratio g2 (ω) /N (ω)
(GNR) leads to a high mutual information rate (Eq. 3.5) and this implies reliable information
transmission.

We have made a number of assumptions to obtain Eq. 3.5. First, we assume that the
linearized system is an accurate representation of the non-linear system. Second, we as-
sume that the variations s̃ (t) and x̃ (t) can be described by a Gaussian joint-probability
distribution. ird, and last, we assume the signal s̃ (t) to be modular from the underlying
network. Modularity of the signal with respect to the network indicates that no correla-
tions exists between the variations in the input signal and the intrinsic noise of the reac-
tions that constitute the processing network; it also implies that there is no feedba from
the network onto the input signal. If signal modularity holds, then Eq. 3.8 is equal to the
spectral addition rule [96]. In this case, the gain-to-noise ratio g2 (ω) /N (ω), does not de-
pend on the input signal, but only on the information transmission aracteristics of the
processing network; it describes the ability of the network to reliably propagate input sig-
nals as a function of their frequency. As an additional simplification we assume that no
(anti)-correlations between the different noise sources are present [107]. While these may
quantitatively ange the results presented below, they do not qualitatively ange them.
In the next section we will describe the effect of the feed-forward motif on the informa-
tion transmission through a bioemical network. We will aracterize the gain, noise and
gain-to-noise ratio, since these are intrinsic, signal-independent, properties of the network,
when the spectral-addition rule holds [96]. We compare different motifs with simple linear
one-step (S → X) and linear two-step cascades (S → V → X). We will compare the different
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networks, unless specified otherwise, under the constraint that the average production rates
of the respective components are the same in the networks under comparison.

Lastly, we will comment on the the differences between the gain-to-noise ratio , whi
describes information transmission and Pxx (ω), whi describes power transmission.

3.3 Results

3.3.1 Simple Cascades

Simple cascades form the building blos of the feed-forward motif. e feed-forward motif
consists of two cascades, one in whi the input S directly regulates the output X via a one-
step cascade and one where S indirectly regulates the output X via a two-step cascade with
an intermediate component V. A diamond motif consists of two two-step cascades whi
start and end at the same component, S and X, respectively. Since we will compare the
behavior of these networks with simple cascades consisting of one or two steps, it will be
useful to briefly recall their main transmission aracteristics. A more detailed discussion
can be found in [107] and Chapter 2.

For a one-step cascade the gain is given by k2x/(ω
2+µ2

x)where kx = Jxs is the coupling
between s and x and µx is the lifetime of X , while the noise is given by 〈|ηx|2〉/(ω2 + µ2

x).
Consequently, the GNR of a one-step cascade is constant for all frequencies (Eq. A3.5). For
the two-step cascade the gain is (kvkx)

2 /(ω2+m2
x)(ω

2+m2
v), with two corner frequencies,

µv ,µx, the noise is k2x〈|ηv|2〉/[(ω2+m2
v)(ω

2+m2
x)]+〈|ηx|2〉/(ω2+m2

x) and as a result the
GNR decays with ω−2 for ω > (µv+kx〈|ηv|2〉/〈|ηx|2〉)1/2. For more details see App. 3.A.1.

3.3.2 The feed-forward motif

Two different types of feed-forward () motifs exist. If the total regulatory effect of S on X
and S via V on X are of the same nature, both either active or inactive, the motif is referred
to as coherent feed-forward (c). If the regulatory effects are opposing, the motif is referred
to as incoherent feed-forward (i). For the coherent motif we can further differentiate with
respect to the integration strategy at the reporter X. If both S and V are required to produce
X, the node X acts as an AND-gate and we refer to the motif as AND coherent feed-forward
(ac), while if either S or V is sufficient to produce X, we refer to the motif as OR coherent
feed-forward (oc). e AND type is observed in the ara system of E. coli [17], while the OR
type is present in the biosynthesis of the flagellar motor [110]. e motifs are shown in
Figs. 3.1a (oc), 3.2a (ac) and 3.3a (i). In this apter we study an iff motif for whi
the negative regulation is always at the response X. As a result, a distinction between AND
and OR regulation in the iff is not made. We will discuss this assumption in more detail in
the section discussing the iff. We now start by studying some general aracteristics of the
feed-forward motif.
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General characteristics

We first study the gain. e gain for the feed-forward is

g2 (ω) =

g2s→x︷ ︸︸ ︷
J2

xs

ω2 + J2
xx

+

g2s→v→x︷ ︸︸ ︷
(JvsJxv)

2

(ω2 + J2
xx) (ω

2 + J2
vv)

−

coherence︷ ︸︸ ︷
2JxsJvsJxvJvv

(ω2 + J2
xx) (ω

2 + J2
vv)

, (3.9)

e first term is the gain due to the direct regulation of X by S (g2s→x), the second term is due
to the pathway S → V → X (g2s→v→x) and the third term is a term due to the interaction
between the two pathways.

e first term g2s→x is the gain of a one-step cascade in whi the input s regulates
the output x. It depends on the coupling constant Jxs and the lifetime of the protein X,
µ−1

x = −J−1
xx . If the lifetime µ−1

x of X is longer than the timescale ω−1 on whi the input
signal varies, ω � µx, then variations in the input s(t) are filtered out by the slow response
of X.

e second term g2s→v→x is the gain of a two-step cascade in whi the input s regu-
lates the output x via an intermediate v. It is seen that the gain of the two-step cascade is
the product of the gain in ea cascade step. is gives rise to two corner frequencies in
g2s→v→x, one at Jvv = −µv and another at Jxx = −µx, where µv and µx are the degrada-
tion rates of proteins V and X, respectively. e gain is large for ω � µv ,µx, since in this
frequency regime both V and X can respond rapidly on the time scale of the signal varia-
tions, ω−1, while for frequencies ω � µv ,µx, the gain decreases strongly, scaling as ω−4,
because in this regime the input variations are filtered by the finite lifetime of both V and
X. Note that a lower degradation rate of the proteins increases the gain at low frequen-
cies, but also reduces the corner frequencies beyond whi the gain rapidly drops. is is a
generic trade-off between the bandwidth of information transmission (the frequency range,
bounded by the corner frequency, with large GNR) and the magnitude of the gain in the
band.

e third term describes the coherence of the interaction between the signal transmied
via the direct pathway S → X and the signal transmied via the indirect pathway S → V →
X. Both signals originate from the source signal s(t), whi means that their variations
are correlated. If sgn(Jxs) = sgn(JvsJxv) the third term is positive (since by construction
Jvv = −µv) and we have a coherent interaction. Su a coherent interaction is present
in coherent feed-forward networks and leads to an increase in the gain. If sgn(Jxs) 6=
sgn(JvsJxv), as in the incoherent feed-forward motifs, the coherence term is negative and
thus the gain g2 (ω) is decreased.

It is instructive to compare the phase of the direct pathway φs→x and the indirect path-
way (φs→v→x) at x

φs→x = φs, (3.10)

φs→v→x (ω) = φs − arctan
[

ω

µv

]
. (3.11)
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For ω = 0, both signals are in phase. As the frequency increases, the phase of the signal
that is transmied via the indirect pathway decreases with respect to that whi is trans-
mied via the direct pathway. At the corner frequency −µv = Jvv the phase difference
is φs→v→x (Jvv) − φs = −π/4 and for ω → ∞, the signals are even more out of phase,
φs→v→x − φs = −π/2. Combining both the phase and amplitude information, we see that
the coherence between the two signals decreases with increasing ω for two related reasons.
First, there is a decrease in the coherence term for large ω due to the time-averaging over
the fast signal fluctuations resulting from the limited response time of X and V. Second, the
coherence decreases because the phase difference increases (see App. 3.A.8).

Before we consider the noise, it is useful to briefly consider the three terms of the gain
together. While the gain of the direct pathway scales for ω � µx as ω−2, the gain of the
indirect pathway and the coherence term scale for ω � µv ,µx as ω−4. is means that for
frequencies ω � µv the gain of the direct pathway dominates.

e noise in the linearized feed-forward motif is

N (ω) =

Nv→x(ω)︷ ︸︸ ︷
J2

xv

〈
|ηv|2

〉
(ω2 + J2

vv) (ω
2 + J2

xx)
+

Nx(ω)︷ ︸︸ ︷〈
|ηx|2

〉
(ω2 + J2

xx)
(3.12)

= g2v→x (ω)Nv(ω) +

〈
|ηx|2

〉
(ω2 + J2

xx)
(3.13)

It is seen that the total noise in x is independent of the regulatory effect of either pathway,
since all terms are positive. e expression also reveals that the noise is the sum of two
noise sources. One is the intrinsic noise arising from the stoastic production and decay of
X, given by Nx(ω) = 〈|ηx|2〉/(ω2 + J2

xx). e other is the extrinsic noise coming from the
stoastic production and decay of V, whi is given by the intrinsic noise of v, Nv(ω) =
〈|ηv|2〉/(ω2 + J2

vv), multiplied by a frequency-dependent gain g2v→x = J2
xv/(ω

2 + J2
xx)

whi reflects how the noise from v is amplified by Jxv and integrated by x as a result of
its finite lifetime. While the intrinsic noise in x, Nx(ω), scales as ω−2 for ω � µx = −Jxx

, the extrinsic noise g2v→x(ω)Nv(ω) scales as ω−4 for ω � µv ,µx. Indeed, for ω � µv , the
noise that originates from v in the indirect pathway becomes negligible.

Finally, we obtain the GNR for this three component motif

g2(ω)

N(ω)
=

(
ω2 + J2

vv

)
J2

xs + (JvsJxv)
2 − 2JxsJvsJxvJvv

J2
xv

〈
|ηv|2

〉
+ (ω2 + J2

vv)
〈

|ηx|2
〉 . (3.14)

While the noise is independent of the regulatory effect in the pathways, the gain, and hence
the gain-to-noise ratio, depends on the total regulatory effect of ea pathway (either S → X
or S → V → X). is indicates that it is not important whi of the reactions in a specific
pathway acts negatively, only the overall effect of the pathway is important for information
transmission.

We are now in a position to study in more detail the feed-forward motif. As discussed
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above, for ω � µv = −Jvv , the gain of the direct pathway dominates the total gain, because
the finite lifetime of V averages out the variations in the signal that are transmied via the
indirect pathway. Also the noise that originates at v in the indirect pathways becomes
negligible in the total noise in x. erefore, in this frequency regime, the direct pathway is
dominant and the GNR becomes that of a one-step cascade, whi means that it approaes
a constant value, independent of frequency. For smaller frequencies, the behavior of the
feed-forward motif depends on the relation between Jxs, Jvs, Jxv and Jvv = −µv , whi
are the coupling constants of the direct and indirect pathway and the degradation rate of
V, respectively (Eq. 3.4). When |Jxs| � |JvsJxv/Jvv|, then for ω � µv , the signal is
transmied more strongly via the indirect pathway than via the direct pathway, in whi
case the feed-forward motif resembles a two-step cascade (Figs. 3.1c, 3.2c, 3.3c, bla solid
line); clearly, in the limit that Jxs reaes zero, the feed-forward motif becomes a two-step
cascade for all frequencies, in whi case the the GNR (Eq. A3.10) is constant up to a cut-off
frequency ω2

c = µv(µv + Jxv), falling off as ω−2 for frequencies mu larger than that
[107]. When on the other hand |Jxs| � |JvsJxv/Jvv|, then the direct pathway dominates
the gain for all frequencies (Figs. 3.1c, 3.2c, 3.3c, red solid line). Indeed, in terms of the gain,
the feed-forward network effectively becomes a one-step cascade. However, the noise via
the indirect pathway still contributes to the total noise and therefore this pathway effectively
acts as a noise source. is has interesting consequences for the gain-to-noise ratio, as we
describe in the next paragraph, since this allows any feed-forwardmotif to function as either
a high-pass or a low-pass filter for information,

e gain-to-noise ratio (Eq. 3.14) of a feed-forward motif varies monotonically with fre-
quency, but it can either be a decreasing or increasing function of ω. Indeed, both a coherent
and an incoherent feed-forward motif can either act as a high-pass or low-pass filter for in-
formation. We can determine whether the GNR increases or decreases monotonically with
frequency, by comparing the GNR at ω → ∞ to that at ω = 0 (see Eq. 3.14). e GNR is
monotonically increasing, meaning that the network acts as a high-pass filter for informa-
tion, if 〈

|ηv|2
〉

>
〈

|ηx|2
〉(J2

vs

J2
xs

+
2µvJvs

JxsJxv

)
. (3.15)

e frequency of the inflection point is

ωip =

√√√√√J2
xv

〈
|ηv|2

〉
+ J2

vv

〈
|ηx|2

〉
3
〈

|ηx|2
〉 . (3.16)

In the next two sections, we will discuss these conditions in more detail for the coherent
and incoherent feed-forward motif, respectively.

e data processing inequality states that information that is lost cannot be recovered.
Consequently, increasing the length of a cascade reduces information transmission. For
this reason, for equal total production rate of the components within a cascade, the GNR
of a one-step cascade is always larger than that of a feed-forward motif. e gain by itself
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can be larger in a feed-forward motif than in a one-step cascade (Fig. 3.2c, dashed and solid
red line). However, the intermediate component V in the indirect pathway introduces an
additional noise source, whi is not present in the one-step cascade. e coherence term
in the gain is not large enough to compensate for this increase in the noise.

We have now specified some general aracteristics. In the following we study the co-
herent and incoherent motif separately.

The coherent feed-forward motif
We will first compare the cff-motif, both the OR and AND types, with two-step cascades.
Next we will compare the two motifs with ea other. But first, we will start with a couple
of observations whi apply both to the acff and the ocff. Unless specified otherwise, we
assume equal degradation rates for the respective components in the respective motifs and
cascades.

e steady-state gain is determined by the average copy number X (= ∂〈x〉/∂〈s〉). As a
result, if the production of x in a cff equals the production of x in a two-step simple cascade,
the gain at zero frequency (ω = 0) is equal. Next, in the linear-noise approximation assumed
here, the intrinsic noise arising from the production and degradation events of X, Nx(ω), is
equal for the cff and the two-step cascade if the production rates of x are equal (see Eq. 3.12),
since we assume throughout that the degradation rates are the same. If the production of v
is equal as well the noise Nv(ω) is equal in the cff and the two-step cascade. However, the
transmied noise Nv→x(ω), and thus the total noise N(ω) can be different, as discussed
in more detail below. With respect to the GNR, we observe that for large ω, the cff always
has a larger GNR than the two-step cascade, while for small ω, no general results can be
presented. Comparing to the one-step cascade, the GNR of the cff is always smaller than
that of a one-step cascade if the total production in both networks is equal. is is because
ηv acts as an additional noise source that corrupts the signal (Figs. 3.1c,3.2c, boom).

e GNR of a coherent feed-forward motif either increases monotonically with fre-
quency or decreases monotonically with frequency, as mentioned in the previous section.
If Eq. 3.15 is satisfied, it increases monotonically, and the motif acts as a high-pass filter for
information. We can intuitively understand the terms in Eq. 3.15 as follows. A decrease in
the ratio Jvs/Jxs means that the input signal s is relayed more to x directly than to x via
v. However, while the direct pathway S → X contributes to information transmission at all
frequencies — its GNR is flat — the indirect pathway S → V → X only contributes at low
frequencies — the GNR of a two-step cascade falls of as ω−2 for high frequencies. e effect
of the indirect pathway, both the gain and the noise, at high frequencies becomes negligible.
Indeed, in the limit that Jvs/Jxs reaes zero, the signal is transmied completely via the
direct pathway only; yet, while the GNR of the direct pathway, a one-step cascade, is flat,
the GNR of the cff increases with frequency, because the indirect pathway still adds noise
to the signal, especially in the low frequency regime. e presence of the second term on
the right-hand side of Eq. 3.15 can be understood by noting that it arises from the interplay
between the noise (Eq. 3.12) and the coherence term in the gain (Eq. 3.9). We can understand
the dependence on µv = −Jvv by noting that at high frequencies ω � µv the coherence
and the noise coming from v hardly contribute to the gain and the total noise N(ω) respec-
tively, while at ω = 0 the coherence decreases with increasing degradation rate as µ−1

v
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(Eq. 3.9) while the noise coming from v decreases as µ−2
v (Eq. 3.12). Similarly, at ω = 0, the

coherence increases with Jxv while the noise coming from v increases with J2
xv . us at

low frequencies decreasing the degradation rate µv and/or increasing the coupling between
V to X, Jxv , increases the noise more than it does the gain, thus reducing the GNR at low
frequencies, while at high frequencies the influence on the GNR is negligible.

We now discuss the ocff, whi combines the two pathways at X according to OR logic.
We first compare the ocff with a two-step cascade on the footing of equal production costs
for ea of the components separately, For ω > 0, the gain of the ocff is always larger
than the gain of the two-step cascade (Table. 3.2): for 0 < ω < µv ,µx the gain of the cff
is boosted by the coherent interaction between the signals propagated via the direct and
indirect pathway, while for ω > µv the signal is aenuated in the two-step cascade by the
finite lifetime of V whereas it can still be propagated in the ocff via the direct pathway. e
noise N(ω) in the ocff motif is smaller than that in the two-step cascade for all ω. e
intrinsic noise Nx(ω) is equal in both networks. However, the extrinsic noise coming from
v, g2s→v(ω)Nv(ω) (see Eq. 3.12) is not. Since the intrinsic noise in v, Nv(ω), is the same in
both networks because the production of v is equal, this means that the difference must lie
in how this noise is propagated to x, whi is given by g2s→v = J2

xv/(ω
2 + J2

xx); since Jxx

is the same, this means that the coupling between V and X in the ocff motif, Jcff
xv , must be

less than that in the two-step cascade, J ts
xv . Indeed, in the ocff the production of x depends

on both s and v, while in the two-step cascade it only depends on v. Together with the
constraint that the production rates of X are equal, this indeed implies that Jocff

xv < J ts
xv :

J ts
xv〈v〉 = Jocff

sv 〈s〉+ Jocff
xv 〈v〉, showing that Jocff

xv < J ts
xv . In the ocff network, the noise in x

is thus smaller because less noise is propagated from v because of the smaller amplification
of the transmied signal between v and x. e higher gain and the lower noise means that
the gain-to-noise ratio of the ocff motif is higher than that of a two-step cascade, as shown
in Fig. 3.1c. e ocff is thus able to signal more reliably than the corresponding two-step
cascade.

It can be shown for the ocff motif that for equal production of the species separately in
the network, the plateau value of the GNR in the high-frequency regime is higher for the
high-pass filter than for the low-pass filter. erefore, if the goal is to transmit signals reli-
ably at high frequencies, then a suitable parameter set can be osen that yields a high-pass
filter with a high GNR at high frequencies, irrespective of the GNR behavior at low frequen-
cies (Fig. 3.1d, red dashed line). For different constraints on the production, for example
constraining the production of only x, or constraining the total production of all compo-
nents, the analysis is more difficult. But, as discussed above, for large ω, the ocff always has
a larger GNR than a two-step cascade. e results are summarized in Tables. 3.1,3.2.

In the next paragraphs we study the acff motif. e acff motif combines the two paths at
X according to AND-logic and is described by Eq. 3.20. e linearized system has an identical
structure to the ocff, and therefore the results are qualitatively similar to those of the ocff.
However, quantitatively the results can be different.

First we compare the acffwith the corresponding two-step cascade. For equal production
of v and x individually the gain of the acff (Eq. A3.29) is always larger than the gain of the
two-step cascade (Table. 3.3). is again is due to the coherent interaction between the
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a)
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V X

b)
dv

dt
= αs − µvv + ηv (t) ,
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dx

dt
= βs + γv − µxx + ηx (t) .
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Figure 3.1: The OR coherent feed-forward motif. a) In the ocff, either S and V is required to produce
X. b) The Langevin equations for the ocff. c) For equal production in the total cascade the GNR
is shown for different weighings of the two pathways. If the pathway S→X dominates (βµv>αγ)
(solid red), the ocff is similar to a one-step cascade (gray dashed) althoughwith smaller gain. If the
pathway S→V→X dominates (black solid) two-step cascade (gray solid) behavior is obtained. But
for large ω the ocff is similar to the one-step cascade (scaling as ω0), because the signal and noise
fluctuations through v are averaged out due to the finite response time of V. Parameters: ks=10,
µv=10, µx=10, k1x=23.1, k2v=11, k2x=11, α=11, γ=10.1,5.8,1.1 and β=1,5.8,10.1 for respectively
red solid, red dashed, black solid lines. β sets the production of x in the cascade, respectively µs
sets the timescale. d) The gain-to-noise ratio for a cff-motif can both have high-pass and low-pass
characteristics. For high-pass characteristics, the indirect pathway functions as a “noise” source
at low frequencies, while at high frequencies the noise is filtered out due to the finite response time
of V. Parameters: ks=100, µv=5, µx=10, k1x=70, k2v=1, k2x=690, α=20,0.3, γ=20,1000,β=10,40,
respectively solid, dashed.

direct and indirect pathway at low frequencies, ω � µv ,µx, while for high frequencies,
ω � ωv ,ωx, the gain of a two-step cascade falls of more rapidly with frequency than the
gain of the direct pathway. Interestingly, the mathematical dependence of the total noise
N(ω) on the network parameters (Jxv ,µv , . . .) of the acff is the same as that of the two-step
cascade. Since Nv(ω) and Nx(ω) are equal in both networks, this implies that the noise
propagated from v to x (Nv→x (ω)) is equal:

Nv→x,AND =
β2 〈s〉2

〈
|ηv|2

〉
(ω2 + µ2

x) (ω
2 + µ2

v)
, (3.18)

Nv→x,ts =
k2x

〈
|ηv|2

〉
(ω2 + µ2

x) (ω
2 + µ2

v)
. (3.19)



70 Information transmission in networks with feed-forward loops or diamond motifs

e total rate of production of x by v in the two-step cascade is kx〈v〉 (Eq. A3.7), while, in
the linear-noise approximation used here, the average total rate of production of x by s and
v in the acff motif is β〈s〉〈v〉 (Eq. A3.28); the laer means that the coupling of x to v is given
by Jxv = β〈s〉. For equal rate of production of x in the two-step cascade and the acff —
kx〈v〉 = β〈s〉〈v〉 — the coupling strengths Jxv = kx = β〈s〉 in the two networks are the
same, meaning that the extrinsic noise coming from v, Nv→x is indeed the same. Since the
gain is larger, but the noise is the same, the GNR of the acff is always larger than that of a
two-step cascade.

Again, we can oose different constraints for the production. Let’s constrain the total
production of both v and x together to be the same in the two-step cascade and the acff,
but we do not require equal production of v and x in both networks separately. For large ω
the GNR of the acff is always larger than that of the two-step cascade. With this constraint
this is not necessarily true for small ω. At low frequencies the two-step cascade can have a
larger GNR. Intuitively, this is possible if one of the two steps in the two-step cascade is fast,
su that it effectively reduces to a one-step cascade at small frequencies, or if the indirect
pathway acts as a noise source and is strongly coupled to the response X (see Eq. A3.34).

e acff can not transmit information beer at small frequencies than a one-step cascade,
given equal total production. For equal production of x — thus at the cost of producing more
V — the acff can perform beer than the one-step cascade (Eq. A3.32). is is in contrast to
the ocff, whi also under this constraint has a smaller GNR. e results are summarized in
Tables. 3.3,3.4.

Finally, we compare the two motifs ocff and acff for equal separate production of V and
X. e acff has a larger gain, because it has a steeper response function at equal production.
Not only the gain, but also the intrinsic noise (Nv→x) is larger in the acff. ese terms
have an opposite effect on the GNR. For ω → ∞ the acff has a larger GNR, since the noise
fluctuations from v are averaged out and only the gain remains important. For small ω,
however, no general conclusion for the GNR can be drawn, but a few observations can be
made. An increase in the coupling Jxs of S → X (increasing β) leads to a larger GNR for the
ocff than for the acff. In this case, the direct coupling between S and X dominates in the ocff,
whereas this connection is not directly present in the acff due to the AND-logic integration
strategy. e ocff ‘averages’ the effects of the direct and indirect pathway, while for the
acff-gate the pathways are more connected (Fig. 3.2d). Indeed, one necessary requirement
for the ocff to have a larger GNR than the acff at low frequencies is that the direct pathway
dominates the output. Another necessary requirement for this is that the GNR of the acff
has to have high-pass aracteristics (Eqs. A3.48,A3.49).

The incoherent feed-forward motif
e last class of feed-forward loops that we will consider is the incoherent feed-forward
(i) motif (Fig. 3.3a). We will discuss only two different types of iff motifs: one in whi
negative regulation is implemented in the direct pathway and one in whi it is present in
the indirect pathway; in the laer case, we always take the negative interaction onto X, even
though we could also have osen the alternative in whi S acts negatively onto V (and V
acts positively on X). It is known that the precise topology can influence the noise behavior
[38, 111]; however, the qualitative behavior of theGNR of the different possible aritectures
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b)
dv

dt
= αs − µvv + ηv (t) , (3.20a)

dx

dt
= βsv − µxx + ηx (t) . (3.20b)
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Figure 3.2: The AND coherent feed-forward loop. a) In the acff, both S and V are required to produce
X. b) The Langevin equations for the acff. c) The GNR of the acff for different weighings (changing
α) of the two pathways for equal total production and equal degradation rates. First, for large
ω the direct pathway is dominant and both gain and noise ( Eqs. A3.29, A3.30) scale with ω−2,
leading to a constant GNR, which is larger than that of a two-step cascade. If α is small (red solid),
the production of v, pv is small. To compensate for the small production of v, the production of x
should be large, leading to a large β. Note that αβ 6=1. The gain g2v→x scales with β2α2, while the
noiseNv→x∝β2α, andNx∝βα. For small ω, therefore the GNR scales asα, while for ω→∞,Nv→x

is averaged out and GNR scales as αβ0. The dependence of the gain and the noise on µv is slightly
different. Therefore, a small bandwidth exists for which the gain decreases more slowly than
the noise for increasing ω (red solid). For large α the opposite reasoning holds. The red dashed
line shows the acff with equal production of v and x individually, as the two-step cascade. Both
the gain, noise and GNR are larger. It is interesting to note that for small frequencies and equal
total production, the acff can have a smaller gain-to-noise ratio than the simple two-step cascade
(red solid and gray solid). This is the case if Nv→x(ω) becomes dominant. Parameters: ks=100,
µv=10, µx=100, k1x=55,k2x=100 k2v=5, α=0.5,5,50 respectively red solid, red dashed, black solid.
β such that the total production is equal, respectively β=10.9,1,0.01. µs set the timescale. d) The
acff (black) for large ω always has a larger GNR than the ocff (red solid and dashed). However, for
small ω, depending on kinetic rates, the GNR of the ocff can be larger than the acff (red solid). For
this to occur, in the ocff the direct pathway S→X should dominate the indirect S→V→X pathway.
Then, for small ω the ocff acts as an one-step cascade. For the acff this is not the case, because the
coupling between s and v is more complex. Parameters:ks=100, µv=10, µx=100, Jand

vs =Jor
vs=10,

β=1, Jor
xv=16,67 and Jor

xs=83,33 respectively solid and dashed. µs sets the timescale.

is similar to that of the networks studied here. For a more detailed discussion, we refer to
App. 3.A.5.

An inspection of the gain in Eq. 3.9 reveals that the coherence term is negative in both
types of incoherent feed-forward motifs, since either Jxs or the product JxvJvs is negative,
respectively. is leads to a reduction of the gain on timescales that are smaller than the
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response times of V and X (ω < min {µv ,µx}). For ω < µv , the two pathways are exactly
out of phase, i.e the phase difference is−π, while asω increases, the phase difference reduces
to −π/2 (Eq. 3.10).

We model the incoherent regulation using a repressive Hill function (Eq. 3.23b), whi
is a commonly used coarse-grained description of protein interactions or gene or enzyme
regulation. If the direct pathway is repressive, the repression strength depends on the ratio
〈s〉/K , with K being the value of s at whi X is reduced to half its maximal value. In the
limit that K � 〈s〉, the repression is very weak, and the influence of the direct pathway
is negligible. e iff then effectively reduces to a two-step cascade. In the opposite limit,
repression is very strong and the iff becomes adaptive [101]. is means that 〈x〉 does not
depend on 〈s〉. Indeed,

〈x〉 = ν

µx

K 〈v〉
K + 〈s〉

=
να

µxµv

K 〈s〉
K + 〈s〉

≈ Kνα

µxµv
. (3.21)

In terms of the frequency response, adaptation to constant signals corresponds to a zero-
gain at zero frequency; g2 (ω = 0) = 0

lim
K�〈s〉

g2 (ω = 0) =
(JvsJxv − JvvJxs)

2

µ2
vµ2

x

=
K2

(K + 〈s〉)2
(αν)2

µ2
vµ2

x

[
1 − 〈s〉

K + 〈s〉

]2
≈ 0. (3.22)

For large frequencies, only the direct pathway, whi in this example is repressive, trans-
mits information. For information transmission it is not important whether the pathway
acts negatively or positively on X. e variations in s still affect the variations in x, but
with an opposing sign. For the motif where the repression occurs in the indirect pathway,
similar conclusions hold, but now the motif functions as an one-step cascade in the case
that repression is weak.

An incoherent feed-forward motif with a strong negative interaction in one of the two
pathways acts as a high-pass filter for information. is is because of the destructive inter-
ference of the two pathways at small frequencies, ω � µv ,µx. For higher frequencies, the
gain increases because the phase difference between the two pathways decreases and also
because the indirect pathway becomes less important as the finite lifetime of V increasingly
averages out the variations in S. e gain therefore has high-pass aracteristics. Since the
noise (Eq. 3.12) is not affected by the destructive interference and has low-pass aracteris-
tics, the GNR is high-pass (Fig. 3.3c, red line).

For the incoherent motif, a low-pass GNR is observed only if the negative regulation is
small (e.g. K � 〈s〉) and the direct pathway is negligible compared to the indirect pathway.
en the motif for small ω resembles a two-step cascade (Fig. 3.3c, bla solid line), whi
indeed exhibits a low-pass GNR. For large ω the direct pathway will dominate, whimeans
that in contrast to a two-step cascade, the GNR reaes a constant as a function of frequency
for ω � µv ,µx.

Finally, we compare, for completeness, the iff-motif to a two-step cascade. For equal
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production of v and x separately, the iff has a lower GNR for small ω than the two-step
cascade (Table. 3.6). is is because of the destructive interference between the direct and
indirect pathway in the iff, whi reduces the gain at low frequencies.

a)
S

V X

b)
dv

dt
= αs − µvv + ηv (t) , (3.23a)

dx

dt
= −µxx + ηx (t) +


νK

K + s
v, repressive direct

νK

K + v
s, repressive indirect

.

(3.23b)
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Figure 3.3: The incoherent feed-forward motif. a) The incoherent motif. Le: The pathway S→V→X
is positive, while the pathway S→X is negative. b) The Langevin description of the network c) The
coherence terms acts destructively on small timescales, reducing the gain, but not the noise, so
that the GNR is reduced. The gain-to-noise ratio of the incoherent motif with a repressive direct
link S→X has different characteristics, for three different values of K (Eq. 3.23). If K>〈s〉 (black
solid) the negative regulation by S diminishes and the iff motif resembles a two-step cascade. For
large ω, the indirect pathway is averaged out; at these frequencies one-step characteristics are
observed. If K<〈s〉 (red solid), the iff becomes purely adaptive, leading to g2=0 for ω=0. Note
that the lines in the noise plot are overlapping. gray dashed: one-step cascade, gray solid: two-
step cascade. Parameters: ks=100, α=1, µv=1, µx=1 and ν=110,20,11 for K/〈s〉=0.1,1,10. µs
set the timescale.

3.3.3 Multimerization

In this section we examine multimerization of intermediate signaling components. In this
motif, an intermediate component v is activated by the input signal s, whi then cooper-
atively activates the output component x (Fig. 3.4a). e intermediate components could
form a protein complex that then binds and activates the output, but it need not be: the
intermediate component could also bind the output component, whi could be a gene pro-
moter or an enzyme, separately but cooperatively, thereby activating it. is is a common
motif in gene regulation and also enzyme regulation.
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is system is described by

dv

dt
= αvs (t) − µvv (t) + ηv (t) , (3.24)

dx

dt
= γv

vn (t)

Kn + vn (t)
− µxx (t) + ηx (t) (3.25)

≈ γnvn (t) − µxx (t) + ηx (t) . (3.26)

Here, n is a measure for the cooperativity, the number of V molecules that are required to
activate X. We assume that the concentration v is very low , K � v, in whi case Eq. 3.25
reduces to Eq. 3.26, with γn ' γv/Kn. For this network, the concentration of X and the
coupling between v and x, Jxv , depends on the degree of cooperativity n. e concentration
X is given by 〈x〉 = γn〈vn〉/µx. In the linear-noise approximation this concentration is
given by 〈x〉 ' γn〈v〉n/µx, and the coupling Jxv,n = nγn〈v〉n−1, where the subscript
n in Jxv,n indicates that we consider the coupling between v and x when the degree of
cooperativity is n. Since we compare the networks on the footing of equal productions costs
and the degradation rates are kept constant, we find that the coupling constant Jxv,n for a
system in whi n Vmolecules are required to activate X is related to the coupling constant
Jxv,n=1 for a system in whi only one V molecule is required to activate X, simply via
Jxv,n = nJxv,n=1.

For this motif, the gain is given by

g2 (ω) =
n2J2

xv,n=1J2
vs

(ω2 + µ2
x) (ω

2 + µ2
v)

. (3.27)

It is seen that the gain increases with the cooperativity n.
e noise for this motif is given by

N (ω) =

Nv→x(ω)︷ ︸︸ ︷
n2J2

xv,n=1

〈
|ηv|2

〉
(ω2 + µ2

v) (ω
2 + µ2

x)
+

Nx(ω)︷ ︸︸ ︷〈
|ηx|2

〉
(ω2 + µ2

x)
(3.28)

= g2v→x (ω)Nv(ω) +

〈
|ηx|2

〉
(ω2 + µ2

x)
. (3.29)

Clearly, increasing n increases the extrinsic noise in x that originates in v, Nv→x(ω) =
g2v→xNv(ω) but not the intrinsic noise in x, Nx(ω). Increasing the coupling Jxv,n =
nJxv,n=1 does not ange the intrinsic noise, but it does affect how fluctuations in v are
amplified at the level of x.

e GNR then reads

GNR =
J2

vsJ2
xv,n=1

J2
xv,n=1

〈
|ηv|2

〉
+ 1

n2
(ω2 + µ2

v)
〈

|ηx|2
〉 . (3.30)
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From Eq. 3.30 it is clear that the GNR increases with the cooperativity n. is is because
while the overall gain g2s→x and and the extrinsic noise Nv→x(ω) both increase with n, the
intrinsic noise Nx(ω) does not. Interestingly, not only the amplitude of the GNR increases,
but also the knee frequency and thus the bandwidth for reliable information transmission.
Indeed, the knee frequency ωc is set by ω2

c = µ2
v + n2J2

xv,n=1〈|ηv|2〉/〈|ηx|2〉 = µv(µv +

n2γn=1), showing that it increases with n (Fig. 3.4b).

To summarize, we observe that information transmission can be increased by coopera-
tively activating the output. is could either be aieved via homomultimerization of the
intermediate component, or by separate binding of the intermediate molecules to the out-
put component. We note that an increase in n increases the non-linearity of our system and
therefore the approximation might break down. However, for the parameters used here
(Fig. 3.4b), numerical simulations of the non-linear system agree very well with the linear
theory (see App. 3.A.7).

3.3.4 Diamond motif

e multimerization motif discussed above could be considered to be a special case of a
diamond motif, in whi the intermediate components are identical. Here, we consider the
general seme in whi they are different: the diamond motif [13, 102, 105, 112, 113]. We
will compare the GNR of this motif to that discussed above. Moreover, we will compare the
performance of this motif to that of a two-step cascade; if the GNR of the diamond motif
is higher than that of a two-step cascade, then this indicates that from the perspective of
information transmission it is beneficial to split the signal aer the input and recombine the
signals downstream, at the output.

We will consider a diamond motif in whi the two intermediate components U and W
can either form a homodimer U2 or W2, respectively, or a heterodimer UW; note that in
this network the intermediate components effectively activate the output via AND logic. We
will compare the performance of this motif to that of a homodimer motif in whi there is
only one intermediate component V, whi forms a homodimer V2; this corresponds to the
scenario discussed before with n = 2. e diamond motif is described by

du

dt
= αs (t) − µuu (t) + ηu (t) , (3.31)

dw

dt
= βs (t) − µww (t) + ηw (t) ,

dx

dt
= γuu2 (t) + γww2 (t) + 2γuwu (t)w (t) − µxx (t) + ηx (t) .

e factor 2 is introduced so that the diamond motif reduces to the motif with only one
intermediate component V when the properties of the components U and W are identical
and equal to those of V. If γu = γw = 0, only heterodimer activation is possible. In general,
the values of the γ’s might be different depending on the respective binding kinetics of the
components U and W.
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e gain of the diamond motif of Eq. 3.31 is

g2(ω) =

g2s→u→x︷ ︸︸ ︷
(JxuJus)

2

(ω2 + µ2
x) (ω

2 + µ2
u)

+

g2s→w→x︷ ︸︸ ︷
(JxwJws)

2

(ω2 + µ2
x) (ω

2 + µ2
w)

+

coherence︷ ︸︸ ︷
2JxuJusJxwJws

(
ω2 + µuµw

)
(ω2 + µ2

x) (ω
2 + µ2

u) (ω
2 + µ2

w)
. (3.32)

Here, Jus = α, Jws = β, Jxu = 2γu〈u〉 + 2γuw〈w〉, Jxw = 2γw〈w〉 + 2γuw〈u〉. e first
two terms in Eq. 3.32 describe the gain due to the transmission of the input signal via the
pathways containing U and W, respectively, while the third term describes the coherence
of their interaction at the output X. It can be verified that when U and W are identical and
equal to V, meaning that α = β and αv = 2α and Jus = Jws = Jvs/2 and 〈v〉 = 〈w〉+〈u〉,
γuw = γu = γw = γv = γ and Jxu = Jxw = Jxv,n=2 = 2γ〈v〉, and µu = µw = µv , the
gain of the diamond motif equals that of the homodimer motif.

e noise of the diamond motif of Eq. 3.31 is

N(ω) =

Nu→x(ω)︷ ︸︸ ︷
J2

xu

〈
|ηu|2

〉
(ω2 + µ2

u) (ω
2 + µ2

x)
+

Nw→x(ω)︷ ︸︸ ︷
J2

xw

〈
|ηw|2

〉
(ω2 + µ2

w) (ω2 + µ2
x)

+

Nx(ω)︷ ︸︸ ︷〈
|ηx|2

〉
(ω2 + µ2

x)
(3.33)

= g2u→x (ω)Nu(ω) + g2w→x (ω)Nw(ω) + Nx(ω).

where we have exploited that 〈ηu(ω)ηw(−ω)〉 = 0 when U and W are different. If the
properties of U and W are identical and equal to V, then Jxu = Jxw = Jxv,n=2, µu =
µw = µv , 〈|ηu|2〉 = 〈|ηw|2〉 = 〈|ηv|2〉/2 and the noise of the diamond motif is indeed equal
to that of the homodimer motif.

e gain-to-noise ratio for the diamond motif is

g2

N
=

(JxuJus)
2 H (ω,µw) + (JxwJws)

2 H (ω,µu) + 2JxuJvsJxwJws
(
ω2 + µuµw

)
H (ω,µw) J2

xu

〈
|ηu|2

〉
+ H (ω,µu)J2

xw

〈
|ηw|2

〉
+ H (ω,µu)H (ω,µw)

〈
|ηx|2

〉 ,
(3.34)

where H(x, y) = x2 + y2.

We now compare the GNR of the diamond motif to that of the homodimer motif. To
compare on equal footing, we will assume in what follows below that the production rate
of x is equal in the two motifs — γv〈v〉2 = 2γuw〈u〉〈w〉 + γu〈u〉2 + γw 〈w〉2 — and that
the production rate of v in the homodimer motif equals the sum of that of u and w in
the diamond motif; αv〈s〉 = α〈s〉 + β〈s〉. If the degradation rates of the intermediate
components in the two motifs are equal — µv = µu = µw — and the coupling between the
intermediate components and the output is the same — γuw = γu = γw — then the GNR



3.4 Discussion 77

of the diamond motif is equal to that of the homodimer motif as it should, since there is
no distinction between the components. If the components U and W are different, leading,
for example, to different couplings (γu 6= γw , still assuming equal degradation rates), the
homodimer motif has a larger GNR than the diamond motif at small ω < µu,µw ,µv . In
this case, the gain is equal for both processes because the concentration of X is taken to
be the same in both networks. Hence, the difference in the GNR originates from the noise.
e noise term NX (ω) is equal in both networks, because the production and degradation
rates of X are taken to be the same in the two networks. However, the extrinsic noise
propagated from the intermediate components is larger in the diamond motif, Nu→x +
Nw→x > Nv→x. It can be shown that under the constraints that a) the production of
v equals the total production of u and w and b) the production of x is the same in both
motifs, the extrinsic noise is minimized when the coupling of u and w to x are identical.
We stress, however, that the gain-to-noise ratio of this diamond motif is higher than that
of a simple two-step cascade, with one intermediate component V that does not activate X
in a cooperative manner. Indeed, for a diamond motif the coherent interaction between the
two pathways plays a crucial role. While for a motif with non-cooperative activation of the
output by the two pathways, this coherence between the two pathways exactly compensates
for the decrease of the gain of ea independent pathway, for a network with cooperative
interaction, the coherence term increases the GNR over that of a simple two step cascade. In
other words, spliing the input signal into two and then recombining them with AND logic
at the output does increase the gain-to-noise ratio. Finally, we study a motif in whi only
the heterodimer UW, and not the homodimers U2 and W2, can activate the output X. We
thus consider the case that γw = γu = 0, and consider what happens if the degradation
rates of U and W are allowed to be different. With unequal degradation rates, a bandpass
filter for information is possible, if the coupling of one pathway to x is stronger than the
coupling of the other pathway. We take µw > µu, su that the pathway S → W → X is
capable of transmiing information on faster timescales than the pathway S → U → X. If
β � α, the input signal is relayed more strongly via the pathway containing W, and the
other pathway acts as a noise source. Consequently, for small frequencies, ω < µu, signal
transmission will be corrupted by noise originating at u, but for µu < ω < µw this noise is
averaged out. We thus obtain a band-pass filter for information transmission (Fig. 3.4c, red
solid). By actively anging the degradation rates µu and µw the cell can tune the frequency
range of the band.

3.4 Discussion

Our analysis reveals that feed-forward motifs and diamond motifs are very ri information
processing devices. More specifically, our study shows that both coherent and incoherent
feed-forward motifs can either act as low- or high-pass filters for information. is behavior
can be understood by noting that while at high frequencies the direct pathway always dom-
inates the output signal, at low frequencies the contribution of ea pathway to the output
varies between networks, depending on the coupling constants between the components in
the network; moreover, at low frequencies, the output strongly depends on the nature of the
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Figure 3.4: The diamond motif. a) The diamond motif. The diamond motif combines two pathways
(S→V→X and S→W→X), originating from the same source at the response X. With homodimer-
ization U and W correspond to two molecules of the species V. b) The difference between the
gain, noise and GNR for a network with different levels of cooperativity (Eq. 3.24). For increas-
ing cooperativity (n increases), the gain and the noise both increase. The increase in the noise
is smaller than in the gain, since NX is unaffected by the cooperative interactions and therefore
the GNR increases. Next, also the knee frequency, and thus the bandwidth, increases, since the
GNR scales with ω−2 for ω−2>n2µv . Parameters: ks=100,kv=10,kx=10,µv=100,µx=1, µs sets
the timescale. c) The GNR for the diamond motif where U andW have different degradation rates
µu<µw . If Jus>Jws the GNR is low-pass (black solid), since on long timescales (t>µ−1

u , the signal
is transmied while on shorter timescales most transmission is corrupted by the intrinsic noise. If
Jus<Jws (red solid line), the slow signal variations transmied via w are corrupted by noise from
u. For faster variations, the noise from u is averaged out and the signal can be transmied with
larger reliability. Note that the gain for all three parameter sets is equal, and the lines thus over-
lap. The bandpass characteristic for the GNR is thus due to the different dependence of the noise
on ω. Parameters: ks=100, µx=10, two-step cascade: µv=10,ktsv =500, ktsx =100, α to equalize
production of v, γv to equalize production of x, diamond motif: µu=1,µw=100, γu=γw=0, γuw
to equalize production of x, β to equalize 〈vts〉=〈udm〉+〈wdm〉 and α=0.05ktsv ,0.5ktsv ,0.95ktsv , re-
spectively red solid, red dashed, black solid. µs sets the timescale.

interaction between the two pathways. If the interaction is coherent, as in coherent feed-
forward motifs, then the frequency dependence of the gain, noise and gain-to-noise ratio
tends to have low-pass aracteristics. If, however, not only at high frequencies, but also
at low frequencies the direct pathway dominates the response, then the gain-to-noise ratio
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can have high-pass aracteristics; in this case, the signal is predominantly transmied via
the direct pathway, while the indirect pathway acts as a noise source, masking this signal
at low frequencies. For an incoherent feed-forward motif, the gain is low at low frequen-
cies because of the destructive interference between the two pathways; consequently, the
frequency dependence of the gain-to-noise ratio of incoherent feed-forward motifs tends
to have high-pass aracteristics. However, an incoherent motif can also act as a low pass
filter for information. is scenario arises when the direct pathway acts weakly on the out-
put at low frequencies; then at low frequencies the output is dominated by the the indirect
pathway, whi exhibits low-pass signal filtering, while at high frequencies it is dominated
by the direct pathway. More generally, our analysis demonstrates that by anging the cou-
pling constants between the components the frequency-dependence of the gain, noise and
gain-to-noise ratio can be sculpted in almost any desirable manner.

For equal total production cost of all molecules in the network a coherent feed-forward
motif has a lower information transmission capacity than a simple one-step motif. How-
ever, if we allow for a higher production cost in the feed-forward motif (e.g. we require
equal production of x, but allow for the additional production of the intermediate compo-
nent V), interestingly a coherent feed-forward motif in whi the two pathways are com-
bined following AND logic can have a larger GNR than the one-step cascade. Combining the
pathways following OR logic has always a smaller GNR than the one-step cascade, even for
larger total production. is demonstrates for these simple cascades a possible advantage
of coincidence detection.

Our results also underscore the important observation that the power spectrum of the
output signal is not a good measure for information transmission [107]. e results on
the incoherent feed-forward motif provide a concrete illustration of this idea: while the
frequency dependence of the gain exhibits band-pass aracteristics, the frequency depen-
dence of the gain-to-noise ratio shows high-pass aracteristics; indeed, at high frequencies
not only the gain, and hence the output, decreases, but also the noise. e coherent feed-
forwardmotif with a high-pass gain-to-noise ratio provides another striking example: while
the gain and hence the output decreases with frequency, the gain-to-noise ratio increases;
this is because the high gain at low frequencies is masked by the high noise. Our results thus
show that in order to draw any conclusion on how reliably a network can transmit time-
varying signals, one needs to measure not only the power spectrum of the output Pxx(ω),
but also the power spectrum of the input Pss(ω) and their cross-power spectrum Psx(ω):
from these quantities one can obtain the gain g2(ω) ≡ |Psx(ω)|2/P 2

ss(ω) and the frequency
dependence noise N(ω), and hence the gain-to-noise ratio (see Eq. 3.7 and Eq. 3.8).

Finally, our analysis of the diamond motifs reveals that cooperatively activating the out-
put can markedly enhance the gain, as well as the gain-to-noise ratio. e laer is due to
coincidence detection: While variations in the input signal lead to correlated variations in
the intermediate components that tend to boost the output, noise generates uncorrelated
fluctuations in the intermediate components, whi couple less strongly to the output. We
emphasize that this meanism is very generic. Indeed, cooperative activation of the output
can be implemented in many ways: via the formation of homo- or heteromultimers that
then bind and activate the output component, or via the individual binding of the inter-
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mediate components to the output component. While cooperative activation of the output
via one and the same type of intermediate component, as in the case of homodimerization,
increases the overall gain-to-noise ratio, cooperative output activation via components that
are different, as in the case of heterodimerization of the intermediate components, makes
it possible to mold the frequency dependence of the gain-to-noise ratio, even allowing for
band-pass filters for information.
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3.A Supplementary Information

All cascades have the following simple (linear) birth-death process for the signal

ds

dt
= ks − mss + ηs (t) . (A3.1)

3.A.1 Simple cascades

Simple cascades, cascades without feed-forward interaction, are described using roman
symbols for the kinetic rates, while motifs with feed-forward interactions, are described
using Greek symbols. e network for the one-step simple cascade is described by

dx

dt
= kxs − mxx + ηx (t) . (A3.2)

Gain, noise and gain-to-noise are

g2 (ω) =
k2x

ω2 + m2
x
, (A3.3)

N (ω) =

〈
|ηx|2

〉
ω2 + m2

x
, (A3.4)

g2 (ω)

N (ω)
=

k2x〈
|ηx|2

〉 =
kx

2 〈s〉
. (A3.5)

e network for the two-step simple cascade is described by

dv

dt
= kvs − mvv + ηv (t) , (A3.6)

dx

dt
= kxv − mxx + ηx (t) . (A3.7)

Gain, noise and gain-to-noise are

g2 (ω) =
(kvkx)

2

(ω2 + m2
x) (ω

2 + m2
v)

, (A3.8)

N (ω) =
k2x

〈
|ηv|2

〉
(ω2 + m2

v) (ω
2 + m2

x)
+

〈
|ηx|2

〉
(ω2 + m2

x)
, (A3.9)

g2 (ω)

N (ω)
=

(kvkx)
2

k2x

〈
|ηv|2

〉
+ (ω2 + m2

v)
〈

|ηx|2
〉 . (A3.10)

Production constraints
In the following sections we will compare the one-step (os) and two-step (ts) cascades with
different feed-forward motifs. We always assume that degradation rates for proteins are
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equal, unless specified otherwise. We use three different constraints, su that the compar-
ison is performed on an equal footing. ese constraints are

1. Equal production of x, free production of v.

ptsX = pffX , posX = pffX . (A3.11)

We note that this also implies 〈|ηts
x |2〉 = 〈|ηos

x |2〉 = 〈|ηff
x |2〉

2. Equal total production of x and v,

ptsX + ptsV = pffX + pffV , posX = pffX + pffV . (A3.12)

3. Equal production of x and v separately (this constraint has no meaning for the one-
step cascade)

ptsX = pffX , ptsV = pffV . (A3.13)

We note that this also implies 〈|ηts
x |2〉 = 〈|ηff

x |2〉, 〈|ηts
v |2〉 = 〈|ηff

v |2〉.

Unless specified otherwise the degradation rates are equal for components in either cas-
cade, e.g mv = µv .

3.A.2 OR coherent feed-forward

e network is described by

dv

dt
= αs − µvv + ηv (t) , (A3.14)

dx

dt
= βs + γv − µxx + ηx (t) , (A3.15)

and the gain, noise and gain-to-noise the gain, noise and gain-to-noise (see Eqs. 3.9,3.12 and
3.14)

g2 (ω) =
(αγ + Jvvβ)2 + J2

xsω2

(ω2 + µ2
v) (ω

2 + µ2
x)

, (A3.16)

N (ω) =
γ2
〈

|ηv|2
〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉
(ω2 + µ2

v) (ω
2 + µ2

x)
, (A3.17)

g2 (ω)

N (ω)
=

(αγ + µvβ)2 + β2ω2

γ2
〈

|ηv|2
〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.18)

In Fig. 3.10 (le) the dependence of the gain and the phase difference between the direct
S → X and indirect S → V → X pathway as a function of frequency is shown. For ω < µv

the two pathways have no phase difference, but for an increase in frequency the phase
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Cons. one-step GNR one-step

E.p.x kx = β +
αγ

µv

g2

N
=

(µvβ + αγ)2

µ2
v

〈
|ηx|2

〉 > GNRocff

E.t.p. Always larger

two-step GNR two-step at ω = 0

E.p.x kxkv = β +
αγ

µv

g2

N
=

(µvβ + αγ)2

µ2
v

〈
|ηx|2

〉
+

2〈s〉
kv

(µvβ + αγ)2

E.t.p. (kx + µv) kv = (α + β)µv + γα
g2

N
=

kx (βµv + α (γ + µv))

(kx + µv)
2

E.s.p. kv = α, g2 =
(µvβ + αγ)2

µ2
vµ2

x

kx = γ +
βµv

α
N =

(µvβ+αγ)2

α2

〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉
µ2

vµ2
x

g2

N
=

(µvβ + αγ)2

(µvβ+αγ)2

α2

〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉
Table 3.1: The results for the gain, noise and gain-to-noise ratio for the one-step cascade and the two-

step cascade in parameters of the ocff, given the constraint conditions. For the two-step only the
ω→0 limit is given, since for large ω the ocff always has a larger GNR. We assume always µv=mv .
E.p.x: Equal production of x, e.t.p.:equal total production, e.s.p.:equal separate production.

difference increases and as a result the magnitude of the coherent term in the gain decreases.
e magnitude of the coherent term also decreases due to the time-averaging over the finite
lifetime of the intermediate component V. Even for a constant phase-difference, at large ω
the gain decreases.

In Table. 3.1 and Table. 3.2 we list the expression for the GNR for different production
constraints. e GNR of the one-step cascade given equal production of x is always larger
than that of the ocff. Compared to the two-step cascade, for ω → ∞ the ocff motif always
has a larger GNR, since the noise source Nv→x is averaged out, and only an effective one-
step cascade with constant GNR remains. us we only compare the ocff with the two-step
cascade for ω → 0.

e various constraints lead to different results. e first scenario, where we indepen-
dently constrain pv and px and take µv = mv in both cascades leads to an expression for the
GNR in the two-step cascade that is smaller than that for the ocff for all ω. e gain in both
the ocff and the two-step cascade are precisely equal (not shown), and therefore the larger
GNR is due to the increase in the noise (N (ω)) in the two-step cascade. A constraint that
allows for more freedom in the network is su that only the production of x is constrained,
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Cons. one-step vs ocff two-step vs ocff

Equal production of x GNRos >GNRocff Parameter dependent

Equal total production GNRos >GNRocff Parameter dependent

Equal separate production GNRts <GNRocff

Table 3.2: Summary of the results for the ocff.

but there is free production of v. We observe that for ω = 0, the GNR for the ocff is larger
than the two-step if

γ2
〈

|ηv|2
〉ocff

<
2 〈s〉
kv

(µvβ + αγ)2 (A3.19)

2α 〈s〉 γ2 <
2 〈s〉
kv

(µvβ + αγ)2 , (A3.20)

αγ2 <
(µvβ + αγ)2

kv
. (A3.21)

is inequality is not satisfied if e.g. kv → ∞, since then the two-step cascade effectively
becomes an one-step cascade and as a result, has a larger GNR than the ocff.

For ω → ∞ the GNR of the ocff with high-pass filter aracteristics can have a larger
plateau value than an ocff with low-pass aracteristics, under the constraint that the pro-
duction of v and x separately are equal. is can be shown by solving for the inequality

lim
ω→∞

GNRhp > lim
ω→∞

GNRlp →
(

βhp

µ
hp
v

)2

>

(
βlp

µ
lp
v

)2

, (A3.22)

Low-pass (lp) → βlp <

(
βlp +

γlpαlp

µ
lp
v

)
αlp

βlp +
2µ

lp
v

γlp , (A3.23)

High-pass (hp) → βhp <

(
βhp +

γhpαhp

µ
hp
v

)
αhp

βhp +
2µ

hp
v

γhp . (A3.24)

e first line describes the inequality. e second line describes the requirement for βlp and
the third line the requirement for βhp, whi are obtained following substitution of 〈|ηv|2〉
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and 〈|ηx|2〉 in Eq. 3.15. From the constraints of equal separate production we obtain〈∣∣∣ηlp
v

∣∣∣2〉 =

〈∣∣∣ηhp
v

∣∣∣2〉 → αlp ≡ αhp, (A3.25)〈∣∣∣ηlp
x

∣∣∣2〉 =

〈∣∣∣ηhp
x

∣∣∣2〉 → βlp +
γlpαlp

µ
lp
v

≡ βhp +
γhpαhp

µ
hp
v

. (A3.26)

Solving the system of inequalities Eqs. A3.22-A3.24, with Eqs. A3.25,A3.26 using Mathe-
matica, it can be shown that these can always be fulfilled. However, the full expressions are
unwieldy to present here. Even if βlp → ∞, reflecting that the low-pass filter effectively is
a one-step cascade, parameters can be found for whi the high-pass filter can still have a
larger GNR for large ω. However, the difference between the low-pass and high-pass filter
is negligible.

3.A.3 AND coherent feed-forward

e network is described by

dv

dt
= αs − µvv + ηv (t) , (A3.27)

dx

dt
= βvs − µxx + ηx (t) . (A3.28)

and the gain, noise and gain-to-noise (Eq. 3.9,3.12 and 3.14)

g2 (ω) =
β2 〈v〉2

(
ω2 + 4µ2

v

)
(ω2 + µ2

v) (ω
2 + µ2

x)
, (A3.29)

N (ω) =
β2 〈s〉2

〈
|ηv|2

〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉
(ω2 + µ2

v) (ω
2 + µ2

x)
, (A3.30)

GNR (ω) =
β2 〈v〉2

(
ω2 + 4µ2

v

)
β2 〈s〉2

〈
|ηv|2

〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.31)

For equal production of x and for ω → ∞, the GNR of a one-step cascade is equal to the
GNR of the acff. For ω = 0, we obtain the following relation

GNRos (ω = 0) < GNRacff (ω = 0) (A3.32)

β2 〈v〉2〈
|ηx|2

〉 < 4
β2 〈v〉2〈

|ηx|2
〉
+
(

β〈s〉
µv

)2 〈
|ηv|2

〉 , (A3.33)

where the last line holds for β〈v〉/α < 3〈|ηx|2〉/〈|ηv|2〉. is inequality can be sufficed
for example in the limit that β → 0. en the acff has a larger GNR than the one-step
cascade for ω = 0. is limit corresponds to a situation where the noise Nv→x (Eq. 3.12)
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Cons. one-step GNR one-step

E.p.x kx = β〈v〉 g2

N
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β2〈v〉2〈
|ηx|2

〉
E.t.p. kx = α + β〈v〉 g2

N
=

(α + β〈v〉)2〈
|ηos

x |2
〉 > GNRacff

two-step GNR two-step at ω = 0

E.p.x kxkv = β〈vacff〉µv
g2

N
=

(〈s〉αβ)2〈
|ηx|2

〉
µ2
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(〈s〉αβ)2

k2v

〈
|ηv|2

〉
E.t.p. (kx + µv) kv = µv

(
α + β〈vacff〉

) g2

N
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kxα (β〈s〉 + µv)

2〈s〉 (kx + µv)
2

kv = α, g2 =
(〈s〉αβ)2

µ2
vµ2

x

E.s.p. kx =
µv

kv
β〈v〉 N =

〈
|ηx|2

〉
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v + (〈s〉β)2
〈

|ηv|2
〉
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vµ2
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g2

N
=

(〈s〉αβ)2〈
|ηx|2

〉
µ2

v + (〈s〉β)2
〈

|ηv|2
〉

Table 3.3: The results for the gain, noise and gain-to-noise ratio for the one-step cascade and the
two-step cascade in parameters of the acff, given the constraint conditions. For the two-step only
the ω→0 limit is given, since for large ω the ocff always has a larger GNR. E.p.x: Equal production
of x, e.t.p.:equal total production, e.s.p.:equal seperate production.

Cons. one-step vs acff two-step vs acff

Equal production of x Parameter dependent Parameter dependent

Equal total production GNRos >GNRacff Parameter dependent

Equal separate production GNRts <GNRacff

Table 3.4: Summary of the results for the acff.
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is negligible, and the noise contributions N (ω) in both motifs are similar. e gain in the
acff is larger than in the one-step cascade. is seems contradictory, but is a result of the
production constraint. In the acff the production of x, px, is β 〈s〉 〈v〉, su that if 〈v〉 is
very small, the production rate β becomes very to ensure equal production of x. However
in the ocff, the production of x is β 〈s〉 + γ 〈v〉 and if 〈v〉 is nearly zero, production still is
possible through the direct pathway S → X. Due to this coincidence coupling between the
two pathways, the gain for the acff is larger than for the one-step cascade.

As expected, the acff has a larger GNR than the simple two-step cascade if we equalize
both pv and px separately. More interesting is the behavior at low frequencies for the two
other constraint types. If we equalize the total production the two-step cascade has a larger
GNR than the acff if

µv

(
β 〈v〉acff + α − kv

)
2 〈s〉 (µv + kx)

>
β2 〈v〉2

(
ω2 + 4µ2

v

)
β2 〈s〉2

〈
|ηAND

v |2
〉
+ (ω2 + µ2

v)
〈

|ηAND
x |2

〉 (A3.34)

β 〈s〉 + µv

kx + µv

β
〈

vacff
〉
+ α − kv

k 〈vAND〉
> 4, (A3.35)

where this is possible if β〈s〉 � kx or α � kv . From the constraint condition of total pro-
duction we have the equality (kx + µv) kv = µvα+βα〈s〉. Taken these relations together,
we observe that for β〈s〉 � kx we require kv � 1, while for α � kv we require to kx � 1.
In both cases the two-step cascade transforms into a one-step cascade because one of the
two steps directly tras the anges upstream.

e other option, where we constrain the production of x, but not v,

kx = β 〈s〉

〈
vacff

〉
〈vtwo〉

, (A3.36)

leads to the following expression for the gain-to-noise ratio at low frequencies for the two-
step cascade

GNR (ω = 0) =

(
µvβ

〈
vacff

〉)2
β 〈s〉

〈
vacff

〉
〈vts〉

〈
|ηts

v |2
〉
+ µ2

v

〈
|ηx|2

〉 . (A3.37)
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e ratio of the the GNR’s is

GNRacff (ω = 0)
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= 4
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〈
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v
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〉 (A3.38)

= 4
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(A3.39)

= 4
α + F

kv + F
, where F =

kvµ2
v

〈
|ηx|2

〉
2αβ2 〈s〉

. (A3.40)

If kv � α the two-step cascade has a larger GNR. is reflects again a situation where the
two-step cascade has one very fast step and acts effectively as a single one-step cascade.

3.A.4 Comparison of the coherent feed-forward AND and OR motifs

We study if the GNR of the acff is larger or smaller than the GNR of the ocff. We equalize
both production of v and x, su that we have

pocffv = pacffv → αocff = αacff = α, (A3.41)

pocffx = pacffx → βocff +
αγ

µv
= βacff〈v〉, (A3.42)

and using these constraints and Eq. A3.18,A3.31, we obtain the ratio

GNRacff

GNRocff =

(
βocff + αγ

µv

)2 (
ω2 + 4µ2

v

)
(
βocff

)2
(ω2 + µ2

v) + (αγ)2 + 2αβγµv

× (A3.43)

γ2
〈

|ηv|2
〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉
(

βocffµv
α + γ

)2 〈
|ηv|2

〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.44)

In the limit ω → ∞ we obtain

GNRacff

GNRocff =

(
βocff + αγ

µv

)2
(
βocff

)2 > 1, (A3.45)
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Cons. ω → 0 ω → ∞

Equal separate production Parameter dependent GNRacff >GNRocff

Table 3.5: Summary of the results for the comparison between the acff and the ocff.

su that for large ω the acff has a larger GNR. In the other limit ω = 0, we obtain

GNRacff

GNRocff =

(
βocff + αγ

µv

)2
4µ2

v(
βocff

)2
µ2

v + (αγ)2 + 2αβγµv

γ2
〈

|ηv|2
〉
+ µ2

v

〈
|ηx|2

〉
(

βocffµv
α + γ

)2 〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉
(A3.46)

= 4
γ2
〈

|ηv|2
〉
+ µ2

v

〈
|ηx|2

〉
(

βocffµv
α + γ

)2 〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉 , (A3.47)

su that if

4
(

γ2
〈

|ηv|2
〉
+ µ2

v

〈
|ηx|2

〉)
<

(
βocffµv

α
+ γ

)2 〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉
, (A3.48)

the ocff has a larger GNR. is condition (Eq. A3.48) can be satisfied if in the ocff motif the
direct pathway S → X couples (large β) mu stronger to X than the indirect pathway S →
V → X (small α). Interestingly, the parameter values for whi this condition is satisfied,
result in an GNR for the acff motif with a high-pass filter. is we show by comparing the
two extrema for the acff (ω → ∞ and ω = 0).

GNRAND (ω = 0) =
4µ2

v

(
βocff + αγ

µv

)2
(

βocffµv
α + γ

)2 〈
|ηv|2

〉
+ µ2

v

〈
|ηx|2

〉 , (A3.49)

lim
ω→∞

GNRAND (ω) =

(
βocff + αγ

µv

)2〈
|ηx|2

〉 , (A3.50)

where it can be shown that, given the condition in Eq. A3.48 is satisfied, the acff has a larger
GNR for large frequencies than for small frequencies.
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3.A.5 Incoherent feed-forward motif

e network is described by

dv

dt
= αs − µvv + ηv (t) , (A3.51)

dx

dt
=

νKv

K + s
− µxx + ηx (t) . (A3.52)

e gain, noise and gain-to-noise (Eqs. 3.9,3.12 and 3.14) in general terms are

g2 (ω) =
(JvsJxv + JvvJxs)

2 + J2
xsω2

(ω2 + µ2
v) (ω

2 + µ2
x)

, (A3.53)

N (ω) =
J2

xv

〈
|ηv|2

〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉
(ω2 + µ2

v) (ω
2 + µ2

x)
, (A3.54)

g2 (ω)

N (ω)
=

(JvsJxv + JvvJxs)
2 + J2

xsω2

J2
xv

〈
|ηv|2

〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.55)

First, we study the influence of the topology. For the incoherent feed-forward, four
different topologies exist with respect to the regulation. It is known that different topologies
have influence on the noise aracteristics. Here we show that the GNR indeed depends on
the specific topology, comparing both a different position for the negative regulation, and
the type of integration of the two pathways at the X component.

Instead of negatively regulating X by V or S, we can also negatively regulate V by S, su
that we have

dv

dt
=

αKV

KV + x
− µvv + ηv (t) , (A3.56)

dx

dt
= βs + γv − µxx + ηx (t) , (A3.57)

where we have assumed the signals combine at X following OR strategy. In the previous
section, we equalized production and studied the difference in the coupling parameters Jij .
Here, instead of equalizing production, we equalize the Jacobian coefficients (as a result the
gain is equal). For these coupling parameters, we compare the production of the compo-
nents (and thus the noise terms). We refer to the topology with superscript V , for negative
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regulation of V, and superscript X for negative regulation of X.∣∣∣JV
vs

∣∣∣ = JX
vs → αV KV

(KV + 〈s〉)2
= αX , (A3.58)

JV
xs = JX

xs → βV = νX K 〈v〉
(K + 〈s〉)2

, (A3.59)

JV
xv =

∣∣∣JX
xv

∣∣∣ → γV = νX K

K + 〈s〉
. (A3.60)

And following these equalities, we write for the noise terms

ηV
V = 2αV KV

KV + S
= 2 (KV + 〈s〉)αX > ηX

V , (A3.61)

ηV
X = 2 (β 〈s〉 + γ 〈v〉) = 2νX K 〈v〉

K + 〈s〉

(
1 +

〈s〉
K + 〈s〉

)
> ηX

X . (A3.62)

For equal coupling constants the noise terms (or equivalently the production terms) in the
iff motif are larger for negative regulation on V than on X.

If the pathways combine following AND logic we have

dx

dt
= γvs − µxx + ηx (t) . (A3.63)

Now, we equalize production terms

pV
V = αV KV

KV + 〈s〉
pX

V = αX 〈s〉 , (A3.64)

pV
X = γ 〈v〉 〈s〉 pX

X = ν
K 〈v〉

K + 〈s〉
. (A3.65)

and obtain αX = αV KV [(KV + 〈s〉) 〈s〉]−1 and γ = νK [(K + 〈s〉) 〈s〉]−1. We then
compare the Jacobian terms∣∣∣JV

vs

∣∣∣ = αV KV

(KV + 〈s〉)2
; JX

vs = αX = αV KV

(KV + 〈s〉) 〈s〉
, (A3.66)

JV
xs = γ 〈v〉 = ν

K 〈v〉
(〈s〉 + K) 〈s〉

; JX
xs = ν

K 〈v〉
(〈s〉 + K)2

, (A3.67)

JV
xv = γ 〈s〉 = ν

K

(〈s〉 + K)
; JX

xv = ν
K

(〈s〉 + K)
, (A3.68)

and we observe that JX
vs >

∣∣∣JV
vs

∣∣∣, while JV
xs > JX

xs. erefore we conclude that at large

frequencies the AND integration with negative regulation on V has a larger GNR than for
negative regulation on X. For small frequencies theGNR depends on the specific parameters.

Compared with a one-step cascade for equal production of x (so v is not constrained),
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we have for the GNR of the incoherent motif

pI
x = posx → νK 〈v〉

K + 〈s〉
= kos

x 〈s〉 → νK

K + 〈s〉
=

kos
x µv

α
, (A3.69)

leading to

g2

N
=

(
Kkosx µv
K+〈s〉

)2
+
(

kosx 〈s〉
K+〈s〉

)2
ω2(

kosx µv
α

)2 〈
|ηv|2

〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 <

kos
x〈

|ηx|2
〉 , (A3.70)

su that the incoherent motif always has a smaller GNR than the one-step motif for equal
production of x.

Compared to the two-stepmotif and equal total productionwe distinguish two scenarios.
First, we assume equal production of v and obtain

piffx = ptwo
x → νK

K + 〈s〉
=

kxkv

α
, (A3.71)

and for the GNR of the iff cascade

g2

N
=

(kxkv)
2
[(

K
K+〈s〉

)2
+
(

〈s〉
(K+〈s〉)µv

)2
ω2

]
(kx)

2
〈

|ηv|2
〉
+ (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.72)

Compared to the GNR of a two-step cascade, for small ω the GNR of the iff is smaller due to
the negative interference in the iff, while for large ω this is larger than the GNR of a two-step
cascade due to the direct pathway.

In the other scenario only require piffx = ptwo
x , to obtain

g2

N
=

(kxkv)
2
[(

K
K+〈s〉

)2
+
(

〈s〉
(K+〈s〉)µv

)2
ω2

]
2
(

kxkv
α

)2
α 〈s〉 + (ω2 + µ2

v)
〈

|ηx|2
〉 . (A3.73)

Due to the direct pathway the gain-to-noise ratio for the iff is larger for ω → ∞. For ω = 0
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Cons. ω → 0 ω → ∞

Equal total production GNRiff <GNRts GNRiff >GNRts

Equal production of x Parameter dependent GNRiff >GNRts

Table 3.6: Summary of the results for the comparison between the iff and the two-step cascade.

we obtain

iff︷ ︸︸ ︷
g2 (ω = 0)

N (ω = 0)
>

simple 2 step︷ ︸︸ ︷
g2 (ω = 0)

N (ω = 0)
(A3.74)

(kxkv)
2
(

K
K+〈s〉

)2
2
(

kxkv
α

)2
α 〈s〉 + µ2

v

〈
|ηx|2

〉 >
(kvkx)

2

2 (kx)
2 kv 〈s〉 + m2

v

〈
|ηx|2

〉 (A3.75)

(
K

K + 〈s〉

)2 1

2
(
1
α

)
〈s〉 + µ2v

(kxkv)2

〈
|ηx|2

〉 >
1

2 1
kv

〈s〉 + µ2v
(kxkv)2

〈
|ηx|2

〉 , (A3.76)

where the above inequality is valid in the following two scenario’s: 1) if kv < α, the iff
motif has a larger GNR, since the signal is transmied to v with larger gain than in the two-
step cascade. 2) If K � 〈s〉, the negative feedba is greatly suppressed and we observe
a general two-step cascade instead of an iff motif. If the first condition is not satisfied, the
two-step simple cascade has a larger GNR for ω = 0. e second condition is required if the
difference in the gain due to the first condition is not large enough.

3.A.6 Multimerization

e network for multimerization is described by

dv

dt
= αs − µvv + ηv (t) , (A3.77)

dx

dt
= γvvn − µxx + ηx (t) . (A3.78)

where n is the number of proteins that jointly activate X. e gain, noise and gain-to-
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noise

g2 (ω) =
n2k

2(n−1)
s α2nγ2

v

µs
2(n−1)µ

2(n−1)
v (ω2 + µ2

v) (ω
2 + µ2

x)
, (A3.79)

N (ω) =
n2k

2(n−1)
s α2(n−1)γ2

v

〈
|ηv|2

〉
+ µs

2(n−1)µ
2(n−1)
v

(
ω2 + µ2

v

) 〈
|ηx|2

〉
µs

2(n−1)µ
2(n−1)
v (ω2 + µ2

v) (ω
2 + µ2

x)
,

(A3.80)

GNR (ω) =
n2k

2(n−1)
s α2nγ2

v

n2k
2(n−1)
s α2(n−1)γ2

v

〈
|ηv|2

〉
+ µs

2(n−1)µ
2(n−1)
v (ω2 + µ2

v)
〈

|ηx|2
〉 .
(A3.81)

For equal production of x (v is by construction in all cascades equal), we have

γv,n = γn=1
µn−1

s µn−1
v

kn−1
s αn−1

, (A3.82)

whi aer we substitute this in Eq. A3.81, results in Eq. 3.30.

e diamond motif is described by

du

dt
= αs (t) − µuu (t) + ηu (t) , (A3.83)

dw

dt
= βs (t) − µww (t) + ηw (t) ,

dx

dt
= γuu2 (t) + γww2 (t) + 2γuwu (t)w (t) − µxx (t) + ηx (t) .

For µw = µu = µv , α = CIβ and γu = γuw = CIIγw , where we have introduced the
coefficients CI and CII to study form of the gain, noise and GNR for differences between
the intermediates U andW in a general context, the expression for the gain, noise and gain-
to-noise are

g2 (ω) =
4k2sβ4

(
1 + 2CI + C2

I CII

)2
γ2

u

µ2
sµ2

wH (µw ,ω)H (µx,ω)
, (A3.84)

N (ω) =
4k2sβ2γ2

u

(
A2
〈

|ηu|2
〉
+ (1 + CI)

2
〈

|ηw|2
〉)

+ µ2
sµ2

wH (µw ,ω)
〈

|ηx|2
〉

µ2
sµ2

wH (µw ,ω)H (µx,ω)
,

(A3.85)

GNR (ω) =
4k2sβ4

(
1 + 2CI + C2

1CII

)2
γ2

u

4k2sβ2γ2
u

(
A2
〈

|ηu|2
〉
+ (1 + CI)

2
〈

|ηw|2
〉)

+ µ2
sµ2

wH (µw ,ω)
〈

|ηx|2
〉 ,

(A3.86)
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where A = (1 + CICII) and H(x, y) = x2 + y2.

We take CII = 1 and compare this cascade to a cascade with only homodimerization of
the component U (β = γw = γuw = 0). For readability, we refer to this cascade, as if it has
an intermediate component V, and if required, subscripts denote U,V and W.

Equal production at the intermediate level pV = pU + pW and at the level of X (pdmX =

phomo
X ) gives

(1 + CI)β = αv (A3.87)

γuw = γv
〈v〉2

U2 + 2 〈u〉 〈w〉 + 〈w〉2
= γv

(〈u〉 + 〈w〉)2

U2 + 2 〈u〉 〈w〉 + 〈W 〉2

= γv
(αu + βw)2

α2
u + 2αuβw + β2

w
= γv . (A3.88)

Inserting these equalities in Eq. A3.84, we observe that the gain is equal to Eq. A3.79 for
n = 2,

g2 (ω) =
4k2sα4

vγ2
v

µs
2µ2

v (ω
2 + µ2

v) (ω
2 + µ2

x)
, (A3.89)

=

4k2s (1 + CI)
4 β4

w

(
α2u+2αuβw+β2w

(αu+βw)2

)2

γ2
uw

µs
2µ2

v (ω
2 + µ2

v) (ω
2 + µ2

x)
, (A3.90)

=
4k2s (1 + CI)

4 β4
wγ2

uw

µs
2µ2

v (ω
2 + µ2

v) (ω
2 + µ2

x)
. (A3.91)

and the noise is

N (ω) =
4k2s (1 + CI)

2 β2
wγ2

v

(〈
|ηu|2

〉
+
〈

|ηw|2
〉)

+ µs
2µ2

v

(
ω2 + µ2

v

) 〈
|ηx|2

〉
µs

2µ2
v (ω

2 + µ2
v) (ω

2 + µ2
x)

,

(A3.92)

where Eq. A3.92 is exactly Eq. A3.85. erefore, unequal production of u and w is not
important, as long as the sum is constrained (and all γ’s are equal).

Next we compare to a two-step cascade. We first assume the diamond motif to be com-
pletely symmetric for the intermediate components U,W, α = β, µu = µw and γu = γw =
γuw . We constrain the individual production of ea step in the cascade

ptwo
v = pdmu + pdmw → kv = 2α, (A3.93)

ptwo
x = pdmx → kxkv = 4γ

α2 〈s〉
µv

. (A3.94)

In the limit ω → ∞ the diamond motif has a larger GNR independent of any kinetic
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rates, since

GNRdm

GNRtwo =
4µ2

v

µ2
v

= 4. (A3.95)

In the opposite limit, ω → 0, we have

GNRdm

GNRtwo =
(8 〈s〉 αγuw + 4µ2

w

(8 〈s〉 αγuw + 〈s〉 µ2
w)

> 1. (A3.96)

us the symmetric diamond motif has a larger GNR for ω → 0 and ω → ∞. For equal
µu = mv , the GNR of the diamond motif is larger for all frequencies.

e above case is for α = β. Here we use α = CIβ, but µv = µw = mv . e ratio of
the GNR’s for ω → ∞ is simply 4 (Eq. A3.95). For the limit ω → 0 we have

GNRdm

GNRtwo =
4
(
(1 + CI) 〈s〉 αγuw + µ2

w

)
4 (1 + CI) 〈s〉 αγuw + µ2

w
> 1. (A3.97)

We do observe that the more asymmetric the diamond motif becomes, the ratio of the GNR’s
decreases. e performance of the diamond motif then becomes more similar to the two-
step cascade.

More interestingly is to have different degradation rates µv = CIIIµw , where CIII is
an arbitrary constant. e equal production constraints then result in the following two
expressions

ptwo
v = pdmv + pdmw → kv = 2α, ptwo

x = pdmx → kxkv = mvγ
α2 〈s〉

CIIIµ2
w
. (A3.98)

For high frequencies the ratio of the GNR of the two-step and diamond motif is

GNRdm

GNRtwo = 16
C2

IIIµ2
w

(1 + CIII)
2 m2

v

, (A3.99)

whi does not lead to a unique conclusion whether whi of the two is larger. For ω = 0,
we have

GNRdm

GNRtwo =
2 (1 + CIII)

2 〈s〉 αγuw + 2C2
IIIµ2

w

4
(
1 + C2

III

)
〈s〉 αγuw + C2

IIIµ2
w

. (A3.100)

Again, the ratio of the GNR depends on the kinetic rates.

3.A.7 Numerical validation

e linearization used in the derivation can ange the aracteristics of the frequency re-
sponse, since a linear(ized) system does not ange the frequency of the transmied signal.
is may not be the case for a nonlinear system. In this section we show the compari-
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son between our analytical results, following the linear noise approximation, for the power
spectrum and the result from numerical simulations of the full non-linear network. For the
numerical simulations we use the Gillespie algorithm. e negative regulation as present
in the incoherent feed-forward motif, or the positive regulation as in the dimerization pro-
cess are calculated through Hill-like interactions between the components. In the Gillespie
simulation we calculated the propensities for every reaction using the coarse grained Hill-
expressions for the propensities, su that

V r−→ V+ X, (A3.101)

where r is

r =
kK

S + K
, (A3.102)

where here the actual copy number of S is used, and not 〈s〉, as in the linearized expressions
(Eq. A3.55).

e power spectra are calculated using 210 (1024) exponentially distributed frequencies
from ω = 10−1 to ω = 102 and averaged over 16 neighboring frequencies to obtain a
single data point. In total we have 64 data points. Fourier transforms and power spectra are
directly integrated during runtime. We simulated a minimum of 27 blos of 5000s. Results
are shown in Figs. 3.5-3.9.
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Figure 3.5: The results (symbols) of the Gillespie simulations for the OR-coherent feed-forward motif.
Since this motif is linear, we do not expect any deviations between the numerical simulations and
the analytical results. We only show the result for one set of parameters: ks=100,α=11,β=1,γ=
10.1,µv=10,µx=10, µs sets the timescale.

3.A.8 Influence of the phase

In Fig. 3.10 we show in some more detail the precise influence of the phase difference be-
tween two pathways that combine at a downstream component. A larger phase difference
corresponds to a decrease in the gain. However, the phase difference between the pathways
is not the only relevant parameter to study the gain. e gain is also greatly reduced if the
signal variations are mu faster than the lifetime of the components in the cascade. If this
is the case, the individual components can not tra the variations and start to time-average
the variations, thereby losing the specific information in the high frequencies.
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Figure 3.6: The results (symbols) of the Gillespie simulations for the AND-coherent feed-forward
motif. Although this motif is non-linear, the results of the simulations are in good agreement with
those of the linear analysis (continuous lines). In Pxx and Re[Psx] the symbols of the simulations
results are on top of the lines in the analytical results. Parameters: a) as in Fig. 3.2c red solid, b)
Fig. 3.2c red dashed, c) Fig. 3.2c black solid.
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Figure 3.7: The results (symbols) of the Gillespie simulations for the incoherent feed-forward motif.
Although this motif is non-linear, the results of the simulations are in good agreement with those
of the linear analysis (continuous lines). In Pxx and Re[Psx] the symbols of the simulations results
are on top of the lines in the analytical results. Parameters: a) as in Fig. 3.3c red solid, b) Fig. 3.3c
red dashed, c) Fig. 3.3c black solid.
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Figure 3.8: The results (symbols) of the Gillespie simulations for the dimerization process.
Here the motif is non-linear. We model the propensity function following a Hill-function,
k(V)=kmaxVn/(Vn+Kn). Next, we take K�V, such that propensity is approximately k(V)≈
kmax(V/K)

n as discussed in the main text. The results of the simulations are in good agreement
with those of the linear analysis (continuous lines). In Pxx and Re[Psx] the symbols of the sim-
ulations results are on top of the lines in the analytical results. Parameters: a) two-step process
(n=1), b) dimer process (n=2), c) trimer process (n=3). Parameters are as in Fig. 3.4b.
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Figure 3.9: The results (symbols) of the Gillespie simulations for the heterodimerization motif, with
γu=γw=0. Although this motif is non-linear, the results of the simulations are in good agreement
with the results of the linear analysis (continuous lines).In Pxx and Re[Psx] the symbols of the
simulations results are on top of the lines in the analytical results. Parameters: a) as in Fig. 3.4c
red solid, b) Fig. 3.4c red dashed, c) Fig. 3.4c black solid.
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Figure 3.10: In these panels we show the gain (black dashed, right axis) and phase (black solid,
le axis). In panel a we show the gain and the phase for a ocff-motif. The decrease of the gain
corresponds with the increase in the phase difference between the indirect S→V→X and direct
pathway S→X. In panel b we show a similar plot, but now for the diamond motif with pathways
of equal length, but with different degradation rates of the intermediate components. Again we
observe that the initial decrease in the gain coincidences with the increase in phase difference.
But although the phase difference decrease for larger ω again, the gain continues to decrease, due
to the time-averaging of the fluctuations over the lifetime of the intermediate components.
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C 4

T BP  

Biological systems oen have to measure at high precision emical concentrations
that are very low. An important question, therefore, is what is the lower bound on
the noise in su measurements. Using ideas from theories on diffusion-influenced
reactions, we derive an analytical expression for the precision of concentration es-
timates that are obtained by monitoring the state of a receptor to whi a diffusing
ligand can bind. e variance in the estimate consists of two terms, one resulting
from the intrinsic binding kinetics and the other from the diffusive arrival of ligand
at the receptor. e latter term is identical to the fundamental limit derived by Berg
and Purcell, but disagrees with the more recent expression of Bialek and Setayeshgar.
Comparing the theoretical predictions against results from particle-based simulations
shows that the expression of Berg and Purcell and us is highly accurate.

Based on manuscript K. Kaizu, W.H. de Ronde, F. Tostevin, F. Takahashi and P.R. ten Wolde. e
Berg-Purcell limit revisited In preparation. Simulations are performed by Kazunari Kaizu.
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4.1 Introduction

e evidence is accumulating that sensory systems in biology oen operate near the fun-
damental limit set by the noise of counting the signaling molecules. Our visual system can
detect single photons [6], some animals can smell single molecules [114], swimming bacte-
ria can respond to the binding and unbinding of only a handful of molecules [83, 115] and
eukaryotic cells can be responsive to a difference in ∼10 molecules between the front and
the ba of the cell [7]. Recent experiments suggest that the precision of the embryonic
development of the fruitfly Drosophila is close to the limit set by the available number of
regulatory proteins [8, 116, 117]. is raises the question what is precisely the fundamental
limit to the precision of emical concentration measurements.

In their classic paper, Berg and Purcell considered the scenario in whi a cell measures
the concentration c of a ligand bymonitoring the occupation states of the receptormolecules
to whi the ligand molecules bind and unbind [83]. A central result is that for a cell that
infers the concentration from the time average n of the occupation state n(t) of a single
receptor, where n(t) is zero if the receptor at time t is free and one if it is bound to ligand.
e analysis of Berg and Purcell predicts that in the limit that the integration time T is mu
longer than the correlation time τn of the receptor state, the fractional error in the estimate

for n, nT = 1/T

∫ T

0
dtn(t), is given by

δn

n
=

√
(1 − n)

2DσcT
. (4.1)

Here, σ is the receptor-ligand binding cross section, D is the diffusion constant of the ligand,
and c is the ligand concentration. e error in the determination of the concentration is
related to the error in the measurement of the occupancy via the gain dc/dn,

(δc)2 =

(
dc

dn

)2

(δn)2 , (4.2)

yielding the principal result of Berg and Purcell (Eq. [52] in [83]):

δc

c
=

√
1

2Dσc (1 − n)T
. (4.3)

is result can be understood intuitively by noting that 4Dσc is the flux of ligand molecules
towards the receptor and 1 − n is the probability that the receptor is free. Importantly,
4Dσ(1−n) is also the effective binding rate if the binding reaction is diffusion limited, that
is, if every receptor-ligand collision is successful. Berg and Purcell argue that their result
also holds for reactions that are not deeply in the diffusion-limited regime [83]. ey write

“Suppose that a molecule that arrives at a vacant binding site sticks with probability
α. If it doesn’t stick on its first contact, it may soon bump into the site again—and
again. If these encounters occur within a time interval short compared to τb [the
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time the molecule is bound], their result is merely equivalent to a larger value
of α. As we have no independent definition of the patch radius s, we may as well
absorb the effective α into s, writing for the probability that a vacant patch becomes
occupied during dt simply 4Dscdt.”

is argument seems convincing. On the other hand, aer an unsuccessful collision, the
ligand molecule may diffuse ba into the bulk, and then another ligand molecule may bind
to it. Moreover, a ligand molecule that has just dissociated from the receptor, may rapidly
rebind to the receptor, possibly a (large) number of times, or it may diffuse away from it into
the bulk, aer whi another molecule may bind to the receptor. It thus remains unclear
whether this result also applies to binding reactions that are not diffusion limited.

Bialek and Setayeshgar believed that the analysis of Berg and Purcell relies on a num-
ber of assumptions, and they therefore reconsidered this problem [118]. ey considered
a model in whi the ligand molecules can diffuse, bind the receptor upon contact with an
intrinsic association rate ka, and unbind from it with an intrinsic dissociation rate kd. In-
voking the fluctuation-dissipation theorem, they linearized the non-linear reaction-diffusion
equation, to obtain the following result for the fractional error in the estimate for the con-
centration (Eqn. [32] in [118]):

δc

c
=

√
1

πDσcT
+

2

kac (1 − n)T
. (4.4)

e first term arises from the stoastic arrival of the ligand molecules at the receptor by
diffusion, while the second term is due to the intrinsic stoasticity of the binding kinetics
of the receptor. Indeed, even in the limit that the diffusion constant is infinitely high (and
the first term is zero), the concentration can still not be measured with infinite precision,
because the receptor still swites between the bound and unbound states with a finite
correlation time (kac + kd)

−1, leading to noise in the estimate of the receptor occupancy
and hence the concentration. is term is absent in Eq. 4.3 since Berg and Purcell assume
that the binding reaction is fully diffusion limited, meaning that the intrinsic rates ka and kd

go to infinity; they argue that the effect of the intrinsic switing kinetics can be captured
by renormalizing the cross section.

e first term of Eq. 4.4 should thus be compared with Eq. 4.3: in the limit that the
binding reaction is diffusion limited (and the second term in Eq. 4.4 is zero), both theories
should yield the same result. However, it is clear that besides the geometrical factor π, whi
simply comes from the fact that Berg and Purcell assume that the diffusion limited rate is
4σD while in the model of Bialek and Setayeshgar it is 4πσD, the expressions differ by a
factor 1/(2(1 − n). e expression of Bialek and Setayeshgar predicts that in the limit that
n → 1, the error remains bounded, while the expression of Berg and Purcell suggests that
the fractional error diverges; the laer seems reasonable, because if the receptor is occupied
most of the time, no new ligand molecules can be counted and hence no new independent
measurements can be performed. Only for n = 0.5 are the two expressions identical (apart
from the geometrical factor), but why this would be so, remains unclear.

It is unclear why these two different theories yield different predictions for the funda-
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mental limit. Berg and Purcell neglect the intrinsic binding and unbinding dynamics of the
receptor, as well as the intricate interplay between binding, unsuccesful ligand-receptor col-
lisions and rapid rebindings, while Bialek and Setayeshgar linearize the non-linear reaction-
diffusion equation; given the binary nature of the receptor occupancy, su a linearisation
may not be appropriate [68, 119].

In this paper we derive the fundamental limit again, borrowing heavily from the body
of work of Agmon, Szabo and coworkers on diffusion-influenced reactions [120]. Like the
expression of Bialek and Setayeshgar for the variance in the estimate of the concentration,
our expression consists of two terms, one describing the effect of the diffusive transport of
the ligand molecules to and from the receptor, the other describing the effect of the intrinsic
binding and unbinding kinetics of the receptor. Interestingly, the second term agrees with
that of Bialek and Setayeshgar, but the first does not. e first term does, however, agree
with the expression of Berg and Purcell (again apart from the geometric factor). We then test
these expressions by performing particle-based simulations using our recently developed
Green’s Function Reaction Dynamics algorithm, whi is an exact seme for simulating
reaction-diffusion systems at the particle level [121, 122, 123]. e simulation results agree
very well with our expression, leading us to conclude that aer 25 years the Berg-Purcell
limit still stands as the most accurate expression for the fundamental limit to measuring
emical concentrations. We discuss key assumptions in our analysis, and end by presenting
a simple, but intuitive model from whi the same fundamental limit can be derived.

4.2 Theory

We consider a single receptor A that is surrounded by a large number NB of non-interacting
ligand molecules B at concentration c = NB/V in a volume V . We thus consider the
pseudo first-order limit, meaning that NB � NA = 1 and V → ∞. Without loss of gen-
erality, we may assume that the receptor is static and located at the origin, while the ligand
molecules diffuse with diffusion constant D. A ligand molecule can bind a free receptor
molecule with an intrinsic association rate ka when the two come in contact at the contact
distance σ, whi is the sum of the radii of the two respective molecules. A bound ligand
molecule can dissociate from the receptor with an intrinsic dissociation rate kd. e state of
the receptor is denoted by the binary variable n(t), whi is one if the receptor is bound to
a ligand at time t and zero otherwise. We note that this model is identical to that of Bialek
and Setayeshgar for the scenario of a single receptor molecule [118].

Following Berg and Purcell [83] and Bialek and Setayeshgar [118] we imagine that the
cell estimates the concentration c from the estimate nT of the average receptor occupancy

n, whi is obtained by integrating n(t) over an integration time T : nT = 1/T

∫
dtn(t).

e variance in nT is given by σ2
nT

= 〈n2
T 〉 − 〈nT 〉2, where the angular braets denote an

average over a large number of independent measurements. e variance can be obtained
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from the correlation function Cn(τ) = 〈(n (τ) − 〈n〉) (n (0) − 〈n〉)〉 via (see App. 4.A.1)

σ2
nT

=
1

T 2

∫ T

0
dt

∫ T −t

−t
dτCn (τ) . (4.5)

e correlation function defines a correlation time τn of the receptor occupancy

τnσ2
n ≡

∫ ∞

0
C (τ) dτ , (4.6)

where σ2
n = Cn (0) = 〈n2〉 − 〈n〉2, where for a binary variable this is σ2

n = 〈n〉(1− 〈n〉) =
n(1 − n). In the limit that the integration time T is mu longer than the correlation time
τn, the variance in our estimate nT for n is given by

σ2
nT

=
2σ2

nτn

T
=

Pn (ω = 0)

T
=

2Re
[
Ĉn (s = 0)

]
T

, (4.7)

where Pn(ω) is the power spectrum of the receptor state n and Ĉn(s) is the Laplace trans-
form of the correlation function Cn(t). e error in the estimate for the concentration n
can then be obtained from Eq. 4.7 and Eq. 4.2, where σ2

nT
= (δn)2 = 〈n2

T 〉 − 〈nT 〉2 and the

gain dc/dn = c/(n − n2). We will now proceed to compute the Laplace transform of the
correlation function, Ĉn(s).

e correlation function of any binary switing process is given by

Cn (τ) = p0∗
(

p∗|∗ (τ) − p0∗
)
, (4.8)

where p0∗ ≡ 〈n〉 is the equilibrium probability for the bound state and the probability the
receptor is bound (∗) at t = τ given it was bound at t = 0 is p∗|∗(τ) = 〈n(τ)n(0)〉/〈n〉.
To obtain the correlation function, we thus need p∗|∗(τ). It is convenient to focus on the
conjugate “survival probability”

Srev (t|∗) = 1 − p∗|∗ (t) , (4.9)

whi is the probability that the receptor is free at time t given that it was bound at t = 0.
Following Agmon and Szabo [120], we use the subscript “rev” to indicate that we consider a
reversible reaction, meaning that in between t = 0 and t the receptor may bind and unbind
ligand a number of times. e probability that a receptor-ligand pair dissociates between t′

and t′+dt′ to form an unbound pair at contact is kd[1−Srev(t
′|∗)]dt′, while the probability

that the receptor with now a ligand molecule at contact is still unbound at time t > t′

is Srad(t − t′|σ); the subscript “rad” means that we now consider an irreversible reaction
with kd = 0, whi can be described by solving the diffusion equation using a “radiation”
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boundary condition [120]. Hence, Srev(t|∗) is given by [120]

Srev (t|∗) = kd

∫ t

0

[
1 − Srev

(
t′|∗
)]

Srad
(
t − t′|σ

)
dt′. (4.10)

We emphasize that up to this point no approximation has been made. e question
now is what is Srad(t|σ), whi is the quantity needed to solve Eq. 4.10. In general, it is not
possible to obtain an exact analytical expression for this quantity. Imagine a bound receptor-
ligand pair that is surrounded by an equilibrium, i.e. uniform, distribution of ligand particles.
If this receptor-ligand pair dissociates to form a receptor-ligand pair at contact surrounded
by an equilibrium distribution of ligand molecules, then the probability that the receptor is
still unbound at a later time t is given by the survival probability [120]

Srad (t|σ) = Srad (t|eq)Srad (t|σ) , (4.11)

where Srad(t|eq) is the probability that a receptor whi initially is free and surrounded
by an equilibrium distribution of ligand molecules remains free until at least a later time t,
while Srad(t|σ) is the probability that a free receptor that initially is surrounded by only one
single ligand molecule at contact is still unbound at a later time t. Now, the ligand molecule
at contact may either rebind the receptor or diffuse away from it. If it rebinds the receptor,
then aer the next dissociation event, the probability that the receptor will remain free for
at least another time t will again be given by Eq. 4.11. e problem arises when the ligand
molecule at contact instead diffuses away from the receptor and another ligand molecule
binds the receptor: If this second ligand molecule dissociates from the receptor before the
first ligand has relaxed to equilibrium, then the assumption of Eq. 4.11 breaks down. Indeed,
the process of receptor binding generates non-trivial spatio-temporal correlations between
the positions of the ligand molecules, whi depend on the history of the association and
dissociation events. is impedes an exact solution of the problem. However, if the dissoci-
ation rate kd is low then it becomes reasonable to assume that aer each dissociation event,
the unbound receptor-ligand pair at contact is surrounded by an equilibrium distribution
of B particles [120], in whi case the survival probability is given by Eq. 4.11. is is the
crucial assumption that we will make in our analysis.

With the assumption of Eq. 4.11, Eq. 4.10 can now be solved in the Laplace domain. For
a pseudo-first-order irreversible reaction with a static target [124], Srad(t|eq) of Eq. 4.11 is
given by

Srad (t|eq) = e
−c
∫ t
0

krad(t
′)dt′ , (4.12)

where krad(t) is the time-dependent rate coefficient. Moreover, Srad(t|σ) in Eq. 4.11 is via
detailed balance (and the baward Smoluovski equation) related to krad(t): krad(t) =
kaSrad(t|σ) [120]. Together, these relations yield a simple expression for the Laplace trans-
form of Srad(t|σ) in terms of the Laplace transform Ŝrad(s|eq) of Srad(t|eq), as described
in App. 4.A.2. Substituting this in the solution of Eq. 4.10 in the Laplace domain allows us
to obtain the following expression for the Laplace transform of the correlation function in
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terms of Ŝrad(s|eq):

Ĉ (s) = σ2
n

〈n〉 Ŝrad (s|eq)
1 − (1 − 〈n〉) sŜrad (s|eq)

, (4.13)

= σ2
n

ckaτcŜrad (s|eq)
1 − kdτcsŜrad (s|eq)

, (4.14)

where 〈n〉 = kac/τc and τc = (kac+ kd)
−1 is the correlation time of the intrinsic receptor

switing dynamics, i.e. the correlation time of the receptor occupancy when receptor-
ligand association is reaction-limited and the effect of diffusion can be neglected.

To obtain an analytically closed form for the correlation function, we require an expres-
sion for Ŝrad(s|eq). In the limit that the concentration c is small, we can expand and Laplace
transform Eq. 4.12 to obtain (see Eq. A4.50, [120])

sŜrad (s|eq) ≈
(
1 + ck̂rad (s)

)−1
. (4.15)

Noting that k̂rad(s) = kak̂abs(s)/(ka + skabs(s)), where k̂abs(s) = 4πσD(1 + σ
√

s/D)
is the Laplace transform of the time-dependent diffusion-limited rate constant kabs(t), and
substituting the above expression in Eq. 4.13 yields

Ĉ (s) = σ2
n

τ ′
c (s)

sτ ′
c (s) + 1

, (4.16)

where τ ′
c(s) is the intrinsic correlation time τc renormalized by the concentration fluctua-

tions [118]:

τ ′
c (s) = τc (1 + Σ (s)) ; Σ (s) =

ka

kD

(
1 +

√
sτm

) , (4.17)

with the diffusion-limited rate constant kD = 4πσD and the molecular time scale τm =
σ2/D. e correlation time τn of the receptor state is given by τn = Ĉ(s = 0) = τ ′

c(s = 0):

τn =
1

konc + koff
, (4.18)

where kon and koff are the renormalized association and dissociation rates

kon =

(
1

ka
+

1

kD

)−1

=
kakD

ka + kD
, (4.19)

koff =

(
1

kd
+

Keq

kD

)−1

=
kdkD

ka + kD
. (4.20)

and Keq = ka/kd is the equilibrium constant.
e error in the estimate of the concentration can be obtained by combining Eq. 4.16
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with Eq. 4.7 and Eq. 4.2, yielding our principal result

δc

c
=

√
1

2πσDc (1 − n)T
+

2

kac (1 − n)T
. (4.21)

e first term describes the error in our estimate that stems from the stoastic diffusive
arrival of the ligand molecules, while the second term describes the error in our estimate
that results from the intrinsic binding dynamics of the receptor. If the receptor-ligand as-
sociation reaction is fully reaction-limited, meaning that ka, kd → 0 or D → ∞, then the
first term is zero: the error in our estimate of the concentration is then limited by the intrin-
sic binding and unbinding dynamics of the receptor. Conversely, if the reaction is diffusion
limited, meaning that ka, kd → ∞ or D → 0, then the second term is zero, and the precision
of our concentration estimate is limited by the diffusive arrival and departure of the ligand
molecules to and from the receptor. is is considered to be the fundamental limit to the ac-
curacy of measuring emical concentrations: the noise in our concentration measurement
has a floor that is set by the physics of diffusion, independent of the kinetic parameters ka

and kd.
It is clear that the second term in Eq. 4.21 is identical to that in the expression of Bialek

and Setayeshgar, Eq. 4.4. Yet, the first term, that determines the fundamental limit, is differ-
ent: the expression of Bialek and Setayeshgar misses a factor 2/(1 − n). e Berg-Purcell
expression does contain this factor, and indeed, apart from a geometrical factor, their ex-
pression is identical to ours in the limit that the reaction is fully diffusion limited (and the
second term in Eq. 4.21 is zero). Intuitively, the factor 1− n makes sense: the rate of count-
ing molecules is determined by the rate at whimolecules arrive, whi is 4πσD, times the
probability 1− n that the receptor is free and capable of actually binding and detecting the
ligand molecules. Our analysis thus suggests that the Berg-Purcell limit is the most accurate
expression for the precision by whi concentrations can be measured.

4.3 Numerical Results

To test our theory, we have performed particle-based simulations. A key quantity of our
theory is Ĉ(s), Eq. 4.16, since the precision of our concentration estimate directly follows
from this quantity and the gain dc/dn (see Eq. 4.7 and Eq. 4.2). Wewill therefore compare the
power spectrum, Pn(ω) = 2Re[Ĉn(s = iω)] with Ĉn(s) given by Eq. 4.16, to that obtained
from simulations. e particle-based simulations have been performed using our Green’s
Function Reaction Dynamics (GFRD) algorithm [121, 122, 123], whi is an exact seme for
simulating reaction diffusion systems at the particle level. e model of the simulations is
almost identical to that studied in our theory. It consists of a static single receptor in the
center of the simulation box with linear dimension L, surrounded by ligand molecules that
diffuse with diffusion constant D. A ligand molecule that is in contact with a free receptor
at the contact distance σ can associate with the receptor with an intrinsic association rate
ka and then dissociate from it with an intrinsic dissociation rate kd; aer dissociation, the
ligand molecule is put at contact again.
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Figure 4.1 shows the power spectrum as obtained from the simulations (bla line) to-
gether with the prediction of our theory (grey line; Eq. 4.16), for two different concentra-
tions, c = 0.1µM (panel a) and c = 100µM (panel b). e first concentration is in the bio-
logically relevant regime 1nM . c . 1µM, while the second is mu larger than that. Ea
panel also shows power spectra for switing processes with uncorrelated and exponen-
tially distributed waiting times, one with the intrinsic correlation time τc = (kac + kd)

−1

(red dashed line) and one that has the same effective correlation time as that of our theory,
τn = τ ′

c(s = 0) = (konc+koff)
−1 (red solid line); since the variance of any binary switing

process is σ2
n = n(1− n), the power spectrum of the second exponential switing process

at zero frequency, Pn(ω = 0) = 2σ2
nτn, is also equal to that of our theory. It is seen that

the power spectrum predicted by our theory, by Eq. 4.16, nicely interpolates between the
respective spectra of the two exponential switing processes. Interestingly, not only in the
high-frequency regime, but also in the low-frequency regime, the simulation results agree
very well with the prediction of Eq. 4.16, both at low and high concentration. In fact, for
the biologically relevant concentration, the agreement between our theory and simulation
is very good over essentially the full frequency range. A deviation is seen only in the in-
termediate frequency regime for the high concentration, outside the biologically relevant
range.

e high frequency regime of the power spectrum corresponds to the intrinsic switing
dynamics of the receptor. In this regime, diffusion hardly plays any role and the receptor
dynamics is dominated by the binding of ligand molecules that are essentially in contact
with the receptor, whi occurs with an exponentially distributed waiting time with mean
(kac)−1, and the unbinding of ligand, whi is a Poisson process with mean waiting time
k−1

d . Fig. 4.1 shows that this regime is well described by our theory.

e intermediate frequency regime of the power spectrum starts at ωm = 1/τm =
D/σ2. It corresponds to the regime in whi a ligand molecule, aer dissociation from
the receptor, manages to diffuse away from the receptor over a few molecular distances σ,
but then rebinds the receptor before another ligand molecule from the bulk does. Fig. 4.1
shows that our theory describes this regime at low concentrations quite well, but at high
concentrations a deviation is visible. is can be traced ba to the break down of our key
assumption, Eq. 4.11, whi we discuss in detail in the next section.

e low frequency regime of the power spectrum corresponds to the regime in whi af-
ter receptor dissociation the ligand molecule diffuses into the bulk and, most likely, another
molecule from the bulk binds the receptor. e agreement between the power spectrum of
the simulations and that of the full theory, and on the other hand that of an exponential
switing process, suggests that in this regime receptor binding and unbinding has become
memoryless. is seems plausible: when the dissociated molecule enters the bulk, it will
eventually loose memory of where it came from; also the other ligand molecules will bind
the receptor in a memoryless fashion. However, this idea is only correct if the system is
bounded. Indeed, it is well known that in an unbounded system, the correlation function of
a reversible reaction exhibits an algebraic tail [125, 126]. e simulation box of our system
is, like a living cell, finite, and the collisions of the ligand molecules with the cell boundaries
randomize their trajectories on time scales larger than L2/D; consequently, the correlation
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Figure 4.1: The power spectrum of the receptor state Pn(ω). a) c=0.1µM, b) c=100µM. The
simulation results (black) agree very well with the theoretical prediction of Eq. 4.16 (gray line).
At high frequencies ω>1/τm=D/σ2, the receptor dynamics is that of an exponential switching
process with the intrinsic binding and unbinding rates kac and kd, respectively, as shown by the
dashed red line; in this regime, the ligand remains close to the receptor and the effect of diffusion
is negligible. At low frequencies, the receptor dynamics is to a very good approximation given by
a random telegraph process with effective on and off rates konc and koff , respectively, as shown
by the solid red line. Note that the correlation time of that process, τn=(konc+koff)

−1, is by
definition equal to that of our theory, Eq. 4.16; this means that also Pn(ω=0)=2σ2

nτn, which
determines the error in our estimate of the receptor occupancy and the concentration, Eq. 4.7,
is the same. Above each panel, two time scales are shown: τeq=L2/D (the time to cross the
simulation box) and τm=σ2/D (the time to diffuse a molecular diameter). We observe that τm
marks the transition from the regime in which the receptor dynamics is dominated by the intrinsic
binding kinetics to that which also depends on the diffusion of the ligand molecules towards and
away from the receptor. At high concentration (panel b), the simulation results differ slightly
from the prediction of Eq. 4.16 in the intermediate regime. We believe this is due to interference
of bulk molecules with the rebinding of the dissociated ligand molecule. Parameters: n=0.9,
D=1µm2 s−1, σ=10 nm. a) L=584 nm, kd=61 s; b) L=58 nm, kd=17 hr.

function is exponential at long times. e correlation function of our theory does exhibit an
algebraic tail, whi is the remant of the factor Srad(t|σ) in Eq. 4.11, whi is the probability
that a free receptor with a single molecule at contact (and no other molecules present) is still
unbound at a later time t in an unbounded system. However, in Eq. 4.11 we assume that the
other ligand molecules, forming the “bulk”, do have a uniform distribution. ese molecules
will bind the receptor in a memoryless fashion. Moreover, at long times, they will dominate
the binding of ligand to receptor. In our theory, this crossover time can be estimated from

−dSrad (t|σ)
dt

= −

bulk−binding︷ ︸︸ ︷
Srad (t|σ)

dSrad (t|eq)
dt

−

rebinding︷ ︸︸ ︷
Srad (t|eq)

dSrad (t|σ)
dt

, (4.22)

whi is the propensity function for receptor binding, i.e. the probability that a receptorwith
a ligand molecule at contact and surrounded by a uniform distribution of ligand molecules,
binds a ligand molecule for the first time at a later time t. e first term is the probabil-
ity that this ligand molecule is one from the bulk, while the second gives the probability
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Figure 4.2: a) The correlation function C(t) for Eq. 4.16 (black solid) and an exponential switching
process with waiting times kon,koff (red dashed). The correlation time for both processes is the
same. Parameters: D=1µm2 s−1, n=0.5, c=0.1µM, σ=10 nm, ka=5520µM−1 s−1 and kd=

613 s. b) The ratio of the change inSrad for a bulk first binding and for a rebinding of a dissociated
B particle. The bulk dominates the change in the survival probability already for very small t.
Indeed for D=1µm2 s−1, the association timescales are ta=1/kac≈0.02 s, ton=1/konc≈0.15 s
Parameters: as in panel a), Dv=1µm2 s−1, ka=552µM−1 s−1.

that this is the ligand molecule that was in contact, diffused away, but then came ba to
rebind the receptor. Fig. 4.2b shows that only at very short times, rebindings dominate the
bulk bindings. For long times, receptor binding is completely dominated by the binding of
molecules from the bulk, whi in our theory, as in the simulations, bind the receptor in a
memoryless fashion. e algebraic tail of the correlation function in our theory is thus very
small, as shown in Fig. 4.2a. Indeed, at long times t � τm the receptor dynamics is to a
very good approximation a random telegraph process with an on rate konc and an off rate
koff.

e most important point of the power spectrum is at zero-frequency, Pn(ω = 0): that
determines the correlation time of the receptor and hence the error in our estimate of the
average receptor occupancy n and the average concentration c, see Eq. 4.7 and Eq. 4.2. e
simulation results of Fig. 4.1 show that Eq. 4.16 captures this limit very well, not only at the
low concentration of 100nM, but, perhaps surprisingly, also at the high concentration of
100µM. Fig. 4.3 shows Pn(ω = 0) as a function of the average receptor occupancy n at a
concentration of 1nM. It is seen that the agreement between theory and simulations is very
good. Fig. 4.3 also shows the prediction of Bialek and Setayeshgar for Pn(ω = 0) [118].
Only for n = 0.5 does their prediction agree with our prediction and simulation results.
Moreover, while their analysis predicts that Pn(ω = 0) = P1−n(ω = 0), our results show
that the dependence of Pn(ω) on n is non-symmetric, whi reflects the fact that when the
receptor is free, more binding events can be counted, leading to a more accurate estimate
of the concentration. Since the Berg-Purcell formula in Eq. 4.3 directly follows from our
expression for Pn(ω = 0) = 2Re[Ĉ(s = 0)], via Eq. 4.16, Eq. 4.7 and Eq. 4.2, we conclude
that the Berg-Purcell limit provides an accurate upper bound on the precision by whi
emical concentrations can be measured.
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Figure 4.3: The power spectrum in the zero-frequency limit, Pn(ω=0), as a function of the average
receptor occupancy n, for c=100 nM. The receptor occupancy is varied by changing kd. It is
seen that the agreement between our theoretical prediction of Eq. 4.16 and the simulation results
is very good (red line). In contrast, the prediction of Bialek and Setayeshgar [118] (black line)
differs markedly from our results. While their analysis predicts that Pn(ω)=P1−n(ω), our results
show that Pn(ω) is non-symmetric in n. This reflects the fact that when the receptor occupancy is
lowmore binding events can be counted. Other parameters: L=584 nm,D=1µm2s−1,ka=10kD=

3.76×102 µM−1s−1, σ=5 nm.

4.4 Validity assumption under biological conditions

e key assumption of our theory is that of Eq. 4.11, whi states that aer dissociation the
unbound receptor-ligand pair is surrounded by a uniform distribution of ligand molecules.
is assumption breaks downwhen a) aer receptor dissociation, the rebinding of the ligand
molecule to the receptor is preempted by the receptor binding of another, second, ligand
molecule and b) this second ligandmolecule dissociates from the receptor before the first has
diffused into the bulk. We argue that under biologically relevant conditions both conditions
a) and b) are not satisfied and that therefore the key assumption of our analysis holds.

Firstly, rebinding trajectories of ligand molecules that have just dissociated from the re-
ceptor are so short that the likelihood that a molecule from the bulk interferes with su a
rebinding event is negligible, especially when the concentrations are low. In this case, con-
dition a) is not met and a dissociated ligand molecule rebinds the receptor before it diffuses
into the bulk as oen as when it would be the only ligandmolecule present in the system. To
make this intuition quantitative, we note that if the unbound receptor-ligand pair at contact
is surrounded by an equilibrium distribution of ligand molecules, then the probability that
a ligand molecule from the bulk does not interfere with the receptor rebinding of the ligand
molecule at contact, is

1 − pint = −
∫ ∞

0

dSrad (t|σ)
dt

Srad (t|eq) dt + Srad (∞|σ) , (4.23)

where the first term is the integral of the second term in Eq. 4.22 — it is the probability that
the ligand molecule whi has just dissociated from the receptor rebinds the receptor before
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a ligand molecule from the bulk does; the second term Srad(∞|σ) is the probability that the
ligand molecule at contact (with no other ligand molecules present) escapes into the bulk —
when the ligand at contact escapes into the bulk, then, by definition, no bulk molecule can
interfere with its rebinding. Combining the above expression with Eq. 4.22 shows that the
probability of rebinding interference is

pint = −
∫ ∞

0
dtdSrad (t|eq) /dt [Srad (t|σ) − Srad (∞|σ)] , (4.24)

whi is indeed the probability that a molecule from the bulk binds the receptor before
the ligand molecule whi started at contact and that would have rebound the receptor
if there were no other ligand molecules, does. Fig. 4.4 shows that for biologically relevant
concentrations and diffusion constants, the probability of rebinding interference Pint is very
small, whi means that the central assumption, Eq. 4.11, will hold.
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Figure 4.4: Probability pint (red line) that a ligandmolecule from the bulk interferes with the receptor
rebinding of a dissociated ligand molecule as a function of the concentration c (panel a) and
diffusion constant D (panel b). The probability 1−pint of no interference (black line) is given by
Eq. 4.23 and consists of two terms: the probability p∗reb that the dissociated ligandmolecule rebinds
the receptor before a molecule from the bulk does (dashed grey line) and the probability pesc=

Srad(∞|σ)=kD/(ka+kD) that it escapes into the bulk (solid grey line; second term). It is seen
that for biologically relevant concentrations nM.c.µM and diffusion constants 0.1µm2s−1.
D.10µm2s−1 bulk molecules hardly interfere with the receptor rebinding of dissociated ligand
molecules. This is the motivation for the simplified model of Fig. 4.5, in which Srad(t|eq) in
Eq. 4.23 is taken to be unity, and the probability of rebinding is approximated as preb=1−pesc=

Srad(∞|σ)=ka/(ka+kD) (dashed red line); note that the correspondence between preb and the
full expression p∗reb in the biologically relevant regime. Parameters are D=1µm2s−1 (panel a),
c=1µM (panel a) and ka=55µM−1s−1, σ=10 nm.

Yet, even when occassionally rebinding interferences do occur, and condition a) is met,
then Eq. 4.11 is still likely to hold, because condition b) is not met. For a biologically relevant
but high concentration c = 1µM and high effective association rate kon = 1µM−1s−1, and
for n = 1/2, D = 1µm2s−1 and σ = 10 nm, the time a ligand molecule is bound to the
receptor is td = k−1

d ≈ 1 s. e time for a dissociated ligand molecule to equilibrate in a cell
of linear dimension L is upper bounded by L2/D, whi is on the order of a second if L =
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1µm and D = 1µm2s−1. We thus expect that for cells of micron size and concentrations
that are in the nM to µM range, also condition b) is not met, whi means that even when
rebinding interferences do arise, Eq. 4.11 still holds.

4.5 A simple coarse-grained model

Our simulation results show that in the relevant low frequency regime, the receptor dynam-
ics is to a very good approximation that of a random telegraph process with on rate konc
and off rate koff. is suggests the following simple picture, inspired by our earlier analysis
of the effect of diffusion of gene regulatory proteins on noise in gene expression [121].

is simplified model is based on the observations that rebindings are fast and the prob-
ability of rebinding interference is negligible. When molecules from the bulk do not in-
terfere with the rebinding of a dissociated ligand molecule, we can simply estimate the
number of rounds Nreb the ligand molecule rebinds to and dissociates from the receptor

before it diffuses into the bulk as: Nreb = (1 − preb)
∞∑

i=0

ipi
reb = preb/(1 − preb), where

preb is the probability that a ligand molecule whi has just dissociated from the receptor
rebinds the receptor before it diffuses into the bulk in the absence of any rebinding inter-
ference; this is the first term on the right-hand side of Fig. 4.4 with Srad(t|eq) = 1, yielding
preb = 1− Srad(∞|σ) = ka/(ka + kD), where kD = 4πσD is the diffusion-limited associ-
ation rate. is gives Nreb = ka/kD . When the rebinding trajectories are short compared
to the time td = k−1

d the ligand molecule is bound to the receptor, we can estimate the
total time ton the receptor is bound to the receptor before it diffuses into the bulk simply as
ton = td(1 + Nreb) (see Fig. 4.5). e effective rate of dissociation is then koff = 1/ton =
kd/(1 + Nreb) = kdkD/(ka + kD), whi is precisely the effective dissociation rate pre-
dicted by our theory, Eq. 4.20. is argument shows that, because the rebindings are so fast,
their non-trivial dynamics can be captured by a simple rescaling of the dissociation rate by
the average number of rebindings. Since receptor binding is an equilibrium process, when
we rescale the dissociaton rate, we must also renormalize the association rate, to obey the
detailed-balance condition n/(1 − n) = ka/kd = kon/koff. It follows that also the associa-
tion rate ka must be scaled with 1+Nreb, yielding kon = ka/(1+Nreb) = kakD/(ka+kD),
whi, indeed, is the effective association rate of our theory, Eq. 4.19.

Another interpretation of the binding dynamics is that the effective dissociation rate
koff is the intrinsic dissociation rate kd times the probability 1 − preb = Srad(∞|σ) =
kD/(ka + kD) that the molecule subsequently escapes into the bulk, while the effective
association rate of a ligandmolecule is the rate at whi themolecule arrives from the bulk at
the receptor, whi is the diffusion limited rate kD , times the probability that it subsequently
binds the receptor, whi is preb = ka/(ka + kD). Also this interpration hinges on the idea
that molecules from the bulk do not interfere with the future dynamics of a ligand molecule
that is in contact with the receptor, be it receptor binding if the molecule came from the
bulk, or receptor rebinding or diffusing into the bulk if it came from the receptor.

Once we have captured the effect of diffusion in the renormalized binding rates, the
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receptor binding dynamics is simply given by the linear equation

dn (t)

dt
= kon (1 − (n (t))) − koffn (t) , (4.25)

from whi the power spectrum Pn(ω) and the error in our estimate of n and c can be
obtained straightforwardly. is indeed yields the result of Eq. 4.21.

t

a)

b)

Nkd
-1

N(kac)
-1

kd-1

(konc)-1

t

Figure 4.5: Cartoon of the coarse-grained model. Panel a) shows a schematic of a typical time trace
of the receptor occupation state n(t). Panel b) shows a time trace in the coarse-grained model.
Here, N is the number of rebindings Nreb plus one.

4.6 Discussion

Using results from the theory on reversible diffusion-influenced reactions of Amgon and
Szabo [120] we have derived the physical limits to the precision of measuring emical
concentrations via the binding of a diffusing ligand to a receptor. Our approa does not
only take ligand diffusion into account, but also the intrinsic binding kinetics at the receptor.
Our principal result, Eq. 4.21, agrees with that of Bialek and Setayeshgar [118] in the sense
that the variance of the concentration estimate consists of two terms, one describing the
effect of the diffusive transport of ligand to and from the receptor and the other the effect of
the intrinsic binding kinetics given that the ligand is in contact. However, while the second
term is identical to that of Bialek and Setayeshgar [118], the first is not. But this term is
identical to that of Berg and Purcell; it differs from that of Bialek and Setayeshgar in that
it contains an additional factor 1/(2(1 − n)), whi takes into account that molecules can
only be counted when the receptor is free.

A comparison of the power spectrum of the receptor occupancy as predicted by our the-
ory against results from particle-based simulations reveals that our theory is very accurate
under biologically relevant conditions. e key assumption of our theory is that aer a lig-
and has dissociated from the receptor, the unbound receptor-ligand pair is surrounded by an
equilibrium distribution of ligand molecules. e success of this assumption lies in the fact
that rebinding trajectories are very short compared to the time the molecule is bound and
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that biologically relevant concentrations are low, whi means that ligand molecules from
the bulk do not interfere with the rebinding trajectories of dissociated ligand molecules.
Under these conditions, the rebindings can be integrated out, yielding effective association
and dissociation rates.

Our theory also gives a fairly accurate prediction for the power spectrum over the full
frequency range, even though our theory is for an unbounded domain while the simulation
box is finite. However, the central assumption of our theory that the unbound receptor-
ligand pair at contact is surrounded by a uniform distribution of ligand, is more likely to hold
in a finite domain, since encounters of ligand molecules with the wall tend to randomize
their positions. One may nonetheless wonder how accurately our description is for the
binding of ligand to a receptor in an unbounded domain—this question might be relevant
for the binding of extracellular ligand to receptors at the outside surface of a cell, although
even the extracellular environment of most, if not all, organisms is not an empty unbounded
space. It is known that concentration fluctuations in an unbounded domain lead to a long
algebraic tail in the correlation function, the magnitude of whi is underestimated by our
theory [125, 126]. Yet, in the limit that the concentration is low the correlation time, whi is
the integral of the normalized correlation function, is accurately predicted by our description
[125, 126]. When the integration time is long compared to the correlation time, only the
integral and not the precise shape of the correlation function determines the error in our
concentration estimate, Eq. 4.7, and we thus expect that our expression for the fundamental
limit also holds in this scenario.

Finally, our observations have important implications for the modeling of intracellu-
lar bioemical networks. ey underscore our earlier observation [121] that when the
cell does not exhibit macroscopic concentration gradients on cellular length scales, the ef-
fect of diffusion can oen be captured in a well-stirred model, whi can then be simu-
lated using the Gillespie algorithm [75] instead of a mumore computationally demanding
particle-based algorithm [121, 123]. In su a well-stirred model, the rapid rebindings are
integrated out and association and dissociation occur in a memoryless fashion, with expo-
nentially distributed waiting times with mean k−1

on and k−1
off , respectively. is is a simplifi-

cation — at short times the association-time distribution is algebraic due to the rapid rebind-
ings while only at times that are long compared to the time to travel the cell diameter the
association-time distribution is memoryless — but it is an accurate one: the high-frequency
noise from the rapid rebindings is typically filtered by the network downstream; only the
low-frequency noise obeying exponential statistics is significantly propagated downstream.
In fact, this model has the correct zero-frequency limit of the power spectrum, whi de-
termines how accurate the receptor can be read out and how mu noise is propagated
down the signaling pathway. However, we emphasize that this approa of integrating out
the rebindings cannot be used when the rebindings can ange the future dynamics of the
network, as in the MAPK pathway where a single rebinding event can cause irreversible
modification of a reactant [123]. Indeed, in su systems that employ multi-site protein
modification, rebindings can qualitatively ange the average macroscopic behavior of the
system [123]. ese systems have to be treated as reaction-diffusion systems and modeled
at the particle level, even when they are uniform at the cellular scale.
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4.A Supplementary Information

4.A.1 The correlation function

e time-average of an observable A (t) [127] is defined as

AT =
1

T

∫ T

0
dtA (t) , (A4.1)

and the variance of the time-averaged mean σ2
AT

is

σ2
AT

(T ) =
〈

A2
T

〉
−
(
1

T

∫
〈A (t)〉 dt

)2

(A4.2)

=
1

T 2

∫ T

0

∫ T

0
dtdt′ 〈A (t)A

(
t′)〉− 〈AT 〉2 (A4.3)

=
1

T 2

∫ T

0
dt

∫ T −t

−t
dτ
〈
A (0)A

(
t′ − t

)〉
− 〈AT 〉2 (A4.4)

=
1

T 2

∫ T

0
dt

∫ T −t

−t
dτ 〈A (0)A (τ)〉 − 〈A〉2 , (A4.5)

where for Eq. A4.4 the process is assumed to be stationary and we define τ = t′ − t. e
correlation function for this observable A (t) is defined as

C
(
t, t′) = 〈(A (t′)− 〈A〉

)
(A (t) − 〈A〉)

〉
. (A4.6)

C (τ) = 〈(A (τ) − 〈A〉) (A (0) − 〈A〉)〉 (A4.7)

= 〈A (0)A (τ)〉 − 〈A〉2 . (A4.8)

Substitution of Eq. A4.8 into Eq. A4.5 leads to

σ2
AT

(T ) =
1

T 2

∫ T

0
dt

∫ T −t

−t
dτC (τ) +

1

T

∫ T

0
〈A〉2 − 〈A〉2 (A4.9)

=
1

T 2

∫ T

0
dt

∫ T −t

−t
dτC (τ) . (A4.10)

In the limit of small T and large T a solution for Eq. A4.10 can be obtained

σ2
AT

(0) = C (0) = σ2
A. (A4.11)

lim
T →∞

≈ lim
T �τA

= σ2
AT

(T � τA) =
1

T 2

∫ T

0
dt

∫ ∞

−∞
dτC (τ)

=
2σ2

AτA

T
, (A4.12)
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where we used the fact that lim
τ�τA

C (τ) = 0. We introduced the correlation time τA in

Eq. A4.12 whi is commonly defined as

τA ≡ 1

σ2
A

∫ ∞

0
C (τ) dτ . (A4.13)

As an example, for a process A (t) with exponential waiting times, C (τ) ∝ e−kτ and∫
C (τ) dτ ∝ k−1 ∼ τA.

e power spectrum (PA (ω)) and correlation function are related through the Fourier
Transform

CA (τ) =
1√
2π

∫ ∞

−∞
dωPA (ω) eiωτ , (A4.14)

PA (ω) =
1√
2π

∫ ∞

−∞
dτCA (τ) e−iωτ , (A4.15)

su that

CA (0) =
1√
2π

∫ ∞

−∞
dωPA (ω) = σ2

A, (A4.16)

PA (0) =
1√
2π

∫ ∞

−∞
dτCA (τ) ≡ 2σ2

AτA = Tσ2
AT

, (A4.17)

where τA is the correlation time (see Eq. A4.13).

Closely related to the correlation time is the relaxation function A (τ) for a small per-
turbation close to equilibrium

A (τ) ≡
〈A (τ)〉pert − 〈A〉
〈A (0)〉pert − 〈A〉

, (A4.18)

where it can be shown [128], following the fluctuation-dissipation theory, that the relaxation
function is equal to the normalized correlation function

A (τ) =
C (τ)

C (0)
. (A4.19)

In other words, the average relaxation from an external perturbation close to equilibrium to
the equilibrium distribution is indistinguishable from fluctuations in the equilibrium distri-
bution. We thus have ∫

dτA (τ) = τA. (A4.20)
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Next, we note the relation between the Laplace transform and the Fourier transform

F (CA (τ)) = PA (ω) (A4.21)

= Re [L (CA (t))] + Re
[
L (CA (t))†

]
(A4.22)

= Re
[
ĈA (s = iω)

]
+ Re

[
ĈA (s = −iω)

]
(A4.23)

= 2Re
[
ĈA (s = iω)

]
. (A4.24)

e correlation time is therefore related to the Laplace transform of the correlation function
by

σ2
AτA = PA (0) (A4.25)

= Re
[
Ĉ (s = iω)

]
ω=0

+ Re
[
Ĉ (s = −iω)

]
ω=0

(A4.26)

= 2Re
[
Ĉ (s = iω)

]
ω=0

. (A4.27)

Lastly, we provide a straightforward relation between the integral of an arbitrary func-
tion and the Laplace transform of this function

Â (s = 0) =

∫ ∞

0
A (t) . (A4.28)

4.A.2 Derivation of Eq. 4.13

In this section we derive the correlation function and time for a binary switing process,
where a single R particle is surrounded by multiple B particles. For a binary switing
process

R + B
ka−⇀↽−
kd

R∗ with (R,R∗ = 0, 1) , (A4.29)

we can write the correlation function for the state n of A∗ as

Cn (τ) = p0∗
(

p∗|∗ (τ) − p0∗
)
, (A4.30)

where p0∗ is the equilibrium probability for the complex to exist and p∗|∗ (τ) is the probability
that the complex A∗ exist at time t = τ , given that it was present at time t = 0. For every
two-state process we write

p∗|∗ (τ) = 1 − p0|∗ (τ) (A4.31)

= 1 − Srev (τ |∗) , (A4.32)
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where Srev (τ |∗) is the survival probability for the particle R - the probability that A is free
at t = τ given that it was bound at t = 0. In Laplace space

p̂∗|∗ (s) = s−1 − Ŝrev (s|∗) , (A4.33)

su that we have

Ĉn (s) = p0∗

(
s−1 − Ŝrev (s|∗) − p0∗

s

)
. (A4.34)

e initial value theorem states that the s → ∞ limit of Ĉn in the Laplace domain is equal
to the t → 0 limit of the C (t) in the time domain, thus

lim
s→∞

sĈn (s) = Cn (0) = σ2
n. (A4.35)

For a binary process the variance is

σ2
n = p0∗

(
1 − p0∗

)
= n (1 − n) . (A4.36)

From Eq. A4.34 and Eq. A4.36 it follows that lim
s→∞

sŜrev (s|∗) = 0. is of course is true by

definition of the survival probability, but it can be used as a sanity e in future expres-
sions.

e Laplace transform of Eq. 4.10 leads to

L
[
Srev (t|∗) = kd

∫ t

0

[
1 − Srev

(
t′|∗
)]

Srad
(
t − t′|σ

)
dt′
]

(A4.37)

⇒ sŜrev (s|∗) = kdŜrad (s|σ)
1 + kdŜrad (s|σ)

. (A4.38)

For non-interacting B particles, we follow Agmon and Szabo [120] and approximate the
survival probability as

Srad (t|σ) = Srad (t|eq)Srad (t|σ) , (A4.39)

where Srad (t|σ) is the survival probability for the geminate R-B pair at a distance a and
Srad (t|eq) is the survival probability for R in a sea of equilibrated B particles. In the main
text we elaborate on the assumptions underlying this approximation.

We rewrite the survival probability for a particle R surrounded by an equilibrated dis-
tribution of B-particles to the survival probability at contact. Using the detailed balance
requirement for the process and the baward Smoluovski equation we write [120]

krad (t) = kaSrad (t|σ) . (A4.40)



4.A Supplementary Information 121

Using the exact relation between the survival probability and the rate coefficient (Eq. A4.41)

Srad (t|eq) = e
−c
∫ t
0

krad(t
′)dt′ , (A4.41)

and Eq. A4.40 we obtain for the time-derivative of Srad (t|eq)

dSrad (t|eq)
dt

= −ckrad (t)Srad (t|eq) (A4.42)

= −ckaSrad (t|σ)Srad (t|eq) (A4.43)

= −ckaSrad (t|σ) . (A4.44)

e Laplace transform of Eq. A4.44 is

s ˆSrad (s|eq) − 1 = −ckaŜrad (s|σ) . (A4.45)

We substitute the Laplace transform of Eq. A4.44 in Eq. A4.38 and combined with Eq. A4.33
we obtain

1 − sŜrev (s|∗) =
cKeq

1 + cKeq − sŜrad (s|eq)
, (A4.46)

where Keq is the equilibrium constant ka/kd. Substituting this result in Eq. A4.34, we derive

Ĉn (s) =
n

s

(
1 − n − sŜrev (s|∗)

)
=

n

s

(
1 − n +

(
cKeq

1 + cKeq − sŜrad (s|eq)
− 1

))

=
σ2

n

s

1 − 1 − sŜrad (s|eq)

(1 − n)
(
1 + cKeq − sŜrad (s|eq)

)


= σ2
n

nŜrad (s|eq)
1 − (1 − n) sŜrad (s|eq)

. (A4.47)

To continue an expression for Ŝrad (s|eq) is required. A general expression for the Laplace
transform of Eq. A4.41 is not available. For small c, however, the Laplace transform can be
approximated

Srad (t|eq) = e
−c
∫ t
0

krad(t
′)dt′ (A4.48)

≈ 1 − c

∫ t

0
krad

(
t′) dt′ +

1

2

(
c

∫ t

0
krad

(
t′) dt′

)2

+ . . . (A4.49)

is approximation in general is valid if the exponent is small, whi is likely at short times,
or if either a very small concentration c is present or if ka � 1, kD � 1 su that kon � 1,
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since lim
t→∞

krad ≈ kon. We note here that for longer times t, the expansion becomes less

accurate. Using the assumption of a small concentration we Laplace transform Eq. A4.49

Ŝrad (s|eq) = s−1 − s−1ck̂rad (s) + . . . (A4.50)

≈ s−1
(
1 + ck̂rad (s)

)−1
, (A4.51)

where a linearization of Eq. A4.51 is equal to Eq. A4.50. We substitute k̂rad [120]

k̂rad =
kakD

s

1 + τ (s)

ka + kD (1 + τ (s))
, (A4.52)

in Eq. A4.51

lim
c→0

Ŝrad (s|eq) ≈ ka + kD (1 + τ (s))

s (ka + kD (1 + τ (s))) + kackD (1 + τ (s))
, (A4.53)

with τ (s) = σ
√

s/D
We substitute Eq. A4.53 in Eq. A4.47 and take the limit s = 0, since this corresponds

2Re
[
Ĉn (s = 0)

]
= 2σ2

nτn (see Eq. A4.25)

lim
c→0

Ĉn (s = 0) = σ2
nnŜrad (0|eq) = σ2

nn
ka + kD

kackD
(A4.54)

= σ2
n

ka + kD

(kac + kd) kD
=

PA (ω = 0)

2
, (A4.55)

and the correlation time τn is

τn =
ka + kD

(kac + kd) kD
. (A4.56)
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C 5

P L

In recent years both experimentalists and theorists have begun to appreciate that
cellular decision making can be performed at the level of a single molecule. Recep-
tor proteins that bind two types of ligand can act as logic gates, initiating different
cellular responses depending on whi combination of ligands is present. Here we
investigate the versatility of receptor function by applying a well known statistical
meanical model to receptors whi bind either one or two ligands, and their asso-
ciated dimers. Notably, we find that a single heterodimer can realize any of the 16
possible logic gates, including the XOR gate, by variation of bioemical parameters.
We then investigate versatility by recombination, asking whether a set of only three
receptors with fixed parameters can encode the four functionally unique logic gates
(OR, AND, ANDNOT, and XOR) simply by forming the possible dimer combinations. An
exhaustive sear reveals that the simplest set (two single-ligand receptors and one
double-ligand receptor) can realize several different groups of three gates, a result for
whi the previous analysis of single receptors and dimers provides a clear interpre-
tation. Both results underscore the surprising functional freedom readily available
to cells at the single-molecule level.

Based on manuscript W.H. de Ronde, P.R. ten Wolde and A.M. Mugler. Protein Logic In prepara-
tion.
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5.1 Introduction

Cells depend on cues from their environment to initiate behaviors, including growth, divi-
sion, differentiation, and death. For this purpose, cells have evolved surface receptors that
detect environmental signals and relay them to their interior. Intracellular proteins respond
to the states of these receptors, triggering a network of bioemical interactions that ulti-
mately leads to a specific action. Although a particular environmental signal oen elicits
a particular cellular response, it is well established that signals can also act in combination
[51, 129, 130, 131]. In this case the response triggered when two signals are present can be
distinct from the responses triggered by ea signal alone. e cell thereby acts as a logic
gate, integrating two inputs to produce a single output. e performance of logical compu-
tations by cells has been studied in depth both experimentally, e.g. for engineered circuits
[132, 133] and molecules [134, 135, 136], and theoretically, e.g. for bioemical networks
[137] and gene regulation [138, 139, 140].

Remarkably, it is becoming clear that su logical computations can be encoded entirely
within a single receptor molecule [84]. at is, while some receptors respond quite specif-
ically to a single type of signaling molecule (or ligand), many respond to multiple ligands
[141, 142, 143, 144]. us, the local concentrations of two or more ligands can act as the log-
ical input, while the activity state of the receptor acts as the logical output. Moreover, many
receptors exist in the form of dimers or larger oligomers. For example, G Protein-Coupled
Receptors (GPCR) and ErbB receptors can ea form dimers consisting of receptors of the
same type (homodimers) or a receptor of ea type (heterodimers) [141, 145, 146]. One might
intuit (and indeed we will see) that a heterodimer, in particular, is well poised to act as a
logical integrator of two ligand signals. Both of these meanisms —multi-ligand specificity
and dimerization — allow for the possibility that a cell encodes decisions directly at the de-
tection level, even before further intracellular processing leads to the ultimate phenotypic
response.

e focus of this study is to elucidate the functional capabilities available to a cell di-
rectly at the level of its receptors. We use a statistical meanical model to investigate the
versatility of logical functions aainable by single receptor monomers or dimers. Versatil-
ity is explored in two contexts. First, for a given monomer or dimer, we identify the set of
logical functions that can be explored by variation of its bioemical parameters. Notably,
we find that all 16 possible logic gates can be performed by a single dimer, a result that
we support analytically. Second, motivated by the fact that receptors can diffuse, bind, and
unbind on the cell surface [147], we ask whether a minimal set of receptor monomers with
fixed parameters can perform a maximally distinct set of logical functions simply by form-
ing the possible dimer combinations. We find several parameter seings at whi dimers
realize three out of four unique functions, a result for whi the first analysis provides a
clear interpretation. ese results make clear that single receptor molecules can encode di-
verse functions that cells can exploit both on long evolutionary timescales, via parameter
exploration, or on the short timescales of cell signaling, via diffusive recombination.
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Figure 5.1: Setup. Top row: receptor monomers can bind ligand 1 (U), ligand 2 (V), or both com-
petitively (W). Middle row: by dimerizing, receptors gain the capacity to function as logic gates.
Boom row: the table defines the 16 possible gates in terms of binary input and output; below,
for the four functionally unique gates, we plot the continuous analogs given by the statistical
mechanical model.

5.2 Methods

We study receptor function by appealing to an equilibrium statistical meanical model.
Statistical meanical models have been used quite fruitfully in the study of many molecu-
lar biology problems, including receptor activity and gene regulation [148]. In the case of
receptors, several models are well known. All assume that a receptor can exist in either an
active (A) or an inactive (I) state, and that binding of a ligand anges the receptor bias for
ea state. In the Koshland-Nemethy-Filmer (KNF) model, ligand binding directly activates
the receptor [149]. at is, the bias is complete: a ligand-bound receptor is active, and an
unbound receptor is inactive. is condition is relaxed in the Monod-Wyman-Changeux
(MWC) model, in whi ligand-bound receptors can be in either state, but coupled recep-
tors swit between states in synrony [150]. Finally, in the conformational spread (CS)
model [151], both conditions are relaxed: a ligand-bound receptor can be in either state,
and coupled receptors can be in different states. Because we are interested in the minimal
model that can capture the ability to perform logic gates, we adopt the MWC model; the
KNF model prohibits certain logic gates by construction, while the CS model allows excess
parametric freedom (clearly, what can be aieved by the MWC model can be aieved by
the CS model). Furthermore, the MWC model has been shown to agree with experiments
on receptors [87, 152].

e input in ourmodel is the pair of concentrations [S1] and [S2] of two different ligands.
e output is the probability for a receptor monomer or dimer to be in its active state. We
consider three monomer types and the associated dimers (Fig. 5.1): a monomer that binds
ligand 1 (U), one that binds ligand 2 (V), and one that binds both ligands (W). In the last case,
ligand binding is competitive: there is only one binding poet, so only one ligand type can
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bind at a time. Noncompetitive binding, in whi both ligand types can bind simultaneously,
is captured by the QUV dimer (Fig. 5.1).

e probability pA for a receptor to be in the active state is computed from the partition
functions, whi enumerate all possible ways a receptor can be in either the active (ZA) or
inactive (ZI ) state:

pA =
ZA

ZI + ZA
. (5.1)

e explicit forms of the partition functions under the MWC model are presented as ea
monomer and dimer is discussed in the Results section. For intuition, we provide an example
here: the partition functions for monomer W are

ZA = ω0

(
1 + qA

1 + qA
2

)
, (5.2)

ZI = 1 + qI
1 + qI

2 , (5.3)

where ω0 = e−E0/kBT is the Bolmann probability corresponding to the energy difference
E0 between the active and inactive state, and qj

i = [Si]/Kj
i is the ratio of the concentration

of ligand i ∈ {1, 2} to the dissociation constant in activity state j ∈ {A, I}. In Eq. 5.2, the
three terms correspond to the receptor being active when no ligand is bound, when ligand
1 is bound, and when ligand 2 is bound, respectively. e same holds for Eq. 5.3 with the
receptor being inactive.

e dependence of pA on [S1] and [S2] defines the receptor’s function (Fig. 5.1, boom
row). Functions are categorized based on the idealized behavior prescribed by the 16 possi-
ble two-input binary logic gates (Fig. 5.1). Mathematically, the function approaes binary
logic when the output is either minimal (pA → 0) or maximal (pA → 1) in ea of the four
states defined by ea input being absent ([Si] = 0) or present ([Si] > 0). Numerically, when
varying parameters to asses whether a receptor can realize a particular logic gate, we use an
evolutionary algorithm based on the Wright-Fisher model [80, 81]. Briefly, the difference
between pA and the binary logic gate is evaluated over a grid of points and used to define a
“fitness”. Parameters for whi pA beer approximates the logic gate yield a higher fitness,
permiing optimization. A detailed description of the optimization procedure is provided
in App. 5.A.1.

5.3 Results

First, we identify the logic gates that ea receptor monomer and dimer can perform by pa-
rameter variation. Here, several derived analytic constraints support the numerical results.
en, we investigate the extent to whi a set of monomers can access distinct logic gates
by dimerizing. Several combinations of distinct gates are possible, a finding for whi the
first results provide a clear interpretation.
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Figure 5.2: Functional versatility by parameter variation. For all monomers and dimers, we show
the possible functions aainable by varying parameters. Aainability is assessed by numerical
optimization and interpreted based on analytic constraints derived in the text.

5.3.1 Functions accessible by parameter variation

Figure 5.2 shows the set of logic gates that ea monomer and dimer can perform, as de-
termined by numerical optimization of model parameters. e most striking feature is that
one of the dimers can perform all 16 possible gates. is and the other numerical results
in Fig. 5.2 can be understood intuitively by appealing to analytic results derived from the
underlying model, whi we will describe in turn for ea monomer and dimer.

Monomers
e first two monomers, receptors U and V, respond to only one input ea. erefore, they
are trivially constrained to gates whi depend on neither input (ALL, NONE) or on only one
input (YESSi

, NOTSi
). Receptor W, on the other hand, allows competitive binding of both

inputs, and can therefore realize several nontrivial gates.
At this point it is useful to observe that the gates exist in antagonistic pairs (a gate and its

inverse), shown consecutively in Fig. 5.2: (AND, NAND), (OR, NOR), etc. Any receptor that can
perform one member of a pair can perform the other, simply by inverting certain parameter
values. Furthermore, several gates are equivalent under reversal of the two ligands (those
with subscripts in Fig. 5.2): (ANDNS1 , ANDNS2 ), (ORNS1 , ORNS2 ), etc. Again, any receptor that
can perform one of these can perform the other, simply by switing certain parameter val-
ues (corresponding to exanging the effect of S1 and S2). Eliminating these redundancies,
we arrive at four unique gates that respond nontrivially to both inputs:

AND, OR, ANDNS1 , XOR. (5.4)

We will consider only these four unique gates from this point on.
e third monomer, receptorW, whose partition functions are given in Eqs. 5.2-5.3, can

realize two of the four unique gates: OR and ANDNS1 . e OR-gate follows straightforwardly
from the situation where both ligands activate the receptor individually; their combination
will then activate it as well. e ANDNS1-gate can be formed if ligand 1 binds more strongly
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than ligand 2 (qj
1 � qj

2), but ligand 1 only weakly biases the receptor toward the active state
(qA
1 ∼ qI

1 ), while ligand 2 strongly biases it (qA
2 � qI

2 ). In this scenario, a receptor that is
inactive in the absence of both ligands (ω0 � 1) will only be active in the presence of ligand
2 and not 1.

Receptor W cannot realize the other two unique gates, AND and XOR. Both gates require
a cooperative effect when both ligands are present: in the AND-gate, neither ligand activates
the receptor individually, but both activate it together; in the XOR-gate, ea ligand activates
the receptor individually, but both suppress activation together. Su cooperative effects
are not possible with competitive binding. As we will see next, dimerization is required to
perform these gates.

Dimers
e three monomers admit six possible dimer combinations — three homodimers and three
heterodimers. e homodimersQUU andQVV respond to only one input ea and are there-
fore trivially constrained like monomers U and V. Moreover, heterodimers QUW and QWV
are equivalent upon ligand exange and can therefore realize equivalent sets of logic gates
upon parameter variation. is leaves three dimers that can realize unique sets of logic gates
upon parameter variation: QUV, QUW, and QWW.

e first dimer, receptor QUV, is the simplest heterodimer: it is formed by combining
monomer U, whi responds only to ligand 1, and monomer V, whi responds only to
ligand 2. Unlike receptor W, whi is limited to competitive binding, the dimeric receptor
QUV has two binding poets and therefore allows noncompetitive (i.e. cooperative) binding.
Accordingly, its partition functions extend those of receptor W (Eqs. 5.2-5.3) to include a
cooperative term:

ZA = ω0(1 + qA
1 + qA

2 +

cooperative︷ ︸︸ ︷
ω12qA

1 qA
2 ), (5.5)

ZI = 1 + qI
1 + qI

2 + ω12qI
1qI

2 , (5.6)

e cooperative term contains an additional Bolmann factor ω12 = e−E12/kBT corre-
sponding to the cooperative binding energy E12, whi could originate from, e.g., a confor-
mational ange of the receptor upon binding of one ligand that opens the binding poet
for the other ligand. For example, in the actin regulatory protein N-WASP, the binding affin-
ity of ea of its inputs, Cdc42 and PIP2, is increased by a factor of ∼400 when the other
input is bound [130].

Receptor QUV can realize three of the four unique gates: OR, ANDNS1 , and AND. e OR
and ANDNS1 gates follow straightforwardly from the fact that QUV reduces to W for no
cooperativity (ω12 = 0), and receptor W can realize these gates as previously discussed.
e AND-gate is formed when the receptor is inactive in the presence of ea ligand alone
but, due to the cooperative interaction, is active in the presence of both ligands together.
Receptor QUV cannot realize the XOR-gate: if the receptor is activated by either one of the
two ligands, it must also be activated by both ligands together. e cooperative interaction
enhances the effect that ea ligand individually has on the activation of the receptor, but it
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cannot reverse it.

e intuition behind why receptor QUV can realize the AND-gate can be quantified by
considering the constraints that an AND-gate places on the partition functions:

S1 S2 pA

0 0 0 ω0 � 1

1 0 0 ω0

(
1 + qA

1

)
� 1 + qI

1

0 1 0 ω0

(
1 + qA

2

)
� 1 + qI

2

1 1 1 ω0

(
1 + qA

1 + qA
2 + ω12qA

1 qA
2

)
� 1 + qI

1 + qI
2 + ω12qI

1qI
2

(5.7)

Here, we have recognized that a low output requires ZA � ZI (see Eq. 5.1); therefore,
the first three lines reflect that in an AND-gate the output is low in the first three input
conditions. Similarly, a high output requires ZA � ZI , whi is reflected in the last line.
Receptor QUV can realize the AND-gate precisely because the constraints in Eq. 5.7 can be
met simultaneously. For example, taking for illustration the simplifying case of intermediate
cooperativity (ω12 & 1) and symmetric, saturating ligand concentrations (qj

1 = qj
2 � 1),

Eq. 5.7 reduces to

1 � 1/
√

ω0 � qA
1 /qI

1 � 1/ω0. (5.8)

Indeed, we see that the AND-gate requires a bias upon ligand binding that is too weak to
activate the receptor individually (qA

1 /qI
1 � 1/ω0), but strong enough to activate the re-

ceptor cooperatively (qA
1 /qI

1 � 1/
√

ω0). e strength of the cooperativity influences the
quantitative properties of the AND-gate: an increase in ω12 shis the transition region of the
gate to smaller ligand concentrations, as indeed observed in studies of the AND-like N-WASP
protein [130].

e second dimer, receptor QUW, is also a heterodimer: it is formed by combining
monomer U, whi responds only to ligand 1, and monomer W, whi responds competi-
tively to both ligands. e partition functions for this receptor are

ZA = ω0

(
1 + qA

1,U + qA
1,W + qA

2 + ω11qA
1,U qA

1,W + ω12qA
1,U qA

2

)
, (5.9)

ZI = 1 + qI
1,U + qI

1,W + qI
2 + ω11qI

1,U qI
1,W + ω12qI

1,U qI
2 . (5.10)

Here, since ligand 1 can bind to either monomerU orW, we distinguish these cases with the
second subscript on q

j
1. ere are now two cooperative terms, corresponding to the cases

where monomersU andW bind, respectively, ligands 1 and 1 (ω11), or ligands 1 and 2 (ω12).
Eqs. 5.9-5.10 make clear that receptor QUW reduces to receptor W (Eqs. 5.2-5.3) in the limit
qj
1,U → 0, and to receptor QUV (Eqs. 5.5-5.6) in the limit qj

1,W → 0.
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Receptor QUW can realize all four unique gates (and therefore all 16 possible gates;
Fig. 5.2). e OR, ANDNS1 , and AND gates follow straightforwardly from the fact that re-
ceptor QUV, whi can realize these gates, is a limiting case. e XOR-gate is less trivial.
Below we offer an intuitive argument for why receptor QUW can realize an XOR-gate, and
in App. 5.A.2 we prove analytically that the output can be a nonmonotonic function of the
two inputs for this receptor, whi is required for an XOR-gate.

e XOR-gate is formed when ea ligand individually activates the receptor by binding
to monomer W, but when both ligands are present, ligand 1 is outcompeted and thus binds
to monomer U, in turn suppressing activation. It is instructive here to describe this process
in more detail. Suppose that ligand 1 promotes activation when bound toW but suppresses
activation when bound to U. Further, suppose that ligand 1 binds more strongly to W than
to U, su that in the presence of ligand 1 alone, the receptor is active. Now suppose that
ligand 2 promotes activation when bound to W. Since ligand 2 can only bind to W, in
the presence of ligand 2 alone, the receptor is also active. Finally, suppose that ligand 2
“interferes” with ligand 1, i.e. binds more strongly to W than ligand 1 does. en, in the
presence of both ligands, ligand 2 binds toW, leaving ligand 1 to bind to U. If U suppresses
activation more strongly than W promotes activation, then in the presence of both ligands,
the receptor is inactive. e resulting logic is the XOR-gate.

e third dimer, receptor QWW, is a homodimer: it is formed by combining two W
monomers, ea of whi responds competitively to both ligands. e partition functions
for this receptor are

ZA = ω0

(
1 + 2qA

1 + 2qA
2 + ω11qA

1 qA
1 + 2ω12qA

1 qA
2 + ω22qA

2 qA
2

)
, (5.11)

ZA = 1 + 2qI
1 + 2qI

2 + ω11qI
1qI

1 + 2ω12qI
1qI

2 + ω22qI
2qI

2 . (5.12)

Here, the factors of two account for the fact that ea ligand can be bound to either of two
symmetric monomers. ere are now three cooperative terms, corresponding to the cases
where both monomers bind ligand 1 (ω11), both bind ligand 2 (ω22), or one binds ligand 1
and the other binds ligand 2 (ω12).

Receptor QWW can realize three of the four unique gates: OR, ANDNS1 , and AND. e OR
and ANDNS1 gates follow straightforwardly from the fact that ea monomer alone can real-
ize these gates as previously discussed. e AND-gate relies on strong suppression of cooper-
ation between monomers if they are bound to the same ligand type (i.e. ω11 → 0,ω22 → 0);
this suppression prevents activation when only one ligand is present. In fact, this limit re-
duces Eqs. 5.11-5.12 to Eqs. 5.5-5.6 (up to factors of 2), meaning the AND-gate constraint,
Eq. 5.8, also holds here under the same conditions for whi it was derived. Receptor QWW
cannot realize the XOR-gate: because the individual monomers are identical, no negative
interference is possible, as it is for receptor QUW.

5.3.2 Functions accessible by recombination

In the previous section we identified the logic gates accessible by individual receptors via
variation of intrinsic bioemical parameters. In this section we ask a second question. Rec-
ognizing that receptors bind and unbind to the cell membrane, diffuse within the membrane,
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and bind to ea other (Fig. 5.3a), we here seek the logic gates that a set of monomers can
realize — at fixed parameters — simply by forming the possible dimer combinations. is
question is key to functional control at the single-molecule level: if diverse logic gates can
be realized by a small set of monomers, cellular function could be strongly tuned by simply
expressing a particular pair of monomers in abundance over the others. Alternatively, a sig-
naling meanism su as covalent modification could determine when a particular dimer
was active, su that even if all dimer combinations were represented simultaneously on the
membrane, only one would dominate the functional response of the cell. is question is
also critically related to the allenge that all cells face: to encode reliable responses using
limited resources (here, a limited set of monomers) and on short timescales (here, set by
expression and diffusion).

e three monomers we study form four functional dimers: QUV,QUW,QWV, andQWW
(the dimersQUU andQVV respond to only one input ea and are neglected; additionally we
neglect the monomer W itself although it is functional because its behavior is captured by
QWW). is fact leads to the enticing question of whether there exist parameters at whi
the four dimers perform the four unique logic gates (Eq. 5.4). Su a finding would be highly
nontrivial: all monomers are present in at least two dimers, and therefore the performance
of a particular logic gate by one dimer places heavy constraints on the parameters of the
other dimers.

An exhaustive sear, in whi we numerically optimize for ea of the 4! = 24 dimer-
to-logic gate mappings in turn (App. 5.A.1), suggests that no parameter set exists at whi
all four unique logic gates are performed. Moreover, replacing any subset of gates with
the corresponding inverse gates and repeating gives the same result in ea of the 24 = 16
cases. Interestingly, the result seems to be due to the fact that the parameters whi support
the XOR-gate in receptor QUW (or its counterpart QWV) prohibit the AND-gate in any of the
other receptors. Next we support this numerical observation with an intuitive argument.

Suppose that receptor QUW performs an XOR-gate. As described in the previous sec-
tion, the XOR-gate requires that when ligand 1 is present alone, it activates the receptor by
binding to monomer W. Since the AND-gate requires the opposite behavior, namely that
the receptor is inactive when ligand 1 is present alone, then the AND-gate cannot be formed
by any receptor in whi ligand 1 only binds to W. is group includes receptors QWW
and QWV, leaving only receptor QUV. en, as also described in the previous section, the
XOR-gate requires that ligand 1 suppresses activation when bound to monomer U. Since
the AND-gate requires that the receptor is active when both ligands are present, in receptor
QUV this suppression would have to be overpowered by activation via ligand 2 binding to
V. However, if this were the case, the receptor would surely be active in the presence of lig-
and 2 alone, whi is inconsistent with the behavior of an AND-gate. ese arguments make
clear that if receptor QUW performs an XOR-gate, no other receptor can form an AND-gate.
e same arguments, but with the ligands exanged, hold if receptor QWV performs the
XOR-gate instead of receptor QUW. Since receptors QUW and QWV are the only receptors
that can perform the XOR-gate, we conclude that the XOR and AND gates are not mutually
accessible by recombination of monomers U, V, and W at fixed parameters.

Even though all four unique logic gates cannot be performed at fixed parameters, we
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do find six parameter sets at whi unique groups of three logic gates are performed by
three of the dimers. We denote these parameter sets as ϕk , for k ∈ {1, 2, . . . , 6}, and show
the logic gates and the dimers that perform them in Fig. 5.3b. We stress that this result
is still nontrivial: two of the groups are performed by receptors QWW, QUW, and QWV,
whi all contain monomer W; additionally, two groups are performed by receptors QUW,
QWV, and QUV, in whi ea monomer is represented in two of the three dimers. Due
to the high degree of monomer overlap in both cases, one might have expected the three
dimers to be constrained to similar functionality at fixed parameters; instead, we find that
three unique logic gates can be formed. Further, Fig. 5.3b reveals that all four logic gates are
represented among the six groups (but, as expected, never XOR and AND in the same group).
Finally, the optimal solutions shown in Fig. 5.3b are robust to parametric perturbation: as
shown in App. 5.A.3, for all ϕk , most random perturbations inwhi eaparameteranges
by an average of ∼ 20% ange the fitness of none of the three logic gates by more than
10%. All of these features underscore the functional versatility available to cells by dimeric
recombination.

In the remainder of this section, we provide for parameter sets ϕ1 and ϕ2 the intuition
behind how the three logic gates in Fig. 5.3b are performed by the corresponding receptors.
In App. 5.A.4, we provide similar intuition for parameter sets ϕ3, ϕ4, ϕ5, and ϕ6. Further-
more, in App. 5.A.4, we argue why the groups observed in Fig. 5.3b (and their counterparts
obtained upon ligand exange) are the only groups of three unique logic gates that one
expects to observe under this model.

Parameter set ϕ1 (Fig. 5.3b, first row) corresponds to a case where ea ligand only
weakly promotes activation in the presence of monomer W. is feature allows receptor
QWW to remain inactive when ea ligand is present individually but become activated
when both ligands are present together, forming the AND-gate. Furthermore, ligand-bound
U both promotes activation and strongly enhances the binding of ligand 2 toW. is feature
allows receptor QUW to perform the OR-gate: when ligand 1 is present alone, it promotes
activation by binding to U; when ligand 2 is present in abundance and ligand 1 is present
only in a small amount (and thus still in the “o” state), the small amount of ligand 1 is
nonetheless sufficient to promote activation via enhanced binding of ligand 2 to W; and
when both ligands are present in abundance, the two effects combine, resulting in activation.
Finally, ligand-bound V both suppresses activation and strongly enhances the binding of
ligand 1 toW. is feature allows receptorQWV to perform the ANDNS2 gate: when ligand 2
is present it suppresses activation via V, independent of ligand 1; but when ligand 1 and not
(very mu o) ligand 2 is present, the small amount of ligand 2 strongly enhances binding
of ligand 1 to W, thus promoting activation.

Parameter set ϕ2 (Fig. 5.3b, second row) corresponds to a case where ligand-bound W
promotes activation. is feature is sufficient for receptor QWW to perform the OR-gate.
Furthermore, ligand 2 binds more strongly to V than to W, and ligand-bound V suppresses
activation more strongly than ligand-bound W promotes activation. ese features allow
receptor QWV to perform the ANDNS2 gate, since only in the presence of ligand 1 and not
2 will activation be promoted via W and not suppressed via V. Finally, (i) ligand 1 binds
more strongly toW than to U, (ii) ligand 2 binds more strongly toW than ligand 1 does, and
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(iii) ligand-bound U suppresses activation more strongly than ligand-bound W promotes
activation. ese are the precise features that allow receptor QUW to perform the XOR-gate,
as outlined in detail in the previous section.
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Figure 5.3: Functional versatility by recombination. a) Given the three monomer types, four func-
tional units can be formed by receptors diffusing and dimerizing on the membrane (arrows). b)
Four parameter sets ϕi are shown at which three of the four dimers perform functionally unique
logic gates.

5.4 Discussion

We have used a statistical meanical model to investigate the versatility of receptor func-
tion in two contexts: (i) the ability of a single receptor to access logical functions by param-
eter variation, and (ii) the ability — at fixed parameters — for a set of receptor monomers
to access logical functions by dimerizing. e first context is arguably important on evolu-
tionary timescales, on whi mutations and environmental pressures act to ange a cell’s
intrinsic bioemical parameters. e second context is more critical at short timescales,
e.g. for cell signaling, during whi gene expression and diffusion can potentially ange
cellular function at the molecular level by favoring the dimerization of particular receptors
over others.

In the first context, we find that a single heterodimer, receptor QUW, can realize all 16
possible logic gates by parameter variation. Our analysis reveals that su complete func-
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tional freedom, while perhaps surprising, is in fact quite intuitive for this receptor. In partic-
ular, receptor QUW performs the most allenging function, the XOR-gate, by exploiting an
interference between the two ligands (i.e. when both ligands are present, one outcompetes
the other for the activating binding poet, ultimately causing suppression). Su a non-
monotonic response requires competitive binding and asymmetric activation biases, both
of whi are possible by heterodimerization.

In the second context, we find that the simplest combination of monomers that yields
four functional dimers cannot in fact perform the four unique logic gates at fixed param-
eters, an observation we explain by arguing that the AND-gate and the XOR-gate are not
mutually accessible. Nonetheless, an exhaustive numerical sear reveals that several dis-
tinct of groups of three unique gates are performable, a result that is nontrivial given the
high degree of overlap among dimers’ parameter spaces. We offer intuitive explanations for
the emergence of these groups, and further, we argue that these groups are exhaustive. e
ability to perform diverse functions with a limited set of simple components is of critical
importance to the question of how cells encode reliable responses with limited resources.

We have adopted a minimal model (the MWC model) to describe a minimal set of com-
ponents, and we have explored the functional capabilities available under these conditions.
We are further encouraged by the fact that the MWC model has been shown to agree with
experiments on receptors [87, 152]. Nonetheless, several extensions to the model or the
study itself are natural oices for further exploration. First, the conformational spread
(CS) model [151] generalizes the MWC model, and thus it would allow for more functional
freedom in logic gate construction. However, it is always a concern that generalizing one’s
model can reduce the fraction of functional parameter space simply by increasing the total
volume of parameter space.

Second, it would be straightforward to introduce one or more additional monomers
when considering recombination. For example, introducing an additional monomer that
binds a single ligand might in fact admit parameter sets at whi all four unique logic gates
are performed, at the expense of increasing the number of individual components that the
cell must produce. e impact of su a finding, however, would be reduced by the fact that
more than four functional dimer combinations would be possible. ird, it would also be
straightforward to consider more complex dimers (or higher oligomers), su as QW1W2

,
in whi ea poet binds both ligands competitively, but with asymmetric parameters. Of
course, su increasing complexity would only be justified in the context of correspondingly
detailed biological examples.

It is well established that receptors are responsive to multiple ligands. Interestingly,
recent experiments have even exploited this fact to synthetically construct proteins that
perform certain logic gates [84]. At the same time, receptor dynamics on the membrane
— diffusion, binding, unbinding, dimerization — suggest that receptors can as functional
signaling units by recombination. Indeed, experiments have shown that for many receptors,
su as ErbB and GPCR, monomers combine to form different dimers that have different
functionality [141, 145, 146]. It is our hope that this study will contribute to a predictive
framework in whi experiments like these can be interpreted and extended. e findings
we report — that a single receptor can function as any logic gate and that a limited set
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of monomers can access diverse logic gates by dimerizing — speak to the large degree of
functional control available to cells at the level of individual receptor molecules.
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5.A Supplementary Information

5.A.1 Optimization details

In this section we describe in detail the numerical optimization algorithm. In Table. 5.1 we
list the optimization parameters.

Single receptor
We use an evolutionary algorithm based upon the Wright-Fisher algorithm to obtain the
parameters that correspond to a specific logic gate for every receptor type (Fig. 5.1). e
Wright-Fisher algorithmmodels the evolution of a population. Evolution occurs in discrete,
synronous steps, and the population size remains constant. At ea step, ea member of
the population produces offspring in proportion to its fitness. en, mutations occur, and
the mutated offspring comprise the population for the next step.

In our case, for a given receptor, we have a “population” of R initial parameter points ϕr .
Ea point has fitness fr , and the total fitness for the receptor is F =

∑
r

fr . At ea step,

R new points (“offspring”) are drawn from the distribution pr = fr/F , whi weights ea
point by its fitness. Ea new point is then “mutated” by multiplying a randomly selected
parameter by the factor (1 + δ), where δ is drawn uniform randomly from the range [−∆ :
∆]; we take ∆ = 0.3.

We define fitness as the agreement between the real-valued output of the statistical
meanical model, pA and the binary output of a specific ideal logic gate. e ideal logic
gate is prescribed by the goal function G ([S1] , [S2]), whi takes the value 0 or 1 depending
on whether ea input is “o” ([Si] < [S∗]) or “on” ([Si] > [S∗]), where [S∗] sets the scale
of ligand concentrations to whi the receptor responds. We compare pA and G over an
N × N grid of input values, spaced logarithmically over the ranges of [S1] and [S2], whi
we take to be [Si]/[S

∗] ∈ [10−2 102]. e fitness is thus

fr = −
N∑

n,n′=1

∣∣∣pA
(
[Sn

1 ], [S
n′
2 ]
)

− G
(
[Sn

1 ], [S
n′
2 ]
)∣∣∣ . (A5.1)

e results in this article are obtained for N = 4. Taking N = 2 leads to suboptimal
results, while taking different values of N > 2 yields similar results to N = 4. Similar
results are also obtained for a fitness function with N = 2 and an additional central point
at [S1] = [S2] = [S∗], at whi G is the average of the truth table for the gate.

e optimization parameters, as well as the bounds within whi the model parameters
are initialized and constrained during optimization, are given in Table. 5.1.

Multiple receptors
In the case where M different receptors (e.g. QUV,QWV,QUW) are combined to act in differ-
ent combinations as unique logic gates, the optimization algorithm follows a specific order
in the optimization. A straightforward extension of the model for a single receptor is the
optimization of three (or four) gates simultaneously, and taking as fitness F the summed
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Model input Range

[Si] /[S
∗]

[
10−2 − 102

]
Model parameter Bounds

Kj
i,k/[S

∗]
[
10−4 − 103

]
ω0

[
10−3 − 103

]
ωii′

[
10−2 − 102

]
Optimization parameter Value

∆ 0.3

N 4

R 50000

Steps 1000

Table 5.1: Overview of parameters. During optimization, model parameters are initialized and con-
strained within the indicated bounds
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fitness of every gate Fm:

F =
M∑

m=1

Fm. (A5.2)

However, this optimization is not capable of optimizing all the gates independently. Instead,
the algorithm optimizes either one (or two) gates, but then cannot optimize the third gate.
To optimize the third gate, the already optimized gates decrease (temporarily) in fitness.
is decrease is larger than the increase in fitness for the third gate and the algorithm finds
suboptimal peaks in this rugged fitness landscape.

Instead of optimizing all gates simultaneously, we optimize gates in order. For the ho-
modimer construction (QWW,QUW,QWV), we first optimize QWW, then QUW, where we
only ange the parameters of U , and then QWV, only anging V . e aieved results
greatly outperform the results where we optimize all three gates simultaneously.

For the heterodimer construction (QUW,QWV,QUV), we again start by optimizing gate
QUW, then the two gates QUW and QWV simultaneously, and finally QUW, QWV, and QUV.
Again this procedure gives mu beer results than simultaneous optimization of all three
gates.

For the construction withQWW,QUW,QUV), we start by optimizing gateQWW, then the
two gates QWW and QUW simultaneously, and finally QWW, QUW, and QUV.

5.A.2 Formal proof for a XOR-gate for receptor QUW

e probability to be active pA ([S1] , [S2]) in an XOR-gate is a nonmonotonic function of [S1]
and [S2] simultaneously. More specifically, for constant [S2] = [Sc2], pA ([S1] , [Sc2]) is either
monotonically increasing or decreasing, depending on the value [Sc2]: for small [Sc2], pA is
monotonically increasing, while for large [Sc2], pA is monotonically decreasing.

A positive derivative ∂pA/∂[S2] reflects a monotonically increasing function, while a
negative derivative reflects a monotonically decreasing function. erefore, in an XOR-gate,
the derivative of the probability with respect to [S2] at constant [Sc1] should ange sign as
function of [Sc1]. Again due to symmetry, the derivative of the probability with respect to
[S1] at constant [Sc2] should ange sign as function of [Sc2].

Wewill prove that the XOR-gate is possible for theQUW receptor evenwith ω11 = ω21 =
1. Recalling Eq. 1, the derivative can be wrien ∂pA/∂[S2] = f/(ZA + ZI)2, where the
numerator

f ([Sc1] , [S2]) =
∂ZA

∂ [S2]
ZI − ZA ∂ZI

∂ [S2]
(A5.3)

alone determines the sign. We therefore must show that f anges sign as function of [Sc1].
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Specifically, the XOR-gate requires

f > 0 for [Sc1] < [Sc
1]

∗, (A5.4)

f < 0 for [Sc1] > [Sc
1]

∗, (A5.5)

for some [Sc
1]

∗ and all [S2].

e partition functions ZA and ZI for the QUW receptor are given by Eqs. 9-10 with
q

j
i = [Si] /K

j
i . Performing the derivatives in Eq. A5.3 reveals that f is a third order polyno-

mial in [Sc1] in whi all dependence on [S2] drops out. Only one root is potentially positive:

[Sc1]
∗ =

KI
1,W KA

1,W

(
KI

2 − KA
2

)
KI

1,W KA
2 − KA

1,W KI
2

. (A5.6)

To satisfy Eqs. A5.4-A5.5, we require that the zeroth order term (the intercept) is positive
and that the leading order term is negative; enforcing these conditions yields

KI
2 − KA

2 > 0, (A5.7)

KI
1,W KA

2 − KA
1,W KI

2 > 0, (A5.8)

whi are in fact the precise conditions that maintain positivity of the root (Eq. A5.6). Pa-
rameters that satisfy these conditions enable the sign of ∂pA/∂[S2] to depend on constant
[Sc

1], whi is one of the two conditions necessary to perform the XOR-gate. Notably, Eq. A5.7
directly shows that the binding of ligand 2 to the W monomer in QUW in the active state is
less likely than binding in the inactive state.

e second requirement is that the sign of ∂pA/∂[S1] depends on constant [Sc
2]. Specif-

ically, as in Eqs. A5.4-A5.5, the XOR-gate requires that the numerator g([S1] , [Sc2]) of the
derivative satisfies

g > 0 for [Sc2] < [Sc
2]

∗, (A5.9)

g < 0 for [Sc2] > [Sc
2]

∗. (A5.10)

for some [Sc
2]

∗ and all [S1]. Performing the derivative reveals that g is a second order poly-
nomial whose coefficients depend on [S1]. To satisfy Eqs. A5.9-A5.10, we again require
that the intercept is positive and that the leading order term is negative; enforcing these
conditions yields

h
(
[S1],K

I
1,U ,KA

1,U ,KI
1,W ,KA

1,W

)
> 0, (A5.11)

KI
1,U − KA

1,U < 0, (A5.12)

where the function h results straightforwardly from the derivative but is unwieldy, su
that we do not reproduce it here. e roots of the polynomial [Sc

2]
∗ are similarly unwieldy,

but noting positivity requirements ([Sc
2]

∗ > 0, KI
1,W > 0, KI

1,U > 0, KI
2 > 0), parameter
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regimes can be derived that satisfy both Eqs. A5.7-A5.8 and Eqs. A5.11-A5.12 simultaneously.
As an example we present one possible regime here:

KA
1,W

KI
1,W

<
KA

2

KI
2

< 1, (A5.13)

0 <
KA

1,W

KI
1,W

≤
KI

1,U

KI
1,U + KI

1,W

, (A5.14)

KA
1,W + KA

1,U > KI
1,U + KI

1,W . (A5.15)

Eq. A5.13 states that the W monomer is activated by [S1] and [S2], and that activation by [S1]
is stronger than activation by [S2]. Note that for small concentrations of either [S1] or [S2],
W is inactive. e twomore interesting constraints are in Eq. A5.14 and Eq. A5.15. Eq. A5.15
states that [S1] bound to monomer U deactivates the receptor (KA

1,U > KI
1,U ), since, from

Eq. A5.13, we have seen that KA
1,W < KI

1,W . More importantly the deactivation of U by
binding [S1] is stronger than the activation of W by [S1], and following Eq. A5.13, it is thus
also stronger than activation of W by [S2]. is is precisely the interference interaction as
described in the main text. e last constraint, Eq. A5.14, provides the required binding
strength of [S1] to U and W to satisfy all constraints. In the main text we argue that W
should preferably bind [S2], su that in the presence of both ligand [S2] binds to W and [S1]
binds to U with as result that QUW is inactive.

Here we have shown that the QUW receptor is capable of the nonmonotonic derivatives
required by the XOR-gate. is capability is necessary but not sufficient to perform the gate,
as an ideal logic gate requires that the output be maximally high and low at the appropriate
input values. Our numerical results, however, indeed confirm that the QUW receptor can
perform the XOR-gate.

5.A.3 Parameter sensitivity

In this section we discuss the sensitivity to parameter variation of the results at the six
parameter sets ϕk shown in Fig. 5.3. Robustness against parameter fluctuations generally is
considered an important quality of bioemical systems, due to stoastic nature of intra-
and extracellular processes. If the observed logic gates only function within a very narrow
parameter regime, this could lead to unreliable functioning.

Parameters are varied according to

ϕz
new = ϕz

old (1 + nz) (A5.16)

where nz is the zth component of a uniformly distributed random vector nwith norm |n| =
η. Under this implementation, η sets the average (root mean square) factor by whi ea
parameter anges via 〈δϕz/ϕz〉 = η/

√
Z , where Z is the number of parameters. We

sample 106 different vectors n.
Sensitivity is measured by computing the fraction of new parameter sets for whi, for
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ea individual gate m, the relative ange in fitness is less than a factor λ:∣∣∣F new
m − F old

m

∣∣∣
F old

m
< λ ∀ m. (A5.17)

Figure 5.4 reveals that for all ϕk , most random perturbations in whi ea parameter
anges by an average of 〈δϕz/ϕz〉 ∼ 20% ange the fitness of none of the three logic
gates by more than λ = 10%.
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Figure 5.4: Robustness to parameter variation for the six parameter sets at which dimers can form
three unique logic gates (Fig. 5.3): a) ϕ1, b) ϕ2, c) ϕ3, d) ϕ4, e) ϕ5, and f) ϕ6. An increase in
〈δϕz/ϕz〉 reflects a larger range of parameter fluctuations and an increase in λ reflects a loos-
ening of the robustness constraint. The dashed black lines indicate that a significant fraction of
random perturbations in which each parameter changes by an average of 〈δϕz/ϕz〉∼20% change
the fitness of none of the three logic gates by more than λ=10%.

5.A.4 Figure 5.3b is exhaustive

Here, we argue why the groups observed in Fig. 5.3b (and their counterparts obtained upon
ligand exange) are the only groups of three unique logic gates that one expects to observe
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under this model. e overall logic is presented first, with the arguments subsequently given
in subsections.

ere are 4 ways to oose a group of three from the four functional dimers QWW,
QUW,QWV, andQUV to perform the three unique logic gates, namely: {QWW,QUW,QWV},
{QUW,QWV,QUV}, {QWW,QUW,QUV}, and {QWW,QWV,QUV}. e last two groups are
symmetric upon ligand exange; we therefore consider only the first three groups.

e first group is {QWW,QUW,QWV}. As shown in the main text, receptor QWW is ca-
pable of performing an AND-gate, an OR-gate, or an ANDN-gate, but not an XOR-gate (Fig. 5.2).
If receptor QWW performs an AND-gate, receptor QUW can perform an ANDN-gate or an OR-
gate, but not an XOR-gate (Argument 1). Receptor QWV then performs the OR-gate or the
ANDN-gate, respectively (it also cannot perform an XOR-gate by the same argument). ese
two possibilities are represented by parameter set ϕ1 (Fig. 5.3b) and its counterpart upon
ligand exange. If receptorQWW performs an OR-gate, receptorQUW can perform an ANDN-
gate or an XOR-gate, but not an AND-gate (Argument 2). Receptor QWV then performs the
XOR-gate or the ANDN-gate, respectively (it also cannot perform an AND-gate by the same
argument). ese two possibilities are represented by parameter set ϕ2 (Fig. 5.3b) and its
counterpart upon ligand exange. If receptor QWW performs an ANDN-gate, three unique
gates cannot be performed (Argument 3). erefore, this group is exhaustively represented
by ϕ1 and ϕ2.

e second group is {QUW,QWV,QUV}. As shown in the main text, receptorQUV is ca-
pable of performing an ANDN-gate, an OR-gate, or an AND-gate, but not an XOR-gate (Fig. 5.2).
If receptor QUV performs an ANDN-gate, receptor QUW can perform an XOR-gate or an OR-
gate, but not an AND-gate (Argument 4). Receptor QWV then performs the OR-gate or the
XOR-gate, respectively (it also cannot perform an AND-gate by the same argument). ese
two possibilities are represented by parameter set ϕ3 (Fig. 5.3b) and its counterpart upon
ligand exange. If receptor QUV performs an OR-gate, receptor QUW can perform an AND-
gate or an ANDN-gate, but not an XOR-gate (Argument 5). Receptor QWV then performs the
ANDN-gate or the AND-gate, respectively (it also cannot perform an XOR-gate by the same
argument). ese two possibilities are represented by parameter set ϕ4 (Fig. 5.3b) and its
counterpart upon ligand exange. If receptor QUV performs an AND-gate, three unique
gates cannot be performed (Argument 6). erefore, this group is exhaustively represented
by ϕ3 and ϕ4.

e third group is {QWW,QUW,QUV}. We note that this group is different from the first
two groups, since it does not contain the two receptorsQUW andQUV whi are symmetric
upon ligand exange. QUW and QWV is not present in the receptors QUW, QUV. receptor
QUV. To obtain a set whi includes the XOR-gate, this gate has to be accessed by receptor
QUW. As shown in the main text, receptor QWW is capable of performing an AND-gate, an
OR-gate, or an ANDN-gate, but not an XOR-gate (Fig. 5.2). If receptor QWW performs an AND-
gate, receptorQUW can perform an ANDN-gate or an OR-gate, but not an XOR-gate (Argument
1). If receptorQUW performs an ANDN-gate, receptorQUV cannot perform an OR-gate (Argu-
ment 7); since receptor QUV also cannot perform an XOR-gate (Fig. 5.2), three unique gates
cannot be performed. erefore, receptor QUW must perform an OR-gate, leaving receptor
QUV to perform an ANDN-gate. is possibility is represented by parameter set ϕ6 (Fig. 5.3b).
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If receptor QWW performs an OR-gate, receptor QUW can perform an ANDN-gate or an XOR-
gate, but not an AND-gate (Argument 2). If receptorQUW performs as an ANDN-gate, receptor
QUV cannot perform an AND-gate (Argument 8); since receptorQUV also cannot perform an
XOR-gate, three unique gates cannot be performed. erefore, receptor QUW must perform
an XOR-gate, leaving receptor QUV to perform an ANDN-gate. is possibility is represented
by parameter set ϕ6 (Fig. 5.3b). If receptor QWW performs as an ANDN-gate, three unique
gates can not be performed (Argument 9). erefore, this group is exhaustively represented
by ϕ5 and ϕ6.

is completes the logic arguing that the groups observed in Fig. 5.3b are exhaustive.

Argument 1
If receptor QWW performs an AND-gate, ligand 2 alone does not promote activation when
binding to monomer W . erefore, because ligand 2 does not bind to monomer U , the
receptor QUW is always inactive if ligand 2 is present alone. is behavior is inconsistent
with the logic of the XOR-gate.

Argument 2
If receptor QWW performs an OR-gate, ligand 2 alone promotes activation when binding to
monomer W . erefore, because ligand 2 does not bind to monomer U , the receptor QUW
is always active if ligand 2 is present alone. is behavior is inconsistent with the logic of
the AND-gate.

Argument 3
If receptor QWW performs an ANDN-gate, receptors QUW and QWV can ea perform nei-
ther an XOR-gate nor an AND-gate, thereby preventing the group {QWW,QUW,QWV} from
performing three unique gates. e reason is straightforward: if receptor QWW performs
an ANDN-gate, one ligand must suppress activation via W while the other ligand promotes
activation via W . is feature immediately excludes the XOR-gate since, as described in the
main text, an XOR-gate requires both ligands to promote activation via W . is feature also
excludes an AND-gate since, as also described in the main text, an AND-gate requires either
that activation via W is promoted only weakly or that both ligands suppress activation via
W . In the first case, activation of receptor QUW (or QWV) is only aieved cooperatively
when both ligands are present. In the second case, activation is aieved with both ligands
present via U (or V ) due to an interference effect similar to that underlying the XOR-gate
(see discussion of parameter set ϕ4 above).

Argument 4
If receptorQUV performs an ANDNS1

-gate,QUW cannot function as an AND-gate. To function

as an AND-gate (see Eq. 9), this requires that ω0qA
1,U qA

2 � qI
1,U qI

2 , while ω0qA
1,U � qI

1,U and

ω0qA
2 � qI

2 . is conditions cannot be satisfied simultaneously.

Argument 5
If receptor QUV performs an OR-gate, ligand 1 activates the receptor via U . However, for
receptorQUW to perform the XOR-gate, ligand 1must suppress activation via U , as described
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in the main text.

Argument 6
If QUV functions as an AND-gate U is activated by S1 and V is activated by S2, but both
activation biases alone are insufficient to activate the receptor. is excludes the formation
of a XOR-gate for either the QUW or QWV. As we have discussed in the previous section,
the XOR-gate is obtained by the deactivation of U (V ) by ligand S1 (S2). However, it is
possible that QUW is a OR-gate, while QWV is a ANDN-gate. e QUW-OR-gate requires that
W is activated by S2 and S1, since monomer U is not active in the presence of S1. e
QWV-ANDN-gate requires that W is strongly deactivated by S1. ese two conditions on W
are mutually exclusive.

Argument 7
If receptors QWW and QUW perform an AND-gate and an ANDN-gate, respectively, the ANDN-
gate must be ANDNS1

, not ANDNS2
. e reason is that the AND-gate requires ligand 2 to

promote activation via W , while the ANDNS2
gate requires ligand 2 to suppress activation

via W . en, ifQUW indeed performs the ANDNS1
gate, receptorQUV cannot perform an OR-

gate. e reason is that the AND and ANDNS1
gates require ligand 1 to suppress activation

via U and not via W , while the OR-gate requires ligand 1 to promote activation via U .
deactivated by S1. erefor receptor QUV can not function as an OR-gate.

Argument 8
If receptors QWW and QUW perform an OR-gate and an ANDN-gate, respectively, the ANDN-
gate must be ANDNS1

, not ANDNS2
. e reason is that the OR-gate requires ligand 2 to pro-

mote activation via W , while the ANDNS2
gate requires ligand 2 to suppress activation via

W . en, if QUW indeed performs the ANDNS1
gate, receptor QUV cannot perform an AND-

gate. e reason is that the OR and ANDNS1
gates require ligand 1 to suppress activation

via U and not via W , while the AND-gate requires ligand 1 to promote activation via U .
de-activates U . As a

Argument 9
If receptor QWW performs an ANDN-gate, receptor QUW cannot perform a XOR-gate gate,
since this requires that both ligands activate W . If receptor QWW performs an ANDNS1
gate, receptor QUW cannot perform an AND-gate, since QUW is active if only ligand 2 is
present. If receptor QWW performs an ANDNS1

gate, receptor QUW can perform an OR-gate
if ligand 1 activates U more strongly than it deactivates W . However, receptor QUV is then
always active if ligand 1 is present, and this is inconsistent with the logic of the AND-gate.
If receptor QWW performs an ANDNS2

gate, receptor QUW cannot perform an AND-gate,
since QUW is active if only ligand 1 is present (ligand 1 activates U ) or QUW is never active
(ligand 1 deactivates U more strongly than it activates W ). If receptor QWW performs an
ANDNS2

gate, receptor QUW can perform an OR-gate, if (i) ligand 1 activates U and (ii) in
the presence of small ligand 1 and an abundance of ligand 2 the receptor QUW is active.
However, receptor QUV is then always active if ligand 1 is present and this is inconsistent
with the logic of the AND-gate.
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C 6

R   
  


In bioemical signaling, information is oen encoded in oscillatory signals. How-
ever, the advantages of su a coding strategy over an amplitude encoding seme
of constant signals remain unclear. Here we study the dynamics of a simple model
gene promoter in response to oscillating and constant transcription factor signals.
We find that in biologically-relevant parameter regimes an oscillating input can pro-
duce a more constant protein level than a constant input. Our results suggest that
oscillating signals may be used to minimize noise in gene regulation.

Based on manuscript F. Tostevin, W.H. de Ronde and P.R. ten Wolde (2012). Reliability of
frequency- and amplitude-decoding in gene regulation Physical Review Leers 108.
doi:10.1103/PhysRevLe.108.108104
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6.1 Introduction

Cells are constantly exposed to a range of environmental stimuli to whi theymust respond
reliably. In recent years, it has become increasingly clear that cells use complex encoding
strategies to represent information about the environment in the temporal dynamics of in-
tracellular components [153]. In particular, oscillatory or pulsatile signals are commonly
found in signaling and gene regulatory networks [154]. Perhaps the best known example
is the phenomenon of calcium oscillations [155]. Oscillatory dynamics have also been ob-
served at the level of gene regulation in nuclear localization of signaling proteins [156] and
transcription factors [157, 158, 159] and in transcription factor expression [160]. Yet the
advantages of su a coding strategy for signal transmission remain unclear.

A number of possible advantages for oscillatory signals have been suggested. Oscillatory
signals minimize the prolonged exposure to high levels of calcium, whi can be toxic for
cells [161]. In systems with cooperativity [162] an oscillating signal effectively reduces the
signal threshold for response activation. Pulsed signals also provide a way of controlling
the relative expression of different genes [159]. However, these studies have ignored the
impact of bioemical noise on the reliability of signal transmission. Encoding of signals in
protein oscillations may play a direct role in ensuring accuracy in intracellular signaling.

Variability in the cellular response to an external signal will arise from the temporal pat-
tern of network activation and from inevitable bioemical noise in the reactions making
up the processing network, both of whi will depend on the coding strategy employed. A
reliable response requires minimization of su variability. Encoding of stimuli into oscilla-
tory signals can reduce the impact of noise in the input signal and during signal propagation
[163]. However, it remains unclear whether oscillatory signals can also be decoded with a
similar fidelity to constant signals – one might expect that the inherent variability of an
oscillatory signal would inevitably lead to a more variable response. In this apter we
investigate whether oscillatory signals can be reliably decoded in a simple model of gene
regulation. Surprisingly, we find that in biologically-relevant parameter regimes an oscillat-
ing input can lead to a more constant output protein level than a constant input. is effect
arises from differences in promoter state fluctuations, whi it has recently been shown can
be a dominant source of noise in vivo [164].

t

T

Promoter switching Protein levelTranscription factor activity

S(
t)

oscillatory

constant
α

τ

p(
X)

<X> X

σX,c

σX,o

Figure 6.1: A gene promoter driven by constant and oscillating signals, s(t). We compare the vari-
ances of X for the two input signals, σ2

X,c and σ2
X,o, at the same mean level 〈X〉.
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6.2 Model

We focus on the simple regulatory motif (Fig. 6.1) of a single gene promoter whi can
be in an active (P∗) or inactive (P) state. e input to the system is the activity s(t) of a
transcription factor whi enhances activation of the promoter. A protein X, whose level
X(t) constitutes the network output, is transcribed from the active promoter; proteins also
spontaneously decay. e system therefore consists of the reactions

P
κs(t)−⇀↽−

λ
P∗, (6.1)

P∗ ρ→ P∗ + X, (6.2)

X
µ→ ∅. (6.3)

We will consider two forms for s(t). In the first instance we take s(t) = α to be constant.
In the second, s(t) is oscillatory, reflecting the action of a periodic upstream signal or the
inherently oscillatory dynamics of the transcription factor. Since transcription factor pulses
oen resemble distinct sharp peaks [157, 158, 159] we take s(t) to be a binary switing
process, with s(t) = 1 for nT ≤ t < nT + τ (n ∈ Z) and s(t) = 0 otherwise (see
Fig. 6.1). is form also has the advantage ofmaking the dynamics analytically tractable. We
aracterize the system response in terms of the means 〈X〉, 〈P ∗〉 and variances σ2

X ,σ2
P ∗ ;

for the oscillating input we define the stationary mean 〈X〉 = T −1
∫ T

0
E [X(t)] dt, where

E [] denotes averaging over network realizations with the same input, and the stationary

variance σ2
X = T −1

∫ T

0
E
[
X(t)2

]
dt − 〈X〉2. ese are calculated from the emical

master equation [68], and verified by stoastic simulations [74].

When driven by a constant signal the promoter simply undergoes random switing
with constant rates. Hence the probability of the promoter being active at any time is
〈P ∗〉c = ακ/(ακ + λ). For an oscillating input the average activity,

〈P ∗〉o =
κ

κ + λ

[
τ

T
+

κ(1 − e−(κ+λ)τ )(1 − e−λ(T −τ))

λT (κ + λ)(1 − e−κτ−λT )

]
, (6.4)

contains a term from the expected promoter activity when s = 1 multiplied by the fraction
of time, τ/T , for whi s(t) = 1, and a correction due to the fact that the promoter response
timescales when s(t) = 1 and s(t) = 0 ([κ + λ]−1 and λ−1, respectively) differ. Since
promoter switing is a two-state process the variance in promoter activity is determined
by the mean, σ2

P ∗ = 〈P ∗〉(1 − 〈P ∗〉). e mean protein level also has the same form
for both input signals, 〈X〉 = ρ〈P ∗〉/µ. However, differences in the timing of protein
production will mean that the variance in the protein level differs between the two signals.
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For a constant signal the variance

σ2
X ,c = 〈X〉c

[
1 +

ρλ

(ακ + λ)(ακ + λ + µ)

]
(6.5)

consists of an intrinsic Poissonian term due to randomness in protein production, and an
extrinsic contribution from fluctuations in the promoter state. e variance given an os-
cillatory input σ2

X ,o can similarly be derived, but the full expression is unwieldy and thus

not presented here. In the following we will compare σ2
X ,o with σ2

X ,c at the same mean
response level, aieved by oosing the level of the constant signal α = α(τ ,T ,κ,λ) su
that 〈P ∗〉c = 〈P ∗〉o = 〈P ∗〉, and hence also 〈X〉c = 〈X〉o = 〈X〉.

6.3 Results

It is instructive to first consider cases in whi the two input signals lead to similar dis-
tributions for X . First, if ρ,µ → ∞ with X∞ = ρ/µ held constant, whenever the pro-
moter is inactive the protein level is X(t) = 0, while when the promoter is active the
protein level will be Poisson-distributed with mean X∞. e variance in X is then given
by σ2

X ,c = σ2
X ,o = 〈X〉[1 + X∞ − 〈X〉]. In this limit of fast protein dynamics the pre-

cise paern of promoter switing does not affect the variance in protein expression. At
the other extreme, if either promoter switing or protein production is slow compared to
the oscillating input (κ,λ � T −1 or ρ,µ � T −1), the slow reactions effectively integrate
over the temporal variation of the input. Since the network dynamics is too slow to reliably
respond to the oscillating signal, the protein response is equivalent to that for the constant
input.

Differences appear between the variances for the oscillatory and constant signals in the
biologically most important regime of intermediate parameter values, where the promoter
is able to respond to the oscillating input signal, protein production can react to switing of
the promoter, and the protein lifetime is sufficiently long that paerns of promoter activity
are important. Figures 6.2a-c show that there exist regions in whi either the constant or
oscillating signal leads to smaller fluctuations σ2

X over large parameter ranges. Here we
consider parameter ranges representative of eukaryotic cells, in whi promoter switing
occurs on a timescale of minutes to hours [164, 165] and protein lifetimes are in the range
of a few to hundreds of hours [166]. e timescale of the input signal is osen to be repre-
sentative of NF-κB oscillations [157]. However, we emphasize that out results are general
and would apply equally to prokaryotic cells in an appropriate parameter regime.

To understand the noise properties for the two input signals we consider the network
response in the frequency domain. e dynamics of X(t) can be described by the Langevin
equation

dX

dt
= ρP ∗(t) − µX(t) + η(t), (6.6)
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where η(t) represents Gaussian white noise with [97]

〈η(t)〉 = 0 and
〈
η(t)η(t′)

〉
= (ρE[P ∗(t)] + µE[X(t)]) δ

(
t − t′) .

Using the spectral addition rule [96] it is straightforward to calculate from Eq. 6.6 the power

spectrum of fluctuations in X(t), SX(ω) =
[
ρ2SP (ω) + Sη(ω)

]
/(ω2+µ2), in terms of the

spectra of promoter fluctuations SP (ω) and of intrinsic noise in the production and decay
of X , Sη(ω). e variance σ2

X can be found by integrating SX(ω) over all frequencies, and
can therefore be wrien as the sum of intrinsic and extrinsic terms, σ2

X = σ2
ex + σ2

in with

σ2
ex =

∫ ∞

0
g2(ω)SP (ω)dω, (6.7)

σ2
in =

∫ ∞

0

Sη(ω)

ω2 + µ2
dω, (6.8)

where g2(ω) = ρ2/(ω2+µ2) is a signal-independent gain factor. e intrinsic noise σ2
in =

〈X〉 is also independent of the input signal. Any differences between σ2
X ,o and σ2

X ,c must,
therefore, arise from differences in SP (ω).

For a constant input, SP ,c(ω) = 2σ2
P ∗τP /(ω2τ2P +1) (Fig. 6.2d, bla line) has a simple

Lorenian form due to random promoter switing, with τP = (ακ + λ)−1 the switing
correlation time. A general expression for SP ,o(ω)with an oscillating input is more difficult
to calculate. However, simulations show (Fig. 6.2d, red line) that there are two significant
components. First, there are sharp peaks at frequencies corresponding to the signal period
ωT = 2π/T and multiples thereof, reflecting systematic anges in E[P ∗(t)] due to the
periodicity of s(t). Second, SP ,o(ω) includes an approximately Lorenian noise baground
associated with random (Poissonian) switing of the promoter when s(t) = 1 and delays
in deactivation when s(t) = 0.

e protein lifetime τX = µ−1 relative to the signal period T is particularly important in
determining whi signal minimizes the output noise. e constant signal typically leads to
smaller fluctuations when τX < T (see Fig. 6.2a). In this regime, for the oscillatory signal σ2

ex
is dominated by contributions from the peaks of SP ,o(ω) appearing at ω = nωT , since µ &
ωT and the gain g2(ω) is large for frequencies ω < µ (Fig. 6.2d, dashed line). Consequently,
X(t) features large production bursts when the signal is “on” with most proteins decaying
before the next input pulse, while for a constant signal production and decay are more
regularly distributed (see Fig. 6.2b).
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Figure 6.2: a) Relative noise for oscillating and constant signals, log2(σ
2
X,o/σ

2
X,c), as the protein

degradation rate µ and promoter deactivation rate λ are varied. In red (black) regions the os-
cillatory (constant) signal leads to lower noise. Other parameters are: τ=25min, T=100min,
κ=1min−1, ρ=50min−1. The doed line indicates T−1. b,c) Typical time-series of X(t) for
the parameter combinations denoted in a) by red ◦ b): λ=0.2min−1,µ=0.05min−1) and black
◦ c): λ=0.2min−1,µ=0.00167min−1). Unless otherwise noted, parameters as in c) are used in
panels (d-g). d) The promoter power spectrum SP(ω) and gain g2(ω)=ρ2/(ω2+µ2). For both
inputs there is a noise background due to randomness in promoter switching. Peaks appear in
SP,o(ω) at ω=nωT due to the periodicity of the oscillating input signal. e) Distribution of the
fraction of time the promoter is active in an interval τX, calculated from stochastic simulations.
The oscillatory signal leads to more reproducible promoter activity on the timescale τX. f) Vari-
ance against mean output level as T is varied with τ held constant. The oscillating signal can
achieve a lower variance over nearly the full range of output levels. In f) and g), lines show ex-
act analytic results, points show results of stochastic simulations. g) Fano factor σ2

X/〈X〉 as κ is
varied with constant K=λ/κ=0.2. For slow switching κτ.1 the two signals become equivalent.
For extremely fast switching the constant signal minimizes σ2

X. At intermediate switching rates,
0.1min−1.κ.18min−1, the oscillating signal allows for smaller σ2

X.
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For long protein lifetimes τX > T , σ2
X ,o is typically smaller than σ2

X ,c (Fig. 6.2a). In
this regime the impact of production bursts is reduced because proteins produced during
many previous signal periods contribute to X(t). Since µ < ωT , the region ω . µ where
g2(ω) is largest does not rea the first peak of SP ,o(ω) at ωT (Fig. 6.2d, solid bla line);
hence σ2

ex is dominated by promoter switing noise at low frequencies ω < ωT , for whi
SP ,o(ω) < SP ,c(ω). e large amplitude anges of the oscillatory signal strongly bias
the promoter to be active during a signal pulse and to be inactive between pulses, whi in
turn greatly reduces the probability of observing very long periods of promoter (in)activity.
e elimination of su slow promoter fluctuations, whi lead to the largest fluctuations
in X(t), means that on the timescale of the protein lifetime, promoter activity becomes
more reproducible and the production of proteins becomes less variable when driven by an
oscillatory signal (Fig. 6.2e). Furthermore, Fig. 6.2f shows that in this regime σ2

X ,o ≤ σ2
X ,c

over nearly the full range of expression levels as the signal period T is varied, indicating
that this result does not require fine tuning of the reaction rates to the oscillation timescale.

Output noise σ2
X tends to decrease as promoter switing is made faster (Fig. 6.2g):

increasing the promoter switing rate reduces SP (ω) at low frequencies, shiing power
instead to high frequencies where g2(ω) ∼ ω−2 is small. Interestingly, for extremely fast
switing the constant signal is able to aieve a smaller variance. In this limit noise in
promoter switing becomes negligible, and Eq. 6.1 reduces to

∅ ρ′s(t)−−−−→ X
µ−→ ∅. (6.9)

With a constant signal the effective production rate of X is ρ′
c = ρ〈P ∗〉/α and σ2

X ,c =

〈X〉 = σ2
in; σ

2
ex (Eq. 6.7) can bemade arbitrarily small by shiing all promoter fluctuations to

extremely high frequencies. With an oscillatory input the effective production rate becomes
ρ′
o = ρ/(1 + K), where K = λ/κ. e resulting variance,

σ2
X ,o = 〈X〉

[
1 +

ρ′
o

µ

(
1 − τ

T
− (1 − e−µτ )(1 − e−µ(T −τ))

µτ(1 − e−µT )

)]
, (6.10)

includes a (positive) extrinsic contribution. While the promoter switing noise baground
in SP ,o(ω) vanishes, as with a constant signal, the peaks due to the periodicity of s(t) re-
main. Hence for an oscillatory input there will always be some overlap between SP ,o(ω)
and g2(ω), and a non-zero extrinsic noise σ2

ex. With the reaction rates representative of
eukaryotic transcription used in Fig. 6.2g, the cross-over at whi σ2

X ,o = σ2
X ,c is κ ≈

18min−1. Experimentally-determined rates of promoter activation, however, are typically
0.01− 1min−1 [164, 165], whi suggests that under biologically-relevant conditions oscil-
latory signals can lead to more robust expression.

us far we have assumed that the signals s(t) are deterministic. In reality, these signals
will also be noisy as they are themselves generated by stoastic bioemical processes. An
important question is whether oscillatory signals can still be decoded more reliably once
noise in the input stimulus is taken into account.

We first consider the effect of transcription factor copy-number fluctuations around a
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constant mean by simulating s(t) as a birth-death process. We find that σ2
X at fixed 〈X〉

increases monotonically as the variance or correlation time of s(t) are increased. erefore,
without additional non-exponential temporal correlations in the input signal, noise is unable
to reduce σ2

X below that aieved with s(t) = α.
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Figure 6.3: Effects of noise in a) oscillation amplitude, and b) the duration of “on” and “off” periods.
Even with significant variability in amplitude or timing, the oscillating signal leads to a smaller
σ2
X than a constant signal. Parameters are as in Fig. 6.2f.

For an oscillatory input signal there are two principal types of noise: fluctuations in
the amplitude and timing of signal pulses. First we perform simulations in whi on ea
occasion that the oscillatory signal swites “on” the amplitude s(t) = a is sampled from
a log-normal distribution with mean a = 1 and width parameterized by ξ2 = ln[a2]. Fig-
ure 6.3a shows that σ2

X is largely unanged until the noise in the pulse amplitude becomes
large. Even with ξ = 1 (σa/a ≈ 1.3) the output noise is typically smaller than for a con-
stant, noiseless, input signal. Intuitively, in the regime where an oscillating signal leads to a
smaller σ2

X , K � 1; the promoter activity is driven to saturation during a signal pulse and
hence amplitude fluctuations have lile effect until there is a significant probability that
a ∼ K . e decoding of large-amplitude oscillatory signals is therefore highly robust to
noise in the oscillation amplitude.

We next investigate by simulations the effect of noise in the duration of signal pulses
and inter-pulse intervals. e duration of ea “on” period is osen independently from a
gamma distribution with mean τ and shape parameter kon. e resulting variance in “on”
durations is σ2

ton = τ2/kon. “O” periods are similarly sampled from a distribution with
mean T − τ and parameter koff. Figure 6.3b shows that the noisy oscillation can lead to
protein level fluctuations whi are similar to or smaller than σ2

X ,c even when variability
in signal timing is significant (kon = 5 gives σton/τ ≈ 0.45). Experimentally-observed
fluctuations in oscillation periods or peak widths vary between different systems but can
be 20 − 30% [156, 167], suggesting that in vivo oscillations can be sufficiently precise as to
reduce output noise compared to a constant-amplitude signal.

e simple model of gene expression considered here neglects mRNA dynamics and
processing. Su processes can affect the propagation of promoter-state fluctuations in two
ways. First, mRNA dynamics will integrate over promoter fluctuations on timescales shorter
than the mRNA lifetime (typically tens to hundreds of minutes in eukaryotic cells [16, 20]).
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However, differences between σ2
X ,c and σ2

X ,o are primarily due to promoter-state fluctua-
tions on timescales comparable to or longer than the slowest timescale of variations in the
protein level, whi is typically determined by the protein life-time (ten to a hundred hours
[166]). Promoter fluctuations on these long timescales can not be filtered by the mRNA
dynamics, and hence even with mRNA dynamics taken into account an oscillatory input
will lead to more robust expression since an oscillatory signal suppresses fluctuations on
timescales longer than the signal period (see Fig. 6.2d). Second, a (random) delay between
transcription initiation and protein synthesis will be introduced. However, su delays will
only significantly affect the number of proteins produced on the timescale τX if the width
of the delay distribution itself becomes comparable to the protein lifetime, whi seems
unrealistic. Hence we conclude that mRNA dynamics will have lile effect on our results.

It is believed that bioemical networks employ frequency-encoding semes in whi
stimuli are represented in the frequency of oscillations of signaling molecules [155, 159].
Our results suggest that frequency-encoding may allow for more reliable signaling than
amplitude-encoding semes because oscillatory signals can be decoded more reliably.
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C 7

A  
 

In this apter we show that living cells can multiplex bioemical signals, i.e., trans-
mit multiple signals through the same signaling pathway simultaneously, and yet re-
spond to them very specifically. We demonstrate how two binary input signals can be
encoded in the concentration of a common signaling protein, whi is then decoded
su that ea of the two output signals provides reliable information about one cor-
responding input. Under biologically relevant conditions the network can rea the
maximum amount of information that can be transmitted, whi is 2 bits.

Based on manuscript W.H. de Ronde, F. Tostevin and P.R. ten Wolde (2011). Multiplexing Bio-
emical Signals Physical Review Leers 107.
doi:10.1103/PhysRevLe.107.048101
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7.1 Introduction

Cells continually have to respond to a myriad of signals. One strategy for transmiing dis-
tinct stimuli is to use distinct signal transduction networks . It is, however, increasingly
recognized that components are oen shared between pathways [168]. Moreover, cells can
transmit different signals through one and the same pathway, and yet respond to them
specifically. In rat cells, for instance, neuronal growth factor and epidermal growth factor
stimuli are transmied through the sameMAPK pathway, yet give rise to different cell fates,
differentiation and proliferation respectively [91]. ese observations suggest that cells are
able to transmit multiple messages through the same signal transduction network, just as
many telephone calls can be transmied via a single wire. Indeed, the intriguing ques-
tion arises whether bioemical networks, like electronic circuits, can multiplex signals: can
multiple input signals be combined (encoded) simultaneously in the dynamics of a common
signaling pathway, and then decoded su that cells can respond specifically to ea signal
(see Fig. 7.1)?

An open question in biology is how cells transduce multiple signals via pathways that
share components, since sharing components may lead to unwanted crosstalk between the
different signals. In recent years, several meanisms for ensuring signaling specificity have
been proposed. One is spatial insulation, where the shared components are incorporated
into distinct macromolecular complexes on scaffold proteins [168, 169], leading effectively
to independent communicationannels for the transmission of the respective signals. Other
proposals are based on the temporal dynamics of the system, su as cross-pathway inhi-
bition [170] and kinetic insulation [171]. With these meanisms the system cannot be
decomposed into independent pathways for the transmission of the respective signals. Yet,
these studies suggest that multiple messages cannot be transmied simultaneously, because
one pathway tends to dominate the response. Here we demonstrate that cells can truly mul-
tiplex signals: we show that they can transmit at least two signals simultaneously through
a common pathway, and yet respond specifically to ea of them.

Cells employ a number of coding strategies for transducing signals, su as encoding
stimuli in the temporal dynamics, like the duration [91] or frequency [172], of an intracel-
lular signal. In principle, any coding strategy could be used to multiplex signals. Here, we
consider what is arguably the simplest and most generic coding strategy cells could oose,
namely one in whi the signals are encoded in the concentrations of the signaling proteins.
We will call this strategy AM multiplexing.

7.2 Model

We will consider the bioemical network shown in Fig. 7.1a. It consists of N input species
S1, . . . , SN with copy numbers S1, . . . ,SN , a common signal transduction pathway V and
N output species X1, . . . , XN . e copy number of ea input species Si can be in one
of K states, si = 0, . . . ,K − 1, whi are labeled in order of increasing copy number,

S
(0)
i < S

(1)
i < · · · < S

(K−1)
i . e input paern is denoted by the vector s = (s1, . . . , sN ).

Similarly, the copy number of ea output species Xi can be in one of L states X
(xi)
i , with
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Figure 7.1: a) Biochemical multiplexing: N different signals are encoded in the state of a common
pathway V , and then decoded such that each output species Xi responds to the corresponding
input Si. b) Multiplexing is a mapping problem. The states of two inputs S1 and S2 are mapped
onto the concentration of V, which is then mapped onto states of the output species X1 and X2;
we require that the two lowest (highest) levels of Xi correspond to the lowest (highest) level of Si.
The dashed arrow denotes a mapping that violates this requirement; levels ofV andXi are colored
according to input paern s=(s1,s2). c) The 3 distinct mappings of s to v; in panel b) mapping C
is shown.

xi = 0, . . . ,L−1, ordered by increasing copy number, and the output paern is denoted by
the vector x = (x0, . . . ,xN ). A necessary condition for multiplexing is that the state space
of V is large enough that it is possible to encode the total number of input paerns, KN , in
V .

We imagine that the N input signals are independent, and that the signal transduc-
tion network V replaces N independent signaling pathways. We therefore require that Xi

should provide reliable information about the state si, but not necessarily about sj 6=i; the
N different input signals s simply have to be transduced to x, not necessarily integrated.
In general, however, the state xi will be a function of the states of all the input species:
xi = f(s). is reflects the fact that inevitably there is cross-talk between the different
signals because they are transmied via the same pathway. However, this cross-talk is not
detrimental as long as it does not compromise the cell’s ability to infer from xi what si was.

Another key point is that while the precise mapping from s to x may not be critical for
the amount of information transmied per se, this is likely to be important for whether or
not this information can be exploited. Let us imagine that the system contains three input
species, say three sugars, ea of whi is either present or absent, si = 0 or 1; let us further
assume that Xi is an enzyme needed to consume sugar Si. With 8 input paerns Xi can, in
the absence of noise, take 8 values, identified as states xi = 0, . . . , 7. Now, it seems natural
to demand that when the sugar Si is absent (si = 0), the copy number of enzyme Xi is low,
while when Si is present, the copy number of Xi is high; this means that the four lowest
levels of Xi (xi = 0, 1, 2, 3) should correspond to si = 0, while the four highest levels of
Xi should correspond to si = 1. We therefore require that the mapping from s to x is su
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that the output states {xi} corresponding to input si = j are grouped into sets that are
contiguous and either increase or decrease monotonically with j, for ea signal i. is leads
to a monotonic input-output relation between Si and Xi for ea i. We call this requirement
the multiplexing requirement.

In the rest of the apter, we make these ideas concrete for a network with two input
species, S1 and S2, ea of whi has either a low (si = 0) or a high concentration (si = 1),
and the shared pathway consists of only one species, V. Multiplexing requires that, in the
absence of noise, the four input paerns s be mapped onto four distinct states of V , V (v)

with v = 0, . . . , 3, again labeled in order of increasing copy number. ese four levels of
V lead to four states for ea of the two output species X1 and X2 (Fig. 7.1b). As explained
above, we require that we can group these four states into two sets, called LOW and HIGH,
su that the LOW set, containing xi = 0, 1, corresponds to si = 0 and the HIGH set,
containing xi = 2, 3, corresponds to si = 1 (or vice versa, leading to an inverse input-
output relation). We note that there exist different ways of mapping s to v, but not all of
these mappings can necessarily be decoded into x in a manner that satisfies the multiplexing
requirement. We therefore first address the question of whi combinations of mapping
from s to v and decoding from v to x fulfill the multiplexing requirement, and then we will
discuss what encoding meanisms actually allow for the required mapping from s to v.

Because of the symmetry in the problem, there are three distinct ways of mapping the
four input paerns s to v (Fig. 7.1c). To determinewhether there exists a seme for decoding
the signals from v to x that satisfies the multiplexing requirement. To determine whether
there exists a seme for decoding the signals from v to x that satisfies the multiplexing
requirement, we examine for ea mapping all possible network topologies between V, X1

and X2, except those that involve autoregulation or mutual regulation since these may lead
to bistability. In particular, we allow for activation and repression of X1 and X2 by V, and
for activation and repression of X2 by X1, leading to feedforward loops, a common motif in
signal transduction pathways and gene networks [11]. In the deterministic mean-field limit
the steady-state values of X1 and X2 are thus given by

X1 =k1f(V ;Kα,nα)/µ, (7.1)

X2 =k2f(V ;Kβ ,nβ) × f(X1;Kγ ,nγ)/µ, (7.2)

where k is the maximum activation or production rate, µ is the degradation or deactiva-
tion rate, and ea regulation function is either an activating or repressing Hill function,
f(V ;K ,n) = V n/(V n + Kn) or f(V ;K ,n) = Kn/(V n + Kn). e multiplication in
Eq. 7.2 indicates that we assume that at X2, X1 and V are integrated according to AND
logic [11]. To explore whi aritectures allow for multiplexing we performed extensive
sampling of the space of parameters k1, k2,Kα,nα,Kβ ,nβ ,Kγ ,nγ for ea of themappings
in Fig. 7.1c.

Only for mapping C do we find decoding semes that satisfy the multiplexing require-
ment for realistic parameter values. Interestingly, all valid decoding networks are incoher-
ent feedforward loops [11]. Figure 7.2 illustrates the principle for one su motif. X1(V ) is
a simple activation curve with activation threshold Kα. In contrast, X2(V ) starts low and
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Figure 7.2: DecodingV using an incoherent feedforward loop. a)Network architecture. b) The values
of V corresponding to the four input paerns s for mapping C (see Fig. 7.1c), with thresholds
Kα,Kβ ,Kγ (see Eqs. 7.1-7.2). c) X1(V). d) X2(V). The non-monotonicity of X2(V) swaps the
states corresponding to (1,1) and (1,0) in the mapping from v to x2.

rises around Kβ , but then decreases again due to repression by X1. is non-monotonicity,
whi is a result of the incoherent aracter of the feedforward loop, is critical since this
makes it possible to swap the order of the states corresponding to s = (1, 1) and (1, 0) in the
mapping from v to x2. For sharp regulation functions, this yields the intuitive requirement

that V (0) < Kβ < V (1) and X
(2)
1 < Kγ < X

(3)
1 . We stress, however, that nβ and nγ

do not have to be large (they can be as small as unity), and then Kβ and Kγ can even fall

outside these ranges. In order for X1 to be able to repress X2 at X
(3)
1 but not X

(2)
1 , X1

should not be saturated at V (2); this means that Kα & V (2) and nα should not become so
large that X1(V ) becomes two-valued. ese mild constraints indicate that this is a robust
decoding seme that can be implemented for a wide range of parameter combinations.

We can now also understand why mappings A and B are difficult to decode: they would
require an input-output relation between X2 and V that rises more than once. is is diffi-
cult to aieve in a feedforward loop without mutual repression or activation.

7.3 Multiplexing

e above analysis shows that it is possible to decode multiple signals simultaneously, pro-
vided that the input s can be encoded in V according to mapping C. e next question is
how this mapping, whi corresponds to a particular input-output relation V (S1,S2), can
be generated. Multiplexing is most beneficial when the input signals are multiplexed at the
beginning of signal transmission. We therefore consider whether two input signals can be
multiplexed at the level of a single protein V, whi could be an enzyme or a receptor at the
very beginning of a signaling cascade. We consider a canonical motif where S1 and S2 bind
competitively to V, whi can exist in either an active conformational state A or an inactive
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state I (Fig. 7.3a). In equilibrium the mean number of active V molecules will be

V (S1,S2) =
V max(1 + qA

1 + qA
2 )

1 + qA
1 + qA

2 + e∆E0(1 + qI
1 + qI

2)
, (7.3)

where V max is the total number of V molecules, ∆E0 = EA
0 − EI

0 is the free-energy dif-
ference between the active and inactive states of V in the absence of ligand binding, and
qI ,A
i = Si/KI ,A

i withKI
i andKA

i the dissociation constants for the binding of Si to inactive
and active V, respectively. We find that a seme where S1 activates V more strongly than
S2, giving energy levels as in Fig. 7.3b, generates the required V (S1,S2) (Fig. 7.3c); com-
petition between the two ligands reduces the probability of S1 binding the receptor when

S2 is present, ensuring that V (S
(0)
1 ,S(1)

2 ) < V (S
(1)
1 ,S(1)

2 ) < V (S
(1)
1 ,S(0)

2 ). In the limits

S
(0)
i � KI ,A

i � S
(1)
i a sufficient condition for this ordering is 1 > KA

2 /KI
2 > KA

1 /KI
1 .

Clearly, therefore, the required encoding V (S1,S2) could be implemented at the level of a
single signaling protein V.
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Figure 7.3: a) An encoding scheme where two ligands S1 and S2 competitively bind to a protein V,
which can be in an active state A or an inactive state I. b) Energy levels of V in the active or

inactive state with no ligand, ligand S1 or ligand S2 bound; e−EIi≡Si/K
I
i ; e

−EAi ≡e−∆E0Si/K
A
i .

c) Input-output relation V(S1,S2) corresponding to the energy levels in b), yielding mapping C
(Fig. 7.1c); symbols �,N,•,H correspond to states in Fig. 7.2b,c,d.

e analysis above shows that in principle bioemical networks can multiplex signals
in the mean-field, deterministic limit. However, there remains the question of whether sig-
nals can be multiplexed reliably in the presence of inevitable bioemical noise. To address
this, we estimate a lower bound on the information about two binary signals S1 and S2 that
are transmied through the network studied above (Eqs. 7.1-7.3). We define the total infor-
mation I ≡ I(S1,X1) + I(S2,X2) as the sum of the mutual information for ea of the
individual signals[45]. Note that in the presence of noise Xi is not limited to 4 states but
can in principle take any value. is definition of I makes it straightforward to directly
compare the performance of this network with that of two independent pathways. If ea
of the two input states for ea Si is equally likely then the maximum value of I(Si,Xi) is
1 bit for ea signal i; the maximum value of I is thus 2 bits.
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Tomaximize the lower bound on I we optimize the network parameters using a simulated-
annealing algorithm. We fix the deactivation rate of X1 and X2 to be µ = 1s−1 and set
n = nα = nβ = nγ = 2; the results are insensitive to the precise value of n for 1 ≤ n ≤ 4.
We set the maximum value of ea Xi to be Xmax; this specifies the activation rates k1
and k2. We optimize the remaining decoding parameters Kα,Kβ and Kγ over the range

[0,V max] or [0,Xmax] as appropriate, and the encoding parameters qj
i and ∆E over the

range [10−3, 103] and [−10kBT , 10kBT ], respectively. Ligand binding is assumed to be
fast compared to receptor activity switing; the rate of switing of V from the active to
the inactive state is fixed at 1s−1, and the switing rate in the reverse direction then follows
from detailed balance given Eq. 7.3. For ea parameter set we compute the mutual informa-
tion using the linear-noise approximation [45, 68]. Its accuracy was verified by performing
Gillespie simulations of the optimized networks [75].

Using this procedure we compute I as a function of V max and Xmax, whi determine
the intrinsic noise in the encoding and decoding processes. Figure 7.4 shows that below a
threshold copy number V max

c ≈ 10 the total information is low regardless of Xmax because
four distinct states of V cannot be generated. Once V max becomes sufficiently large that
the four encoded signals are well separated, I saturates at a value determined by the level
of noise in the production and decay of Xi. For large Xmax the information I reaes 2 bits,
thus mating the performance of two independent annels. Importantly, I reaes 2 bits
for V max ≈ Xmax ≈ 500, whi is well within the range of typical protein copy numbers
inside living cells. is shows that bioemical networks can multiplex two signals reliably
at biologically relevant noise levels.

In summary, our results suggest that cells can transmit at least two binary signals through
one and the same pathway, and yet respond specifically and reliably to ea of them. e
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proposed meanism for bioemical multiplexing is based on swapping the order of states
during the encoding and decoding steps. It is clear that the principle is generic, and could
be implemented in any bioemical network that uses an incoherent feedforward loop [11].
Indeed, the aritecture of a number of well-studied systems resembles that of the system
studied here. It is well known that G-protein coupled receptors (GPCRs) can be stimulated
by many different ligands, yet give rise to different cell fates, a phenomenon referred to as
”multiplicity” [173]. A GPCR activates two G proteins, Gα and Gβγ. Of particular inter-
est is the system where Gαq activates RhoGef63 [174], leading to cytoskeletal remodeling,
while Gβγ activates PLCβ [175], ultimately controlling cell proliferation. Interestingly,
PLCβ binds not only Gβγ, but also Gαq , thereby inhibiting the activation of RhoGef by Gα
[174]. Hence, we have a seme where one protein V (the GPCR) activates two proteins
X1 (RhoGef63) and X2 (PLCβ), whereby X2 effectively inhibits X1. is is highly similar to
our proposed multiplexing seme, and it is indeed tempting to speculate that multiplicity
is aieved via multiplexing. Secondly, Ras is a major hub in cell signaling: it is activated
by many cellular stimuli, including growth factors, differentiation factors and cell survival
factors. Activation of Ras leads to the activation of the Raf-Mek-Erk MAPK pathway, ul-
timately leading to differentiation or proliferation, and also via PI3K to the activation of
Akt and hence the mTOR pathway, controlling many processes su as metabolism. Im-
portantly, Akt also deactivates Raf [176], generating a Ras (V)-Raf (X1)-Akt (X2) incoherent
feedforward loop. Finally, CREB, a major transcription factor in neuronal cells, is acti-
vated by many different stimuli, and, in turn, regulates many different target genes, some
of whi include incoherent feedforward loops [177]. It will be interesting to test whether
these systems employ bioemical multiplexing when they are stimulated by two signals
simultaneously.
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M 
 

In recent years it has been realized more and more that bioemical signals are not
necessarily constant in time, and more importantly that the temporal dynamics of a
signal can be the information carrier. In this apter we show that living cells can
multiplex both constant and oscillating signals, i.e., transmit multiple signals through
the same signaling pathway simultaneously, and yet respond to them very specifi-
cally. We study the information transmission for ea signal and find that, under
biologically relevant conditions, more than 8 bits of information can be transmitted
simultaneously. Moreover, the use of an oscillatory signal does not reduce the fi-
delity of information transmission for the constant signal at all, showing indeed that
multiplexing a constant signal and an oscillatory signal is an interesting strategy for
a cell to transmit information.

Based on manuscript W.H. de Ronde, A. Kan and P.R. ten Wolde. Multiplexing oscillatory bio-
emical signals In preparation. Anton Kan provided the study on the biological examples.
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8.1 Introduction

Cells depend on stimuli from their environment to initiate behaviors, including growth,
division, differentiation, and death. One strategy to transmit different stimuli is to use dis-
tinct signaling pathways for the respective signals. An increasing number of experiments,
however, show that components are oen shared between different pathways. Even more
strikingly, cells can transmit multiple signals through a single pathway and yet respond to
them specifically. For example, in rat PC-12 cells both the epidermal (EGF) and neuronal
growth factor (NGF) signal through the same Mitogen-Activated Protein Kinase (MAPK)
pathway, yet these two signals give rise to different cell fates, differentiation and prolif-
eration [91]. ese observations suggest that cells are able to transmit multiple messages
through the same signal transduction network, just as many telephone calls can be trans-
mied via a single wire. Indeed, the intriguing question that arises is whether bioemical
networks, like electronic circuits, can multiplex signals, meaning that multiple input signals
are combined (encoded) simultaneously in the dynamics of a common signaling pathway,
whi is then decoded su that cells respond specifically to ea signal.

One of the key problems in multiplexing is the unwanted crosstalk between the differ-
ent signals: from the perspective of one signal, the presence of other signals constitutes
noise. In recent years several meanisms for ensuring signaling specificity have been
proposed. One is spatial insulation, where the shared components are incorporated into
distinct macromolecular complexes on scaffold proteins [168, 169]. Other proposals are
based on the temporal dynamics of the system, su as cross-pathway (or mutual) inhibition
[39, 170, 178, 179, 180] or kinetic insulation [171]. However, these studies only considered
scenarios in whi the system is stimulated with one signal, or if stimulated with multiple
signals, can only transduce one signal at the time.

Rensing and Ruoff studied what happens when two or three MAPK pathways that share
components are stimulated simultaneously [181] and found that one pathway tends to domi-
nate the response, suggesting that multiple messages cannot be transmied simultaneously.
In contrast to this study, in a previous study we have shown that cells indeed can employ
a multiplexing strategy. e concentration levels of two independent signals can be en-
coded in a shared pathway and decoded to yield two independent responses, su that ea
response is specific to its corresponding input signal but insensitive for its read-out to the
other signal. We called this strategy AM multiplexing [182].

Interestingly, biological signals do not necessarily have constant level. Indeed, oscil-
lations in intracellular signals (NF-κB [157, 183], Ca2+ [172] or nuclear Erk localization
[156]) have been observed experimentally. For some extracellular signals it is also known
that under physiological conditions the concentration is time-dependent, like Gonadotropin
Release Hormone (GnRH) [184] or Insulin [185]. For many other extra-cellular signals the
time-dependent behavior to our knowledge is not precisely known (e.g. EGF).

It is well-known that specific signals activating a common pathway, can give rise to
different dynamical behaviors of the intermediate component. One example is the already
introduced EGF and NGF dependent ERK-response [91, 186]. Another interesting example
is the p53 response in damaged cells. Upon double-stranded DNA breaks, p53 shows an os-
cillatory response, while upon single-stranded DNA breaks p53 shows a constant response
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[187]. ese studies raise the idea that cells can encode constant and temporal signals si-
multaneously into a shared pathway.

Importantly, in vivo studies have shown that the response of biological systems can de-
pend on the precise dynamics of the input. Dynamic stimuli have many different aracter-
istics (e.g. frequency, amplitude, number of peaks), ea of whi could be an information
carrying property. GnRH is a pulsatile extracellular signal. It has been shown that the
response of the system is sensitive to the GnRH signal frequency [188, 189]. Another well-
known frequency sensitive system is the response of NF-κB and NFAT to Ca2+ [190, 191],
where gene-expression depends on the Ca2+ frequency. e use of information in the pe-
riodicity of the signal is also well-known for processes related to the cell-cycle [192, 193]
or morphogenesis [194]. ese examples suggests that cells can not only encode multiple
signals into the temporal dynamics of a shared signaling pathway, but also decode this dy-
namics.

Indeed, the combination of signal — dependent temporal dynamics of intermediate com-
ponents and subsequent temporal — dynamics sensitive read-out has been observed exper-
imentally. e temporal profiles for the central node kinase IKK or transcription factor
NF-κB are different for different inflammatory stimuli and the eventual read-out is depen-
dent on the specific temporal dynamics [183, 195, 196, 197]. More examples are provided in
the recent review article by Behar and Hoffmann [153].

e question whether two signals EGF and NGF in the MAPK system can be read out
reliably has also been studied in more detail. e constant signal ERK, in the case of NGF
stimulation, can be reliably read-out by a coherent feed-forward loop, as has been observed
downstream of the NGF-response [106, 198]. e coherent feed-forward ensures that the
transient ERK signal in response to EGF stimulation does not lead to a response, thereby
preventing crosstalk between NGF and EGF signaling. However, whether a feed-forward
loop also prevents cross-talk for a continuous oscillatory signal, or a series of pulses is un-
clear. For example, if presented with a pulse-train, the coherent feed-forward motif is only
insensitive to pulses of a very specific shape. In a more detailed study of a different, yet
similar, system, the downstream read-out of ERK aer stimulation by EGF of HRG has been
analyzed [199]. is study revealed that a combination of coherent feed-forward loops and
negative feedba act together to blo cross-talk from transient signals (or intermediary
components). But for this system as well, it is unclear whether the combination of multiple
loops prevents cross-talk for a continuous series of pulses or oscillations.

On the other hand, it has been suggested that a frequency modulated signal could be
read-out without cross-talk from the constant signal, by a system that acts as a pulse counter
[200]. It is, however, difficult to imagine how a simple bioemical system can act as a true
pulse counter. Many pulse-counting meanism are in fact time-integrators of pulses [153],
with a response at a specific concentration threshold and therefore do not truly count (or
respond to) pulses.

Since information can be encoded both in the frequency and in the amplitude of a specific
signal, we wondered whether it is possible to combine frequency-encoded and amplitude-
encoded signals to multiplex information. In our setup, a shared pathway is stimulated by
two signals, one of whi is time-dependent. e information in the time-dependent signal
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Figure 8.1: Two extracellular signals (S1,S2) stimulate a shared pathway, here by activating the same
receptor. S1 is time-dependent, S2 is constant. The concentration of the output X1 only depends
on the characteristics of S1, but not on the concentration of S2. In contrast, the outputX2 depends
on the concentration level of S2, but not on the amplitude A or frequency T of S1.

is either encoded in the frequency of the signal, or in its amplitude. e information in the
constant level is encoded in its mean concentration level. ese two signals are combined
and simultaneously transmied through a common pathway. e common signal is then
decoded and split in two output responses. One output is only sensitive to the amplitude
(or frequency) of the corresponding time-dependent input, su that the level of the output
depends only on the amplitude (or frequency) of the input. e other output depends only
on the concentration of the constant signal of the input (see Fig. 8.1).

8.2 The model

In this section we specify in detail the encoding and decoding steps. A cartoon of the model
is shown in Figs. 8.1 and 8.2.
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Figure 8.2: Schematic drawing of the multiplexing system. Encircled is the adaptive motif.
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8.2.1 Encoding

In the encoding step of the motif, the two signals S1, S2 are combined into the shared path-
way. e signals are modeled as a simple sinusoidal function

S (t) = µ

(
1 + A sin

(
2π

t

T

))
. (8.1)

µ is the signal mean, A is the signal amplitude (bounded between [0 : 1]) and T is the period
of the signal oscillation. We assume that the signals are deterministic and discuss the effects
of noise later. S1 is an oscillatory signal, with kinetic parameters A1,T1 and constant µ1. S2
is constant, A2 = 0, and the concentration level µ2 carriers the information in the signal. In
recent years it has been shown that bioemical systems can tune separately the amplitude
and frequency of a signal [201, 202].

emost simple shared pathway is a single component (V), whi could be a receptor on
the cell or nuclear membrane, but could also be an intracellular enzyme or a gene-regulatory
protein. We image that ea signal is a kinase for this intermediate component V, whi can
swit between an active (e.g. phosphorylated) state (VP) and an inactive (e.g. unphospho-
rylated) state, su that

dV P

dt
=

kV [
∑

i Si (t)]
(
VT − V P

)
KV +

(
VT − V P

) − mV
V P

MV + V P
, (8.2)

where we sum over the total number of (time-varying) signals Si (t). e dephosphoryla-
tion is mediated by a phosphatase, that has a constant copy number. In Eq. 8.2 we assume
Miaelis-Menten dynamics for V (see App. 8.A.1 for more details).

If the signal information is encoded into its dynamics, it is important to propagate this
dynamics as accurately as possible, up to the point where the information is eventually
decoded to a read-out. Otherwise, information will get lost due to the inaccurate traing
of the signal. erefore we require that the component V accurately tras the dynamics of
the input signals. It is well-known that a linear transfer function between S and V does not
lead to a deformation of the dynamic behavior, but only to a rescaling of the absolute levels
(see App. 8.A.2). A linear transfer function can be realized if the kinase acts in the saturated

regime, while the phosphatase is not saturated (KV �
(

VT − V P (t)
)
,MV � V P (t)),

leading to

dV P

dt
= kV

(∑
i

Si (t)

)
− m′

V V P . (8.3)

with m′
V = mV /MV .

8.2.2 Decoding VP to X1,X2

e second part of the multiplexer is the decoding of the information in VP into a functional
output. e signals that are encoded in VP have to be decoded into two output signals,
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X1 and X2. Ultimately, an optimal system allows the cell to infer from an instantaneous
measurement of the output signal the information in that signal. erefore, the outputs of
the multiplexing motif are the concentration levels of X1 and X2. X1 is the response of S1,
while X2 is the response of S2.

In our simple model there is only one time-dependent signal S1; S2 is a constant signal.
e response X2 should be sensitive to the concentration of S2, but be blind to any arac-
teristics of S1. Since VP has a linear transfer function of the signals (Eq. 8.3), the average
level of VP 〈V P 〉 is independent of either A1 or T1. 〈V P 〉 does depend on the mean concen-
tration level of the two signals, and since S1 has a constant mean, anges in 〈V P 〉 reflect a
ange in the mean of S2 µ2. As a result, a simple linear time integration motif can be used
as the final read-out for S2. We therefore model X2 as

dX2

dt
= kX2

V P (t) − mX2
X2 (t) . (8.4)

Since Eq. 8.4 is linear, 〈X2〉 is a function of 〈V P 〉 only. Moreover, if the response time of

X2, τX2

(
= m−1

X2

)
, is mu longer than the oscillation period, the effect of the oscillations

on the instantaneous concentration X2 is integrated out. is is important to reduce the
variability in 〈X2〉 due to dynamics in the system [203].

For X1 a simple time-integration seme does not work. e information that has to
mapped on the output concentration X1 is either the amplitude or the frequency of S1. is
information in S1 is then propagated to V P . e output X1 should therefore depend on
the frequency or the amplitude of V P , but not on the mean response 〈V P 〉, since the mean
represents the information in S2. One possible way to construct an output that is insensitive
to the mean, is an output that has a frequency-dependent response. is could be aieved
via a motif whose power spectrum has a band-pass structure. en, the response X1 is in-
sensitive to oscillations with very small or very high frequencies, but has a large gain for
oscillations with frequencies whi are within the band-pass regime. If the frequency of
the incoming signal is within the band-pass range, the oscillations are strongly amplified at
the response X1. e amplitude of the oscillations of the response thus depends on the fre-
quency T −1

1 and amplitude A1 of the incoming signal, whi are precisely the information
carrying properties of S1. A common bioemical motif with a frequency band-pass filter
is an adaptive motif [67].

As discussed before, the amplitude of the oscillation in a protein level is not an quantity
that cells can directly read-out. However, the information that is contained in the amplitude
can me mapped onto the concentration of the output X1, whi can be read-out instantly. In
the final step of our model therefore the output of the adaptive motif (W) is time-integrated
to obtain X1, and the concentration X1 instantly provides all the information on S1.

e key feature of an adaptive system is that the steady-state response is independent
of the signal input, meaning that

〈W 〉 = f
(

{all parameters} /∈
〈

V P
〉)

. (8.5)

We stress here two important properties of an adaptive system. First, the fact that in an
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adaptive system the steady-state output level is independent of the constant input level,
does not mean that the output level is zero. Second, although the output of an adaptive net-
work is insensitive to constant inputs, the output of an adaptive system is not insensitive to
dynamical inputs, even if these have a time-independent mean. is second observation is
well-known and is the basis for the emotactic behavior of E. coli, where the system does
respond to a ange in the input concentration, and the strength of the response depends
on the magnitude of the ange in input concentration. An adaptive system does not re-
spond to very fast oscillations, due to the limited response time of any bioemical network.
Moreover, an adaptive system does not respond to very slowly varying signals, since due to
the adaptation, the system already adapts to the slowly anging signal before a ange in
the output can be observed.

Two common ways to construct an adaptive motif are known [101], the negative feed-
ba motif and the incoherent feed-forward motif. In this multiplexing system we use the
incoherent feed-forward motif. In the incoherent feed-forward motif a signal (S) stimulates
two downstream components (R,W). One of the downstream components (R) by itself is also
a signal for the other downstream component (W). Importantly, the regulatory effect of the
direct pathway (S → W) is opposite to the effect of the indirect pathway (S → R → W). As
a result, if S activates W, this activation is counteracted by the regulation of W through R.
We thus obtain

dR

dt
= kRV P − mRR, (8.6)

dW

dt
= kW

V P
(
WT − W P

)
KW +

(
WT − W P

) − mW
RW P

MW + W P
. (8.7)

A sematic drawing of the full motif is given in Fig. 8.2 with the adaptive motif encircled.

Seing the time-derivative to zero in Eq. 8.7 and solving for the steady state 〈W P 〉 we
obtain

0 =

(
kW

(
WT −

〈
W P

〉)) (
mR

(〈
W P

〉
+ MW

))(
KW +

(
WT −

〈
W P

〉)) (
mW kR

〈
W P

〉) . (8.8)

Although the full solution for 〈W P 〉 is unwieldy to present, there is no dependence on S1
(since there is no dependence on 〈V P 〉) (see Eq. 8.8). is motif is thus completely adaptive.

For correct separation of the signals, the responseW should be insensitive to the average
level of VP, 〈V P 〉, since 〈V P 〉 should not carry information from S1, but from S2. IfW does
depend on 〈V P 〉, this necessarily leads to unwanted cross-talk between the two signals.
While WP indeed is insensitive to the mean of VP for a constant input (see Eq. 8.8), this is
not necessarily the case for a dynamic V P (t). Since Eq. 8.7 is non-linear, the response W
is dependent on the precise functional form of VP, and, more importantly will depend on
〈V P 〉. In App. 8.A.3 this is studied in greater detail.

e gain of the network, g2 (ω), providesmore information on the frequency-dependence
ofWP [107]. e gain shows the amplification of the input signal as a function of frequency.
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e full expression of the gain is unwieldy to present here, but in simplified form we have

g2
W P (ω) ∝ αω2

β
(

ω2 + τ−2
R

)(
ω2 + τ−2

W

)(
ω2 + τ−2

V

) , (8.9)

where α and β are proportionality constants and τi are the response times of component i.
For slowly varying signals (ω → 0), the amplitude of the response is negligible due to the
ω2-term in the numerator of Eq. 8.9, reflecting the adaptive nature of the network. Second,

for ω � min
[
τ−1
V , τ−1

R , τ−1
W

]
, the power scales with ω2. For very large ω the power scales

with ω−4. In the intermediate regime for ω, the scaling depends on the precise response
times. e response times are the diagonal Jacobian elements for the linearized system
(Eqs. 8.2,8.6,8.7),

τV =

[
mV MV(

MV +
〈
V P
〉)2 +

kV KV µ(
VT −

〈
V P
〉
+ KV

)2
]−1

, (8.10)

τR = µ−1
R , (8.11)

τW =

[
mW MW 〈R〉(

MW +
〈
W P

〉)2 +
kW KW

〈
V P
〉(

WT −
〈
W P

〉
+ KW

)2
]−1

. (8.12)

Eq. 8.11 is the response time for a protein with a simple birth-death reaction. emathemat-
ical form of the response times, τV and τW , Eq. 8.10 and Eq. 8.12, resembles that of switing
process with a forward and baward step; their values depend on the signal parameters.
In the linear regime (Eq. 8.3), τV simplifies to τV ≈ − (mV / (MV ))−1, whi is just the
linear decay rate of VP. Next, if 〈W P 〉 is independent of µi, the response time τW is also
independent of µi. ese results are important, since they indicate that the response times
are intrinsic properties of the dynamics of the motif, whi do not depend on the signal(s).

e gain (Eq. 8.9) is shown in Fig. 8.3 for three different parameter sets. e bandpass
structure, with corresponding resonance frequency (the peak in the gain) is observed. Fur-
ther, with circles, the response times τV , τR and τW are shownwhi determine the position
of the peaks in the gain; the peak occurs at a frequency in between the two largest response
times. In Fig. 8.3 we observe the influence of increasing kR,mR. For very slow anges in
R, corresponding to kR,mR being low, the network has a very large gain. Increasing the
response time of R, decreases the amplitude at the resonance frequency considerably. Faster
traing of VP by Rmakes the adaptation of the bioemical circuit very fast and as a result,
WP does not respond at all to anges in VP.

Finally, we look at the last step in the motif, the conversion of the dynamic response of
the adaptivemotifW intoX1. e instantaneous concentrationX1 should inform the system
upon the type of signal input S1. Simple time-integration of W, similar to the response X2
(Eq. 8.4), is not sufficient. While time-integration by itself is important to average over
multiple oscillation cycles, it is not sufficient because time-integration is a linear function
and hence a ange in the amplitude of the signal does not ange the response, assuming
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that the oscillations are symmetric. Indeed to respond to different amplitudes, a non-linear
transfer function is required (see Fig. 8.4).

dX1

dt
= kX1

W n

W n + Kn
X1

− mX1
X1. (8.13)

ese Hill-type non-linear transfer functions are very common in biological systems, for
example in gene regulation by transcription factors, or protein activation by multiple en-
zymes.
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Figure 8.4: Schematic drawing of the decoding of the final step. a): the oscillations in W are shown
for two different input amplitudes. b): The dose-response function of 〈X1〉 versus 〈WP〉. For a
linear dose response function, a change in the amplitude of WP is canceled, since the increase in
〈X1〉 the rising part ofWP is precisely balanced by the decrease in the falling part. For a non-linear
transfer function this is in general not the case and changes in amplitude lead to changes in the
average output. c): The dose-amplitude function of 〈X1〉 versus A1. For a linear dose-response
function the dose-amplitude function is constant, while for a non-linear dose-response function,
the output is a function of the amplitude.

8.3 Multiplexing

Aer specifying the model with its components we aracterize its multiplexing capacity.
We use the formalism of information theory (see the section: Information theory) to quantify
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this capacity. We define two measures: I1 (X1,A1), the mutual information between the
concentration X1 and the amplitude A1 of signal S1, and I2 (X2,µ2), the mutual informa-
tion between the concentration X2 and the concentration level µ2 of S2. e capacity of
the model can then be defined by the total information IT = I1 (X1,A1)+ I2 (X2,µ2) that
is transmied through the system. e mutual information depends both on the kinetic
parameters of the model and on the input distribution. In a previous study we have shown
that using only constant signals, a simple bioemical system is capable of simultaneously
transmiing two bits of information [182]. is indicates that this system can multiplex
two signals with two input states perfectly. Here we wondered whether we can increase
this information capacity. erefore, we increase the number of input states (NA and Nµ)
for both signals S1 and S2 in steps of 1, where we assume a uniform distribution of the
states. Next we optimize the total mutual information over the kinetic parameters. For the
optimization we use an evolutionary algorithm (see App. 8.A.5).

Maximal information transmission between S1 and X1 occurs if a specific concentration
X1 maps uniquely to a specific amplitude A1. In a deterministic system every possible
combination of inputs (A1,µ2) leads to a single output concentration X1. Ideally, X1 should
be a function of A1 only, that is, it should be independent of µ2. However, due to the cross-
talk it is not; this means that a given concentration X1 can correspond to multiple values of
A1 (ea corresponding to different µ2 (see Fig. 8.6). Information transmission is enhanced
when this overlap is minimized.

Bioemical systems are not deterministic but stoastic. erefore we include the ef-
fects of noise. For oscillatory non-linear systems, analytical expressions for the noise can
not be obtained. erefore we follow a different route to approximate the noise strength.
We calculate for the multiplexing system the noise strength using the linear-noise approxi-
mation [68] assuming constant input signals with strength µ1,µ2. e oscillations increase
the variations in the response (whi is a different source of variability than variations from
the stoastic production and degradation). To prevent this from having a strong influ-
ence on our results, the response times of X1,X2 are longer than the oscillation period. e
effect of the oscillations on the response is therefore time-integrated. Effectively, we set
mX1

= mX2
=
(
NTp

)−1 s−1, su that the output averages over N oscillations with
period Tp. We take N = 10.

We show the results in two different plots in Fig. 8.5, a deterministic network (top row)
and a network with noise (boom row). e total transmied information does not reflect
whether all information is transmied reliably. For example, increasing the number of input
states NA can increase the mutual information I1 (A1,X1) since the total input information
has increased, but a specific output concentration X1 can be less informative about a specific
input amplitude. So maximal information transmission is not necessarily equal to maximal
reliable information transmission. In Fig. 8.5 we therefore show precisely this quantity, the
reliable information transmission for a deterministic network. Instead of the total mutual
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information, the relative mutual information is

IR ((A1,X1) , (µ2,X2)) =
I1 (X1,A1)

H (A1)
+

I2 (X2,µ2)

H (µ2)
(8.14)

=
I1 (X1,A1)

log2 [NA]
+

I2 (X2,µ2)

log2
[
Nµ
] . (8.15)

Note that IR((A1,X1), (µ2,X2)) has a maximum value of two, meaning that ea an-
nel transmits with 100% fidelity. In Fig. 8.5d,e,f the same results are shown, but now with
additional noise.

In Fig. 8.5a the relative information for the annel S1 → X1 is shown, in Fig. 8.5b for
the annel S2 → X2 and in Fig. 8.5c the sum of the two annels, all for deterministic
networks. We observe that in a deterministic network the relative information is approxi-
mately 100%, independent of the number of input states NA,Nµ. is is a remarkable result.
We would expect cross-talk between the two annels to reduce information transmission.
However, the results show that this cross-talk is very small. Only in the upper right corners,
where the number of input states NA and Nµ become large, do the simulation results show,
a slight decrease in IR. However, for the maximum number of input states, IR is again
100%. erefore the, scaered, decrease in IR for values of NA,Nµ does not reflect that
maximal information transmission is not possible, but that the optimization has not reaed
convergence. e reason for this is that with a larger number of input states NA,Nµ it
becomes increasingly difficult to partition the phase space (set by the maximum aainable
values of 〈X1〉 and 〈X2〉) in su a way that no cross-talk is present. Since IR = 100% at
the largest input states NA = Nµ = log2 (20), apparently, the parameter space is large
enough that all input states can be divided over the phase space su that no overlap in the
read-out 〈X1〉 is present. Phrased differently, given the observation of a specific 〈X1〉 the
network can uniquely infer what the input signal A1 has been, although every A1 in itself
can, due to the influence from the different states of S2 give rise to multiple values of 〈X1〉
(see Fig. 8.6a). Either a decrease of the phase space, and/or an increase in the number of
input states is required to observe the reduction in IR due to the cross-talk between the two
annels in a deterministic system. In terms of total transmied information, the network
is capable of transmiing at least log2(16) + log2(16) = 8 bits with absolute fidelity in the
deterministic limit.

In the boom row in Fig. 8.5 we again show the relative information IR, but here for a
systemwith noise. e noise is approximated following the linear-noise approximation [68]
for the network with constant inputs, and we thus neglect the effect on the noise strength
either due to the non-linear nature of the network, or due to the increase in variability of
the read-outs caused by the oscillatory input. ese two effects are not expected to quali-
tatively ange the following observations. e multiplexing network is asymmetric in its
information transmission capacity. In our network, the average of VP, 〈V P 〉, is indepen-
dent of the signalingaracteristics of S1 (whi are the amplitude A1 and frequency T1, see
App. 8.A.2); Eq. 8.4 then shows that the output of the right annel, 〈X2〉, is independent of
the le annel. Figure 8.5e indeed shows that the relative information transmied via the
S2 → X2 annel, I2(X2,µ2)/ log2(Nµ) hardly depends on NA; the right annel is thus
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not mu affected by the cross-talk from the le annel. More importantly, the annel is
also less susceptible to the influence of noise. e origin of this is that X2 is, by construc-
tion, a linear function of S2, allowing an ideal separation of the input states Nµ in phase
space [56, 57]. e le annel, S1 → X1, is more susceptible to noise (Fig. 8.5d). Indeed,
an increase in the number of states NA directly reduces the relative information consider-
ably. e accessible phase space for this annel is apparently smaller than for the S2 → X2
annel and therefor the influence of a small noise source directly leads to a reduction in IR.
e effect of the cross-talk from S2 is clear in the regime log2 (NA) ≥ 3, where an increase
in Nµ leads to a further reduction of IR. We do note that even in the presence of noise,
maximal relative information is obtained for NA = Nµ = 4(= 2 bits) (Fig. 8.5) showing
that without loss of any information 4 input states in ea annel simultaneously can be
transmied.

8.4 Experimental observations

Here we connect our work to two biological systems. e first system is the p53 DNA dam-
age response system. e p53 protein is a cellular signal for DNA-damage. Multiple forms
of DNA damage exist and they lead to different temporal profiles of the p53 concentration.
Double stranded breaks cause oscillations in the p53 concentration, while single stranded
damage leads to a sustained p53 response [187, 204, 205]. Compared to our simple mul-
tiplexing motif, the encoding seme in this system is more involved. In our system two
external signals activate the shared component V. In the p53 system, p53 itself is V, but
interestingly, negative (indirect) autoregulation of p53 is required to obtain sustained oscil-
lations. To be more precise, without interaction with p53, the external signal due to a double
stranded break is constant.

Although the encoding structure is different, the main result is that the system is able to
encode two different signals into different temporal profiles simultaneously; depending on
the type of damage either a constant and/or an oscillatory profile of p53 is present. ese two
signals can therefore be transmied simultaneously due to their difference in the temporal
profiles as we have shown in section Sec. 8.3. For the p53 system the input signals are
binary, e.g. either there is DNA damage or not, although some experiments suggest that
the amount of damage also could be transmied [160]. e maximum information that can
be transmied following our simplified model is mu larger than that required for two
binary signals. A mathematical model, based upon experimental observations, shows that
the encoding step creates a temporal profile for p53 that could be decoded by our suggested
decoding module (not shown, to be published).

Another system of interest is the MAPK (or RAF-MEK-ERK) signaling cascade. e
final output of this cascade is the protein ERK, whi shules between the cytoplasm and
the nucleus. ERK is regulated by many different incoming signals of whi EGF, NGF and
HRG arewell-known [206]. e temporal profile of ERK depends on the specific input that is
present. NGF and HRG lead to a sustained ERK level [186], while EGF leads to a transient or
even oscillatory profile of the ERK level [156, 186, 207]. Compared to our model ERK would
be the shared component V. Experiments show that oscillations in the ERK concentration
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Figure 8.5: The transmied relative information IR (Eq. 8.14) as function of the number of input
states NA,Nµ, where 2 bits correspond to 22=4 input states. In panels a,b,d,e 100% corresponds
to IR=1, while in c,f 100% corresponds to IR=2. Panels a,b,c for a deterministic system, pan-
els d,e,f for a stochastic system. a) the relative mutual information IR(A1,X1) for the S1→X1
channel in a deterministic network is shown. The total mutual information is obtained by mul-
tiplying IR with log2(NA), the horizontal axis. For (almost) all input states perfect information
transmission is obtained. b) the relative mutual information IR(µ2,X2) for the S2→X2 channel
in a deterministic network is shown. The total mutual information is obtained by multiplying IR
with log2(Nµ), the vertical axis. For all input states perfect information transmission is obtained.
c) the relative information of the total network IR((A1,X1),(µ2,X2))=IR(A1,X1)+IR(µ2,X2). The
noise strength σXi

are obtained following the linear-noise approximation for the network with
constant input states. The noise strength sets the spread of each component around its deter-
ministic mean, e.g. X1,noise=〈X1〉±2σX1 . d) the relative mutual information IR(A1,X1); both the
decrease in IR(A1,X1) as a function of NA due to the presence of biochemical noise, and the de-
crease in IR(A1,X1) as a function ofNµ forNA>3 is observed due to the presence of the cross-talk
is observed. e) the relative mutual information IR(µ2,X2); the effect of noise is relatively small on
information transmission. f) the relative information of the total network IR((A1,X1),(µ2,X2)).
All results are obtained through numerical optimization (see App. 8.A.5). The scaer in the data
reflects that the optimization procedure has not converged. The results should therefore be inter-
preted as lower bounds on information transmission.

can arise due to intrinsic dynamics of the system. However, they could also arise due to
oscillations in the signal EGF, especially since, to our knowledge, it is unclear what the
temporal behavior of EGF is under physiological conditions. Intriguingly, the fact that it
can oscillate with constant inputs, suggests that it has band-pass aracteristics, making the
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Figure 8.6: Schematic representation of the influence of noise and cross-talk on the information
transmission in pathway S1→X1. a) Even in the absence of noise for every A1 multiple values
of 〈X1〉 are obtained, each corresponding to a specific value of µ2. The dark red corresponds to
the maximum value of 〈X1〉 for each A1, while the light red line is the minimum value. The black
line in between the red lines visualizes the range for which a specific 〈X1〉 uniquely maps to a
single input amplitude A1. In the deterministic limit, for this dose-amplitude response, 5 input
states NA can be transmied with 100% fidelity, as indicated by the boxes. The number of states
is only limited by the cross-talk from the S2→X2 channel. b) The influence of noise reduces the
number of possible input states. Shown are the results for the dose-response curve as in panel a,
but now with biochemical noise present. Doed lines give the deterministic results, while solid
lines are for a network with noise (color as in panel a). Since for each A1 a larger range of 〈X1〉
values is obtained, less states A1 can be uniquely encoded in the phase space. This is reflected in
the increase in the width of the boxes; indeed, here only two input states can be transmied with
absolute reliability.
Please note that these results are obtained for simulations which are optimized for information
transmission in the presence of noise. If the network were optimized in the deterministic limit,
a dose-amplitude curve would be obtained which would allow for the reliably transmission of a
larger number of input states. Please note that the dose-response curve of X2 is a simple linear
function and that the channel S2→X2 is not influenced by S1. Results are therefore not shown.

system an ideal candidate for multiplexing.
For both experimental systems, we have only described the encoding step. In both cases,

two signals are encoded in a shared component V, where one signal leads to a constant
response, while the other signal creates oscillations. Both p53 and ERK are transcription
factors for many downstream genes [208, 209]. For the decoding of the constant signal, a
simple birth-death process driven by V is required. Many genes are regulated in this way.
e decoding of the oscillatory signal requires an adaptive motif. Although adaptive motifs
are common in biological processes, it is unclear whether downstream of either p53 or ERK
an adaptive motif is present, whi would complete our suggested multiplexing motif.

8.5 Discussion

We have discussed a system consisting of elementary motifs, whi can simultaneously
transmit two signals reliably. One of these signals is constant, and its corresponding in-
formation is encoded in its concentration level, while the other signal is dynamic, and its
information is encoded in the dynamical properties but not in its average concentration
level. e decoding of the constant signals for the constant signal is performed by a time-
integration motif, while the decoding of the oscillatory signal requires a frequency sensitive
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motif, for example an adaptive motif.

e system is capable of transmiing over 7 bits of information. In the presence of noise
the information transmission decreases, but still with considerable noise levels, more than
4 bits of information can be transmied. To transmit signals without errors it is prefer-
able to send most information using the continuous annel and a smaller number of states
through the frequency encoded annel. e reason for this is twofold. First, the amplitude
encoded signal is less noisy, since the number of intermediate steps is smaller and second
the frequency encoded signal is corrupted by cross-talk from the amplitude encoded signal,
leading to overlaps in the state space of A1 as a function of µ2 (see Fig. 8.6). Nonetheless,
the two annels can transmit in the presence of noise three or more states. Taken together,
this is a considerable increase in the information transmission, compared to a system where
both signals are constant [182], whi can transmit two binary signals with absolute fidelity.
is suggests that oscillatory signals can enhance the information transmission capacity of
bioemical systems.

e main problem in multiplexing bioemical signals is cross-talk between the two
signals. In this system the signals are encoded based upon their dynamical profile — S1 is
oscillatory and S2 is constant. e decoding module for the frequency modulated signal,
an adaptive motif, is non-linear. erefore, this motif is not only sensitive to the temporal
properties like the amplitude, but is also sensitive to the mean or average of its input. is
inevitably leads to cross-talk between S1 and S2 of the output X1 and this is a limitation for
information transmission.

In this system we have assumed that the amplitude of the oscillatory signal is the infor-
mation carrier of one signal. Equivalently, the same analysis can be performed for a signal
at constant amplitude but at different frequencies. alitatively, the results will be similar.
From the analysis of the gain one observes that varying the frequency of the input signal,
anges the amplitude at the output. e amplitude of the output thus aracterizes the sig-
nal frequency. However, an intrinsic redundancy is present in using the frequency as the
information carrier, whi can be understood from the symmetry of the gain. e response
of the system is equal for frequencies that are positioned symmetrically with respect to the
resonance frequency. As a result, for any given output, there are always two possible input
frequencies, and without additional information, the cell can not resolve whi of the two
frequencies is present. Of course, one way to avoid this, would be to use only a part of the
gain, in whi the gain increases monotonically with frequency.

Besides the possibility of multiplexing, the use of oscillatory signals has other advan-
tages. Oscillatory signals minimize the prolonged exposure to high levels of calcium, whi
can be toxic for cells [161]. In systems with cooperativity [162] an oscillating signal ef-
fectively reduces the signal threshold for response activation. Pulsed signals also provide
a way of controlling the relative expression of different genes [159]. Encoding of stimuli
into oscillatory signals can reduce the impact of noise in the input signal and during signal
propagation [163]. Frequency encoded signals can be decoded more reliably than constant
signals [203].

In this study we have assumed that the input signals are deterministic. Results are ob-
tained following deterministic simulations, where noise is added following a solution of
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the linear-noise approximation assuming non-oscillatory inputs. e effect of noise is a
reduction of the information transmission.However, the effect of noise can always be coun-
teracted by increasing the copy number. At the cost of producing and maintaining more
proteins, similar results can therefore be obtained [182]. Next, the effect of oscillations on
the variability of the output is small since the response times of X1 and X2 are mu longer
than the oscillation period. Slower responding outputs would time-average the oscillations
cycle even more, reducing the variability in the response.

Interestingly, the output X2 is a simple linear birth-death process driven by the input VP.
Comparing the dynamics of R and X2, we note that these are similar, although they differ
in their kinetic parameters. e response time of X2 is mu slower than the oscillation
period to reduce the variability in the output. e response time of R has to be small, since
that reduces the adaptation time. If the kinetic parameters of X2 and R were equivalent, R
could function as the read-out of S2, whiwould reduce the complexity of the multiplexing
motif.

e occurrence of temporal signals has driven many studies. Here we show that in-
formation can be encoded in the amplitude or frequency of oscillatory signals, whi can
then be decoded using a non-linear integration motif. Moreover, we show that oscillating
signals are ideally suited for multiplexing; we give two biological systems that may have
implemented this multiplexing strategy. e idea to use the temporal kinetics as the infor-
mation carrier in a signal has been studied in a slightly different context, where the dose
information is encoded in the duration of the intermediate component V, whi in turn is
time-integrated by the response X1 [210]. However, su a dose-response relation could
also be obtained by a mu simpler network. Here, we show that encoding signals into
the temporal dynamics of a signaling pathway allows for multiplexing, making it possible
to simultaneously transmit multiple input signals through a common network with high
fidelity.



8.A Supplementary Information 179

8.A Supplementary Information

We use the following two general definitions for the mean and the maximum of a specific
component, if the period of the input signal is Tp

〈Z〉 = 1

Tp

∫ t+Tp

t
Z
(
t′) dt′, (A8.1)

Zmax = sup
Tp

Z (t) . (A8.2)

8.A.1 Encoding

MM-approximation
In the derivation of Eq. 8.2, we have assumed, as is commonly done, Miaelis-Menten (MM)
kinetics. However, the MM-approximation may not hold for a dynamical system [211, 212].
Since the MM-approa is a coarse graining of the full mass-action kinetics of the system,
we evaluate numerically whether the MM-approximation is valid. e full set of reactions
is

S+ V
k1−⇀↽−

k−1
SV,

SV
k2→ S+ VP,

VP + E
r1−⇀↽−

r−1
VPE,

VPE
r2→ V+ E, (A8.3)

where in the MM-approximation one assumes

dSV

dt
= 0,

dV P E

dt
= 0. (A8.4)

We compare the results for the full system in whi the phosphorylation reaction is linear
in S and E, with the Miaelis-Menten approximation in the linear regime (Eq. 8.3), in whi
the phosphorylation reaction is linear in the enzyme concentration (Fig. 8.7a). is linearity
implies KV (= (k−1 + k2) /k1) � VT −V P , su that the phosphorylation reaction ofV to
VP simplifies to kV

∑
i

Si (t), whi is indeed linear in Si (and zero-order in V ). If V � S,

this condition will also be fulfilled for all moments in time when the system is dynamical
[211]. In this case all S directly binds to V and the complex SV is very stable.

A very stable complex, however, can influence the dynamics of the signal oscillations.
Assume that the oscillations in the signal S are driven due to external factors (like hormone
pulsing), or that the oscillations depend on the (saturated) degradation of the signal S [213].
e oscillating signal directly forms the stable complex and, since in these scenarios the
complex is not regulated, the absolute signal level ST = S + SV increases with increasing
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numbers of oscillations, until all V is saturated. is will influence the oscillatory dynam-
ics of the signal, reducing its periodicity and strongly increasing the mean level of signal
present(Fig. 8.7b). e interaction between the signal and V, due to the influence on the
oscillations, corrupts the information that is encoded in the oscillations. We note here that
to overcome this problem, instead of assuming S � V , a scenario is possible where V � S.
However, in this regime it is unclear if the dynamical behavior of the MM-approximation
accurately represents the dynamics of the full mass-action equations. Moreover, if S � V ,
a small concentration S directly saturates all the Vmolecules. As a result, the concentration
of V is insensitive to any oscillation in the concentration S, when the minimum concentra-
tion S is larger than the concentration V .

To overcome this problem, we add a small extension to the model. is extension is
biologically inspired, since many external signals are sensed by receptors Q, whi in turn
activate (or phosphorylate) intracellular proteins. e crucial ingredient is that the signal-
bound receptor dissociates on a mu faster timescale than the oscillations. Due to this very
fast receptor dissociation, the signal-bound state is very small.

S+ Q
kr1−⇀↽−

kr−1
QA,

QA + V
kv1−⇀↽−

kv−1
VQA,

VQA kv2→ VP + QA,

VP + E
r1−⇀↽−

r−1
VPE,

VPE
r2→ V+ E, (A8.5)

With this small extension, the dose-response curve is similar to the dose-response curve
for the Miaelis-Menten approximation with small KV (in the linear regime), also for os-
cillatory signals (Fig. 8.7c).

8.A.2 Linear Approximation

e MM-approximation, assuming a linear regime for S1, S2 in the phosphorylation of V
(Eq. 8.3) does not ange the dynamics of the signals S1, S2, whi we demonstrated with
simulations, as is described in App. 8.A.1. To show that the linear regime does not ange
the mean of VP, 〈V P 〉 as function of the signal aracteristics, we perform in this section
numerical simulations and for completeness we compare the linear regime with two other
regimes.

In regime A there are many more V molecules than kinase (Si) and phosphatase mol-
ecules, meaning that the kinase and phosphatase enzymes are saturated (VT → ∞). As a
result, the dynamics can be simplified, since saturation of kinase and phosphatase molecules
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Figure 8.7: Comparison of the Michaelis Menten approximation (red) with the full mass action
equation (Eq. A8.3, black) using Gillespie simulations. a) Dose response curve for constant sig-
nal S. The Michaelis Menten approximation approximates the non-coarse grained system very
well (only for K=5000 the curves do not precisely overlap). b) Dose-response for sinusoidal in-
put S with T=100 s. Due to the strong complex formation of VS, the signal S is not external
to the system, but all the signaling molecules bind until all V is saturated. The effective con-
centration S is thus much larger than the mean of the oscillations. Parameters: r1 s−1,ET=
150,VT=2500,MV=5000, and for KW=5000,KW=10,KW=0.01 respectively {k1,k−1,k2,r2}=
{1,4997.5,2.5,1} s−1,{1,9,1,2} s−1,{100,0,1,2} s−1. c) The dose-response curve for (Eq. A8.5)
compared to the Michaelis-Menten equations kr1=0.05 s−1,kr−1=4000 s−1,kv1=1 s−1,kv−1=

4000,kv2=25 s−1,r2=2 s−1,r1=1 s−1,r−1=4998 s−1(MV=5000),ET=50,RT=1000,VT=5000.

implies that MV ,KV � VT . is leads to

dV P

dt
≈ kV

(∑
i

Si (t)

)
− mV , (A8.6)

is is the well-known regime of zero-order dynamics for V. In this regime 〈V P 〉 can be
approximated by a binary function 〈V P 〉 = 0 or 〈V P 〉 = VT , with the transition depending

on the kinase(s)

(∑
i

Si

)
crit

(see Fig. 8.8, open gray symbols). V thus acts as a swit.

However, a swit-like functional dependence of V on S does not lead to perfect traing of
the signal S, and therefore not to reliable propagation of the oscillations.

e second regime, regime B, is the opposite of the previous. In this regime, V is limiting
(e.g. MV ,KV � VT , see Eq. 8.2). e resulting dynamics is described by

dV P

dt
= k′

V

(∑
i

Si (t)

)(
VT − V P

)
− m′

V V P , (A8.7)

where k′
V = kV /KV and m′

V = mV /MV . In this regime, the phosphorylation reaction is
non-linear, but degradation is a linear process. A typical dose-response curve is shown in
Fig. 8.8 (closed gray symbols).

In regime C (Fig. 8.8, closed bla symbols), the two preceding regimes are combined.
ere is saturation of the kinases in the production, but saturation of VP in the dephospho-
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rylation, leading to Eq. 8.3

dV P

dt
= kV

(∑
i

Si (t)

)
− m′

V V P . (A8.8)

In Fig. 8.8a the dose-response curve between S and VP is shown, where we study the
mean 〈V P 〉 as a function of a constant signal S with increasing mean µ. Regime C (closed
red symbols) has an approximate linear relation between S and 〈V P 〉. Regime B (closed
gray symbols) increases hyperbolically to saturation, while regime A (open gray symbols)
shows the swit-like response.

A sinusoidal oscillation can only be propagated perfectly as a sinusoidal if the dose-
response function is linear. For non-linear dose-response functions, oscillations with small
amplitude are propagated correctly, since for small perturbations every function has lin-
ear aracteristics. However, larger amplitude oscillations are deformed by the non-linear
transfer function. As a result, the mean 〈V P 〉 anges as a function of A and/or T , the oscil-
lation parameters. A stronger non-linear dose-response function decreases the amplitude-
range of oscillations that can be propagated without this deformation. Figure 8.8b shows
〈V P 〉 for signals with different properties A and T . Since µ (the signal mean) is constant,
〈V P 〉 should be constant as well, if the transfer function would precisely tra the signal
dynamics. We observe that both in regime B and C 〈V P 〉 does not depend on the oscil-
lation parameters A,T , while in regime A a strong dependence on these parameters exist.
In Fig. 8.9a-c we show corresponding time traces. Again the strong non-linear response
for regime A is observed, while regime B and C exhibit oscillations that are very similar to
the signal sinusoidal oscillations. Please also note the reduction in amplitude in regime B,
compared to regime C. is can be explained by the hyperbolic shape of the dose-response
curve for regime B, whi dampens anges in S (Fig. 8.8a).

8.A.3 Decoding

The adaptive motif
We take a closer look at the adaptive motif, especially focusing on the behavior of the aver-
age response 〈W P 〉 as a function of V P (t) in different parameter regimes. As discussed in
the main text, an adaptive system is insensitive to a constant input concentration. In other
words, the output of the adaptive system does not depend on the input, as long as the input
is constant. For time-dependent inputs, however, this is in general not true.

In the multiplexing framework, VP is aracterized by the mean µ1, frequency T1 and
amplitude A1 of S1 and the mean µ2 of S2. e response WP should only depend on T1

and A1, since these carry the information in S1, but be insensitive to the mean level of the
signals S1,S2, and thus VP. We restate the mathematical description of the adaptive motif

dR

dt
= kRV P − mRR, (A8.9)

dW

dt
= kW

V P
(
WT − W P

)
KW +

(
WT − W P

) − mW
RW P

MW + W P
. (A8.10)
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Figure 8.8: a) The dose-response curve is shown for the regime in which both the production and
degradation are zero-order in VP (regime A, Eq. A8.6), in which production is and degradation are
linear in VP (regime B, Eq. 8.3) and zero-order production but linear degradation of VP (regime
C,Eq. A8.7). The curve that is linear over the widest S-range is that for linear degradation of
VP, but zero-order production (regime C). Parameters: mV=50,KV=10−4VT,MV=10−4VT,mV=

500,KV=10−4VT,MV=5VT, andmV=50,KV=5VT,MV=5VT. kV sets the timescale. b) The time
average over a single oscillation period, 〈VP〉T, is shown for four different simulations where the
signal characteristics are as indicated and µS=50.
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Figure 8.9: Time traces for regime A (panel a) zero-order for V in both production and degradation
(Eq. A8.6), regime B (panel b) linear inV in both production and degradation (Eq. A8.7) and regime
C (panel c) degradation linear in V and production zero-order in V (Eq. 8.3), all for a single driv-
ing signal with different amplitude A levels and frequencies T−1, while µ=50. The non-linear
response for the zero-order regime is clearly visible in a. The difference between panel b and c is
the amplitude of the response. The process with a saturated production (B, panel b) has a much
smaller amplitude than the linear production (C, panel c).

Similar to the discussion in App. 8.A.2 we distinguish four different regimes for the
adaptive motif. Regime A is aracterized by the full non-linear description Eq. A8.10. In
regime B, where KW ,MW � WT , indicating that protein W is fully saturated, Eq. A8.10
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simplifies to

dW P

dt
=

kW

KW
V P

(
WT − W P

)
− mW

MW
RW P , (A8.11)(

WT −
〈
W P

〉)〈
W P

〉 =
KW mW

kW MW

kR

mR
. (A8.12)

Eq. A8.11 describes bimolecular reactions between VP and W, and R and WP respectively;
note that the the production rate ofWP is bounded by the total amount of unphosphorylated
W. More importantly, we restate that adaptation requires that the deactivation reaction of
WP is non-linear, scaling as R × W P . is is the origin of the non-linearity in the network,
turning multiplexing into a non-trivial problem.

In regime C, in a sense the opposite of regime B, both VP and R operate in a saturated
state (KW � WT − XP

1 ,MW � XP
1 ), and this leads to

dW P

dt
= kW V P − mW R, (A8.13)

where the dynamics ofWP is independent ofWP itself, but does depend strongly onanges
in VP and R. is corresponds to the zero-order regime, with an ultra-sensitive response of
WP to anges in the ratio VP/R. is regime is only valid in a small concentration range of
VP, due to the copy number constraint. If W P ∼ WT or W P ∼ 0, the approximation fails.

We stress again that we can not construct a linear regime for WP, equivalent to Eq. 8.3
for VP. is is because, in contrast to Eq. 8.2, in Eq. A8.10 the dephosphorylation reaction is
non-linear. e dephosphorylation ofVP is dictated by a constant number of enzymes, while
the dephosphorylation of WP depends on R (t), whi oscillates. In regime D, we assume a
functional form whi is most similar to Eq. 8.3, meaning that the activating enzyme (VP)
is saturated, while the deactivating enzyme (here R) is not,

dW P

dt
= kW V P − mW

MW
RW P , (A8.14)〈

W P
〉
=

kW MW mR

mW kR
. (A8.15)

For these four regimeswe show the dependence of 〈W P 〉 on kW at fixedµ1, withµ2 = 0
(Fig. 8.10a), the gains (Fig. 8.10b) and typical time traces (Fig. 8.11).

e dose-rate curve of 〈W P 〉 vs kW (Fig. 8.10a) shows for a constant signal S1 the
ange in 〈W P 〉 with a ange in kW . From Eq. A8.10, we observe that a ange in kW is
equivalent to a ange in 〈V P 〉. Since µ2 = 0, the dose-rate curve therefore is equivalent
to a dose-response curve of 〈W P 〉 vs the men of S1, µ1. Note, that for an adaptive regime
indeed the response is independent of the signal, but not independent of the kinetic rates of
the adaptive motif itself, therefore a dose-rate curve can be obtained. However, for constant
kW , the dose-rate curve indicates the actual magnitude of the transient response WP to
a ange in the input. Regimes A and B have a similar dose-rate curve, whi shows a
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Figure 8.10: a) For Eq. A8.10 (black solid), Eq. A8.11 (black dashed), Eq. A8.13 (red dashed) and
Eq. A8.14 (red solid) the dose-rate curve is shown for µ1=50,µ2=0. The very sharp depen-
dence on kW of the completely saturated regime C is shown. Note that in regime D 〈WP〉
is linear in kW over a wide range (see inset), making this an ideal candidate for multiplexing.
Parameters: KV=0.004VT,mV=10 s−1,MV=30VT,VT=2500,mR=0.01 s−1,kR=0.011 s−1,WT=

1000; mW=2(WT/2.+MW)/WT s−1. Reg. A: KW=MW=WT/2, Reg. B: KW=MW=5WT, Reg.
C: KW=MW=10−4WT, Reg. D: KW=10−4WT,MW=5WT. b) The power spectrum (equal color-
ing) for equal 〈XP〉. Indicated with circles are τR (black solid), τV (black open) and τX (gray open).
A change KW ,MW only changes τX. Since τ−1

X �τ−1
R ,τ−1

V , the resonance frequency is similar
for regime A,B and D. Regime C has a complete different power spectrum. The larger amplitude
reflects the switching behavior of the system. Next, the resonance frequency is present at smaller
frequencies. The peak is less pronounced, reflecting that the switching behavior is not dependent
on a specific signal frequency, but is present for many different signal inputs. Parameters: as in
panel a except for kW , which sets 〈XP

1 〉=WT/2.

gradual non-linear increase of W P as a function of kW . Regimes C, where the kinase and
phosphatase are saturated in the (de)phosphorylation reactions has a mu stronger non-
linear response function and shows a swit transition at a critical kW . Regime D is linear in
W P as function of kW . is indicates that this regime is a good candidate for multiplexing.

e gains (Fig. 8.10b) of regime A,B and D are similar, while for regime C the gain is
mu larger. e peak is at a smaller frequency compared to that of the other regimes and
less pronounced.

e time traces (Fig. 8.11a-d) show some interesting features. First, close to the res-
onance frequency (ωres) (Fig. 8.11a,c) the oscillations in WP are large, while signal oscilla-
tions that are mu faster are not propagated at all, but averaged out (Fig. 8.11b,d). Next, the
amplitude of the response WP has a strong dependence on the signal amplitude (A1). e
systems with non-saturated dynamics for the kinase and phosphatase (Eqs. A8.10, A8.11)
show clear oscillatory behavior, although the shape of the oscillations is strongly altered
with respect to the shape of the incoming sinusoidal function due to the non-linear trans-
fer function (dose-response function). A closer comparison with Fig. 8.10a shows that the
dose-response curve is steeper in regime A than in regime B. As a result, a small ange in
V P leads to larger ange in W P in regime A.e oscillations in regime A therefore have a
larger amplitude than in regime B. e (binary) swit aracteristic of the dose-rate curve
of regime C (Eq. A8.13) is clearly seen. Next note that, except for regime D, the oscillations
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are (strongly) asymmetric. e decrease in the minimum with respect to the steady-state
average 〈W P 〉 is stronger than the increase in the maximum.
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Figure 8.11: Respective time traces for different frequencies T−1 and amplitudes A of S1, shown
for the four different regimes A-D, colors and parameters as in Fig. 8.10b (black solid, regime A,
black dashed, regime B, red dashed, regime C, red solid, regime D). Panels a, c T=10 s, panels b,
d T=1000 s. Panels a, b A=0.5, c, d A=1.

The behavior of 〈W P 〉 as function of A1 and µ2

As discussed in the main text the potential cross-talk between S1 and S2 is an important
problem. Since the transfer function from VP to WP is non-linear, a ange in 〈V P 〉 will
influence the response WP. Indeed, in Fig. 8.11a,c the non-linearity of the response given
a sine-input is clearly present. A very important consequence of this nonlinearity is that
the mean response 〈W P 〉 is a function of 〈V P 〉. Although W is adaptive for steady-state
inputs, the mean is dependent on dynamic inputs.

In Fig. 8.12 the mean response 〈W P 〉 and the maximum expression W P
max are shown

for specific aracteristics of S1 (A1,T1 and constant µ1), but anging µ2 for the different
parameter regimes A, B, C, D (as defined earlier). e mean response 〈W P 〉 close to the res-
onance frequency (Tres ≈ 1000 s) increases with increasing µ2, but constant A1 (Fig. 8.12b,
d). As important, also the maximum response is not constant, but decreases as a function
of µ2. Both effects are larger for larger A1. is indicates, that for a specific A1,T1 a range
of maximum and average W P concentrations is observed as function of µ2, and therefore a
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unique mapping betweenWP and A1 is not present. Indeed, for every A1 there are multiple
outputs W P , ea corresponding to a different value of µ2. is cross-talk between µ2 and
A1 is precisely the cross-talk that a multiplexing system should minimize to obtain reliable
signal transmission performance.
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Figure 8.12: Dose-response curves for 〈W〉 (boom) and Wmax (top) as function of µ2, for constant
µ1=25. Color for the four different regimes A-D as in Fig. 8.10b (black solid, regime A, black
dashed, regime B, red dashed, regime C, red solid, regime D). Panels a, c T=10 s, b, d T=1000 s.
Panels a, b A=0.5, c, d A=1.

As important is the fact that the non-linear transfer function betweenVP andW not only
creates a dependence of 〈W P 〉 on 〈V P 〉, but also a dependence of 〈W P 〉 on A1. In other
words, even for a signal with constant mean, the mean of the output is not constant, but
depends on the amplitude. Indeed, for constant mean 〈V P 〉, 〈W P 〉 anges as a function
of the amplitude (Fig. 8.13a, b). e direction of the ange depends on the specific regime,
in regime A 〈W P 〉 decreases with increasing amplitude, while in regime D 〈W P 〉 increases
with increasing amplitude. In Fig. 8.13a, b the mean response 〈W P 〉 and the maximum
expression W P

max are shown as a function of amplitude A1 for different mean µ2 and T1 for
regime A,D.

In Fig. 8.13c,d the corresponding overlap plots are shown for regime D. ese capture
the described sensitivity to both A1 and µ2. In the preceding paragraph we have shown
that 〈W P 〉 = f (A1,µ2) and W P

max = g (A1,µ2): both are functions of A1 and µ2. In the
plots the range of concentrations W P is shown as a function of the amplitude A1 defined
over all µ2. Ea horizontal line describes 〈W P 〉 as a function of µ2 for a given A1, where
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µ2 is varied either in the range [2 : 25] (red dashed) or in the range [2 : 50] (red solid). In
red lines the result for T = 1000 s is shown, while the bla line correspond to T = 10 s
and a µ2-range of [2 : 50]. From Fig. 8.13c,d we note a couple of interesting observations.
First, we observe the increase in the minimum of 〈W P 〉 for increasing A1, whi reflects the
increase in the mean with increasing amplitude. Second, the presence of cross-talk between
A1 and µ2 in the overlap plots is visualized by an overlap between the concentration ranges
of µ2. Within the overlap regime, the specific concentration W P corresponds to different
values of A1 and therefore a unique mapping is not present. e overlap depends strongly
on the resonance frequency and on the number of inputs Nµ of S2. Since the states are
uniformly spaced within a fixed interval (A : [0 : 1], µ2 : [2 : µ2max]), the number of states
determines the input distribution. A reduction in the number of input states, increases the
separation between ea state in phase space and thus reduces the overlap and thus the
cross-talk between the le and right pathway. Of course, in the limit Nµ = 1, cross-talk is
absent.

In order to prevent cross-talk between the two signals at the amplitude read-out, the
mean response 〈W P 〉, should be independent ofµ2, while W P should discriminate between
different amplitudes. We quantify this trade-off as a function of the parameters KW ,MW

using the mutual information. We define

I1 = I
(

W P
max,A1

)
and I2 = I

(〈
W P

〉
,A1

)
. (A8.16)

For maximal discrimination of the amplitude, I1 should be maximized, while no response
of the mean 〈W P 〉 with respect to the amplitude indicates that I2 should be minimized. In
Fig. 8.14 we show therefore IT = I1 − I2, where large IT reflects good amplitude discrim-
ination while having a relatively constant mean response. From Fig. 8.14 we observe that
the mutual information is maximized for KW � WT and MW � WT , whi corresponds
to regime D. is coincides with the behavior we have observed from the overlap and dose-
amplitude figures. Indeed, these figures show as well that large amplitude discrimination
W P

max, while preserving constant 〈W P 〉, is optimal in regime D.

8.A.4 The conversion of WP to X1

In App. 8.A.3 we have discussed that due to the non-linearity of the adaptive motif, 〈W P 〉
is not independent of the temporal profile of V P (t), since 〈W P 〉 depends both on the max-
imum and minimum expressions and on the average expression. e fact that the mean
〈W P 〉 is not constant as a function of the amplitude A1, has an influence on the suggested
conversion from WP to X1.

As discussed in the main text, if 〈W P 〉 would be constant as function A1, the transfer
function between WP and X1 should be non-linear to optimally transfer the information
encoded in the amplitude. However, since 〈W P 〉 depends on A1 this general analysis is not
necessarily correct. In Fig. 8.15 the dose-amplitude relation is shown for a system where
the mean 〈W P 〉 anges with varying A1 (compare with Fig. 8.4). Since a linear response
function is only sensitive to the mean input, and not to the minimum and maximum re-
sponse (for a temporal profile that is symmetric with respect to the mean), the output 〈X1〉
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Figure 8.13: Panels a, b Dose-amplitude curves for 〈W〉 (boom) and Wmax (top) as function of
A1, for constant µ1=25. Color code: black T=10 s, red T=1000 s. Closed circles: µ2=2 au, Open
circles µ2=25 au. In regime A (panel a) forT=10 s (black) there is almost no change for increasing
A. For T=1000 s (red), the mean 〈WP〉 decreases, while the maximum responseWP

max increases.
In regime D (panel b) similar behavior with respect to T is observed, although the mean 〈WP〉
here increases, but the increase is relatively small and the maximum response has a stronger
increase with respect to A1. This is because regime D has a linear response over a larger range of
inputs 〈YP〉 (see Fig. 8.10a). Panels c, d: Overlap plots for regime D. We show the range of the
response 〈WP〉 for a given amplitude A1 over all input µ2. Black color for T=10 s, red color for
T=1000 s. Thick red µ2=[2−50] au, dashed red µ2=[2−25] au. The overlap between the different
lines visualizes the redundancy (or non-uniqueness) of a specific response. The vertical dashed
black line shows that a specific output WP

max corresponds to multiple inputs A1. For the dashed
red line, with a smaller number of S2 inputs, the dashed black line crosses a smaller number of
lines as the range in µ2 decreases. Therefore the two red lines show the reduction of overlap (or
cross-talk) for increasing µ2,max (solid µ2,max=50 au, dashed µ2,max=25 au). Note the scale on
the horizontal axis in panel c, the change in 〈WP〉 is negligible.

then is a function of A1. A unique mapping between 〈W P 〉 and A1 thus follows for a lin-
ear relation between WP and X1. Note that this is in contradiction with the analysis in the
main text, where the linear relation between WP and X1 has no influence given a constant
mean 〈W P 〉 and symmetric temporal profile. A non-linear transfer function between WP

and X1 depends on the maximum W P
max, the minimum W P

min and the ange in 〈W P 〉. If

the mean
〈

W P
〉

is a function of the amplitude A1, due to the non-linearity of the trans-

fer function, the mean 〈X1〉 depends, non-linearly, on the mean 〈W P 〉. is additional
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Figure 8.14: Contourplot for the mutual information (IT=I1−I2, Eq. A8.16) as function of the pa-
rameters KW ,MW , color indicates IT. The input distributions are uniformly distributed with
µ
j
2=50j/Nµ,Ai

1=(i−1)/(NA−1). Parameters as in Fig. 8.10b andT=1000 s. Panel aNA=4,Nµ=2

b NA=4,Nµ=8.

dependency of 〈X1〉, next to the dependency on W P
max,W

P
min, could corrupt the amplitude

discrimination as suggested in the main text. We observe in Fig. 8.11b,d that the temporal
profile of W P (t) is not symmetric with respect to time or the mean 〈W P 〉. Indeed, the
minimum amplitude can be ”larger” than the maximum amplitude, whi provides an ex-
planation why the time averaged mean 〈W P 〉 decreases. is also suggests that 〈X1〉 as a
function of A1 can decrease with increasing amplitude A1, since the increase in amplitude
creates a more asymmetric W P (t), whi is biased to smaller values.
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Figure 8.15: Schematic drawing of the decoding of the final step for a change in 〈WP〉 for different
amplitudes. a) the oscillations inW are shown for two different input amplitudes. An increase in
the amplitude leads to a decrease in 〈WP〉. b) The dose-response function of X1 versus W. For
a linear dose response function, a change in the amplitude of W does lead to a change decrease
in the output X1, since 〈WP〉 decreases. For a non-linear transfer function the influence of the
decrease of 〈WP〉 depends on the precise form of the dose-response function, since the decrease
in 〈WP〉 has an opposite effect of the increase in the amplitude. c) The dose-amplitude function
of X1 versus A1. For a linear dose-response function the dose-amplitude function is decreases,
while for a non-linear dose-response function, the dose-amplitude function depends on the precise
shape of the dose-response function.

e story is more intriguing, since 〈W P 〉 depends not only on A1, but also on µ2. Maxi-
mal information transmission occurs if the transfer function can discriminate different out-
put levels maximally with respect to the corresponding inputs. Since it is difficult to analyti-
cally derive expressions, we perform numerical simulations where we study the total mutual
information transmied between two pathways as a function of the parameters KW ,MW
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(Eq. A8.10).

dX1

dt
= kX1

W P (t) − mX1
X1 (t) , (A8.17)

dX1

dt
= kX1

(
W P

)
nX1

(t)(
W P

)nX1 (t) + K
nX1
X1

(t)
− mX1

X1 (t) . (A8.18)

In Fig. 8.16a,b the results for Eq. A8.17 are shown, while Fig. 8.16c,d the results for Eq. A8.18
are shown. We observe that the non-linear transfer function has a larger total information
transmission, than a linear transfer function between WP and X1. Compared to Fig. 8.14,
we note that optimal results are obtained for a larger range of parameters. First, regime D
(Eq. A8.14) still provides correct results. For KW ,MW � WT the oscillations are strongly
damped and this reduces the transmied information. For KW ,MW � 1, W has a swit
like response and this again strongly reduces the information transmission.
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Figure 8.16: Contourplot for the mutual information (I1(X1,A1)) as function of the parameters
KW ,MW , color indicates I1(X1,A1). The input distributions are uniformly distributed with µ

j
2=

50j/Nµ,Ai
1=(i−1)/(NA−1). Parameters as in Fig. 8.10b and T=1000 s. Panel a, c) NA=4,Nµ=2

b, d) NA=4,Nµ=8. Panels a, b: X1 as given by Eq. A8.17 kX1=5mX1
=1/10T s−1, panels c, d: X1

as given by Eq. A8.18, KX1
=5000,nX1=5, kX1=3500,mX1

=1/10T s−1.

8.A.5 Numerical optimization

e numerical optimization used to produce Fig. 8.5 is based upon the Wright-Fisher model
for population evolution. In the simulations N systems are present, ea consisting of a
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single multiplexing network. In the optimization procedure, we optimize over the kinetic
parameters of the network, for given uniform input distributions for the two signals.

p (A1 = a) =
1

NA
, with amplitude values ai =

i

NA
, i ∈ [1 : NA] , (A8.19)

p (µ2 = µ) =
1

Nµ
with concentration values µj =

j

Nµ
µmax, j ∈

[
1 : Nµ

]
. (A8.20)

In the initialization step, ea network is assigned random parameters where ea pa-
rameter is within the ranges specified in Eq. A8.22 and Eq. A8.23. At every step for all
input states (A1,i,µ2,j ) the output concentrations 〈X1〉, 〈X2〉 and corresponding variances
σX1

,σX2
are determined. With these the mutual information I1 (A1,X1) and I2 (µ2,X2)

is obtained. Using the total mutual information IT = I1+I2 for ea network, in the selec-
tion step N new systems are selected, where the likelihood of reproduction of ea system
is proportional to its fitness IT . A larger mutual information increases the likelihood of be-
ing used as a template for any of the new systems. Ea new network is then ”mutated” by
multiplying a randomly selected parameter by the factor (1 + δ), where δ is drawn uniform
randomly from the range [−∆: ∆]; we take ∆ = 0.3. en the cycle repeats.

We take the kinetic parameters of the encoding module to be fixed, since the transmis-
sion of oscillations is optimized within the linear regime (see Eq. 8.3). We further take the
mean of the oscillatory signal to be constant and if necessary X1,T

kV = 1 s−1, mV = 5625 s−1, MV = 0.01VT , KV = 30VT , VT = 1000,

µ1 = 25, X1,T = 3000. (A8.21)

Some parameters are constrained based upon values of other parameters

kW to set
〈

W P
〉
= WT /2 for a constant signal,

mX2
= mX1

=
(
10T −1

)
,

kX2
= 5mX2

,

kX1
= 3500mX1

f
(

X1,T , 2,KX1
,nX1

)
. (A8.22)

is leads with the following set of parameters to optimize over for given NA,Nµ, where we
assume for the response X1 a functional description following Eq. A8.18. In square braets
we give the minimum and maximum range of ea parameter.

KW [1 au : 75000 au] ,MW [1 au : 75000 au] ,mW

[
10−3 s−1 : 103 s−1

]
,

T
[
101 s : 104 s

]
,µ2,max [1 au : 100 au] ,nX1

[1 : 5] ,KX1
[1 au : 75000 au] . (A8.23)
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[32] Bruggeman FJ, Blüthgen N, Westerhoff HV (2009) Noise management by molecular networks.
PLoS computational biology 5:e1000506.
doi:10.1371/journal.pcbi.1000506

[33] Heinri R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal trans-
duction. Molecular cell 9:957–70.

[34] aai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proceedings
of the National Academy of Sciences of the United States of America 98:8614–9.
doi:10.1073/pnas.151588598

[35] Tan C, Reza F, You L (2007) Noise-limited frequency signal transmission in gene circuits. Bio-
physical journal 93:3753–61.
doi:10.1529/biophysj.107.110403

[36] Chaves M, Sontag ED, Dinerstein RJ (2004) Optimal Length and Signal Amplification inWeakly
Activated Signal Transduction Cascades. e Journal of Physical Chemistry B 108:15311–15320.
doi:10.1021/jp048935f

[37] Ghosh B, Karmakar R, Bose I (2005) Noise aracteristics of feed forward loops. Physical biology
2:36–45.
doi:10.1088/1478-3967/2/1/005
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S

All living systems have to respond to anges in their environment — this capacity could even be
phrased as a defining property of a living system. In order to respond to a ange in the environment,
the first step is to register that a ange has occurred. We humans have developed five senses, seeing,
hearing, feeling, smelling, tasting, that allow us to actively register the environment and note anges
within it. Not only for humans is this capacity important, but also for more simple forms of life,
including unicellular organisms like bacteria. And indeed, also unicellular organisms have developed
“tools” that allow them to measure anges in their environment.

However, monitoring the environment by itself is not sufficient. Cells also actively have to process
the information from the environment and, possibly, ange their current behavior. If for example
E. coli, initially surrounded by an excess of glucose, observes that the glucose concentration decreases
in favor of lactose, in order to survive, it has to ange its behavior. e bacterium for example could
ange its internal metabolic circuit from glucose-powered to lactose-powered by expressing different
enzymes, or decide to move to different places with possible higher concentrations of glucose. In both
scenarios, the ange in the environment leads to an active response of the bacterium.

e connection between the ange in the environment, the signal, and the response of the cell is
facilitated by networks of interacting proteins, whi jointly form a signaling cascade. Cells havemany
different signaling cascades, since there are many different signals and signals can lead to a variety of
responses. Arguably, the most important property of a signaling cascade is the transfer of information
from the signal to the response as reliably as possible. To study the reliability quantitatively I use
information theory, since this provides us with an excellent measure, the mutual information between
signal and response. Using information theory it can be shown that the reliability of the information
transfer depends upon the ratio of two quantities, the amplification of the signal, or the gain, and the
inherent noise of any bioemical cascade. In this thesis we will study these quantities, the gain and
the noise, in more detail, especially in Chapters 2, 3, 4 and 6.

Increasing the reliability of a cascade in general requires more energy, for example for the pro-
duction of more proteins or additional phosphorylations. Since energy resources are limited for every
cell, a large reliability therefore should be obtained while keeping the cost low. One possible solution
for cost reduction is the simultaneous use of a single protein for multiple functions or in multiple
cascades, a process called multiplexing. In Chapters 5, 7 and 8 this idea is worked out in more detail.

Reliability of signaling cascades

In Chapters 2 and 3 I look at the reliability of signaling cascades for time-varying signals. Recent
studies have shown that some small network structures are overrepresentedwithin signaling cascades,
so-called network motifs, and for these motifs I study the reliability. e reliability is quantified using
themutual information between signal and response. For time-varying continuous signals, the mutual
information is replaced by the mutual information rate, whi i) is frequency dependent, and ii) is
directly proportional to the gain-to-noise ratio of the cascade, whi now is frequency dependent as
well. By studying both the gain (amplification) and the noise simultaneously, we observe that positive
feedba or positive autoregulation increases the gain-to-noise ratio at small frequencies, showing
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that slowly varying signals can be transmied more reliably if positive regulation is present in the
cascade. Negative feedba enhances the reliability of signaling at high frequencies, but only if the
feedba is within the cascade, upstream of the final response. en negative feedba can even lead
to a peak in the gain-to-noise ratio as a function of the signal frequency.

For cascades with feed-forward properties (either coherent, incoherent or diamond) I observe
that the gain-to-noise ratio is enhanced if the signal is split in two separate intermediate proteins,
whi then later recombine at the response. However, to observe this, coincidence detection at the
response is required, meaning that for activation of the response both intermediates should be present
simultaneously. is form of activation can be obtained both through homo- or heterodimerization
of the intermediate proteins. Next, in this apter, we observe that for a feed-forward motif the gain-
to-noise function can have high-pass or low-pass aracteristics as a function of frequency whi,
surprisingly, does not depend on the type of feed-forward motif, either coherent or incoherent. By
actively anging the different coupling strenghts between the two pathways in a feed-forward motif,
the gain-to-noise ratio can be swited from a low-pass to a high-pass filter and vice-versa.

Diffusion noise

Many signaling cascades have as their natural starting point a receptor, although this is not always
true. ese receptors sense a specific ligand concentration whi diffuses in the medium surrounding
the receptor and stoastically binds and unbinds to the receptor. Over 35 years ago, an interesting
study by Berg and Purcell has provided an answer to the question what the minimal limit in the uncer-
tainty is of a concentration measurement if su a single receptor would measure the concentration
over some time interval. is limit has been disputed in later papers, creating an open question. In
Chapter 4, using a different analytical derivation and computer simulations, we confirm the findings of
Berg and Purcell of 35 years ago, establishing, again, the fundamental limit on noise in a concentration
measurement. e limit consists of two terms, one originating from the stoastic dynamics of the re-
ceptor and one from the diffusive behavior of the ligand particles. Importantly, the fundamental limit
depends on the fractional occupancy of the receptor. is reflects the fact that a receptor that is bound,
can not measure “new” ligand molecules, thereby increasing the uncertainty in the measurement of
the outside concentration. Moreover, in this apter we present a simple model whi provides the
correct correlation time, and therefore the correct measurement uncertainty, and the parameter range
for whi the simple model is accurate.

Signal integration

Focussing on the receptors in Chapter 5 I study signal integration by receptors. Recent experiments
have shown that receptors, or in general proteins, can act as logic gates, meaning that the response
depends on the combined information of two signals. We wondered how versatile this meanism is.
Using a simple statistical meanics model we show that indeed receptors are capable of performing
any gate by tuning kinetic parameters. On evolutionary timescales, this would be a meanism for
cells to obtain receptors whi function as any specific logic gate. As interesting, we show that on
mu shorter timescales, that of protein signaling, all logic gates can be formed from a limited set of
receptor monomers that dimerize.
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Oscillatory signals

It is increasingly recognized that cells oen use oscillatory signals to transmit information. Intu-
itively, one would expect an oscillatory signal to increase the variability in the output compared to a
constant signal. Since this increase in variability makes the signaling cascades less reliable, the use of
oscillatory signals seems, from this point of view, disadvantageous. However, in Chapter 6 we show
that, counter-intuitively, oscillatory signals not necessarily lead to lower variability in the output of
a gene regulatory network. is effect relies on the fact that a swit driven by an oscillatory signal,
becomes more periodic, than when driven by a constant signal. e oscillatory input signal then leads
to a more constant output level than the constant input signal.

Multiplexing

Multiplexing, the art of transmiing multiple different signals simultaneously through a shared path-
way, is the topic of the final two apters of this thesis. In Chapter 7 the problem of multiplexing
constant signals is studied. Here we show that two signals can indeed be encoded into a shared cas-
cade and decoded into two responses, where ea response is sensitive to a single signal only, with
absolute reliability. Since the input signals are constant in time, we refer to this type of multiplexing
as AM multiplexing.

In Chapter 8 we extend the problem as posed in Chapter 7, by asking the question if oscillatory
signals and constant signals jointly can bemultiplexed. Here one response is sensitive to the properties
of the oscillatory signal (like the oscillation period and the amplitude, but not themean level), while the
other response is sensitive to the concentration of the constant signal. We show that indeed networks
can be constructed that multiplex these signals, and as expected, we find that, next to the intrinsic
bioemical noise, also the cross-talk between the two signals acts as a bolene for information.
However, the total amount of information through the network can be increased enormously with
respect to the AM multiplexing strategy.
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S

Ieder levend wezen moet reageren op veranderingen in zijn omgeving — sterker nog, de mogelijkheid
om dit te kunnen doen zou een definieerbare eigensap van leven kunnen worden genoemd. Om
überhaupt te kunnen reageren op veranderingen in de omgeving, moet allereerst de omgeving wor-
den waargenomen, om zo een eventuele verandering op te merken. Mensen hebben voor deze taak
zintuigen ontwikkeld, zien, horen, voelen, ruiken en proeven, die het mogelijk maken om actief, maar
missien wel vaker onbewust, de omgeving waar te nemen en veranderingen op te merken. Maar
niet alleen mensen moeten hun omgeving waar nemen, ook eenvoudigere levensvormen, inclusief
de ééncelligen, zoals bacteriën, moeten dit doen. Ook ééncellige organismen hebben, via evolutio-
naire processen, het gereedsap ontwikkeld dat nodig is om de de eigensappen van de omgeving
te meten.

Eter, alleen het actief waarnemen van de omgeving is onvoldoende. Naast de waarneming,
moeten cellen de verkregen informatie over de omgeving ook verwerken, wat (vaak) tot een gedrags-
verandering leidt. Als bijvoorbeeld de bacterie E. coli, in beginsel omringd door de suiker glucose,
opmerkt dat de glucose suikers worden vervangen door lactose suikers, dan moet de bacterie ”actie”
ondernemen om in leven te blijven. Een mogelijkheid is een aanpassing van het interne metabole
circuit door de expressie van nieuwe, andere enzymen, zodat in plaats van glucose, nu lactose de en-
ergiebron wordt, en een andere mogelijkheid is om zi te verplaatsen naar regio’s met een hogere
concentratie aan glucose suikers. Belangrijk is dat in beide scenario’s een verandering van de omgev-
ing tot een actieve respons van de bacterie leidt.

In deze context is de veranderende omgeving het signaal, en de gedragsverandering, de respons.
In cellen zijn signaal en respons verbonden door netwerken van versillende eiwien, die onder-
ling reageren, bijvoorbeeld door phosphorylatie of dimerisatie. Een netwerk van zulke eiwien wordt
een signaalcascade genoemd, en signaalcascades zijn een belangrijk onderwerp van dit proefsri.
Cellen hebben veel versillende signaalcascades, omdat er veel versillende signalen zijn en om-
dat één signaal tot versillende responses kan leiden. Ik durf te stellen dat de betrouwbaarheid van
een signaalcascade het belangrijkste criterium is om goed te functioneren, maar andere criteria, zoals
transmissiesnelheid of signaalintegratie, kunnen ook een rol spelen. De betrouwbaarheid van een
cascade hangt van twee factoren af, enerzijds de versterking van het signaal, de zogenaamde gain,
en anderzijds de intrinsieke ruis, die inherent aanwezig is in elke bioemise cascade. De betrouw-
baarheid kan zeer goed gekwantificeerd worden met behulp van informatietheorie; immers een be-
langrijke resultaat binnen de informatietheorie is de gedeelde informatie tussen signaal en respons.
Uit de informatietheorie blijkt inderdaad dat de betrouwbaarheid van een signaalcascade aangt van
de verhouding van de gain en de ruis. In dit proefsri worden deze factoren, de gain, de ruis en
gedeelde informatie, in meer detail bestudeerd, voornamelijk in de Hoofdstukken 2, 3, 4 en 6.

Het vergroten van de betrouwbaarheid is in principe een kostbare zaak. Energie is nodig om bij-
voorbeeld extra eiwien te maken voor een grotere versterking, of voor een grote aantal phosphory-
latie stappen. Eter, energie is een saars goed, en een hoge betrouwbaarheid moet daarom worden
verkregenmet minimaal energiegebruik. In andere woorden, een hoge betrouwbaarheid voor een lage
kostprijs. Een mogelijkheid voor het reduceren van de kosten, is het hergebruiken van eenzelfde eiwit
binnen versillende cascades, een proces dat multiplexen wordt genoemd. In de Hoofdstukken 5, 7 en
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8 wordt hier in detail naar gekeken.

Betrouwbaarheid van signaalcascades

In de Hoofdstukken 2 en 3 bestudeer ik de betrouwbaarheid van signaalcascades for signalen die tijds-
aankelijk zijn. Recente studies hebben aangetoond dat bepaalde kleine netwerkstrucuren oververte-
genwoordigd zijn binnen grotere signaalcascades, zogenaamde netwerkmotieven, en voor deze kleine
motieven bestudeer ik de betrouwbaarheid met behulp van de gedeelde informatie tussen het signaal
en de respons. Omdat de signalen tijdsaankelijk zijn, vervangen we de gedeelde informatie, door de
zogenaamde gedeelde informatiesnelheid, die frequentie aankelijk is. Verder is deze gerelateerd aan
de verhouding van de gain en de ruis, maar nu zijn zowel de gain als de ruis ook frequentie aanke-
lijk. Door tegelijkertijd de gain en de ruis van een motief te bestuderen, blijkt dat voor een motief met
positieve autoregulatie of positieve terugkoppeling, de informatieoverdrat van langzaam variërende
signalen wordt vergroot. Eter, voor motieven met negatieve terugkoppeling wordt de informatie
overdrat voor snel variërende signalen vergroot, maar alleen als de terugkoppeling zi “boven”
(diter bij het signaal) de uiteindelijke respons bevindt. In dat geval kan negatieve terugkoppeling
zelfs leiden tot een maximum in de gain-ruis verhouding als functie van de signaalfrequentie.

In cascades met een feed-forward motif (coherent, incoherent of diamant) wordt de gain-ruis ver-
houding vergroot als het initiële signaal wordt gesplitst in twee geseiden tussenliggende componen-
ten of signaalpaden, die bij de uiteindelijke respons weer samenkomen. Eter, dit effect, de verhoogde
gain-ruis verhouding, wordt alleen waar genomen bij zogenaamde gelijktijdige detectie, wat betekent
dat voor activatie van de respons beide tussenliggende componenten/signaalpaden tegelijkertijd aan-
wezig moeten zijn. Bij zowel het homo- als heterodimerisatie proces van eiwien is gelijktijdige
detectie bijvoorbeeld aanwezig. Daarnaast laten we in dit hoofdstuk ook zien dat in een feed-forward
motief de gain-ruis verhouding als een functie van de frequentie, zowel een karakteristieke hoog-band
als een laag-band vorm kan hebben. Verrassend genoeg hangt dit niet af van het type feed-forward
motief, want zowel het coherente als het incoherent motief kan beide karakteristieke vormen hebben.
Door het actief regulieren van de koppeling tussen de respons en de signaalpaden is hetmogelijk om de
gain-ruis verhouding van een hoogband naar een laagband karakteristiek en vice versa te veranderen.

Ruis door diffusie

Het natuurlijke startpunt van vele signaalcascades is een receptor, al is dit niet altijd het geval. Het
doel van een receptor is het registreren van de concentratie van een bepaalde ligand. Dit is niet
zo eenvoudig, omdat het ligand diffundeert in het medium dat de receptor omgee en stoastis
bindt en ontbindt aan de receptor. Meer dan 35 jaar geleden hebben Berg en Purcell een antwoord
geformuleerd op de vraag wat de minimale onzekerheid in de ligandconcentratie is wanneer deze door
één receptor over een langere tijd wordt gemeten. Dit resultaat, de minimale onzekerheid, is eter
in latere jaren betwist en is daarom een open vraag. In Hoofdstuk 4 bevestigen wij de resultaten van
Berg en Purcell, door middel van een nieuwe analytise theorie en computer simulaties, en daarmee
herstellen wij de fundamentele Berg-Purcell limiet weer in ere. Deze limiet bestaat uit twee termen; de
eerste term komt van de stoastise dynamica van het bind- en ontbindproces, de tweede term van
het diffuse gedrag van de ligandmoleculen. Een belangrijk kenmerk van de limiet is de aankelijkheid
van de onzekerheid van de relatieve bezeingsgraad van de receptor. Deze aankelijkheid reflecteert
dat een receptor die relatief vaak gebonden is, relatief weinig ”nieuwe” moleculen kan waarnemen
en daardoor een hogere onzekerheid in de concentratie meting gee. Daarnaast geven wij in dit
hoofdstuk nog een eenvoudig model dat zeer goed de correlatietijd, en daarmee de onzekerheid in de
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concentratie verklaart, en het parametergebied waarbinnen dit eenvoudige model geldig is.

Signaalintegratie

Nu we to de receptor aan een kritise blik onderwerpen, bekijken we in Hoofdstuk 5 naar signaal-
integratie door receptoren. Recente experimenten hebben laten zien dat receptoren, of, meer in het
algemeen, eiwien, logise functies kunnen uitvoeren. Dit wil zeggen dat de uiteindelijke respons
aankelijk is van de gëıntegreerde informatie van twee signalen. Wij waren benieuwd hoe flexibel
dit meanisme is. Met een simpel model uit de statistise meanica kunnen we aantonen dat re-
ceptoren inderdaad als elke mogelijk logise poort kunnen werken, door het actief reguleren van
kinetise parameters. Op evolutionaire tijdsalen is dit een meanisme waarbij cellen receptoren
kunnen creeëren die als elke logise poort zijn te gebruiken. Eter, en missien nog interessanter,
we laten ook zien dat op veel kortere tijdsalen cellen alle logise poorten kunnen verkrijgen door
het combineren van een beperkte set receptoren in dimeren.

Oscillerende signalen

Steeds meer experimenten laten zien dat cellen gebruik maken van oscillerende signalen. In eerste
instantie zou men verwaten dat een oscillerend signaal de variabiliteit van de respons vergroot in
vergelijking met een niet-oscillerend signaal. De vergroting van de variabiliteit, en dus de ruis, maakt
een signaalcascade minder betrouwbaar en daarom lijkt het toepassen van oscillerende signalen, van-
uit het oogpunt van de betrouwbaarheid, onlogis. Eter in Hoofdstuk 6 laten we zien, tegen de
intüıtie in, dat in een genregulatie netwerk oscillerende signalen niet noodzakelijkerwijs leiden tot
een lagere variabiliteit in de respons. Dit effect is mogelijk omdat een genetise sakelaar, aange-
dreven door een oscillerend signaal, een meer periodiek tijdsgedrag vertoont, dan aangedreven door
een constant signaal. Het gevolg hiervan is dat het oscillerende signaal een minder variabele respons
genereert dan het constante signaal.

Multiplexen

Multiplexen, of de kunst van het tegelijkertijd doorsturen van meerdere signalen door een gedeeld sig-
naalpad is het onderwerp van de laatste twee hoofdstukken van dit proefsri. In Hoofdstuk 7 wordt
het probleem van het multiplexen van constante signalen bestudeerd. We laten zien dat twee signalen
inderdaad kunnen worden geëncodeerd in een gedeeld signaalpad en vervolgens gedecodeerd in twee
uitgangssignalen, zodanig dat elk uitgangssignaal alleen aankelijk is van zijn eigen ingangssignaal,
met een 100% betrouwbaarheid. Omdat de ingangssignalen constant zijn, noemen we deze vorm van
multiplexen AM multiplexen.

InHoofdstuk 8 vergroten we de vraagstelling van hoofdstuk 7. In plaats van ons alleen te riten op
constante signalen, riten we ons nu op de vraag of één constant en één oscillerende signaal kunnen
worden gemultiplexed. Dit kan, als de respons van het oscillerende signaal alleen aankelijk is van
de kenmerken van het oscillerende signaal (zoals de periode of de oscillatie amplitude, maar niet de
gemiddelde concentratie), terwijl de respons van het constante signaal alleen aankelijk is van de
concentratie. We laten zien dat het mogelijk is een netwerk te formeren dat aan deze voorwaarde
voldoet. Zoals verwat, is niet alleen de intrinsieke bioemise ruis een belangrijke bole-ne
voor informatietransmissie, maar ook de kruisbestuiving tussen de twee versillende signaalpaden.
Eter, met een oscillerend en een constant signaal kan de totale hoeveelheid informatie die door het
netwerk wordt gestuurd, enorm vergroot worden ten opzite van AM multiplexing.
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