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ABSTRACT One of the simplest and most common structures used for directing light in 

macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many 

technologies, from satellite dishes to handheld flashlights.  Today, there is a growing interest in 

the use of ultra-compact metallic structures for manipulating light on the wavelength scale. 

Significant progress has been made in scaling radiowave antennas to the nanoscale for operation 

in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has 

not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional 

surfaces.  Here, we demonstrate that plasmon physics can be employed to realize a resonant 

elliptical cavity functioning as an essentially planar nanometallic structure that serves as a 

broadband unidirectional parabolic antenna at optical frequencies. 
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Controlling the far field emission pattern of nanoscale objects is one of the central goals of 

optical antennas1,2.  In most cases, the desired pattern is a beam of light in the far field, which 

can couple a nanoscale source or sink of light to a distant object.  Optical beaming could improve 

performance in a variety of important applications, such as photon sources3, photodetectors4, 

sensors5 and photovoltaics6.  Previous antennas have demonstrated beaming into engineered 

directions over narrow frequency ranges7-12, or broadband beaming in structures several times 

larger the wavelength13, however a broadband device with a small footprint and high directivity 

has not yet been demonstrated.  Parabolic reflectors are ubiquitous macroscopic structures that 

efficiently couple electromagnetic energy from a focal point to a beam, and work over a very 

large range of frequencies.  It would seem natural that parabolic structures would also be useful 

for small-scale optical antennas: however, fabricating complex three-dimensional surfaces is not 

generally possible with traditional nanofabrication tools.  By using a gold surface as a 2 

dimensional medium for propagation of surface waves, namely surface plasmon polaritons, it is 

possible to reduce the dimensionality of a parabolic reflector while maintaining its optical 

beaming behavior.  We demonstrate that a two dimensional cross-section of a paraboloid cut into 

a gold surface, namely a resonant elliptical cavity, presents the broadband unidirectional 

emission expected of the full three dimensional structure and is much more amenable to 

fabrication.  When reduced in size to the wavelength-scale these structures retain their beaming 

functionality and also present a set of well defined optical resonances that enhance emission for 

particular wavelengths.  



 

Figure 1: Elliptical cavity antenna design, realization, and operation. A) Schematic of the 

intersection of a paraboloid with a planar surface, creating an ellipse. B) SEM image of elliptical 

arena taken at 52° off the surface normal. The scale bar is 500 nm. C) 30 keV 

cathodoluminescence image at a collection wavelength of 720 nm for a 1.0-μm long, 800-nm 

wide elliptical cavity. Scale bar is 250 nm. 

Parabolic reflectors are well known in geometrical optics; they couple the emission of a point 

source at the parabolas’ focus to a plane wave propagating parallel to parabola’s axis, and vice 

versa. In a classical three-dimensional parabola the emitted light beam originates from the 

specular reflection of light over the entire parabola’s surface. However, due to the special 

geometrical properties of a parabola, an array of individual scatterers placed in a parabolic 

arrangement will also generate a parallel beam of light in the far field.  In fact, a point source 

coupled to any two-dimensional sub-section of a paraboloidal surface will generate a wave 

preferentially propagating parallel to the paraboloid’s axis. One special case of such a sub-

section is the elliptical intersection of a paraboloid with a planar surface, with the paraboloid and 

the planar ellipse sharing a common focus. In such a geometry, a beam of light can be generated 

by exciting surface plasmon polaritons (SPPs) near one of the two foci inside the planar ellipse 



followed by coherent scattering of the SPP to free-space photons via the edges of the area in the 

form of a collimated beam. The direction of the beam is only determined by the position of the 

source inside the ellipse and the ellipse’s eccentricity.  Figure 1a shows this geometry. A detailed 

analytic description of this model is given in the Supplementary Information.  A series of 

concentric elliptical groves has recently been used to realize a bull’s eye type beam director with 

a controllable beam direction based on a similar concept14.  In contrast to this work, the elliptical 

bull’s eye structure has a well-defined operation wavelength based on coherent scattering from 

multiple groves, whereas here the broad optical resonances of the plasmonic cavity are utilized to 

achieve high directivities. 

The elliptical arenas were fabricated by focused ion beam (FIB) milling using an FEI Helios 

Nanolab Dual Beam instrument into a single crystal pellet of gold which had been previously 

polished to nanometer-scale roughness. Similar geometries can also be made using template 

stripping.15,16 Patterns were defined as bitmaps and milled top to bottom with a beam current of 

1.5 pA. Higher beam currents also provide structures with similar behavior. 

Cathodoluminescence (CL) data were collected in a FEI XL-30 SFEG SEM with a custom-made 

parabolic mirror mounted on a 4 axis piezo-driven alignment system to accurately position the 

planar ellipsoidal cavities in the focus of the half-paraboidal collection mirror in the SEM. 2D 

images of the light emitted by the collection mirror were collected on a Pixis CCD and this data 

was mathematically transformed into the angle-resolved maps shown in Figure 4. Spectra were 

collected by directing the light into a fiber-coupled spectrometer. 

A scanning electron microscopy (SEM) image of a characteristic ellipse is shown in Fig. 1b. 

Several different elliptical geometries were fabricated with major axes lengths ranging between 

500 and 1600 nm, and eccentricities, defined as the ratio between the major axis length and the 



focus-to-focus distance, between 0 and 1. The depth of the elliptical cavity was also varied; 

typically a depth of 400 nm was used. The localized optical modes in these structures were 

determined using our newly developed angle-resolved cathodoluminescence imaging 

spectroscopy (ARCIS) technique. A 30 keV electron beam is raster-scanned over the surface and 

serves as a broad-band point source of surface plasmon polaritons. The radiation spectrum 

emitted by the antenna is collected by a half-paraboloidal mirror (focal length 0.5 mm) placed 

between the microscope’s pole piece and the sample. In parallel, the angular distribution of the 

emitted light is recorded by collecting the light beam emanating from the collection paraboloid 

on a two-dimensional CCD camera17,18.  Figure 1c shows a cathodoluminescence (CL) image of 

a 1000×600 nm elliptical cavity recorded at a wavelength of 720 nm. The pixel size in the 

images of the smaller cavities is 10×10 nm, and it is 20×20 nm in the largest cavities.  The two 

foci of the elliptical antenna are clearly resolved in the image, demonstrating the subwavelength 

resolution of the CL technique. As CL is a direct probe of the radiative component of the local 

density of optical states (LDOS),19 images such as in Fig. 1c provide a direct absolute measure of 

the radiation power of the antenna at any wavelength. 

Figure 2 shows CL images for cavities with an eccentricity of 0.8, with major axes between 

500 nm and 1.6 μm. Data are shown for collection wavelengths in the range 550-935 nm. As can 

be seen, as the ratio of cavity size to wavelength increases, cavity modal intensity distributions of 

increasing mode order are observed. Modal distributions of a similar type have previously been 

observed in plasmonic whispering gallery cavities and cylindrical cavities,16,20 and the modal 

distributions of photonic elliptical cavities has been explored by near-field scanning optical 

microscopy21,22. Figure 3 shows the CL spectra averaged over the elliptical cavity area for the 2D 

scans presented in Fig. 2. It can be seen that the resonant modes shift to longer wavelengths as 



the cavities increase in size. Different resonant modes, observed in Fig. 2, appear as different 

resonant peaks in the spectra. The quality factor for the plasmon resonances in Fig. 2 is in the 

range Q=10-20.  Larger cavities have lower quality factors due to increased ohmic losses of the 

SPPs in the metal. Resonant modes at long wavelengths have lower Q due to a lower reflection 

coefficient at the cavity end, caused by a larger modal evanescent tail in the normal direction into 

the air. Similarly, deeper cavities show higher quality factors due to increased reflectivity of the 

metallic walls, which lowers the radiation losses (Supplementary Fig. 1). 

 

Figure 2. Experimental elliptical cavity modal intensity distributions. Cathodoluminescence 

images (30 keV electrons) for cavities with eccentricity 0.8 and major axes ranging from 500 nm 

to 1600 nm for different collection wavelengths.  Cavity modal patterns with increasing mode 

order (m=0,1,2, …) are clearly visible. All images are scaled by the major axis length. 



While an exact analysis of the elliptical cavities resonant modes can be made using a Green’s 

function approach or the boundary-element method,21-23 a first-order model that provides very 

good physical insight predicts resonances occurring when the phase accumulated by surface 

plasmon polaritons travelling a round trip inside the ellipse is equal to an integer number m times 

2π:  

2Lkspp + 2φ = 2mπ, (1) 

 

with L the major axis length, kspp the SPP wave vector, and φ the phase increment upon 

reflection at the cavity boundary. This model very well describes the cavity modes in one-

dimensional nanowires where the resonance are determined by the cavity length.24-27 All the 

experimentally observed peaks can be fit with this model, even though it only considers 

resonances related to one characteristic length, that of the major axis.  This directly follows from 

the special geometrical properties of ellipses: in an elliptical cavity, in a simple ray optics 

picture, all rays that emanate from one focus will reflect off the ellipse’s edge in the direction of 

the opposite focus. The distance of this path is the same regardless of the initial direction of the 

first ray, and is equal to the major axis length. Thus the major axis length defines the 

characteristic resonances for the cavity. The reflections of SPPs in elliptical cavities have been 

explored previously by leakage radiation microscopy for large cavities with major axis lengths 

greater than 30 μm28, but this is the first time such a model has been proposed for a resonant SPP 

cavity on the wavelength-scale. We approximate the SPP wave vector by that for an SPP 

propagating on an infinite plane of gold.  The wave vector in the ellipse will be affected by the 

lateral confinement imposed by the walls of the cavity, which explains the shift observed 

between the predicted peak positions and those in the experiment.  The increased confinement 



experienced by the SPPs in the elliptical cavity will result in increased wave vector, resulting in 

shorter SPP wavelengths compared to free space than calculated, thus shifting the observed 

modes to the left in Figure 3B, closer to the model prediction.  Interestingly we do not see 

spectral evidence of any whispering gallery type modes.  It is possible that such modes, if they 

exist, are confined to the corners of the structure.  If so, they will have a mode index 

substantially higher than those for the SPPs propagating on the floor of the cavity, and thus may 

radiate poorly to the far field. 

 

Figure 3. Experimental elliptical cavity mode spectra. A) Cathodoluminescence spectra for 

elliptical cavities with eccentricity 0.8 with major axes ranging from 500 nm to 1600 nm. A 

redshift for the various resonances increasing cavity size is clearly visible. B) Same data as in 

(A) now represented in a map of CL intensity versus surface plasmon wavelength and cavity 

major axis. The white lines indicate the resonant modes calculated using a Fabry-Perot 

interference model. 



 

Figure 4. Strong light beaming from elliptical antennas. A-C) CL images of elliptical antennas 

with eccentricity 0.8 and major axes of 1100, 1300, and 1500 nm taken at resonance wavelengths 

of 628 nm, 609 nm, and 589 nm, respectively. The images are scaled by the major axis length. 

D-F) Normalized angular emission collected using a 40 nm band pass filter centered at 600 nm 

for the three cavities. taken using electron beam excitation at the modal maxima in (A) (see 

arrows). Blue dots indicate the paraboloid axis for each structure. G-I). Line cuts at the azumithal 

angle of peak emission with the data normalized as directivity. The maximum directivity in panel 

(I) is 18 

Figure 3b shows the data from Fig. 3a replotted versus plasmon wavelength and cavity length. 

The linear resonance redshift with cavity length is clearly visible (see also Supplementary Fig. 

2a). We fitted equation (1) through the entire data set for all modes in Fig. 3b, with the phase 



pickup φ as the only free parameter, which yields the white dashed lines in Fig. 3b.  The model 

describes the overall trends very well (see also Supplementary Fig. 2b) and yields φ = -1.2π.  The 

negative value obtained for φ is in contrast to experiments on strip antennas which have shown a 

positive phase pickup.24,29 The negative phase pickup for an SP reflecting of the metallic ellipse 

boundary is similar in nature to the negative phase pickup seen for a plane wave reflection off a 

metal mirror.  This phase shift effectively makes the arena appear smaller than would be 

expected for a phase pickup φ=0. This attenuation in the spatial extent of the modes is also 

clearly visible in the modal distributions in Fig. 2, in which a band of low CL signal is observed 

on the inside edges of the cavities for all modes and cavity sizes. 

Figure 4 shows the angular distribution of light emitted by the cavities in terms of the 

directivity at these angles.  The directivity of an antenna is related to an antenna’s ability to 

radiate light in a particular direction   

𝐷(𝜃,𝜙) =  4𝜋
𝑃𝑟𝑎𝑑

𝑝(𝜃,𝜙)  (2) 

Where the directivity D is given as a function of azimuthal and zenithal angle and is proportional 

to the emitted power p at these angles normalized by the total radiated power Prad per solid angle.   

Data are shown for elliptical cavities with eccentricity of 0.8 and major axes of 1.1 μm, 1.3 μm, 

and 1.5 μm.  Figures 4a-c show the CL intensity maps for the resonances nearest 600 nm for 

each cavity: at 628 nm, 609 nm, and 589 nm, respectively. Figures  4d-f show the angular 

emission patterns collected for e-beam excitation of the antenna in the outermost antinode in the 

resonant modal intensity pattern. Clear beaming of light of these resonant modes at an azimuthal 

angle φ=90° and zenithal angle θ=52° is observed. Our model predicts the angle to be 53.1° for 

this eccentricity, in reasonable agreement. The smallest half-width-at-half-maximum (HWHM) 

is found in the largest cavity: 17° and 24° for the azimuthal and zenithal angles respectively.  



Figure 4g-i shows cuts of the angular emission distribution in the zenithal angular emission lobe, 

with the radial scale plotted as emission directivity, i.e. the emission normalized by an isotropic 

emitter of the same total power. We find that the maximum observed directivity is 18.0 for the 

1.5 μm antenna.  This value compares favorably to other near wavelength scale devices, such as 

the nanoscale Yagi Uda antenna10, but is clearly lower than structures that are larger in size such 

as the bull’s eye directors9.  This tradeoff is evident in our own observation that larger structures 

give higher directivities.  In the end there will always be a tradeoff between absolute size and the 

maximum achievable directivity related to the diffraction of the emitted light. 

The data in Fig. 4 clearly show the strong directivity of the elliptical antenna, a unique feature 

given its planar geometry. It is the result of the constructive interference in the far-field of 

surface plasmon polaritons that are coherently scattered off the boundary of the elliptical cavity. 

The operation wavelength and outcoupling angle can be tuned by varying the ellipses’ 

geometrical size and eccentricity (Supplementary Fig. 3). The main emission peaking near θ=53° 

observed in Fig. 4 corresponds well to the optical axis of a paraboloid intersecting with the gold 

surface, with the focal point at the position of the electron beam impact, as indicated in Fig. 4a.  

E-beam illumination of the area around the foci which appear bright in the LDOS map (4a-c) 

leads to a ‘forward’ directed beam in the far field (Supplementary Fig. 4).  This work thus 

provides a demonstration of the coupling of the two-dimensional optical “flatland” with the 

three-dimensional far-field. A central advantage of this type of antenna is that every resonant 

mode directs energy in the same direction, as can be observed for the three modes in Fig. 4.  In 

contrast, many other antenna designs will only broadcast in the ‘forward’ direction for a single 

designed frequency. In this sense, the antenna is ‘broadband.’  Of course, strong LDOS 

enhancement is only available when the structure is on resonance, so the most accurate 



description is that the antenna has several operating bands, each of which broadcasts energy in 

the forward direction.  Since this is a plasmonic cavity with a moderate Q, these bands are not 

narrow, but have a bandwidth of about 50 nm and are tunable by varying the size of the ellipse.  

Another distinct feature of these elliptical antennas is that the volume from which emitters can 

couple is relatively large, i.e. on the order of a wavelength cubed. This can be contrasted with the 

Yagi Uda antenna composed of an array of coupled metal nanoparticles.7,10,18 Such an antenna 

(which shows a similar angular spread as the elliptical antennas presented here) has an 

approximately two-orders-orders-of-magnitude smaller volume from which emitters can 

efficiently couple to the antenna‘s radiation field as that is determined by the optical near-field of 

one metal nanoparticle, typically a shell with a thickness of only ~20 nm around the “feed” 

particle (Supplementary Information).  In many applications where precise positioning of the 

local emitter is impossible or difficult, this will be a significant advantage. Furthermore, taking 

advantage of the fact that SPPs can be excited electrically,30 and the fact that electrical circuitry 

can be integrated with the planar antenna geometry, this design may pave the way for electrically 

driven directional optical antenna emitters.  Finally we note the application of these elliptical 

antennas in the receiving mode, e.g. in photodetectors and solar cells, in which light with 

different colors can be selectively collected and converted to electrical current at distinct regions 

inside the cavity. 

In conclusion, we have demonstrated a novel antenna design, a resonant elliptical cavity, that 

enables the controlled coupling of optical emitters to the far-field at a well-defined angle. The 

emission is due to the excitation and coherent scattering of surface plasmon polaritons to the far 

field, at optical resonances with Q=10-20. The cavity has strong directivity (18.0) and has a 

corresponding optical volume that is more than 100 times larger than that of an optical Yagi Uda 



antenna. The direction and wavelength of operation of the antenna can be controlled by simple 

geometric parameters. This work demonstrates the possibility of integrating ‘flatland’ optics with 

the far-field, namely the control of three-dimensional electromagnetic radiation by two-

dimensional resonant structures, and can lead to important applications in a large variety of 

technology areas, including lighting, photodetectors, quantum optical circuitry, and 

photovoltaics. 
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The Virtual Parabola Model for the Beaming of an Elliptical Cavity. 
 
There are five statements made in the manuscript text that can be demonstrated with a 
simple geometry. 

(1) A 3D paraboloid will satisfy the condition that all paths from a focus, to a point on 
the paraboloid, to a plane normal to the paraboloid’s axis, will have the same 
distance. 

(2) A planar cross section of this surface that includes the focal point and is normal to 
the paraboloid axis is a circle. 

(3) A similar cross section that includes the focal point for a paraboloid whose axis is 
rotated by angle θ from the normal is an ellipse. 

(4) One focus of the ellipse is coincident with the paraboloid’s focus. 
(5) The eccentricity of this ellipse is determined only by the angle θ. 

 

 
Supplementary Scheme 1: A parabola in the x-z plane 

 
We can rephrase statement (1) as the equation below for a 3-dimensional paraboloid: 
 

�𝑥2 + 𝑦2 + 𝑧2 − 𝑧 = 𝑑  [1], 
 



where the term in the radical is the distance from the origin to some point on the parabolic 
surface x,y,z, and z is the distance from that point to a plane, arbitrarily chosen to be the x-y 
plane. To meet the condition of statement (1), this quantity must equal a constant, which is 
arbitrary, here represented by d.  This equation can be easily reordered into the following 
form: 
 

𝑧 = 1
2𝑑

(𝑥2 + 𝑦2) − 𝑑
2

 [2]. 
 
This is the equation of a paraboloid with its focus at the origin and its vertex at  
(0,0,-d/2).  Again, we can emphasize that the choice of d is arbitrary, any d will satisfy 
equation [1] and therefore statement (1).  Note that the important condition for beaming is 
not path length, which is what we have considered here, but rather phase propagation, 
which must take into account the path length as well as the wave vector.  That more 
general case will also be considered, but for the elliptical cavity antenna the mode index is 
very close to 1, so the simple geometric argument is approximately correct.   
 

 
Supplementary Scheme 2: A 3D paraboloid intersects the x-y plane to form a circle. 

 
 
In order to illustrate statement (2) we need only to consider the intersection of this shape 
with the x-y plane, which by definition contains the focus of the parabola at (0,0,0) This is 
given by equation [2] where the value of z is set to zero: 
 

𝑥2 + 𝑦2 = 𝑑2 [3]. 
 

Here we have the simple result that this intersection is just a circle, centered at the origin, 
with radius d.  This demonstrates that a circle will scatter light emitted from its center in 
the normal direction.  Another way to think of this would be as a bull’s eye type structure 
with a single groove, which should serve as a broadband director oriented normal to the 
surface. 



 
In order to illustrate statement (3), it is necessary to introduce a simple coordinate 
rotation.  Now consider a similar ellipsoid in the x’, y’, z’ coordinate system, which is rotated 
in the x-z plane by an angle θ: 

 
Supplementary Scheme 3: A tilted 3D paraboloid intersects  

the x-y plane to form an ellipse. 
 

𝑧′ = 1
2𝑑

(𝑥′2 + 𝑦′2 − 𝑑2) [4]. 
𝑦′ =  𝑦 

𝑥′ =  𝑥 cos 𝜃 − 𝑧 sin𝜃 
𝑧′ =  𝑥 sin𝜃 + 𝑧 cos 𝜃 

𝑥′2 = 𝑥2 cos2 𝜃 + 𝑧2 sin2 𝜃 − 2𝑥𝑧 sin 𝜃 cos 𝜃 
 

We are once again interested in the intersection of the paraboloid described in the x’,y’,z’ 
coordinate system with the x-y plane.  In this case z = 0: 
 

𝑥 sin𝜃 = 1
2𝑑

(𝑥2 cos2 𝜃 + 𝑦2 − 𝑑2) [5]. 
 

Now we need only gather up terms and rewrite the equation to reveal the ellipse: 
 

�cos
2 𝜃
𝑑

�
2
∗ �𝑥 − 𝑑 sin𝜃

cos2 𝜃
�
2

+ �cos𝜃
𝑑
�
2
∗ 𝑦2 = 1 [6]. 

 
This is the classic equation of an ellipse, demonstrating statement (3): 
 

(𝑥 − ℎ)2

𝑎2
+

(𝑦 − 𝑘)2

𝑏2
= 1 

 
 



 
Supplementary Scheme 4: The Elliptical Cross Section. 

 
where a and b are the semi-major and semi-minor axis lengths, and the ellipse is centered 
in the x-y plane at (h,k).  The ellipse described here is centered about the origin along the y 
axis, and displaced along the x axis by the quantity h: 
 

ℎ = 𝑑 sin𝜃
cos2 𝜃

  [7]. 
 
The semi-major and semi-minor axis lengths are given below in terms of the arbitrary 
constant d and the angle θ: 
 

𝑎 = 𝑑
cos2 𝜃 

 [8], 

𝑏 = 𝑑
cos𝜃

  [9]. 
 
All the interesting properties of an ellipse can be described in terms of the quantities a and 
b.  In order to illustrate statements (4) and (5), we will explore 2 such quantities, the 
distance between the center and the foci, f, and the eccentricity, e, of the ellipse, given by 
the following equations: 
 

𝑓 = √𝑎2 − 𝑏2   [10], 

𝑒 = �1 − �𝑏
𝑎
�
2

 [11]. 
 

Statement (4), which claims that the paraboloid and the ellipse have a common focus, is 
true if h = f, since the paraboloid focus is at (0,0) and the elliptical foci are located along the 
x axis at positions (h-f,0) and (h+f,0).  By inserting equation [8,9] into equation [10]: 
 



𝑓 = � 𝑑2

cos4 𝜃
−

𝑑2

cos2 𝜃
 

𝑓 = 𝑑 sin𝜃
cos2 𝜃

   [12]. 
 

In order to show statement (5), we can similarly insert [8,9] into equation [11]: 
 

𝑒 = �1 − � 𝑑
cos𝜃

∗ cos2 𝜃
𝑑

�
2

. 
 

The arbitrary constant d divides out, and the expression reduces quite simply to: 
 

𝑒 = sin𝜃. 
 
General case accounting for SPP dispersion: 
The previous reasoning is only exact for structures in which the phase propagation 
depends only on path length.  In that case the interference of isotropic scatterers will be 
constructive when they are placed on a 3D paraboloid with the emitter at the parabolic 
focus.  This is not exactly the case considered in the manuscript.  In this case the phase 
propagation for radiation in the form of SPPs will be process by a different wave vector 
than the scattered light, so it is necessary to modify equation [1] by including the wave 
vectors for the surface plasmon and for air: 
 

𝑘𝑆𝑃𝑃�𝑥2 + 𝑦2 + 𝑧2 − 𝑘𝑎𝑖𝑟𝑧 = 𝑑  . [13]. 
 
The arbitrary constant d now represents a constant amount of phase accumulation for the 
path rather than a distance as in the previous case.  We can rewrite equation [13] in the 
following form: 
 

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2

𝑑2
𝑥2 +

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2

𝑑2
𝑦2 +

(𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 )2

𝑑2𝑘𝑆𝑃𝑃2 �𝑧 − 𝑑
𝑘𝑎𝑖𝑟

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2
�
2

= 1 

 
This is no longer the equation of a paraboloid, but an ellipsoid, with one of its foci at the 
origin.  If we use the same rotation of coordinates approach as before, to rotate this 
ellipsoid an angle θ in the x-z plane, and once again set z to zero, we can write the equation 
for a new ellipse, now taking into account the appropriate wave vectors. 
 

(𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃)2

𝑑2𝑘𝑆𝑃𝑃2 �𝑥 + 𝑑
𝑘𝑎𝑖𝑟 sin𝜃

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃
�
2

+
𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃

𝑑2
𝑦2 = 1 

 
 
 
 
We can once again pick out the important elliptical parameters: 



 

ℎ = 𝑑
𝑘𝑎𝑖𝑟 sin𝜃

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃
 

 

𝑎 =
𝑑 ∗ 𝑘𝑆𝑃𝑃

𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃
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𝑑

�𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃
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(𝑘𝑆𝑃𝑃2 − 𝑘𝑎𝑖𝑟2 sin2 𝜃)2 −
𝑑2
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sin𝜃 

 
We are ultimately left with the result that the new ellipse is still positioned with the emitter 
at one focus, since once again h = f, and the eccentricity now depends only on θ and the 
effective index of the SPP mode. 
  



 
Supplementary Figure 1.  Resonator linewidth versus depth. Cathodolumi-
nescence spectra collected for arenas with major axis length 1 μm and eccentricity 
0.8, for structures with depths ranging from 200 nm to 1 μm. The resonance 
linewidth increases for increasing depth due to the higher reflectivity of the cavity 
wall. 

  



 
 
Supplementary Figure 2 Extraction of the phase pickup on reflection.  a Surface 
plasmon resonant wavelengths versus cavity major axis length for resonators with 
major axis lengths ranging from 500 nm to 2000 nm, assuming the dispersion 
relationship for a planar film of gold.  A linear relationship between resonator size and 
the resonant plasmon wavelength is observed, with increasing slope for higher order 
resonances, in agreement with equation 1. b  Slope of the lines in a for the subsequent 
modes. A linear increase of the slope with mode number is observed, in agreement 
with equation 1. The intercept with the ordinate of the line fitted through the data is 
0.60, corresponding to a phase shift φ = -1.2π. 

 

 
 
Supplementary Figure 3. Angular radiation patterns as a function of 
eccentricity.  Data are shown for structures with a major axis length of 1 μm and 
eccentricities (indicated in the figures) in the range 0.5-0.9 
 



 
Supplementary Figure 4. Directivity versus excitation position. Maximum 
directivity along the φ=90° azimuthal direction (blue circles) as a function of 
electron beam position along the major axis. The dashed vertical line corresponds to 
the center position of one of the CL foci (such as e.g. in Fig. 1c). 
 

Calculation of Effective Coupling Volume 
In the manuscript it is claimed that the effective coupling volume, ie the volume in which an 
emitter will couple well to the antenna modes, is 100 times larger than that quoted recently for a 
nanoscale Yagi-Uda antenna.  In order to calculate this volume, one need consider the FWHM of 
the LDOS antinodes parallel and perpendicular to the long axis, as well as the decay of the SPP 
mode into the air above the plane of the elliptical cavity.  As we assumed for calculating the SPP 
dispersion in the Fabry-Perot model, we here assume the dispersion relationship for the SPPs in 
the structure to be that for a semi-infinite plane of gold.  In this case, the decay length of the SPP 
into the air is given by following the well-known equation: 
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We then make the approximation that the volume is a half ellipsoid with semi-axis lengths given 
by the x and y HWHM values and the zair given above.  For the 1.3 micron ellipse at 600 nm 
wavelength, the case considered in the paper, these values are 106 nm, 86 nm, and 293 nm, for x, 
y and z, respectively, giving a volume of approximately 5.6 x 106 nm3.  In contrast, other 
antennas such as the Yagi-Uda require near-field coupling to a local element, which can only 
occur when the emitter is placed within a few tens of nanometers from the appropriate position.  
If we assume this corresponds to a sphere of radius 25 nm, the corresponding coupling volume is 
3.27 x 104 nm3, or 171 times smaller than that for the elliptical cavity antenna.  In reality, good 
near-field coupling usually requires even more precise location of the emitter, so the ratio is 
actually much larger.  However, a conservative claim of 100 times is justified. 
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