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Abstract 

Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research 
targets, accurate compound localization and identification. In terms of dedicated instrumentation, 
this translates into the demand for more detail in the image dimension (spatial resolution) and in the 
spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the 
same time, large area biological tissue samples require fast acquisition schemes, instrument 
automation and a robust data infrastructure.  This review discusses the analytical capabilities of an 
“ideal” MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical 
attributes of such an ideal system are contrasted with technological and methodological challenges 
in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination 
with high sample throughput is discussed. Detector technology that targets various shortcomings of 
conventional imaging detector systems is highlighted. The benefits of accurate mass analysis,  high 
mass resolving power, additional separation strategies and multimodal three-dimensional data 
reconstruction algorithms are discussed to provide the reader with an insight in the current 
technological advances and the potential of MSI for bio-medical research. 

 

(1) Introduction 

Mass spectrometry imaging (MSI) measurements target the visualization of the spatial organization 
and the identification of molecular masses from bio-molecular surfaces [1-3]. Ideally, a single MSI 
experiment on one instrument would return an accurate bio-chemical map of a sample surface. It 
would identify and localize all compounds with a sub-cellular lateral resolution, a high mass accuracy 
and zepto-molar sensitivity. The analysis speed would be so high that large-area imaging and high 
sample throughput would be guaranteed. Not solely mass analysis would be performed over a wide 
mass range but also structural information on sample molecules would be revealed by on-the-fly 
data dependent tandem mass spectrometry. The localization of specific analytes of bio-molecular or 
bio-medical samples would be placed in the context of tissue and/or organ functionality using clever 
three-dimensional reconstruction algorithms.  

Unfortunately, the ideal MSI experiment is far from reality and a single instrument unifying the above 
capabilities has not been realized to date. A variety of different types of imaging mass spectrometers 
deliver a range of specific analytical capabilities that can be used in concert. In these spectrometers, 
a clever piece of instrumentation or artificial intelligence enable measurements that approach one or 
few of the desirable attributes of the “ideal” MSI experiment. In addition, the field is pushing novel 
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instrumental innovations and the integration of several analytical capabilities into one instrument. In 
addition novel multi-modal approaches are pursued that analyze one sample with different 
molecular imaging instruments. Subsequent data correlation analysis is used to combine the 
generated complementary information and to employ it for revealing more molecular detail. 

This article briefly describes the current state of MSI. It identifies technological and methodological 
challenges and recent advances in mass spectrometry imaging technology. Emphasis is put on 
innovative instrumentation for high spatial resolution imaging in conjunction with high sample 
throughput. Detector technology that targets various shortcomings of conventional imaging detector 
systems is introduced. Accurate mass identification, enhanced analytical MSI capabilities and 
multimodal 3D data reconstruction algorithms are described and discussed to provide the reader 
with an insight in the current technological advances in mass spectrometry imaging.  

 

(2) MSI and its challenges in a nutshell.  

Mass spectrometry identifies compounds based on the atomic composition of the sample molecules 
and their charge state. Therefore, no detailed prior knowledge of the sample composition is required 
and analysis becomes feasible. The chemical identification is not limited by analyte pre-selection as, 
for instance, in imaging techniques based on fluorescent or radioactive labeling. Hence, the 
technique itself does not introduce any functional changes on the bio-molecules under investigation. 
The combination of unlabelled identification and analyte localization within a sample provides the 
possibility to visualize and understand bio-molecular modifications and pathways. Depending on the 
mass analyzer, the detection range of this technique covers single atoms up to macromolecules. In 
principle, MSI  can detect and identify hundreds of compounds with sub-micrometer resolution from 
complex biological samples surfaces, while maintaining a relatively high throughput. These features 
of MSI provide a solid basis to molecular pathology. Currently, MSI is applied to the fields of 
proteomics [4, 5], lipidomics [6-8] and metabolomics [9-11]. In addition, disease studies like the 
fundamental understanding of the bio-chemistry of neurodegenerative diseases [12, 13] or cancer 
[14], drug distribution studies [11, 15] and forensics [16, 17], among others, benefit from the 
information revealed by MSI.  

Compound localization and identification form the core of MSI as an analytical tool for biomedical 
research. In terms of MSI instrumentation, these requirements translate into the demand for more 
detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution,  
accuracy and tandem MS capabilities for compound identification) –preferably combined in a single 
instrument. At the same time, large area tissue samples call for fast acquisition schemes, instrument 
automatization and robust data infrastructure, among other desirable features.  

Figure 1 depicts the workflow of a typical MSI experiment. The generic MSI workflow is briefly 
discussed and challenges are identified. Some advances towards the solutions of these problems are 
pointed out and will be discussed in more detail further on.  
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Figure 1: General workflow of a mass spectrometry imaging experiment. Technological developments 
which will be highlighted in this article are indicated.  

  

Generally, MSI experiments consist three distinct parts, each of which poses its own challenges but 
also offers a variety of opportunities for specific sample analysis. 

(I) Sample preparation. The first step in an MSI experiment is adequate sample preparation 
specifically targeted to the envisioned type of study. Sample preparation methods and protocols are 
an active area of research which merits in depth description and review [18-20] but is beyond the 
scope of this article.  

(II) Mass analysis & analyte localization. The second step in the MSI workflow represents the mass 
analysis and the analyte localization, i.e. the actual mass spectrometry and imaging. Generally, MSI 
requires transferring solid state analytes into the gas phase. Then, the analytes are ionized. The 
different compounds are separated by their mass-to-charge ratio  and eventually detected. In terms 
of MSI  technology, this translates into three distinct areas of instrumentation: image generation, ion 
separation and ion detection.  

Image generation. The image generation comprises the ionization and desorption as well as the 
formation of an ion optical image. The bio-molecules have to be desorbed and ionized such that 
analytes are transferred from the sample surface into  the gas-phase.  Among others [21-30], this is 
achieved with photons ((matrix-assisted) laser desorption ionization, (MA)LDI [21, 22, 31-35]) or 
primary ions (secondary ion mass spectrometry, SIMS [21, 22, 36-38]) in such a way that the spatial 
organization of the sample surface is retained. Different ionization methods call for specific sample 
preparation protocols and target different groups of analytes. The process of ion generation is a 
crucial part of MSI experiments [22]. The fundamentals of ion/ image generation and different 
ionization sources for MSI are not treated further detail in this review.  

The ion/ image generation and the obtainable spatial resolution in MSI experiments are intricately 
related. In microprobe (“sample rastering”) MSI, the spatial resolution is directly determined by the 
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area of ion formation  on the sample surface. Hence, most efforts approach the challenge of 
increasing the spatial resolution by decreasing the spot size of the ionization beam, i.e. the spot size 
of the laser or primary ion beam. Alternatively, the spatial resolution can be increased by stepping 
away from the sample rastering (microprobe mode) approach to microscope mode imaging [39]. This 
fundamentally different approach decouples the spatial resolution of the system from the 
desorption/ ionization spot by using magnifying ion optics and a position-sensitive detector. 
Microscope mode MSI is treated in detail in section 3 of this review.  

The analysis speed and sample throughput of a MSI study greatly depend on the (frequency of) ion/ 
image generation. Microscope mode MSI experiments enable high sample throughput MSI studies 
due to the large desorption/ ionization spot as compared to microprobe mode MSI. In addition, 
sample throughput in microprobe mode MSI experiments has recently been targeted by several 
groups and will briefly be commented on in section 3.  

By now, impressive technology is available for high throughput microprobe MSI studies on MALDI-
time-of-flight (TOF) instruments. However, TOF-instruments intrinsically lack the mass resolving 
power and the mass accuracy that some bio-molecular and bio-medical imaging studies require 
Typically, ToF-MS systems have mass resolving powers below 40000 and mass accuracies after 
external calibration larger than 1-5 ppm which is insufficient for accurate compound identification.  
In the mass range m/z < 500, accurate compound identification can be possible with TOF-MS. 
However, chemical noise complicates the compound identification in this mass range. To overcome 
these limitations, several other MS analyzers are under development to overcome the loss of 
chemical information due to instrumental mass resolving power and mass accuracy limitations (see 
ion separation/ mass analysis section).  

Mass analysis.  After desorption and ionization, the analytes are separated on the basis of their 
mass-to-charge ratio (m/z). The choice of mass analyzer depends on the required mass resolving 
power, mass accuracy, mass range and also availability. Generally, it is desirable and efficient to 
analyze all ions in one single analysis run.  

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) determines the m/z of an 
ion from its ion cyclotron resonance frequency in a static magnetic field. Similarly, the m/z of an ion 
in a FT-orbitrap mass spectrometer is determined from its oscillation frequency in the electrostatic 
field of the trap. Since frequencies can be measured with a higher precision than a TOF, these 
instruments determine the ion mass with a significantly higher accuracy than a TOF-analyzer. Unlike 
TOF-MS measurements, the mass measurement in FT-MS is independent of the kinetic energy 
distribution of the ions. This is a clear advantage of FT-MS over TOF-MS where the spread in the 
kinetic energy distribution of the ions introduces mass inaccuracies in TOF-MS. MALDI FT-MS is the 
most prominent technique in revealing chemically complete and accurate information from a 
sample. This technique combines a high mass resolving power with a high mass accuracy. It resolves 
and identifies ions at a single nominal mass that are commonly present in MALDI imaging mass 
spectra [40-42] and provides a highly confident compound identification [43]. The accurate 
assignment of a molecular formula to a specific mass spectral peak is crucial to MSI studies. Direct 
molecular identification is only possible if an accurate mass measurement is available from a FT-ICR/ 
FT-Orbitrap MS measurement. Developments in this field will be treated in section 4 of this review.  
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Time-of-flight –MS (TOF-MS) is a technique in which all ions are accelerated to a very narrow range 
of kinetic energies. Then, the ions are separated on the basis of their m/z in a flight tube. TOF-
instruments intrinsically lack the mass resolving power and the mass accuracy that some bio-
molecular and bio-medical imaging studies require. To overcome these limitations, several new 
techniques are under development to prevent the loss of chemical information due to limited mass 
resolving power and mass accuracy. If no accurate mass determination is possible, the molecular 
identity can be determined indirectly.  

In particular, confident analyte identification from TOF-MS data can be achieved by tandem MS. 
Here, a selected parent ion is identified by (repeated) fragmentation and mass spectrometric analysis 
of the fragments [44]. While tandem MS capabilities are readily available for MALDI-instruments, 
they are still scarce for SIMS spectrometers where the primary ion beam readily damages the sample 
surface and ion yields are lower [45-49]. However, in recent years, cluster beam sources have greatly 
improved the sensitivity, the available mass range and the lateral resolution for biological SIMS [36, 
50, 51]. The development of C60 -SIMS TOF-MS instruments with tandem-MS capabilities is a logical 
consequence [49, 52]. 

In addition, gas phase separation capabilities, like ion mobility separation, have been incorporated. 
This technique separates ions of the same mass-to-charge ratio (but that constitute different bio-
molecules) by their collisional cross section in a collision gas [53-55]. The gas phase separation step is 
typically conducted prior to the mass analysis in a TOF- spectrometer. Thereby, traveling-wave ion 
mobility separation reduces the complexity of the sample analysis. It also recovers errors in the  
spatial image introduced by unresolved peaks. Ion mobility separation will be treated in section 6 of 
this review.  

Ion detection. Rubakhin and co-workers describe that the ideal imaging technique for MSI can 
“simultaneously detect and identify multiple known and unknown compounds present in biological 
tissues with at least single-cell spatial resolution” [56]. Koppenaal and co-workers outline that the 
desirable analytical attributes of an ideal MS detector [57] are unity ion-detection efficiency, low or 
no noise, a high stability, the simultaneous detection of multiple ions, a wide mass-range and mass-
independent response, a wide dynamic range, a fast response, a short recovery time and a high 
saturation level . They add operational attributes as a long life, low maintenance, easy replacement 
as well as a low replacement cost [57]. The spectrometer design or the envisioned application pose 
varying requirements to the MS(I) detector technology. For instance, experimental conditions may 
call for a detection system capable of handling high count rates (> 106 counts/s) with minimal 
recovery time [57], detectors with a rapid readout and response (particularly in TOF-MS) [57], single 
or multiple ion detection [57], low noise (in the detector itself and the read-out electronics) for good 
limits of detection, high sensitivity,  accuracy and precision [57]. Bio-molecular or bio-medical MS 
applications require detection uniformity in the mass range 102 to 105 m/z  [57]. This poses a 
challenge to conventional secondary-electron MS detectors (like micro-channel plates (MCP) or 
photo-multiplier tubes) for which the mass response levels off for larger ions [57]. This results in a 
detection disadvantage for macromolecules of bio-molecular or bio-medical interest as for instance 
singly-charged, intact macromolecules like proteins studied by MALDI-MS [57]. This detection 
disadvantage for macromolecules calls for new detector technology. Novel, highly parallel detector 
technology for MSI is discussed in section 3.  
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(III) Data analysis and interpretation. Finally, step three in the MSI workflow is the analysis and 
interpretation of the acquired data. MSI experiments return thousands of spectral channels at 
thousands of positions on the sample surface. Since mass spectra are measured at a raster of 
positions on the sample surface, the amount of data generated requires specific data treatment 
techniques. Therefore, software and algorithm development forms an integral part of the MSI field. 
Data analysis and interpretation are not extensively treated in this manuscript as a result of the 
chosen focus on emerging technologies. It needs little imagination that the bio-informatics aspects of 
MSI will need a substantial amount of work in the future. An algorithm which reconstructs the 
localization of specific analytes of bio-molecular or bio-medical samples in three dimensions and 
hence places the analyte localization in the context of tissue and/or organ functionality is presented 
in section 5.  

In all of these steps, the selected method depends on the information that the experiment aims to 
reveal. In particular, the available mass spectrometry imaging technology provides different 
analytical capabilities and has its limitations. Appropriate instrumentation should be chosen to match 
the anticipated mass range, the mass resolution, the mass accuracy and the spatial resolution. 
Furthermore, the instrument’s capabilities to perform additional analysis on the ionized sample, as 
for instance, fragmentation, tandem MS, spectroscopy or ion mobility separation should be 
considered. Each of the three steps in an MSI experiment has to be carefully planned and performed 
successfully for the generation of an adequate mass spectrum and corresponding molecular images.  

 

(3) Novel imaging and detection schemes for MSI: Developments to improve sample throughput, 
spatial image resolution and analyte detection. 

For many applications, TOF-MS mass analyzers are a good choice for both MALDI- and SIMS-MS. The 
speed, the obtainable sensitivity, the wide accessible mass range (up to m/z = 100k with MALDI) and 
the infrastructure for high sample throughput make TOF-MS the mass analyzer of choice for 
applications where extremely high mass accuracy and mass resolution are not imperative (or tandem 
MS is available). In this section, microscope mode MSI on a TOF-instrument is discussed as a high 
throughput, high spatial resolution MSI method.  

 In MSI, two acquisition modes can be distinguished namely the microprobe and the microscope 
mode (Figure 2).  
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Figure 2: A schematic representation of microprobe and microscope mode MSI (adapted from [39]). In 
microprobe mode MSI (A), the desorption/ ionization beam rasters the sample surface. At every raster 
spot, a mass spectrum is acquired. An image with a pixel resolution equivalent to the beam size is 
reconstructed after the experiment. In microscope mode MSI (B), a larger area desorption/ ionization 
beam illuminates the sample surface. Ion optics magnifies the molecular images and retains the 
spatial information. The molecular ion distributions are mapped on a position-sensitive detector.  

 

Microprobe mode MSI. Most commonly, the conventional microprobe mode of acquisition is 
employed in MSI. In the microprobe mode, the sample is probed with a pulsed desorption/ionization 
beam (a laser beam in MALDI or a primary ion beam in SIMS), for which either the desorption/ 
ionization beam, the sample or both are moved with respect to one another. At every raster point, a 
full mass spectrum is generated. An image with a pixel resolution equivalent to the beam size is 
reconstructed after the experiment provided that the step-size/ accuracy of the sample or beam 
movement is not limiting. A disadvantage of small surface probe spots is the small number of ions 
generated for analysis. Using highly focused primary ion or laser desorption/ ionization beams, 
microprobe mode MSI has delivered high spatial resolution MSI studies. Pulsed primary ion beams 
[58, 59] and UV/ IR lasers in MALDI [60-63] have returned pixel sizes better than 4 µm and 7 µm, 
respectively. Specifically, a MALDI laser spot diameter of less than 1 µm and an according spatial 
resolution have been reported by the Spengler group [64]. However, a small surface probe area can 
bear the disadvantage of long measurement times and the fluence available for surface desorption 
and ionization may be limiting. Sweedler and co-workers have demonstrated MALDI microprobe MSI 
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at a lateral resolution better than the laser spot size using over-sampling [65]. The Vickerman group 
has pioneered cluster SIMS-MSI, i.e. SIMS imaging with polyatomic primary ions [36, 49, 51]. 
Polyatomic ions generate less subsurface damage than atomic primary ions and hence enable 
imaging beyond the static limit (primary ion density results in surface damage of less than 1%). 

Microscope mode MSI. Ion-microscope mass spectrometers provide an alternative technique to 
achieve high spatial resolution MSI [39]. Here, surface molecules are illuminated by a large area 
desorption/ ionization beam. In an ion microscope, the ionized analytes are extracted from the 
sample surface and imaged onto a position-sensitive detector. Initially all ions are accelerated by an 
electrical potential with the goal to give every ion the same initial kinetic energy.  The instrument’s 
ion optics typically achieves a rather narrow kinetic energy distribution such that negligible errors are 
introduced to the TOF-measurement and resulting mass assignment. The instrument’s ion optics also 
magnify the initial ion distribution and retain the lateral spatial organization of the surface molecules 
on their flight path to the detector. Different molecular species are TOF-separated in the 
instrument’s flight tube. The achievable spatial resolving power is on the order of 4 µm [39]. 
Importantly, the obtainable spatial resolution in microscope mode MSI is decoupled from the 
ionization spot size. Rather, the quality and the capabilities of the ion optics in combination with a 
position- (and time-) sensitive detector determine the lateral resolution (reference [66] shows a 
schematic representation of such a system). Very large sample surfaces are measured by few 
individual microscope spots which are then pasted together to form large microscope MS image [67]. 
The Heeren group has pioneered microscope mode MSI on a TRIple Focusing Time-of-flight (TRIFT) 
mass spectrometer (Physical Electronics, Inc., Chanhassen, USA) using a detection system based on 
microchannel plates (MCP) in combination with a charge-coupled device (CCD) camera [39], a delay-
line-detector (DLD) [68] and active, pixelated detectors of the Medipix [69]/ Timepix [66] detector 
family.  

Throughput. In ion microscopes, the desorption/ ionization beam size is typically between 200 µm 
and 300 µm, which is about a factor of 100 larger than a typical microprobe mode ionization spot. 
Comparing the microprobe and the microscope acquisition modes clearly indicates the high 
throughput capabilities of the latter. As an example, consider a microprobe pixel size (i.e. beam spot) 
of 2 µm × 2 µm (4 µm lateral resolution) and a sample area of 1 mm × 1 mm. Rastering the sample 
surface pixel by pixel will results in (1,000 µm × 1,000 µm) / (2 µm × 2 µm) = 250,000 measurement 
points. Such a measurement can last several hours. In microscope mode MSI, a field of view of 200 
µm × 200 µm is available. So, for the same sample size of 1 mm × 1 mm, only (1,000 µm × 1,000 µm) 
/ (200 µm × 200 µm) = 25 measurement points are required. A lateral resolution on the order of 4 µm 
is readily achieved with microscope mode MSI using an appropriate ion optical magnification factor 
and position-sensitive detector. In microscope mode MSI, the large ionization spot can result in large 
ion loads on the detection system. Several position-sensitive detection systems saturate at high ion 
loads such that the ion generation has to be reduced and the integration time per raster position has 
to be increased to ensure adequate ion imaging. This can be compensated by a combination of high 
desorption/ ionization beam repetition rates and detector technology that can accommodate high 
ion loads. Hence, ion microscopes enable fast, automated, high resolution large area imaging 
provided that adequate, i.e. fast and position- (and possibly time-) sensitive, detector systems are 
employed to record high quality molecular images [70].  
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The improvement of sample throughput in microprobe mode MSI has recently been studied by few 
groups. McDonnell and co-workers have designed and commissioned an automatic sample loading 
system for time-efficient, round-the-clock spectrometer operation [71]. An alternative approach to 
high throughput measurements is an increase in the raster frequency, which results in a decrease in 
the measurement time without sacrificing analytical information. The Caprioli group has presented 
such an approach, in which they reduce the measurement time by up to a factor of two by operating 
a MALDI-TOF MSI system in a continuous scanning mode at a comparatively high laser repetition rate 
of about 5 kHz [72]. Stoeckli and co-workers generate images of drug distributions in rat sections 
within less than 15 minutes by using a 1kHz laser repetition rate and a rastering speed of about 18 
mm/s [73]. Sample throughput is a key factor in distinguishing MSI experiments as a robust, 
analytical technique for bio-molecular and bio-medical research.  

Detector Technology. The first microscope mode MSI implementation projected the ions on a 
position-sensitive detector assembly which consisted of an MCP followed by a phosphor screen and a 
charge coupled device (CCD) camera [39]. This detector scheme allowed for the proof-of-principle of 
the technique.  However, the MCP, phosphor screen, CCD camera assembly suffered from the 
limitation that it cannot link the ion TOF (encoding  the m/z) and the spatial distribution. During one 
acquisition, the total ion current can be measured without m/z-specific localization on the sample.  
Or alternatively, a particular m/z species can be selected to pass to the detector by a pair of fast-
switching electrodes, called the electrostatic blanker. The combination of several mass-selected 
images from separate measurements then gives information on the sample composition and 
according spatial distribution. This detector approach calls for time-consuming, highly repetitive 
measurements on quickly depleting biological samples. 

A second, more advanced implementation of microscope mode MSI used a delay-line anode for ion 
detection [68, 74]. A delay-line detector can measure both the ion arrival position and time precisely 
[75] and thereby lifts the limitations of mass-selected imaging.  In addition, the ion arrival time can 
be measured precisely by  registration of the TOF signal from the MCP detector and correlating this 
information with the position information from the delay-line anode [76]. A drawback of delay-line 
detectors is that it can only register a small number of ion events that simultaneously arrive at the 
detector [77]. This renders it unsuitable for high count rate (MALDI-) MSI experiments. Furthermore, 
the mass-resolved image reconstruction can be time-consuming. Ion optical tuning of the instrument 
is tedious due to delayed image feedback.  

Recently, the implementation of an in-vacuum pixel detector for position- [69, 78] and time-resolved  
[79-81] electron and ion imaging was demonstrated and applied to MSI on an ion microscope [69, 
81]. This novel detection approach uses a fully-integrated, active pixel detector of the Medipix/ 
Timepix detector family [82-84]. Such a detector assembly consists of a chevron MCP followed by 
four bare Timepix chips (with 256 × 256 pixels of 55 µm × 55 µm each per chip). Each of the Timepix 
pixels can return (1) the position of impact of an ion via its pixel address and (2) the ion time-of-flight 
with respect to an external trigger with a maximum time resolution of 10 ns. The maximum TOF that 
can be measured per pixel is determined by the counter depth (counter overflows at 11810). At the 
maximum time resolution of 10 ns, the counters can measure maximum ion TOFs of about 118 µs. 
Conveniently, the simultaneous acquisition of the ion TOF and arrival position removes the need for 
mass-selection using an electrostatic blanker. Hence, mass-resolved images are generated during a 
single imaging acquisition. Unlike the delay-line detector assembly, this pixelated detector facilitates 
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parallel detection of multiple molecular species and can accommodate significantly more ion hits 
simultaneously. This bears great potential for both higher count rate and large area high resolution 
molecular imaging experiments. Indeed, peptide and protein mass spectra have been generated over 
mass range up to 80 kDa [81] on an ion microscope. An in depth comparison of the quality of the 
Timepix acquired TOF spectra to established detection techniques such as the recording of mass 
spectra using a time-to-digital converter (TDC) and an analog-to-digital converter (ADC) was 
performed [81]. This novel detector approach outperforms the conventional technology easily in the 
detector dynamic range, the signal-to-noise ratio, the multiplexed detection on several detector 
elements, the available mass range, the detection homogeneity, the ability to detect single particles, 
the ability to resolve isotopes and the detector response to varying MCP gains [81]. Note that the 
current performance of this detection system is still limited by few technological shortcomings. A 
future pixelated chip for microscope mode MSI should incorporate multi-stop pixels (i.e. pixels which 
can accommodate more than one hit per measurements cycles), a larger counter depth (i.e. longer 
TOFs can be measured) and TDC bins on the order of 100 ps such that the achievable mass resolution 
becomes comparable to present commercial MSI instrumentation. An ion microscope equipped with 
such a detector assembly will provide a very powerful MSI instrument for bio-molecular or bio-
medical studies.  

Considerations on the spatial resolution. On an ion microscope, the ultimate spatial resolution is 
determined by the ion optical design and its ion optical aberrations. Still, ion optical aberrations 
often do not turn out to be the limiting factor to the spatial resolution of the system. Rather, the 
accessible spatial resolution is determined by the resolution of the position-sensitive detection 
system. Both the MCP, phosphor screen, CCD camera assembly [39] and the MCP, delay-line 
detection system [68, 74] do not deliver spatial resolutions on the order of the ion optical 
aberrations. For example, the Heeren group ion microscope (used in [39, 68, 69, 74, 81]) delivers a 
maximum ion optical magnification of 100x. The spatial resolution of this system is limited by ion 
optical aberrations beyond 600 nm [85]. This means that at the maximum ion optical magnification, 
the detector spatial resolution should be no less than 60 µm (= 100 × 600 nm). In this scenario, the 60 
µm on the imaging detector probe 600 nm on the sample surface. The detection system is not 
limiting the spatial image resolution. The pixelated Timepix detection system consists of an array of 
55 µm × 55 µm pixels. Hence, the full resolution delivered by the ion microscope can be exploited 
with this detection system.   

Pushing detection limitations. As mentioned before (section 2), the ideal imaging technique for MSI 
can “simultaneously detect and identify multiple known and unknown compounds present in 
biological tissues with at least single-cell spatial resolution” [56]. An evaluation of the three afore 
mentioned detection systems (Table 1) against these criteria, indicates that the MCP, phosphor 
screen, CCD camera system and the MCP, delay-line detections system have difficulties meeting all 
those criteria. It should be noted that individual characteristics (points of comparison below) of those 
systems may be significantly better in detection systems tuned to specific needs of a particular 
experiment. An example is the extremely high timing resolution of about 18 ps reported for an MCP, 
delay-line detector system by Vredenborg and co-workers [76]. However, only a very limited number 
of simultaneous hits can be accommodated by the detection system. To our knowledge, no MCP, 
phosphor screen, CCD camera system or MCP, delay-line detections system has been reported that 
combines all of the exceptional performance aspects which could turn those systems into candidates 
for the “ideal” MSI detection system. The MCP, active pixel detector assembly comes significantly 
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closer to the desirable capabilities of an “ideal” detector assembly for MSI. In particular, bio-
molecular or bio-medical MS applications can benefit from the uniform ion detection, i.e. from the 
minimized detector roll-off due to sub-saturation MCP operation, in the mass range up to 80 kDa.  

Table 1: Comparison of three different detection systems used in microscope mode MSI to the 
“ideal” MSI detection system. 

Point of 
comparison 

Ideal MSI 
detection system 

[56, 57] 

MCP + phosphor 
screen + CCD 
camera [39] 

MCP + delay-line 
anode [68, 74] 

MCP + active 
pixel detector 
(Timepix) [81] 

Position- and 
time- sensitive 
detection  

Yes. No. Yes. Yes. 

Single cell spatial 
resolution (± 10 
µm) 

Yes. Yes.* Yes.* Yes.* 

Unit ion-detection 
efficiency 

Yes. Yes.† Yes.† Yes.† 

Simultaneous 
detection of 
multiple ions.  

Yes. Yes.† Yes.† Yes.† 

Count rates  Yes, > 106 
counts/s. 

Yes./No.$ No.** Yes, > 106 
counts/s. 

Noise  Low or no noise. Electronic noise. Electronic noise. No electronic 
noise. 

Stability High. High. High. High. 
Mass range‡  Wide. MCP high mass 

roll-off limited. 
MCP high-mass 
roll-off limited. 

≤ 80 kDa, MCP 
not in saturation. 

Mass-
independent 
response 

Yes. No, high mass 
role-off due to 

MCP.  

No, high mass 
role-off due to 

MCP. 

Reasonable, MCP 
not in 

saturation.** 
Dynamic range Wide. 1 1 262,144 detection 

elements for 
parallel detection 

Response Fast. Phosphor decay 
time on order of 

100s of µs. 
138 ps (TDC) 

25 ps (TDC) 10 ns (pixel clock) 

Recovery time Short. Read-out time 
dependent. 

Read-out time 
dependent. 

Read-out time 
dependent. 

Saturation level High. 1 1 262,144 detection 
elements for 

parallel detection 
Read-out/ dead 
time 

Rapid/short ± 1 ms < 5ns 1 ms 

High (spectral) 
sensitivity 

High (++).  ++ + ++ 
 

Timing precision High.  138 ps (TDC) 25 ps (TDC) 10 ns (pixel clock) 
Mass accuracy+ High. Determined by 

clock stability. 
Determined by 
clock stability. 

Determined by 
clock stability. 

Spatial accuracy High. Determined by Determined by Determined by 
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ion optics. ion optics. ion optics. 
Spatial precision‡ 

,†† 
High. 4 µm  4 µm 3 -4 µm 

Life time Long. MCP limited. MCP limited. MCP limited, but 
prolonged by sub-

saturation 
operation. 

Maintenance Low. Low. Low. Low. 
Replacement Easy. Standard 

assembly, readily 
exchanged. 

Involved, bulky 
assembly. Major 
effort to replace. 

Compact 
assembly, readily 

changed. 
Replacement cost Low ($).  $ $$$ $ 
 

* On an ion microscope imaging mass spectrometer with an appropriate magnification factor.  
† Yes, at sufficiently low count rates.  Note, that the active area of a MCP is 70% - 80%. Hence, any detection system in 
combination with a MCP cannot deliver unit quantum efficiency. However, it is advantageous if the second detector stage is 
capable of registering the MCP electron shower with (near) unit detection efficiency.  
** Approximately, 10 counts/trigger have been realized at repetition rates of about 2 kHz [68]. 
‡ On ion microscope imaging mass spectrometer [85].  
** Individual Timepix pixels are single-stop TDCs. Ions generated on the same position on the sample surface and hence 
impinging on the same pixels on the detector cannot be distinguished in a single shot experiment. There is a detection 
advantage for the lower mass ion. Practically, this effect is not limiting since experiments are typically based on multiple 
laser shots and the effect is leveled out by sufficient measurement statistics [81].  
†† The spatial precision on the sample surface is evaluated in terms of the spatial resolving power, i.e. the sharpness of the 
sample feature edges. On an ion microscope, the spatial precision depends on the ion optical magnification factor and the 
element/ pixel size on the imaging detector. In microprobe measurements, the spatial precision would be determined by 
the combination of the ionization spot size and the element size of the detection system.  
+ The dependence of the mass accuracy on the (stability of the) detection system is evaluated. Note, that generally the mass 
accuracy is dependent on an instrument function that takes into account the type and the mass accuracy of the mass 
analyzer itself, the detection system and also the sample surface homogeneity.  
$The phosphor screen can in principle deal with high count rates when operated in a signal integration mode, i.e. when no 
spatial information is collected from the phosphor screen. Under high count rates conditions, the light intensity over-
exposes the CCD-camera and all spatial information is lost, making it unsuitable for direct imaging MS experiments under 
these conditions.  
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Active pixel detectors for MSI. Considering the high potential of active pixel detectors for MSI, the 
Medipix/ Timepix detector –as a representative of this novel type of detection system- and its 
outstanding capabilities are outlined in more detail. Very few active pixel detectors with comparable 
functionality are currently available. An interesting alternative chip is currently being developed by 
the NA62 collaboration at CERN[86-90]. This read-out chip achieves a timing resolution of about 100 
ps and is designed to accommodate about 73k hits per second per pixel. However, the 45 × 40 (= 
1800) pixel matrix with a pixel size of 300 µm × 300 µm compromises the desirable spatial resolution 
and covers only a rather small area. In addition, the power consumption of the chip is about two 
orders of magnitude higher than for the Timepix chip, which renders practical, in-vacuum 
implementations on mass spectrometers difficult.  

The Medipix/ Timepix detector family is developed within the Medipix collaboration hosted by CERN 
[91]. The chips of the Medipix detector family in combination with a detection medium -often a 
semiconductor like silicon bump-bonded on top- belong to the class of hybrid pixel detectors. There 
are two distinct types of chips within the Medipix detector family: the Medipix single photon 
counting chips and the Timepix chips, which in addition to the single photon counting capabilities can 
also be set to measure the time-of-arrival of an event with respect to an external reference signal or 
to determine the amount of charge deposited per pixel.  

Semiconductor materials bump-bonded to Medipix2 chips are silicon, gallium-arsenide, cadmium 
telluride, cadmium-zinc-telluride or germanium depending on the application of the detection 
system. Typically, a 300 μm silicon sensor (slightly n-doped high-resistivity silicon with a p-type 
implementation in every pixel) is bump-bonded on top of a Medipix chip. On the entrance side, the 
sensor layer is coated with an aluminum layer of about 150 nm. Through this Ohmic contact, the 
sensor material is biased by applying a voltage of about 100 V across the sensor. Depending on the 
polarity of the applied bias voltage, an electron or a hole current can be collected by the pixels. In 
silicon, every 3.6 eV of deposited energy creates one electron-hole pair. Hence, the amount of 
charges generated in the sensor material is directly proportional to the energy deposited by the 
impinging particle. With such a sensor layer photons and electrons can efficiently be detected 
provided that the photon or electron kinetic energy exceeds the detection threshold of about 4-5 
keV.  

When used for X-ray and electron detection, the detection medium converts incident particles into 
electron-hole pairs, which are collected in the charge-sensitive amplifier of the CMOS 
(complementary metal oxide semiconductor) read-out chip. Ions will usually not be accelerated to 
sufficient energies to penetrate into the sensor layer. However, ions can be detected indirectly by 
placement of an MCP in front of the detector [69, 92]. The Medipix detector then registers the 
electron shower produced by each ion impact on the MCP. The particle counting properties consist 
of the ability to count events that generate a number of electron-hole pairs within a user-defined 
threshold/ energy window.  

The threshold energies that are chosen for the discriminator levels lie well above the noise levels of 
the pixels (on the order of 150 electrons). Therefore, electronics noise free measurements are 
possible, while background noise of chemical origin or due to (cosmic) radiation can still be picked 
up. Three additional adjustment bits can be used to equalize the pixel-to-pixel response over the full 
pixel array.  
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Measurements involving time-of-flight or ultra-high resolution measurements are performed using 
Timepix chips. The Timepix chip [84] is derived from the Medipix2 chip design. The dimensions and 
geometry of the chip are identical to its predecessor but the functionality on the pixel level is 
different. Each pixel can be individually selected to operate in one of three modes:  

(1) the counting mode, in which each pixel counts the number of events;  

(2) the time-of-flight (TOF) mode, in which the occurrence time of an event is measured with respect 
to an external trigger/shutter signal;  

(3) the time-over-threshold (TOT) mode, in which the time is measured during which the charge 
resulting from the event exceeds the detection threshold level.  

The maximum measurement time in TOF and TOT mode is determined by the pixel counter depth in 
combination with the measurement clock speed. The Timepix pixel counter is a 13-bit pseudo-
random counter. The maximum counter value of the Timepix chip is 11810, i.e. 11810 is the pixel 
overflow value. Therefore, at the maximum clock speed of 100 MHz (i.e. 10 ns clock cycles), a 
maximum measurement interval of 11810· 10 ns = 118.1 µs is available. 

In the implementation on the MSI ion microscope [81], it was chosen to use chips without a sensor 
layer, so-called bare chips, to improve the response to electron showers through reduced in-sensor 
electron diffusion. 

 

(4) Identification strategies: Imaging at high mass resolving power and high mass accuracy 

One of the key challenges in mass spectrometry imaging is the ability to accurately identify the 
molecular species imaged. Until recently innovations were predominantly focused on new methods 
of image generation with time-of-flight MS. TOF based MS methods are shown to offer high spatial 
resolution and throughput but lack the mass resolving power and mass accuracy needed for the 
identification of observed peaks. Unraveling the complexity of molecular profiles at biological 
surfaces is however hampered by the limited mass resolution, sensitivity, dynamic range and spatial 
resolution of conventional TOF based mass spectrometric systems. The lack of mass resolving power 
can result in obscured spatial details when two  closely neighboring peaks have different spatial 
distributions and are not resolved in the mass spectral domain. The availability of high resolution and 
high mass accuracy mass spectrometers such as FTICR-MS [93] and FT-Orbitrap-MS [94] for imaging 
MS is providing the needed capabilities for accurate molecular identification.   

The Orbitrap mass analyzer [94, 95] is an electrostatic trap wherein tangentially injected ions rotate 
around a central electrode, being confined by applying an appropriate voltage between the outer 
and central electrodes. Mass analysis is based on image current detection of frequencies of axial 
oscillations. Therefore, its extent of mass accuracy is limited by the same factors as FTICR. The 
introduction of the LTQ-Orbitrap has revolutionized high performance, high throughput mass 
spectrometry. It is rapidly making its way into high performance MS imaging. The first example that 
demonstrated the usefulness of high mass resolving power in an MS imaging strategy was provided 
by Taban and co-workers [41] on an FTICR-MS. Analyzing endogenous peptide distributions on a rat 
brain, they revealed new spatial detail by separating mass spectral features that were unresolved 
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with comparable lower resolution experiments. Figure 3 shows how the increased mass resolving 
power of an FT-ICR-MS system reveals such new spatial detail. Recently, the spatial resolution of FT-
Orbitrap-based MSI was improved in an atmospheric pressure scanning microprobe matrix-assisted 
laser desorption/ionization mass spectrometry (AP-SMALDI-MS) experiment using a tightly focused 
laser beam [96]. Verhaert and co-workers [97] have employed high mass accuracy MSI procedures 
with an FT-Orbitrap to localize physiologically active peptides in neuronal tissue from American 
cockroach (Periplaneta americana) neurosecretory organs. Their results clearly illustrate that high 
mass accuracy and high mass resolving power of the Orbitrap analyzer are now routinely achievable 
in direct tissue analysis and molecular imaging experiments. This high mass resolution MS imaging 
approach now allows the direct identification and structural analysis of lipids, peptides and proteins 
from a variety of complex biological surfaces. This detailed information provides new fundamental 
insight in dynamic biological processes such as cell and tissue differentiation and signaling.  

Fourier transform based technologies for imaging bring forward new challenges. The Fourier based 
technologies provide exquisite molecular detail but are inherently slow. The high mass resolving 
power requires long transients to be acquired for each pixel. Transients of several seconds per pixel 
have been reported. This limits the applicability of FTMS based tissue imaging to compounds that are 
stable to in-vacuum degradation.  Alternatively, pressure high-spatal resolution MALDI could be 
employed [96] to address the in-vacuum degradation issue. New mathematical techniques such as 
the application of a filtered diagonalization method (FDM) [98]  as an alternative for the Fourier 
transform could be instrumental in improving total acquisition time. The total data volume is a 
significant limitation on the total analysis time in the generation of high resolution molecular images. 
This applies for both high spatial resolution as well as high mass resolution approaches. Mass 
spectrometry imaging at higher resolution therefore also requires developments in data storage, 
processing and visualization methods. A significant speed up in statistical analysis was recently 
introduced by the application of graphical processing units (GPU’s) for principal component analysis 
[99]. Parallel preprocessing with cluster approaches demonstrated for high resolution LC-MS datasets 
[100] can now readily be applied for rapid high resolution MSI. It is clear that on many levels the high 
mass resolution approaches provide detailed molecular information that complements the MS based 
molecular imaging technologies. Consequently, more and more researchers are resorting to multi-
modal imaging approaches in which as much molecular information is gathered from one single piece 
of tissue.  

Proteomics strategies have benefited from the availability of the high mass accuracy methods for a 
substantial time already. It has resulted in improved throughput and identification capabilities of a 
wide variety of peptides and proteins and their post-translational modifications [101]. Recently, 
these methods are established as proteomics based MS imaging workflows [4]. In the previous 
section we argued that increased mass resolving power reveals more spatial and molecular detail. 
Increased mass accuracy will, similar to the developments in proteomics, enhance the identification 
capabilities for imaging MS experiments. Imaging small molecules (< 400 m/z) benefits directly as 
high accuracy allows the direct determination of the elemental composition of a compound. This 
capability is particularly useful for drug and metabolite imaging [102].   

The increased mass accuracy also improves protein identification capabilities in the analysis of tissue 
section where an on-tissue digestion protocol has been applied. This proteomics imaging strategy 
employs a similar protein identification workflow as in conventional LC-tandem MS applied to each 
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pixel. The identification is clearly more challenging due to the lack of chromatographic separation 
techniques after local on-tissue digestion. Here, the combination of high mass resolution (separation 
power) and high mass accuracy (identification power) is crucial. The high mass accuracy improves the 

peptide identification scores in conventional protein database searches. Peptide Mass Fingerprinting 
(PMF) and tandem MS based protocols are commonly used in concert.  

 

Figure 3: High mass resolving power SIMS-FTICR imaging study of a mouse brain. This figure 
illuistrates how within 0.3 Dalton several molecular peaks can be resolved that all have different 
spatial distributions. (Previously unpublished result, courtesy of D.F. Smith, R.M.A. Heeren and L. 
Pasa-Tolic). 

 

Naturally, the combination of both high mass accuracy measurements and very high spatial resolving 
powers is desirable to meet the demand for detail in the image and in the spectral dimension. 
Spengler and co-workers used a coaxial objective to generate a laser focus smaller than 5 µm on 
several Thermo FT-MS systems (Thermo Scientific GmbH, Bremen, Germany). This approach was 
employed to generate various high resolution MALDI based molecular images at the cellular level 
[103]. Smith and co-workers developed a MSI instrument which combines the high spatial resolution 
capabilities of a Buckminsterfullerene (C60) cluster ion source (Secondary Ion Mass Spectrometry) 
with the high mass resolving power and high mass accuracy of FTICR MS [104]. This novel instrument 
features a commercial C60 primary ion source, 12 T solariX FT-ICR mass spectrometer and tandem MS 
capabilities (Bruker, Billerica, USA). Smith and co-workers demonstrate a microprobe MSI 
measurement on mouse brain at a 40 μm pixel size, a mass resolving power better than 100,000 
(m/Δm50%) and a mass accuracy well below 1 ppm. Extremely high spatial resolution approaches are 
ultimately limited by the efficiency of the ionization method. How many molecules are available for 
ionization at the ultimate spatial resolution and how many of those molecules will be ionized, i.e. 
what is the ionization efficiency? If the ionization efficiency is less than 100%, which holds for most 
ionization methods, the ionization efficiency will determine a practical achievable resolution. One 
exception is the microscope mode discussed earlier in this review (section 3).  

The previous section has emphasized mass accuracy and mass resolving power as an essential 
element of MSI identification strategies. One other crucial element in the identification of bio-
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molecules at surfaces in MSI experiments is tandem mass spectrometry. In particular in the absence 
of sufficient mass accuracy, it is imperative to perform structural analysis by means of selective 
dissociation to establish or confirm the identity of the species imaged. The preferred dissociation 
technique in MS imaging studies is collision induced dissociation as it is fast, easy to control and the 
fragment spectra are reasonably well understood or interpretable.  A number of tandem MS imaging 
studies is focused on tryptic peptide identification for proteome imaging studies. These studies can 
be complicated by overlapping isobaric ions. Ion mobility separation, discussed later in this review 
(section 6), prior to tandem MS has proven useful to enhance peptide identification scores from 
tandem MS studies.  

Tandem MS is significantly limited by the signal persistence in most MS imaging experiments. As a 
result it is not possible to perform tandem MS analysis of each and every peak found in a pixel. 
Intelligent tandem MS target selection is becoming a prerequisite for focused molecular imaging 
studies. Target lists based on prior quantitative proteomics analysis from tissue homogenates is a 
strategy followed by a number of researchers in proteomics. This allows the utilization of a priori 
knowledge on interesting up- and down-regulated proteins relevant for the experimental condition 
that is tested. Alternatively, a regular MS imaging experiment can be used to identify interesting 
spatial molecular structures that can subsequently be utilized for further tandem MS imaging 
experiments.  Targeted tandem MS profiling studies on areas of interests can also be employed to 
identify the molecules found in those areas.  

With the introduction of Multiple Reaction Monitoring (MRM) based imaging strategies [105] it is 
now also possible to perform quantitative tandem MS studies. Pirman and Yost [106] have used a 
similar strategy to quantitatively image the distribution of acetyl-L-carnitine in mouse brain tissue 
sections.  

In summary, it is imperative that imaging MS researchers use a smart combination of high mass 
resolution, high mass accuracy and complementary tandem MS strategies to identify molecular 
distributions found on biomedical tissue surfaces.  

 

(5) Adding an new dimension: 3D-MSI 

Anatomical atlases based on optical images are widely used for anatomical and physiological 
reference in the medical profession. These atlases are employed to evaluate healthy and diseased 
tissue for diagnostic and treatment purposes. Often general disease treatment or management 
protocols are established solely based on morphological aberrations observed in biopsies. A new 
method needs to be established that provides a molecular basis for these anatomical atlases. This 
requires a molecular imaging method that provides a detailed insight in the spatial distribution of a 
broad range of elements and molecules. These molecular tissue atlases should combine 3-
dimensional position information with molecular information.  

Mass spectrometry imaging is typically a discipline in two spatial dimensions (2D). By positioning the 
laser or the primary ion beam to different locations on the surface results in a comprehensive set of 
mass spectra. A two-dimensional image of each individual mass spectral peak (m/z) can be 
generated. The 2D spatial information in combination with the m/z information of the spectra is 
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often referred to as a datacube. The generation of a three-dimensional (3D) dataset requires an 
additional z-dimension. In MALDI-MSI this is achieved by successive tissue sectioning with well 
defined and measured spatial intervals [107, 108]. MSI-data is acquired and subsequently processed 
to reveal the three-dimensional molecular features. Figure 4 shows an example of a 3D MALDI-MSI 
approach in which lipid volumes in a xenografted tumor are revealed. The processing protocol can 
include spectral and spatial binning to reduce the total dataset size prior to molecular feature 
visualization. Different software tools have been developed to visualize these three dimensional 
reconstructions [109, 110]. Individual mass spectral peaks can be simultaneously displayed using a 
color scheme in which each color represents a specific molecular feature. 

 

 

Figure 4: Three dimensional molecular reconstruction of a xenografted breast tumor using fiducial 
marker alignment of individual sections [3]. This reconstruction is generated from molecular ion 
distributions obtained from the central section of the breast tumor. The fiducial marker ion Chresyl 
Violet at m/z 262.1 is shown in green in all images. a) Distribution of the molecular ion PC(16:0/0:0) 
[M+H]+ at m/z 496.3 is shown in red. b) Distribution of molecular ion PC(18:1/18:1) [M+K]+ at m/z 
824.5 is shown in blue. c) The overlay of (a) and (b). Figure  courtesy of K. Chughtai. 

 

An alternate approach towards the generation of 3D imaging MS datasets at cellular resolution is 
found in the SIMS domain. The introduction of ion-cluster based sputter guns for depth profiling 
allowed gentle removal of surface layers without the induction of subsurface damage. Sputter 
sources that employ C60 molecular ions or large argon cluster ions [111, 112] can sputter with a depth 
resolution of tens of nanometers. This depth resolution enables 3D MSI on a subcellular scale with 
dynamic SIMS. Chandra and co-workers demonstrated the generation of 3D elemental images of the 
mitotic spindle from T98G human glioblastoma tumor cells with dynamic SIMS [113]. This study 
demonstrated that 3D SIMS imaging was essential for the analysis of mitotic cells, where specialized 
regions such as the mitotic spindle were hidden beneath the cell surface. A combination of sputter 
and analysis cycles with these sources is now employed for SIMS based molecular 3D imaging. This 
was demonstrated by Fletcher et al in their visualization of  the 3D distribution of phosphocholine 
and inorganic ions in single cells using a TOF-SIMS approach [114]. 

In the future, the generation of 3D molecular atlases can be employed to populate comprehensive 
molecular tissue bio-banks, i.e. biological databases, for different tissue types. These atlases can be 
used to study local molecular changes involved in disease and therapy. Using e-science, grid or cloud 
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technology these immense data volumes can be validated and made available to the biomedical 
research community for comparative studies. Tissue bio-banks should be complemented with patient 
data, comprehensive proteomics data of tissue homogenates, microarray data and conventional 
histological images. This has the potential to generate new insights in diagnosis, development, 
treatment and prognosis of disease. 

 

(6) Ion mobility: adding the shape of a molecule 

Alternate methods that are able to unravel the complexity of biochemical surfaces have become 
available to researchers in mass spectrometry imaging. It has already been established that cells, a 
tissue section, a tissue extract or a body fluid contain a huge amount of chemical and biological 
information. A single analytical method is usually insufficient when a better understanding of the 
function of these different biological systems is targeted. It has been illustrated how high mass 
resolution techniques can deal with this complexity. An alternate method is to add a gas phase 
separation technique to the MS imaging workflow. Hyphenated mass spectrometry techniques (e.g. 
LC-MS, GC-MS) are common in the analytical domain and are widely used for increased sensitivity 
and selectivity for bio-chemical analysis. Ion mobility spectrometry (IMS) combined with mass 
spectrometry imaging is one of these approaches that has the potential to provide direct insight in 
the shape, structure and position of bio-molecules. The combination of mass spectrometry with ion 
mobility spectrometry has already proven an extremely successful technique for determining the 
structures of ions in gas phase as it allows the separation of different structural isomers [115, 116]. 
The addition of a molecular imaging component enhances the molecular detail provided [55]. 

MALDI-ion mobility MS brings an added value to MALDI-MS tissue imaging by the separation of 
different compounds families such as lipids and proteins [54, 117]. The ion mobility cell, positioned 
between a quadrupole and a time-of-flight analyzer, allows the separation of structural isomers, or 
compounds with similar m/z, which cannot be separated by m/z only (due to TOF-instrument 
limitations). Different ion conformations have different collisional cross-sections and result in 
different drift times. This particular property is comparable to liquid chromatography separation and 
allows the separation and identification of chemical families such as matrix, drugs, lipids and single or 
double charged peptide ions by their retention time inside the ion mobility cell. Stauber and co-
workers [5] demonstrated the ability to separate isobaric ions with ion mobility prior to tandem MS 
in a MALDI imaging experiment. The fragmentation profiles of different ions enabled a database 
search with increased specificity by pooling fragments associated to only one parent. The comparison 
between Mascot scores [118] with and without drift time fragment pooling shows the power of the 
added IMS separation. Gas phase ion mobility separation is frequently used to separate small matrix 
ions and their clusters from tryptic peptides and lipids prior to tandem MS. However, signal depletion 
prohibits extensive tandem MS imaging experiments. This requires an efficient selection of relevant 
precursor ions that can be realized with ion mobility separation. For example only tryptic peptide 
ions can be selected for fragmentation when protein identification is targeted in an imaging 
experiment [119].  

The SYNAPT HDMS (Waters Corporation, Milford, MA) is one of the widely implemented ion mobility 
instruments with MSI capabilities. This instrument has a quadrupole orthogonal acceleration TOF 
geometry and is equipped with a travelling wave (the so-called T-wave) ion mobility device located 
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between the quadrupole and the TOF analyzer. The ion mobility separator used consists of three 
consecutive traveling wave regions. The first traveling wave (trap) is used to store ions when IMS is 
performed, to maximize the duty cycle of the IMS. The next travelling wave section is the actual ion 
mobility separation device. The final traveling wave device (transfer) is used to transfer ions from the 
ion mobility separator to the TOF mass analyzer maintaining the ions’ separation. Collision induced 
dissociation (CID) can be achieved in either the trap or transfer T-wave or in both. The instrument is 
equipped with an interchangeable MALDI source, which can be replaced with atmospheric ionization 
(AI) sources, such as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI). 
This configuration allows for a variety of atmospheric and in-vacuum MSI experiments. MALDI is 
performed in an intermediate-pressure environment (9 × 10-2 mbar) using a frequency-tripled 
Nd:YAG laser (355 nm). Imaging data are obtained in the microprobe mode with a typical resolution 
of 80 µm. The time per pixel, pertaining to the throughput for MS imaging, is similar to that in 
conventional TOF-based imaging experiment. The increased dynamic range stems from the fact that 
per laser shot multiple orthogonal TOF-spectra are acquired following ion mobility separation.  

MALDI-IMS-MSI has the ability to improve the imaging of some drugs, metabolites, lipids and 
peptides by separating such ions from endogenous or matrix-related isobaric ions. It has been 
applied in variety of studies ranging from whole body imaging of drug dosed rats to imaging signaling 
proteins in oncological studies [15, 119].  

 

(7) Summary 

The ideal or perfect mass spectrometry imaging experiment on tissue can still not be performed as a 
result of several limitations in spatial resolution, molecular identification capabilities and 
speed/throughput. In this review, we have shown several technological innovations that address 
these hurdles towards the perfect mass microscope. All of the innovations improve a specific aspect 
of the MSI workflow described in Figure 1. As such, the insight in the molecular organization of 
molecules on tissue surfaces is drastically improved. Having stated this, it is also clear that it is very 
difficult to integrate all of the innovations discussed in one single instrument. This implies an intrinsic 
need for multi-modal imaging experiments, in which different molecular detail is brought together. 
This in turn defines a need for more and improved bio-informatics tools that can integrate and 
validate this multi-modal data. This will, in our opinion, be one of the major areas of innovation for 
the years to come. 
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