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Physical systems with many degrees of freedom can often be understood in terms of transitions between a
small number of metastable states. For time-homogeneous systems with short-term memory these transitions
are fully characterized by a set of rate constants. We consider the question how to extend such a coarse-
grained description to non-stationary systems and to systems with finite memory. We identify the physical
regimes in which time-dependent rates are meaningful, and state microscopic expressions that can be used to
measure both externally time-dependent and history-dependent rates in microscopic simulations.

I. INTRODUCTION

Physical systems with a large number of degrees of
freedom and complicated dynamics can be understood
in much simpler terms, if they exhibit a small number
of metastable states. A natural coarse-grained descrip-
tion is then found in terms of residence times in each
of the states, joined by nearly instantaneous transitions
between them.

This idea has been widely used in the context of ther-
mal equilibrium systems that are characterized by a clear
separation of time scales between fast intra-state dy-
namics and slow global relaxation (e.g.1), giving rise to
Markov State Models, see e.g.2. Here transitions are
Poissonian, i.e. they happen with uniform propensity
(probability per unit time); equivalently, the waiting time
intervals are uncorrelated and exponentially distributed.
Each transition is described by a single number, the rate
constant.

In this article we are interested in systems that
switch between two metastable states rarely and rapidly,
but with a time-dependent propensity. Such time-
dependence may be caused by an external force driv-
ing the system. Alternatively it may also arise due to
the presence of internal degrees of freedom that do not
fully equilibrate on the macroscopic time scale of inter-
est, giving rise to non-Markovian macroscopic switching
dynamics between the metastable states. We consider
both equilibrium and non-equilibrium systems, in the
sense that their unperturbed microscopic dynamics may
or may not be time-reversible.

Clearly, in such time-inhomogeneous or non-Markovian
systems the concept of a rate constant is inadequate.
In this article we investigate in what physical regimes a
time-dependent rate function or a history-dependent rate
kernel may instead be meaningfully defined, and state the
corresponding phenomenological rate equations. We then
address the question how macroscopic rate functions or
rate kernels can be defined in terms of microscopic cor-
relation functions; we give microscopic expressions and
show how they can be used to measure these generalized
rates in computer simulations.

II. OVERVIEW

We consider systems whose coarse-grained, macro-
scopic dynamics can be described as switching between
two macroscopic states A and B. The macroscopic states
are assumed to be metastable in the sense that the mean
waiting time between the switching events is much longer
than the duration of the switching event itself. This
makes it possible to partition the phase space into the
metastable regions A and B, and a transition region C
separating them, such that

τC � τAB , τBA, (1)

where τC is a typical duration for a traversal of C (a
switching event), and τAB , τBA are the mean waiting
times for switching in the forward and backward direc-
tion, respectively. This separation of time scales provides
the justification for coarse graining the system as a two-
state system, switching rarely but rapidly between the
states A and B.
We are interested both in equilibrium systems that

are microscopically reversible and in non-equilibrium sys-
tems with dissipation of energy. If the system is in sta-
tionary state, the stability of the states A and B and the
forward and backward probability fluxes, qAB and qBA,
are constant in time. Nonetheless, if the system has mem-
ory, the switching propensities will be history-dependent.
Furthermore, out of stationary state, the stability of the
states and the dynamics of switching between them will
change in time. In both of these situations, rate constants
kAB and kBA do not adequately describe the system, and
a time-dependent generalization of the rate constant con-
cept is called for.
Following Chandler in his derivation of rate constants

in equilibrium systems3, we imagine that from experi-
mental observations we know a certain phenomenolog-
ical expression for the macroscopic switching dynamics
to be valid, on times much larger than a certain macro-
scopic time resolution ∆t. This macroscopic expression
is the rate equation. The goal is then to derive a micro-
scopic expression for the dynamics of the system that is
consistent with the rate equation, and allows us to mea-
sure the macroscopic rates in a microscopic simulation.
We will thus not derive a macroscopic expression from
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microscopic principles; rather, we will assume that the
system obeys a given rate equation, and use this descrip-
tion as a starting point for the derivation of microscopic
expressions for time-dependent rate functions3.
The propensity of the system to switch from one

macroscopic state to another at time t may depend on
the current macroscopic state of the system only, in which
case the system is Markovian. More generally, it may de-
pend also upon the macroscopic history, i.e. the sequence
of states visited in the past. For such a non-Markovian
system, the switching propensity could depend on the
time that has passed since the last switching event, but
it is also conceivable that it depends on the system’s dy-
namics prior to the last switching event. Indeed, all in-
formation about the history of the macroscopic switching
dynamics is contained in the sequence of switching times.
It is thus natural to capture the history dependence of
the switching dynamics by writing the time evolution of
the system in terms of the times of all previous switching
events:
∂

∂t
PB(t; t′, t′′, . . . ) = kAB(t|t′, t′′, . . . )PA(t; t′, t′′, . . . )

−kBA(t|t′, t′′, . . . )PB(t; t′, t′′, . . . ),
(2)

In this Master equation, PA(t; t′, t′′, . . . ) denotes the joint
probability to be in A at time t and to have switched for
the last time within (t′, t′+dt′) (i.e. from B to A), for the
second-to-last time in (t′′, t′′+dt′′) (from A to B), and so
on. Moreover, kAB(t|t′, t′′, . . . )dt is the conditional prob-
ability to leave A in the time interval (t, t+dt) given that
the sequence of switching times was t′, t′′, . . . . An anal-
ogous equation holds with A and B interchanged. Im-
portantly, this macroscopic phenomenological rate equa-
tion defines the general rate kernels kAB(t|t′, t′′, . . . ) and
kBA(t|t′, t′′, . . . ). An equation for the switching dynam-
ics at time t can be obtained from Eq. 2 by integrating
over the switching times prior to t,

d
dtPB(t) =

ˆ
t>t′>t′′>...

∂

∂t
PB(t; t′, t′′, . . . )dt′dt′′ . . . . (3)

Since the last, second-to-last, . . . switches are each
unique events, no over-counting occurs here. No approx-
imation has been made up to this point; note however
that 3 is not in general a closed equation for PA,B(t).
The lower integration limit depends upon the experimen-
tal setup and will be discussed in more detail below.

While Eqs. 2 and 3 describe the switching dynamics
of an arbitrary two-state system, they cannot be solved
in general. They are also too detailed, requiring full in-
formation about the macroscopic history. At this point
the experiment has to inform us about the most use-
ful and meaningful phenomenological model, that is, the
minimal model that captures the macroscopic switching
dynamics of the system. More specifically, the experi-
ment has to reveal whether the switching propensities do
indeed depend on the current time t and the previous

switching times t′, t′′, . . . . The decision about the type
of macroscopic expression that describes the experiment
best, will then depend both on the physical properties
of the system under consideration, and on the time res-
olution and the measurement uncertainty of the experi-
ment. Below, we will discuss a number of stationary and
non-stationary situations for which Eqs. 2 and 3 can be
simplified, and for which microscopic expressions for the
macroscopic rate constants can be found.
We now turn to the microscopic characterization of

the system. We consider an ensemble of trajectories that
start at t = 0 at state space points x0, following a spec-
ified initial phase-space distribution function ρ(x0)4. If
the dynamics obey detailed balance and microscopic re-
versibility, and if ρ(x0) is the canonical distribution, then
this is an equilibrium ensemble. We may instead also
consider the relaxation towards thermodynamic equilib-
rium, starting from a non-equilibrium ρ(x0). Alterna-
tively, the ensemble could be that of a non-equilibrium
system that does not obey detailed balance and micro-
scopic reversibility. Again, the initial condition could
either be in stationary state, or out of stationary state,
in which case the non-equilibrium system may relax back
to a stationary state. Finally, the system (time-reversible
or not) may never reach a stationary state over the time
course [0, T ] of the experiment. This can happen if relax-
ation is slower than T , or if the system is driven exter-
nally via some protocol φ(t), for instance, proteins that
are unfolded under the influence of an external force.
To derive microscopic expressions that are consistent

with the macroscopic rate equations, Eqs. 2 and 3, we
first need to define functions hA(xt) and hB(xt) that in-
dicate whether the system with configuration xt at time
t is in state A or B. It is useful to define these character-
istic functions in terms of an order parameter q(xt) that
serves to measure the progress of the transition between
the states A and B:

hA(xt) = θ[qA − q(xt)], (4)
hB(xt) = θ[q(xt)− qB ]. (5)

Here, θ is the Heaviside step function. With these
definitions, the system is considered to be in A when
q(xt) < qA, in B when q(xt) > qB , and in the transition
region C otherwise. Moreover, we have the relation

hA + hB ≡ 1, if qA = qB = q∗. (6)

The same relation holds effectively if qA < qB and the
occupancy of the transition region C is low for all times.
The principal idea is now that the macroscopic rates

kAB,BA(t) can be derived from the behavior of the mi-
croscopic correlation function

C(t) =
ˆ

dx0dxtρ(x0)p(xt|x0)hB(xt)

= 〈hB(xt)〉 (7)

Here, p(xt|x0) is the probability that the system is in
state xt at time t given that it started in state x0 at
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time zero; 〈. . . 〉 denotes an average over the ensemble of
trajectories that start in x0, following the phase-space
distribution ρ(x0). The correlation function C(t) gives
the probability that the system is in state B at time t
given that it started from the initial distribution ρ(x0),
which may or may not be chosen to fully reside in A. The
transition rates are derived from the flux into B and out
of B, and are thus related to the time derivative of C(t):

Ċ(t) = 〈ḣB(t)〉, (8)

where we use the shorthand notation hB(t) = hB(xt).
The task at hand is to rewrite this microscopic expres-
sion such that it can be identified with the macroscopic
expressions of Eqs. 2 and 3. This is carried out below for
a number of different classes of systems. In each case,
we start with the macroscopic rate equation, and then
derive a microscopic correlation function from which the
macroscopic rates can be obtained.

III. MARKOV SYSTEMS

In this section we consider systems that exhibit Marko-
vian macroscopic switching dynamics. By this we mean
that it is known from experiment that there exists a
macroscopic time resolution ∆t, on which the propensity
to switch between the two macroscopic states A and B
at time t is independent of the history of the macroscopic
switching dynamics for earlier times t′ < t. In this case
the rate kernels are independent of the previous switching
times, yet may depend on the current time if the system
is not time-homogeneous: kXX̄(t|t′, t′′, . . . ) = kXX̄(t),
where XX̄ = AB or BA. We immediately conclude that
the macroscopic rate equations Eqs. 2, 3 reduce to

d
dtPB(t) = kAB(t)PA(t)− kBA(t)PB(t) (9)

with rate functions kAB(t), kBA(t). This equation to-
gether with its counterpart for PA forms a closed set of
equations for PA,B . We remark that the form of Eq. 9 can
always be obtained trivially from Eqs. 2, 3 by marginal-
izing. However, the resulting expression will then in gen-
eral only be valid for a particular experiment. A Markov
system is characterized by the property that Eq. 9 with
a fixed set of rate functions kXX̄(t) correctly describes
multiple experiments, differing in their initial conditions
and in their history before t = 0.
The fact that memory is lost on the macroscopic time

scale ∆t implies that the system locally equilibrates in
the macroscopic states A and B on time scales τA and
τB , respectively, that are shorter than ∆t. We can then
identify a transient time scale

τtrans = max{τA, τB , τC} < ∆t� min{τAB , τBA} (10)

which is the microscopic memory time of the system.
It is instructive to restrict the attention to trajectories

that happen to start in A at t = 0. To derive microscopic

expressions for the macroscopic rate constants, we then
consider the correlation function

Ċ(t) = 〈ḣB(t)〉A0 , (11)

where the subscript A0 indicates restriction of ρ(x0) to
this subensemble. We now rewrite this expression such
that its terms can be identified with the macroscopic
quantities appearing in Eq. 9. Taking qA = qB = q∗

and letting hX(t) = hX(xt), we can insert hA(t−∆t) +
hB(t − ∆t) = 1 and hA(t + ∆t) + hB(t + ∆t) = 1 into
Eq. 11; the importance of ∆t will become clear shortly.
This yields

Ċ(t) = 〈hA(t−∆t)ḣB(t)hA(t+ ∆t)〉A0

+ 〈hA(t−∆t)ḣB(t)hB(t+ ∆t)〉A0

+ 〈hB(t−∆t)ḣB(t)hB(t+ ∆t)〉A0

+ 〈hB(t−∆t)ḣB(t)hA(t+ ∆t)〉A0 . (12)

We now condition on the state prior to a transition, by
multiplying and dividing the first two terms by 〈hA(t −
∆t)〉A0 and the last two terms by 〈hB(t −∆t)〉A0 . This
gives

Ċ(t) = 〈hA(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉A0,At−∆t

+ 〈hA(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉A0,At−∆t

+ 〈hB(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉A0,Bt−∆t

+ 〈hB(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉A0,Bt−∆t .(13)

The average 〈. . . 〉A0,Xt−∆t runs over trajectories that
start in A at time t = 0 and are in X = A,B at time
t−∆t.
Since the system looses memory on the transient time

scale τtrans, the memory fo the initial state is lost for
(t−∆t) > τtrans, so that 〈. . . 〉Xt−∆t,A0 = 〈. . . 〉Xt−∆t . In
this regime Eq. 13 becomes

Ċ(t) = 〈hA(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉At−∆t

+ 〈hA(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉At−∆t

+ 〈hB(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉Bt−∆t

+ 〈hB(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉Bt−∆t . (14)

We now rewrite the first and third term in this equa-
tion, which describe trajectories that re-cross into their
original state X = A,B after a time 2∆t:

Ċ(t) = 〈hA(t−∆t)〉A0

〈hA(t−∆t)〉 〈hA(t−∆t)ḣB(t)hA(t+ ∆t)〉

+ 〈hA(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉At−∆t

+ 〈hB(t−∆t)〉A0

〈hB(t−∆t)〉 〈hB(t−∆t)ḣB(t)hB(t+ ∆t)〉

+ 〈hB(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉Bt−∆t

≡ jAA(t; ∆t) + jAB(t; ∆t)
+ jBB(t; ∆t) + jBA(t; ∆t). (15)
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Figure 1. A visual interpretation of the term jAA = 〈hA(t −
∆t)ḣB(t)hA(t+∆t)〉A0 of Eq. 12. In microscopically reversible
systems (a), for each trajectory (blue) there exists an identical
but time-reflected trajectory (red). Consequently, jAA = 0 for
all values of ∆t. In non-equilibrium systems that are memo-
ryless and in stationary state (b), for each trajectory (blue)
there exists a time-shifted trajectory (green) which cancels
the contribution to jAA, so that jAA = 0 as well, irrespective
of time-reversibility. In systems that are not time-reversible
and remain correlated over ∆t (c), time-shifted trajectories
may fail to contribute to jAA, as is the case for the trajectory
shown in green. Here cancellation cannot occur and jAA 6= 0.
See Appendix A.

If the system obeys microscopic reversibility, and if the
initial condition ρ(x0) coincides with the canonical dis-
tribution, then 〈. . . 〉 denotes an equilibrium average. In
this case the recrossing terms

jAA(t,∆t) = 0, jBB(t,∆t) = 0 (16)

for all times t and for all values of ∆t. This
can be seen by noting that the equilibrium average
〈hX(xt−∆t)ḣB(xt)hX(xt+∆t)〉 changes sign under time
reversal and therefore vanishes in thermodynamic equi-
librium. Out of equilibrium, the recrossing terms are
non-zero in general. However, under the additional con-
dition that over the given time scale ∆t the system is ap-
proximately time-homogeneous and memoryless, Eq. 16
can be shown to hold nonetheless (Appendix A). Fig. 1
gives a graphical account of these observations.

Accepting Eq. 16 for the moment (this will be justified
case-by-case below), Eq. 15 reduces to

Ċ(t) = 〈hA(t−∆t)〉A0〈ḣB(t)hB(t+ ∆t)〉At−∆t

+ 〈hB(t−∆t)〉A0〈ḣB(t)hA(t+ ∆t)〉Bt−∆t (17)
We can now relate the microscopic Eq. 17 to the macro-

scopic Eq. 9 by identifying 〈hB(t−∆t)〉A0 = PB(t−∆t),
〈hA(xt−∆t)〉A0 = PA(t−∆t) and Ċ(t) = dPB(t)/dt. This
yields

d
dtPB(t) = PA(t−∆t)〈ḣB(t)hB(t+ ∆t)〉At−∆t

+ PB(t−∆t)〈ḣB(t)hA(t+ ∆t)〉Bt−∆t ,

' PA(t)〈ḣB(t)hB(t+ ∆t)〉At−∆t

+ PB(t)〈ḣB(t)hA(t+ ∆t)〉Bt−∆t , (18)

where the approximate equality results from the fact that
∆t is the time resolution of the macroscopic descrip-
tion. Comparing this expression with the macroscopic
rate equation Eq. 9, we deduce that

kAB(t) = 〈ḣB(t)hB(t+ ∆t)〉At−∆t ,

kBA(t) = −〈ḣB(t)hA(t+ ∆t)〉Bt−∆t . (19)

In the next section, we recapitulate for completeness
the classical scenario of a Markov system that relaxes
towards stationary state starting from a non-stationary
distribution3. In the subsequent section we consider
Markov systems that are driven via an external protocol.
In both cases, we will first consider the phenomenologi-
cal rate equation, and then demonstrate that the macro-
scopic rate constants kAB(t), kBA(t) are given by the mi-
croscopic expressions on the right-hand side of Eq. 19,
provided ∆t is chosen carefully, as discussed below.

A. Time-homogeneous Markov systems

We imagine that the Markov system has been driven
via some protocol into an arbitrary initial condition ρ(x0)
at t = 0, and consider its relaxation towards stationary
state. We further imagine that experiments have revealed
that the phenomenological rate equation, Eq. 9, can be
reduced to

d
dtPB(t) = kABPA(t)− kBAPB(t), (20)

with rate constants kAB and kBA; thus kAB is the (con-
stant) propensity that the system switches to B, given
that it is in A. The transitions between the states A and
B on the macroscopic time scale ∆t are described by a
time-homogeneous Markov process. We note that even
a system with time-homogeneous microscopic dynamics
may fail to obey Eq. 20, if the system starts from a highly
non-equilibrium initial condition; indeed, the experiment
has to reveal whether the assumption of constant rates
actually holds.
The solution of Eq. 20 for a system that starts in state

A at time t = 0 is given by

PB(t) = P∞B (1− e−t/τrxn), (21)

where τrxn = (kAB + kAB)−1 is the macroscopic re-
laxation time of the switch and P∞B is the probability
of being in B in the stationary state, given by P∞B =
kAB/(kAB + kBA).
Following the discussion above in this special case, we

first need to establish that the recrossing fluxes vanish,
Eq. 16. This holds whenever the system is both memo-
ryless and time-homogeneous for time differences larger
than ∆t. These conditions are met in the present case,
because Eq. 20, which is assumed to describe the ex-
periment, implies that on the time scale ∆t the system
switches between A and B in a memoryless fashion with
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constant rates. It then follows that the rates are given
by Eq. 19:

kAB = 〈ḣB(t)hB(t+ ∆t)〉At−∆t ,

kBA = −〈ḣB(t)hA(t+ ∆t)〉Bt−∆t . (22)

While kAB and kBA on the left-hand side are independent
of time, the expressions on the right-hand side appear to
depend on t and ∆t.

We first discuss the dependence on t. In writing down
our macroscopic rate equation, we have assumed that the
system switches between the states A and B with con-
stant rates. This presupposes that the system relaxes
inside the basins of A and B in between the switching
events faster than the macroscopic time ∆t, leading to
Markovian switching dynamics and to loss of memory of
the initial condition. Importantly, this assumption also
implies that during relaxation towards stationary state,
the probability of being in either A or B will change with
time, but the state-space distribution within each macro-
scopic state A and B does not change with time; by de-
duction, the state-space distribution during relaxation,
conditioned on being in either A or B, must be equal
to that of the stationary distribution. In other words,
while the ensemble brackets 〈. . . 〉A0 denote an average
over trajectories that start from an arbitrary initial con-
dition ρ(x0) in state A, this ensemble must, according
to our assumption, be effectively equal to the stationary
ensemble of trajectories, conditioned on starting in A.

This is essentially the content of Onsager’s regression
hypothesis5,6, which states that the relaxation of an ob-
servable in a non-equilibrium experiment is proportional
to the relaxation of a spontaneous fluctuation of that ob-
servable in the equilibrium system. It relies on the idea
that the non-equilibrium initial distribution in a relax-
ation experiment follows a phase-space distribution that
is similar to that of a spontaneous fluctuation in the
equilibrium system7. The regression hypothesis is a well-
known theorem for systems close to thermal equilibrium8,
but generalizations also exist for relaxation of perturba-
tions towards non-equilibrium stationary state9–12. For
rare switching events in equilibrium and stationary non-
equilibrium systems, the presence of a dynamical bot-
tleneck for switching means that the system can rapidly
relax inside the basins of A and B, leading to loss of
memory of the initial condition. This implies that the
regressions theorem also holds, with exponential time-
dependence of the relaxation function, at least on a time
resolution ∆t coarser than the transient time τtrans.

We now turn to the dependence on ∆t. Since the rates
are constant, we can time-shift Eq. 22 to give:

kAB = 〈ḣB(0)hB(∆t)〉A−∆t ,

kBA = −〈ḣB(0)hA(∆t)〉B−∆t . (23)

These expressions, which are very similar to those of
the reactive flux method of Bennett13 and Chandler3,
hold only for a certain range of ∆t values7. The

macroscopic rate constant kAB is defined as the (con-
stant) propensity that the system switches from A to
B given that at that moment in time it is in A. In
contrast, the microscopic expression 〈ḣB(0)hB(∆t)〉A−∆t

is the propensity that the system switches from A to
B minus the propensity that it switches from B to A
at a certain moment in time, given that at an earlier
time −∆t it was in A and at a later time ∆t it is in
B: 〈ḣB(0)hB(∆t)〉A−∆t = 〈θ[ḣB(0)]ḣB(0)hB(∆t)〉A−∆t−
〈θ[−ḣB(0)](−ḣB(0))hB(∆t)〉A−∆t . Indeed, the micro-
scopic expression takes into account that the system may
switch back and forth between the two states a number
of times, and in fact, for ∆t → ∞, 〈ḣB(0)hB(∆t)〉A−∆t

becomes equal to 〈ḣB(∞)〉〈hB(∞)〉 = 0. Clearly, the
macroscopic rate constant can only become equal to the
microscopic expression if ∆t is chosen to be smaller than
the typical waiting time, ∆t� τAB , τBA.
On the other hand, ∆t cannot be made arbitrarily

small. For ∆t → 0, Eqs. 23 reduce to the transition-
state approximation

kTST
AB = 〈θ(q̇)q̇δ(q − q∗)〉,
kTST
BA = −〈θ(−q̇)q̇δ(q − q∗)〉. (24)

Transition-state theory assumes that every trajectory
that crosses the dividing surface from A to B will end up
in B before it returns to A on a time scale τBA. However,
trajectories may also recross the dividing surface a (large)
number of times before they settle in the new state B or
the original state A. These correlated recrossings tend
to decrease the correlation function 〈ḣB(0)hB(∆t)〉A−∆t

as ∆t is increased from zero. If the recrossings can be
resolved experimentally, and if one wishes to character-
ize them, then Eq. 20 is not an appropriate model and
the rate constants have to be defined differently; we will
discuss this scenario in more detail in the next section.
Here, we have been assuming that Eq. 20 is an appro-
priate model. In this model, the system equilibrates on
time scales τA < ∆t and τB < ∆t inside the states A
and B, before switching out of these states on a much
longer time scale τAB and τBA, respectively. This im-
plies that the correlation functions 〈ḣB(0)hB(∆t)〉A−∆t

and 〈ḣB(0)hB(∆t)〉B−∆t reach a plateau for ∆t in the
range τtrans < ∆t� τAB , τBA.
Figs. 2 and 3 illustrate these ideas for a particle

performing a random walk in a piecewise-flat double-
well potential according to Metropolis Monte Carlo dy-
namics (e.g.14). The macroscopic trajectory, shown in
Fig. 2b, exhibits long committed episodes, but also short
spikes caused by transient recrossings of the dividing
surface q∗ = qA = qB . While the correlation function
C(t) = 〈hB(t)〉A0 for this system shown in Fig. 3a rises
exponentially for macroscopic times, its time derivative
(Fig. 3b,c) does show a sudden drop for t . τtrans ≈ 10;
this is due to the rapid correlated re-crossings of the
diving surface q∗. Importantly, for ttrans < t < τrxn
the derivative of the correlation function exhibits a clear
plateau. In this regime, the flux of trajectories from A to
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Figure 2. Microscopic (a) and macroscopic (b) trajectories
in a simple model system of diffusion over a flat potential
barrier. A particle starts at q = −2.5 and then performs a
random walk visiting half-integer lattice points, with reflect-
ing boundaries at q = ±15. The particle experiences a flat
potential barrier given by U(q)/kBT = 3θ(2 − |q|); diffusive
steps are proposed in either direction and accepted accord-
ing to a standard Metropolis criterion. The dividing surface
defining the states A and B is located at qA = qB = q∗ = 0.
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Figure 3. The correlation function C(t), Eq. 7 and its time
derivative for the model system of Fig. 2. Clearly on long
times on the order of τrxn ' 1800 MC steps the system re-
laxes exponentially. For very short times t . 10, the behavior
is dominated by correlated transient re-crossings made by tra-
jectories on the barrier top. A plateau emerges between these
two times, whose value Ċ ' 2.78× 10−4 equals the rate con-
stant kAB .

B is constant. Indeed, the rate constant kAB is precisely
given by the value of Ċ(t) in this regime.
In summary, we reiterate that we have not derived the

macroscopic rate equation from microscopic laws. By
positing the macroscopic rate equation Eq. 20, we have
made the implicit assumption that the system relaxes in-
sides the basins and looses memory of its dynamics on

the experimental time scale ∆t. The same assumption
also entails that the non-stationary ensemble of trajec-
tories is similar to the stationary ensemble of trajecto-
ries, conditioned on starting in A. In other words, if the
macroscopic rate equation gives an accurate description
of the switching dynamics, then this strongly suggests
that the Onsager regression theorem holds as well.

B. Externally driven Markov systems

We now consider time-inhomogeneous Markov sys-
tems. We imagine that from t = 0 the Markovian system
is under the influence of some time-dependent external
force φ(t) that biases it towards one state or the other.
The macroscopic rate equation thus has the general form
of Eq. 9, and is valid for times longer than a macroscopic
time ∆t as inferred from experiment. The general solu-
tion can be written as

PB(t) = PB(0)e−
´ t
0

dt′
τrxn(t′) +

ˆ t

0
kAB(t′)e−

´ t
t′

dt′′
τrxn(t′′) dt′,

(25)
where we define τ−1

rxn(t) = kAB(t) + kBA(t).
Examples of externally driven Markov systems include

protein unfolding driven by a time-dependent force and
(crystal) nucleation at a time-varying temperature. This
class also contains systems where one (or more) of the
degrees of freedom relaxes slowly on the time scale of a
switching event, such as gene networks where at a given
time a gene is turned on, which then induces the flipping
of a genetic switch. The protein that drives the flipping of
the switch could then be viewed as the external force φ(t)
that acts on the switch. We consider external protocols
with finite band-width such that there exist a scale of
fastest force variation τφ and a scale of slowest variation
Tφ, where Tφ is at most the duration of the experiment,
Tφ ≤ T .
What microscopic scenarios are compatible with the

macroscopic rate law, Eq. 9? The rate law implies
that the system looses microscopic memory beyond ∆t,
so that τtrans < ∆t must hold. As before, we re-
strict our attention to systems with a time scale separa-
tion between intrastate relaxation and global relaxation,
τtrans � τAB,BA, where τAB and τBA are the mean wait-
ing times for switching15. Under these constraints, there
still is a variety of possible relations between the time
scales of driving and the intrinsic microscopic time scales
of the system.
The simplest situation is the quasi-static case: While

the state-space distribution evolves with φ(t) in between
the switching events, the system can locally (i.e. within
the macroscopic states) adapt to the force, meaning
that τtrans < τφ. Importantly, this quasi-static forcing
scenario does not require the force to be slower than
the global relaxation; τφ, Tφ ≷ τAB , τBA. We then ex-
pect that it should be straightforward to define time-
dependent rate functions in terms of microscopic corre-
lation functions.
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To derive the microscopic expressions that are con-
sistent with the macroscopic Eq. 20, we first note that
in this quasi-static case we may choose ∆t such that
τtrans < ∆t < τφ, τrxn. On this time scale ∆t the macro-
scopic switching dynamics is memoryless and approxi-
mately time-homogeneous, since the system adapts in-
stantaneously to the force. Thus Eq. 16 applies and the
expressions Eqs. 14-18 hold unchanged. We then indeed
arrive at Eq. 19. The rates now depend on time t, but
since the force is quasi-static, the dynamics in each ∆t
interval is governed only by the value of φ. Time depen-
dence thus enters only via φ(t):

kXX̄(t) = kXX̄(φ(t)), if τtrans < ∆t < τφ. (26)

Furthermore, when ∆t is in the range τtrans < ∆t <
τφ, τrxn, we can expect that the correlation functions in
Eq. 19 are constant as a function of ∆t, in analogy to the
time-homogeneous case.

Fig. 4 illustrates these relations in a version of the
barrier-diffusion toy model, which is now augmented
with an oscillatory force with a single frequency, f(t) =
akBT sin(2πt/τφ) with τφ = Tφ = 400, a = 0.1. We
choose ∆t = 20 so that τtrans < ∆t � τφ, τrxn. This
separation of time scales suggests that we can treat this
time-inhomogeneous Markov system as quasi-stationary,
so that jAA ' 0 (Eq. 16), and time enters the rates only
via the force. Indeed, we observe that the recrossing
fluxes approximately vanish, and that at the times when
the force crosses zero, the rate constant equals that of the
time-homogeneous Markov system of Fig. 3, supporting
this idea.

An alternative simple scenario arises in the opposite
case of rapid driving, where the external force variations
are faster than the local relaxation within the macro-
scopic states, i.e. τφ < Tφ < τtrans. We can then choose a
macroscopic resolution ∆t > τφ, Tφ, τtrans, so that the
macroscopic description effectively averages both over
microscopic correlations of the system and over the vari-
ations in driving. In this case the macroscopic switch-
ing dynamics is described by the phenomenological rate
equation of the time-homogeneous system, Eq. 20, al-
though the magnitudes of the rate constants, which are
independent of ∆t, will be renormalized by the time-
varying force. Moreover, because the system is effectively
time-homogeneous and switches in a memoryless fashion
between A and B , again Eq. 16 holds, so that the rate
constants are given by the plateau values of the correla-
tion functions in Eqs. 23 in the regime τφ, τtrans < ∆t�
τAB , τBA.
In the previous two scenarios we were able to choose

∆t to be both well-separated from the driving time scales
and within a well-defined plateau of the derivative of the
microscopic correlation function; this allowed us to ex-
tract the rate as kAB = Ċ(∆t), irrespective of the pre-
cise value of ∆t. We now consider a scenario in which
this is not possible. Suppose that a certain macroscopic
time resolution ∆t is required, which still leads to Marko-
vian switching (τtrans < ∆t) but lies within the frequency
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Figure 4. Time-dependent version of the system of Fig. 2, un-
der the influence of an external force. The system is started
in stationary state within A and relaxes with a time depen-
dent modulation (a; 〈hA〉, blue, 〈hB〉, red). Fluxes defined in
Eq. 12 (b; jAB , blue, jBA, red, jAA, black) reflect the state
occupancies. The rate functions, Eq. 19 (c; colors as in b)
are independent of state occupancy. At the zeros of the force
(dotted lines) the time dependent rates coincide with the rate
constant of the stationary system, kAB = 2.78 × 10−4 (see
Fig. 3), in agreement with a quasi-stationary description on
the time scale of the driving.

band of the driving, τφ < ∆t < Tφ. For instance, we may
wish to describe a non-stationary experiment carried out
with a given time resolution equal to ∆t.
In the case that the microscopic relaxation of the sys-

tem is the fastest process, τtrans < τφ as in the quasi-
stationary case studied above, then the correlation func-
tion does exhibit a plateau, but in a regime τtrans < ∆̃t <
τφ below the macroscopic resolution ∆t. While this does
allow us to uniquely define a force-dependent rate con-
stant as kAB(φ) = Ċ(∆̃t), this rate constant is inacces-
sible in experiments on the time scale ∆t. The macro-
scopic rate constant as measured in the experiment now
depends on the experimental time resolution ∆t:

keff
AB(t) ' (∆t)−1

ˆ t+∆t/2

t−∆t/2
kAB(φ(t′))dt′. (27)

Alternatively, when the driving contains components
that are faster than microscopic relaxation, τφ < τtrans,
the system is Markovian on the time scale ∆t but re-
tains memory of the driving over times τtrans. In this
case (τφ < τtrans < ∆t < Tφ) the correlation function
C(t) does not exhibit a well-defined plateau on any time
scale, and, as a result, a rate constant cannot be defined
in a unique, protocol-independent manner. It is of course
still possible to define a rate function in terms of a first
passage time density, as a function of the external pro-
tocol; for analytical treatments in model systems with
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simple driving protocols see for instance16 and references
therein.

IV. NON-MARKOVIAN SYSTEMS

For equilibrium systems, the two observations of rapid
switching τC � τAB , τBA (Eq. 1) and rapid equilibra-
tion τA � τAB ; τB � τBA (Eq. 10) are often intimately
connected. Rare events typically arise because of a sin-
gle large free-energy barrier separating the two states A
and B. As a consequence, the waiting time tends to be
much longer than the switching event itself—making a
two-state description meaningful—while it also allows the
system to relax inside the basins of A and B in between
the switching events—leading to memoryless switching
on the macroscopic time scale ∆t. In these equilibrium
systems there is only one relevant macroscopic time scale
τrxn, which is associated with the global relaxation of
state occupancies. However, even for equilibrium sys-
tems, inertial effects may lead to correlated recrossings17,
possibly giving rise to non-Markovian switching dynam-
ics on the macroscopic time scale ∆t; if such correlated
recrossings are important, then the macroscopic model
of Eq. 20 needs to be refined.

One can readily find examples of non-equilibrium sys-
tems, however, that can be coarse grained as two-
state systems, but in which switching between the two
states occurs in a non-Markovian fashion even on time
scales that are comparable to the typical waiting times
τAB , τBA. This means that while the waiting time is
much longer than the duration of the switching event,
there exists another time scale in the system that is com-
parable to the waiting time for switching.

An example of such a non-Markovian, non-equilibrium
system is the bacterial flagellar motor. This rotary mo-
tor can run in either clockwise or counterclockwise direc-
tion. The transitions between these two states happen
much faster than the typical waiting time for switching,
suggesting a two-state description. In experiments, the
distribution of waiting times was observed to be non-
exponential, and the power spectrum of the switching
dynamics featured a peak around 1s−1 18, which means
that there is a characteristic frequency at which the mo-
tor switches.

These data show that the flagellar motor cannot be
described as a random telegraph process in which the
switching events are independent, and the clockwise and
counterclockwise intervals are uncorrelated and expo-
nentially distributed; indeed, this system cannot be de-
scribed by Eq. 20. The data also imply that motor
switching is coupled to a non-equilibrium process19–21.
It appears that the conformational dynamics of the rotor
proteins is coupled to the slow relaxation dynamics of the
flagellum, which in turn is influenced by the rotation of
the motor, driven by a proton motive force21.

To describe systems like the bacterial flagellar motor
in which memory is important, we now consider non-

Markovian systems that when left unperturbed, reach
a stationary state (equilibrium or not). As before, we
imagine that the system flips between two macroscopic
states A and B that are metastable in the sense that the
waiting time between the switching events is much longer
than the duration of the switching event itself. These
system have memory on the macroscopic time scale ∆t
which means that the propensity of switching between
the two macroscopic states at a given moment in time
depends upon the history of the switching dynamics.
To derive microscopic expressions for the rate functions

in the presence of memory, we start again with the phe-
nomenological description of the system. If the propen-
sity to switch depends upon the macroscopic history even
prior to the last switching event, then Eq. 2 cannot be
simplified much further, and remains of little use. How-
ever, it is conceivable that the switching propensity de-
pends upon the macroscopic history only since the last
switching event, to a good approximation. The bacte-
rial flagellar motor is an example of such a system: when
the experimental clockwise and counterclockwise inter-
vals of the flagellar motor were randomly shuffled, the
power spectrum was unchanged; moreover, the observed
power spectrum could be reproduced from the measured
waiting-time distributions only18. This strongly suggests
that the different intervals are in fact temporally uncor-
related, so that the switching propensity only depends
upon the time that has passed since the last switching
event. We refer to this as the clock-resetting scenario—
after each switching event, the system looses memory;
in other words, switching is a renewal process. In what
follows we will restrict our attention to this case. We do
not exclude at this point the presence of external driving;
in that case the system has only a single-switch memory
but is time-inhomogeneous.
In the clock-resetting scenario, the phenomenological

rate equation Eq. 2 can be simplified:
d
dtPB(t) =

ˆ
t>t′

kAB(t|t′)PA(t; t′)−kBA(t|t′)PB(t; t′)dt′.

(28)
Here, PA(t; t′)dt′ is the joint probability that the system
is in state A at time t and has switched into this state
for the last time within the earlier interval (t′, t′ + dt′).
It can be decomposed as the propensity qBA(t′) to enter
A at t′, times the survival probability SA(t|t′) to stay in
A until at least time t: PA(t; t′) = qBA(t′)SA(t|t′).
The rate kernel kAB(t|t′) is defined as the propen-

sity that the system switches from A to B at time
t given that it has switched into A at time t′ < t
and is still in A at t. It is given by the propensity
qAB(t|t′) ≡ −∂tSA(t|t′) that a trajectory that entered
A at time t′, switches from A to B at a later time t,
divided by the probability that it is still in A at time
t: kAB(t|t′) = qAB(t|t′)/SA(t|t′) = −∂t lnSA(t|t′). If
the system is time-homogeneous, i.e. without external
time dependence, then we have kAB(t|t′) = kAB(t − t′).
If the system is in stationary state, then furthermore
PB(t; t′) = PB(t− t′). We note that this phenomenologi-
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cal model can be solved analytically21, see also Appendix
C.

Before we derive microscopic expressions for the rate
kernels that are consistent with Eq. 28, we first discuss
the time scales that are relevant in such a system. A
two-state description implies that the duration of the
switching event is much shorter that the waiting time
for switching: τC � τAB , τBA. Moreover, we expect that
inside the states A and B most degrees of freedom relax
quickly, within τA and τB respectively, where τA � τAB
and τB � τBA; we can thus identify a fast transient time
scale τtrans ' max{τC , τA, τB}. If these were the only
time scales in problem, then the macroscopic switching
dynamics could be described as that of a two-state Pois-
son process, assuming that we choose a macroscopic time
scale ∆t > τtrans. However, the observation that the
macroscopic switching dynamics exhibits memory on the
scale ∆t, implies that there is another time scale in the
problem, τslow, which is at least on the order τslow & ∆t.
The bacterial flagellar motor provides a concrete il-

lustration of these ideas: while the switching dynamics
of the motor in the presence of the flagellum is non-
Poissonian, the dynamics in the absence of the flagellum
is Poissonian, with constant rates, leading to exponential
waiting-time distributions22. The reason for this change
in behavior is that the relaxation dynamics of the flag-
ellum introduces a slow time scale, which becomes com-
parable to, and can even set, the typical waiting time
for switching. After a switching event, the flagellum first
unwinds, but then, driven by the rotation of the motor,
winds up in the new direction; this leads to an increase
in the force on the rotor proteins, which then tends to
switch their conformation, and thereby the rotation di-
rection of the motor21.
We extend our diffusive-barrier crossing model to cap-

ture the non-equilibrium switching of the bacterial flag-
ellar motor, see Fig. 5. The particle diffuses in a
piecewise constant potential with a single flat barrier
of height 4kBT at |q| < 2; the state boundaries are at
qA = qB = q∗ = 0. Whenever the particle enters one
of the two potential wells (say, at t′), the clock is re-
set and a restoring force ramps up over time, fclk =
−sgn(q)f0[1 − e−(t−t′)/τφ ] with time constant τφ = 100
and saturating magnitude f0 = 0.8kBT . The addition
of a restoring force leads to a faster global relaxation,
which for the chosen value of f0 is on the order of τφ.
Fig. 5 shows that the relaxation of this system is not
exponential: There is an initial lag time, and relaxation
occurs in an oscillatory fashion, because the restoring
force introduces a characteristic time scale for switching,
and because particle clocks are taken to be synchronized
at t = 0. We remark that an exponential relaxation
observed in a single experiment would not by itself im-
ply memoryless switching: For instance, the same system
with unsynchronized clocks at t = 0 relaxes exponentially
(not shown).

To derive microscopic expressions for the rate kernels
that are consistent with the macroscopic rate equation of

0 100 200 300 400 500

- 10

- 5

0

5

10

- 1.

- 0.5

0.

0.5

1.

q

f cl
k

@k
B
T

D

0 100 200 300 400 500

- 0.5

0.0

0.5

1.0

t @ MC stepsD

Xh
B

-
h A

\

Figure 5. Particle diffusing with residence-time dependent
restoring force. A trajectory (top, blue, left axis) reflects the
restoring force (black, right axis). The relaxation of state
occupancies when started uniformly in the B state basin
(bottom) is oscillatory, and more rapid than without force
(cf. Fig. 3).

Eq. 28, we need to define an indicator function that serves
to measure the time since the last switching event. We let
HX(t, t′) ≡

∏
t≥t′′>t′ hX(t′′). By construction, HX(t, t′)

takes the value 1 if the given trajectory was in X = A,B
without interruption from t′ to t and 0 otherwise, and
HX(t, t) = hX(t). One also verifies (Appendix D) that

∂tHX(t, t′) = ḣX(t)HX(t, t′), and
∂t′HX(t, t′) = HX(t, t′)ḣX(t′). (29)

The temporal derivatives of HX(t, t′) with respect to t′
and t (Eq. 29) thus make it possible to count the last
entry time and the first exit time out of X, respectively.
Although the definition of H may appear convoluted, it
is straightforward to measure in a simulation, by record-
ing switching times along trajectories. Interestingly an
indicator function similar to H has been employed by
Jung et al23 to characterize fluctuations of trajectories
in glassy systems.
Applying the relations of Eq. 29 and the identity ḣA+

ḣB = 0, we can obtain the following relation:

ḣB(t) = ḣB(t)
∑

X=A,B
HX(t, t)

= ḣB(t)
[ ∑
X=A,B

HX(t, t0) +
ˆ t

t0

∂t′HX(t, t′)dt′
]

= ∂tHB(t, t0)− ∂tHA(t, t0) (30a)

+
ˆ t

t0

∂t∂t′HB(t, t′)− ∂t∂t′HA(t, t′)dt′. (30b)

Here the probability flux in and out of B is partitioned
into contributions from trajectories that remained in one
state since t0 and then switch at t (Eq. 30a), and tra-
jectories that had their last switching event at t′ > t0
before switching at t (Eq. 30b). The latter terms allow
us to derive correlation functions which express the rate
kernels depending on the last switching event.
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To derive a microscopic expression that is consistent
with the the macroscopic equation 28, we take the en-
semble average 〈. . . 〉 of Eq. 30 (see also Eq. 8). The en-
semble average is defined by the initial distribution ρ(x0)
as before (although here we do not condition on starting
in state A), and possibly by a prescription for t < 0, as
discussed below. We now make the identifications

〈hB(t)〉 = PB(t), (31a)
∂t′〈HX(t, t′)〉dt′ = 〈HX(t, t′)ḣX(t′)〉dt′

= PX(t; t′)dt′, (31b)
∂t∂t′〈HX(t, t′)〉
∂t′〈HX(t, t′)〉 = 〈ḣX(t)HX(t, t′)ḣX(t′)〉

〈HX(t, t′)ḣX(t′)〉
= −kXX̄(t|t′), (31c)

where X = A,B and X̄ = B,A. We can then rewrite the
microscopic equation 30 in the form of Eq. 28.

d
dtPB(t) = ∂t〈HB(t, t0)〉 − ∂t〈HA(t, t0)〉 (32a)

+
ˆ t

t0

kAB(t|t′)PA(t; t′)− kBA(t|t′)PB(t; t′)dt′. (32b)

The additional boundary terms Eq. 32a appear here due
to a finite lower integration limit t0. They can be treated
in two ways. The first option is taking t0 → −∞. Then
the terms Eq. 32a vanish, because the system is not ex-
pected to stay in a given state forever. To extract rate
constants from a microscopic measurement, we then have
to be able to determine the integrand in Eq. 32b for
negative t′. This will be possible for instance if we are
dealing with a time-homogeneous system which was pre-
pared in a stationary state for negative times, since then
PX(t; t′) = qX̄X,ssSX(t − t′) for all t′ < 0, with a con-
stant, stationary-state value of the influx qX̄X,ss; see also
Appendix C.

Instead, for non-stationary systems one may wish to
explicitly account for the switching events only after
t > 0 without specifying the history before t < 0. Then
one would let t0 → 0 and retain the boundary terms,
Eq. 32a. They give a transient contribution to the macro-
scopic evolution of the system, which summarizes how
the system was prepared before t = 0. We can incorpo-
rate this contribution by defining

∂t〈HX(t, 0)〉
〈HX(t, 0)〉 = −k<0

XX̄
(t), (33a)

〈HX(t, 0)〉 = P<0
X (t). (33b)

In this case, Eq. 32 becomes

d
dtPB(t) = k<0

AB(t)P<0
A (t)− k<0

BA(t)P<0
B (t) (34a)

+
ˆ t

0
kAB(t|t′)PA(t; t′)− kBA(t|t′)PB(t; t′)dt′, (34b)

which has an effective Markovian part (Eq. 34a) and a
non-Markovian (Eq. 34b) part.

Scrutinizing the arguments above more carefully, we
should expect that the system exhibits transient recross-
ings of the dividing surface q∗ that are not persistent on
the macroscopic time scale ∆t. Moreover, these transient
recrossings are not expected to lead to loss of memory:
only macroscopic switching events, in which the systems
fully transitions from one basin of attraction to another,
are likely to reset the clock. This means that the identifi-
cations made in Eqs. 31, like the TST expressions Eqs. 24,
are erroneous in that they overcount transient switching
events. An additional point concerns the experimental
time resolution. It is conceivable that the experimen-
tal resolution is sufficiently high that transient crossing
events can be detected that do not reset the clock. If one
wishes to describe these events, then the phenomenolog-
ical model of Eq. 28, which only describes the crossing
events that lead to loss of memory, needs to be modified.
Here, we consider the case that Eq. 28 is an appropriate
macroscopic model. The task is then to come up with a
microscopic description that integrates over the transient
recrossings of the dividing surface that do not reset the
clock.
To integrate over the transient recrossings of the diving

surface that separates the macroscopic states A and B,
we must modify the indicator functionHXX̄ . This can be
achieved by introducing a ‘grace interval’ ∆t over which
such short excursions are tolerated. Therefor we define a
relaxed version of hX as

hX(t; ∆t) = θ
[ˆ t

t−∆t
hX(t′)dt′ −∆t/2

]
; (35)

this new indicator function takes the value 1 precisely
if in the preceding short interval, the system was pre-
dominantly in state X; the arbitrary convention of using
preceding and not e.g. centered intervals becomes unim-
portant on the macroscopic scale. Observe that, as for
hX , we have hA(t; ∆t) + hB(t; ∆t) ≡ 1 (we still take the
states to be adjacent, qA = qB = q∗); the previous def-
inition hX(t) is recovered in the limit ∆t → 0. Using
this coarse-grained state indicator function, the indica-
tor for uninterrupted residence in a state is then defined
as before,

HX(t, t′; ∆t) =
∏

t≥t′′>t′
hX(t′′; ∆t). (36)

This expression remains 1 for instance if all excursions
from X between t′ − ∆t and t are shorter than ∆t/2.
By definition, HX(t, t′; ∆t) is a monotonically decreasing
function of t. Furthermore, HX(t, t; ∆t) = hX(t; ∆t),
and HX(t, t′; ∆t)→ HX(t, t′) as ∆t→ 0.
Fig. 6 shows the average uninterrupted state occupan-

cies for the model system introduced above. While the
state occupancy HA(t, t; ∆t) = hA(t; ∆t) displays the os-
cillatory global relaxation in this system, HX(t, t′; ∆t)
decays with increasing residence time t − t′. This de-
cay is slower when ∆t is finite due to the fact that brief
excursions from the state are tolerated.
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Figure 6. Uninterrupted state occupancies 〈HA(t, t′; ∆t)〉 for
the system from Fig. 5, for ∆t = 0, 20 (solid and dashed lines,
respectively). The system starts in state B and accumulates
in A with occupancy 〈HA(t, t; ∆t)〉 − 〈hA(t; ∆t)〉, shown in
gray. Crossings back toB then decrease 〈HA(t, t′; ∆t)〉, shown
in colors for fixed values t′ = 0, 100, 200, 400 from left to right.

With the new definitions for h and H, the equalities in
Eq. 30 still hold. Therefore, also Eq. 32 holds unchanged
if we make the new identifications

〈hB(t,∆t)〉 = PB(t), (37a)
∂t′〈HX(t, t′; ∆t)〉dt′ = PX(t; t′; ∆t)dt′, (37b)
∂t∂t′〈HX(t, t′; ∆t)〉
∂t′〈HX(t, t′; ∆t)〉 = −kXX̄(t|t′; ∆t), (37c)

replacing Eqs. 31.
If the system exhibits transient recrossings on a time

scale τtrans � τslow, then kXX̄(t|t′; ∆t) should become
independent of ∆t if we choose ∆t to be in the range
τtrans < ∆t < τslow. Moreover, we can expect that
with this choice of ∆t, the rate constant kXX̄(t|t′; ∆t)
agrees with the experimentally measured rate constant
kXX̄(t|t′) when the experimental time resolution is in-
deed of the order ∆t, such that the transient recrossings
are not detected, while the presence of a slow time scale
is detected.

These observations are illustrated in Fig. 7, for the
clock-resetting model system introduced earlier. We re-
call that the quantity 〈∂t′HA(t, t′; ∆t)〉 = PA(t; t′; ∆t)
measures the probability that the system enters A at
time t′ and stays in A at least until t; it is thus given
by the influx propensity qBA(t′; ∆t) at t′ times the
survival probability in A, SA(t|t′; ∆t): PA(t; t′; ∆t) =
qBA(t′; ∆t)SA(t|t′; ∆t). Fig. 7a shows that PA(t, t′; ∆t)
decreases with t − t′ because SA(t|t′; ∆t) decreases with
t − t′. PA(t; t′; ∆t) is non-monotonic as a function of t′,
reflecting the fact that the flux qBA(t′; ∆t) from B into A
shows oscillations as the system equilibrates—these arise
because the probability that the system is in B relaxes
in an oscillatory fashion, see Figs. 5, 6.

The rate kernel kAB(t|t′; ∆t) is defined as the flux of
trajectories that enter A at time t′ and leave A for the
first time at time t divided by the flux of trajectories
that enter A at time t′ and remain in A till time t, see
Eqs. 31c, 37c. This conditioning removes the dependence
on the start time t′ if the system is time-homogeneous.
Fig. 7b shows that kAB(t|t′; ∆t) indeed depends only on
the time difference: kAB(t|t′; ∆t) = kAB(t − t′; ∆t), so

that we can conclude that our model system is indeed
time homogeneous. By the same token, we may now
average data for the same t−t′ but different t′, leading to
the result shown in Fig. 7c. It is seen that kAB(t− t′; ∆t)
starts out with a high crossing rate, passes through a
minimum and then rises to saturate at a constant value.
The initial drop is due to the rapid correlated recrossings
of the diving surface qA = qB = q∗; importantly, the
detection of these rapid recrossings is strongly suppressed
when the grace interval ∆t is chosen to be larger than
the microscopic relaxation time τtrans, ∆t ≥ τtrans ≈ 10,
as seen in panel c. The subsequent minimum in kAB(t−
t′; ∆t) corresponds to local relaxation of the system inside
the basin of the new macroscopic state. The rate kernel
remains small as long as the force that tends to flip the
system back to the other state on a time scale τφ is still
low. Finally, as the switching force increases with time,
the rate kAB increases, to reach a plateau value when the
switching force becomes constant. Fig. 7c also shows that
kAB(t − t′; ∆t) becomes independent of ∆t when ∆t >
τtrans ≈ 10 (and t− t′ > ∆t). This is crucial: it allows us
to define the macroscopic rate function kAB(t−t′), and it
justifies a posteriori the two-state description with a rate
kernel that depends on the time since the last switching
event.

V. DISCUSSION

It is instructive to compare the microscopic expression
for the rate kernel in a non-Markovian system, Eq. 37,
with that for the rate constant in a Markovian system,
Eq. 23. Both expressions count only those switching
events where the system goes from one macroscopic state
to the other over a time 2∆t. For a Markov system
in stationary state, the recrossing flux jAA ∝ 〈hA(t −
∆t)ḣB(t)hA(t + ∆t)〉 = 0, as discussed above (see also
Appendix A). That is, if we chose to count recrossings in
the microscopic expression for the rate function instead of
using Eq. 23, this would not change the net result except
for additional noise. In fact, the Bennett-Chandler ex-
pression 〈ḣB(t)〉A0 = 〈q̇(0)δ(q(0)− q∗)θ(q(t)− q∗)〉/〈hA〉
also counts trajectories that come from B, cross and re-
cross the dividing surface (a number of times), and then
go to B; however, their net contribution to the average
is indeed zero3.
For a non-Markovian system, 〈hA(t−∆t)ḣB(t)hA(t+

∆t)〉 may be non-zero even in stationary state, due to the
presence of memory over ∆t. In contrast to the Markov
case, here these transient recrossings should be explicitly
excluded, for the reasons already mentioned above: If we
take the macroscopic rate function to be defined as the
propensity to switch, given the time that has passed since
the last macroscopic switching event, then we should in-
deed only count the truly macroscopic switching events
in Eq. 37.

Whether a switching event counts as a macroscopic
switching event ultimately depends on the chosen macro-
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Figure 7. Time-dependent survival probabilities and rate ker-
nels for the model system from Fig. 5. (a) The joint influx
and survival probability 〈∂t′HA(t, t′; ∆t)〉 = PA(t; t′; ∆t) =
qBA(t′)SA(t|t′) as a function of t− t′, shown for different val-
ues of t′ (t′=0,100,200,400, as indicated) and for ∆t = 0, 10
(solid and dashed lines, respectively). PA(t; t′; ∆t) is the prob-
ability that the system enters A at time t′ and still is in A at
t. It decreases monotonically with t−t′, yet more slowly when
the grace interval ∆t = 10 is finite; but is non-monotonic in t′,
as explained in the text. (b) The rate kernel kAB(t|t′; ∆t) as
a function of t−t′, for different values of t′, and for ∆t = 5. It
is seen that the rate kernels for the different times t′ collapse.
(c) The rate kernels k(t− t′; ∆t) averaged over t′, for chosen
time lags ∆t = 0, 2, 4, 10, 20, from top to bottom. It is seen
that for t − t′ > ∆t and ∆t > τtrans ≈ 10, the rate kernels
become independent of ∆t. The macroscopic rate kernel can
be identified with this limiting function.

scopic time resolution ∆t. We can define a macroscopic
switching event in an unambiguous manner if the time
scale for recrossing τtrans, is well separated from the slow
memory time scale τslow of the system, so that k(t|t′; ∆t)
is independent of ∆t in the regime τtrans < ∆t < τslow.
It may happen that the time scales τtrans and τslow are
not well separated; then, to match the experimentally
measured rate constant, it becomes critical to tune ∆t
exactly to the experimental time resolution. However,
the rate kernel defined in this way will then depend on
the details of the experiment at least over some range
of residence times t − t′, which limits its use as a de-
scription of intrinsic properties of the system. Thus in a
non-Markovian system described by Eq. 28, a time scale
separation between rapidly decaying transient memory
and a well-defined slow memory time scale is again es-
sential.

In this context, it is noteworthy that we have used con-

ventional indicator functions hA(t) and hB(t), instead of
the indicator functions hA(t) and hB(t) as introduced by
Van Erp and coworkers24. The latter are defined such
that hA(t) is 1 if the system was more recently in A than
in B, and vice versa. The advantage of those indicator
functions is that by a judicious choice of the dividing sur-
faces qA and qB , only the macroscopic switching events
are counted, i.e. the crossing events where the system
goes from one basin of attraction to the other24. If a clear
separation exists between the transient time scale and
the slow time scale, and macroscopic switching events
can thus be defined uniquely (as discussed above), then
the indicator functions hA,B are useful also in the frame-
work presented here. For example, these indicator func-
tions would then obviate the need to introduce a grace
interval, as we have done for the non-Markovian system.
The advantage of the conventional indicator functions
is, however, that the corresponding correlation functions
will inform us whether there exists such a clear separa-
tion of time scales: if so, the correlation functions exhibit
a plateau, from which the macroscopic rate constant can
be obtained.

Finally, now that we have derived microscopic
expressions for macroscopic rate constants for both
time-inhomogeneous Markov systems and non-Markov
systems, the question arises whether these expressions
can also be evaluated efficiently in a computer simula-
tion. In the accompanying paper25 we present a new
numerical technique that makes this possible.
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Appendix A: Vanishing recrossing fluxes

We consider the terms jXX(t) = 〈hX(t −
∆t)ḣB(t)hX(t + ∆t)〉 appearing in Eq. 15, where X =
A,B. Noting that (a) for qA = qB we have ḣB(t) +
ḣA(t) = 0, we can restrict our attention to the quantity
̃(t) = 〈hX(t−∆t)ḣX(t)hX(t+ ∆t)〉.
Assuming memory loss over time intervals ∆t (b), and

regarding t± = t ± ∆t as fixed, we can factor the joint
probabilities as

̃(t) = ∂t〈hX(t−)hX(t)hX(t+)〉
= ∂t(〈hX(t−)〉〈hX(t)〉Xt− 〈hX(t+)〉Xt)
= 〈hX(t−)〉∂t〈hX(t)〉Xt− 〈hX(t+)〉Xt . (A1)

We further assume (c) that the system is time-
homogeneous over the time ∆t, in other words, any ex-
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ternal driving, or background relaxation of slow degrees
of freedom, happens much slower. Then we may rewrite
the conditional probabilities as functions of the time dif-
ference,

〈hX(t)〉Xt′ = PX|X(t− t′). (A2)

Then by the product rule

̃(t) ∝ ∂tPX|X(t− t−)PX|X(t+ − t)
= ṖX|X(∆t)PX|X(∆t)− PX|X(∆t)ṖX|X(∆t)
= 0. (A3)

By consequence both recrossing fluxes jXX in Eq. 15 van-
ish.

Importantly, this conclusion rests on the three assump-
tions of (a) a transition region with negligible occupancy,
(b) a time lag ∆t long enough for any fast internal mem-
ory of the system to decay, and (c) at the same time short
enough so that the system state is quasi-stationary with
respect to any external driving or other slow relaxation
dynamics.

Appendix B: Influence of the macroscopic time scale

Fig. 8 is analogous to Fig. 4b in the main text, but for
choices of time lag ∆t that are not well separated from
either microscopic relaxation or external driving; the re-
crossing flux jAA is seen to deviate from 0.
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Figure 8. Variants of Fig. 4b, with ∆t set to 100 (a) or 2 (b).
In either case, the recrossing flux does not vanish; in (a) the
force changes noticeably during ∆t, while in (b) the system
retains memory on the scale ∆t, which is seen clearly in the
higher harmonic components in jBA. Rate functions are not
given by Eq. 19.

Appendix C: Solution for the renewal rate equations

The rate equations 28 in the non-Markovian clock-
resetting model may be rewritten in Matrix form as

q(t) =
ˆ t

0
−∂tS(t|t′)q(t′)dt′ − ∂tS̃(t)p(0), (C1)

where

S(t|t′) =
[

0 SA(t|t′)
SB(t|t′) 0

]
, S̃(t) =

[
S̃A(t) 0

0 S̃B(t)

]
,

q(t) =
[
qAB(t)
qBA(t)

]
, and p(t) =

[
PA(t)
PB(t)

]
.

The net probability flux appearing on the left hand side
of Eq. 28 is then recovered as ∂tPB(t) = −∂tPA(t) =
qAB(t) − qBA(t). We are concerned with the time-
homogeneous case only, so that we may write S(t|t′) =
S(t− t′).
The macroscopic pre-history for t < 0 in Eq. C1 is

summarized in the S̃p term. More precisely,

−∂tS̃(t)p(0) =
ˆ 0

−∞
−∂tS(t− t′)q(t′)dt′ (C2)

describes the first-switch propensities of trajectories that
started in states A,B with probabilities p(0) at t = 0
(having arrived at earlier times). In the case that the
system was held in a stationary state for all times t′ < 0,
it is possible to show that

S̃X(t) =
´ 0
−∞ SX(t− t′)dt′´ 0
−∞ SX(−t′′)dt′′

. (C3)

To write a closed-form solution to Eq. C1, note that
this is a convolution integral. After Laplace transforma-
tion (f(s) =

´∞
0 e−stf(t)) we may rewrite the equation

as

q(s) = [−sS(s) + S(t = 0)]q(s) (C4)
+[−sS̃(s) + S̃(t = 0)]p(t = 0)

= [−sS(s) + 1̄]q(s) + [−sS̃(s) + 1]p(t = 0),

where

S̃(t = 0) = 1 =
[

1 0
0 1

]
and S(t = 0) = 1̄ =

[
0 1
1 0

]
.

We may rearrange to give an explicit solution to the
clock-resetting rate equation in Laplace space,

q(s) =
[
1− 1̄ + sS(s)

]−1 [1− sS̃(s)]p(0). (C5)

Here the transient survival matrix S̃ is either given as
part of the specification of the problem or may be ob-
tained from S via Eq. C3 in the case of stationary pre-
history.
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The stationary survival matrix S is given as the solu-
tion of the equation

∂tS(t|t′) = −k(t|t′)S(t|t′); S(t′|t′) = 1̄, (C6)

where k(t|t′) =
[
kAB(t|t′) 0

0 kBA(t|t′)

]
, (C7)

which is just given by exp
[
−
´ t
t′

k(t′′|t′)dt′′
]
1̄.

Appendix D: Definition of the uninterrupted indicator
function H

When writing the function HA(t, t′) as a continu-
ous product, some purely mathematical subtleties arise.
These are immaterial for the physics of two-state switch-
ing, and disappear when discretizing time as would effec-
tively be done in either experiments or simulation.

Without restriction, we take the state indicator func-
tions hX(t) to be right-continuous; i.e. we impose that
hX(t) = hX(t+) = limε↘0 hX(t+ ε). This means in par-
ticular that the time derivatives are pre-point delta func-
tions at the switching times: ḣX(t) = ±δ(t − tswitch−).
It is then convenient to define

HX(t, t′) ≡
∏

t>t′′≥t′
hX(t′′); (D1)

this definition makes HX(t, t′) left-continuous in t and
right-continuous in t′: HX(t−, t′+) = HX(t, t′). Then the
relations Eq. 29 given in the main text,

∂tHX(t, t′) = ḣX(t)HX(t, t′) ≤ 0 and
∂t′HX(t, t′) = HX(t, t′)ḣX(t′) ≥ 0, (D2)

are justified. Other conventions for the sample paths are
possible but may require the insertion of limits in Eq. 29.
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