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We present a new method, Non-Stationary Forward Flux Sampling, that allows efficient simulation of rare
events in both stationary and non-stationary stochastic systems. The method uses stochastic branching and
pruning to achieve uniform sampling of trajectories in phase space and time, leading to accurate estimates for
time-dependent switching propensities and time-dependent phase space probability densities. The method is
suitable for equilibrium or non-equilibrium systems, in or out of stationary state, including non-Markovian or
externally driven systems. We demonstrate the validity of the technique by applying it to a one-dimensional
barrier crossing problem that can be solved exactly, and show its usefulness by applying it to the time-
dependent switching of a genetic toggle switch.

I. INTRODUCTION

Rare events, which occur infrequently but have im-
portant consequences, control the dynamical behavior of
many physical systems, both in and out of equilibrium –
classic examples include crystal nucleation, protein fold-
ing, earthquakes and traffic jams. When simulating such
systems on a computer, some form of enhanced sam-
pling is usually needed in order to generate any signif-
icant number of rare event samples on the time scale of
the simulation. While a number of enhanced sampling
methods are available for systems in steady state, many
important rare event processes happen in non-stationary
systems, for which most existing methods are unsuitable.
In this article, we introduce a new enhanced sampling
scheme, Non-Stationary Forward Flux Sampling, which
allows efficient simulation of rare events in both station-
ary and non-stationary stochastic systems.

For systems in thermodynamic equilibrium, a large va-
riety of rare-event techniques have been developed. One
is the Bennett-Chandler method1,2, which involves a cal-
culation of the free energy along a predetermined reac-
tion coordinate, followed by a computation of the ki-
netic pre-factor by firing off trajectories from the top of
the free-energy barrier. Other techniques are transition
path sampling3 and transition interface sampling (TIS)4,
which employ Monte Carlo sampling of the ensemble of
transition paths, approximate schemes such as partial-
path TIS5 and milestoning6, which use a series of inter-
faces in phase space between the initial and final state,
and string methods7. While these schemes have been
successfully applied to a large class of problems, they do
require knowledge of the phase-space density, which lim-
its their use to systems in thermodynamic equilibrium.

For non-equilibrium systems, the phase-space density
is generally not known. This severely limits the possibili-
ties for devising enhanced sampling schemes to calculate
transition rates. Yet, for non-equilibrium systems that
are in stationary state, recently a number of rare-event
techniques have been developed. One is the weighted-
ensemble (WE) method8,9, where phase space is divided
into bins, and trajectories are selected and re-weighted

bin-wise to achieve uniform coverage of the phase space.
Another technique is the non-equilibrium minimum ac-
tion method10, which allows the characterization of tran-
sition paths but not rate constants. Non-equilibrium um-
brella sampling11 coarse-grains systems with Markovian
dynamics on overlapping grids in state space and biases
inter- vs. intra-bin transitions. Forward-Flux Sampling
(FFS)12 uses a series of interfaces in phase space between
the initial and final state to drive the system over the
barrier in a ratchet-like manner, by capitalizing on those
fluctuations that move the system from one interface to
the next. While these methods do not require thermal
equilibrium, they rely on the system being in stationary
state.

In reality, however, many important rare event pro-
cesses happen in systems which are not in stationary
state. For these processes, the propensity (probabil-
ity per unit time) for the rare event to occur is time-
dependent; this time dependence may be caused by ex-
ternal driving, by transient relaxation of the system from
an out-of-equilibrium initial state, or by the presence of
memory in the dynamics on a relevant time scale. In
fact many real-life instances of the rare event processes
mentioned above are time-dependent, such as: crys-
tal nucleation during flash-freezing (e.g. when preparing
cryo-electron microscopy samples); protein folding dur-
ing transient association with a chaperone protein; and
triggering of traffic jams by brief disturbances on the
road. Other interesting cases include transitions between
multiple limit cycles in neural networks under time-
dependent stimuli (as suggested for epileptic seizures,
e.g.13), and the response of metastable biochemical net-
works to transient signals, e.g. in cell differentiation14 or
in viral life cycle progression, see sec. IV. These impor-
tant types of rare events are not accessible to any existing
enhanced-sampling techniques, with the exception of the
FFS-inspired method of Berryman and Schilling15 which
relies on mapping the systems dynamics onto a time-
inhomogeneous Markov process. The noise-sampling
method of Crooks and Chandler16 allows sampling of
transition paths in non-stationary systems but cannot be
used to compute time-dependent transition rates, since
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Figure 1. Barrier crossing in stationary state. Equilibration
within the metastable region A occurs within τA. After a
mean waiting time τAB transitions from A to B occur, with
a typical duration τC .

that would require knowledge of the initial phase-space
density, which is unavailable in general.

In this article, we describe a new method, Non-
Stationary Forward Flux Sampling (NS-FFS), that al-
lows efficient simulation of rare events in time-dependent
stochastic dynamical systems. NS-FFS constitutes a
time-dependent generalization of FFS, and is concep-
tually straightforward and easy-to-implement. NS-FFS
achieves uniform sampling of trajectories crossing a pre-
defined region in time and phase space, by combining
interfaces in phase space as used in FFS12,17 with a flat-
histogram pruned-enriched Rosenbluth method originally
developed for polymer simulations18,19. In NS-FFS, tra-
jectories are branched (proliferated) or pruned (termi-
nated) based on their progression towards the final state,
using interfaces in phase space and time. The scheme
can be employed to sample the time-dependent phase-
space density and time-dependent crossing fluxes, with
uniform relative error. It thereby gives access to time-
dependent transition rate functions20, including their
low-propensity tails.

The article is structured as follows. In section II we
provide a theoretical background, contrasting the well-
studied setting of stationary, Markovian barrier-crossing
with more general time-dependent rare event problems.
Section III presents the NS-FFS algorithm, together with
corresponding pseudo-code. The correctness and effi-
ciency of the algorithm are demonstrated in Section IV
using two simple examples: diffusive escape in a one-
dimensional W-shaped potential, and time-dependent
switching in a genetic toggle switch. We conclude by
discussing the main features of the method, and possible
extensions, in Section V.

II. TIME-DEPENDENT RARE EVENTS

A. Transition rate constants for Markovian systems in
stationary state

We first discuss rare transitions occurring in a system
in stationary state. They may be visualized in terms of a

static free-energy landscape21, as shown in Fig. 1. A typ-
ical trajectory starts inside the metastable state A and
fully explores the basin within a time τA; after a wait-
ing time τAB it makes a rapid transition (on a timescale
τC) over a high free-energy barrier C into state B. The
essential observation is that if the equilibration time τA
is much shorter than the mean waiting time in the A
basin τAB , then in the regime τA, τC � t � τAB , tran-
sitions from A to B occur in a Markovian, memoryless
fashion, effectively starting from a stationary state within
A. Since the system is still in A with probability ' 1,
switches also happen with a constant propensity, whose
value equals the rate constant kAB = τ−1

AB (see also20).
Numerical techniques for simulating rare events in sta-
tionary systems exploit this fact by generating biased
ensembles of short transition paths of duration τA, τC ,
which nevertheless allow reliable estimates of the much
longer waiting time τAB � τA, τC .

We briefly review how this works in FFS12. Given a
progress coordinate λ which increases from A to B, one
defines a set of interfaces at successive levels {λl}1≤l≤L.
A sample of points at the initial interface λ1 is generated
by a quasi-stationary simulation within state A. These
are then used to initialize a set of trajectories which are
propagated to interface λ2, or terminated if they re-enter
A, whichever happens first. This procedure is repeated,
starting from λ2 and stopping at λ3 or A, and so on. By
propagating trajectories in segments from one λ-interface
to the next, FFS capitalizes on the rare fluctuations to-
wards the transition. The resulting transition paths are
of length τC . t � τAB . This leads to efficiency gains
which grow exponentially with the barrier height.

B. Time-dependent rare transition events

In this paper we are interested in situations where the
metastable states A and B can still be identified, but
transitions between them happen with time-dependent
propensity. For example, let us suppose that the generic
system illustrated in Fig. 1 and discussed above is ex-
posed to weak external forcing with protocol φ(t), 0 <
t < T . For a macroscopic description with a time res-
olution coarser that τA, the system is macroscopically
Markovian and one can still define a transition rate from
A to B, but this now depends on time: kAB = kAB(t)20.

Transition events may then be ‘uniformly rare’ so
that k−1

AB(t) � T for all t and the survival probability
SA(t) ' 1 up to time T . However, if the transition rate
is high in a particular time window, then the survival
probability SA(t) may drop significantly below 1 dur-
ing the time interval (0, T ) of interest (as in figs. 9,10
discussed below), and has to be taken into account in
computing kAB(t)20. One then needs to measure both
the first-passage time distribution or flux qAB(t) from A
to B and the survival probability SA(t), to extract the
time-dependent rate kAB(t) = qAB(t)/SA(t); see the ac-
companying paper20 for a detailed discussion.
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Alternatively, transitions from A to B may be time-
dependent even in systems without external driving, due
to “macroscopic memory”, in which the system’s dynam-
ics evolves on a time scale τslow such that τA < τslow <
τAB . In this case, relaxation within the A basin will
no longer be effectively instantaneous, and for t < τslow
the exit propensity from A will depend on the history of
the trajectory. While transitions from A to B cannot be
described by a rate constant, one may be able to char-
acterize such systems in terms of a rate kernel kAB(t|t′),
which quantifies the propensity to switch from A to B for
the first time at time t, given that the previous switch
happened at t′ < t (see20 for a detailed discussion). To
extract the rate kernel from a simulation, one needs to
measure the probability to stay in A without interruption
from t′ to t; this requires a simulation over a time interval
(0, T ) where T & τslow. In some systems memory effects
may be combined with external driving – for example
barrier escape in an underdamped, driven system.

In all of these scenarios, the system dynamics is non-
trivial and interesting over a time window (0, T ) (deter-
mined by the external driving or internal memory) which
is longer than the typical transition time τAB . This fact
makes it impossible to speed up the simulation by gen-
erating only an ensemble of short trajectories of length
& τA, τC , as is done in the rare event techniques for sta-
tionary systems discussed above. To capture the physical
behavior of non-stationary systems, trajectories must ex-
tend over the entire time window (0, T ) of interest.
Nevertheless, enhanced sampling is both useful and

feasible for non-stationary systems. Clearly, if in the time
window of interest 0 < t < T an event occurs with low
probability, then brute-force simulations will fail to gen-
erate more than a few, if any, events on this time scale.
The goal of an enhanced sampling method is therefore
to generate an ensemble of trajectories of full length T
which is biased towards the transition. By reweighting
this ensemble one can compute properties such as the
time-dependent probability density, the transition flux
qAB(t), the transition rate function kAB(t) or the transi-
tion rate kernel kAB(t|t′) for the original system, over the
time window 0 < t < T of interest. NS-FFS, presented
below, is precisely such a technique: by proliferating tra-
jectories that evolve towards the final state and termi-
nating those that do not, it generates transition events
in the time window of interest; moreover, the branch-
ing/pruning strategy is such that the relative sampling
error is uniform over the space-time region of interest.

III. NON-STATIONARY FORWARD FLUX SAMPLING

The aim of the NS-FFS method is to generate a biased
set of trajectories which sample transitions from state A
to state B, defined by a progress coordinate λ, as a func-
tion of time, for non-stationary stochastic systems. To
bias the set of trajectories towards the transition, one
would like the flux of trajectories in the biased ensemble

to be uniform in λ (as in methods like FFS); to sample ac-
curately the time-dependent behavior of the system (i.e.
to obtain good sampling of early as well as late transition
events), one would also like the flux of trajectories to be
uniform in time. NS-FFS achieves both of these objec-
tives, by generating a set of trajectories that uniformly
cover a specified region of interest R in time and in the
progress coordinate. Rare excursions into low-probability
regions within R are sampled with the same accuracy as
common events, and early excursions are sampled with
the same accuracy as late ones.

The method is conceptually simple. First, one defines
the region of λ-time space R that is of interest. One then
partitions the region R using a series of interfaces; the in-
terfaces may be defined as a level set either in the progress
coordinate or in the time coordinate. Each interface is
then partitioned into a set of bins; the bins are defined
as intervals in the respective other coordinate (time for
λ interfaces and λ for time interfaces).

The simulations start by generating an ensemble of ini-
tial conditions, for example by performing a brute-force
simulation in the initial state A. One then proceeds by
firing off a trajectory from a randomly chosen initial con-
dition, and propagating it according to the given dynam-
ical equations of the system. The trajectory is assigned a
statistical weight, which is initially unity. Upon crossing
one of the pre-defined interfaces, the trajectory may be
branched (split into several ‘child’ trajectories, with new
statistical weights), or pruned (terminated). Repeating
this procedure recursively for all child trajectories, one
generates a ‘trajectory tree’ which extends form 0 to T .
The whole procedure is then repeated by firing off a new
trajectory from a randomly chosen initial condition.

The probability that a trajectory is branched or pruned
when crossing a given interface bin depends on a running
histogram which monitors the weighted flux of trajecto-
ries crossing that bin. The branching/pruning rule is set
up such that trajectories which arrive at a bin which has
previously been under-sampled are likely to branch; those
which arrive at a previously over-sampled bin are likely
to be pruned. The algorithm successively approaches a
steady state in which the numbers of trajectories passing
through all bins on all interfaces are equal – i.e. uniform
sampling is achieved both in time and in the progress
coordinate.

In this section, we discuss each of the three
ingredients—stochastic branching and pruning; inter-
faces in phase-time space; the flat-histogram rule—in
more detail, relegating mathematical details to Appen-
dices. We then present pseudo-code of the resulting NS-
FFS algorithm. Finally, we comment on the main fea-
tures of the method. Again, implementation details are
given in the Appendix.
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Figure 2. Stochastic branching/pruning. A branching/
pruning move with average child number n̄ proliferates or
terminates branches. If n̄ ≷ 1, surviving branches are de-
creased or increased in weight, respectively (in the diagram,
line thickness represents statistical weight). The target child
number n̄ may be an arbitrary function of the chosen coor-
dinates q, q′, as long as the reweighting factor r is satisfies
Eq. 1.

A. Stochastic branching and pruning

A key element of the NS-FFS algorithm is the branch-
ing and pruning of trajectories, which allows control of
the trajectory density. In a branching move, indepen-
dent copies of the trajectory are created with a common
history up to time t, while in a pruning move, the tra-
jectory is terminated. The essential observation here is
that one is free to branch or prune trajectories at will,
as long as the statistical weights of the child trajectories
are adjusted (reweighted) appropriately.

Suppose that at time t, a trajectory with statistical
weight w is randomly branched into n = 1 . . . nmax chil-
dren with probability b(n), or pruned with probability
b(n = 0) (Fig. 2). Each child branch is assigned a new
weight w′ = r(n) × w. Clearly this branching/pruning
move will be statistically unbiased only if the weight fac-
tor r(n) is chosen correctly.

A necessary and sufficient condition for the combina-
tion of b and r to be correct is that weight be conserved
on average over branching/pruning outcomes. That
is, we may choose the branch number distribution and
reweighting factor at will as long as they satisfy

〈nr〉 =
nmax∑
n=0

b(n)nr(n) = 1, where
nmax∑
n=0

b(n) = 1. (1)

This holds under very general conditions, including non-
stationary system dynamics with memory and depen-
dence of b on arbitrary parameters, as shown in app. A.

Thus we are free to adjust b to yield a desired mean
branch number 〈n〉 ∈ (0, nmax), and thereby enrich or
dilute the density of sample paths based on any chosen
criterion, as long as we also adapt r to satisfy Eq. 1.

B. Interfaces in phase-time space

In order to extend the FFS algorithm to non-stationary
systems, we trigger branching/pruning moves whenever

a trajectory crosses an interface. Since NS-FFS deals
with systems whose dynamics are intrinsically time-
dependent, the region of interest R = [λ1, λL] × [t1, tI ]
is two dimensional. To achieve uniform sampling of tra-
jectories in both λ and time, the branching/pruning rule
needs to depend on both these coordinates. To accom-
modate this, we define a set of interfaces as level sets in
one of the coordinates (λ or t), and partition each inter-
face into a set of bins, which are intervals along the other
coordinate. The region of interest R is thus covered by a
two-dimensional grid of subdivisions (see Fig. 3). The in-
terfaces are used to trigger the branching/pruning moves;
the bins are used to determine the target child number
n̄ for these moves.
The most direct generalization of FFS arises when in-

terfaces are placed at a set of λ-levels, and subdivided
into time-bins (Fig. 3a). The interface-bin grid is then
given by the sets Bli = {(x, t)|λ(x, t) = λl, ti ≤ t < ti+1}
where bin Bli refers to the i-th time bin on the l-th λ-
interface. This interface arrangement will be referred to
as ‘λ-if’ (λ-interfaces). One can then measure the to-
tal probability weight that has passed through bin Bli,
Hli =

∑Nli
a=1 wa where Nli is the running number of tra-

jectories with weights {wa} that have reached Bli. The
crossing flux per tree is

jli = Hli/S, (2)

where S is the running number of sampled trees. In com-
puting Hli, one can choose either to count crossings only
in the forward direction (increasing λ), or in both di-
rections, depending on the system property of interest.
When counting only forward crossings, the quantity 〈jli〉
measures the forward probability flux across Bli; formally

〈jli〉 =
ˆ ti+1

ti

〈δ(λ(t)− λl)λ̇θ(λ̇)〉dt, (3)

where θ is the Heaviside step function, and λ̇θ(λ̇) is the
forward probability flux. Although jli is strictly speaking
a (unitless) crossing probability, it is proportional to the
forward probability flux averaged over the bin Bli, which
justifies the name ‘crossing flux’. Importantly, when an
absorbing boundary condition is imposed at the last in-
terface λL which is located beyond the top of the barrier,
then

〈jLi〉 =
ˆ ti+1

ti

qAB(t)dt (4)

where qAB is the first-passage time probability density,
or exit flux, into B. This makes the λ-if setup naturally
suited for estimating exit fluxes.

Alternatively, one may interchange the roles of time
and the progress coordinate, by placing interfaces at a set
of time points ti, and subdividing them into bins along
the λ−direction (Fig. 3b). We call this interface arrange-
ment ‘t-if’ (time-interfaces). The interface-bin grid is now
described by Bli = {(x, t)|λl ≤ λ(x, t) < λl+1, t = ti};
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Figure 3. In the λ-if setup (a), branching/pruning events are triggered by the crossing of levels {λl} of the progress coordinate.
Since in this case, the interface crossing flux jli corresponds to the flux of probability along λ, the λ-if setup is naturally suited
for measuring fluxes and time-dependent transition propensities qAλ(t). In the t-if setup (b), branching/pruning is triggered
at a set of times {ti}. Here, the interface crossing flux jli provides a measure of the local probability density, making the t-if
setup naturally suited for sampling p(λ, t).

bin Bli refers to the l-th λ bin on the i-th time interface.
Crossing fluxes are still defined according to Eq. 2, but
these have a different meaning in the t-if setup: jli sim-
ply estimates the probability to find the system in the
interval (λl, λl+1) at time ti:

〈jli〉 =
ˆ λl+1

λl

〈δ(λ(ti)− λ)〉dλ =
ˆ λl+1

λl

p(λ, ti)dλ. (5)

Thus the t-if setup lends itself naturally to estimating
densities or potentials of mean force.

In both the λ-if and t-if setups, the branching/pruning
rules are set up to ensure uniform sampling of jli. The
λ-if setup leads to uniform sampling of (forward) fluxes,
while the t-if setup implements uniform sampling of
phase space densities. We stress however that either
setup could be used to measure either quantity. The
relative efficiencies of the two methods depend on the
quantity used for biasing but also on more technical as-
pects, as discussed below.

C. Sampling with uniform error

The final ingredient in the algorithm is the rule for
setting the child number probability b(n) for branching/
pruning moves. In NS-FFS, a target child number is set
for each bin Bli, depending on the statistics of previous
crossings of that bin; the goal of the branching rule is to
sample the crossing flux jli through each of the bins Bli
with uniform relative error.

The relative error in jli in an NS-FFS run may be
approximated as (see app. B)

〈δj2
li〉

〈jli〉2
' αN
〈Nli〉

[
1 + αw

〈δw2
a〉

〈wa〉2

]
. (6)

Here wa denotes the (stochastic) weight of a trajectory
reaching Bli, and averages and variances refer to an en-
semble of NS-FFS runs with S trees. The constants
αN , αw approach unity in the ‘ideal’ case where trajec-
tories which reach Bli are uncorrelated. This expression
shows that the error is controlled by the number Nli of

trajectories that cross the bin, with an extra contribu-
tion arising from the spread in their weights 〈δw2

a〉/〈wa〉2.
Thus, to obtain a uniform relative error in jli (for a given
total computational cost ∝

∑
Nli), the branching rule

needs to equalize the number of trajectories reaching each
bin, while keeping the distribution of trajectory weights
within each bin sharply peaked. In NS-FFS, these re-
quirements are met by using a somewhat simplified ver-
sion of the flatPERM rule19:

Algorithm 1 Branching rule for bin Bli
1. Calculate the target child number as n̄ = wa/jli where
wa is the weight of the incoming trajectory, and jli is
the current flux estimate.

2. Set the child number probabilities

b(n) = δndn̄e(n̄− bn̄c) + δnbn̄c(dn̄e − n̄),

where d·e and b·c denote the ceiling and floor functions,
respectively.

3. Draw a child number n ∈ {bn̄c, dn̄e} from b. If n > 0,
set all child branch weights to w′ ← jli.

It is easily verified that the number of children is on
average 〈n〉 = n̄ = wa/jli. If n̄ < 1, pruning occurs with
probability 1−n̄. The weight w′ of the children (if any) is
given by the parent weight wa multiplied by the reweight-
ing factor r = w′/wa = 1/n̄, which is independent of n.
It is easy to see that the condition for unbiased statistics,
Eq. 1, is satisfied by this branching/pruning rule.
The branching rule, algorithm 1, produces a uniform

error in the crossing flux estimate jli, since it tends to
equalize counts between bins and minimize the weight
variance within a bin. To see this, consider an NS-FFS
simulation which is in steady state, i.e. after the crossing
flux estimates jli have converged to their average values
〈jli〉. In this situation the branching rule assigns each
trajectory leaving bin Bli the ‘perfect’ weight w → w∞li =
〈jli〉. Since all child trajectories are assigned this same
weight, indeed the variance of trajectory weights leaving
Bli is minimized (in the ideal case it is zero). We also
note that the weight w∞li is equal to the system’s intrinsic
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probability to cross bin Bli. It follows that on average
exactly one trajectory per tree (with weight w∞li ) will
emanate from bin Bli – or equivalently Nli/S× jli → 1×
〈jli〉 as the simulation converges. Thus NS-FFS achieves
uniform sampling of the region R, with on average an
equal number of trajectories crossing each bin, on each
interface.

D. The NS-FFS algorithm

Combining the above ingredients, we now describe the
full NS-FFS algorithm. To set up the simulation, one
needs to generate initial configurations at time t = 0, ac-
cording to an initial distribution ρ(x0) (which need not
be known explicitly as a function of x0); these could sim-
ply be generated via a brute-force simulation in the A
state. Next, one identifies a suitable progress coordinate
λ, and places a set of interfaces, subdivided into bins
{Bli}, over the region R of phase-time space of inter-
est, according to either the λ-if or the t-if setup. One
also specifies a dynamic range for reweighting, by setting
minimum and maximum trajectory weights (wmin, wmax)
(these enhance convergence, see below). The simulation
then proceeds according to algorithm 2:

Algorithm 2 NS-FFS
Init. Define a histogram of total crossing weights Hli and set

Hli ← 0 for all l, i. Set a tree counter S ← 0. Define a
queue of pending trajectories G and set G← {}.

Run Iterate the following steps, until the desired accuracy is
reached:

1. Start a new trajectory at t = 0, from a new initial
state x0. Insert the trajectory into G, and as-
sign an initial weight w ← 1. Increment the tree
counter, S ← S + 1.

2. While G is non-empty, iterate:
(a) Pick and remove a trajectory from G.
(b) Propagate the trajectory forward in time

while recording any observables of interest,
weighted with w, until either the final time
T is reached, or an interface is crossed. In
the latter case:
i. Determine the bin Bli which was crossed
and increment Hli by the current trajec-
tory weight w.

ii. If w ∈ (wmin, wmax), carry out a branch-
ing/pruning move: draw a child number
n and set the child weight w′ according
to algorithm 1. Otherwise, set n ← 1
and w′ ← w.

iii. Generate n child trajectories and insert
them into the queue G for further prop-
agation.

When setting up the region of interest R, clearly the
transition region should be covered to enhance transition

paths. It is equally important to let R extend well into
the metastable basins; this allows for pruning of trajec-
tories which would otherwise accumulate in the basins,
degrading performance. Note also that by default, trajec-
tories are not terminated when they leave R before they
reach the final time T , ensuring that they may re-enter R
and contribute at a later time. It is of course possible to
explicitly add absorbing boundaries, which may increase
performance, in cases where later reentry is not required.
The weight limits (wmin, wmax) which appear in Alg. 2

are not strictly necessary for the existence of a steady
state with uniform sampling of the crossing flux jli. They
do, however, greatly enhance convergence towards it. In
the initial phase of an NS-FFS simulation, the weight
histogram Hli is sparsely populated such that the flux
estimates jli are subject to large fluctuations. This can
result in avalanches of correlated low-weight paths which
degrade performance. For the method to be useful, it
is necessary to have an effective way of controlling these
bursts. Among a number of possible remedies including
negative feedback control of tree size, branching thresh-
olds, or explicit flat-histogram branching based on num-
ber densities19, we found weight limits to be particu-
larly simple and very effective. In practice, the reason-
able rule-of-thumb to choose wmin . minl,i{〈jli〉} and
wmax & 1 was found to work well.
The output of algorithm 2 consists of weighted trees of

trajectories in which all trajectory segments end either
at an interface (branching/pruning point) or at the fi-
nal time T (completion) (Note that a simulation may
be stopped only after a full tree is finished). Trees
may be generated depth-first (children before sisters),
or breadth-first (sisters before children), depending on
whether the queue G in Alg. 2 is of the last-in-first-out
or first-in-first-out type. We found no significant differ-
ence in performance between depth-first and breadth-
first traversal, in contrast to other reports for the case
of PERM22. Trajectory trees may also be written to disk
in a recursive data structure for offline analysis.

IV. APPLICATIONS

A. Crossing of a linear barrier

As a simple model for rare barrier crossing events,
we consider overdamped Brownian motion in a linear
double-ramp potential U = −a|x| with boundaries at
x = ±1 and barrier height a > 0, see Fig. 4. We consider
two systems, which differ in their boundary conditions:
one with reflecting boundaries at both x = −1 and x = 1,
meaning that probability is conserved; another one with
a reflecting boundary condition at x = −1 and an absorb-
ing one at x = 1. The two systems will be referred to as
the reflecting/reflecting or reflecting/absorbing systems,
respectively. This choice of model potential allows for
an exact calculation of the Green’s function, so that the
correctness of our simulations can be assessed directly.
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Figure 4. Linear ramp potential U (left) and the first 500
branches of path trees generated during NS-FFS simulations
using the t-if setup (top, reflecting boundaries) and the λ−if
setup (bottom, reflecting/absorbing boundaries). Although
the total simulated time that is shown, is τsim . 6 � τrxn,
crossing events are successfully generated. Bins Bli are de-
picted in blue, branch weight is indicated by line shading and
branch points are shown as circles.

Particles are injected at x = −1, t = 0 and diffuse
according to the overdamped Langevin equation

ẋ = −D∂xU + ξ. (7)

We use thermal units where kBT = 1, so that ξ repre-
sents Gaussian white noise with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 =
2Dδ(t − t′). In these units, the diffusion constant D is
equal to the mobility coefficient, and a has units of in-
verse length.

In this barrier escape problem both the time scale τA
for equilibration in region A for x & −1 and the crossing
time τC , are much faster than the waiting time between
crossings τAB = τBA = 2τrxn where τrxn is the global
relaxation time of the system. The Laplace-transformed
probability density p(x, s) =

´∞
0− e

−stp(x, t)dt can be cal-
culated exactly using standard methods, see app. D, lead-
ing to explicit expressions for the time scales

τA = 4
a2D

, τC = 2
aD

, and τrxn = 2ea

a2D
. (8)

In the present examples, the barrier height and diffu-
sion constant were set to a = 15 and D = 1, respec-
tively, such that (τA, τC , τrxn) = (0.02, 0.13, 2.9×104), re-
spectively. Moreover, the full probability density p(x, t),
and for the reflecting/absorbing case, the exit propensity
j(x, t), could be obtained as functions of time using an
efficient numerical contour integration method23.

Fig. 4 depicts the potential, the interface bins, and
partial trajectory trees taken from NS-FFS simulations

of this system from t = 0 to t = T = 1. The region of
interest was taken to be R = [−1, 1]× [0, 1] in (x, t); the
progress coordinate λ was defined trivially as λ ≡ x.
We first study the probability density p(λ, t) in the

reflecting/reflecting system, which relaxes towards the
Boltzmann distribution ∝ e−U over times longer than
τrxn. The system was simulated using the t-if setup which
is most natural for measuring p(λ, t), since the branch-
ing factors are controlled by the local density. I = 199
interfaces were placed across R, at regular time intervals
(from t = 0 to 1), and partitioned into L = 40 equal-sized
bins each (from λ = −1 to 1). In Fig. 5 we compare
p(λ, t) as obtained as via exact analytical calculation,
brute-force and NS-FFS simulation. While the proba-
bility density p varies over 8 decades within the region
R, the sampling density in NS-FFS is constant within
a factor of 5 (Fig. 5c). After reweighting, p is correctly
reproduced throughout R (even where it is very small;
Fig. 5d). This was achieved within a simulation time
that would generate only a handful of transition paths in
a brute force simulation (Fig. 5b). The region around the
cusp of the potential is somewhat under-sampled. This
is due to the fact that the force in our model is discontin-
uous at x = 0; to achieve complete sampling uniformity
in this region, one would require a bin width on the order
of the length scale of variation of the potential.
We next consider the time-dependent exit flux through

the absorbing boundary in the reflecting/absorbing sys-
tem. For this NS-FFS calculation, we used the λ-if setup;
this setup is natural since here the sampling bias is based
on crossing fluxes over the λ-interfaces, and the last cross-
ing flux coincides with the observable of interest. L = 19
λ-interfaces were placed at regular intervals and parti-
tioned into I = 50 time-bins each; only crossings in the
positive positive λ-direction counted towards Hli. Fig. 6
shows the probability density p(λ, t) computed using the
exact solution (a) and NS-FFS (c) as well as the un-
weighted crossing fluxes and the reweighted exit flux (d)
for this system.

As expected, the number fluxes of trajectories ema-
nating from each bin in the positive lambda direction
(d, right axis) superimpose in a narrow band, confirming
that NS-FFS indeed produces uniform sampling across
R. Only the earliest bins at the farthest interfaces are
visited less often, since the system dynamics does not
allow them to be reached in the required time with suf-
ficient probability.

In contrast, the number density of trajectories over
λ, t (b) is roughly uniform over R, but does exhibit a
systematic bias favoring the A state. This can be un-
derstood as follows. The branching rule in the chosen
λ-if setup biases towards uniform number flux in the for-
ward λ-direction, not uniform density. While in the re-
gion x > 0 trajectories spontaneously move in positive
flux direction, in the region x < 0, trajectories tend to
drift downhill, against the positive flux direction. In this
region, the λ-if NS-FFS simulation maintains a uniform
population of uphill trajectories by proliferating. The to-
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Figure 5. Time-dependent density p(λ, t) for the linear ramp
potential with initial condition p(λ, 0) = δ(λ + 1), with re-
flecting boundary conditions. (a) numerically exact solution;
(b) brute force sampling. In the t-if NS-FFS run, raw counts
(c) cover R almost uniformly while weighted counts (d) re-
produce the exact density. Taking the B state boundary to
be qB = 0.5, the occupation of the B state (d) fits a linear
growth model with slope kAB = (3.41± .03)×10−5 and delay
0.099 ± .003 (blue, as extracted from NS-FFS; black, exact
solution). Total simulated time was 105 ' 3.4τrxn. Counts
refer to the histogram bins of size (∆x,∆t) = (.05, .01) used
in this figure.

tal (uphill+downhill) trajectory density is thus increased
in the region x < 0.
This observation clearly demonstrates the difference

in sampling biases between the t-if and λ-if setups: the
former generates a uniform density while the latter gen-
erates uniform fluxes in the λ-direction. Nevertheless,
as Fig. 6b shows, in practice the methods provide al-
most uniform sampling of both forward flux and total
number density, so that it is certainly possible to sam-
ple fluxes using the t-if setup and densities with the λ-if
setup, without dramatic loss in performance.
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Figure 6. Time-dependent probability density (as in Fig. 5)
and exit flux, but for reflecting/absorbing boundary condi-
tions. The exact density p is shown in (a). Counts generated
in a λ-if NS-FFS run show roughly uniform sampling (b, see
text). Weighted counts (c) reproduce the exact density over
the full dynamic range. Unweighted number fluxes of trajec-
tories emanating from each bin (d, right axis) for all 19 λ-
interfaces (gray value increasing with λ) collapse, indicating
uniform number flux. As a consequence the exit probability
flux j over x = 1 (d, left axis) is sampled uniformly includ-
ing its low-probability onset (black, exact solution; blue, NS-
FFS). An estimate of the stationary exit flux from these data
for t > .24 gives j = 3.424(±.02) × 10−5; the exact value is
j∞ = τ−1

AB = 3.44× 10−5.

In this context it is worth noting that depending on
the observable to be estimated, there is the additional
freedom of setting up the simulation to measure either
density or exit flux. For instance, the slope in Fig. 5(e)
and the plateau value of the exit flux in Fig. 6(d) coincide,
even though trajectories may re-cross the barrier from B
to A in the reflecting/reflecting system, but not in the
reflecting/absorbing system. This is in agreement with
the exact expressions in the limit t � τrxn; indeed, as
long as t� τrxn, the occupation of the B state is negligi-
bly small so that back-crossings occur with a probability
even much smaller than forward crossings. Effectively,
the B state initially appears as absorbing even in the
purely reflecting system. Thus, either simulation may be
used to measure the rate constant for this system.
The relative errors in the estimated probability den-
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Figure 7. Relative errors corresponding to the probability
densities shown in figs. 5 and 6 for the t-if and λ-if (top and
bottom, respectively). Relative errors are computed as abso-
lute differences between sampled and exact densities, normal-
ized by the exact density.

sity |∆p|/p = |psim(λ, t) − pexact(λ, t)|/pexact(λ, t) shown
in Fig. 7, further illustrate the uniform sampling over
R generated by NS-FFS. The relative error scatters uni-
formly overR and in particular, does not scale with p−1/2

as would be the case for brute-force sampling. Larger er-
rors remain only in the fringes of the accessible region,
where fewer trajectories are sampled. The residual stripe
pattern in the t-if case carries the signature of correlated
trajectories originating at the cusp of the potential; the
undersampling right at the cusp which causes this can
be considered a pathological feature of the force discon-
tinuity in our model. Notice that although the λ-if setup
equalizes positive fluxes rather than number density, the
probability density of trajectories nevertheless exhibits
uniform error in this example, despite the weak asym-
metry across R in the number of trajectories sampled,
visible in Fig. 6b.

B. Genetic toggle switch

As an intrinsically non-equilibrium example, we next
consider a bistable gene regulatory network which can
be seen as a simplified version of the λ-phage genetic
switch. This ‘toggle switch’ consists of two genes that
mutually repress each other. In the ‘exclusive’ variant
considered here, the two genes, which produce proteins
A and B respectively, share a common DNA operator
region O, such that when the dimer A2 is bound to the
operator, protein B cannot be produced, and vice versa.
This model is discussed in detail in refs24,25.

In this simplified model, production of proteins is rep-
resented by a Poisson process. The model consists of the

symmetric reaction set:

O k→ O + A
A µ→ ∅

A + A
kf


kb

A2

O + A2
kon


koff

OA2

OA2
k→ OA2 + A

O k→ O + B
B µ→ ∅

B + B
kf


kb

B2

O + B2
kon


koff

OB2

OB2
k→ OB2 + B.

(9)

The fact that only protein dimers may bind to the op-
erator site, and the fact that the state OA2B2 is dis-
allowed, together make this system a robust bistable
switch24. Each metastable state is characterized by an
abundance of only one species, and transitions between
these states occur on a much longer timescale than re-
laxation within them. We use the same rate constants as
in12: µ = k/4, kf = kb = 5k, kon = 5k and koff = k, and
we measure time in units of k−1.
A natural progress coordinate for this non-equilibrium

system is given by the difference in total monomer num-
bers,

λ = nB + 2nOB2 + 2nB2 − (nA + 2nOA2 + 2nA2).

We are interested in a region R = {(λ, t) ∈ (−40, 40) ×
(0, 103)} which spans both metastable states and the
transition region. Using the t-if setup, we define I = 500
equidistant time interfaces. L = 16 λ-bins were defined
with boundaries at λ = ±{40, 24, 22, 18, 15, 12, 9, 4}
(These are the interface locations used in12, augmented
by bins in the basins A,B.) We take the metastable
states as A = {(x, t)|λ < λA} and B = {(x, t)|λ > λB}
where −λA = λB = 24.

1. Unbiased relaxation

Fig. 8 shows the result of an NS-FFS simulation of this
model genetic switch from t = 0 to T = 103, with initial
molecule numbers fixed to 0 except nA = nA2 = 10, so
that λ(0) = −30 ∈ A. As in the previous one-dimensional
example, the region of interest is sampled approximately
uniformly in NS-FFS. Measuring the occupancy of the B
state 〈hB(t)〉 = 〈θ(λ(t) − λB)〉, and fitting to a delayed
linear rise (t − τlag)/τAB, we obtain a lag time τlag =
(129± 5), and recover a waiting time for barrier crossing
τAB = (1.07±.01)×106 in accordance with the previously
measured value 1/kAB = (1.06± .02)× 106 12.

2. Response to time-dependent forcing

We now consider the reaction of the toggle switch to a
time-dependent external bias. This case is inspired by the
phage-λ switch in the bacterium Escherichia coli, where
an increase in intracellular RecA concentration triggers
the transition from the lysogenic to the lytic phase of



10

−60
−40
−20

0
20
40
60

λ
(a)

−60
−40
−20

0
20
40
60

λ

(b)
101

102

103

co
u

n
ts

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

p(
λ
,t

)

0 200 400 600 800 1000
t [k−1]

0.0

0.2

0.4

0.6

0.8

1.0

〈h
B

(t
)〉

[1
0−

3
]

(c)

Figure 8. Bin counts (a), probability density p(λ, t) (b),
and cumulative crossing probability 〈hB(t)〉 (c) for the toggle
switch, simulated using NS-FFS with the t-if setup. A linear
fit for t > 250 is shown in orange. Error bars were generated
by bootstrap resampling from 25 independent simulation runs
with total simulated time 106 each.

the virus life cycle26. As a simplified model for the ac-
tion of RecA we introduce a species R which degrades A
monomers:

∅ kR→ R µR→ ∅

A + R γ→ R (10)

The degradation of A by R forces the switch towards the
B state; thus R can be regarded as an ‘external force’
acting on the switch, whose strength can be measured
by the steady-state bias γn∞R , where n∞R = kR/µR is the
number of molecules of R in steady state. Relaxation
of nR towards n∞R is exponential with a relaxation time
µ−1

R .
First, we initialize the switch in state A with nR = 0

copies of R and switch on the production of R. The
steady state bias γn∞R is chosen such that in steady state
the switch is fully driven to the B state. The switch
then flips from A to B with a distribution of switching
times. Switching events result from favorable fluctua-
tions in the copy numbers of the molecules that consti-
tute the switch (eqs. 9). These are partly due to the
intrinsic stochastic nature of the switch, and partly in-
duced by (extrinsic) fluctuations in the number of bias-
ing molecules R (eqs. 10). The distribution of switch-
ing times thus reflects both intrinsic noise of the switch
and extrinsic noise originating from fluctuations in the
number of R molecules. We investigated these effects
by using NS-FFS to obtain the switching dynamics as a
function of the level of noise in the bias. To modulate

the latter, we varied the equilibrium copy number of R
between n∞R = 1 and n∞R = 100, while keeping the av-
erage bias γn∞R and bias time constant µ−1

R ≡ 500 fixed.
Therefore, on a mean-field level, all bias protocols were
kept the same. However, the individual bias trajecto-
ries nR(t) are markedly different: At n∞R = 100, each
trajectory nR(t) exhibits a nearly deterministic and ex-
ponential rise in time, while at n∞R = 1, each individual
trajectory nR(t) is a single off-on event, which is expo-
nentially distributed in time. Fig. 9a shows the mean
exponential rise of the bias protocol and the level of fluc-
tuations around it. Note that in a linear system where
the state occupancies are linear functions of the external
forcing history, this variation of parameters would lead
to a probability of having switched after the pulse which
is independent of the pulse duration µ−1

R .
Fig. 9(b-e) illustrates the switch response to a bias at

various noise levels. For a nearly deterministic bias, with
n∞R = 100, the switch response is characterized by a grad-
ual increase of λ towards a threshold, followed by a tran-
sition over the threshold (Fig. 9b). The transition times
have a relatively narrow distribution around t = 500.
Since further increasing the expression level n∞R does not
sharpen the switching time distribution (not shown), the
result shown in panel b corresponds to the intrinsic limit
in precision of the toggle switch at the given rate of bi-
asing µR.

As the driving becomes noisier (Fig. 9c,d), the switch
response exhibits a broader distribution of switching
times, with both early and late crossings, and in addition,
a weak new metastable state develops at the transition
state (d). Fig. 9e summarizes these results, showing the
probability that the switch has flipped, as a function of
time, for several different values of n∞R . It is clear that
noise in the driving force has an important effect on the
switching trajectories.

The qualitative change in the switch flipping trajecto-
ries for low values of n∞R can be understood by a picture
in which the switch dynamics are enslaved to fluctuations
in R. In the extreme case n∞R = 1 (Fig. 9d), individual
bias trajectories switch to full bias strength suddenly, at
random times. The switch then responds to the strong
bias by rapid flipping to the B state in a stereotyped
way; the time course of the switching event (not shown)
includes a pause at the threshold which is responsible
for the zone of higher density around λ = 0 (This pause
originates from the fact that for n∞R = 1, the A molecules
are very rapidly degraded when the single R molecule be-
comes present, while it still takes time to produce the B
molecules, which ultimately flip the switch).

We now consider the switch response to transient
pulses of biasing molecules R. In these simulations, af-
ter the system reaches a quasi-stationary state in re-
gion A, npulseR = 102 biasing molecules are flushed in
instantaneously. We set kR = 0, so nR then decays
to 0 over a pulse duration µ−1

R . During the pulse,
the switch is biased towards the B state. To isolate
the effect of different pulse durations on the switch re-
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Figure 9. Response of the toggle switch to a bias of R
molecules, whose production begins at time t = 0 (Eq. 10).
The mean bias strength approaches γn∞R = k (a, lines) but
with different amounts of noise, corresponding to different
choices for n∞R (a, shaded areas lie between the 5th and 95th
percentiles). The switch response becomes more random as
the noise in the bias increases (n∞R decreases; b-d, respec-
tively), and the transition time distribution widens (e, error
bars indicate the 5th and 95th percentiles for the B state
occupation 〈hB(t)〉).

sponse, we adjust γ such that the integrated bias strength
〈
´
γnR(t)dt〉 ≡ 1 remains fixed, while changing the value

of µR (µ−1
R = 100, 1, 0.1). This leads to γ = µR/n

pulse
R .

Fig. 10 shows that the toggle switch possesses an op-
timal pulse duration, even though the integrated bias
strength remains constant. For moderately long pulses,
the occupation of the B-state after t = 500, increases
with decreasing pulse duration. This can be understood
in terms of a non-linear threshold behavior of the switch.
As the pulse duration µ−1

R is decreased, the initial bias
strength γnpulseR = µR increases, enhancing the switching
probability. However, as the pulses become even shorter
the switching probability decreases again. This decrease
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Figure 10. NS-FFS results for the toggle switch, under the
influence of pulses of biasing molecules R of varying duration
µ−1

R but constant total efficiency 〈
´
γnR(t)dt〉 ≡ 1. The time-

dependent bias 〈γnR〉 is shown in (a). The response of the
system to pulses of durations µ−1

R = {100, 1, 0.1} is shown in
(b,c,d), respectively. The crossing probability, taken to be the
B state occupation 〈hB(t = 500)〉 exhibits a maximum at a
pulse duration around µ−1

R = 1 (e)

is a dynamical effect: since the switch cannot respond to
changes in nR which occur on a timescale shorter than
its own intrinsic kinetic time scale k−1, it acts as a low-
pass filter. In this sense the toggle switch can be said
to be robust against both strong transient perturbations
and persistent weak perturbations. These results clearly
show that the response of a genetic switch to a pertur-
bation (or signal) is a dynamic property which depends
not only on the (integrated or peak) pulse strength of the
perturbation but also on its pulse shape.

V. DISCUSSION

A. General features

The NS-FFS scheme has a number of characteristic
features. First, like FFS, NS-FFS does not perturb the
given dynamical equations of the system (i.e. no bias-
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ing force is applied). Instead, NS-FFS generates a bi-
ased ensemble of unbiased trajectories by proliferating
those that move in a preferred direction and terminating
those that do not, with appropriate reweighting. This
means that NS-FFS, like FFS, is suitable for systems for
which the dynamical equations cannot easily be biased
and reweighted (e.g. because they do not obey detailed
balance). It also makes NS-FFS highly suitable for im-
plementation as a wrapper around existing simulation
code.

Second, NS-FFS generates trajectories with a complete
history from t = 0 on. This means that no assump-
tion of memory loss is made when a trajectory passes
between interfaces, as in some other rare event simu-
lation methods5,6. Perhaps more significantly, NS-FFS
also does not assume loss of memory on reentry to the
A state. Most existing rare-event methods for stationary
systems, such as TPS, TIS, and FFS3,4,12, rely on the as-
sumption that trajectories which re-enter A equilibrate
rapidly and can be treated as new, independent trajecto-
ries when they eventually re-exit A. For most stationary
systems where τA � τAB this is a reasonable assumption,
but for non-stationary systems, such as those with non-
Markovian or time-inhomogeneous macroscopic switch-
ing dynamics20, correlated entrance and re-exit from a
basin can make a significant contribution to the time-
dependent quantity of interest. Thus it is an essential
feature of NS-FFS that memory loss is not assumed for
t > 0, even if the system re-enters the A basin.27.

Third, once the NS-FFS algorithm has reached its
steady state, each interface bin emits one trajectory per
started tree on average, so that trajectories are sampled
uniformly over the range R (see figs. 5, 6, 8). Some fluc-
tuations around this uniform sampling average are toler-
ated in exchange for narrow weight distributions at each
bin. These features are a direct consequence of the basic
flatPERM branching rule19, which does not implement
a negative feedback on (unweighted) trajectory numbers.
NS-FFS is thus a ‘weak’ flat-histogram method.

Fourth, we note that the effectiveness of a simulation
scheme depends not only on its ability to generate many
samples but also on the independence of these samples.
Clearly, in NS-FFS, after a branching event, child trajec-
tories remain correlated for a certain time. This suggests
that one should allow further branching of the children
only after a refractory time of the order of the typical
decorrelation time. We did not observe this modification
to produce any significant improvement for the systems
studied here. This is presumably because these systems
are sufficiently stochastic that branched trajectories any-
way decorrelate rapidly between interfaces. In contrast,
it turned out to be crucial to control the exponential
growth of trajectory trees in the initial phase of a simula-
tion since these generate highly correlated samples, which
delay convergence of the crossing weight histogram. This
is simply and efficiently accomplished by using weight
limits, as described above.

B. Progress coordinate vs. time based branching

The λ-if and t-if interface setups (sec. III B) differ in
that the former equalizes number fluxes of trajectories
in λ-direction across the region R while the latter equal-
izes their number density. Nevertheless, it is of course
possible to use either scheme to measure any quantity
in a given physical system; the choice of setup will af-
fect only the efficiency of the calculation. We now briefly
discuss how the observable of interest and the computa-
tional overhead associated with branching can affect the
choice of the most suitable setup.
Target observable Suppose one wishes to measure the

time-dependent propensity kAB(t) for exit over some fi-
nal level λL of the progress coordinate at the boundary
of state B, over some time interval [t1, tI ] (cf. Fig. 1).
If re-crossings back from B can be safely neglected, we
may place an absorbing boundary at λL. It is then nat-
ural to use the λ-if setup, placing λ-interfaces at levels
{λl}l=1...L, and count forward crossings only. In the limit
of slow escape over λL such that the survival probability´
p(λ, t)dλ ' 1 over the time of observation, the observ-

able kAB coincides with the positive flux over the last
interface λL20. Since the relative error in the positive
flux is equalized over all preceding interfaces, the λ-if
setup will generate uniform sampling for kAB(t) at the
final interface over the time interval of interest.

Alternatively, one may be interested in a potential of
mean force − log p(λ, t) over a region R = [λ1, λL] ×
[t1, tI ] in λ−t space. In that case the t-if setup is the more
natural choice, since it generates a uniform relative error
in p(λ, t) over all bins. One then obtains an estimate of
− log p with uniform absolute error over the region R.
In particular, saddle points and basins are sampled with
equal frequency.
Branching overhead The λ-if and t-if setups differ

in the relative overhead of coordinate evaluation and
branching. Clearly, the detection of crossings requires
the evaluation of λ, which incurs some computational
overhead oλ per evaluation. The branching move itself
and the maintenance of the tree structure add a second
type of overhead ob, which we also take to be constant
per branching event.

In the t-if setup, λ evaluation and branching are cou-
pled and happen once every time-interface spacing τt;
the overhead is (oλ + ob)/τt per unit simulated time. In
contrast, in the λ-if setup, they are decoupled: interface
crossings are checked at intervals τλ while the trajectory
is being propagated, whereas trajectory branching hap-
pens only if a crossing is detected. The λ-evaluation in-
terval τλ is an independent adjustable parameter (but
must not be too long or the algorithm will fail to detect
crossings). If interface crossings happen every τb on av-
erage, the overhead is oλ/τλ + ob/τb per simulated time.

If λ evaluation is expensive (oλ � ob), it is useful to
increase τλ or τt, respectively, as far as possible without
degrading the weight statistics. In the opposite case that
λ evaluation is cheap (oλ � ob), the λ-if setup may be
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advantageous, since this setup gives the option to check
λ often (τλ � τb), at small cost. Especially in systems
where excursions towards the B state tend to be short-
lived, it is advantageous to check for interface crossings
significantly more often than they actually occur, since
this increases the chance of detecting and capitalizing on
short-lived forward excursions. The dependence of NS-
FFS performance on parameters will be addressed more
fully in a future publication.

C. Variants and extensions of the algorithm

Relation to stationary FFS If NS-FFS is used to sim-
ulate a system which is in stationary state, early and
late barrier crossings are equivalent; crossing statistics
can then be improved by binning early and late crossings
together. This can be achieved within the λ-if setup:
trajectories are started from a stationary distribution at
t = 0, and a single time bin is defined (I = 1), lead-
ing to quicker convergence of the, now one-dimensional,
crossing weight histogram H = {Hl1}1≤l≤L. This sta-
tionary version of NS-FFS is similar but not identical
to the ‘branched growth’ variant of conventional FFS17.
In branched-growth FFS, trees have a fixed number of
children at each λ interface crossing and are terminated
exclusively at the next interface or when the system re-
turns to A; the stationary NS-FFS can be seen as an
adaptive generalization of this scheme.
Multiple progress coordinates In problems with multi-

ple alternative transition pathways, finding a single good
progress coordinate can be challenging. Use of a poor
progress coordinate fails to distinguish between trajecto-
ries which are likely and unlikely to result in a transition,
making successful biasing of transition paths impossible.
To some degree, NS-FFS already alleviates this problem
compared to TIS or FFS: the extra dimension of time
acts as a second progress coordinate which allows us to
discriminate between early and late crossings. In a class
of systems which show distinct ‘slow’ and ‘fast’ pathways
of a reaction between A and B, an NS-FFS simulation
would be able to separately enhance these pathways.

If different transition pathways share a common time
scale then time as an additional progress coordinate is not
useful in itself, but one may be able to find a small set of
progress coordinates which successfully separate different
pathways. In this case, one can make a straightforward
generalization of the NS-FFS scheme to multiple progress
coordinates. As in any multi-dimensional scheme, this
will come at the cost of more bookkeeping and possibly
slower convergence of the weight histogram H due to the
increased number of bins, see app. C.
Parallel version The NS-FFS algorithm lends itself to

a parallel implementation. Each trajectory can be simu-
lated independently until an interface is crossed. At this
point, the shared histogram Hli is read and updated. Af-
ter branching, n parallel simulations for the children are
spawned. The communication between simulation pro-

cesses is restricted to histogram updates; depending on
available bandwidth these updates could also be cached
and applied in groups, without biasing the sampling. As
the global histogram converges, updates become unneces-
sary and the simulation gradually becomes trivially par-
allel.
Adaptive generalizations As shown in app. A, branch-

ing/pruning events may be introduced at will as long as
weight is conserved on average (Eq. 1). This includes
complete freedom of: adaptive updates of the bin bound-
aries or the interface placement; inserting or removing
interfaces; smoothing of bin counts within or across in-
terfaces; or pre-filling of crossing histograms based on
prior knowledge.
All of these options should allow for further perfor-

mance improvement in particular situations, to be ex-
plored in future work. In particular, it is interesting to
ask if an optimal interface and bin arrangement can be
found iteratively, as has been proposed for FFS28. A
promising direction might be to monitor the local sam-
pling noise and adapt the interface arrangement in re-
sponse to it.

VI. CONCLUSION

In this article, we have introduced an enhanced sam-
pling scheme, called NS-FFS, which is conceptually sim-
ple allows the efficient sampling of rare events in non-
Markovian and non-stationary systems.
The NS-FFS algorithm builds on two widely used in-

gredients: a flat-histogram branched growth algorithm
closely related to PERM18,19, and the concept of phase-
space interfaces4 to monitor progress towards a tran-
sition. NS-FFS is a generalization of FFS12, and is
straightforward to implement, especially when one does
not want to store the trajectories themselves. We have
demonstrated the correctness of the method, and given
several simple example applications which highlight both
the effectiveness of the method and the relevance of in-
trinsically time-dependent rare events.
A host of physical, chemical and biophysical prob-

lems are amenable to NS-FFS simulations. These in-
clude the computation of time-dependent transition rates
in systems with time-dependent external driving20 such
as the signal-induced flipping of genetic switches studied
here, crystal nucleation during a temperature quench or
protein unfolding under force; non-exponential switch-
ing time distributions in processes that can be coarse-
grained as switches with memory, such as the switching
of the bacterial flagellar motor20,29; and escape probabil-
ities from a non-equilibrium distribution in a metastable
initial state within a prescribed ‘window of opportunity’,
like the flipping of genetic switches induced by transient
pulses.
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Appendix A: Reweighting criterion

In this section we sketch a proof that the condition of
weight conservation on average over branching outcomes,
Eq. 1, is sufficient for unbiased sampling in a general
branched-tree simulation scheme. This amounts essen-
tially to careful bookkeeping. No assumptions are made
about stationarity or loss of memory.

1. Statement of the problem

Consider a stochastic process x(t) which is started at
t = 0 with a value of x(0) drawn from some initial dis-
tribution. The process is fully characterized by all of its
m-point joint probability density functions (pdfs)

p(xm, tm; . . . ;x1, t1) = 〈δ(xtm − xm) · · · δ(xt1 − x1)〉,
(A1)

for the trajectory to pass by the sequence of sample points
x1, x2 . . . , xm at times 0 ≤ t1 < t2 < · · · < tm. Here xtm
is a shorthand for x(tm). In a brute-force simulation, the
joint pdf is estimated by an average over S independent
runs,

p(xm, tm; . . . ;x1, t1) ' 1
S

S∑
s=1

δ(xstm − xm) · · · δ(xst1 − x1).

(A2)
(we note that the right hand side of this equation is sin-
gular; the approximate equality is implied when Eq. A2
is integrated over finite regions).

We now introduce a single branching event at an
intermediate time t′, and let m′ = max{m|tm <
t′}. Upon branching, n′ statistically identical copies
of the system with independent futures are gener-
ated. That is, for a given history up to time
t′, each of the copies has the same conditional pdf
p(xm, tm; . . . ;xm′+1, tm′+1|xm′ , tm′ ; . . . ;x1, t1) to visit
future points of phase space, but future points of dif-
ferent children are mutually independent. No Markov
assumption about the system is being made. The task
is now to assign correct weights to the child branches in
order to guarantee unbiased sampling.

2. Unbiased sampling with one branching event

An obvious choice for the weights is to conserve the
total in- and outgoing weight at the branching point and
to treat children equally. This rule gives a weight 1/n′
for each child trajectory from t′ on.
However, this rule disallows pruning, i.e. n′=0. To

enable pruning, it is necessary to relax strict weight con-
servation at the branch point. To do this, child numbers
n′ = 0, 1, . . . nmax are drawn at random with probabili-
ties b(n′),

∑nmax
n′=0 b(n′) = 1. We then assign weights w′c

to the child branches c = 1 . . . n′ (if any). The expected
total weight of trajectories passing through a sequence of
points is then

W (xm, tm; . . . ;x1, t1)

=
〈 n′∑
c=1

w′cδ(xctm − xm) · · · δ(xctm′+1
− xm′+1)

×δ(xtm′ − xm′) · · · δ(xt1 − x1)
〉

=
〈 n′∑
c=1

w′c

〉
〈δ(xtm − xm) · · · δ(xt1 − x1)〉

=
〈 n′∑
c=1

w′c

〉
p(xm, tm; . . . ;x1, t1), (A3)

where m′ is defined as above, sums running from n′ = 1
to n′ = 0 vanish by definition, and we used the fact that
children are identical. Clearly the condition of weight
conservation on average,

1 =
〈 n′∑
c=1

w′c

〉
=
nmax∑
n′=1

b(n′)
n′∑
c=1

w′c, (A4)

is necessary and sufficient for unbiased sampling, since
then W ≡ p, i.e. the reweighting has corrected the bias.
Since there is no reason to treat child branches differ-

ently, we set w′c = w′ = r(n)w where w = 1 is the parent
weight. Eq. A4 now reduces to

1 = 〈n′r(n′)〉 =
nmax∑
n′=1

b(n′)n′r(n′), (A5)

Eq. A5 constrains the choice weight factors r for a given
branching distribution b. For instance, if nmax = 2, and
(b(n))n=0,1,2 = (.5, .2, .3) then the choices (r(n))n=1,2 =
(0, 5/3), (5, 0) and (5/4, 5/4), are all unbiased.
Generalizing Eq. A2, we can then estimate p from a

branched simulation of S independent trees as

p(xm, tm; . . . ;x1, t1)

' 1
S

S∑
s=1

r(n′s)
n′s∑
cs=1

δ(xcstm − xm) · · · δ(xcstm′+1
− xm′+1)

× δ(xstm′ − xm′) · · · δ(x
s
t1 − x1) (A6)
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The first line on the rhs contains sample points after
branching into n′s children (if any), and the second line
those before branching (if any); the weight factors r sat-
isfy eq. A5. Note that repeated simulations average over
not only the system but also the branching randomness.
For instance, the total weight of all trajectories at a given
time is conserved only on average over branching out-
comes.

So far we have shown that a single stochastic branching
move at time t′ and re-weighted sampling according to
Eq. A6 does not introduce a bias if the child number
probabilities b(n′) and child weight factors r(n′) obey the
condition of weight conservation on average, Eq. A5. We
note that to verify this numerically, one would need to
generate many trees always with branching time t′ and
count joint hits of all bins around the points x1, . . . , xm
at the times t1, . . . , tm; if the final time is larger than
the branching time, hits are re-weighted the factor r(ns)
appropriate for the respective branch number ns.

3. Adaptive branching probabilities

We now show that the branching probabilities may
be adapted according to an arbitrary protocol. To see
this, let b depend on an arbitrary parameter α such that∑
n′ bα(n′) = 1, and choose rα accordingly, such that∑
n′ bα(n′)n′rα(n′) = 1 for all values of α. Then, fol-

lowing the preceding discussion, a branching event is un-
biased for any α. We may take α to be any random
variable, depending on a set of bias control parameters β
via some density ρ(α|β). Since Eq. A3 now reads

W (xm, tm; . . . ;x1, t1)

=
ˆ

dαρ(α|β)
∑
n′

bα(n′)n′p(xm, tm; . . . ;x1, t1)rα(n′)

=
ˆ

dαρ(α|β)p(xm, tm; . . . ;x1, t1)

= p(xm, tm; . . . ;x1, t1), (A7)

unbiased sampling is still guaranteed. We thus have com-
plete freedom to introduce dependency of the branching
probabilities on arbitrary extra information, including
the past or future system state, or the history of the
simulation.

4. Multiple branching events

Finally, we generalize the arguments above to multiple
independent and non-synchronized branching events on
different branches of a tree. The idea is that introduc-
ing a new branching event at a time t′′ on an existing
child branch is bias-free, as long as the new b and r fulfill
Eq. A5. We then argue by induction over tree genera-
tions.

Each new branching event with nl children adds a
weight factor r(nl), so that the instantaneous weight
along a trajectory passing by the branching events
(n′, t′;n2, t2; . . . ;nk, tk) becomes

w(t;n′, t′; . . . ;nk, tk) =
∏
l:tl<t

r(nl); (A8)

The system density estimate Eq. A6 now takes the
form of a hierarchical sum over all weighted branches
existing at the final time. This is simplest to write
down using a recursive definition. We index a particu-
lar branch (trajectory segment) anywhere in the tree by
the sequence of the child indices starting from the root,
γ = (c, c′, . . . , ck), and let |γ| = k + 1 denote its nesting
depth. The zeroth child index c0 = c ≡ s is the tree
index. The points along the trajectory from the root up
to and including γ are denoted xγt . Let

πγ(xm, tm; . . . ;x1, t1) =
m∏
m̃=1

δ(xγtm̃ − xm̃), (A9)

if γ has no children, and define recursively

πγ(xm, tm; . . . ;x1, t1) = rγ

nγ∑
c=1

π(γ,c)(xm, tm; . . . ;x1, t1),

(A10)
if γ has nγ children with weight factor rγ . This recursion
terminates since the simulation has a finite maximal nest-
ing depth K. Note that πγ(xm, tm; . . . ;x1, t1) counts the
weighted hits of γ and all its descendants to the points
(xm, tm; . . . ;x1, t1). The weight is effectively given by
Eq. A8.
All S simulated trees together can then be represented

as the descendants of the empty path (). If we define
r() = 1/S, n() = S and |()| = 0, the estimate for the
joint m-point density is

p(xm, tm; . . . ;x1, t1) ' 〈π()(xm, tm; . . . ;x1, t1)〉. (A11)

Since Eq. A9 coincides with the brute force estimate of
the density, and Eq. A10 is unbiased by the arguments in
sec. A 2, it follows by induction over K that the density
estimate Eq. A11 is unbiased.
Eqs. (A9, A10,A11) directly translate into a histogram-

ming algorithm, which recursively parses a trajectory tree
while binning weighted counts. Binning can be carried
out on-line. This is straightforward if only the one-point
density p(x, t) is desired; online updates of m-point den-
sities would requirem−1 nested inner loops over the tree
for each simulation step.
As a corollary, arbitrary m-point observables A can be

estimated along the same lines. One just has to replace
π by πA in Eq. A10 and A9 by

πγA(tm; . . . ; tm) = A(xtm , . . . , xt1), (A12)

if γ has no children. For instance, a two-point auto-
correlation function would correspond to A(xt2 , xt1) =
xt2xt1 − 〈xt2〉〈xt1〉.



16

Appendix B: Variance of weighted bin counts

Here, we write the variance of the total weight W =∑N
a=1 wa accumulated in a given bin Bli in terms of the

statistics of the trajectory weights wa and the number N
of trajectories which has reached bin Bli. We recall the
‘law of total variance’:

〈A2〉 − 〈A〉2 = 〈〈A2|C〉 − 〈A|C〉2〉+ (〈〈A|C〉2〉 − 〈〈A|C〉〉2)
(B1)

Here the inner expectation values are conditioned on
some event C, and the outer expectations average over
C. We will denote the conditional variance as 〈δX2|C〉 ≡
〈X2|C〉 − 〈X|C〉2 for any observable X. Eq. B1 then be-
comes 〈δA2〉 = 〈〈δA2|C〉〉+ 〈δ〈A|C〉2〉.
Consider an idealized NS-FFS simulation in which tra-

jectories arriving at Bli are uncorrelated. Specifically, we
assume that the incoming trajectory weights {wa} are
mutually independent and independent of N , and that
arrivals are a Poisson process. For the mean total cross-
ing weight we then obtain 〈W 〉 = 〈N〉〈wa〉. The total
weight variance is given by

〈δW 2〉 = 〈〈δW 2|N〉〉+ 〈δ〈W |N〉2〉
= 〈N〉〈δw2

a〉+ 〈wa〉2〈δN2〉
= 〈N〉(〈δw2

a〉+ 〈wa〉2);

the relative variance of the collected weight becomes

〈δW 2〉
〈W 〉2

= 1
〈N〉

[
1 + 〈δw

2
a〉

〈wa〉2

]
.

In the more general case, we now assume that correla-
tions between branches increase the noise while respect-
ing the same scaling with the count number, and write

〈δW 2〉
〈W 〉2

' αN
〈N〉

[
1 + αw

〈δw2
a〉

〈wa〉2

]
(B2)

where αN > 1 if trajectories arrive in bunches and αw > 1
if their weights are correlated. The crossing flux jli is
estimated as Wli/S and thus has the same noise, Eq. B2,
as Wli.
The noise in bin weights can be split up further. The

incoming weights {wa} are distributed with a mean and
variance which result from both the inter-bin variance be-
tween starting bins Bl′i′ and from the intra-bin variances
of outgoing weights from within Bl′i′ . We have

〈wa〉 = 〈〈wa|l′i′〉〉, and using Eq.B1,
〈δw2

a〉 = 〈〈δw2
a|l′i′〉〉+ 〈δ〈wa|l′i′〉2〉; (B3)

here the first term is the mean intra-bin variance within
originating bins, and the second term is the inter-bin vari-
ance. Plugging in Eq. B3 we can write the noise in W
as

〈δW 2〉
〈W 〉2

= αN
〈N〉

[
1 + αw

{
〈〈δw2

a|l′i′〉〉
〈wa〉2

+ 〈δ〈wa|l
′i′〉2〉

〈wa〉2

}]
.

(B4)

As the simulation progresses, crossing flux estimates
converge, so that all trajectories leaving Bl′i′ are even-
tually assigned the same weight. The intra-bin term
〈〈δw2

a|l′i′〉〉/〈wa〉2 ∝ 〈δj2
l′i′〉/〈jl′i′〉2 thus vanishes as N →

∞. The inter-bin term 〈δ〈wa|l′i′〉2〉/〈wa〉2 reflects the
non-uniform transition probabilities between bins and
persists also in steady state.
In order to balance noise contributions, it seems rea-

sonable to choose bin size and interface spacing such that
αw〈δ〈wa|l′i′〉2〉 ' 〈wa〉2 in an equilibrated simulation.

Appendix C: Multi-dimensional progress coordinates

A multi-coordinate NS-FFS simulation can be set
up as follows. First, find K progress coordinates
{λk}k=1...K , with corresponding sets of levels {λk0 < · · · <
λkLk}k=1...K . Denote the interval (λkl−1, λ

k
l ) = Λkl . Define

a subset of K ′ ≤ K progress coordinates {λk′}k′=1...K′ .
Only the first K ′ sets of interfaces will trigger branching
events; for these interfaces, define bins:

Bk
′

l1l2...lk′ ...lK
=

{(x, t)|λk
′
(x, t) = λk

′

lk′
and λk(x, t) ∈ Λklk for k 6= k′}

(C1)

Then, proceed as before: branching moves are triggered
on the first K ′ interfaces, based on the corresponding
crossing weights Hk′

l1l2...lk′ ...lK
.

In this setting, time is treated as another progress coor-
dinate. To recover the NS-FFS setups discussed in sec. III
in this setting, let K = 2,K ′ = 1. For the λ-if setup, set
λ1 = λ, λ2 = t, L1 = L and L2 = I; for the t-if setup,
set λ1 = t, λ2 = λ, L1 = I and L2 = L.

Appendix D: Piecewise linear potential

We solve the Fokker Planck equation associated with
Eq. 7 in Laplace space,

sp− p0 + ∂x(sgn(x)aDp−D∂xp) = 0, (D1)

where p = p(x, s) =
´∞

0− p(x, t)e
−stdt is the Laplace

transformed density, and the initial condition p0(x) =
p(x, t = 0−) ≡ 0. Particles are injected at t = 0;
the boundary conditions for the total flux j(x, t) =
sgn(x)aDp(x, t)−D∂xp(x, t) at the left boundary read

j(x = −1, t) = δ(t) or in Laplace space,
j(x = −1, s) = 1. (D2)

They incorporate both the reflecting boundary and the
injection of unit probability at x = −1 at t = 0.
At the right boundary, we consider either reflecting

(referred to as r/r) or absorbing (r/a) conditions:

j(x = 1, s) = 0, or (D3)
p(x = 1, s) = 0, respectively. (D4)
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Eqs. D1, D2 and D3/D4 can be solved by using the
ansatz p(x, s) = e

1
2axp̃(x, s), and joining solutions in the

regions x < 0 and x > 0. After straightforward but
lengthy algebra, the solution in the r/r case can be writ-
ten as

p(x, s) = e−
1
2a(1−|r|)×

qa sinh(q(1−|r|))−2q2 cosh(q(1−r))−θ(−r)a2 sinh(qr) sinh(q)
2sa sinh2(q)−4sq sinh(q) cosh(q)

(D5)

where q =
√
s/D + a2/4 and θ is the unit step function.

For the r/a case we obtain

p(x, s) = e−
1
2a(1−|r|)×

qa sinh(q(1−r))−θ(−r) a2
2 (cosh(q(1+r)−cosh(q(1−r)))

2sa sinh2(q)+aDq2 . (D6)

Both Green’s functions have poles only on the non-
positive real s-axis. The barrier crossing time can be ex-
tracted by solving for the largest negative pole at −sAB;
in the r/r case, sAB = kAB+kBA = 2kAB while in the r/a
case, sAB = kAB. If the barrier is high, we may expand
the relevant denominators in eqs. D5, D6 for |s|

Da2 � 1.
We find in both cases (r/r and r/a) that the waiting time
scales exponentially with the barrier:

τAB = s−1
AB = 2ea

a2D
+O(1/a). (D7)

In the r/a case we can also evaluate the exit flux through
the absorbing boundary,

j(x = 1, s) = jAB(s) = 4q2

a2 − (a2 − 4q2) cosh(2q) (D8)

The equilibration time within basin A can be estimated
as a diffusion time for covering the thermally accessible
range of x; alternatively, a more accurate pre-factor can
be obtained by solving Eq. D1 with Eq. D2 as above but
replacing the W-shaped potential by a uniformly increas-
ing ramp potential U = ax of the same slope. Evaluating
the slowest relaxation time now gives the relaxation time
in A,

τA = 4
a2D

. (D9)

Finally, the crossing time τC is the mean first passage
time for diffusion through region C; that is, from the
boundary of region A at −xC , up the barrier and down
on the other side until reaching the boundary of region
B at xC , without returning to A. If we disregard trajec-
tories that cross x = 0 more than once, τC is the sum of
the mean first passage times for the two segments, with
negative and positive constant drift, respectively. The
non-intuitive but well-known result is that diffusion of
successful transition paths up the barrier takes as long
as down the barrier (see e.g.30). In the drift-dominated
regime, the mean first passage time is controlled by the
drift velocity aD. One obtains

τC = 2× xC
aD
.

2
aD

. (D10)
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