2011-11-10
Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations
Publication
Publication
J. Phys. Chem. B , Volume 115 - Issue 51 p. 15362- 15369
As a surface-specific technique, vibrational sum-frequency generation (SFG) is used in a wide range of applications where soft matter or solid interfaces are to be probed on a molecular level through their vibrational modes. In recent years, phase-specific sum-frequency generation (PS-SFG, also known as heterodyne-detected SFG) spectroscopy has been increasingly replacing its predecessor (direct SFG, also known as homodyne SFG) as the experimental technique of choice for characterizing interfacial structure. The technique enables phase sensitive measurements, allowing for the determination of the real and imaginary parts of the interfacial vibrational response function and thereby the unambiguous identification of molecular orientation. This phase-sensitivity requires, however, a complete understanding of the complex optical properties of the sample and of their effect on the signal. These optical properties significantly influence the raw spectral data from which the real and imaginary parts of the second-order susceptibility are retrieved. We show that it is essential to correct the data appropriately to infer the true molecular response. The current study presents a detailed description of the physical contributions to the phase-resolved spectrum, allowing a direct comparison between the phase-resolved spectrum and that obtained using the well-understood direct detection method in a step-by-step data analysis process. In addition to phase sensitivity, PS-SFG has been shown to increase the sensitivity compared to traditional (direct) SFG spectroscopy. We present a quantitative comparison between theoretical limits of the signal-to-noise ratio of both techniques, which shows that for many systems the signal-to-noise ratio is very similar for direct- and phase-specific SFG signals.
Additional Metadata | |
---|---|
doi.org/10.1021/jp2079023 | |
J. Phys. Chem. B | |
Pool, R. E., Versluis, J., Backus, E., & Bonn, M. (2011). Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations. J. Phys. Chem. B, 115(51), 15362–15369. doi:10.1021/jp2079023 |