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We use spatially and angle-resolved cathodoluminescence imaging spectroscopy to study, with deep 

subwavelength resolution, the radiation mechanism of single plasmonic ridge antennas with lengths ranging from 

100 to 2000 nm. We measure the antenna’s standing wave resonances up to the fifth order and measure the 

dispersion of the strongly confined guided plasmon mode. By directly detecting the emitted antenna radiation 

with a 2D CCD camera we are able to measure the angular emission patterns associated with each individual 

antenna resonance. We demonstrate that the shortest ridges can be modeled as a single point dipole emitter 

oriented either upward (m=0) or in-plane (m=1). The far-field emission pattern for longer antennas (m>2) is well 

described by two interfering in-plane point dipoles at the end facets giving rise to an angular fringe pattern, where 

the number of fringes increases as the antenna becomes longer. Taking advantage of the deep subwavelength 

excitation resolution of the cathodoluminescence technique, we are able to determine the antenna radiation 

pattern as function of excitation position. By including the phase of the radiating dipoles into our simple dipole 

model we completely reproduce this effect. This work demonstrates how angle-resolved cathodoluminescence 

spectroscopy can be used to fully determine the emission properties of subwavelength ridge antennas, which 

ultimately can be used for the design of more complex and efficient antenna structures.      
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Introduction 

Optical nanoantennas form an interface between localized nanoscale emitters and the far field. In 

transmission mode they have the ability to direct and enhance radiative emission. Vice versa, in  

reception mode they can strongly confine incident free-space light into a nanoscale volume.
1
 Plasmonic 

nanoantennas in particular, have gained much interest recently, because of their small footprint and 

strong interaction with light. Potential applications include enhanced light absorption in solar cells,
2,3

 

nanoscale photodection,
4
 surface-enhanced spectroscopy for biosensing,

5
 and strong enhancement of 

non-linear effects.
6,7

 Several antenna designs consisting of multiple components have been proposed in 

literature such as e.g. Yagi-Uda antennas composed of an array of coupled metal nanoparticles
8-12

 or 

bowtie antennas consisting of two closely spaced triangular nanoparticles.
13

 Importantly, the individual 

building blocks of these more complex designs (metallic nanoparticles in various shapes and sizes) can 

act as antennas as well.
14-16

 Experimental characterization and physical understanding of these single 

components is of vital importance for designing more complex geometries, but is difficult to obtain due 

to their nanoscale dimensions. An example of an elemental single-component antenna structure is the 

plasmonic ridge antenna.
17

 In such a structure, surface plasmon polaritons (SPPs) are confined to a ridge 

that is carved in the surface of a metal substrate. In this antenna geometry, the two end facets of the 

ridge act as mirrors defining a cavity in which SPPs are resonantly confined, similar to the resonances 

observed in metallic nanowires.
18-22

 Due to their small size, these Fabry-Pérot cavities have a large free 

spectral range; the cavity quality factor Q is determined by the SPP propagation loss as well as the 

reflection losses at the end facets. One advantage of the ridge antenna is that it is monolithically 

attached to the metal substrate making fabrication relatively simple. Moreover, nearly all of the antenna 

radiation is emitted into the upper hemisphere due to the highly reflective substrate, enabling efficient 

radiation collection.  

Previously, we have studied the resonances of these ridge antennas using cathodoluminescence (CL) 

imaging spectroscopy.
17

 Using a 30 keV electron beam as a point source to generate SPPs on the ridge 

we measured standing SPP waves at well defined wavelengths corresponding to the cavity resonances. 



 3 

While these measurements clearly indicate the presence of antenna resonances, they do not provide 

insight into the radiation mechanism of these antennas. Here we use the CL technique that is now 

expanded by two unique features to fully identify this mechanism. First, by using a piezo-electrical 

mirror stage we are able to precisely position the mirror collecting the CL signal in such a way that its 

focus coincides with the ridge antenna, increasing the photon collection rate ~50 times compared to our 

previous work. With this enhanced signal we resolve the spatial intensity distribution of the standing 

wave detection to an extent that the full dispersion of the SPP ridge plasmons can be accurately 

determined. Second, by using the new angle-resolved detection capability of the CL system, we are able 

to directly determine the far-field radiation pattern of the ridge antenna for every antenna resonance. By 

scanning the electron beam across the antenna, the radiation profiles are determined as function of 

position with deep subwavelength precision. The high spatial resolution, sensitivity, and angular 

detection capabilities of our CL instrument enables characterization of the ridge antenna properties to an 

extent that is unrivalled by any other measurement technique. 

 

Results and Discussion 

Ridge antennas were fabricated by inversely patterning a single-crystalline gold substrate using 

focused-ion-beam milling (FIB). The ridge lengths were in the range 100-2000 nm, varied in 100 nm 

increments. All ridges were 120 nm wide (width measured 65 nm above the substrate) and 130 nm high. 

Figure 1 shows a scanning electron micrograph of a 700 nm long ridge together with a schematic of the 

structure. The FIB-milled arena surrounding the antenna is made to have a gradually decreasing depth 

away from the antenna to prevent parasitic SPP reflections. To probe the cavity resonances we scan a 30 

keV electron beam in 10 nm steps over the center of each ridge and collect a CL spectrum for each 

position (for details see methods section). Figures 2a-c show the CL emission intensity as function of 

position and wavelength for ridges with lengths of 100, 500 and 800 nm respectively. The color scale 

represents the fraction of photons emitted per incident electron per unit bandwidth. For the 100 nm long 

ridge we observe a strong peak in CL emission in the center of the ridge around 750 nm free space 
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wavelength. The fact that this resonance is only excited efficiently in the center suggests that it has m=0 

(azimuthal) symmetry.
12,23,24

 For the 300 nm ridge we observe strong CL emission near the end facets of 

the ridge, corresponding to a m=1 ‘dipolar’ resonance for which λspp/2 fits into the resonator. Here λspp is 

the SPP wavelength at a frequency corresponding to the free space wavelength in the figure. For the 800 

nm ridge standing wave patterns are visible at λ=600 nm and 700 nm, with 4 and 3 antinodes 

respectively, corresponding to a m=2 ‘quadrupolar’ resonance and m=3 ‘octupolar’ resonance. Figure 2d 

shows the standing wave profile for these resonances, obtained by plotting the CL intensity of the data 

in Figures 2a-c along the ridge length at the resonance wavelength.  The resonance orders m=0,1,2 and 3 

are indicated in the figure. It is interesting to note that the CL technique enables probing of the even-

order resonances. This is not possible with optical excitation under normal incidence, for which 

excitation of even order resonances is forbidden for symmetry reasons.
22,25

 In contrast, the point-like 

electron beam excitation is not restricted to odd-order resonances.
26  

The very high signal-to-noise ratio 

in the data of Figure 2d reflects the high collection efficiency for this antenna geometry and the 

sensitivity of our CL-system.  

Next, 2D excitation maps are made by raster scanning the electron beam over the antenna in two 

dimensions. By using the resonance wavelengths identified from the linescans, we can plot the 2D 

spatial profiles of the resonances. Figures 2e-h show 2D CL maps for the 300 and 800 nm long ridges at 

the resonance wavelengths integrated over 10 nm bandwidth. Figure 2e shows the m=1 resonance at 

λ=650 nm for the 300 nm long ridge. This antenna possesses a m=0 resonance as well at λ=950 nm, for 

which the spatial profile is plotted in Figure 2f. The m=0 nature is clearly reflected in the uniform 

intensity observed across the entire antenna area. Figure 2g and h show the m=3 and m=2 resonance 

spatial emission patterns and 600 nm and 700 nm respectively. The spatial modulation of the emission 

intensity corresponding to the SPP standing wave pattern can clearly be distinguished.  

By summing all CL spectra from a line scan we obtain an integrated CL spectrum showing all antenna 

resonances. Figure 3 shows such spectra for ridges with lengths from 100 to 1200 nm (we omit the 

longer ridges to reduce the number of curves but we did measure their spectra). The resonance orders 
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m=0-5 are indicated in the figure. All resonances show a progressive red shift for increasing antenna 

length as expected. The visibility of the resonances decreases for longer antennas due to the increasing 

SPP propagation losses and the decreasing free spectral range. From the antinode spacing the plasmon 

wavelength can be deduced as this corresponds to λspp/2.
18

 As the SPP experiences a phase shift upon 

reflection,
26,27

 this analysis can only be performed on antennas with at least four antinodes (m≥3), such 

as in Figure 2g.  

By using the standing wave profiles from multiple ridges for resonances with orders m≥3 we are able 

to reconstruct the complete dispersion curve for this plasmonic ridge antenna from 560-900 nm (1.4-2.2 

eV). This result is shown in Figure 4. For reference we also show the light line in vacuum (black dashed 

line) and the dispersion curve for a SPP on a flat gold-vacuum interface (red curve), calculated using 

optical constants for single-crystal Au obtained with spectral ellipsometry. Figure 4 clearly shows that 

for the higher energies the measured dispersion strongly deviates from the planar SPP case and the light 

line; the largest effective modal index we find is nspp=1.22 measured at λ=575 nm. This implies that the 

ridge waveguide mode cannot leak energy to SPPs on the substrate surrounding the ridge, nor can it 

couple directly to far-field radiation. Therefore we conclude that for these wavelengths most of the 

radiation is emitted from the antenna end facets as is illustrated in the inset of Figure 1. For larger 

wavelengths the dispersion in Figure 4 approaches the planar SPP dispersion and the light line 

indicating that at these wavelengths antenna radiation during propagation may contribute to the losses, 

possibly leading to a reduction in the Q of the guided SPP mode. From Figure 2 it is clear that the end-

facets are relatively bright compared to the central antinodes which can be attributed to a locally 

enhanced coupling to plasmons. This makes it difficult to extract the complex plasmon wave vector and 

reflection coefficients using a Fabry-Pérot model
22,26,28 

since this enhanced coupling is not taken into 

account.  

To obtain further insight into the confinement, loss and dispersion of the SPP modes we perform 

electromagnetic calculations using the two-dimensional boundary element method (BEM2D).
29,30

 To 

obtain an exact representation of the geometry used in the experiment we made a cross section of one of 
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the ridge antennas using FIB (Figure 5a) and we subsequently parameterized the SEM profile for use in 

the BEM calculations. In the calculation the waveguide is infinitely long, which means that effects from 

the end facets are not taken into account. We first calculate the induced near field on the ridge by a 

vertically oriented dipole located 10 nm above the ridge, mimicking the e-beam excitation,
12

 for 

wavelengths of 600 nm (Figure 5b) and 900 nm (Figure 5c). In both cases the electric field intensity is 

clearly confined to the ridge. As expected the modal electric field is more confined at 600 nm than at 

900 nm. Using BEM, we can also calculate the ridge mode dispersion by calculating the local density of 

states (LDOS) 10 nm above waveguide for different photon energies and mode wave vectors. 

Subsequently we fit a Lorentzian lineshape to the calculated LDOS versus wave vector for a given 

energy from which we derive the LDOS maxima to obtain a relation between wave vector and energy 

(see Figure 4, magenta curve). The calculated curve matches well with the experimentally determined 

dispersion data. From the width of the Lorentzian fits we can determine the modal Q, from which we 

can extract the propagation length (Lspp) of the waveguide mode.
17

 We find for a free space wavelength 

of 600 nm that Q = 16 (Lspp=1.3 µm) and for 800 nm Q = 130 (Lspp = 17 µm). Using the same optical 

constants we calculate propagation lengths for planar SPPs of 5.4 µm and 49 µm respectively.  

Since the waveguide propagation length is much shorter for higher energies than for lower energies 

we conclude that the waveguide loss in the detected wavelength range is dominated by ohmic damping 

rather than radiative damping. While these BEM calculations are made for infinite ridges, and thus only 

take into account propagation losses, the measurements are performed on finite-length ridges where 

reflection losses of the cavity also play an important role. As a result, the experimental resonance Q will 

be lower than the modal Q. Indeed, the cavity Q for all resonances shown in Figure 3 is estimated to be 

in the range of 2-10, significantly lower than the values calculated above. Moreover, the highest 

resonance Q’s are found for the shorter wavelengths, opposite to the trend based purely on propagation 

loss. This is explained by the fact that for shorter wavelengths the cavity end facet is a better mirror due 

to the higher modal index of the plasmon mode.  
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Using the complex plasmon wave vector calculated with BEM we can estimate the complex reflection 

coefficient by applying a simple Fresnel reflection model. Here the reflection coefficient r is given by 

(nspp-1)/(nspp+1) with nspp being the complex mode index kspp/k0.
27

 If we do this for the 800 nm long 

ridge at λ=600 nm (m=3 resonance) we find that r = 0.086 + 0.0153i. This shows that only a small 

fraction of the energy is reflected at the end facet and most of the energy is coupled to far-field 

radiation. From this coefficient we can also directly find the phase pickup Ф as r = |r|e
iФ

  which for this 

antenna corresponds to 0.06π.
27

 This is a relatively small phase shift compared to values reported in 

refs. 22 and 26. In those cases the metal antennas were ultrathin (25 and 20 nm respectively) leading to 

stronger plasmon confinement, higher ohmic losses and a larger mode mismatch with free space 

resulting in a much larger phase pickup which cannot be accurately determined with a simple Fresnel 

model.
27

 An alternative method to estimate Ф is by measuring the spacing between the outer antinode at 

the end facet and the neighboring antinode. This distance is affected by the phase pickup, but as is clear 

from Figure 2g, the spacing is very close to the spacing between the central antinodes suggesting that 

there is only a minor phase pickup. In fact, if we calculate the phase pickup for the 800 nm ridge this 

way we find a value of 0.02π which is close to the value predicted by the Fresnel model.  

 Using the angle-resolved detection capabilities in our CL instrument it is possible to determine the 

angular radiation profiles of the antenna, for every excitation position on the antenna, i.e. with deep 

subwavelength resolution. The CL emission is collected by the paraboloid mirror and imaged by a 2D 

CCD array from which we obtain the emission intensity as function of polar (zenithal) angle θ and 

azimuthal angle φ.
31

 The measurements are made spectrally selective using 40-nm-band-pass color 

filters. We determine the angular emission distribution for antennas with different lengths at 

wavelengths corresponding to the antenna resonances. In this way, the radiation patterns for different 

resonance orders can be systematically compared. 

We scan the electron beam in 25 nm steps over the center of the ridge in a line, and collect a radiation 

pattern at each position. The top row in Figure 6 shows the angular distribution of CL emission for m=0, 

1, 2, 3, 4 and 5 obtained from 6 different antenna lengths (indicated in the figure). The depicted 
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emission patterns were collected with the electron beam positioned on the central antinode for even- 

order resonances (m=0,2,4) and on one of the two central antinodes for the odd order resonances 

(m=1,3,5). The antennas were oriented normal to the optical axis of the mirror. For the shortest antenna 

(100 nm) the radiation pattern clearly has a toroidal ‘doughnut’ shape, consistent with the azimuthal 

symmetry associated with the m=0 resonance.
12,23,24

 Since the ridge antenna is integrated with a 

conductive substrate this resonance is distinct from the vertically oriented dipole resonance in a metallic 

nanoparticle on a dielectric substrate as described in Ref. 9 where charge separation occurs in the 

direction normal to the surface. Instead, it can be attributed to a ‘monopolar breathing type’ resonance 

with a circularly symmetric charge distribution as shown schematically in the bottom row of Figure 6.
23

 

In terms of a Fabry-Pérot resonator it can be understood as being a “zero-length” cavity where the 

resonance condition is almost completely determined by the phase pickup upon reflection.
32

 From the 

toroidally shaped emission pattern it is clear that this resonance has an effective dipole moment normal 

to the substrate. In contrast, the emission pattern for the m=1 resonance corresponds to that of a dipole 

oriented in the plane of the antenna as indicated by the charge distribution in the bottom row. The 

radiation profile from this dipole can be interpreted as an out-of-plane toroid with its symmetry axis 

oriented along the antenna’s major axis, distorted by presence of the reflective gold surface, which leads 

to one strong radiation lobe pointing towards the surface normal. The next resonance, m=2, does not 

have a contribution normal to the surface but shows two off-normal emission lobes around θ=30°. 

Subsequently, the m=3, 4, and 5 resonances show three, four, and five lobes respectively, where a 

central lobe pointing towards the normal is only observed for the odd-order resonances.  

To model the antenna radiation patterns we distinguish between short and long antennas. The short 

100 and 200 nm antennas were modeled by a single point dipole source that is oriented either vertically 

(m=0) or horizontally (m=1) along the antenna axis. We construct the far-field radiation pattern making 

use of the asymptotic far-field approximations discussed in Ref. 33 (section 10.6). We placed the point 

dipole 65 nm above the Au-surface, corresponding to the half of the antenna height. Optical constants 

for single-crystal Au from spectral ellipsometry were used as input for the calculations. The second row 
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in Figure 6 shows the calculated angular radiation profiles. They show close resemblance to the 

measured profiles for the short antennas. To perform a quantitative comparison between experiment and 

theory we plot the polar distribution of the CL emission intensity by taking a cross cut along φ=90° and 

φ=270° (along the length of the antenna). The measured and calculated data, plotted in the third row of 

Figure 6, agree quite well. 

For the longer antennas the point dipole approximation is not applicable, and the following model is 

developed. As described above, from the dispersion data it follows that, especially for shorter 

wavelengths, direct coupling of SPPs to the far field is weak and consequently the emission is mostly 

from the two end facets. This phenomenon has been observed experimentally by others as well.
34-36 

Taminiau et al. have suggested that these types of travelling wave antennas can be approximated as two 

radiating dipoles oriented along the long axis of the antenna located at the end facets, with their phase 

and amplitude fully determined by the SPP waves.
28

 We take a similar approach where the phase of the 

dipoles at the end facets is determined by the distance between the electron beam excitation position and 

the antenna ends and calculate the far-field radiation patterns of the two interfering dipoles for the 

relevant resonance wavelengths (see second and third row in Figure 6) by coherently adding the far-

field of both dipoles.
33

 The measured emission direction and the number of lobes are quite well 

reproduced by this relatively simple model. From the model we see that for m=2,4, with the end-facet 

dipoles 180° degrees out of phase, destructive interference occurs at θ=0°. In contrast, for m=3,5 in-

phase dipoles lead to constructive interference in that direction. For the m=2 resonance, good agreement 

between the calculated and measured angular patterns is observed. For the higher order resonances, the 

number of radiation lobes as well as the orientation is well described by our model, while discrepancies 

are found in the exact amplitudes. This is partly due to the fact that we used a 40 nm detection 

bandwidth in the experiment while the calculations were performed at the resonance peak wavelength. 

From the Rayleigh-Carson reciprocity theorem it follows that the even-order resonances cannot be 

excited with free-space light under normal incidence. In other words, if the antenna does not emit 

efficiently normal to the surface it is also not possible to efficiently excite it along that direction. 
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However, if excited under an angle, significant coupling to these even-order resonances is possible due 

to retardation effects, as is described in Ref. 22. In our experiment the electron beam acts as a vertically 

oriented point dipole source which does allow strong coupling. Thus, by using the CL technique we are 

able to efficiently probe the spectral and angular response of all the different resonance orders in the 

antennas, and directly see which resonances are difficult to access using optical far-field techniques. 

To further test the far-field interference model, we investigate the radiation pattern for different 

excitation positions on the antenna. Our angle-resolved CL technique is a unique and ideal tool for this 

study, as it enables local excitation of the antenna mode with deep subwavelength spatial resolution for 

all wavelengths of interest. Figure 7 (top row) shows measured angular emission patterns for the m=2 

resonance of the 500 nm long antenna at λ=600 nm collected at three different excitation positions as 

indicated in the electron micrographs in the bottom row. When excited in the center the dipoles are 180° 

out of phase giving rise to the symmetric radiation pattern found before in Figure 6. For excitation close 

to the end facets the pattern is no longer symmetric and the radiation emission is stronger away from the 

excitation point, along the antenna. Moving the electron beam across the antenna changes the relative 

phase of the dipoles since SPPs have to travel different distances to reach the two end facets resulting in 

asymmetric emission patterns.  

For even-order resonances one might expect that the dipoles are always 180° out of phase, if excited 

in an antinode of the standing wave pattern. This is indeed the case for excitation at the central antinode, 

for which SPPs propagate an equal distance to both end facets and generate two oppositely oriented 

dipoles. If we would move the electron beam λspp/2 to another antinode, the dipoles should again be 

180° out of phase, resulting in a symmetric angular emission pattern. However, for this quadrupolar 

resonance the last antinodes are offset in space due to the phase shift upon reflection, leading to a 

different relative phase between the dipoles and an asymmetry in the emission pattern. The second row 

in Figure 7 shows the calculated emission patterns using the dipole model and the third row again shows 

cross cuts through both the data and theory. The results are very similar to the measurement. The model 
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predicts the same asymmetry as is observed in the measurement and also the magnitude of the lobes is 

predicted well.    

 

Conclusion 

In conclusion, we have resolved the resonances and radiation patterns for gold ridge surface plasmon 

polariton nanoantennas with deep subwavelength resolution. From the measured antinode spacing in the 

spatial maps of the antenna resonances we determined the dispersion relation for the guided mode along 

the antenna; these results are in good agreement with boundary element method calculations. The 

resonance quality factor is in the range of 2-10 and is determined by ohmic damping within the metal 

and radiative losses at the end facets. The angular emission patterns for all resonance orders m=0-5 were 

resolved using angle-resolved cathodoluminescence spectroscopy. The emission pattern for antennas 

shorter than 200 nm can be modeled as a single point dipole source oriented either in the normal 

direction (100 nm antenna) or in the planar direction (200 nm). Longer ridges act as travelling wave 

antennas with a radiation profile that is well described by two radiating dipoles placed at the end facets, 

with their relative phase determined by the antenna length and the wavelength. Using the unique 

spatially resolved capabilities of the CL technique we were able to determine the antenna radiation 

pattern for different excitation positions. We find that changing the excitation position on the antenna 

changes the phase of the emitting end-facet dipoles and thus influences the radiation pattern. This study 

shows how angle-resolved cathodoluminescence spectroscopy can be used to probe nanoantenna 

properties in great detail, and with subwavelength precision. The fundamental insights obtained for this 

particular monolithic nanoantenna design can be used to design more complex coupled directional 

antenna structures with a tailored radiation profile.   
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Methods 

Antenna fabrication: The ridges were fabricated with FIB using a FEI Helios dual beam system in a 

Czochralski grown single-crystalline gold pellet which was mechanically polished to achieve sub 10 nm 

RMS roughness. To fabricate a sharply defined gold ridge we used the lowest ion beam current of 1.5 

pA and a short dwell time of 100 ns. The gradual change in depth of surrounding arena was achieved by 

slowly decreasing ion dose away from the antenna in a linear fashion. The cross section of the ridge was 

made by performing a cleaning cross section which prevents tapering. To ensure shape retention during 

milling a layer of platinum was deposited using electron beam induced deposition (EBID).  
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Experimental setup: The CL experiment was performed in a FEI XL-30 SFEG scanning electron 

micrope with an aluminum paraboloid mirror inside. The mirror alignment is performed using a 

specially designed piezoelectric positioning system.
12

 For spectral imaging the CL was focused onto a 

fiber going to a spectrometer with liquid-nitrogen cooled CCD array. For the angular measurements the 

CL beam is projected onto a 1024x1024 imaging array. Emission patterns were obtained by mapping the 

2D CCD image of the CL beam onto emission angle θ (zenithal angle) and φ (azimuthal angle) and 

correcting for the collected solid angle per CCD pixel.
31

  

Cathodoluminescence experiments: For the line scans a dwell time of 1s was used and for the spectral 

images 0.5s was used. For both a current of 1 nA was used. We corrected the data for system response 

by measuring the transition radiation spectrum for gold and comparing that to theory.
37,38

 For the angle-

resolved measurements we used 15s dwell time and a current of 10 nA to increase signal-to-noise ratio. 

Spectral sensitivity was achieved by filtering the CL beam with 40 nm band pass color filters. To purely 

look at the resonance emission from the antennas we subtract the transition radiation background. For 

both the spectroscopy and angular measurements we use a spatial drift correction algorithm to correct 

for the effects of beam and sample drift.  
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Figure 1.  Scanning electron micrograph of a 700 nm long, 130 nm high and 120 nm wide (measured at 

65 nm height) antenna. Top right inset: Close-up of the structure. Bottom left inset: graphic showing the 

e-beam excitation of the ridge with subsequent photon emission from the end facets. Scale bars are 500 

nm. 

 



 20 

 

Figure 2.  Experimental data: Collected CL emission probability per incident electron as function of position and 

wavelength, obtained by scanning the electron beam in 10 nm steps across a (a) 100 nm, (b) 300 nm and (c) 800 

nm long Au ridge antenna. (d) Cross cuts through the experimental data along the dashed lines indicated in 

Figures 2a-c, showing the spatial resonance profiles for m=0-3. The CL-intensity has been normalized to 1 and 

the curves have been offset vertically for clarity. The horizontal scale has been normalized to the antenna length 

for each case. No data smoothing was used to obtain these curves. Spatially-resolved 2D excitation maps of the 

300 nm long antenna, showing resonant CL intensity as function of e-beam position for (e) λ=650 nm (m=1) and 

(f) λ=950 nm (m=0) integrated over a 10 nm bandwidth. (g) Excitation maps for the 800 nm long antenna for 

λ=600 nm (m=3) and (h) λ=700 nm (m=2). For the m=3 resonance the spacing between the two central antinodes 

corresponds to λspp/2. 
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Figure 3. Integrated CL spectra for different ridge antennas with L=100-1200 (100 nm steps). The 

spectra have been vertically offset for clarity. The evolution of the resonance orders is indicated by the 

black dashed curves  
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Figure 4.  Experimental antenna dispersion (blue dots) derived from the standing wave patterns of 

ridges with L=700-2000 nm and a BEM dispersion calculation (magenta curve) showing plasmon wave 

vector versus energy. For reference, the light line in vacuum (black dashed curve) and the dispersion 

curve for a SPP on a planar single crystalline gold surface (red curve) are shown.  
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Figure 5. (a) SEM image taken of an antenna cross section made by FIB with a sample tilt of 52° (scale 

bar 100 nm). BEM calculation of the induced near field by a vertically oriented dipole positioned 10 nm 

above the ridge waveguide for (b) 600 nm at k = 1.12k0 and (c) 900 nm at k = 1.002k0. The ridge 

antenna geometry is indicated in black.   
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Figure 6. Measured angle-resolved emission patterns (top row), calculated emission patterns (second 

row). The antennas are oriented horizontally. The third row shows cross cuts through measurements 

(blue dots) and calculations (black dashed line) along φ=90° and φ=270°, showing emission patterns for 

m=0, 1, 2, 3, 4, and 5 resonances, collected from ridges with different lengths (see SEM images bottom 

row). In the SEM images we have also indicated snapshots of the charge distributions corresponding to 

each resonance (we have enlarged the SEM image for the 100 nm long antenna to improve the 

visibility). From left to right the measurements were collected at λ=750, 550, 600, 650, 600 and 650 nm. 

The angular range that is not collected by the mirror because of the hole is indicated by the red curves 

(θ<5°). 
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Figure 7. Measured angle-resolved emission patterns (top row), calculated emission patterns (second 

row) and cross cuts through both (third row) for excitation of the outer left, center and outer right 

position of the 500 nm long ridge (see bottom row), collected at λ= 600 nm.   

 

 


