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Layering, freezing, and re-entrant melting of hard spheres in soft confinement
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Confinement can have a dramatic effect on the behavior of all sorts of particulate systems, and it therefore is an
important phenomenon in many different areas of physics and technology. Here, we investigate the role played
by the softness of the confining potential. Using grand canonical Monte Carlo simulations, we determine the
phase diagram of three-dimensional hard spheres that in one dimension are constrained to a plane by a harmonic
potential. The phase behavior depends strongly on the density and on the stiffness of the harmonic confinement.
While we find the familiar sequence of confined hexagonal and square-symmetric packings, we do not observe
any of the usual intervening ordered phases. Instead, the system phase separates under strong confinement, or
forms a layered re-entrant liquid phase under weaker confinement. It is plausible that this behavior is due to the
larger positional freedom in a soft confining potential and to the contribution that the confinement energy makes
to the total free energy. The fact that specific structures can be induced or suppressed by simply changing the
confinement conditions (e.g., in a dielectrophoretic trap) is important for applications that involve self-assembled
structures of colloidal particles.
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I. INTRODUCTION

The behavior of particles in confined geometries is impor-
tant in many different areas of physics and technology. This
includes the physics of ions in electromagnetic traps [1], of
dusty plasmas confined by external fields [2,3], of classical
electrons in quantum wells [4], and of colloidal suspensions
in narrow slits [5], as well as application-oriented topics
in nanotechnology, (bio)lubrication, and the self-assembly
of microstructured materials (e.g., Refs. [6–10]). It is well
known that confinement effects can dramatically change the
behavior of such systems, both quantitatively and qualitatively.
For instance, when a suspension of colloidal hard spheres
is confined in a wedge-shaped geometry, one observes a
rich cascade of different equilibrium crystal structures as
the wall spacing increases [11–14]. Such behavior contrasts
sharply with the bulk phase diagram, which consists of a
single, density-dependent liquid to face-centered-cubic crystal
transition. The past few decades have seen many studies of the
behavior of hard spheres between impenetrable walls (e.g.,
Refs. [13–16]), of charged particles under strong confinement
(a model for trapped Coulombic or Yukawa particles, e.g.,
Refs. [2,3,17,18]) and of confined dipolar colloids (e.g.,
Refs. [19–21]). However, to the best of our knowledge, there
have been no studies that systematically investigate the role
played by the softness of the confining potential. This is an
important issue to address, as more and more systems become
available that involve some form of soft confinement. In the
areas of colloid science and nanotechnology one can, for
instance, think of suspensions confined in dielectrophoretic
[22–24] or laser-optical fields [25,26], nanometric objects
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in charged slits [6], particles interacting with soft polymer
substrates [27,28], or particles trapped at liquid-liquid or
liquid-gas interfaces [29–33]. Using Monte Carlo simulations,
we here study three-dimensional systems of hard spheres
that in one dimension are constrained to a plane by a
harmonic potential. Unlike hard boundaries, this soft potential
well does not prescribe a particular confinement “width,”
can be continuously tuned from very strong to very weak
confinement, and makes an energy contribution to the total
free energy which depends on the exact particle positions.
We highlight the unique properties imparted by such soft
confinement by comparing the observed phase behavior with
that of hard spheres between two hard walls [14], as well as
with the behavior of a more complex system of highly charged
particles and their counterions between neutral walls [34]. In
the latter system, the particles experience a combination of
an effective harmonic potential due to the counterions and
long-range repulsive Coulomb interactions.

II. MODEL

We performed grand canonical Monte Carlo simulations of
hard spheres that are constrained to a plane by a harmonic
potential. Hard spheres do not interact with each other unless
their cores overlap, and for any pair of particles the interaction
potential is given by

Usphere−sphere

kBT
(r) =

{
0, r � σ

∞, r < σ,

where kB is the Boltzmann constant, T is the absolute tempera-
ture, r is the center-to-center distance of the particles, and σ is
the particle diameter, which we took as the unit of length
in our simulations. We used periodic boundary conditions
in the xy plane (box size Lx × Ly = 20 × 20, unless stated
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otherwise) and a soft confining harmonic potential centered
around z = 0, which acts on each particle individually and
whose softness was set through the spring constant k (in
units of σ−2):

Uconf

kBT
(z) = kz2

2
. (1)

We performed simulations for different chemical potentials
of the reservoir, starting with an empty box. Using cell lists
and an early rejection scheme [35], we typically performed
6 × 1010 Monte Carlo moves in which we attempted to insert,
delete, or displace (dmax = 0.05) a randomly chosen particle,
where the fraction of insertion and deletion moves was fixed at
0.2. We also performed simulations with an additional move in
which the Lx/Ly aspect ratio of the box was allowed to change
while keeping the area A = LxLy constant. In principle, this
should prevent the box shape from dictating the structure of
the particle packing, but in all cases the resulting structures
were identical to those observed in a square box.

After thorough equilibration, we determined the number of
particles N in the simulation box and from this the density,
ρ = N/A, and characterized the structure of the typically
layered particle packings by calculating the fourfold (q4) and
sixfold (q6) symmetric two-dimensional bond-order param-
eters in each of the layers [36]. The bond-order parameters
consider all of the nearest neighbors of a given particle that
lie approximately in the same z plane. Based on geometric
arguments and the observed particle distributions along the z

axis, the nearest neighbors were here defined as those particles
residing within a center-to-center distance rNN � 1.3 of the
particle of interest and with a height difference δzNN � 0.3.
This definition excludes second-nearest neighbors, which in
a close-packed square-symmetric layer reside at r = √

2,
and is also found to reliably discriminate between thermally
broadened and adjacent layers along z. The ratio between the
two bond-order parameters allowed us to distinguish between
the three main types of structures found in our simulations: dis-
ordered liquid for 1/3 � q4/q6 � 3, hexagonally (�) packed
for q4/q6 < 1/3, and square (�) packed for q4/q6 > 3. The
crossover values were determined from plots of q4/q6 across
the entire density range studied in the simulations, as well
as the density probability distributions, which revealed the
first-order phase transitions. We find that varying rNN and δzNN

by ±0.1 does not affect the resulting phase diagram.

III. RESULTS

The phase diagram in Fig. 1 and the simulation snapshots
in Fig. 2 provide an overview of the observed particle packings
as a function of the density and spring constant. At high spring
constants (k � 150), i.e., relatively strong confinement, and
low densities the particles form a layer of disordered liquid (L)
at the minimum of the confining harmonic potential. At higher
densities, the liquid freezes into one or more crystalline layers
which have a hexagonal (�) or square (�) symmetry (Fig. 2),
following an alternating sequence as the density increases:
1� → 2� → 2� → 3� → 3� → · · · (the integers indicate
the number of particle layers that are formed). To rationalize
these observations, we consider the limit k → ∞ (or T → 0)
in which the entropic contribution to the free energy can

1.0 1.5 2.0 2.5 3.0
ρ

100

1000

k

1 2 2 3L

FIG. 1. (Color online) Phase diagram in the spring constant-
density representation. Every point represents the result of a single
simulation run. Black crosses (×): liquid. Red triangles (�): hexag-
onally packed. Blue squares (�): square packed (structures shown in
Fig. 2). Approximate phase boundaries are indicated with solid lines.
Dashed lines indicate the stable phases in the limit k → ∞ (from
Fig. 3).

be neglected and the energy contribution of the confining
potential dominates: F ≈ E = k

2

∑
z2, where the sum runs

over all the particles in the system. Simple geometry then
gives the energies of the perfect hexagonal and square packed
structures, which scale linearly with the density because of
the quadratic form of the confining potential (Fig. 3). The
maximum density of each of the phases corresponds to close
packing, e.g., ρmax = 2 for 2� and ρmax = 4/

√
3 for 2�.

Starting at low density, the L → 1� transition is given by the
two-dimensional hard disk freezing transition [37,38], and the
1� phase (strongly constrained to z = 0 and with negligible
energy) is stable until close packing at ρ = 2/

√
3. Instead

of continuously transforming into a 3� structure, the system
then phase separates into 1� and 2�. This phase separation
can be understood in terms of a free energy minimization
criterion, equivalent to the double-tangent construction. A
similar argument applies to the subsequent transitions 2� →
2�, 2� → 3�, and so on. At around seven layers the square-
symmetric structures eventually disappear in favor of the
denser hexagonal packings, which have a face-centered cubic
(fcc), hexagonal close packed (hcp), or a random hexagonal
close packed (rhcp) structure, similar to the crystalline bulk
phases of hard spheres.

The sequence of alternating hexagonal and square packings
under strong harmonic confinement corresponds to the simple
Pieranski picture of hard spheres confined between two hard
walls [11]. However, we do not see any of the buckled,
rhombic, and prism phases that are found to interpolate
between these packings under hard-confinement conditions,
when entropy solely determines the phase behavior [12–14].
By contrast, at high spring constants the behavior of the
harmonically confined system is energy-dominated and the
usual intervening phases are found to be unstable, because
the second derivative of the (free) energy with respect to the
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FIG. 2. (Color online) Simulation snapshots at different densities
(for k = 100) and “ideal” schematic representations (lower right)
of the spatial arrangement of the particles in the square (�) and
hexagonally (�) packed structures.

density is negative. Furthermore, the intervening phases also
appear to be unstable at finite spring constants, as we always
observed a spontaneous melting (low spring constants) or
phase separation (higher spring constants) of the system when
it was initially prepared in one of these phases. In the absence
of any stable intervening phases at higher spring constants, the
coexistence regions between the stable hexagonal and square
packed phases—which can only exist with low free energy
at certain densities due to the integer number of layers—are
wider than under hard-confinement conditions. (Note, by the
way, that in order to approach the hard-confinement limit
one would need to increase the exponent of the confining
potential rather than the prefactor.) We point out that the
alternating hexagonal and square-symmetric packings appear
to be a common property of different types of confined
repulsive particle systems [5,14,34,39], while the character
of the intervening phases seems to depend more strongly on
the exact details of the particle-particle interactions and the
confining potential. For example, at high spring constants

1 2 3 4
ρ

0

0.5

1.0

1.5

2.0

E/kA

1 2 2 3 3 4

FIG. 3. (Color online) Normalized energies per unit area of the
hexagonal (red lines, �) and square (blue lines, �) packed structures
in the limit k → ∞.

we do not observe any new phases between 1� and 2�
in the harmonic potential, while the same hard spheres
in a hard slit would form an intermediate buckled bilayer
structure (2B) [12–14], and while charged particles in an
effective harmonic potential are expected to form the sequence
1� → 3� → 2� in the limit T → 0 [34]. In the latter system,
which considered pointlike particles, the long-ranged repulsive
Coulomb interactions between the particles compete with the
attraction to the minimum of the confining potential.

Remarkably, as the harmonic confinement becomes softer
(lower spring constant), we do find stable intervening phases,
which, however, are not ordered. Instead of the more com-
monly observed solid-to-solid transformations, the system
undergoes a couple of re-entrant melting transitions that give
rise to intervening liquid phases, with triple points around
{k = 120, ρ = 1.2} and {k = 45, ρ = 2.25}. Thus at around
k ≈ 100 we observe freezing into a stable 1� phase, which
then remelts into a disordered liquid before freezing again into
the 2� phase (Fig. 2), while for higher densities we find the
same alternating sequence of hexagonal and square packings
as before. We further see that the softer the confinement,
the higher the density at which the initial liquid phase still
persists and at sufficiently low spring constants (k � 80) the
first stable ordered structures actually consist of more than
one layer. For example, at k ≈ 40 the first ordered phase is
2�, followed by re-entrant melting, the 3� structure, and then
the other multilayered ordered phases, whereas for k � 35 we
only observe the latter, without any intermediate melting.

To make sure that the re-entrant liquid phases did not
represent finite-size artifacts, we performed simulations with
three different box sizes (Lx = Ly = 10, 20, or 50) for k = 100
(Fig. 4). It can be seen that the results for the different system
sizes are essentially identical and that there is a clear transition
from the 1� phase to a re-entrant liquid and then to the
2� phase, as reflected by the q4/q6 bond-order parameter
ratio. We also determined the density probability distributions
at coexistence [40,41] using histogram-reweighing [42] and
expanded ensemble [43] simulations (insets in Fig. 4). For
both the 1� → L and the L → 2� transitions we find
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FIG. 4. (Color online) Density-dependent re-entrant melting be-
tween the 1� and 2� phases, for k = 100 and different sizes of the
simulation box (L = Lx = Ly). Red stars: L = 50. Green diamonds:
L = 20. Blue circles: L = 10. The insets give the probability
distribution of observing a given density at coexistence chemical
potential on the same density scale as the main plot.

bimodal probability distributions that are characteristic of a
first-order phase transition. In addition, Fig. 5 shows the spatial
distribution of the particles in the soft confining potential for
different densities outside the coexistence region. As expected,
in the 1� phase the particle distribution has a single peak
centered at the energy minimum z = 0, and in the 2� phase
there are two peaks which are symmetrically located with
respect to z = 0. The intervening re-entrant liquid starts out
with a flat and broad distribution of the particles at low
densities, which then continuously transforms into a doubly
peaked profile as the density increases. Interestingly, this
occurs without further ordering of the particles in the xy plane
so that the result is a layered liquid. Others have shown that if
the same hard spheres are confined between impenetrable hard
walls, a highly ordered buckled structure forms when the wall
separation is larger than required for the 1� phase but too small

-0.5 0 0.5
z
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2.0

P(z)
1   (ρ=1.05)

L  (ρ=1.23)

2 (ρ=1.58)

L  (ρ=1.43)

FIG. 5. (Color online) Particle distribution along the axis of
confinement (z) for k = 100 and different densities. Red triangles:
1�, ρ = 1.05. Green crosses: liquid, ρ = 1.23. Yellow diamonds:
liquid, ρ = 1.43. Blue squares: 2�, ρ = 1.58.

for the 2� phase [12–14]. This buckled 2B phase optimizes the
particle packing in the available space between the two walls
by splitting the 1� structure into rows of particles that alternate
in height, effectively forming a crystal of two interpenetrating
rectangular layers, which continuously transforms into the 2�
structure as the wall separation increases. In the harmonically
constrained system, the re-entrant layered liquid fulfills a
similar interpolating role between the one- and two-layer
ordered phases, but the additional energy considerations and
greater positional freedom under soft confinement, together
with the absence of long-ranged particle interactions, favor
disordered over ordered phases.

IV. CONCLUSIONS

We have identified the stable phases of hard spheres
under harmonic confinement as a function of the den-
sity and the softness of the confining potential. We find
the well-known “base” sequence of alternating hexagonal
and square-symmetric packings (1� → 2� → 2� → 3� →
3� → · · · ), which thus appears to be quite insensitive to
the details of the (confining) interactions. When we look at
the presence of stable intervening phases the soft-confined
hard-sphere system is clearly different from hard-confined
systems, though. Instead of the usual highly ordered interpo-
lating particle packings, we observe phase separation between
the hexagonally and square packed structures under strong
confinement and disordered re-entrant liquid (L) phases under
weaker confinement. For 1� → L and L → 2�, we have
shown that the re-entrant melting (freezing) transition has a
first-order character and that the liquid develops a layered
structure, without further ordering of the particles. We argue
that the re-entrant and phase-separating behaviors are due
to the fact that the penetrable soft harmonic potential on
the one hand offers more positional freedom than hard-wall
confinement does, while, on the other hand, making an
important energy contribution to the overall free energy of
the system which depends on the exact particle positions (in
addition to the usual entropic considerations for hard spheres).
The net result is a smaller diversity of crystalline packings
as compared to hard spheres between two hard walls. We
expect that other soft confining potentials may well have a
similar effect, although the details of the phase diagram will
likely be different. The fact that certain ordered structures
can be reliably obtained, while many other structures can
be induced or suppressed on demand through a variation of
the confinement conditions is important for applications that
involve self-assembled structures of colloidal particles. Inter-
estingly, it should be possible to realize harmonic confining
potentials with dynamically tunable softness experimentally,
for instance, in a dielectrophoretic trap.
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