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CHAPTER1

Introduction

In this introduction we outline the main features that characterize the transport of light
and the origin and propagation of optical noise in random photonic media. Furthermore
some general measurement methods are explained.

1.1 The noise is the signal 1

Imagine the following situation: you have bought your favorite band’s latest CD,
you rush home to play it on your hi-tech stereo system, but the moment the music
comes on you realize that there is something seriously wrong. Bzzz....Vsss...Frr.
That is what comes out of your subwoofers, mixed with your favorite artist’s voice.
In other words noise is at work, and is disrupting your music.

Noise manifests itself by introducing random fluctuations on an otherwise stable
and constant signal and is commonly seen as a problem that limits the capability
of our systems, and the accuracy of our measurements. In the example above,
noise restricts the performance of our sound system and prevents us from enjoying
our music. As a more technical illustration, thermal noise, due to the random
movements of atoms and molecules, can often mask a weak effect that we want to
isolate and measure.

On the other hand, noise does not possess only detrimental properties. In fact,
its features can be exploited to extract important information from the systems that

1 quote attributed to Rolf Landauer [1]
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are the object of our study, or even more: noise itself can turn out to be the source
of a new physical phenomenon. For instance, thermal noise is at the base of the
phenomenon known today as Brownian motion, named after the botanist Robert
Brown who discovered it in 1828 [2].

The importance of noise analysis resides in the fact that often fluctuations can
offer a wealth of information that is not directly obtainable from measurements
that target average quantities. Furthermore these fluctuations are, in some cases,
an order of magnitude bigger than the average values. These general properties
have determined the success of techniques aimed at isolating and investigating the
noise content of a given signal.

Noteworthy examples of the crucial role played by noise span across many fields
of science. In biology for example, by exploiting non equilibrium fluctuations it is
possible to bias Brownian motion in order to drive the action of micro motors [3, 4].
Noise has recently been recognized as the mechanism underlying the generation of
rogue waves. Rogue waves are gigantic waves that can appear all of a sudden in the
open sea and are believed to be the cause of many inexplicable accidents [5]. It has
been shown, in optical experiments, how from a noisy background high intensity
peaks may arise, providing a plausible explanation for the generation of rogue ocean
waves and the means to tune and tame them [6–10]. In geophysics, seismic noise
has been recognized as a novel and powerful tool. Important examples consist in
obtaining precise information about the Earth’s crust and helping predict volcanic
eruptions [11–13]. In photonics, laser noise has been identified as a very efficient
random number generator, important in the production of security codes [14–18].
The properties of noise have been extensively taken advantage of in studying dis-
ordered electronic systems [19, 20]. The propagation of noise through electronic
systems has also been used to investigate interesting properties of graphene, a new
and very promising material both for fundamental studies and applications [21].

Noise mechanisms can be external but also intrinsic to the system being studied.
The motion of the micro motors from the example above can be driven by imposing
external fluctuations on the system. By contrast, the quantum intensity fluctuations
present in a laser beam are inherent to laser light. These fluctuations are evidence of
the discrete nature of photons and are the root cause of the the phenomenon known
as photon shot noise. Photon shot noise marks the transition from the classical
world into the the quantum one and cannot be eliminated. The classical world is
ruled by fluctuations whose intensity is higher than the level determined by shot
noise. Classical fluctuations above the shot noise limit can be reduced. When we
achieve sub-shot noise2 fluctuations we make the transition into the quantum world,
governed by the laws of quantum optics.

Quantum optics, whose theoretical foundations were laid by Roy Glauber [23],
has played a pivotal role in developing methods to reduce noise in light beams in
order to demonstrate the quantum nature of light. These efforts have culminated in
the generation of non classical states like squeezed and Fock states [24–29]. Among

2Sub-shot noise fluctuations can be achieved by using advanced quantum optics methods. That
does not mean that we have eliminated shot noise. By reducing the noise of one observable below
the shot noise level, we inevitably increase the noise of another observable of the system [22].
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1.2. Important concepts in the physics of propagation of light in disordered media

the technological applications, noteworthy is the use of squeezed light to improve
the sensitivity of gravitational wave detectors [30–32]. A complete overview of the
many facets of optical noise in photonics is given in [33].

The physical systems of interest to us here are multiple scattering media. One of
the main characteristics of these systems consists in the fact that light is scattered
many (∼ 103) times before it is allowed to leave the medium. By increasing the
scattering strength the light-matter interaction in these media can be maximized.
Our goal is to investigate the propagation of optical noise through strongly scat-
tering media to extract information about the modalities of light transport and the
properties of our systems. Optical noise is determined by the intensity fluctuations
of an optical signal. In experiments, the optical signal is in many cases the light
emitted from laser systems, whose noise properties are crucial to correctly interpret
the results. In the following sections, we give an overview of a selection of tech-
niques widely used in the investigation of random media with light, and introduce
in more detail the concept of noise for laser systems.

1.2 Important concepts in the physics of propaga-

tion of light in disordered media

1.2.1 Mesoscopic optics

Our investigations take place in the realm of mesoscopic physics, and in the follow-
ing we will introduce some general definitions and length scales. The key parameter
useful to establish distinctions among transport of light on different length scales is
the mean free path `, that is the mean distance between two consecutive scattering
events. Macroscopic optics describes propagation of light on length scales much
larger than `. Microscopic optics deals with transport of light on length scales
much smaller than the mean free path and it is required a detailed knowledge of
the position and shapes of the scatterers. The prefix ’meso’ in the word mesoscopic
means intermediate. Mesoscopics describes physics at a length scale intermediate
between the microscopic and the macroscopic length scales. Important mathemati-
cal inequalities in mesoscopic optics that relate relevant length scales to each other
are the following

`� L� λ, (1.1)

λ� `� L, (1.2)

λ ∼ `� L, (1.3)

where λ denotes the wavelength of light and L the sample size. These three in-
equalities describe different transport regimes. Eq. (1.1) identifies the situation in
which light does not undergo any scattering event and the interaction between light
and the system is minimal. Eq. (1.2) defines the diffusion regime, it implies that
light undergoes many scattering events before it escapes the medium. The last in-
equality, eq. (1.3), describes the localization regime, a type of transport whereby
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due to strong scattering and interference effects light is trapped inside the sample
for a long time before it is allowed to exit the system [34, 35].

1.2.2 Random walk for light

Propagation of light in a random medium can be modelled by means of random
walk theory. It is found that random walk is at the heart of the diffusion model. In
this sense we can think of the transport of light in a random medium as a diffusion
process. In optics, an example of a diffusion process corresponds to placing a local-
ized source in a random medium and investigating the transport of its intensity. In
one dimension we have that the diffusion equation for the probability density p(x, t)
is given by

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, (1.4)

with initial condition
p(x, t = 0) = δ(x), (1.5)

where D is the diffusion coefficient and x is the spatial variable. Eq. (1.4) is the
diffusion equation. The diffusion equation is widely used in physics and describes
an ample class of phenomena, such as heat transport. In our case we assume that
light undergoes a diffusion process in our random material and our initial condition,
eq. (1.5), corresponds to requesting a source of light localized at x = 0 at t = 0.
The solution to the one dimensional diffusion equation is given by

p(x, t) =
1√
4πDt

exp

(

− x2

4Dt

)

, (1.6)

whereas the solution in s dimensions is

p(x, t) =
1

(4πDt)
s
2

exp

(

− r2

4Dt

)

, (1.7)

where r = |x| . We are interested in calculating the mean square displacement r2,
where the overbar denotes averaging on the distribution. The calculation yields

r2 = 2sDt. (1.8)

In multiple scattering theory the diffusion coefficient can be identified withD = 1
sv`,

where v is the transport speed of light [36]. Furthermore we can also write v = N`
t

where N is the number of diffusion steps. Substituting in eq. (1.8) we obtain

r2 = 2N`2. (1.9)

The total mean square displacement is related to the distance d between the first
and last steps taken by the random walker

d ≡
√

r2 =
√
2N`. (1.10)
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integrating 

sphere

sample

detector

baffle

incoming

radiation

Figure 1.1: The integrating sphere in a reflection (left), and transmission (right) configura-
tion spatially integrates the light transmitted or reflected by the sample prior to detection.
The baffle protects the detector from light specularly reflected from the sample.

1.2.3 Total transmission and reflection

One of the classical and most widely used methods to characterize the transport of
light in complex optical media consists in performing total transmission and total
reflection measurements. The key instrument to these techniques is the integrating
sphere. An integrating sphere is used to maximize the collection of light exiting
the sample, in transmission or reflection, and measures the intensity of the light
integrated over the solid angle. The main sample parameter obtainable is the mean
free path `. Optical measurements that make use of integrating spheres correspond
in electronics to conductance measurements. The main components of a total re-
flection or transmission setup are presented in fig. (1.1). In electronics it is only
feasible to perform measurements that spatially integrate the electron charge. By
contrast, in optics angle resolved measurements are possible and widely used to
characterize and investigate the transport of light in the medium. This is possible
thanks to the phenomenon of speckle that will be illustrated in the next section.

1.2.4 Speckle and coherence area

The speckle pattern is a granular distribution of light that can be observed on a
screen upon shining coherent light on a disordered medium, both in a reflection or
transmission configuration. The speckle pattern manifest itself as random series of
alternating bright and dark spots that demonstrate the occurrence of constructive
and destructive interference phenomena surviving the scattering events, as illus-
trated in fig. (1.2). The interference takes place among the scattering light paths,
once they emerge from the medium. By contrast, shining incoherent light on the
disordered medium would wash out the all interference phenomena and the speckle
pattern.

Related to the concept of speckle is the one of coherence area. The coherence
area is the area over which coherence is retained. In practical terms, given a speckle
pattern, its coherence area can be obtained by performing an autocorrelation of the
intensity distribution. One of the main points regarding a speckle pattern is its
high intensity fluctuations. To show this we calculate the relative fluctuations of
a speckle pattern. We write the total field Etot as a superposition of all the fields

17



Introduction

Figure 1.2: A speckle pattern results as coherent light propagating along scattering paths
interferes on an observing screen. The fluctuating nature of the speckle pattern, that dis-
plays a series of dark and bright spots, is due to the random phase difference accumulated
as light proceeds along the paths.

propagating through the medium

Etot =
∑

i

E0 exp(iφi), (1.11)

where φi is the phase of the i − th field accumulated on propagation along the
i − th scattering path. For simplicity we assume here that each field has the same
amplitude E0 . The total intensity Itot is given by

Itot = EtotE
?
tot = |E0|2

∑

i,j

exp i(φi − φj). (1.12)

Furthermore we have

I2tot = |E0|4
∑

i,j,k,l

exp i(φi − φj + φk − φl). (1.13)

Now we can calculate the relative fluctuations of a speckle pattern

I2tot − Itot
2

Itot
2 =

(

2|E0|
4 − |E0|

4
)

N2

|E0|
4
N2

= 1, (1.14)

where the overbars denote ensemble averaging and N the total number of fields. We
have exploited the fact that the phases are random variables; therefore in eq. (1.13)
when calculating the ensemble averages the only values that yields values different
from zero are the ones in correspondence of which φi = φj and φk = φl or φi = φl
and φj = φk. It is shown that the fluctuations of a speckle intensity pattern are of
order one.

1.2.5 Scattering theory in a waveguide

The use of the scattering theory applied to a waveguide geometry is widely used
in mesoscopic physics, and it will be employed mainly in chapter 2 and chapter
4 of this thesis. One of the main reasons of its success is the fact that, due to
the boundary conditions, the number of propagating modes is quantized and well
defined. These modes are also called channels.

18
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Figure 1.3: Simple schematics of the waveguide model. The scattering matrix M is com-
posed of the sub-matrices r, t, r′, t′. The matrix r (t) describes reflection (transmission)
from modes ain to aout (bout). The matrix r′ (t′ ) reflection (transmission) from modes
bin to modes bout (aout).

In this section we will give the general fundamentals. The scattering system
is characterized by its scattering matrix M . The waveguide structure allows for
the establishment of a basis for the matrix M , so that the fields interacting with
the system can be described in terms of their modes. The scattering matrix is a
2N×2N matrix, where N is the number of modes supported by the system, defined
as

(

Eaout

Ebout

)

=M

(

Eain

Ebin

)

, (1.15)

The E’s are vector matrices of length N that describe the amplitude of the modes
a and b. In a waveguide geometry N is determined by the transversal dimensions
and by the wavelength of the incoming beam. The scattering matrix relates the
field in the incoming modes to the field in the outgoing modes, and describes the
effect of the system. The scattering matrix M can be further specified as

M =

(

r t′

t r′

)

, (1.16)

with r, t, t′, r′ N × N matrices that describe reflection and transmission of the
incoming fields. Energy conservation imposes that in passive systems with no gain
or absorption M is unitary

(

M †M =MM † = 1
)

. Furthermore, if the physical

system supports time reversal M is also symmetric
(

M =MT
)

. This waveguide
model is illustrated in fig. (1.3). More explicitly we can write

Eaout
=

Ebout
=

rEain
+ t′Ebin

tEain
+ r′Ebin

, (1.17)

where the role of the sub-matrices of M becomes more apparent. Eqs. (1.17) can
be further simplified depending on the problem at hand. If, for instance the system
under investigation is very thick,

(

L
` � 1

)

, then we could neglect contributions from
t and t′. Random matrix theory (RMT) deals with the probability distribution of
the matrix entries, decided according to a certain set of assumptions, and extracts
the values and correlations among the eigenvalues and eigenvectors, from which the
properties of the systems are inferred [37].
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Figure 1.4: Difference between correlated and uncorrelated scattering paths. Two inten-
sities I1 (dashed line) and I2(solid line) propagate through a multiple scattering medium.
The stricken scatterers are depicted with black circles. (left) Independent scattering paths
give rise to uncorrelated transmitted intensities. Negative exponential statistics applies.
(right) Intersecting scattering paths give rise to correlated transmitted intensities and to
a deviation from negative exponential statistics.

1.2.6 Speckle statistics

Speckles have a well determined and robust statistical representation given by a neg-
ative exponential distribution. This is a consequence of the central limit theorem
in the sense that the total field, depicted as Etot in fig. (1.2), acquires a Gaussian
distribution. This holds true because each field and phase component are indepen-
dent from one another and from all the other fields and phase elements [38]. It
can be shown that from a Gaussian distribution for the field descends a negative
exponential distribution for the intensity [39].

The negative exponential distribution to which the intensity speckle pattern
obeys can be used to infer the feature of light transport in the medium. In other
words negative exponential speckle statistics is a consequence of the independent
light paths along which the incoming light propagates. Therefore, if the propagating
paths in the medium are not independent from each other but intersect multiple
times the central limit theorem does not hold any longer, and deviations from
negative exponential statistics are observed. The parameter that is commonly used
to quantify this deviation is called the universal conductance, indicated with g,

defined as [40]

g ≡
∑

a,b

T ab. (1.18)

where Tab is the transmission coefficient from channel a to channel b and the overline
denotes ensemble averaging. The relevant parameter used to quantify interference
between paths is g−1. A comparison between correlated and uncorrelated intensities
is depicted in fig. (1.4). More specifically, it can be shown that to account for the
possibility for interference between paths in the medium the exponential probability
distribution has to be modified according to the formula by Nieuwenhuizen and Van
Rossum [41]

P

(

I

I

)

= exp

(

−I
I

)

{

1 +
1

3g

[

(

I

I

)2

− 4

(

I

I

)

+ 2

]}

. (1.19)

A similar formula was also derived by Shnerb and Kaveh [42]. The role of the
parameter g is of great importance as it is thought to signal the proximity of the
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1.2. Important concepts in the physics of propagation of light in disordered media

Figure 1.5: Principle of the coherent backscattering cone. The oscillating curves (solid
lines in grey) depict interference patterns for a fixed distance d between the first and
the last scatterer (full circles). The interference between the light propagating along
the direct (solid lines) and reverse paths (dashed lines) is always fully constructive in
the backscattering direction (θ = 0). Away from the backscattering direction dephasing
occurs and the interference contribution decreases. Summing over all possible interference
contributions gives rise to the coherent backscattering cone (solid curve in black). With
kin and kout we refer to the incoming and outgoing light. With kr

in and kr
out we refer to

the incoming and outgoing light that propagates along the reverse paths.

Anderson (or strong) localization. Localization occurs for g = 1. The study of g
is also of importance in the transport of light through absorbing and amplifying
random media [43], [44].

1.2.7 Coherent backscattering cone

The coherent backscattering cone is a demonstration that interference phenomena
can survive averaging over disorder. The basic idea is illustrated in the following.
Let us imagine to shine coherent light on to a multiple scattering object, which is
not completely opaque, and observe the transmitted output onto a screen: we would
see a granular pattern, the speckle pattern. A speckle pattern would appear also in
a reflection configuration. We refer here to the light that has diffused through the
medium and, after a certain number of scattering events, emerges from the random
medium on the side of the incident light.

Let us analyze in more detail what happens in a reflection configuration If we
changed the configuration of the scatterers and perform the experiment again we
would see a different pattern. Each new configuration for the scatterers would lead
to a new speckle pattern. We can speculate over what happens when the speckle
pattern is averaged over many different configurations. This type of averaging is
called ensemble average or average over disorder. Naively, one may expect all the
different interference contributions to be averaged out. Only a flat intensity profile
would be left. This is not the case as there is one interference effect that survives
the ensemble averaging: that is the interference between the direct and the re-
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verse paths. Along the reverse paths light propagates following exactly the same
trajectory as for the direct paths but in the opposite direction. These two paths
have exactly the same length inside the medium and interfere fully constructively
in the backscattering direction. Summing over all paths gives rise to the coherent
backscattering cone. The cone profile shows a maximum enhancement of two along
the backscattering direction with respect to the diffuse background. The enhance-
ment then gradually decreases as we move away from the tip of the cone, along its
wings. We can think of the interference between the direct and the reverse paths as
a Young’s double slit experiment with the two slits being represented in this case by
the two scatterers positioned at the beginning and at the end of the paths. Let us
consider the two scatterers to be placed along the same vertical line, their distance
being d, the produced interference pattern is given by

I = E2
0 [1 + cos(kd sin θ)] , (1.20)

with k being the module of the wavevector relative to the incoming light field, θ the
angle measured from the perpendicular to the sample surface, and E0 the module
of the incoming field. The interference pattern assumes maxima for kd sin θ = 0
and is always fully constructive in the backscattering direction, where θ = 0. An
important feature of the cone is that the wings carry information about the low order
scattering events while its tip is the result of high order scattering events. To see this
we have to use the results from subsection 1.2.6. As light follows a random walk in
the material we can write, by using eq. (1.10), that d =

√
2N`. As N gets bigger d

gets larger. As d increases the fringe of the interference pattern become increasingly
closely spaced and sharp, with the sharpest interference fringes corresponding to the
longest paths, and contributing to the cusped shape of the tip of the cone. For each d
we always have constructive interference in the backscattering direction. Therefore
in the backscattering direction we have contributions from all path lengths. As we
move away from the backscattering direction some dephasing occurs, due to the
building up of path difference between the direct and reversed paths, decreasing
the interference contrast. It is remarkable that interference effects survive ensemble
averaging.

Another key feature to the cone is the fact that its FWHM (full width half
maximum) is inversely proportional to k`−1. The coherent backscattering cone has
been measured for the first time in 1984, the obtained enhancement then was very
low and the explanation given for the measurements was not correct [45]. In 1985
in two seminal papers two groups showed clear cones with high enhancement and
gave the correct interpretation for the phenomenon [46, 47]. The theory for the
coherent backscattering cone was mainly developed in [48, 49].

We now proceed highlighting the impact of constructive interference in the co-
herent backscattering cone theory, following [50]. Let us consider the situation
shown in figure (1.5). A wave impinges on a semi-infinite slab with wave vector kin

and exits the medium with wavevector kout. The light undergoes multiple scatter-
ing inside the medium. The first scattering event takes place at rfs while the last
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1.2. Important concepts in the physics of propagation of light in disordered media

one at rls. The outgoing field amplitude A (kin,kout) is given by

A (kin,kout) =
∑

rfsrls

f (rf , rl) exp [i (kin · rf − kout·rl)] , (1.21)

with f (rf , rl) being the amplitude of the wave propagating from rfs to rls. The
intensity is the interesting observable and to calculate it we have to compute
|A (kin,kout)|2 = A (kin,kout)

?
A (kin,kout). We obtain

|A (kin,kout)|2 =
∑

rf ,rl

∑

rf1,rl1

H exp i [kin · (rf − rf1) + kout (rl − rl1)] , (1.22)

with H = f (rf , rl) f (rf1 , rl1)
?
. Let us focus our attention on the product

f (rf , rl) f (rf1 , rl1)
?
. We can write

f (rf , rl) =
∑

m

am(rf , rl) =
∑

m

|am| exp (iδm) , (1.23)

with δm being the phase accumulated along the path m. We can then write

f (rf , rl) f (rf1 , rl1)
? =

∑

m,n

|am (rf , rl)| |an (rf1 , rl1)| exp i (δm − δn) , (1.24)

and therefore eq. (1.22) becomes

|A (kin,kout)|2 =
∑

rfrl

∑

rf1rl1

∑

m,n

O exp i [kin· (rf − rf1) + kout (rl1 − rl)] , (1.25)

with
O = |am (rf , rl)| |an (rf1 , rl1)| exp i (δm − δn) . (1.26)

The next step we take is calculating |A (kin,kout)|2, that is the average of the
intensity on the disorder; this type of averaging is called ensemble averaging. The
quantity (δm − δn) is the difference between two multiple scattering paths and is
a fluctuating random variable, therefore in general exp i (δm − δn) = 0. The only
exception occurs when δm − δn = 0. This situation manifests itself in two cases

1. The two amplitudes step through the very same path and also the direction
of propagation is the same

2. The two amplitudes step through the very same path but the direction of
propagation is not the same: they propagate along opposite directions.

In case (1) rf = rf1 and rl = rl1 while in case (2) rf = rl1 and rf1 = rl. Therefore
for case (1) we have

|A (kin,kout)|21 =
∑

rf ,rl

∑

m

|am (rf , rl)|2, (1.27)
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and in case (2)

|A (kin,kout)|22 =
∑

rf ,rl

∑

m

|am (rf , rl)|2 exp [(kin + kout) (rf − rl)] . (1.28)

Adding up the two contributions we have

|A (kin,kout)|2 =
∑

rfrl

f (rf , rl)
2
(1 + exp [(kin + kout) (rf − rl)]) . (1.29)

Eq. (1.27) does not depend on the backscattering angle and is called incoherent
contribution or diffuson. Eq. (1.28) is angle dependent and is called coherent con-
tribution or cooperon. Eq. (1.28) represents the most interesting case as it highlights
the interference between direct and reverse paths and assumes its maximum value
of 1 in the backscattering direction when kin + kout= The coherent contribution is
also known as the coherent backscattering effect.

After this overview of the main ingredients used in mesoscopic optics, in the
next sections we will introduce some concepts crucial to understand noise analysis.

1.3 Noise spectral density

Let us consider a signal i(t). The Fourier transform of i(t) is given by

i (Ω) =
1

T

∫ T
2

−T
2

i (t) exp (i2πΩt)dt. (1.30)

where T is the measurement time. The average power is given by

i2 =
1

T

∫ T
2

−T
2

i2(t)dt. (1.31)

It can be shown [51] that

i2 =

∫ ∞

0

S (Ω) dΩ, (1.32)

with S(Ω) known as the noise spectral density, defined as

S (Ω) ≡ 2

T
|i (Ω)|2 . (1.33)

An important theorem, the Wiener-Khinchin theorem, relates the correlation func-
tion i (t) i (t+ τ) to S (Ω) in the following way

S (Ω) =

∫ ∞

0

i (t) i (t+ τ) exp (i2πΩτ) dτ. (1.34)
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1.4. The shot noise formula

1.4 The shot noise formula

In this section we give a brief outline of the basic steps necessary to recover the
shot noise formula. The shot noise formula is crucial in the field of photon detection
because it corresponds to the signature that the detected photons are in a coherent
state, which is the usual state for the photons emitted by a laser operating above
threshold. Let us consider a stream of photons that impinge on a photon detector
at random times, with the detection events being independent from one another.
These two properties correspond to requiring that the distribution of the photons
is Poissonian. Our goal is to calculate the power spectrum S (Ω) of this train of
pulses. The total current i(t) is given by

i(t) =

N
∑

k=1

g(t− tk), (1.35)

where g(t) indicates the shape of the pulses and tk indicates the instant at which
the pulses are acquired. Let G (Ω) be the Fourier transform of g(t)

G (Ω) =

∫ +∞

−∞

g (t) exp (i2πΩt)dt. (1.36)

By making use of the fact that the pulses occur at random times and are independent
from one another we obtain, by using eq. (1.33),

S (Ω) =
2N |G (Ω)|2

T
, (1.37)

where S (Ω) indicates the average power spectrum. In case we have an electric
current with electrons of charge e, whose charge is localized in a needle-like pulse,
we can pose g(t) = eδ(t). That leads us to

S (Ω) = 2ei, (1.38)

with i = eN
T . Eq. (1.38) is the shot noise formula that makes clear that the spectrum

of a train of random pulses is frequency independent and depends on the average
current intensity and the electron charge.

1.5 Photon statistics and the Fano factor

Photon statistics allows to investigate the fluctuations of light. The Poisson distri-
bution plays a central role as the photons emitted by a laser above threshold obey
Poisson statistics. Poisson statistics emerges by considering emission of indepen-
dent photons and is characterized by the fact that the variance of the distribution
equals the mean number of photons. Commonly, all fluctuations are referenced to
the variance of a Poisson distribution according to the following scheme
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(∆n)
2
> n, (1.39)

(∆n)
2
= n, (1.40)

(∆n)
2
< n, (1.41)

where with (∆n)
2
we indicate the variance (∆n)

2 ≡ n2 − n2 of the photon dis-
tribution and with n the average number of photons. Eq. (1.39) identifies the
super-Poissonian regime, eq. (1.40) the Poissonian regime and eq. (1.41) the sub-
Poissonian regime. A useful figure of merit, widely used in the quantum optics
community, is the Fano factor that quantifies the light fluctuations. The Fano
factor F is defined as

F ≡ (∆n)2

n
. (1.42)

This figure of merit compares the fluctuations of a distribution to the ones of a
Poisson distribution, that displays F = 1. The Fano factor is used to quantify
light fluctuations as well as electron fluctuations in electronic systems, but the
fluctuations exhibited by photons and electrons are profoundly different from one
other, as we are going to explain in the following section.

1.6 Photon and electron intensity correlations

In this section we will introduce some of the main differences between light and
electrons and analyze them in terms of their statistical consequences. It is in fact
these statistical properties that are probed and extracted in experiments where
noise is the main observable.

A crucial difference between photons and electrons is that they obey two dif-
ferent types of statistics. Electrons obey Fermi statistics and are fermions while
photons are bosons and obey Bose-Einstein statistics. More specifically, fermions
are bound by the Pauli principle that states that no more than a single electron
can occupy a quantum state. On the contrary, photons are not subjected to this
restriction, so there is no limit to the number of photons that can occupy a state.
This important difference between photons and electrons, and the fact the electrons
are charged particles and photons have no charge, implies that the mechanism for
which correlations are developed are different.

Correlations are best individuated by resorting to Hanbury-Brown and Twiss
type experiments [52], illustrated in fig. (1.6), where intensity-intensity correlations
between two streams of particles are measured. The measured quantity is defined
as

g(2) =
I1(t)I2(t+ τ)

I1(t)I2(t)
, (1.43)

where I1 and I2 refer to the intensity measured by the two detectors involved in
the experiment and τ is the time delay between the events registered by the two
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1.6. Photon and electron intensity correlations

Figure 1.6: Schematic description of a typical Hanbury-Brown and Twiss experiment.
b.s. stands for beam splitter. a) Intensity correlations between two streams of photons are
measured by collecting the intensities at two detectors. As soon as one of the two detectors
records an event the measurement starts at time τ = 0 and it is stopped when photons are
collected by the other detector (start-stop measurements). The main aim of the experiment
is to measure g(2). b) Typical outcomes of the experiment. In case of photons emitted
in a random fashion (solid line) there will be no correlation displayed at any time and
g(2) = 1. In case of bunched events (dashed line) there will be high probability to register
clicks at τ = 0 because photons belonging to the same bunch will be distributed by the
beam splitter on the two detectors. Correlations are therefore present. Consequently, in
the short time regime (τ < τc, with τc the coherence time of the source) g(2) > 1. As
time goes by photons will be collected that belong to different bunches and the intensity
correlation will decay to the value assumed in the no correlation case, when the photons
are emitted in a random fashion. Antibunching (dotted line) is displayed for example by
single photon sources. In this case the emitted photons are equally spaced in time and
at τ = 0 we will have an anticorrelation because if a single photon illuminates one of the
two detectors it cannot simultaneously trigger the other. Consequently, in the short time
regime g(2) < 1. Also in this case if the measurements are performed over a time exceeding
the coherence time of the source all correlations vanish.
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contact 1 contact 2
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V

lead 1 lead 2

Tn

Figure 1.7: Schematics of a setup to investigate transmission of electrons through meso-
scopic conductors. A bias voltage V is applied between the two contacts and electrons flow
through the conductor. The values Tn are the transmission probabilities that the electrons
have to traverse the system.

detectors. The initial experiments aimed successfully at using correlations to mea-
sure the diameter of distant stars. Subsequently this type of experiments were
intensively used to confirm or disproof statements about the nature of light and
its particle-wave duality. While measuring intensity-intensity correlations for pho-
tons is routine nowadays, the demonstration of the fermionic Hanbury-Brown and
Twiss experiment, whereby electrons show anti bunching, has been performed only
recently, given to many experimental challenges that had to be overcome [53, 54].

1.7 Fluctuations of photons and electrons in meso-

scopic systems

Correlations allow for a different behaviour of noise for photons and electrons. In a
mesoscopic conductor these correlations are responsible for a decrease of the electron
noise power from the classical value given by Poisson statistics.

Let us consider a mesoscopic conductor. As shown in eq. (1.38) the noise power
is given by

SP = 2ei, (1.44)

where the subscript P refers to the Poisson distribution obeyed to by electrons. In
this case the intensity is [55, 56]

i =
2e2

h
V
∑

n=1

Tn, (1.45)

where Tn indicates the transmission probabilities in the conductor, h Planck’s con-
stant and V a given applied voltage. Eq. (1.45) is reminiscent of the classical Ohm

relationship I = σV where σ is the conductance. In this case σ = 2e2

h is the con-
ductance quantum. A schematic setup that illustrates the main components of an
experiment in mesoscopic electronics is presented in fig. (1.7). The noise formula
at zero temperature yields [57, 58]
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S = 2e
2e2

h
V

N
∑

n=1

[Tn(1− Tn)]. (1.46)

The (1− Tn) factor states the decrease of the noise induced by the Pauli principle.
Notice that Tn � 1 implies Poisson statistics because F = 1, having defined F ≡ S

Sp
.

This property can be seen by using eqs. (1.45) and (1.44). If Tn = 1 or Tn = 0 there
is no contribution to the shot noise, in other words fully open or closed channels
do not contribute to the shot noise and induce a suppression of the shot noise with
respect to the Poisson value. In particular the case Tn = 1 shows the action of the
Pauli principle: a completely open channel means that the stream of electrons passes
undisturbed and there are no fluctuations, S = 0, because the exclusion principle
dictates the number of electrons that each state is allowed to have. Therefore the
values that contribute to the depletion of the shot noise are the highly transmitting
channels and the almost closed ones. A clear example of this depletion mechanism
manifest itself in disordered conductors where the probability distribution of the
transmission eigenvalues is bimodal [59, 60], that means that almost fully open and
closed channels are a majority in disordered conductors. In this case eq. (1.46) leads
to [61]

Fout =
1

3
. (1.47)

We notice immediately a reduction of 2
3 in the noise power with respect to the

Poisson value. Eq. (1.47) holds true when L � `, where ` is the mean free path.
The other intriguing property of formula (1.47) is that F goes back to one when L
reaches and becomes greater than the localization length, ξloc because in this case
the transmission probabilities becomes very small. Formula (1.47) is a signature
that the transport in the medium is of diffusive nature. It is very interesting that
this noise suppression takes specific values for different systems, for example 1

2 for
a symmetric double-barrier junction [62, 63], and 1

4 for a chaotic cavity, [64, 65].
Thus, by investigating the noise it is possible to identify different states of electron
transport in the medium.

In optics, theory and experiments about the propagation of optical noise have
made their appearance at a later stage, that means that still much effort has to
be channelled in this field. Beenakker et al. [66] showed that the propagation of
coherent radiation in disordered media is given by

Fout = 1 + (t†t)mm(Fin − 1) + 2f(ω0, T )
[t†(1− rr† − tt†)t]mm

(t†t)mm
, (1.48)

where Fin is the Fano factor of the incoming radiation, Fout the Fano factor of the
outgoing radiation, t and r represent the transmission and reflection matrices, f the
Bose-Einstein function, and m the mode of the incoming radiation. For Fin = 1 we
revert to an incoming radiation in a coherent state. The function f is negligible at
optical wavelengths and room temperatures, therefore normally so is the third term
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ω

Ω

laser detector esa

Figure 1.8: An electronic spectrum analyzer (esa) is employed to investigate the noise
content of the optical signal. The frequency of the optical carrier ω is in the Terahertz
range while the spectrum analyzer processes frequencies Ω up to the Gigahertz range. The
analyzer downshifts the frequency content of the signal and allows thus for its investigation
over a frequency range which is easier to detect.

in eq. (1.48). It is seen that in an passive system with no absorption conservation of
energy implies rr†+tt† = 1. Therefore in this case Fout = 1 for an incoming radiation
in the coherent state with Fin = 1. Absorption and gain in the system imply that its
scattering matrix is no longer unitary and rr†+ tt† 6= 1. Furthermore for gain f < 0
while for absorption f > 0. These considerations lead for both gain and absorption
to Fout > 1,with Fin = 1. The case of absorption is particularly interesting as it
can be compared to the suppression observed in the case of disordered conductors.
In an absorbing random photonic material, illuminated with light in the coherent
state in a transmission configuration we have

F = 1 +
3

2
f, (1.49)

when L � ξa, where ξa is the absorption length [67]. This interesting photonic
analogue to the electronic case has has not been observed yet, mainly because the
function f at room temperatures is minuscule. In contrast to the electronic case,
where localization restores Poisson statistics, in this case localization has no effect
on the outgoing Fano factor.

1.8 Laser light fluctuations

It is crucial to understand the origin of the light fluctuations displayed by laser
light, as the the laser is the main light source used in our experiments.

One source of the fluctuations of the emitted radiation is given by spontaneous
emission. Spontaneous emission noise is of quantum origin and is due to the in-
evitable presence of radiation that is randomly emitted from the amplifying laser
medium and interferes with the light generated by stimulated emission. Light emit-
ted by spontaneous emission has no phase relationship with light emitted by stimu-
lated emission and that creates phase and intensity fluctuations. Phase fluctuations
lead to a broadening of the spectral feature of the emitted radiation. In the following
we will be interested in intensity noise.

The full quantum model of laser noise takes into account the pump noise, the
vacuum noise due intracavity losses and introduced at the output coupler, sponta-
neous emission noise and dipole fluctuation noise [68–71].
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The intensity laser spectrum can be broadly divided into a low frequency spec-
trum and a high frequency spectrum. The low frequency part of the spectrum
contains most of the features specific to our laser system, like for example the re-
laxation oscillation, related to fluctuations of the pump power, whose frequency
depends on many parameters (among others intracavity power, resonator losses,
gain medium, round trip time of the resonator).

Broadly speaking there are two types of laser optical noise: classical noise and
quantum noise. Classical noise encapsulates all types of optical noise that can
be reduced by resorting to better optical components, stabilizing the laser cavity,
reducing the vibrations of the system, etc. The amount of the reduction depends
on the ability of the experimentalist and the quality of the optical and electronic
components. To highlight these technical causes, this type of noise is also termed
technical noise.

The minimum noise level is intrinsic to the fundamental nature of light. This
noise level is called shot noise, also known as quantum noise to stress the particle
nature of light of being composed of photons. The main experimental difference
between these two types of noise is their scaling with optical power. Classical noise
scales quadratically as function of power while quantum noise scales linearly. These
two important signatures are commonly used to tell one type of noise from the
other. Classical noise is very often called excess noise to stress the fact that the
intensity of its fluctuations stays above the shot noise level, which is then regarded
as a reference level. The shot noise divides the classical world from the quantum
world. Using methods employed in quantum optics it is possible to reach below the
quantum noise level. The most common technique to reduce the noise below the
shot noise level is squeezing [25].

There is a distinction that needs to be made. In literature, the word quantum
noise is used invariably in relation with more than one cause. For example, it is
spoken of shot noise as quantum noise but also spontaneous emission noise is labelled
as quantum noise. It is also often spoken of the quantum noise limit (QNL) but it is
not clear at a first glance which quantum noise it is referred to. The word quantum
noise refers to all light fluctuations that are quantum in essence and require quantum
mechanics to be fully accounted for. In this fashion spontaneous emission noise is
quantum noise as well as shot noise. However these two types of noise refer to
different quantum mechanisms: spontaneous emission occurs when an atom, in an
excited state, for example in a laser medium, relaxes down onto a lower excited state
and emits a photon. Shot noise refers to the intensity fluctuations of light in the
coherent state and it is evidence of the corpuscular nature of light. It is then more
precise and accurate to say that a laser is shot noise limited rather than quantum
noise limited, meaning that its intensity noise spectrum is at the shot noise level.

In our experiments we use an electronic spectrum analyzer to investigate the
noise content of our signal as it is schematized in fig. (1.8). Two main frequency
scales are important for our experiments. The laser frequency, that for light emitted
at 800 nm is in the Terahertz regime, and a slower varying frequency, often in the
MHz regime, that is the detection frequency of the spectrum analyzer. Investigating
the low frequency spectrum of the laser corresponds to observing the system for a
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long time. Over such a long time many disturbances have the chance to disrupt
the signal and being detected. On the contrary, studying the high frequency noise
spectrum is equivalent to looking at the system’s short time behaviour. Over such
a short time span most of the noise sources can not manifest themselves. In this
situation the only noise present is the photon shot noise. At high radio frequencies
(RF) vacuum noise due to intracavity losses becomes negligible and what is left is
the vacuum noise introduced by the outcoupling beamsplitter which gives rise to
the shot noise. All classical noise sources become negligible.

1.9 This thesis

Only recently techniques and ideas borrowed from the investigation of disordered
electronic systems and the field of quantum optics have been combined and em-
ployed to investigate transport of light in complex optical systems theoretically
[72–75] as well as experimentally [76, 77]. In this thesis we focus our attention on
optical noise in disordered optical systems. In more detail, we will investigate the
propagation of radiation with Fano factor higher or equal to 1 in photonic random
media.

In chapter 2, we investigate the total reflection of excess and shot noise off
TiO2 samples, showing different scaling for classical and shot noise in reflection.
Furthermore, we predict and observe a liner dependence of the total reflection on
the incoming Fano factor and confirm that optical noise is an alternative method
to extract the sample’s mean free path. In chapter 3, we make use of coherent
backscattering noise measurements to investigate the transport of optical noise as
function of the order of scattering and compare noise measurements to the ones
of classical intensity coherent backscattering . We demonstrate experimentally an
enhancement higher than the classical value of two for the excess noise measure-
ments. In this chapter we also theoretically show that the enhancement of the noise
cone contains information about the mesoscopic properties of the system, allowing
to extract the g value of the system. Finally, in chapter 4 we present a setup and
measurements aimed at directly inducing and detecting mesoscopic correlations in
strongly scattering nanowires systems.
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CHAPTER2

Total reflection of quantum and classical noise

In this chapter we provide a full quantum theory based on a random matrix approach
to describe the total reflection of photon noise from random media and present experi-
mental results that match the theoretical prediction.

2.1 Introduction

Transport of photon noise in transmission trough multiple scattering samples was
experimentally investigated by P. Lodahl et al. [78]. A characteristic scaling for the
transport of classical and shot noise was found. The size scaling parameter is the
ratio ρ ≡ `

L where ` is the mean free path and L is the sample thickness. It was
found that shot noise scales linearly with ρ while classical noise quadratically.

In this chapter we want to investigate the total reflection of photon noise from
random multiple scattering samples and check the outcome of the experiments
against the theory presented in [79].

One of the differences between total transmission and total reflection measure-
ments is that total reflection includes shorter paths than total transmission mea-
surements. Furthermore, joint total transmission and total reflection intensity mea-
surements can provide important information about the degree of absorption that
takes place in the material under investigation. In the ideal case of no absorption
T + R = 1 always, where T denotes total transmission and R total reflection. If
absorption is present R+T < 1. In the remainder of this chapter we will show that,
even in absence of absorption, the sum of total noise reflection and transmission
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ba

a
0

a'

Figure 2.1: Modes impinging on a multiple scattering medium. The illuminated modes, a0

and a′ respectively, are depicted with a solid line. The vacuum modes a and b are depicted
with dashed lines.

is in general different from one. Furthermore, we will investigate how the trans-
port of the reflected noise evolves, as function of frequency, sample parameters and
incoming fluctuations.

The chapter is structured as follows: we begin in section 2.2 by illustrating the
theory needed to describe the total reflection of noise in multiple scattering media.
In section 2.3 a parallel between noise and intensity measurements is drawn. Section
2.4 is dedicated to the description of the experimental setup and its characteriza-
tion. Section 2.5 describes total intensity transmission and reflection experiments.
Section 2.6 revolves around the experiments performed to measure the total reflec-
tion of noise from random media. Finally, in section 2.7 we compare the theory to
the experimental results.

2.2 Theory

To model our experiment we make use of the theory of Lodahl et al. [79] that
was employed to explain the total transmission of photon noise. We begin by writing
down the expression for the reflection of a single mode from channel a0 into channel
a′

âa′ =
∑

a

raa′ âa +
∑

b

tba′ âb = ra0a′ âa0
+
∑

a 6=a0

raa′ âa +
∑

b

tba′ âb, (2.1)

where â indicates the destruction operator, the indexes a and b denote the incoming
and reflected vacuum modes respectively, a′ indicates the observed reflected mode,
and a0 the incoming illuminated mode. Finally, r and t are the classical reflection
and transmission coefficient, respectively. The considered configuration is sketched
in fig. (2.1). This model describes the following situation: an incoming state
impinges on the scattering medium in channel a0 and is reflected into channel a′.
This is described by the term ra0a′ âa0

, with ra0a′ being the reflection coefficient
from channel a0 into channel a′. The two sums describe the presence of vacuum
channels entering the medium in transmission, from channel b to channel a′ and in
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reflection from channel a 6= a0 to channel a′. In the reflected channel a′ we have
contributions from the vacuum and the incoming illuminated mode.

The total reflection is defined as

R̂ ≡
∑

a′

â
†
a′ âa′ , (2.2)

where the sum is carried over all outgoing channels. The fluctuations of the total
reflection are

〈

δR̂2
〉

=
〈

R̂2
〉

− 〈R〉2 =

〈(

∑

a′

â
†
a′ âa′

)2〉

−
〈

∑

a′

â
†
a′ âa′

〉2

, (2.3)

where with 〈〉 we indicate the quantum expectation value. Developing the squares
in eq. (2.3) and using the fact that, due to the independence of the channels,
〈

â
†
a′ âa′ â

†

a′

1

âa′

1

〉

=
〈

a
†
a′ âa′

〉〈

â
†

a′

1

âa′

1

〉

we get

〈

δR̂2
〉

=
∑

a′

[

〈

â
†
a′ âa′ â

†
a′ âa′

〉

−
〈

â
†
a′ âa′

〉2
]

+

−
∑

a′

1
6=a′

2

[〈

â
†

a′

1

âa′

1
â
†

a′

2

âa′

2

〉

−
〈

â
†

a′

1

âa′

1

〉〈

â
†

a′

2

âa′

2

〉]

=
∑

a′

[

〈

Î2a′

〉

−
〈

Îa′

〉2
]

−
∑

a′

1
6=a′

2

[〈

Îa′

1
Îa′

2

〉

−
〈

Îa′

1

〉〈

Îa′

2

〉]

, (2.4)

where with â† and Îa′ ≡ â
†
a′ âa′ we indicate the creation operator and the intensity

operator relative to channel a′ respectively. It is clear that the fluctuations of total
reflection depends not only on the fluctuations in each channel, given by the first
sum in eq. (2.4). Correlations between different channels play also a role and are
given by the second sum in eq. (2.4). In order to evaluate eq. (2.4) we make use

of eq. (2.1 ) and calculate the intensity
〈

Îa′

〉

in channel a′. First we compute Îa′ ,

and obtain

Îa′ = |ra0a′ |2 â†a0
âa0

+ r∗a0a′ â†a0





∑

a 6=a0

raa′ âa +
∑

b

tba′ âb





+
∑

a 6=a0

r∗aa′ â†a



ra0a′ âa0
+
∑

a 6=a0

raa′ âina +
∑

b

tba′ âb





+
∑

b

t∗ba′ â
†
b



ra0a′ âa0
+
∑

a 6=a0

raa′ âa +
∑

b

tba′ âb



 . (2.5)

When calculating
〈

Îa′

〉

we have

〈

Îa′

〉

= |ra0a′ |2
〈

â†a0
âa0

〉

. (2.6)
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We now evaluate
〈

Î2a′

〉

and that yields

〈

Î2a′

〉

= |ra0a′ |4
〈

â†a0
âa0

â†a0
âa0

〉

+|raa′ |2
〈

â†a0
âa0

〉





∑

a 6=a0

|raa′ |2 +
∑

b

|tba′ |2


 . (2.7)

For the intensity fluctuations in channel a′ we find

〈

Î2a′

〉

−
〈

Îa′

〉2

= |ra0a′ |4
〈

â†a0
âa0

â†a0
âa0

〉

+ |raa′ |2
〈

â†ina0
âina0

〉





∑

a 6=a0

|raa′ |2 +
∑

b

|tba′ |2


+

− |ra0a′ |4
〈

â†a0
âa0

〉2
. (2.8)

Furthermore, we obtain

〈

Îa′

1
Îa′

2

〉

−
〈

Îa′

1

〉〈

Îa′

2

〉

=
∣

∣ra0a′

1

∣

∣

∣

∣ra0a′

2

∣

∣

〈

â†a0
âa0

â†a0
âa0

〉

+

−
∣

∣ra0a′

1

∣

∣

∣

∣ra0a′

2

∣

∣

[

〈

â†a0
âa0

〉

+
〈

â†a0
âa0

〉2
]

. (2.9)

It is convenient to introduce the Fano factor of the incoming radiation to charac-
terize the incoming light state [22]

Fa0
≡
〈

â†a0
âa0

â†a0
âa0

〉

−
〈

â†a0
âa0

〉2

〈

â
†
a0
âa0

〉 . (2.10)

By using the Fano factor Fa0
and eqs. (2.8) and (2.9) we can rewrite

〈

(

δR̂
)2
〉

as

following

〈

(

δR̂
)2
〉

=
∑

b

R2
a0a′Fa0

〈n̂a0
〉+Raa′ 〈n̂a0

〉 −R2
a0a′ 〈n̂a0

〉

+
∑

a′

1
,a′

2
6=a′

1

〈n̂a0
〉Ra0a′

1
Ra0a′

1
[Fa0

− 1] , (2.11)

where we have used n̂a0
= â†a0

âa0
and Raa′ = |raa′ |2. We now perform ensemble

averaging, indicated by • , and obtain

〈

(

δR̂
)2
〉

= N
[

R2
a0a′ 〈n̂a0

〉 (Fa0
− 1) +Ra0a′

1
〈n̂a0

〉
]

+
(

N2 −N
)

〈n̂a0
〉Ra0a′

1
Ra0a′

2
[Fa0

− 1] (2.12)
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where N is the total number of modes. To estimate Ra0a′

1
and Ra0a′

1
Ra0a′

2
we make

use of the following two relationships [80]

Ra0a′

1
=

(

1− `

L

)

1

N
, (2.13)

Ra0a′

1
Ra0a′

2
= Ra0a′

1
Ra0a′

2

(

1 + δa′

1
a′

2
−

1 + δa′

1
a′

2

N
(

1− `
L

)

)

=

[(

1− `

L

)

1

N

]2
(

1 + δa′

1
a′

2
−

1 + δa′

1
a′

2

N
(

1− `
L

)

)

, (2.14)

with ` being the mean free path and L the sample thickness. Eq. (2.14) is valid in
the limit ρ� 1.

As already mentioned in chapter 1, g is a crucial parameter in mesoscopic
physics, as it quantifies the correlations between multiple scattering paths that
occur in the sample. The parameter g is given by [81]

g =
N`

L
. (2.15)

In reflection, following the same procedure as the one adopted for a transmission
configuration, we define

gr ≡ N

(

1− `

L

)

. (2.16)

In most experimental situations gr � 1. To estimate gr we resort to the formula

N = 2π2A
λ2 [81], where A is the cross section of the laser beam and λ its wavelength.

Using our experimental parameters (A ∼ 5 · 10−3m2, λ = 800 nm, min{ `
L} ∼ 0.04)

we obtain gr ∼ 1011. Employing definition (2.16) we obtain

〈

(

δR̂
)2
〉

= 〈n̂a0
〉
(

1− `

L

)

+ 〈n̂a0
〉 (Fa0

− 1)

(

1− `

L

)2 (

1− 1

gr

`

L

)

. (2.17)

The incoming fluctuations can be modelled in the following way

(

δÎina0

)2

= 〈n̂a0
〉+ (Fa0

− 1) 〈n̂a0
〉 . (2.18)

Therefore we have that the fluctuations of the total reflection, normalized to the
incoming fluctuations, are given by

ΓR =

〈

(

δR̂
)2

(

δÎina0

)2

〉

=

(

1− `

L

)

1

Fa0

+

(

1− 1

Fa0

)(

1− `

L

)2 [

1− 1

gr

`

L

]

, (2.19)

where Fa0
characterizes the fluctuations of the incoming radiation. In our case the

fluctuations are a function of the noise frequency Ω, that is Fa0
= Fa0

(Ω). For shot
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noise (sn) Fa0
= 1 while for classical noise (cn) Fa0

> 1. In the two cases of Fa0
= 1

and Fa0
� 1 we have respectively

Γsn
R =

(

1− `

L

)

(2.20)

Γcn
R =

(

1− `

L

)2 [

1− 1

gr

`

L

]

(2.21)

If we calculate the ratio χ ≡ Γsn
R (Γcn

R )
−1

we obtain

χ =

[(

1− `

L

)(

1− 1

gr

`

L

)]−1

. (2.22)

For all typical experimental situations (gr ≥ 1, `
L < 1), eq. (2.22) predicts

χ w

1

R
> 1, (2.23)

with R being the total reflection coefficient. For completeness we also report the
result for total transmission obtainable by performing similar calculations

ΓT =

(

`

L

)2(

1− 1

Fa0

)

+
`

L

(

1

Fa0

)

, (2.24)

where with ΓT we indicate noise in total transmission and we have neglected
g−1
r contributions. Analogously to the reflection case, if we define the ratio ξ ≡
Γsn
T (Γcn

T )
−1

, we obtain

ξ ' 1

T
> 1, (2.25)

with T being the total transmission coefficient. The theory predicts that for both
transmission and reflection shot noise gets reflected and transmitted more efficiently
than classical noise.

In our experiments we measure the noise in total reflection ΓR and also the in-
coming Fano factor Fa0

(Ω) . If we plot ΓR versus F−1
a0

, neglecting g−1 contributions,
we obtain a linear relationship

ΓR =
1

Fa0

(

1− `

L

)

`

L
+

(

1− `

L

)2

, (2.26)

with Fa0
gauging the incoming photon noise. Eq. (2.26) predicts a linear behaviour

for ΓR(F
−1
a0

). In fig. (2.2, left panel) ΓR(F
−1
a0

) is plotted for a selection of realistic

values for ρ ≡ `
L . In section 2.7 we will use our experimental data to check the

validity of the theory presented in this section and in particular of eq. (2.26).
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2.3. Total reflection and transmission of noise and intensity

Figure 2.2: (left) Calculated total reflection of noise ΓR is plotted for three values of ρ ≡
`

L
,

as function of F−1
a0

. (right) Calculated total noise transmission ΓT , total noise reflection
ΓR, and the sum of the two ΓT + ΓR, are plotted as function of F−1

a0
. We have employed

ρ ≡
`

L
= 0.2. While T +R = 1 always, noise displays ΓT + ΓR = 1 only for Fa0

= 1.

2.3 Total reflection and transmission of noise and

intensity

In this section we draw a parallel between noise and intensity measurements, for
the case of non absorbing samples. For total intensity measurements we have

T =
`

L
, (2.27)

R = 1− T, (2.28)

R + T = 1. (2.29)

where T indicates total transmission, R total reflection, ` the mean free path and
L the sample thickness. For sake of simplicity in eqs. (2.27) and (2.28) we have
neglected the extrapolation lengths. The extrapolation lengths are of the same
order as ` and are introduced to properly take into account the effect of the bound-
aries when dealing with propagation of light in a random medium [82]. Employing
eqs. (2.24) and (2.26) for the total transmission and reflection of photon noise we
obtain

ΓR + ΓT = 1 +
2`

L

(

1− `

L

)(

1

Fa0

− 1

)

, (2.30)

where ΓT and ΓR denote total noise transmission and total noise reflection. It is
evident that while the sum of total intensity reflection and transmission is always
equal to 1, for photon noise, eq. (2.30), we recover the value of one only at high
frequency in the shot noise case, that is when Fa0

= 1. In all other cases the
dependence on Fa0

is always present, and in general ΓR + ΓT 6= 1. In the extreme
case Fa0

� 1 we have ΓR+ΓT = 1− 2`
L

(

1− `
L

)

. In fig. (2.2, right panel) calculations
for total noise transmission, reflection and the sum of transmission and reflection
are plotted as function of the reciprocal of the incoming Fano factor F−1

a0
.
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esa

Figure 2.3: Sketch of the experimental setup used to measure total reflection of both clas-
sical and quantum noise. A Ti:Sapphire laser and an integrating sphere are used as source
and to collect the reflected light, respectively. The baffle is needed to prevent specularly
reflected light from hitting the detector. An electronic spectrum analyzer is employed to
measure the noise content of the signal and a voltmeter to measure its intensity.

2.4 Experimental setup and characterization

In this section we describe the experimental setup used to measure total reflection
of noise from multiple scattering samples. The setup is illustrated in fig. (2.3). We
used a Ti:Sapphire laser as light source. This laser can be used both as a shot and
classical noise source as its noise spectrum is shot noise limited at high frequencies
(Ω > 1 MHz) and dominated by classical noise at low frequencies (Ω < 1 MHz). To
collect the totally reflected noise we use an integrating sphere that is connected to a
detector (Thorlabs PDA55). The detector is then coupled to an electronic spectrum
analyzer to investigate the noise content of the signal.

The DC component at zero frequency was filtered out by means of an electronic
filter to protect the spectrum analyzer. First the scaling of quantum and classical
noise was investigated with no sample. A commercial voltmeter was used to monitor
the intensity output at the exit port of the integrating sphere. The laser power was
progressively increased and intensity and noise readings were recorded by means
of the voltmeter and the spectrum analyzer, respectively. The classical and shot
noise data have been obtained by integrating the spectra over the [0.2 − 0.4] MHz
and [3 − 4.55] MHz regions, respectively. The measured scaling is showed in fig.
(2.4). In the next section we will describe total intensity transmission and reflection
experiments performed on strongly scattering random TiO2 samples.

2.4.1 Samples

The TiO2 samples [83] used for the intensity as well as noise measurements were
made using commercial rutile pigment. The TiO2 particles have a size distribution
d = 220± 70 nm, with d being the diameter of the particles. The prepared samples
have a thickness that varies from 1.43 µm to 18 µm and the uncertainty on the
thickness is ±0.3 µm. The thickness and the uncertainty on the thickness were
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2.5. Experiment: total reflection and transmission of intensity
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Figure 2.4: (left) Linear scaling of quantum noise versus voltage. The solid line is a linear
fit (right). Quadratic scaling of classical noise versus voltage. In both cases no sample was
used. The data points were recorded by slowly increasing the laser power and measuring
intensity with the voltmeter and the correspondent noise level with the spectrum analyzer.
The solid line is a quadratic fit.

extracted with a microscope by measuring the thickness on ten different positions.
The samples are mounted on a glass substrate that is ∼ 3 mm thick.

2.5 Experiment: total reflection and transmission

of intensity

In this section we present total transmission and reflection intensity experiments on
TiO2 samples.

The goal of these experiments is to extract the mean free path ` of the samples.
The obtained values for the mean free paths will then be compared to the ones
extracted from noise measurements.

The total transmission and reflection intensity measurements have been per-
formed by using the setup described in fig. (2.3). The voltmeter has been used to
perform the intensity measurements. An important difference between the total re-
flection and transmission measurements is the reference used. For the measurements
in total transmission a glass substrate is used as reference. For the measurements
in total reflection, reference measurements are taken with the integrating sphere
closed off at one of its ports. The coating of the port and of the interior of the
integrating sphere are the same.

The measurements are presented in fig. (2.5). The total transmission data are
compared to

YT =
z1 + `

L+ z1 + z2
. (2.31)

The total reflection data are compared to

YR = BR

(

1− z1 + `

L+ z1 + z2

)

, (2.32)
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Figure 2.5: (left) Total intensity transmission measurements. The solid line is a fit to the
data. (right) Total reflection intensity measurements. The solid line is a fit to the data.

where z1 and z2 are the extrapolation lengths that take into account the effects
of the sample boundaries. The extrapolation lengths were previously measured for
our series of TiO2 samples [84] and their values are z1 = 1.71` and z2 = 1.77`
respectively. The fit parameters are ` and BR. To fit the total transmission data
only ` was used as fit parameter. To recover a good agreement between the total
reflection data set and the theory the additional fit parameter BR had to be used.
From the fit we obtain BR = (0.659±0.006). BR < 1 is an indication that our value
for our reference measurement is too high. The fact that our reference measurement
was too high could be due to the fact that the light hitting the detector was not
completely diffused and retained a single scattering component. According to [85]
the calculated ratio of total to first order reflection for incidence and reflection
along the normal to the sample surface is 8.455, considering an albedo of 1, infinite
sample thickness and isotropic scattering. Thus the single scattering component is
not negligible. Once the scaling parameter BR is introduced, fitting eqs. (2.31) and
(2.32) to the the total transmission and reflection data sets respectively, produces
fully compatible mean free paths. From the total transmission and reflection data
sets we obtain ` = (0.78± 0.01) µm and ` = (0.84± 0.07) µm, respectively.

In the following section noise measurements in total reflection are presented.

2.6 Experiment: total reflection of photon noise

In this section we report on total reflection of photon noise for a series of eight
TiO2 samples. The measurements are reported in fig. (2.6) along with reference
measurements.

The reference measurements were performed by closing off the integrating sphere
at one of its ports in the same way as it was done with the total intensity reflection
measurements. The reference measurement shows the highest noise reflection, as
expected, because the majority of the light is reflected back into the integrating
sphere. The electronic background trace is around 10 dB lower than the noise
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Figure 2.6: (top) Total reflection of photon noise from a series of three samples. The top
line is a reference measurement. (bottom) Photon noise in total reflection normalized to
the reference measurement trace from (1).

trace for the thinnest sample. To quantify the noise transmission we divide our
measurements by the reference noise trace and obtain the data reported in fig. (2.6,
lower panel). Two regimes are clearly visible, the low frequency one and the high
frequency one. As predicted by the theory of eqs. (2.23) and (2.25) the data show
that the quantum noise gets reflected more efficiently than the classical noise. In
the next section we will analyze the results obtained in the experiment and compare
them to the theory from section 2.2.
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theory
data set classical quantum
classical ` = (0.98± 0.08)µm ` = (2.4± 5.4)µm

BCN = (0.50± 0.02) BSN = (0.41± 0.28)
quantum ` = (0.28± 0.01)µm ` = (0.97± 0.09)µm

BCN = (0.59± 0.01) BSN = (0.63± 0.02)

Table 2.1: `, BCN and BSN obtained in two ways: (1) Fitting the shot and classical
noise theory to the shot and classical noise data sets respectively. (2) Fitting the shot
and classical noise theory to the classical and shot noise data sets respectively. Only the
combination of quantum noise data with quantum noise theory and the combination of
classical noise data with classical noise theory produce consistent and correct results.

2.7 Analysis

In this section we compare the predictions from theory to the experimental results.
In order to achieve that we use the noise data, some of which are displayed in fig.
(2.6)2. We average each trace over two frequency intervals representative of the
two noise contributions. We select the interval [0.25− 0.35] MHz for the classical
noise and [3− 4.55] MHz for the quantum noise regime, respectively. Subsequently
per each of the two regimes the obtained average values are plotted vs. the sample
thickness and fitted to the theory of section 2.2. This is shown in fig. (2.7), where
the presented data are compared to the following expressions

ΓRsn
= Bsn

(

1− `+ z1

L+ z1 + z2

)

, (2.33)

ΓRcn
= Bcn

(

1− `+ z1

L+ z1 + z2

)2

. (2.34)

The subscripts sn and cn indicate quantum and classical noise respectively. The fit
parameters are ` and B; z1 and z2 are the extrapolation lengths, that are propor-
tional to `. Eqs. (2.33) and (2.34) are obtained from eqs. (2.20) and (2.21). Results
from fitting eqs. (2.33) and (2.34) to the data are summarized in table (2.1).

To further check our approach we show that the classical noise theory fails to
explain the quantum noise data, as well as the quantum noise theory does not allow
for an extraction of realistic sample parameters from the classical noise data. This
is evident by looking at fig. (2.7) and table (2.1).
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Figure 2.7: (left) Total reflection of classical noise as function of the sample thickness
L. Each data point (open circles) has been obtained by averaging the noise spectra over
[0.25− 0.35] MHz. The solid line is a fit to the classical noise theory ΓRcn , the dashed line
is a fit to the quantum noise theory ΓRsn . The theory for quantum noise fails to fit classical
noise data. (right) Total reflection of quantum noise as function of the sample thickness
L. Each data point (open circles) has been obtained by averaging the noise spectra over
the range [3 − 4.55] MHz. The solid line is a fit based on the quantum noise theory, the
dashed line is a fit based on the classical noise theory. Although the classical noise theory
seems to fit the quantum noise data, the extracted value for the mean free path ` is not
acceptable because in disagreement both with the value obtained by fitting the quantum
noise theory to the data and the one obtained by independent intensity measurements.
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Figure 2.8: (top) The prediction of linear scaling of total reflection of noise ΓR(F
−1
a0

) is
tested. For each sample the total reflection noise data are plotted versus the measured F−1

a0
.

ΓR(F
−1
a0

) is fitted to the experimental data (open symbols). (bottom) ΓR(Ω) is plotted
for values of Sn obtained by fitting ΓR(F

−1
a0

) to the experimental data. The theoretical
curves (solid lines) are compared to the measured spectra (open symbols).
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2.8. Conclusions

L [µm] Sn Si

1.43 0.688± 0.007 0.693± 0.008
2.3 0.631± 0.002 0.65± 0.02
4 0.525± 0.002 0.55± 0.01
5.5 0.51± 0.01 0.522± 0.006
7.2 0.488± 0.001 0.498± 0.008
8.2 0.538± 0.001 0.5386± 0.007
13.5 0.421± 0.002 0.428± 0.002
18 0.412± 0.001 0.414± 0.001

Table 2.2: Parameter S obtained from total reflection of intensity (Si) and noise (Sn).

Furthermore, in order to compare the experimental results to the theory of
section 2.2, and specifically eq. (2.26), for each sample the total reflection data are
plotted versus F−1

a0
, which is a measured quantity. The goal is to verify the predicted

linear scaling of ΓR(F
−1
a0

). In order to test the theory we modify eq. (2.26) to include

the extrapolation lengths by replacing ρ ≡ `
L with S = (`+ z1) (L+ z1 + z2)

−1
.

The only fit parameter is S.
In fig. (2.8, upper panel), ΓR(F

−1
a0

) is plotted for three representative samples
along with the linear fits to the data. The difference between the previous approach
illustrated in fig. (2.7) and the current one, shown in fig. (2.8), is that in the present
case, for each sample the fit produces an estimate for S, and therefore `. By contrast,
in fig. (2.7) a single value for ` is obtained by fitting the data available for all the
samples.

The linear scaling predicted by eq. (2.26) is apparent. Having checked the
predicted linear scaling, we make use of the total reflection intensity data analysed
in section 2.5 to quantitatively evaluate our results. By using the intensity data
and eq. (2.28) we can independently deduce the parameter S for each sample.
We indicate with Si and Sn the parameter S as measured via intensity and noise
measurements respectively. The comparison between Si and Sn is summarized in
table (2.2). The agreement is very good. In addition, the mean free path ` obtained
in section 2.5 from the intensity data gives ` = (0.84± 0.07) µm, in full agreement
with the values for ` obtained via classical and quantum noise measurements.
Finally, to further inspect the agreement between the experimentally measured noise
spectra and the theoretical results, the values for Sn are plugged in eq. (2.26). A
comparison between the experimental total reflection spectra and ΓR(Ω) is shown
for three representative samples in fig. (2.8, lower panel). The agreement is very
good.

2.8 Conclusions

We have derived a theory for the reflection of classical and shot noise from random
media and tested it experimentally. It was shown a linear and quadratic scaling for
the total reflection of shot (Fa0

= 1) and classical (Fa0
� 1) noise, respectively.
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The scaling parameter is sp =
(

1− `
L

)

.
It was found that total reflection of shot and classical noise as function of the
frequency Ω exhibits different properties. Shot noise has an higher reflection than
classical noise and the transition from one regime to the other is very clear around
1 MHz. Furthermore it was shown that a linear behaviour gauges the transition
from classical noise at low frequency (Ω < 1 MHz) to shot noise at high frequency
(Ω > 1 MHz). This linear behaviour emerges when the noise data are plotted as
function of F−1

a0
.
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CHAPTER3

Weak localization of photon noise in random media

We present an experimental study of coherent backscattering (CBS) of photon noise
from multiple scattering media. Using a pseudothermal light source we study the effect
of weak localization on photon noise. In the noise spectrum we observe a continuous
transition in the Fano factor enhancement from the shot noise regime to the wave
fluctuations regime. These initial experiments on weakly scattering media demonstrate
that sensitive noise measurements can be combined with the separation of path lengths
present in coherent backscattering, opening up new opportunities for experiments on
noise transport in the localization regime.

3.1 Introduction

In chapter 2 we investigated the total reflection of classical and quantum noise from
TiO2 random samples. However, those experiments did not allow to closely monitor
the propagation of noise as function of the number of scattering events that light
undergoes in the medium, nor did the experiments by Lodahl et al. [78], as they
revolved around the total transmission of noise trough random media. Moreover, in
both experiments the classical noise source was given by the low frequency noise of
the Ti:Sapphire laser, which did not allow for fine tuning of the noise intensity and
spectral range of classical and shot noise. The goal of the experiments presented
in this chapter is to extend the study of photon noise by devising a method to
simultaneously follow the transport of noise as function of the order of scattering
and to control the contribution of the classical noise.
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A method to separate multiple scattering paths of different length is coherent
backscattering (CBS). As explained in the chapter 1, CBS results from an interfer-
ence effect between reciprocal paths in a random medium, and manifests itself as
a twofold enhancement of the light intensity in the backscattering direction with
respect to the diffuse background. Measurements of CBS have turned over the years
from a striking evidence of weak localization of light to a tool for investigating the
scattering properties of many different media [86–88]. The strong Anderson local-
ization transition has received much attention since it was first proposed in 1958
[89], nevertheless it remains an elusive phenomenon [90, 91] and noise measure-
ments could provide alternative means to investigate it. Furthermore, the impact
of Anderson localization on non classical properties of light is yet an open question
[92].

This chapter is structured as follows: in section 3.2 we describe the main prin-
ciples that govern the statistics of light sources, in section 3.3 we calculate the
fluctuations induced by a diffuser on a coherent beam and explain the analogy be-
tween a diffuser and a thermal source. Subsequently, in section 3.4 the intensity
spectrum for a pseudothermal source is derived. In section 3.5 the experiments that
lead to the weak localization of photon noise are described and finally, in section
3.6, we analyze and discuss the results.

3.2 Statistics of the light radiation

The statistical properties of the light can be assessed by using Mandel’s formula.
Mandel’s formula is very useful to calculate the photocount distribution PM of the
photons emitted by a source and is given by [38, 93]

PM (n, t, T ) =

∫ ∞

0

[αW (t, T )]n

n!
exp [−αW (t, T )]P (W )dW, (3.1)

with

W (t, T ) =

∫ t+T

t

I
′

(t′)dt′, (3.2)

where n denotes the number of photons, I
′

the instantaneous intensity, α the quan-
tum efficiency of the detector. The measurement is carried out in the time interval
[t, t+ T ]. With P (W ) is indicated the intensity distribution of the ensemble. One
could interpret formula (3.1) in the following way: if we consider one single real-
ization for the sequence of photons measured within time T we would achieve a
Poissonian photocount statistics. However, in general, different sequences would
yield different results because W (t, T ) is not a deterministic variable but a random
one. Therefore what is significant is the photocount distribution calculated over
an ensemble of different realizations of the photon number sequences. Eq. (3.1)
expresses then the Poissonian distribution weighted by the intensity distribution
P (W ) of the ensemble.

In a true thermal source, like a discharge lamp or a light bulb, the radiating
system is externally excited and subsequently generates light by means of sponta-
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3.2. Statistics of the light radiation

neous emission. Hence, all the elementary sources (atoms, molecules) emit light
independently from one another.

A thermal source is characterized by a Rayleigh distribution for the intensity
PR(W ) whereas, the photocount distribution PM becomes of type Bose-Einstein,
indicated with PBE(n), and we have the expressions

PR (W ) =
1

W
exp

(

−W
W

)

(3.3)

and

PM = PBE(n) =
1

n

(

n

n+ 1

)n

, (3.4)

where with n ≡ αW (t, T ) we indicate the mean number of photocounts, also known
as the occupation number.

By contrast, laser light is produced by stimulated emission, whereby all the
elementary sources radiate in unison and the intensity distribution PL(W ) is given
by

PL(W ) = δ(W −W ), (3.5)

while the photocount distribution PM is Poissonian, indicated with PP (n), and
results in

PM = PP (n) =
nn exp (−n)

n!
. (3.6)

The variance of PP (n) has the expression

(∆n)2P = n. (3.7)

Eqs. (3.4) and (3.6) can be obtained by inserting eqs. (3.3) and (3.5) in Mandel’s
formula respectively, provided that the integration time T is much smaller than the
coherence time τc of the light. Eqs. (3.5) and (3.6) show that, in spite of the fact
that all the different members of the intensity ensemble relative to W are exactly
the same, we end up with a probability distribution for the photocounts. This
situation highlights the particle nature of light: even the most stable source has
intensity fluctuations. These fluctuations are proportional to the mean number of
the emitted photons.

For a true thermal source, like a blackbody, Planck’s law predicts an average
photon number given by [93]

n =
1

exp
(

hω
kTK

)

− 1
, (3.8)

with TK being the temperature in Kelvin, h Planck’s constant, K Boltzmann’s
constant and ω the frequency of the light of concern. Eq. (3.8) shows that, at
optical frequencies, a temperature above the one of the surface of the sun (6000 K)
is needed to achieve an occupation number bigger than one. The variance of the
Bose-Einstein distribution is

(∆n)2BE = n+ n2. (3.9)
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Weak localization of photon noise in random media

An occupation number much smaller than one, like the one exhibited by true ther-
mal sources in experimentally feasible configurations, depresses the classical fluctu-
ations that are given by the n2 term in eq. (3.9). An additional complication carried
by thermal sources is that their signature, a Bose-Einstein probability distribution,
shows up only when the measurements are performed within the coherence time τc
of the source, as can be proved by using Mandel’s formula. Typical thermal sources
have coherence times of the order of 10−10s. Performing measurements within this
time interval is extremely demanding from an experimental perspective. Measur-
ing over many coherence times of the sources implies averaging out the interesting
fluctuations that give rise to the quadratic term in eq. (3.9); in this case the mea-
sured photocount distribution of thermal light becomes indistinguishable from a
Poissonian one.

If we want to investigate and use the classical properties of light it is then crucial
to find a way to optimize the quadratic term of expression (3.9). Pseudothermal
light is a solution to the complications displayed by true thermal sources as it mimics
the same physics as the one responsible for thermal light but on a experimentally
accessible scale. As it is explained in the next section pseudothermal light can be
generated by illuminating a rotating ground glass diffuser with laser light. The
analogy between the intensity statistics of a thermal source and the one generated
by a rotating diffuser is at the base of the name pseudothermal source.

3.3 Diffuser as a pseudothermal source

In this section we calculate the intensity fluctuations and the intensity probability
distribution of a thermal source, composed by an ensemble of radiating elements
(atoms, molecules). Furthermore, we show the analogy with the statistical proper-
ties of the radiation produced by a ground glass diffuser illuminated by coherent
light.

A ground glass diffuser, see fig. (3.1), is schematized as a collection of random
glass defects that we call microareas. An incoming laser radiation that impinges on
the diffuser is randomly scattered by the microareas. The diffuser rotates, therefore
the incoming beam illuminates different microareas, that in turn act like indepen-
dent sources. By independent we mean that there is no phase relationship among
fields produced by different microareas. This is the key property that makes a
ground glass diffuser a pseudothermal source: the microareas mimic the behaviour
of the emitting atoms of molecules in a true thermal source.

To calculate the fluctuations induced by a large number of radiating scatterers
we follow the approach presented in [22]. The scatterers in this model are the
microareas of the diffuser.

Let us consider the field produced by a large number of scatterers ν. The
complex amplitude of the resulting field is given by

E(t) = E0 exp(−iωt)
ν
∑

j=1

exp[iφj ], (3.10)
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3.3. Diffuser as a pseudothermal source

cases I2

i = j = k = l
(

ε0c
2

)2
E4

0ν

i = j and k = l with i 6= k
(

ε0c
2

)2
E4

0ν (ν − 1)

i = l and j = k with i 6= j
(

ε0c
2

)2
E4

0ν (ν − 1)
remaining cases 0

Table 3.1: Contributions to I2

with φj being the phase of the j−th field and E0 and ω the amplitude and frequency
of each radiating field, respectively. Our interest lies in calculating the intensity
fluctuations, therefore we have to compute the quantity

∆I2 = I2 − I
2
, (3.11)

where the overbar denotes ensemble averaging. To calculate ∆I2 we proceed by
separately calculating I and I2. The cycle averaged intensity I is given by

I ≡ ε0c

T

∫ T

0

Re{E(t)}Re{E(t)∗}dt = ε0c

2
E2

0

ν
∑

ij

exp i (φi − φj) , (3.12)

with T = 2π
ω , c the speed of light, ε0 the dielectric constant and where we have used

eq. (3.10).
In order to calculate I we recall that the phases φi are random variables with

uniform probability distribution that assumes values in [0 − 2π]. The only cases
in which I 6= 0 are then those for which φi = φj . In all other cases we have

exp i (φi − φj) = 0. Therefore we get

I =
ε0c

2
E2

0ν. (3.13)

Next we calculate I2. By using eq. (3.12) we obtain

I2 =
(ε0c

2

)2

E4
0

∑

ijkl

exp i (φi − φj + φk − φl) . (3.14)

To compute I2 we use the same arguments as above and we end up with the situation
presented in table (3.1). By adding all of the contributions in table (3.1) we have

I2 =
(ε0c

2

)2

E4
0 (ν + 2ν (ν − 1)) . (3.15)

We now have everything we need to calculate ∆I2. By means of eqs. (3.13) and
(3.15) we obtain

∆I2 = I2 − I
2
=
(ε0c

2

)2

E4
0

[

(ν + 2ν (ν − 1))− ν2
]

=
(ε0c

2

)2

E4
0

[

ν2 − ν
]

. (3.16)
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If the number of radiating scatterers is large (ν � 1) ∆I2 becomes

∆I2 =
(ε0c

2

)2

E4
0ν

2 = I
2
. (3.17)

The intensity fluctuations ∆I2 scale quadratically with the average intensity.
Having calculated ∆I2 we can also recover the full probability distribution P (I).

A way to calculate the probability distribution is to compute its higher order mo-
ments In. In general, computing the higher moments is a difficult task but, if the
number of radiating scatterers ν is large the following relationship holds

In = n!I
n
. (3.18)

Eq. (3.18) can be deduced, following [42], by writing down the expression for In,
given by

In =
∑

ν1...νn,β1...βn

Eν1 ...EνnEβ1
...Eβn

. (3.19)

If there is a random phase relationship between the fields, e.g. the fields are inde-
pendent from one another in accordance with the reasoning that leads to table (3.1),
the only contributions different from zero are of the type

EνEβ = δνβI. (3.20)

Since there are n! ways to combine the fields in eq. (3.19) so that eq. (3.20) holds
true, eq. (3.18) is recovered for the moments.
From the expression for the moments we can extract the total probability distribu-
tion PR (I), given by

PR (I) =
1

I
exp

(

−I
I

)

. (3.21)

Eq. ( 3.21) represents the Rayleigh distribution, which is a milestone in statistical
optics. The Rayleigh distribution occurs often in physics and is a consequence of
the central limit theorem that applies because of the independency of the sources.

3.4 Intensity spectrum of a pseudothermal source

In this section we follow the theory presented in [94] to calculate the noise power
spectrum S(Ω) generated by a rotating diffuser. The schematics is presented in
fig. (3.1).

The formula for the power spectrum is given by

S(Ω) =

∫ +∞

−∞

〈

ĵ(t)ĵ(t+ τ)
〉

exp (−iΩτ) dτ, (3.22)

where Ω denotes the noise frequency, ĵ(t) the photocurrent operator and with 〈〉 we
indicate quantum averaging.
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3.4. Intensity spectrum of a pseudothermal source

Figure 3.1: Setup consisting of a lens and a diffuser used to generate pseudothermal light.
A laser beam of frequency ω and diameter σ is focussed by a lens of focal lens f and
impinges on a ground glass diffuser rotating at speed v. With A is indicated the cross
section of the beam on the diffuser. The ground glass diffuser is modelled as a collection
of random microareas. The rotation of the microareas gives rise to pseudothermal light.

Our goal is to evaluate the term
〈

ĵ(t)ĵ(t+ τ)
〉

and Fourier transform it accord-

ing to eq. (3.22). In order to fully account for the wave and particle nature of light
we resort to the quantum derivation outlined in [94]. We have

〈

Î(t)Î(t+ τ)
〉

=
〈

: Î(t)Î(t+ τ) :
〉

− ~2ε0iδ
′(τ)

〈

Ê(−)(t)Ê(+)(t+ τ)
〉

(3.23)

where Î(t) denotes the intensity operator and the :: notation indicates normal or-
dering of the field operators Ê(−)(t) and Ê(+), that are given respectively by

Ê(−)(t) =

(

1

2π

)2 ∫

dω

(

~ω

2ε0

)1/2

â†(ω)eiωt (3.24)

and

Ê(+)(t) =

(

1

2π

)2 ∫

dω

(

~ω

2ε0

)1/2

â(ω)e−iωt. (3.25)

In eqs. (3.24) and (3.25) ~ = h
2π with h being Planck’s constant and ε0 is the

dielectric constant. By using the relationship

g(2)(τ) =

〈

: Î(t)Î(t+ τ) :
〉

〈

Î(t)
〉〈

Î(t+ τ)
〉 , (3.26)

where g(2)(τ) denotes the second order correlation function, we can rewrite eq. (3.23)
as follows
〈

Î(t)Î(t+ τ)
〉

= g(2)(τ)
〈

Î(t)
〉〈

Î(t+ τ)
〉

− ~2ε0iδ
′(τ)

〈

Ê(−)(t)Ê(+)(t+ τ)
〉

.

(3.27)

The term
〈

Ê(−)(t)Ê(+)(t+ τ)
〉

is related to the first order correlation function

g(1)(τ) and we have

〈

Ê(−)(t)Ê(+)(t+ τ)
〉

=
g(1)(τ)

〈

Î(t)
〉

2ε0
=
( e

~ω

)

(

1

2ε0

)

〈

ĵ(t)
〉

g(1)(τ). (3.28)
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The relationship between the intensity Î(t) and the photocurrent 〈ĵ(t)〉 is given by

〈

ĵ(t)
〉

=
e

~ω

〈

Î(t)
〉

. (3.29)

Therefore, by exploiting eq. (3.29) we have

〈

ĵ(t)ĵ(t+ τ)
〉

= g(2)(τ)
〈

ĵ(t)
〉 〈

ĵ(t+ τ)
〉

−
( e

~ω

)

~iδ′(τ)
〈

ĵ(t)
〉

g(1)(τ). (3.30)

For chaotic light we can use the Siegert relationship, [95]

g(2)(τ) = 1 +
∣

∣

∣g(1)(τ)
∣

∣

∣

2

. (3.31)

What we need to calculate now is g(1)(τ). Up to now we have not made use of
the properties of the rotating diffuser that generates pseudothermal light. We use
the result provided by [96] where g(1)(τ) is calculated for a rotating ground glass
diffuser and that yields

g(1)(τ) =
2πσ2

A
νs2 exp

(

iωτ − v2τ2

2

(

k2σ2

f2
+

1

4σ2

))

. (3.32)

In eq. (3.32), and with reference to fig. (3.1), σ2 is the cross section of the incident
beam, ν is the number of independent microareas we divide the diffuser into, A is
the illuminated area on the surface of the diffuser and s is a term that takes into
account diffraction from the microareas. By looking at eq. (3.32) we define the
coherence time τc of the pseudothermal source as

1

τ2c
≡ v2

2

(

k2σ2

f2
+

1

4σ2

)

. (3.33)

It is instructive to consider eq. (3.33) for a series of realistic experimental conditions.
As it is clear from fig. (3.2) to introduce excess fluctuations in the MHz regime we
need to spin the diffuser with a linear velocity of a few ms−1 and a focal length of
2− 3 cm.

We now have all the ingredients to calculate eq. (3.22). On inserting eq. (3.30)
in eq. (3.22), and making use of eq. (3.32), we obtain

S(Ω) =

∫ +∞

−∞

〈

ĵ(t)ĵ(t+ τ)
〉

exp(−iΩτ)dτ

=
〈

ĵ(t)
〉2

δ (Ω)

+
〈

ĵ(t)
〉2 τc

2
exp

{

−Ω2τ2c
8

}

+
〈

ĵ(t)
〉

(

ω − Ω

ω

)

ζ, (3.34)
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Figure 3.2: (left) Calculation of the inverse coherence time τ−1
c as function of the focal

length of the lens for three different rotational speed of the ground glass diffuser. (right)
Calculation of the inverse coherence time τ−1

c as function of the rotational speed of the
ground glass diffuser for three different focal lengths.

with

ζ = e
2πσ2νs2

A
. (3.35)

The first part of eq. (3.34) contains a delta function that represents the dc
component of the spectrum. The second part of eq. (3.34) contains a frequency-
dependent gaussian spectrum, whose amplitude scales quadratically with the inten-
sity. This term is the classical noise contribution. Finally the third part of eq. (3.34)
displays a flat, frequency independent term because, given the experimental con-
ditions, the frequencies ratio yields one. This term is the shot noise contribution.
The shot noise term is a consequence of the quantum nature of light, of its intrinsic
granular nature.

The noise barrier in any optical system is given by the shot noise. A shot noise
limited source, like some lasers, is thus the quietest possible source. It is feasible to
beat this limit only by resorting to quantum optics tricks, like for example squeezing.
Also in that case though, we are not eliminating noise, but only transferring noise
from one quadrature to the other, so that one quadrature displays shot and excess
noise while the other one exhibits a noise contribution which is below the shot noise
level.

In the next section we will describe experiments that make use of the system
composed by two lenses and a diffuser to generate pseudothermal light.

3.5 Weak localization of photon noise

Here, we present the first experimental investigation of weak localization of photon
shot and pseudothermal noise from scattering media. The basic setup to induce
and measure photon noise is depicted in fig. (3.3). It consists of a Ti:Sapphire laser
(Spectra Physics-Tsunami) and a set of two lenses to focus light on the diffuser
and collimate the exit beam respectively. The collimated exit beam is collected by
an APD detector and the noise content of the signal is analyzed by the electronic
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Figure 3.3: Basic setup to measure photon noise. A Ti:Sapphire laser is a photon shot
noise source. The rotating ground glass diffuser produces pseudothermal light and the two
lenses generate a collimated beam. The spectrum analyzer investigates the noise content
of the signal.

lock-in amplifier

APD : avalanche

photodiode

       f: focal length of

          the lens
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pinhole

linear
polarizer
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module APD module moves

along focal plane of 
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electronic spectrum 
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beam
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iris
Ti:Sa laser chopper

diffuser
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f

Figure 3.4: Schematic overview of the experimental setup for measurement of noise and
intensity coherent backscattering.

spectrum analyzer. By tuning the angular speed of the diffuser it is possible to push
the transition frequency up to the MHz regime. We integrated these components
into a coherent backscattering setup.

Coherent backscattering of both intensity and noise is measured in a beamsplit-
ter configuration [97], as outlined in fig. (3.4). We used the 1.6 W output of a
shot noise limited Ti:Sapphire oscillator operating in cw mode and at a wavelength
of 780 nm. Light scattered from the sample was collected by a lens (f = 8 cm)
and detected by an avalanche photodiode (APD) module (Hamamatsu C4777) that
moves along the focal plane of the lens. An electronic spectrum analyzer (Agilent)
was used to measure the noise power spectrum. The angular resolution amounts to
1.2 mrad and is determined by a 100 µm pinhole placed in front of the detector.
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Figure 3.5: Noise spectrum of light scattered from a gallium phosphide sample as function
of backscattering angle and frequency. The CBS noise cones are clearly visible over the
entire frequency range.

The sample was slightly tilted to prevent light which was specularly reflected from
the sample to be detected. Speckle averaging was obtained by rotating the sample
around its azimuthal axis using a spinning motor. We performed detection in the
polarization conserving channel. Lock-in detection minimizes the influence of stray
light. Pseudothermal light was generated by focusing the laser beam onto a rotating
diffuser [98, 99]. By spinning the diffuser it was possible to introduce excess noise
up to the MHz regime.

Our sample consists of a slab of porous GaP fabricated via an electrochemical
etching technique, and showing negligible absorption at 780 nm [100]. The sample
has thickness L ' 70 µm and k0 ' 17.7, where with k0 we indicate the incoming
wavevector outside the medium.

Noise spectra were acquired with a resolution bandwidth (RBW) of 30 kHz and
a video bandwidth (VBW) of 10 kHz over a frequency segment that spans 8.85 MHz,
from 0.15 MHz to 10 MHz . Each point in the noise traces has been obtained by
computing the average of 50 consecutive points in the spectrum. Intensity and noise
cones were acquired in the polarization conserving channel and normalized to the
intensity and noise power measured in the polarization nonconserving channel. The
cones were further normalized to the value assumed on the left most angle. Noise
spectra are shown in fig. (3.5) as function of angle and frequency. Cross sections at
different frequencies are shown in fig. (3.6), along with the intensity CBS cone data
and its square. The data highlight how the CBS shape changes from the shot noise
regime at high frequencies to the pseudothermal noise regime at low frequencies.
Furthermore, the comparison to the intensity data shows how the shot noise cone,
obtained from the high frequency data, follows closely the intensity cone whereas the
intensity CBS cone squared is an upper bound for the pseudothermal cones, obtained
from the low frequency data. The enhancement produced by pseudothermal light
exceeds the ordinary maximum value of 2 obtainable for the intensity cone.
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Figure 3.6: Comparison between the measured CBS intensity and CBS noise signals. At
high frequency the shot noise cones match the intensity cone. As the noise frequency is
lowered the noise cones exceed the intensity cone and approach the maximum value given
by the squared intensity.

3.6 Analysis

We start modelling our experiment by using eq. (3.34). The first term indicates
the dc intensity and is filtered out in our experiments, therefore it will be discarded
from the analisys. The second term in eq. (3.34) represents the wave fluctuations
and quantifies the excess noise, while the third term accounts for the shot noise or
particle fluctuations.

The measured photocurrent is related to the light intensity by 〈j〉 = γ 〈I〉 where
〈I〉 is the intensity and γ a constant proportional to the responsivity of the APD
detector. We can explicitly introduce the sample parameters by writing

〈Iab〉 = Rab 〈Ia〉 , (3.36)

〈Iab〉2 = R2
ab 〈Ia〉2 , (3.37)

where Rab indicates the classical reflection coefficient from incoming channel a to
outgoing channel b, averaged over different realizations of the disorder (ensemble
average). On inserting eqs. (3.36) and (3.37) in eq. (3.34) and performing ensemble
average we obtain

〈S(Ω)ab〉 = φRab 〈Ia〉+ γ2R2
ab 〈Ia〉2

(τc

2

)

exp

(

−Ω2τ2c
8

)

, (3.38)

where we have highlighted the dependence of the photocurrent spectrum on the
outgoing channel b, and φ = γζ. The frequency-dependent noise spectrum can be
used to calculate a frequency-dependent Fano factor F defined as the ratio of the
photocurrent fluctuation to the average photocurrent,

F (Ω)ab ≡
〈S(Ω)ab〉
φRab 〈Ia〉

. (3.39)
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Figure 3.7: Observed Fano factor as function of frequency obtained from the noise trace
collected exactly at backscattering. A gallium phosphide sample with k0` ' 17.7 has been
used. The Fano factor has been extracted by dividing the full noise spectrum by the
constant value obtained by fitting the high frequency noise data to a line. The solid line
is a guide to the eye.

Fig. (3.7) shows the Fano factor as a function of noise frequency. In order to
analyze the effect of coherent backscattering on the Fano factor, we analyze the Fano
factor as a function of scattering angle and frequency. The instrumental response
is divided out by normalizing both the average intensity and the noise spectra to
those acquired in the polarization nonconserving channel, in which the CBS effect
is absent. We define a Fano factor CBS enhancement ηab(Ω) as the ratio of the
normalized noise spectra to the normalized intensity

ηab(Ω) ≡
〈S(Ω)pcab〉
〈S(Ω)pncab 〉

(

I
pc

ab

I
pnc

ab

)−1

, (3.40)

where the subscript pc and pnc stand for polarization conserving and polarization
nonconserving, respectively. By expanding eq. (3.40) we obtain

ηab(Ω) =
φ+R2

ab

pc
(

R
pc

ab

)−1

〈Ia〉 γ2
(

τc
2

)

exp
(

−Ω2τ2

c

8

)

φ+R2
ab

pnc
(

R
pnc

ab

)−1

〈Ia〉 γ2
(

τc
2

)

exp
(

−Ω2τ2
c

8

)

. (3.41)

A 3D plot of ηab(Ω) is shown in fig. (3.8). Cross sections of the 3D plot are produced
in fig. (3.10) for three representative noise frequencies as function of the scattering
angle. The Fano factor enhancement ηab(Ω) is 1 away from the CBS cone, as here
the polarization conserving and nonconserving channels yield the same noise and
intensity.

It is interesting to consider the situation on backscattering, by calculating ηaa(Ω).

In order to do that we need to evaluate R2
aa

pc
(

R
pc

aa

)−1

and R2
aa

pnc
(

R
pnc

aa

)−1

.
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Figure 3.8: 3D plot for the measured Fano factor CBS enhancement ηab(Ω) as function of
frequency and angle. A gallium phosphide sample with k0` ' 17.7 has been used. The
plotted data have been obtained from the raw data by binning 50 consecutive data points
along the frequency axis. ηab(Ω) varies from 1 at high frequencies in the shot noise regime
to a maximum value which is always lower than the intensity CBS enhancement. Values
of ηab(Ω) below 1 are due to spurious fluctuations.

The coherent backscattering effect due to interference is present in the polariza-
tion conserving channel 1. Since in the polarization nonconserving case the coherent
backscattering effect is absent we assume

R2
aa

pnc

R
pnc

aa

=
R2

ab

Rab

. (3.42)

From now on we drop the subscripts pc and pnc, as the term Raa will always
be referred to the polarization conserving case. In order to assess the effect of
mesoscopic interference in the coherent backscattering of noise, we consider the first
order mesoscopic contribution in the reflectivity as obtained in [102]. By exploiting
eq. (15) in [102] we have

R2
ab = R

2

ab

(

2− 2

N(1− `
L )

)

, (3.43)

and

R2
aa = R

2

aa

(

2− 3

N(1− `
L )

)

. (3.44)

As we have seen in chapter 2, the total conductance g, defined in transmission, is
given by

g =
N`

L
. (3.45)

1 While the polarization conserving channel contains the interference effect that gives rise to the
coherent backscattering phenomenon, it does not reject single scattering events. Single scattering
events do not have a reverse path and contribute to lowering the enhancement factor [101].
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Figure 3.9: (left) Observed noise CBS enhancement factor on backscattering ηaa as func-
tion of frequency. The enhancement factor ηaa(Ω) has been obtained by taking the max-
imum of ηab(Ω) at each frequency. The solid line is a fit of the theoretical line shape for
ηaa to the data. (right) Calculations that illustrate the effect of the conductance gr on the
Fano factor CBS enhancement on backscattering ηaa (Ω). Low gr values induce stronger
variations, especially at low frequencies. As gr increases ηaa quickly converges towards
the limit function in eq. (3.50), and deviations caused by high gr values become difficult
to be discerned. The inset highlights the different values reached by ηaa at Ω = 0. The
parameters φ, β and τc are fixed according to the values obtained in experiments.

In reflection, following the same procedure as the one adopted for g we define

gr ≡
∑

a,b

Rab, (3.46)

and, using the fact that Rab =
(

1− `
L

)

we find

gr = N

(

1− `

L

)

. (3.47)

Formulas (3.43) and (3.44) express the fact that when g−1
r contributions are negligi-

ble the reflected intensity follows a Rayleigh distribution. Deviations from Rayleigh
statistics arise when interferences effect between multiple scattering paths start to
play a role.

By using eqs. (3.41), (3.43) and (3.44) we obtain the following expression for the
Fano factor enhancement on backscattering

ηaa(Ω) =
φ+Raa

(

2− 3
gr

)

〈Ia〉 γ2
(

τc
2

)

exp
(

−Ω2τ2

c

8

)

φ+Rab

(

2− 2
gr

)

〈Ia〉 γ2
(

τc
2

)

exp
(

−Ω2τ2
c

8

) . (3.48)

According to random matrix theory, Raa = 2Rab. To take into account a real
experimental situation, where the enhancement on backscattering is usually lower
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Figure 3.10: Noise CBS enhancement factor ηab as function of the scattering angle around
the backscattering direction at three different frequencies.

than 2, we will assume Raa = (2− β)Rab. After rearranging eq. (3.48) we find

ηaa (Ω) = 1 +

[

2 (1− β)
(

1− g−1
r

)

− (2− β) g−1
r

] (

τc
2

)

exp
(

−Ω2τ2

c

8

)

ψ + 2
(

1− g−1
r

) (

τc
2

)

exp
(

−Ω2τ2
c

8

) , (3.49)

with ψ = φ
(

〈Ia〉Rabγ
2
)−1

. It is evident the sensitivity of ηaa to a broad range
of gr values. In our case, being the magnitude of g−1

r negligible, we can simplify
eq. (3.49) and obtain

ηaa(Ω)g−1

r −→0 = 1 +
2 (1− β)

(

τc
2

)

exp
(

−Ω2τ2

c

8

)

ψ + 2
(

τc
2

)

exp
(

−Ω2τ2
c

8

) . (3.50)

In fig. (3.9, left panel), we show the measured Fano factor CBS enhancement on
backscattering ηaa in our experimental configuration as well as, in fig. (3.9, right
panel), the calculated effect of a selection of values for the conductance gr on ηaa.
The factor ηaa (Ω) is plotted as function of noise frequency and is fitted by using
eq. (3.50). A good agreement is recovered.

The enhancement ηaa depends on the balance of quantum and classical noise,
respectively given by ψ and the exponential term in the denominator of eq. (3.50).
The behaviour of ηaa at low and high frequency, in the classical and shot noise
regimes, is given respectively by

ηaa(Ω)Ω−→0 = 1 +
2(1− β) τc2
2 τc

2 + ψ
(3.51)

and
ηaa(Ω)Ω−→∞ = 1. (3.52)

In the low-frequency limit, ηaa(Ω) approaches the coherent backscattering en-
hancement for the intensity, 2− β. The Fano factor at high frequencies, i.e. for the
coherent state, is not modified by coherent backscattering.
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In general, ηaa (Ω) contains both the shot noise and the pseudothermal contri-
butions, as shown in eq. (3.50), with the frequency Ω gauging the two regimes as
highlighted by eqs. (3.51) and (3.52).

In fig. (3.10) ηab (Ω), the Fano factor CBS enhancement of the outgoing radia-
tion, is plotted as function of the backscattering angle. The factor ηab (Ω) displays
no angular dependence in the full shot noise regime at high frequencies, whereas the
interference effect responsible for the CBS cone, as the low frequency regime is ap-
proached, reflects itself on the development of an angular dependent Fano factor. A
gradual transition as function of frequency between the full shot and pseudothermal
noise case is also evident.

3.7 Conclusions

In this chapter we have studied for the first time photon noise measurements in
the weak localization regime and shown that the transition from the full shot noise
regime at high frequency to the full pseudothermal domain at low frequency can be
investigated. We have experimentally demonstrated the enhancement of the Fano
factor around the backscattering direction due to the CBS effect. Furthermore, we
were able to extract the Fano factor CBS enhancement of the reflected radiation as
function of both frequency and angle. It is remarkable that the enhancement of the
Fano factor CBS depends on g−1

r . The standard intensity coherent backscattering
cone does not have such a contribution, whereas measuring photon noise gives access
to R2

ab, from which the magnitude of g−1
r effects can be extracted.

We have shown that measurements that span the full noise spectrum, from
the shot to the excess noise regime, have the advantage to provide simultaneously
information about the first and second moment of the probability distribution of the
intensity of the reflected radiation. More specifically, our theory indicates that the
enhancement displayed by the noise cone reveals information about the mesoscopic
correlations that give rise to deviations from Rayleigh statistics in the strongly
scattering regime.

The use of the CBS technique has in addition the potential to study the first
and second moment of the probability distribution as function of the path length.

Sensitive photon noise experiments can be combined with coherent backscat-
tering experiments, opening up new avenues for studying quantum optical aspects
of diffuse wave transport. Future experiments on photon noise in the strong scat-
tering regime may be performed to explore mesoscopic quantum corrections and
localization. Furthermore, noise measurements could prove themselves useful also
in systems that display gain, random lasing and absorption [67, 72, 75].

65





CHAPTER4

Correlations in the mesoscopic regime

In this chapter we introduce an experimental technique optimized to investigate the
intensity statistics of light transmitted through strongly scattering systems. We describe
the steps taken in designing and building up an optical setup to induce and measure
correlations caused by crossings of multiple scattering paths. These correlations are
revealed in the intensity statistics. Although we find that the sought for effect remains
difficult to observe with our current setup, we suggest improvements that may lead to
an enhancement of the correlations for an easier detection.

4.1 Introduction

In mesoscopic electronics the conductance G of a system is given by [60, 103]

G =
e2

h

∑

a,b

Tab, (4.1)

where Tab is the transmission coefficient from channel a to channel b, e is the electron
charge and h is Planck’s constant. An important role is played by the fluctuations of
G, mainly because of their universal character, after which they are named universal
conductance fluctuations [104] (UCF).

In mesoscopic optics the relevant parameter is g, already seen in chapter 1,
defined as g ≡ ∑ab Tab, known also as the dimensionless conductance. It is found
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that

g =
N`

L
, (4.2)

where N is the number of channels, ` the mean free path and L the sample length.
The parameter g plays an important role in determining the magnitude of the

correlations that arise in transmission and reflection as multiple scattering paths
propagate through a random medium. In a transmission configuration the correla-
tions are defined as

Caba′b′ ≡ TabTa′b′ − T abT a′b′ . (4.3)

Feng et al. demonstrated [105] that

Caba′b′(∆x) = C1(∆x) + g−1C2(∆x) + g−2C3(∆x), (4.4)

where ∆x can be a generic variable that denotes for example frequency or time shift.
In electronics, only the total conductance can be measured, while in optics more
information can be obtained, for it is feasible to measure also Tab and Ta =

∑

b Tab
directly. Such a difference is crucial, because it means that in optics all of the
terms in eq. (4.4) can be addressed singularly. The three contributions have in
fact a precise physical meaning, as C1(∆x) is dominant when a = a′ and b = b′

and describes the fluctuation of the intensity in channel b induced by a field in
mode a that illuminates the system, thus fluctuations of Tab. The contribution of
C2(∆x) is dominant when either a = a′ or b = b′. In the case a = a′, the term
C2(∆x) accounts for the fluctuations of intensity over the entire spectrum of the
outgoing modes induced by a field in single mode a impinging on the system, that
is fluctuations of Ta. The last term C3(∆x) is the optical analogue of the UCF
in electronics, and describes fluctuations due to correlations of all incoming modes
with all outgoing ones, thus fluctuations of

∑

ab Tab. It can be shown [106] that C1,
C2, and C3 correspond to contributions to the correlations due respectively to zero,
one and two crossings between the scattering paths, and g−1 and g−2 provide us
with a measure of the probability for the aforementioned crossings to take place.

Measuring mesoscopic correlations has been the goal of a number of experiments
in the optical as well as the microwave regime. These correlations are determined
by the magnitude of the total conductance g. Furthermore, the role of g has been
central in investigating statistical signatures of localization with ultrasound and
microwaves [107, 108]. Experiments in the microwave regime are considerably easier
than those in the optical regime as the samples often consist of long closed tubes
filled with scatterers [109–112] and the conductance g of the system is then well
defined. The reason why a sample with a tube-like configuration allows for a clear
definition of g is illustrated in fig. (4.1) and can be seen by recalling the expression
for the number of modes N given by

N =
2πA

λ2
. (4.5)

As it is shown in eq. (4.5), N , the number of channels, is determined also by the
area A of the illumination spot. The surface A is always well defined at both ends
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of a tube of fixed aperture. The effects we are looking for scale like g−1, therefore,
to have sizeable effects, it is important to be able to make g relatively small. By
using closed tubes, g can be tuned by manipulating the size of the area A. On the
other hand, in the optical regime the most common sample is a slab. Having a slab
as sample complicates the estimate of g. The additional difficulty that arises in this
case consists in the fact that, because of diffusion broadening, the incoming laser
spot is not the same as the exit spot, given by the area of the illuminated spot at
the back of the sample. The exit area is always bigger than the size of the incident
spot. Diffusion broadening makes thus difficult the univocal definition of A and in
turn the one of g [81].

Measurements of sample and transport of light properties in the multiple scat-
tering regime rely on several techniques that can be divided into methods that
measure average properties, like for instance total reflection and transmission, co-
herent backscattering, and techniques apt to measure fluctuations and correlations
like speckle statistics [113] and frequency correlations [114]. Pioneering experiments
in the optical regime have been performed to unveil correlations induced by g via
intensity correlations and total transmission measurements [115–118].

The parameter g−1 can also be seen as the probability for two multiple scattering
paths to intersect once, [119], [106] and that implies that long paths enhance this
probability. Long paths are dominant in a transmission configuration.

Therefore we have decided to design a setup and perform experiments aimed
at estimating g in a transmission configuration. As explained in chapter 1 the
crossing of scattering paths inside the random system leads to deviations from
Rayleigh statistics in the intensity distribution displayed by the speckle pattern.
Our goal is to extract the magnitude of the C2 type of correlations in strongly
scattering samples by inducing and measuring deviations from Rayleigh statistics
in the speckle pattern, in a transmission configuration. These measurements would
be also of crucial importance to support or criticize claims of localization in the
optical regime, expected when g ≤ 1.

4.2 Sample

The samples that we used for our series of experiments are GaP nanowires. The
used nanowires were grown epitaxially. To tune the length and the diameter of
the nanowires a vapour-liquid-solid and lateral growth processes were used. The
nanowires were grown on a GaP substrate with orientation (100). The majority of
the wires forms angle of ∼ 35 deg with the substrate. This alignment is due to the
preferential growth of the nanowires in the direction set by the orientation of the
substrate. The fabrication technique is detailed in [120]. The sample we used has a
scattering strength k0` ' 1.6, the thickness of the nanowires layer is L = 1.6± 0.2
µm, and the mean free path is ` = 0.16 ± 0.02 µm at λ = 633 nm. Furthermore,
the diameter of the nanowires amounts to 118 ± 19 µm. The used nanowires are
among the strongest light scattering material [121].

69



Correlations in the mesoscopic regime

Figure 4.1: Difference between the closed-tube (top) and the slab (bottom) sample con-
figurations for measurements performed in transmission. A lens focusses laser light on the
samples to induce g−1 effects. Random scatterers (black circles) are embedded in both
samples. The advantage offered by a closed-tube type of sample is that the number of
incoming modes, related to the illumination area A, is well defined as A stays constant.
For the case of the slab, diffusion broadening complicates the estimate of the number of
modes as the illuminated area at the back (A2) is bigger than the one at the front facet
(A1) of the sample.

4.3 Setup to measure spatial correlations

In this section we introduce the optical setup used to measure correlations in the
mesoscopic regime. The setup, shown in fig. (4.2), has been optimized to perform
many speckle averages by rotating and translating the sample to collect independent
speckle patterns. A He-Ne laser has been chosen as light source for this experiment,
as the small magnitude of the effect that we intend to measure requires having a
source that is reliable and stable to a very high degree for a long time (few hours). A
pinhole of size 100 µm is used in the confocal part of the setup to filter out unwanted
reflections between the sample and the substrate. The size of this aperture is more
than enough not to distort the image of the surface of the sample that we intend to
project on the pinhole, as the illuminated area at the back of the sample is of the
order of 10 µm.

4.3.1 Alignment procedure

The procedure used to perform the alignment of the setup is the following. First the
sample is mounted. Then the front of the sample is illuminated with the focused
He-Ne beam while the back of the sample is illuminated with white light. The
pinhole is temporarily taken off the setup. The surface of the sample as well as the
He-Ne spot coming in transmission through the sample are then imaged on the chip
of the camera via two lenses. Subsequently, the pinhole is placed at distance 2f from
the first lens and nudged with translation stages till the camera shows that the red
He-Ne spot and the image of the surface of the sample looks sharp and aligned on
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Figure 4.2: Setup used to measure mesoscopic correlations. The correlations are induced
by focusing the beam on the sample so that the number of incoming channels can be tuned.
The sample is mounted on a translation and rotation stage to perform speckle averaging.
The rotation and translation of the sample occurs on the plane perpendicular to the
propagation direction of the beam. The polarizer selects the polarization perpendicular
to the incoming one, in order to make sure that only multiply scattered light enters the
detection part of the setup. The confocal system placed after the sample is arranged in a
2f-2f configuration so that, when illuminated with white light, an image of the surface of
the sample is formed on the pinhole plane. This strategy allows for filtering out spurious
interferences effects due to multiple reflections that occur between the sample and the
substrate.

the center of the pinhole. The perfect alignment is achieved when in addition also
the sides of the pinhole are sharply imaged on the camera. Following this procedure
the additional lens is removed and the camera moved closer to the pinhole till the
chip is fully filled by the image. To double check the alignment, an objective can be
placed behind the pinhole in order to collect a magnified image of the He-Ne spot
and the sample surface, making sure that they are well centered within the pinhole.
Furthermore, the sample is translated and rotated multiple times to check that the
alignment stays stable. In the next subsection we show how the thin glass substrate
on which the sample is mounted can influence the measurements.

4.3.2 Effect of sample substrate

In order to illustrate the influence of the sample substrate on the measurements we
compare the configuration where the pinhole is mounted to the situation where the
pinhole is taken off the setup. The effect of the pinhole is to produce a complex
image which is composed of two parts: the speckle pattern that we are interested
in, that is generated by the sample, and a different one, produced by the substrate,
that is caused by the multiple reflections that occur between the sample and the
substrate. This effect is illustrated in fig. (4.3). On inserting the pinhole, the
disturbance due to the substrate disappears, and only the speckle produced by the
sample remains.
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Figure 4.3: (left) Speckle pattern observed when there is no filtering pinhole. (right)
Speckle pattern generated when the 100 µm pinhole is in place. The pinhole prevents the
formation of an additional speckle pattern, due to the sample substrate, superimposed
onto the speckle pattern produced by the sample.

4.3.3 Estimation of the beam spot size

In our experiments, aimed at highlighting interference effects among scattering
paths propagating through a random medium, it is important to have an estimate
of the size of the beam spot that impinges on the sample. As it is evident from
eqs. (4.5) and (4.2) the number of incoming channels is proportional to the area
occupied by the incoming beam on the sample. That means that the smaller the
focus the bigger are the g−1 effects that we are able to induce.

The relay lens in fig. (4.2) has an effective numerical aperture NA = 0.25, while
the objective used to produce fig. (4.4) has NA = 0.55. The relay lens sets the
resolution of the imaging system to ∼ 3 µm. To measure the size of the beam
spot we collected the image formed on the plane of the pinhole shown in fig. (4.4).
Subsequently, given the circular symmetry, we performed radial averaging on the
image and a gaussian fit to estimate the size of the beam spot to be 14 µm.

Using the estimated beam spot size and formulas (4.2) and (4.5) we can calculate
g to be of the order of 200. Observing correlations induced by such a relatively big
g with our setup will turn out to be very challenging.

4.3.4 Estimation of the position of the beam spot

In order to estimate the position of the focus we calculated the speckle autocorrela-
tion functions using the data collected at different sample-lens distances. Per each
distance we extracted the autocorrelation function from the 400 speckle patterns
collected at each position. The 2D autocorrelation is calculated according to

CA(∆x) =
(

I (x)− I
) (

I (x+∆x)− I
)

(4.6)

where the ensemble average, indicated as usual with an overline, is calculated over
each dataset. With I we indicate the single intensity speckle pattern and with x
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4.3. Setup to measure spatial correlations

100 µm

Figure 4.4: (left) Image of the 100 µm pinhole taken in order to check the alignment of
the setup. The bright spot in the center is the image of the focused He-Ne spot collected
at the back of the sample. This image shows that the pinhole does not distort the speckle
pattern produced by the sample. (right) The radial average of the central part of the
image on the left is shown. The diameter of the focused spot on the back of the sample
can be estimated to be on the order of 14 µm. In order to collect the image we illuminate
the pinhole with white light, as it is clear from the illuminated spot and that gives an
intensity background higher than zero.

the 2D position vector.
The autocorrelation function is calculated by using the following formula

CA (i, j) =

P−1
∑

m=0

Q−1
∑

n=0

I(m,n) • I(m+ i, n+ j), (4.7)

implemented in Matlab, where P ×Q represents the dimensions of the intensity
matrix. Furthermore 0 ≤ i, j ≥M +N − 1.

The width of the autocorrelation function is related to the beam spot size; the
smaller the incoming spot the bigger the width of the autocorrelation. In other
words as we approach the position that corresponds to the smallest incoming beam
spot the average speckle size increases. This property allows for an easy visual
method to find the speckle patterns generated by the smallest incoming spot.

The measurements were performed by advancing the lens, mounted on the trans-
lation stage, towards the sample. Thus, if we start from an out of focus position we
expect to observe an increase of the beam spot size up to the focus position, followed
by a decrease of the spot size. In fig. (4.5) we show a set of three representative
autocorrelation functions along with the estimated position of the position of the
focus. The wider the autocorrelation function the bigger the corresponding spot.
It is instructive, using formula (4.2), to plot g as function of the incoming beam
radius. The parabolic behaviour of g, shown in fig. (4.6), highlights the necessity of
having a relatively small incoming beam to be able to readily observe g−1 effects.

73



Correlations in the mesoscopic regime

7.80 7.85 7.90 7.95 8.00
2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0  data
  fit
 

 

w
id

th
 a

ut
oc

or
re

la
tio

n 
[1

0-4
ra

d]

position translation stage [mm]
0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0
 7.90 mm
 7.98 mm
 7.80 mm

 

 
au

to
co

rr
el

at
io

n 
fu

nc
tio

n

pixels

Figure 4.5: (left) Average autocorrelation functions for three representative distances lens-
sample. Per each speckle pattern the radial averaged autocorrelation function has been
calculated. The average has been computed by averaging the autocorrelation functions
of the 400 images acquired at each sample-lens distance. The autocorrelation functions
have been normalized by dividing them by their value at ∆x = 0 displacement. (right)
Average width of the autocorrelation functions versus the position of the translation stage
on which is mounted the focusing lens. The black line is a gaussian fit to the data and
evidences the focus around position 7.95 mm.

4.4 Data analysis

In this section we show different types of data analysis applied to the the acquired
speckle patterns at different sample-lens distances, in search of mesoscopic correla-
tions.

4.4.1 Data treatment

In this section we describe the properties of the collected speckle patterns and detail
the normalization procedure. Our dataset consists of six sets of speckle patterns
collected in correspondence of six different spot sizes. Each set comprises 400 speckle
patterns. Prior to using the data for the different analyses presented in the following
sections each speckle pattern has been divided by the average image, obtained by
using all speckle patterns collected at a specific position.

4.4.2 Correlation between consecutive speckle patterns

In this section we estimate the correlation coefficients between subsequent acquisi-
tion steps and verify that the patterns acquired in this fashion show no correlation
with one another.
Checking the absence of correlations between patterns acquired over consecutive
steps allows for excluding residual correlations that are not due to g−1 effects.
Since our measurements are performed over a series of sample rotation and trans-
lation steps, if a degree of correlation manifest itself it means that the translation
and/or rotation steps are too closely spaced and there is some overlap between the
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Figure 4.6: Calculation of the magnitude of g as function of the incoming beam radius.
The calculation assumes a sample thickness L = 10 µm and a mean free path ` = 2 µm

sampling areas. More specifically, the speckle patterns are collected according to
the following protocol.

1. The sample is rotated.

2. A series of twenty sample translations is performed.

3. At the end of the translation session the sample is translated back to the
origin of the translation session.

4. The sample is rotated and a new translation session takes place.

5. The sample is rotated twenty times and each rotation is followed by twenty
translation steps.

In order to investigate the presence of residual correlations among the acquired
speckle patterns we calculate the correlation coefficient between

1. The first translation step and all the following ones that belong to the same
translation session

2. Consecutive rotation steps

The correlation coefficient relative to consecutive rotation steps is investigated be-
cause, since at the end of each translation session the sample is moved back to its
original position , if the rotation angle is not big enough spurious correlations could
arise.

The cross correlation coefficient CX , used to estimate correlations between im-
ages is given by

CX =

∑

i,j

[

I (i, j)− I
] [

I1 (i, j)− I1
]

√

√

√

√

√





∑

i,j

(

I (i, j)− I
)2









∑

i,j

(

I1 (i, j)− I1
)2





, (4.8)
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Figure 4.7: (left) Correlation coefficients between subsequent images acquired at the be-
ginning of each translation session, i.e. each image corresponds to a different rotation angle
for the sample. (right) Correlation coefficient between the first image of the translation
session and all the following images belonging to the same translation session. In both
cases the obtained correlation coefficients are well below one indicating lack of correlation
among the images.

where I(i, j) and I1(i, j) represent the intensity matrices related to two different
images, i and j are the pixel coordinates and I and I1denote the average intensities.
The values acquired by the correlation coefficient span between −1, meaning per-
fect anti-correlation, and 1, meaning that two images are perfectly correlated.The
correlation coefficient can also acquire the value 0, meaning no correlation between
two images. In fig. (4.7) we present typical correlation coefficients for our datasets.
It is clear looking at fig. (4.7) that no measurable correlation trend arises from the
data, as the correlation coefficient fluctuates between −0.4 and 0.6.

4.4.3 Intensity probability distribution

In order to detect deviations from Rayleigh statistics we resort to the model intro-
duced by Nieuwenhuizen and van Rossum [41]. Their model is given by

P

(

I

I

)

= exp

(

−I
I

)

{

1 +
1

3g

[

(

I

I

)2

− 4

(

I

I

)

+ 2

]}

, (4.9)

where with I we denote the intensity. The influence of g−1 effects is explicit in eq.
(4.9). An exponential distribution is recovered, as expected, when g −→ ∞.

In fig. (4.8) the calculated intensity probability distribution is shown for different
g values and compared to the Rayleigh distribution. This probability distribution
introduced by Nieuwenhuizen and van Rossum highlights the central role played
by the high intensity values. The deviations induced by non-Rayleigh statistics at
low intensities are almost indistinguishable from a simple exponential distribution,
especially for high g values. The fact that departure from Rayleigh statistics is
mostly present in the tail of the distribution poses strict constraints on experiments
aimed at measuring these deviations. The experimental difficulties stem from the

76



4.4. Data analysis

I

I

Figure 4.8: Calculation that shows a comparison between Rayleigh statistics and non
Rayleigh statistics with g = 100 and g = 20. PR and PNR denote Rayleigh distribu-
tion and non Rayleigh distribution respectively. PNR is calculated using the model of
Nieuwenhuizen and van Rossum.

high intensity values being also the ones that occur the least often, therefore very
long and intensive measurement sessions are required to reduce the statistical error
and acquire reliable datasets.

A different way to look at deviations from gaussian statistics is given by the
second moment of the intensity probability distribution. Using eq. (4.9) it is possible
to calculate the second moment of the distribution, given by

I2

I
2 = 2 +

4

3g
. (4.10)

From eq. (4.10) it becomes clear that the presence of interference effects due to
correlations reflects on the second moment of the probability distribution becoming
greater than two. In case of absence of correlations, perfect gaussian statistics is
recovered, and the second moment equals two. Therefore an alternative approach to
assess experimentally deviations from gaussian statistics consists in measuring the
values of the second moments of the distribution. Moreover, extracting the second
moment from the data is easier and more straightforward than building up the entire
probability distribution. However, the analysis of the full probability distribution
provides us with a major degree of control over the experiment. For example, by
investigating the distribution we could decide whether the high intensity values
or the low ones deviate from a perfect Rayleigh statistics. The measurements of
the intensity probability distributions and second moments are presented in the
following sections.

4.4.4 Measurement of the second moment of the intensity

probability distribution

In this section we report on measurements of the intensity probability distribution
and the second moment of the speckle patterns acquired in our experiments. The
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I2

I
2 distance sample lens

1.7813± 0.26 7.85 mm
1.7643± 0.24 7.89 mm
1.7973± 0.28 7.95 mm
1.8134± 0.28 7.97 mm
1.8056± 0.26 7.985 mm
1.8188± 0.28 8.00 mm

Table 4.2: Calculation of the ratio I2

I
2 relative to the intensity probability distribution at

different distances sample-lens. The displayed error is the standard deviation calculated
over 400 realizations at each position.

entire dataset of 400 images per fixed distance lens-sample is used.
The second moment is defined as

r ≡ I2

I
2 . (4.11)

The formula used to infer the second moment from the experiment is given by

I2

I
2 = N1N2Ns

∑

i,j,s

[Is (i, j)]
2





∑

i,j,s

Is (i, j)





2 , (4.12)

where Is denotes the s-th speckle pattern, i and j run over the pixels coordinates of
the 2D images, with i = 1..N1; j = 1..N2; s = 1..Ns. The product N1N2 indicates
the number of used pixels per image and Ns the total number of employed images.
The results from the analysis of the second moments are shown in table (4.2).

In all analysed cases the value of the second moment is, within experimental
accuracy, compatible with two, but systematically lower, perhaps for a degradation
of the speckle contrast. That signifies that, at present, the effect of the mesoscopic
correlations remains out of reach. This is probably due to the fact that our incoming
beam spot is still not small enough to induce g−1 effects.

4.4.5 Measurement of the intensity probability distribution

The intensity probability distributions derived from the data are presented in figs. (4.9-
4.11). In order to better investigate the behaviour of the probability distributions
we show, along with the intensity probability distribution data, also the ratio of
the measured distributions to a Rayleigh distribution. Our analysis shows that the
generated g−1 effects are below our detection sensitivity. This is compatible with
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Figure 4.9: (left) Intensity probability distributions extracted from two datasets corre-
sponding to two different incoming beam spots. (right) Along with the intensity probability
distributions also the ratio of the experimental distributions to the Rayleigh distributions
is shown. The relative error bars are calculated by using formula (4.14) for the relative er-
ror. For comparison we also show deviation expected for g = 20, dashed line, and g = 100,
solid black line. The horizontal line intersecting the probability axis at 1 marks the case
of perfect Rayleigh statistics.

an estimated g ≈ 200. The most probable reason for the lack of observable effects is
caused by the size of our incoming spot size, which is too big to be able to observe
deviations from Rayleigh statistics. This analysis shows that the measured prob-
ability distributions do not exhibit a clear deviation from a Rayleigh distribution,
and that confirms the results from the second moment analysis. In all the analysed
cases there is no clear sign of deviations due to g−1 effects.

79



Correlations in the mesoscopic regime

Figure 4.10: (left) Intensity probability distributions extracted from two datasets corre-
sponding to positions 7.97 mm and 7.95 mm. The remaining details of the figure are
explained in fig. (4.9).
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Figure 4.11: (left) Intensity probability distributions extracted from two datasets corre-
sponding to positions 7.85 mm and 7.89 mm. The remaining details of the figure are
explained in fig. (4.9).
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4.5 Conclusions

In this chapter we have shown how to design and build a setup to induce and detect
g−1 correlations in strongly scattering samples. Such a setup would be of great aid
to fully establish strong localization features of solid samples.

We have used a confocal technique to eliminate spurious reflections between the
sample and the sample substrate, fully characterized our setup and showed that we
were able to acquire speckle patterns corresponding to independent realization of
the disorder.

However, at present, the correlations that we are able to induce are below the
detection sensitivity of our setup and no clear trend or transition is individuated
in our analysed data as we scan our focussing system, advancing it gradually from
out-of-focus to in-focus configurations. This result can be due to the fact that our
incoming beam spot is not small enough, therefore the number of excited modes
becomes bigger than expected, and so does g, that than increases out of our setup’s
sensitivity range.

To overcome this experimental obstacle the setup could be improved by replacing
our lens with a powerful objective to decrease the number of excited modes and
thus decreasing g. An objective with an NA of 0.90 could be the key to observe
a sizeable effect. Replacing the objective in the current setup would increase the
magnitude of the g−1 effects. The realization of such a setup is not free of major
technical difficulties, such as the high stability required over the extremely long
time needed to acquire enough measurements to have statistically significant data
at high intensities. An additional challenge consists in avoiding the sample to
wobble over the thousands of speckle measurements needed to reduce the statistical
error. Wobbling of the sample can cause a variation of the distance objective-
sample, producing a change of the the size of beam spot on the sample and in
turn introducing supplementary uncertainty in the determination of g. Although
requiring extensive testing and calibration measurements, we estimate that the use
of such an improved setup will produce a g of the order of 20.

It would also be interesting to experimentally study the influence of absorption
and gain on the transmitted intensity distribution. Numerical simulations that take
into account both effects have been performed on quasi 1D systems [43].

4.6 Appendix

4.6.1 Error on the probability distribution

To evaluate the error on the intensity probability distribution retrieved experimen-
tally, we proceed as follows. The intensity data extracted from the speckle patterns
are sorted in intensity bins to build up the probability distributions. The normalized
discrete probability Pi is given by

Pi =
Ni

Ntot
, (4.13)
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where Ni indicates the number of collected intensity events in the i-th bin. With
Ntot we indicate the total number of intensity events. We argue that in this case the
relevant quantity that determines Ntot is the total number of independent speckle
spots collected in each experimental run at a given distance sample-lens. Assuming
Poisson statistics for the distribution of the number of intensity events in each bin
we have that the error on the counts δNi is given by δNi =

√
Ni. Then the relative

error δPi

Pi
is

δPi

Pi
=

1√
PiNtot

. (4.14)

The number of independent speckles spots can be calculated once the average width
of the speckle autocorrelation function per each dataset has been calculated. By
dividing the size of the single speckle image to the extracted average speckle size
Ntot can be obtained. Using eq. (4.14) we calculated the error bars presented in
figs. (4.9-4.11).
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Summary

In this thesis we have investigated the propagation of optical noise through multiple
scattering media.The general idea is depicted in fig. (E-I). Multiple scattering
systems are characterized by a strong light-matter interaction that manifests itself
by the many scattering events that light undergoes in the medium. The scattering
strength of the system is determined by the mean free path `, defined as the mean
distance between consecutive scattering events. Given a fixed system size, the
shorter the mean free path the more strongly scattering the medium is. Milk and
clouds are examples of multiple scattering systems. We can not easily see an object
embedded in these media, and that means that the mean free path is in these cases
very small compared to the size of the systems.

Drawing inspiration from the study of noise in disordered electronic systems,
we exploited the inherent noise characteristics of laser systems to extract valuable
information from multiple scattering media, such as the mean free path and the
modalities of light transport.

Noise is not regarded as something that spoils the measured signals and needs to
be discarded and minimized. On the contrary, noise is employed as an investigation
tool. In order to use noise as a probe it is necessary to characterize the noise sources,
in our case laser systems. Lasers have two main types of noise whose signature is
the different scaling as function of intensity. High frequency noise scales linearly
with the intensity, and is termed quantum noise, while low frequency noise scales
quadratically with the intensity and is termed excess (or classical) noise.

As a first step, in chapter 2, we measure the total reflection of quantum and
classical optical noise from a collection of samples and show that reflection of quan-
tum and classical noise follow different theories. Furthermore, the mean free path
can be recovered from the noise measurements and the obtained values are in agree-
ment with the ones extracted from intensity measurements. Moreover, we find a
linear scaling of the fluctuations as function of the incoming noise allowing thus for
a unified representation of classical and quantum noise. The results presented in
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Figure E-I: Incoming optical signal with noise propagates through a multiple scattering
system (the scatterers are depicted by grey circles). The goal of the research presented
in this thesis is to study the transport of light fluctuations through strongly scattering
media. The scattering strength of the system is determined by the mean free path `. The
shorter the mean free path the more strongly scattering the medium is.

chapter 2 are not sensitive to the direction of the beam exiting the sample as the
collected signal is averaged, by means of an integrating sphere, over all directions.

In chapter 3, we extend our investigations of optical noise by making use of
coherent backscattering. Coherent backscattering is classically used to study the
transport of light through random media and demonstrates that interference ef-
fects survive the ensemble averaging process. The measured intensity signal in the
backscattering direction, plotted as intensity as function of the backscattering an-
gle, acquires the shape of a cone, termed the backscattering cone. In chapter 3,
we show that coherent backscattering can be used to investigate the transport of
optical noise through disordered media. By using an electronic spectrum analyser
we investigate the noise content of the signal and show that quantum noise and
excess noise exhibit a coherent backscattering effect. Moreover, we theoretically
show that the excess noise backscattering cone gives access to the second moment
of the intensity probability distribution. In turn, from the second moment it is
possible to extract information about the conductance g that conveys information
about to what extent light propagates along independent scattering paths. The
importance of the parameter g in the study of mesoscopic systems resides in the
fact that the value acquired by this parameter signals the approach to the Anderson
localization transition. In the Anderson localization regime light stays confined in
the medium because strong light scattering causes a breakdown of light diffusion
due to interference.

Finally, in chapter 4, we extend our work on the parameter g. The conductance
g depends on the mean free path and the sample size as well as on the cross section
of the beam impinging on the sample. While the mean free path and the sample
size are fixed once the sample is chosen, we can still play with the beam size to vary
g. In order to achieve that we built a setup that allows to change g by displacing the
optics that focusses the light onto the sample. Our setup allows also to record the
speckle patterns produced by the transmitted light. Speckle patterns produced by
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independent scattering paths generate a Rayleigh intensity probability distribution.
From the speckle patterns we were able to extract the probability distribution of the
transmitted intensity. Furthermore, we discuss how interference effects, quantified
by the values assumed by g, give rise to deviations from the Rayleigh distribution.
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Samenvatting

In dit proefschrift doen we verslag van onderzoek naar de voortplanting van op-
tische ruis in meervoudig verstrooiende media. Het algemene idee is weergegeven
in figuur (N-I). Meervoudig verstrooiende systemen worden gekenmerkt door een
sterke interactie tussen licht en materie en zich manifesteert door de vele verstrooi-
ingsevenementen die plaats vinden in het medium. De verstrooiingskracht van het
systeem wordt bepaald door de gemiddelde vrije weglengte `, gedefinieerd als de
gemiddelde afstand tussen de opeenvolgende verstrooiingsevenementen. Hoe korter
de gemiddelde vrije weglengte hoe sterker de verstrooiing in het medium is. Melk
en wolken zijn voorbeelden van meervoudige verstrooiende systemen.In deze me-
dia kunnen voorwerpen worden verborgen. Dat betekent dat de gemiddelde vrije
weglengte in deze gevallen zeer klein is in vergelijking met de grootte van het sys-
teem. Genspireerd door de studie van ruis in wanordelijke elektronische systemen,
hebben we gebruik gemaakt van de inherente ruis eigenschappen van lasersystemen
om waardevolle informatie uit meervoudig verstrooiende media te halen, zoals de
gemiddelde vrije weglengte en de modaliteiten van het lichttransport.

We laten zien dat ruis niet beschouwd hoeft te worden als iets dat de gemeten
signalen beschadigt en minimaliseert. Integendeel, ruisanalyse blijkt een uitstekende
methode om onderzoek mee te verrichten. Om de ruis te gebruiken als een probe is
het noodzakelijk om de ruisbronnen te karakteriseren, in ons geval lasersystemen.
Lasers vertonen twee belangrijke soorten ruis die zich kenmerken door verschillende
gedragingen als functie van de intensiteit. Hoog frequentie ruis schaalt lineair met de
intensiteit, en wordt quantum ruis genoemd, terwijl de lage frequentie kwadratisch
schaalt met de intensiteit en exces (of klassieke) ruis wordt genoemd.

Allereerst, in hoofdstuk 2, meten we de totale reflectie van de quantum en
klassieke optische ruis uit een verzameling van monsters en laten we zien dat de
reflectie van quantum en klassieke ruis worden geregeerd door verschillende theo-
rien. Bovendien kan de vrije weglengte worden bepaald door de ruismetingen en
blijken de verkregen waarden in overeenstemming te zijn met die uit intensiteits
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Figure N-I: Een inkomend optisch signaal met ruis plant zich voort door een systeem dat
meervoudig verstrooit. (de verstrooiers worden weergegeven door grijze cirkels). Het doel
van het onderzoek gepresenteerd in dit proefschrift is om het transport van intensiteitsfluc-
tuaties van licht door sterk verstrooiende systemen te bestuderen. De verstrooiingskracht
van het systeem wordt bepaald door de gemiddelde vrije weglengte `. Hoe korter de
gemiddelde vrije weglengte van het medium hoe sterker de verstrooiing.

metingen. Verder, vinden we een lineair verband tussen de uitgaande fluctuaties en
de inkomende ruis waardoor een gezamenlijk beeld van klassieke en quantum ruis
is bepaald. De resultaten van de experimenten gepresenteerd in hoofdstuk 2 zijn
niet gevoelig voor de richting van de bundel omdat het gemeten signaal gemiddeld
wordt over alle richtingen, door middel van een integrerende bol.

In hoofdstuk 3, breiden we ons onderzoek naar optische ruis uit door gebruik te
maken van coherente terugverstrooiing. Coherente terugverstrooiing wordt normaal
gesproken gebruikt om het transport van licht door wanordelijke media te bestud-
eren en toont aan dat interferentie-effecten ensemble middeling overleven. De geme-
ten intensiteit van het signaal in de terugverstrooingsrichting, uitgezet als functie
van de terugverstrooiingshoek,neemt de vorm aan van een kegel, de zogenoemde
terugstrooikegel. In hoofdstuk 3 laten we zien dat coherente terugverstrooiing kan
worden gebruikt om de voortplanting van optische ruis door middel van wanordeli-
jke media te onderzoeken. Door gebruik te maken van een elektronische spectrum
analyser onderzoeken we de ruisinhoud van het signaal en laten we zien dat quan-
tum ruis en klassieke ruis coherente terugstroiing vertonen. Bovendien hebben we
theoretisch laten zien dat de terugstrooikegel voor klassieke ruis toegang geeft tot
het tweede moment van de intensiteitskansverdeling. Vanaf het tweede moment is
het mogelijk om informatie te halen over de parameter g die informatie verschaft
over in hoeverre het licht zich voortplant langs onafhankelijke verstrooiingspaden.
Het belang van de parameter g in de studie van mesoscopische systemen wordt
weergegeven door het feit dat de waarde van deze parameter de nabijheid van de
overgang naar Anderson lokalisatie aangeeft. In het Anderson lokalisatie regime
blijft het licht opgesloten in het medium, want sterke lichtverstrooiing veroorzaakt
een afbraak van lichtdiffusie als gevolg van interferentie.

In hoofdstuk 4 tenslotte, breiden we ons werk op de parameter g uit. De param-
eter g hangt af van de gemiddelde vrije weglengte, de grootte van het systeem en de
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diameter van de lichtbundel op het monster. Terwijl de gemiddelde vrije weglengte
en de grootte van het systeem vastliggen zodra het monster wordt gekozen, kunnen
we nog steeds spelen met de bundelgrootte om g te variren. Om dat te bereiken
hebben we een opstelling gebouwd die het mogelijk maakt om g te veranderen door
het verplaatsen van de optica die het licht op het monster focusseert. Door middel
van onze opstelling kunnen wij spikkelpatronen opnemen die door het uitgezonden
licht zijn gegenereerd. Spikkelpatronen geproduceerd door onafhankelijke verstrooi-
ingspaden genereren een Rayleigh intensiteitsdistributie. Uit de spikkelpatronen
kunnen we de kansverdeling berekenen van de overgedragen intensiteit. Verder be-
spreken we hoe interferentie-effecten, gekwantificeerd door de waarden aangenomen
door g, aanleiding geven tot afwijkingen in de Rayleigh distributie.
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