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ABSTRACT In many cellular signaling pathways, key components form clusters at the cell membrane. Although much work
has focused on the mechanisms behind such cluster formation, the implications for downstream signaling remain poorly under-
stood. Here, motivated by recent experiments, we use particle-based simulation to study a covalent modification network in
which the activating component is either clustered or randomly distributed on the membrane. We find that whereas clustering
reduces the response of a single-modification network, it can enhance the response of a double-modification network. The
reduction is a bulk effect: a cluster presents a smaller effective target to a substrate molecule in the bulk. The enhancement,
on the other hand, is a local effect: a cluster promotes the rapid rebinding and second activation of singly activated substrate
molecules. As such, the enhancement relies on frequent collisions on a short timescale, leading to an optimal ratio of diffusion
to association that agrees with typical measured rates. We complement simulation with analytic results at both the mean-field
and first-passage distribution levels. Our results emphasize the importance of spatially resolved models, showing that significant
effects of spatial correlations persist even in spatially averaged quantities such as response curves.
INTRODUCTION
Although cells are often modeled as well-mixed chemical
reactors, they are highly spatially heterogeneous entities.
Beyond merely providing the blueprint for space-dependent
processes such as division or patterning, spatial heterogene-
ities in cellular components are frequently exploited by
biochemical networks as additional degrees of freedom in
signaling computations (1). The most direct example of
this is compartmentalization, in which the same chemical
component initiates different phenotypic responses depend-
ing on where it is localized within the cell (2,3). In a similar
way, the localization of signaling components via scaf-
folding proteins has effects on signal amplification that
depend nontrivially on the surrounding chemical conditions
(4). In fact, the colocalization of just two components can
have a dramatic response on the amplification proper-
ties of an enzyme-driven reaction network (5). Even in
spatially uniform systems, spatial correlations between indi-
vidual molecules can have significant effects on the mean
response (6).

One of the most actively studied areas in which spatial
heterogeneity is emerging as a key factor is signal transduc-
tion at the cell membrane. In addition to imposing a quasi-
two-dimensional geometry, the membrane plays host to a
large diversity of cellular components, and interactions
among these components give rise to a complex spatial
organization (7). A central theme of recent work in this field
is the prevalence and role of membrane clusters, groups of
colocalized molecules that often participate in the detection
of external signals and subsequently drive responses within
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the cell. Perhaps the best-known example of this process is
bacterial chemotaxis, in which clusters of receptors detect
external ligands, triggering messenger molecules to modu-
late the activity of flagellar motors (8). Recent studies
have also provided evidence for clustering in eukaryotic
cell membranes: data from immunoelectron microscopy
(9) and single-molecule fluorescence experiments (10)
suggest that Ras, a protein that has been implicated in
a variety of phenotypic responses (e.g., oncogenesis), forms
membrane clusters on which the efficacy of its downstream
signaling critically relies. Clustering may also be connected
to the partitioning of the membrane itself into spatially
segmented domains (11,12), e.g., via interaction with
the cytoskeleton (13) or the formation of so-called lipid
rafts (14).

Although much modeling work has been done to eluci-
date the possible mechanisms by which clusters form
(15–17), insights into the role that clustering plays in down-
stream signaling remain largely speculative. Therefore, our
primary goal in this study was to quantitatively assess the
effect of clustering on the input-output response of a canon-
ical signaling network, using a spatially resolved model.
Recognizing its ubiquity in the systems in which clustering
is observed (18), we focused on a covalent modification
network (often called the push-pull network) in which
a substrate is alternately activated and deactivated by two
antagonistic components (Fig. 1 A). For example, in bacte-
rial chemotaxis, the kinase CheA and the phosphatase CheZ
phosphorylate and dephosphorylate the messenger protein
CheY, respectively; CheA and CheZ therefore play the roles
of the two antagonistic components, and CheY plays the
role of the substrate.

Moreover, focusing on a push-pull network naturally per-
mits extension to a double-modification process (Fig. 1 B),
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FIGURE 1 Schematics of reaction networks and spatial arrangement of

molecules. (A) The single-modification network, in which a substrate S is

activated and deactivated by components Ea and Ed , respectively. (B) The

double-modification network, in which the substrate can be doubly

activated. (C) Whereas S and Ed molecules diffuse freely in the cytoplasm,

Ea molecules are fixed on the membrane in either a random (left) or

clustered (right) configuration. The right panel depicts a rebinding event

in which a singly activated S� molecule rapidly returns to the Ea cluster

to become a doubly activated S�� molecule.
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which is a critical step in many membrane-signaling path-
ways. In eukaryotic cells, for example, active Ras molecules
at the membrane initiate a mitogen-activated protein kinase
(MAPK) cascade within the cell, each layer of which
consists of a dual phosphorylation cycle. In general, dual
phosphorylation can be carried out by one of two mecha-
nisms. In a processive mechanism, an enzyme modifies
both phosphorylation sites on a substrate molecule before
releasing it. In a distributive mechanism, on the other
hand, the enzyme must release the substrate after modifying
the first site, before rebinding and modifying the second site.
It has been shown experimentally that key kinases (19,20)
and phosphatases (21) in the MAPK cascade act in a distrib-
utive manner, which makes the rebinding process critically
important. Therefore, a second goal of this study was to
investigate the interplay between clustering and rebinding,
and its role in determining the input-output response of
a distributive push-pull network.

We provide a spatially resolved description of the system
by performing particle-based simulations on a lattice.
In parallel, we gain important physical intuition from
analytic results derived at both the mean-field and first-
passage distribution levels. We find that the input-output
response of the network changes depending on whether
the activating component is clustered or randomly dis-
tributed on the membrane (Fig. 1 C). Specifically, whereas
clustering reduces the response of a single-modification
network, it can enhance the response of a double-modifica-
tion network. We demonstrate that the reduction is a direct
consequence of the fact that a cluster presents a smaller
effective target to a substrate molecule in the bulk. By inves-
tigating in detail the stochastic nature of the rebinding
process, we discover that the enhancement has an entirely
Biophysical Journal 102(5) 1069–1078
different origin: clustering promotes the rapid rebinding
and second activation of singly activated substrate mole-
cules (Fig. 1 C). We find that such a rapid effect is only
exploited when both the activating and deactivating compo-
nents are sufficiently free to react, such that ultrasensitive
networks (22) in which one or the other component is satu-
rated by the substrate do not exhibit the enhancement.

Furthermore, we find that the enhancement with clus-
tering becomes more pronounced as the diffusion coefficient
is raised. Underlying this observation is the fundamental
advantage that clustering affords as collisions occur more
frequently: although the diffusion may be high enough to
prevent a substrate molecule from rapidly rebinding an iso-
lated enzyme molecule, it may be insufficient to enable the
substrate molecule to escape an entire cluster. Clustering
thus prolongs the possibility of rapid rebinding, effectively
boosting the association rates of individual molecules,
which are often limited by tight orientational constraints
(23). Of course, this advantage reaches a limit: at infinite
diffusion, all spatial arrangement is forgotten. We are thus
led naturally to a ratio of diffusion to association at which
the enhancement is optimal.

Together, our results provide a quantitative picture of the
nontrivial effects that membrane clustering has on biochem-
ical signaling, for a network that plays a critical role in
systems in which clustering has been experimentally ob-
served. More broadly, our results demonstrate the crucial
role that spatial correlations play in cellular function, and
the associated importance of considering spatial resolution
in biophysical models.
METHODS

We consider both a single- and a double-modification push-pull network in

which the activating enzyme is localized to the membrane (Fig. 1). To

understand the effect of clustering, we compare the situation in which acti-

vating enzyme molecules are arranged randomly on the membrane with that

in which they are localized at the same surface density to clusters of size N

(Fig. 1 C). Because we are interested in the effect of clustering on down-

stream signaling, and not in the dynamics of cluster formation on the

membrane, we take activating enzyme molecules to be fixed. Substrate

and deactivating enzyme molecules diffuse freely in the cytoplasm with

diffusion coefficient D.
Chemical reactions, input-output relation,
and sensitivity

The single-modification network (Fig. 1 A) is described by the reactions

Ea þ S#
k1

k2
EaS/

k3
Ea þ S�; (1)

� k4 � k6

Ed þ S #

k5
EdS /Ed þ S; (2)

where S and S� denote the substrate in its inactive and active forms, respec-

tively. Activation is catalyzed by the activating enzyme Ea, which first
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forms a complex before releasing the substrate in its active state, and deac-

tivation is performed similarly by the deactivating enzyme Ed . The double-

modification network (Fig. 1 B) prescribes additional reactions identical to

Eqs. 1 and 2, except with S and S� replaced by S� and S��, respectively. We

restrict our analysis to networks whose first and second modification

processes are identical (i.e., the rates k1; k2;.; k6 describing the first modi-

fication also describe the second). Furthermore, we assume negligible back

reactions: k2 ¼ k5 ¼ 0. We tested the effects on the main results (Fig. 2) of

systematically varying k2 and k5. The effects can be understood in terms of

the insights provided in the Results section, and are discussed explicitly in

the Supporting Material.

The input of the network is defined as the catalytic rate of the activating

enzyme k3, scaled by its counterpart k6 for the deactivating enzyme:

chk3=k6 (in chemotaxis, for example, k3 is typically set by the

time-averaged ligand occupancy of the receptor cluster (24)). The

output is the relative activity of the substrate, i.e., the fraction

fhf½S��=½S�T ; ½S���=½S�Tg for the single- or double-modification network,

respectively. In a deterministic, well-mixed description, in which rate equa-

tions determine the dynamics, the steady-state input-output relation is

completely specified by the reaction rates and the conserved total concen-
A

B

FIGURE 2 Input-output response of single- and double-modification

networks. Cluster size N is varied at constant surface density m ¼ 0:01

and depth z ¼ 25, leaving the response unchanged with N in the random

configuration. The well-mixed curve is established according to rate equa-

tions in steady state (Supporting Material). Curves are normalized by the

maximal value of the well-mixed response, bfmax. (A) A symmetric

(a ¼ b ¼ 1) single-modification network with low diffusion (d ¼ 1=4 p)

and zero-order sensitivity (g ¼ e ¼ 0:1); heref ¼ ½S��=½S�T . (B) A deactiva-

tion-biased (a ¼ 5, b ¼ 1) double-modification network with intermediate

diffusion (d ¼ 10) and linear sensitivity (g�1 ¼ 0:05, e g�1 ¼ 0:01); here

f ¼ ½S���=½S�T . It can be seen that in the clustered configuration, the

response is reduced with N for the single-modification network, and

enhanced with N for the double-modification network.
trations of substrate ½S�T and enzymes ½Ea�T and ½Ed �T . In particular, for both
the single- and double-modification networks, one may write the input-

output relations entirely in terms of the dimensionless parameters (e.g.,

see Supporting Material):

ah
½Ed�T
½Ea�T

; bh
k4
k1
; gh

K

½S�T
; eh

½Ea�T
½S�T

; (3)

where K ¼ k6=k4 is the Michaelis-Menten concentration of the deactivation

process, and ½Ea�T is N divided by the volume. The first two parameters

determine the bias of the network toward deactivation; a ¼ b ¼ 1 therefore

corresponds to a symmetric network. The last two parameters characterize

the sensitivity of the network: in the zero-order (or ultrasensitive)

regime, the substrate saturates the enzymes and operates far beyond the

Michaelis-Menten concentration ({e, g}� 1), whereas in the linear regime,

both substrate and enzymes operate in the linear regions of their response

curves ({g�1, e g�1} � 1).
Lattice model

We perform spatially resolved simulations with excluded volume interac-

tions on a regular three-dimensional lattice. We make the approximation

that all molecules have equal diameter ‘, and we let this diameter define

the lattice spacing, such that molecules neighboring each other on the

lattice are in contact. Clustered molecules are placed in contact in a square

arrangement on the membrane (we tested that a circular arrangement does

not change the results). The membrane comprises the x � y plane and

extends for a length L in each direction, beyond which periodic boundaries

are imposed. The cytoplasm has depth Z, with reflective boundaries at both

the membrane (z ¼ 0) and the farthest point from it (z ¼ Z). The Supporting
Material provides a detailed account of how reactions and diffusion are

implemented on the lattice, in particular such that detailed balance is

obeyed. All source code, written in Cþþ and MATLAB (The MathWorks,

Natick, MA), is freely available at http://rebind.sourceforge.net.

Spatial resolution introduces new parameters into the problem beyond

those of the well-mixed system (Eq. 3), which are captured by the dimen-

sionless quantities given below. In addition to the cluster size N, one has

dh
‘D

k1
; mh

N‘2

L2
; zh

Z

‘
: (4)

The quantity 1=4pd ¼ k1=4p‘D is the ratio of the activating enzyme’s

intrinsic association rate k1, which is the association rate given that the

molecules are in contact, to the corresponding diffusion-limited value

4p‘D; as such, d captures the strength of diffusion relative to association.

The parameters m and z describe the surface density of activating enzymes

and the cytoplasmic depth, respectively.
Parameter selection

In the following section, we discuss in detail the effects of varying the

parameters that govern network symmetry (a, b), sensitivity (g, e), and

diffusion (d). In all results that establish network characteristics (see Figs.

2, 3, and 5, and Fig. S1, Fig. S2, and Fig. S3), the surface density of acti-

vating enzymes and the cytoplasmic depth are set using estimates from

experimentally studied systems. We arrive at the typical values m ¼ 0:01

and z ¼ 25, as described in the Supporting Material.
RESULTS

We begin by presenting and explaining the main difference
between the single- and double-modification networks:
Biophysical Journal 102(5) 1069–1078
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FIGURE 3 Target size effect. (A) Left: Cartoon

depicting neighborhoods (solid lines) surrounding

activating enzyme molecules (solid circles) in

random and clustered configurations. The total

neighborhood volume (the target size) is smaller

in the clustered configuration due to the overlap

of individual molecules’ volumes. Right: A smaller

target admits fewer distinct paths from the bulk

(dashed lines), thereby increasing the mean time

required to find the target by a diffusive search.

(B) The main plot shows the mean lifetime of

S molecules in the single-modification network;

parameters are as in Fig. 2 A. The inset shows

that the value to which the mean lifetime asymp-

totes at high input c in the clustered configuration

(the mean search time sc) grows as the square root

of the cluster size N.
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whereas clustering reduces the response of a single-modifi-
cation network, it can enhance the response of a double-
modification network. The magnitude of each effect scales
with the cluster size N (Fig. 2). The reduction for single-
modification networks is generic and persists with changes
in network symmetry (a, b), sensitivity (g, e), and diffusion
(d). The enhancement for double-modification networks, on
the other hand, is more specific and occurs in deactivation-
biased linear-sensitivity networks with intermediate diffu-
sion. Results presented later in this section will explain
this specificity.

Fig. 2 also illustrates more generally the effect of local-
izing the activating enzymes to the membrane by comparing
the spatially averaged response with the response in the
well-mixed case. As shown in Fig. 2 A, localization reduces
the maximal response of a single-modification network
(compare the well-mixed curve with the random curve).
Such a reduction was seen in previous work (5) and is the
result of the concentration gradients that form due to the
asymmetric localization of activating and deactivating
enzymes. As shown in Fig. 2 B, the double-modification
network can avoid this reduction and can in fact achieve
an amplification beyond the well-mixed response instead.
Clustering reduces the effective target size

How does clustering reduce the response of a single-
modification network? The key is that a cluster presents a
smaller effective target to a molecule in the bulk. The target
size reduction leads to substrate molecules spending more
Biophysical Journal 102(5) 1069–1078
time in the inactive state, and thus to a reduced output
(Fig. 2 A). One can understand this target size reduction
by imagining that each molecule possesses a local neighbor-
hood, i.e., a volume into which another molecule can diffuse
and eventually react (Fig. 3 A). When the Ea molecules are
arranged in a random configuration at sufficiently low
density, the total volume of such neighborhoods (the target
size) is simply N times an individual Ea molecule’s neigh-
borhood. However, when the Ea molecules are clustered,
the individual neighborhoods overlap and the target size is
reduced (Fig. 3 A).

To understand quantitatively the impact of the target size
reduction on the response of the network, we consider the
time it takes an S molecule, released from the bulk, to
bind an Ea molecule on the membrane (the lifetime of the
S molecule). If the Ea molecules are free with high proba-
bility (i.e., unoccupied by other substrate molecules), the
lifetime is dominated by the search time s, the time to find
and bind an Ea molecule. The mean search time from the
bulk can be estimated as the inverse of the association
rate over the volume of the box. An excursion from the
bulk is dominated by the diffusive trajectory, such that we
can estimate the association rate by its diffusion-limited
value: szð4p‘D=L2ZÞ�1 ¼ L2Z=4p‘D. A random distribu-
tion of Ea molecules presents N targets of diameter ‘,
which reduces the mean search time by a factor of N:
sr ¼ s=N ¼ L2Z=4pN‘D. A cluster, on the other hand, pre-
sents one target with effective diameter ‘eff �

ffiffiffiffi
N

p
‘, making

the mean search time sc ¼ L2Z=4p ð ffiffiffiffi
N

p
‘Þ D. Scaling by the

natural timescale ‘2=D (the time to diffuse approximately
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one molecular diameter), and recalling Eq. 4, these times
read srhsr=ð‘2=DÞ ¼ z=4pm and schsc=ð‘2=DÞ ¼ffiffiffiffi
N

p
z=4pm, which makes clear that at constant surface

density the search time is independent of N for the random
configuration, but scales with N1=2 for the clustered
configuration.

Fig. 3 B shows the mean lifetime of S molecules as
a function of the input c for a single-modification network
with zero-order sensitivity. At high input, the mean lifetime
asymptotes to the value corresponding to the search from the
bulk, consistent with the above analysis. It is clear that for
the clustered configuration, this asymptotic value depends
on the cluster size N, and the inset shows that it indeed
scales with N1=2, as predicted.

Two important conditions of the above analysis are that
the Ea molecules are free and that the Smolecule is released
randomly from the bulk (and not, say, still within the neigh-
borhood of the cluster). The first condition is met at high
input (chk3=k6[1), when the high catalytic rate of the
activating enzymes leaves the Ea molecules free with high
probability. The second condition is also met at high input
for networks with zero-order sensitivity, in which satura-
tion of the deactivating enzymes leaves the Ed molecules
occupied with high probability. High occupation of Ed

molecules means that a typical S� molecule has ample
time to randomize its position before ultimately binding
a free Ed molecule and being released as an S molecule.
Interestingly, we observe that in networks with linear sensi-
tivity, in which Ed molecules remain free even at high input
(Supporting Material), the reduction in the output upon clus-
tering persists (not shown), which leads us to conclude that
the portion of S molecules that do originate in the bulk
continue to contribute to a reduction in the response.

It is important to emphasize that the target size effect is
a bulk effect, not a local effect, in the sense that clustering
not only reduces the number of neighboring sites from
which a substrate molecule can bind, it more generally
reduces the number of distinct paths that lead to the target
from a point in the bulk (Fig. 3 A). This intuition is con-
firmed by a simple test: under an alternative implementa-
tion, in which a substrate molecule can only bind an Ea

molecule from the neighboring lattice site perpendicular
to the membrane, we observe an increase in the search
time with cluster size N that is only slightly less pronounced
than that in the inset of Fig. 3 B (not shown). Because this
alternative implementation has the property that clustering
the Ea molecules does not change the number of available
neighboring sites, the increase in search time with N is
strictly due to a reduction in the number of paths from which
the target is accessible.

It is also important to point out that the target size effect is
a generic property of diffusive randomwalks, and as such it is
just as present for double-modification networks as it is for
single-modification networks. However, as we will describe
next, in a particular parameter regime the effects of rapid
rebinding can overcome the target size effect, leading to an
enhancement of the response rather than a reduction.
Clustering promotes rapid rebinding

How does clustering enhance the response of a double-
modification network? The key is that a cluster promotes
rapid rebinding of singly activated substrate molecules.
Rapid rebinding results in more doubly activated substrate
and thus an enhanced output (Fig. 2 B). Rebinding only
occurs in the double-modification network. In the single-
modification network, once a substrate molecule is released
by an enzyme, it can only bind to an enzyme of the opposite
type. To clearly understand the rapid rebinding effect in
double-modification networks, we first consider the distri-
bution of rebinding times for a reduced system: a single
S� molecule is released from one of N Ea molecules, with
no Ed molecules present. It rebinds to any Ea molecule
in a time r, whose dimensionless analog we define as
rhr=ð‘2=DÞ. Previous studies considered rebinding to a
planar geometry in the context of ligand-receptor binding
(25–27) (even specifically for clustered chemoreceptors in
bacteria (27)), and the analytic results derived below extend
the results of those studies, particularly for double-modifica-
tion networks.

As shown in Fig. 4, for both a random and a clustered con-
figuration of Ea molecules, the rebinding time distribution
contains three regimes. Short times (the molecular regime)
correspond to short excursions, after which the S� molecule
rebinds to the same Ea molecule (or cluster) from which it
came. Intermediate times (the planar regime) correspond
to excursions that are sufficiently far for the S� to see the
membrane as a plane uniformly populated with Ea mole-
cules (or, due to the periodicity, with clusters), yet not far
enough to see the reflective boundary. The granularity of
individual Ea molecules is thus lost, and the membrane
appears as a uniform semiabsorbent plane. Long times
(the bulk regime) correspond to long excursions, during
which the S� molecule randomizes its position completely,
returning as if from the bulk. These three regimes are dis-
cussed in detail below.

Bulk regime

The bulk regime exhibits an exponential distribution
because it describes the time required to find an Ea molecule
given a random starting position in the bulk. An exponential
distribution is expected from a well-mixed system, in which
reactions obey exponential waiting time statistics. Here,
however, the molecular and planar regimes emerge due
entirely to spatial correlations, affecting the network even
at the level of the mean response (Fig. 2 B). Moreover, in the
bulk regime, the substrate molecule has strayed far enough
from the membrane that it effectively returns from the
bulk. This return time is therefore equivalent to the search
time defined above for S molecules in single-modification
Biophysical Journal 102(5) 1069–1078



FIGURE 4 Rebinding time distributions. Distribution of times r for

a single S� molecule, released from an Ea molecule, to rebind to an Ea

molecule when the Ea molecules are either randomly distributed (solid)

or clustered (dash-dot) on the membrane. No Ed molecules are present.

Short straight lines scale with r�1=2 (shallow) and r�3=2 (steep). To eluci-

date scalings, high values are taken for the dimensionless parameters

describing cluster size (N ¼ 100), inverse surface density (m�1 ¼ 200),

and cytoplasmic depth (z ¼ 2000); here d ¼ 1:6. For each of the two

configurations, there emerge three regimes that are distinguishable by scal-

ings. Times separating the regimes, as well as times marking scaling cross-

overs within regimes, are derived in the text and indicated on the figure: rrmp

and rcmp separate the molecular from the planar regime in the random and

clustered configurations, respectively; rbp separates the planar from the

bulk regime in both configurations; rcm marks the scaling crossover within

the molecular regime in the clustered configuration; and rp marks the

scaling crossover within the planar regime in both configurations.
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networks. Accordingly, one can see in Fig. 4 that the time
constant characterizing the exponential is larger in the clus-
tered case, precisely due to the target size effect discussed
above. Finally, the onset of the bulk regime is determined
by the time it takes the S� molecule to randomize its posi-
tion, which is approximately the time required to diffuse
the full cytoplasmic depth: rpb ¼ Z2=2D, or rpb ¼ z2=2.

Planar regime

In the planar regime, the substrate molecule has not diffused
far enough to enter the bulk and lose memory of its starting
position, but it has diffused far enough that the membrane
appears as a uniform semiabsorbent plane. The problem
can be reduced to an effectively one-dimensional one in
the z direction with a radiation boundary at z ¼ 0. The
one-dimensional rate keff (with dimensions of length per
time) describing association at the boundary follows from
a renormalization of the three-dimensional rate k1. Clearly,
keff should scale with the surface density N=L2, and we find
good agreement with the simplest dimensionally consistent
definition, keffhk1 N=L

2.
Biophysical Journal 102(5) 1069–1078
As shown in the Supporting Material, the rebinding time
distribution for this one-dimensional problem is readily
obtained from the Green’s function and exhibits scalings
of r�1=2 at short times, r�3=2 at long times, and a crossover
time of rp ¼ ðD=‘keffÞ2 ¼ d2=m2. Short times comprise a
collision-dominated subregime in which the excursion is
dominated by many unsuccessful reflections, and thus
inherits the t�1=2 scaling from the Gaussian Green’s function
of a particle freely diffusing in one dimension. Long
times comprise a search-dominated subregime in which
after a long excursion the particle returns to an effectively
absorbing boundary, producing the t�3=2 scaling charac-
teristic of a one-dimensional random walker returning to
an absorbing origin. Further details are provided in the
Supporting Material.

The transition between the molecular and planar regimes
occurs when the S� molecule diffuses far enough perpendic-
ular to the membrane that it no longer detects the granularity
of the Ea molecules, a distance roughly equal to half the
mean spacing between Ea molecules in the random config-
uration, or between clusters in the clustered configuration.
In the random configuration, the mean spacing between Ea

molecules is set by the surface density, yielding a separating
time of rrmp ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL2=NÞp

=2�2=2D, or rrmp ¼ 1=8m. In the
clustered configuration, the spacing between clusters is L,
yielding a separating time of rcmp ¼ ðL=2Þ2=2D, or
rcmp ¼ N=8m.

Molecular regime

The molecular regime is defined by short excursions in
which the substrate molecule rebinds to the Ea molecule
or cluster from which it came. The molecular regime ex-
hibits r�1=2 and r�3=2 scalings whose origins are the same
as those in the planar regime: the scalings arise from a
collision-dominated or search-dominated return, respec-
tively, to a single molecule or cluster. For a return to single
molecule, which applies to the random configuration, these
scalings were described in previous work (6). The crossover
time was derived to be

rm ¼ ‘2=D

ð1þ k=4p‘DÞ2; (5)

where k ¼ 2k1, with the factor of 2 arising from reflection of
the Ea across the membrane. However, one can see from
Fig. 4 that in the random configuration, the crossover time
is obscured by alternations in the probability density at short
times, which is an artifact of the lattice implementation. To
be precise, an S� molecule starting next to an Ea molecule
can only rebind in an odd number of time steps (assuming
it moves diffusively every time step, which is true at short
times for large d); the exception occurs when another Ea

molecule is placed next to or very near the first Ea molecule,
but at low surface densities such a placement occurs with
low probability. We validated the distributions in Fig. 4
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using Green’s function reaction dynamics (6), verifying that
lattice artifacts do not quantitatively change the probability
densities.

In the clustered configuration, the crossover time within
the molecular regime is indeed resolvable and can be
described in terms of the previously considered results. A
large, absorbent cluster (N[1, d � 1) can be approximated
as a plane with an effective one-dimensional association rate
keffhk1=‘

2, yielding a dimensionless crossover time of
ðD=‘keffÞ2 ¼ d2. In the opposite limit, a small, reflective
cluster (N � 1, d[1) can be approximated as a spherical
object whose effective diameter is obtained by equating
surface areas: 4p ð‘eff=2Þ2 ¼ 2N‘2 (neglecting cluster
edges). In the limit of large d, the denominator in Eq. 5
approaches unity, making the crossover time approximately
‘2eff=D, or 2 N=p in dimensionless units. Because the expres-
sions in both the plane and sphere limits scale with parame-
ters that are large in the opposite limits, we use the minimum
as an estimate of the crossover time: rcmzminðd2; 2N=pÞ.
Fig. 4 corroborates all scalings and crossover times

derived above using an illustrative set of sample parameters.
Because we have analytic estimates for the crossover times,
they can be tuned to expand or contract the various regimes,
a fact we used to confirm the validity of the scalings beyond
the confidence implied by Fig. 4 alone.

Fig. 4 also directly displays the advantage that clustering
affords in the rebinding problem: at short times, the proba-
bility of rebinding is enhanced, leading to a probability gap
over the random configuration. In fact, the characteristic
time that determines the extent of this gap, rcm, reveals the
parameter regimes that give rise to enhanced rebinding,
and thus ultimately to an enhanced signal output for the
network. Specifically, the gap increases as rcm increases,
by either increasing the cluster size N or increasing diffu-
sion relative to association, d. Increasing the cluster size
is a straightforward way of enhancing rebinding, and the
associated enhancement of the output is demonstrated in
Fig. 2 B.

The reason that increasing diffusion increases the proba-
bility gap is perhaps less straightforward but can be under-
stood at the molecular level. Increasing diffusion induces
more unsuccessful collisions before rebinding eventually
occurs. Rapid rebinding to a single Ea molecule (which is
the task when the Ea molecules are randomly distributed)
therefore becomes unlikely. Rapid rebinding to a cluster,
on the other hand, remains less unlikely, owing to the pres-
ence of neighbors. The number of collisions in the neighbor-
hood of a cluster is simply larger than that for a single
molecule by virtue of the former’s increased size. The prob-
ability of ultimately achieving a successful collision is
thus higher for the clustered configuration than for the
random configuration, by a factor that increases as diffusion
increases.

At a more detailed mechanistic level, we may consider
the fate of an S� molecule that has just been released by
an Ea molecule, and now resides at a neighboring lattice
point. As diffusion increases, the probability increases that
the S� molecule will take a step away from the Ea molecule.
In the random configuration, it is then increasingly likely for
diffusion to carry the S� molecule away from the immediate
vicinity of the Ea molecule. In the clustered configuration,
on the other hand, several of these diffusive paths will
lead directly to another Ea molecule. Clustering therefore
poses an advantage when immediate rebinding is unlikely
but rebinding after several diffusive steps is more probable.
Deactivation connects rebinding to the network
response

Interestingly, despite the probability gap elucidated above,
we observe that the means of the two rebinding distributions
in Fig. 4 are the same: the enhancement conferred to the
clustered configuration in the molecular regime is compen-
sated for by the target size effect in the bulk regime. The
equivalence of means is a consequence of the fact that we
isolated the rebinding process. Alone, the rebinding process
is equivalent to one dissociation and subsequent association
event of the equilibrium reaction Aþ B#C. Because it is
an equilibrium reaction, detailed balance implies that the
occupancy (i.e., the fraction of time in which an A molecule
is bound to a B molecule) is independent of the spatial
configuration of A molecules (excluded volume effects
can be safely neglected given the low densities). Because
we know that the mean time that an A molecule is bound
to a B molecule (the mean bound time) is the inverse of
the dissociation rate and thus independent of the spatial
configuration of A molecules, the mean unbound time
must also be independent of the spatial configuration of A
molecules. Therefore, although the push-pull network as
a whole prescribes a nonequilibrium process, the rebinding
process alone is effectively in equilibrium, and the mean re-
binding time is the same for a random and a clustered
configuration.

Why then does the probability gap translate to an en-
hancement with clustering at the level of the mean response,
as in Fig. 2 B? Indeed, it is precisely because thus far in the
discussion we have not reintroduced the Ed molecules. The
effect of the Ed molecules is to bind and deactivate the
S� molecules with the longest excursion times, removing
them from the rebinding problem and thereby truncating the
rebinding distributions beyond a characteristic timescale,
which we call the capture time. The truncation alleviates
the target size effect, imparting the clustered configuration
with a shorter mean rebinding time than the random config-
uration. The capture effect is discussed in more detail in the
Supporting Material and illustrated in Fig. S1.

The capture effect also underlies the observation that only
double-modification networks with linear sensitivity, not
zero-order sensitivity, benefit from clustering, as demon-
strated in Fig. S2. The reason is that the capture effect relies
Biophysical Journal 102(5) 1069–1078
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on the Ed molecules being free. The zero-order regime, on
the other hand, corresponds to saturation of the enzymes
by the substrate, such that at high input the Ed molecules
are not free and instead are occupied with high probability.
The relationship between the capture effect and network
sensitivity is also discussed in more detail in the Supporting
Material.
Clustering leads to an optimal ratio of diffusion
to association

In studying the rebinding distributions, we discovered that
increasing diffusion relative to association enhances rapid
rebinding to a cluster more strongly than to a random config-
uration, because it increases the probability of unsuccessful
collisions. Therefore, one would expect the enhancement of
the output with clustering to increase with the ratio of diffu-
sion to association, d. However, we also know that at high
diffusion, the network is well mixed and the spatial arrange-
ment of the molecules is irrelevant; clustering should
therefore confer no enhancement at high d. In fact, these
competing effects lead to a value of d at which the enhance-
ment is optimal, as shown in Fig. 5.

Fig. 5 illustrates that as d increases, the enhancement (i.e.,
the difference in maximal output between the clustered
and the random configuration D fmaxhfc

max � fr
max) first

increases and then decreases. The inset shows this nonmo-
notonic behavior for several values of the cluster size N.
The optimal enhancement increases with N; moreover, the
value d� at which the optimum occurs also increases with
N. These observations are consistent with the notion that
a larger cluster more effectively confers the advantage asso-
ciated with frequent unsuccessful collisions.

Quantitatively, d� approaches ~10 for the largest cluster
size (N ¼ 100), corresponding to an association rate
k1 � ‘D=10, roughly 10$4pz125 times less than the diffu-
FIGURE 5 Effect of varying diffusion on the response of a double-

modification network. The network is linear (g�1 ¼ 0:05, e g�1 ¼ 0:01)

and deactivation-biased (a ¼ 5, b ¼ 1) with N ¼ 25, m ¼ 0:01, and

z ¼ 25. The inset shows the normalized difference between the maximal

output in the clustered and random configurations (the enhancement) versus

d, exhibiting an optimum for each of several values of the cluster size N.
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sion-limited value. In fact, this is precisely the regime in
which many protein–protein association reactions operate
within cells. Most measured association rates are on the
order of 106 � 107M�1s�1 (23), whereas the diffusion-
limited rate is typically 108 � 109M�1s�1. Our results
suggest that for these reactions, clustering can optimally
enhance the output. Therefore, we expect the mechanism
identified here to have quite significant biological relevance.
DISCUSSION

We have provided a detailed view of the varied effects that
membrane clustering can have on the signaling properties of
a canonical biochemical network. The network under study
and the values of relevant biophysical parameters were
drawn from experimentally studied systems, both prokary-
otic and eukaryotic, in which membrane clustering was
recently observed. We implemented a spatially resolved
model, appealing to both simulation and analytic results to
demonstrate that spatial correlations can have nontrivial
effects, even at the level of the mean input-output response.
In particular, we have shown that spatial effects at both the
bulk scale (in terms of a diffusive target search process)
and the molecular scale (in terms of rapid stochastic re-
binding events) affect the response of a network in ways
that are not captured by a well-mixed, spatially uniform
description.

Our results make it clear that the effect of clustering
depends on both the network topology and the biochemical
parameters. For example, we identify a general property of
diffusive random walks, i.e., that clustering the target
increases the search time from the bulk, which leads
generically to a reduced response in a single-modification
network. However, when the topology of the network
is extended to double-modification, the reduction can be
overcome by a local effect: clustering promotes rapid
rebinding of singly activated substrate molecules to the acti-
vating enzyme molecules. When the concentration of free
deactivating enzyme molecules is sufficiently high to isolate
these rapid rebinding events, the result is an enhancement of
the response. Importantly, this enhancement is specific to
networks with linear sensitivity. Ultrasensitive networks,
in which the deactivating enzyme molecules are saturated
by the substrate at high input, do not confer the enhance-
ment because the mechanism relies on the deactivating
enzyme molecules being free. Moreover, the enhancement
is most pronounced in the presence of unsuccessful colli-
sions, when the probability to escape a single activating
enzyme molecule is much higher than that to escape
a cluster. The specificity of the enhancement to both linear
sensitivity and a certain ratio of diffusion to association
highlights the importance of biochemical parameters in pre-
dicting the effects of clustering.

The result that clustering is most beneficial in the pres-
ence of unsuccessful collisions has important functional
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implications. We find that the diffusion coefficient at which
the cluster-induced enhancement is optimal corresponds to
an intrinsic association rate roughly 100 times smaller
than its diffusion-limited value. Such a result is quantita-
tively consistent with intracellular conditions because typi-
cal protein–protein association rates are measured to be
roughly two orders of magnitude lower than the diffusion
limit (23). Indeed, intrinsic association rates are inherently
constrained by the tight orientational precision required to
achieve a successful binding event, because binding requires
the alignment of small reactive patches (23,28). This fact
naturally induces unsuccessful collisions. Clustering may
therefore have evolved as a functional way around such tight
molecular geometric constraints, allowing a cell to boost
signal output despite the low intrinsic association rates of
individual molecules.

The effect of molecular orientation on intrinsic associa-
tion rates is a subtle but important issue, especially with
regard to rapid rebinding events. During very rapid rebind-
ing between a pair of molecules, one might expect rotational
alignment to be preserved, leading to an increase in the
effective intrinsic association rate. On the other hand,
if the molecules diffuse only a molecular diameter away
from each other, then orientational diffusion will already
significantly reduce the effective intrinsic association rate.
Moreover, many enzymes are only capable of rebinding
a substrate molecule after a characteristic reactivation time
because, for example, ADP/ATP exchange must take place
before rebinding can occur (6). In this study we take a
coarse-grained view, neglecting these opposing effects and
simply assuming that orientation is randomized imme-
diately upon dissociation, even for very rapid rebinding
events. Although this assumption may not be accurate for
rapid rebinding to the same particle, it is important to
emphasize that the benefit provided by clustering relies on
rebinding to neighboring particles, for which the assumption
of random orientation is more reasonable. Nonetheless, the
relationship between orientation and rebinding rates would
surely benefit from further detailed study.

Finally, our findings emphasize the general importance of
the role of the rebinding process in biochemical signaling.
The importance of rebinding in related systems has been
discussed, with interesting consequences for the mean re-
sponse. For example, in studying how the diffusive motion
of a repressor protein effects gene expression, investigators
observed that rebinding boosts noise, leading to bursts in
gene expression, and that this effect can be captured by re-
normalizing the on- and off-rates in a well-mixed model
(29). On the other hand, simulations (6) and experiments
(30) on signaling via a MAPK cascade revealed that spatial
correlations due to rapid rebinding introduce qualitative
changes in the mean response that cannot be captured by
the well-mixed theory. Our results here are more resonant
with the second case, because it is clear that membrane
localization and subsequent clustering introduce changes
to the rebinding statistics (Fig. 4) that go beyond the ex-
ponential distributions expected from a well-mixed de-
scription. More broadly, the importance of rebinding in
explaining the potency of T-cell ligand binding, in which
a long aggregated binding time arises from a sequence of
many fast rebinding events, has been recognized (31).

This study represents a first step in using simulation and
analytic techniques to understand the role of spatial organi-
zation in signaling. It is our view that spatially resolved
models, as well as a sharp theoretical framework, can help
formalize and make more quantitative the inferences that
are being made from the wealth of experimental data on
systems that exhibit clustering, colocalization, and other
nontrivial spatial heterogeneity.
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This document contains five sections. The first section supplements the methods of the main text,
describing the implementation of reactions and diffusion on the lattice, and the estimation of parameters
from experimentally studied systems. The second section presents analytic results for the single- and double-
modification networks in the deterministic, well-mixed limit. The third section presents analytic results for
the rebinding process in terms of first-passage distributions. The fourth section describes the influence of the
deactivating enzymes on the rebinding process and the associated benefit of clustering in networks with linear
sensitivity; this section contains Figs. S1 and S2. The fifth section discusses the results of systematically
varying the back-reaction rates k2 and k5, which are assumed to be zero in the main text; this section
contains Fig. S3.

1 Supplementary methods

In this section, we provide two supplements to the methods described in the main text: the implementation of
reactions and diffusion on the lattice, and the estimation of certain parameters from experimentally studied
systems.

1.1 Reaction-diffusion implementation on the lattice

Here we describe how reactions and diffusion are implemented for particles on the lattice. In particular, the
implementation obeys detailed balance and ensures that the deterministic results (next section) are recovered
by spatially averaged quantities in the high-diffusion limit.

We remind the reader that we consider a regular three-dimensional lattice with excluded volume interac-
tions. We make the approximation that all molecules have equal diameter `, and we let this diameter define
the lattice spacing, such that molecules neighboring each other on the lattice are in contact. In the clustered
configuration, N molecules are placed in contact in a square arrangement on the membrane; in the random
configuration, N molecules are arranged randomly on the membrane. We have tested that the clustered
results are not significantly affected by instead placing molecules in an arrangement that is circular (up to
the lattice resolution). The membrane comprises the x-y plane and extends for a length L in each direction,
beyond which periodic boundaries are imposed. The cytoplasm has depth Z, with reflective boundaries at
both the membrane (z = 0) and the farthest point from it (z = Z). Reflection at z = 0 implies that cyto-
plasmic molecules do not bind directly to the membrane, but rather only bind to the cytoplasmic domain of
membrane-bound molecules.

Particle numbers used in the simulation box of volume L2Z are expressible in terms of the dimensionless
parameters in Eqns. 3-4 of the main text: the number of activating enzyme molecules is N , the number of
deactivating enzyme molecules is αN , and the number of substrate molecules is N/ε. Activating enzyme
molecules are membrane-bound and fixed. Other particles are initialized randomly in the simulation box
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and diffuse with coefficient D. At each time step, particles are looped over, with each particle diffusing to a
neighboring site or participating in a reaction with certain probabilities as described below.

Over timescales longer than the time to diffuse a few molecular diameters, rotational diffusion sufficiently
randomizes a molecule’s orientation. Thus although we imagine each deactivating enzyme as possessing a
catalytic domain to which the substrate binds, we model its reaction propensities as isotropically distributed
over its surface. Since the activating enzymes, on the other hand, are membrane-bound, the situation is
more subtle: we suppose that the cytoplasmic domain of each activating enzyme molecule traces out the
hemispherical solid angle inside the membrane, except when blocked by neighboring activating enzymes (a
consideration particularly relevant when the activating enzymes are clustered). Neighbors thus have the
effect of reducing the molecule’s cross-section: the reaction propensity of each activating enzyme molecule
is distributed over the portion of its surface both inside the membrane and unblocked by neighbors.

We note that the system as described can be mapped to a statistically equivalent system with periodic
boundaries in the z direction, which offers both simpler implementation and, in some cases, more direct
analytic interpretation. Specifically, the reflective boundaries at z = 0 and Z are equivalent to a periodic
boundary at z = 0 and 2Z, so long as we recognize that the cytoplasmic molecules then double in number and
the membrane-bound molecules (having been reflected across the membrane) become twice as reactive. The
periodic boundaries confer the advantage that the membrane no longer needs to be explicitly implemented
in the simulation: cytoplasmic molecules can occupy the plane in which the activating enzyme molecules
reside, and substrate molecules can bind to activating enzyme molecules from any free neighboring site.

We describe the implementation of reactions and diffusion on the lattice using a simple example, then
extend to the push-pull reactions (Eqns. 1-2 of the main text). We consider the binary reversible reaction
A + B 
 C, in which association and dissociation are described by intrinsic rates ka (with dimensions of
length cubed per time) and kd (with dimensions of inverse time), respectively. Dissociation is modeled as a
first-order reaction event with an exponential waiting time distribution; the probability for a C molecule to
dissociate in a time step dt is thus pd ≈ kddt for small pd. Association is set by detailed balance, which equates
the ratio of microscopic probabilities to enter and leave a reaction state to the ratio of macroscopic rates (1);
on a lattice with spacing `, the detailed balance condition reads pa`3/pd = ka/kd, yielding pa = (ka/`3)dt for
the association probability of an A and B molecule at contact. Finally, diffusion is implemented according
to its microscopic definition, namely that the mean squared distance traveled in a time dt is 6Ddt; the
six possible moves on the lattice result in a mean squared distance of 6pD`2 in one time step, making
pD = (D/`2)dt the probability for a molecule to diffuse to a neighboring site.

We now extend the above expressions to the push-pull reactions and write them in terms of the dimension-
less parameters (Eqns. 3-4 of the main text), the cluster size N , the input χ ≡ k3/k6, and the dimensionless
time τ ≡ t/(`2/D). The probability to diffuse to a neighboring site in a time step dt is pD = (D/`2)dt = dτ .
There are two association reactions, with probabilities of occurring from contact p1 = (k1/`3)dt = (1/δ)dτ
(activation) and p4 = (k4/`3)dt = (β/δ)dτ (deactivation). Lastly, there are two dissociation reactions,
with probabilities of occuring p3 = k3dt = (χβγµ/δεζ)dτ (activation) and p6 = k6dt = (βγµ/δεζ)dτ (de-
activation), where in addition to using the definitions of the dimensionless parameters, we have recognized
explicitly that [Ea]T = N/L2Z. The time step dτ is chosen small enough that the sum of each molecule’s
diffusion and reaction probabilities is bounded from above by one at all times.

Both association and dissociation probabilities are divided uniformly over the faces of each molecule (or,
in the case of membrane-bound molecules, the faces not blocked by fixed neighbors). Furthermore, the
choice of which molecule actually moves during a dissociation event is determined by diffusion: in the binary
reaction, A would move with probability DA/(DA+DB) and B would move with probability DB/(DA+DB).
In practice, then, when a substrate molecule dissociates from an activating enzyme molecule, the substrate
molecule always moves, because the activating enzymes are fixed. When a substrate molecule dissociates from
a deactivating enzyme molecule, on the other hand, each molecule moves with probability 1/2, because the
diffusion coefficients are equal. These choices ensure that the total probability of associating or dissociating
in each time step sums to pa or pd, respectively, and therefore that detailed balance is obeyed.

1.2 Parameter estimation

In all results establishing network characteristics (Figs. 2, 3, and 5 of the main text and S1-3 here), the surface
density of activating enzymes and the cytoplasmic depth are set using estimates from experimentally studied
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systems, as described here. In eukaryotic cells, clustered Ras has been measured to occupy a membrane
surface fraction of µ . 1% (2). A similar value arises in bacterial chemotaxis: the ‘long’ form of CheA (the
form which both associates to receptors and phosphorylates CheY) is present in roughly 4500 copies per
Escherichia coli cell (3); taking a cell surface area of 6 µm2 and a typical protein diameter of 4 nm (4), one
obtains µ ∼ 0.012. We therefore take µ = 0.01. The cytoplasmic depth is a measure of the maximum distance
from the membrane that a molecule diffuses before encountering a reflective barrier (or, at the most, half
the distance to the opposite membrane). In bacteria, this distance is upper bounded by half the smallest cell
lengthscale, or ∼500 nm. In eukaryotic cells, this depth is instead dictated by the presence of large organelles
near the membrane. An extreme upper bound can be obtained by noting that organelles comprise roughly
half the cell volume (5), and imagining they are spherically packed in the center of a spherical cell of radius
R ∼ 5 µm implies a maximum depth of Z = [1 − (1/2)1/3]R ∼ 1000 nm. Organelles are, of course, more
loosely distributed within the cell, such that a depth on the order of 100 nm might be more realistic. We
therefore take Z = 100 nm, which for a molecular diameter of 4 nm gives ζ = 25.

2 Analytic results in the deterministic, well-mixed limit

In this section, we derive key analytic results for both the single- and double-modification push-pull network
in the deterministic, well-mixed limit (i.e. invoking rate equations). Strictly speaking, these results are exact
for averaged quantities in the limit of infinite diffusion. More broadly, however, they lend powerful intuition
to the spatially resolved results, even when diffusion plays a significant role.

2.1 The single-modification network

We begin with the single-modification network (Eqns. 1-2 of the main text), which in steady state is described
by the rate equations

0 =
d[S]
dt

= −k1[Ea][S] + k6[EdS
∗], (1)

0 =
d[S∗]
dt

= −k4[Ed][S∗] + k3[EaS], (2)

0 =
d[Ea]

dt
= −d[EaS]

dt
= −k1[Ea][S] + k3[EaS], (3)

0 =
d[Ed]

dt
= −d[EdS

∗]
dt

= −k4[Ed][S∗] + k6[EdS
∗]. (4)

Here, as in the main text, we neglect back reactions (k2 = k5 = 0). The rate equations are complemented
by the conservation laws

[Ea]T = [Ea] + [EaS], (5)
[Ed]T = [Ed] + [EdS

∗], (6)
[S]T = [S] + [S∗] + [EaS] + [EdS

∗]. (7)

As implied by the conservation laws, the rate equations contain three redundancies from the zero net flux
of activating enzyme, deactivating enzyme, and substrate; two are made explicit in Eqns. 3-4, and the third
is revealed by the fact that the sum of Eqns. 1-2 equals the sum of Eqns. 3-4. Eqns. 1-7 thus constitute six
independent equations for six unknowns. Scaling concentrations by the Michaelis-Menten concentration of
the deactivation process, K ≡ k6/k4,

x1 ≡
[Ea]
K

, x2 ≡
[S]
K

, x3 ≡
[Ed]
K

, x4 ≡
[EaS]

K
, x5 ≡

[EdS
∗]

K
, (8)

and recalling the definitions of the dimensionless parameters introduced in Eqn. 3 of the main text,

α ≡ [Ed]T
[Ea]T

, β ≡ k4

k1
, γ ≡ K

[S]T
, ε ≡ [Ea]T

[S]T
, (9)
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the six independent equations may be written

x1x2 = βx5, (10)
χ−1x3φ = γx4, (11)

x3φ = γx5, (12)
ε = γ(x1 + x4), (13)

αε = γ(x3 + x5), (14)
1 = φ + γ(x2 + x4 + x5), (15)

where χ ≡ k3/k6 and φ ≡ [S∗]/[S]T are the input and output, respectively.
Combining Eqns. 10-15 yields a third-degree polynomial equation for φ (6):

0 = χ(χ− α)φ3 + [α(1 + χ)(χ− α)ε + χ(2χ + αβχ− α)γ − χ(χ− α)]φ2

+χ [α(1 + χ)ε + χ(1 + αβ)γ − (2χ− α)] γφ− χ2γ2. (16)

In principle, Eqn. 16 can be solved for the input-output relation φ(χ). However, the solution to such a cubic
equation is quite unwieldy, and we therefore focus on limits of Eqn. 16 (or the original Eqns. 10-15) at high
input (χ � 1), and in the zero-order ({ε, γ} � 1) and linear regimes ({η, ν} � 1). Here, for notational
convenience, we have defined

η ≡ 1
γ

=
[S]T
K

, ν ≡ ε

γ
=

[Ea]T
K

. (17)

We find the maximal output value, φ(χ � 1) ≡ φmax, directly from Eqns. 10-15. The leading order result
is obtained when χ−1 = 0 exactly; by Eqn. 11 this leads to x4 = 0 ⇒ [EaS] = 0, which makes sense because
at infinite catalytic rate k3 the complex EaS has zero lifetime. Combining the five remaining equations
yields a quadratic equation,

0 = φ2
max + [αε + (1 + αβ)γ − 1]φmax − γ, (18)

whose solution directly gives φmax.
In the zero-order regime, to zeroth order in the small parameters (γ = ε = 0), Eqn. 18 reads 0 =

φmax(φmax− 1), giving the maximal output value φmax = 1: it is possible to activate all substrate molecules
at high input. Further insight is revealed by Eqn. 16, which for γ = ε = 0 reduces to

0 = (χ− α)φ2(φ− 1). (19)

Here, when χ 6= α, φ must be either 0 or 1, implying switch-like behavior around the threshold χ∗ = α. This
switch-like behavior is the hallmark of zero-order sensitivity (6).

In the linear regime, we obtain φmax by rewriting Eqn. 18 in terms of η and ν:

0 = ηφ2
max + [αν + (1 + αβ)− η]φmax − 1. (20)

To zeroth order in the small parameters (η = ν = 0), Eqn. 20 gives

φmax =
1

1 + αβ
. (21)

Interestingly, for a symmetric network (β = α = 1), we see that in the linear regime it is only possible to
activate half the substrate molecules at high input. We also obtain the threshold value from Eqn. 16, which
in terms of η and ν reads

0 = χ(χ− α)η2φ3 + [α(1 + χ)(χ− α)ν + χ(2χ + αβχ− α)− χ(χ− α)η] ηφ2

+χ [α(1 + χ)ν + χ(1 + αβ)− (2χ− α)η]φ− χ2. (22)

Taking Eqn. 22 to first order in η and ν yields

0 = η(2χ + αβχ− α)φ2 + [α(1 + χ)ν + χ(1 + αβ)− (2χ− α)η]φ− χ, (23)
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into which we insert φ = φmax/2 = 1/[2(1 + αβ)] and solve for χ, yielding the threshold value

χ∗ =
α(1 + 2αβ)η + 2α(1 + αβ)ν

2(1 + αβ)2 + (1 + 3αβ)η − 2α(1 + αβ)ν
≈
[
α(1 + 2αβ)
2(1 + αβ)2

]
η +

[
α

1 + αβ

]
ν. (24)

We see that while in the zero-order regime the threshold is set by the ratio of activating to deactivating
enzymes, α, in the linear regime the threshold vanishes in proportion to the small parameters that define
the regime, η and ν. We find that Eqn. 24 also serves as a good estimate for the threshold in a double-
modification network with linear sensitivity, and thus explains why the threshold shifts to small χ in Fig. S2
below.

2.2 The double-modification network

We now consider the double-modification network, which prescribes additional reactions identical to Eqns.
1-2 of the main text, except with S and S∗ replaced by S∗ and S∗∗, respectively. As in the main text,
we restrict our analysis to networks whose first and second modification processes are identical (i.e. the
rates k1, k2, . . . , k6 describing the first modification also describe the second). There are now nine species,
described by the dimensionless variables in Eqn. 8, the new variables

x6 ≡
[S∗]
K

, x7 ≡
[EaS∗]

K
, x8 ≡

[EdS
∗∗]

K
, (25)

and the redefined output φ ≡ [S∗∗]/[S]T . As before the nine rate equations contain three redundancies
from the zero net flux of activating enzyme, deactivating enzyme, and substrate; together with the three
conservation laws we thus have nine independent equations for nine unknowns:

x1x2 = βx5, (26)
χ−1x6x3 = x4, (27)

x6x3 = x5, (28)
x1x6 = βx8, (29)

χ−1φx3 = γx7, (30)
φx3 = γx8, (31)

ε = γ(x1 + x4 + x7), (32)
αε = γ(x3 + x5 + x8), (33)
1 = φ + γ(x2 + x4 + x5 + x6 + x7 + x8). (34)

Although it is no longer straightforward to combine Eqns. 26-34 into a single polynomial in φ, results in
certain limits can be obtained directly from the equations themselves. For example, we may immediately
seek the maximal output value φmax by taking the limit χ � 1 to zeroth order (χ−1 = 0). By Eqns. 27 and
30 this limit leads to x4 = 0 ⇒ [EaS] = 0 and x7 = 0 ⇒ [EaS∗] = 0, respectively, which make sense because
at infinite catalytic rate k3 the complexes EaS and EaS∗ have zero lifetime. Although the remaining seven
equations still do not lead easily to a single equation for φmax, it is possible to derive an expression for φmax

directly in the linear regime.
The linear regime implies that the parameters η and ν are small (Eqn. 17); in terms of these parameters,

the remaining seven equations read:

x1x2 = βx5, (35)
x6x3 = x5, (36)
x1x6 = βx8, (37)

ηφmaxx3 = x8, (38)
ν = x1, (39)

αν = x3 + x5 + x8, (40)
η = ηφmax + x2 + x5 + x6 + x8. (41)
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Furthermore, since the linear regime is defined by the fact that both substrate and enzyme concentrations
are much smaller than K, the dimensionless variables xi are also small (Eqns. 8, 25). We may then recognize
that Eqns. 35-36 and 37-38 imply that x5 and x8, respectively, are small to second order. To first order,
then, x5 = x8 = 0, and

x1x2 = βx6x3, (42)
x1x6 = βηφmaxx3, (43)

ν = x1, (44)
αν = x3, (45)

η = ηφmax + x2 + x6, (46)

where Eqns. 42 and 43 come from combining Eqns. 35-36 and 37-38, respectively. It is now trivial to solve
Eqns. 42-46 for φmax, yielding

φmax =
1

1 + αβ + α2β2
. (47)

Upon comparing this expression with that for the single-modification network (Eqn. 21), we see that the
maximal output for the double-modification network is suppressed by an additional term α2β2 in the de-
nominator. Indeed, with respect to the deactivating enzymes, if the activating enzymes are fewer (α > 1) or
associate more weakly to the substrate (β > 1), suppression of the output is severe in the linear regime.

Additionally, the result that x5 and x8 are small to second order implies that [EdS
∗] and [EdS

∗∗] are
much smaller than [Ed]. To leading order, then, [Ed]T ≈ [Ed], i.e. in the linear regime the deactivating
enzymes are approximately all free, even at maximal input. Indeed, this feature is a primary difference
between the two sensitivity regimes: in the zero-order regime either the activating or deactivating enzymes
are saturated by the substrate, while in the linear regime both activating and deactivating enzymes are free.
The implications of this freedom for signaling are discussed at several points in the main text.

3 Rebinding time distribution in one dimension

In this section, we consider the problem of a particle diffusing in a one-dimensional space that is free on
one side and has a radiation boundary condition on the other. The distribution of first-passage times at
the boundary is directly obtainable from the Green’s function for this problem, which is known. The result
provides a good approximation for the distribution of rebinding times to a planar membrane populated with
absorbing constituents, for excursions long enough that the plane appears as a uniform, semi-absorbent sink.
The results in this section are not novel, but are provided for intuition and completeness. We refer the
reader to (7, 8) for comprehensive treatments of many diffusion problems, including this one, and to (9) for
an intuitive discussion of the analogous problem in three dimensions.

We consider a particle diffusing along the positive z-axis with a radiation boundary at z = 0. The
diffusion equation describes the evolution of the probability density p(z|t):

∂p(z|t)
∂t

= D
∂2p(z|t)

∂z2
. (48)

The radiation boundary condition states that the flux leaving the boundary is due to a reaction, which
requires both that the particle is at the boundary, with probability p(0|t), and that the reaction fires, with
intrinsic rate k (dimensions length per time):

D
∂p(z|t)

∂z

∣∣∣∣
z=0

= kp(0|t). (49)

The solution given that the particle starts at point z0, i.e.

p(z|0) = δ(z − z0), (50)
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which is called the Green’s function, is known (7):

p(z|t, z0) =
1√

4πDt

[
e−(z−z0)

2/(4Dt) + e−(z+z0)
2/(4Dt)

]
− k

D
ek2t/Dek(z+z0)/Derfc

(
z + z0√

4Dt
+

√
k2t

D

)
. (51)

The first term is the solution for a reflecting boundary, and the second term describes the loss of probability
incurred by the reaction; erfc denotes the complementary error function.

The distribution of first-passage times through the boundary P (t|z0) is equal to the flux out of the
boundary at time t, which by Eqn. 49 is

P (t|z0) = kp(0|t, z0). (52)

We obtain p(0|t, z0) directly from Eqn. 51, yielding

P (t|z0) =
k√
πDt

e−z2
0/(4Dt) − k2

D
ek2t/Dekz0/Derfc

(
z0√
4Dt

+

√
k2t

D

)
. (53)

We specialize to the distribution of rebinding times r ≡ t by demanding that the particle starts at the
boundary, z0 = 0. Eqn. 53 then becomes

P (r) =
k√
πDr

− k2

D
ek2r/Derfc

(√
k2r

D

)
(54)

=
1
rp

[
1√

πr/rp

− er/rperfc
(√

r/rp

)]
. (55)

In the second line we have recognized that reaction and diffusion define a characteristic timescale rp ≡ D/k2.
The meaning of this timescale is elucidated by considering times much shorter or longer than rp, as described
below.

At short times (r � rp), the second term in Eqn. 55 is unity to leading order, and the first term dominates,
producing a r−1/2 scaling:

P (r) ≈ 1
√

πrp
r−1/2 r � rp. (56)

Such short times correspond to a collision-dominated regime: the particle does not diffuse appreciably far
from the boundary; instead, it makes quick bounces against the boundary, getting reflected until ultimately
becoming absorbed.

The above intuition can be sharpened in two ways. First, we may quantify the notion of “appreciably
far” by realizing that reaction and diffusion define a characteristic length d ≡ D/k. The speed at which a
particle travels this length in time rp is d/rp = k, revealing that the reaction rate k may also be interpreted
as the mean velocity at which particles are “pulled” into the boundary. Particles diffusing farther than d
escape this radiative pull, while particles remaining within d stay close to the boundary until absorbed.

Second, we may appeal to Bayes’s rule to understand the scaling in Eqn. 56. Supposing that a short
excursion is comprised of a number of unsuccessful reflections, ultimate absorption requires the radiation
reaction to fire given that the particle is at the boundary (z = 0). The probability of this event occurring at
time r can be written using Bayes’s rule as

p(r|z = 0) =
p(z = 0|r)p(r)

p(z = 0)
∝ p(z = 0|r)p(r), (57)

where p(z = 0) =
∫∞
0

dr p(z = 0|r)p(r) normalizes the distribution and is independent of time. The first
term on the right, for a reflecting particle, is equivalent to the free-particle solution in one dimension:
p(z = 0|r) = (4πDr)−1/2e−(0)2/4Dr ∝ r−1/2. The second term is described by an exponential waiting time
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distribution, whose time constant must be given by the only timescale in the problem, rp: p(r) = r−1
p e−r/rp .

For r � rp, p(r) ≈ r−1
p is constant to leading order, and p(r|z = 0) ∝ r−1/2, as in Eqn. 56.

At long times (r � rp), the erfc in Eqn. 55 can be approximated by its asymptotic limit, yielding

P (r) ≈ 1
rp

[
1√

πr/rp

− er/rp
e−r/rp√
πr/rp

(
1 +

∞∑
n=1

(−1)n 1 · 3 · 5 · . . . (2n− 1)
(2r/rp)n

)]
(58)

=
√

rp

4π
r−3/2 r � rp, (59)

to leading order. Such long times correspond to a search-dominated regime: the time spent far from the
boundary diffusing is much greater than the time spent close to the boundary making short reflections.
The process is therefore well approximated by a one-dimensional random walker returning to an absorbing
origin, which scales as r−3/2. Indeed, explicitly imposing an absorbing boundary by taking k → ∞ makes
the crossover time rp → 0, such that the distribution scales as r−3/2 for all times.

In the main text, we rescale r by the characteristic time to diffuse a molecular diameter `, yielding the
dimensionless rebinding time ρ ≡ r/(`2/D) and the associated crossover time ρp = rp/(`2/D) = (D/`k)2.
The ρ−1/2 and ρ−3/2 scalings, as well as the crossover time ρp, are observed in Fig. 4 of the main text in the
planar regime, in which a substrate molecule diffuses far enough from the membrane that the problem can
be approximated as one-dimensional, but not so far that it encounters the reflective boundary opposite the
membrane.

4 The capture effect and the benefit of linear sensitivity

When considering the rebinding of an S∗ molecule to the membrane-bound Ea molecules in the double-
modification network, the effect of the cytoplasmic Ed molecules is to bind and deactivate the S∗ molecules
with the longest excursion times, removing them from the rebinding problem. This leads to a truncation of
the rebinding distributions beyond a characteristic timescale, which we call the capture time. The truncation
alleviates the target size effect, imparting the clustered configuration with a shorter mean rebinding time
than the random configuration.

The capture effect is illustrated in Fig. S1, in which Ed molecules are gradually introduced into the
system. With Ed molecules present, an S∗ molecule has two fates f : it may rebind to an Ea molecule
(f = +) or be captured by an Ed molecule (f = −); measuring the time τ for either fate samples the
joint distribution p(τ, f). The mean rebinding time ρ̄ is then computed from the conditional distribution
p(τ |+) = p(τ,+)/p(+), where p(+) is the total probability of rebinding as opposed to capture. Figure
S1A shows that the difference in mean rebinding times between the random and clustered configurations,
∆ρ̄ ≡ ρ̄r − ρ̄c, indeed increases as the ratio α of Ed to Ea molecules is increased. The increase subsides
at large α, when the truncation at the capture time dominates the rebinding distribution, such that ρ̄
approaches the capture time. The capture time can be estimated as the inverse of the association rate times
the concentration of Ed molecules, (k4[Ed]T )−1, or δζ/αβµ in dimensionless units; accordingly, Fig. S1A
demonstrates that ρ̄ scales with α−1 at large α.

The result of the capture effect for the double-modification network is illustrated in Fig. S1B, which
shows the maximal output φmax as a function of α for a network with linear sensitivity. One observes
that the clustered configuration produces a larger φmax than the random configuration beyond an enzyme
ratio of α∗ ∼ 1.5 (Fig. S1B inset), indicating that clustering enhances the output when there are more
deactivating enzymes than activating enzymes, such that the capture effect is strong. Indeed, at α∗ the
difference in mean rebinding times (∆ρ̄ ∼ 9 × 103) surpasses the corresponding difference in mean search
times (∆σ̄ ≡ σ̄c − σ̄r ≈ 3× 103) sufficiently to enhance to the output — that is, the capture effect overtakes
the target size effect.

Figure S1B illustrates a clear trade-off: flooding the system with deactivating enzymes (i.e. increasing α)
allows clustering to enhance the output beyond that of the random configuration, but it reduces the maximal
output in general. In fact, the reduction with α was derived in the deterministic, well-mixed limit; the result
(Eqn. 47) is shown in Figure S1 and provides a baseline from which the data diverge due to spatial effects.
The intuition behind the reduction is straightforward: biasing the network toward deactivation reduces the
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fraction of active substrate. The reduction, however, is unique to networks with linear sensitivity, which
leads to the question: can clustering enhance the network response in the zero-order regime, in which the
maximal output remains high?

The answer, revealed in Fig. S2, is no: as the sensitivity is varied from linear to zero-order, the en-
hancement with clustering vanishes, then reverses. The reason is that the capture effect, which underlies
the enhancement with clustering, relies on the Ed molecules being free. The zero-order regime, on the other
hand, corresponds to saturation of the enzymes by the substrate, such that at high input the Ed molecules
are not free, but rather they are occupied with high probability. The mean capture time is then exceedingly
long, such that the mean rebinding time is independent of the configuration of Ea molecules. The target
size effect takes over, and the random configuration produces a higher output. The end result, as illustrated
in Fig. S2, is that the benefit of clustering is specific to double-modification networks with linear sensitivity;
in ultrasensitive networks the benefit is lost.

5 Finite back-reaction rates

Here we discuss the effects of systematically varying the back-reaction rates k2 and k5, which are assumed
to be zero in the above sections and the main text. Specifically, we investigate how the main results of the
study (Fig. 2 of the main text) change as k2 and k5 are individually varied across five orders of magnitude
around k6, which sets the timescale of reactions in the system. The findings are illustrated in Fig. S3 and
can be understood as described below.

The most straightforward consequence of changing k2 and k5 is to change the Michaelis–Menten constants
for the activation and deactivation processes, Ka ≡ (k2 + k3)/k1 and K ≡ (k5 + k6)/k4, respectively. As a
result, increasing k2 will increase the threshold of the response (Fig. S3A, B), and increasing k5 will decrease
the threshold of the response (Fig. S3C, D).

In the single-modification network, k2 describes the rate at which an S molecule dissociates from an
Ea molecule “prematurely”, i.e. before it is activated. Fig. S3A demonstrates that increasing k2 introduces
no change in the response of the single-modification network besides the threshold shift; in particular, the
reduction in the output upon clustering remains unchanged. One might be tempted to think that when
k2 is high, such that premature dissociation is frequent, clustering would promote more rapid rebinding
of the S molecule to an Ea molecule and potentially change the response. However, unlike the rebinding
of S∗ molecules in the double-modification network, where trajectories can be terminated by deactivation,
for S molecules here rebinding is the only fate. As described in the main text, without the possibility
of termination, the mean rebinding time is independent of the spatial configuration of Ea molecules. We
conclude that taking nonzero k2 does not introduce any further dependence on configuration, but rather
has the effect of renormalizing the catalytic rate k3 to a reduced value, changing only the threshold of the
response.

In the double-modification network, k2 describes the rate of each of two processes: the premature dis-
sociation of an S molecule from an Ea molecule and the premature dissociation of an S∗ molecule from an
Ea molecule. While the mean rebinding time of an S molecule is independent of spatial configuration as
just discussed, the mean rebinding time of an S∗ molecule is dependent on spatial configuration — this is,
of course, the source of the enhancement in the response, as described in the main text. Nonetheless, we
observe that increasing k2 introduces no change in response of the double-modification network besides the
threshold shift (Fig. S3B); in particular, the enhancement in the output upon clustering remains unchanged.
One might hypothesize that when k2 is high, such that premature S∗ dissociation is frequent, the rapid re-
binding of S∗ molecules promoted by clustering would be compounded by the multiple rebinding events, thus
enhancing the response further than for k2 = 0. If such an effect were present, it would only be observable
in the threshold region: below the threshold the output is suppressed, and above the threshold k3 dominates
over k2, making premature dissociation rare. Fig. S3B demonstrates that, in fact, further enhancement with
k2 is not observed, even in the threshold region. We conclude that either the magnitude of the effect or the
range of χ over which it occurs is negligible for these data.

In the single-modification network, k5 describes the rate at which an S∗ molecule dissociates from an Ed

molecule prematurely, i.e. before it is deactivated. Fig. S3C demonstrates that the reduction in the output
upon clustering persists as k5 increases. This result is expected since the origin of the reduction, the target
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Figure S3: Input-output response of a single- (top) and double-modification network (bottom) as back-
reaction rates k2 (left) and k5 (right) are varied across five orders of magnitude as indicated (legend in A
also describes B; legend in D also describes C). Cluster size is N = 25, surface density is µ = 0.01, and
depth is ζ = 25. Curves are normalized by the maximal value of the well-mixed response, φ̂max. (A, C) A
symmetric (α = β = 1) single-modification network with low diffusion (δ = 1/4π) and zero-order sensitivity
(γ = ε = 0.1); here φ = [S∗]/[S]T . (B, D) A deactivation-biased (α = 5, β = 1) double-modification network
with intermediate diffusion (δ = 10) and linear sensitivity (γ−1 = 0.05, εγ−1 = 0.01); here φ = [S∗∗]/[S]T .
A note for visual clarity: in D, the random and clustered curves overlap for k5/k6 = 100.

size effect, is a general property of diffusive trajectories. Fig. S3C also demonstrates that, in addition to the
threshold shift, the maximal output in both the random and the clustered configuration increases with k5,
ultimately approaching that of the well-mixed response, φ̂max. This result also makes sense, since increasing
k5 makes the Ed molecules less effective at rapidly deactivating the S∗ molecules, which in turn weakens the
spatial gradients of [S∗] and [EdS

∗] perpendicular to the membrane. As described in previous work (10) and
noted in the main text, these gradients are responsible for the difference between the maximal outputs of
the well-mixed and the membrane-localized (both random and clustered) responses; weakening the gradients
therefore suppresses this difference.

In the double-modification network, k5 describes the rate of each of two processes: the premature disso-
ciation of an S∗ molecule from an Ed molecule and the premature dissociation of an S∗∗ molecule from an
Ed molecule. Just as a prematurely dissociated S molecule has only one fate (to rebind to an Ea molecule),
a prematurely dissociated S∗∗ also has only one fate: to rebind to an Ed molecule. Therefore, the mean
rebinding time of an S∗∗ molecule is independent the spatial configuration, and premature S∗∗ dissociation
caused by nonzero k5 does not introduce any further configuration dependence in the response. Premature
S∗ dissociation, on the other hand, does change the response: it reduces the ability of Ed molecules to
successfully deactivate S∗ molecules upon capture. Because the enhancement in the output upon clustering
relies upon sufficient deactivation to terminate trajectories and truncate the rebinding time distribution, the
enhancement vanishes for sufficiently high k5, as demonstrated in Fig. S3D.
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