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Magneto-electric point scattering theory for metamaterial scatterers
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We present a new, fully analytical point scattering model which can be applied to arbitrary anisotropic
magneto-electric dipole scatterers, including split ringresonators (SRRs), chiral and anisotropic plasmonic scat-
terers. We have taken proper account of reciprocity and radiation damping for electric and magnetic scatterers
with any general polarizability tensor. Specifically, we show how reciprocity and energy balance puts constraints
on the electrodynamic responses arbitrary scatterers can have to light. Our theory sheds new light on the mag-
nitude of cross sections for scattering and extinction, andfor instance on the emergence of structural chirality in
the optical response of geometrically non-chiral scatterers like SRRs. We apply the model to SRRs and discuss
how to extract individual components of the polarizabilitymatrix and extinction cross sections. Finally, we
show that our model describes well the extinction of stereo-dimers of split rings, while providing new insights
in the underlying coupling mechanisms.

I. INTRODUCTION

Research in the field of metamaterials is driven by the pos-
sibility to control the properties of light on the nanoscaleby
using coupled resonant nanoscatterers to create optical ma-
terials with very unusual effective medium parameters. En-
gineering arbitrary values for the effective permittivityǫ and
permeabilityµ would allow new forms of light control based
on achieving negative index materials1–3, or transformation
optics media4 that arbitrarily reroute light through space. In
order to reach such control overǫ andµ, many metamaterial
building nanoblocks have previously been identified as hav-
ing an electric and magnetic response to incident light, in-
cluding split ring resonators (SRRs)5–10, rod-pairs11, cut-wire
pairs12, fishnet structures13–15 and coaxial waveguides16. In
many instances, the nanoscatterers are not only interesting as
building blocks in subwavelength lattices of designedǫ and
µ. The building blocks are in fact very strong scatterers with
large cross sections17–20, comparable to the large cross sec-
tions of plasmonic structures. Therefore, metamaterial build-
ing blocks are excellently suited to construct magnetic anten-
nas, array waveguides and gratings in which electric and mag-
netic dipoles couple and form cooperative excitations, in anal-
ogy to the functionality imparted by plasmon hybridization21.
Experiments outside the domain of effective media have ap-
peared only recently. These experiments include experiments
by Husniket al.17, and Banzeret al.22 that quantify the extinc-
tion cross section of single split rings under differently polar-
ized illumination, as well as a suite of experiments on coupled
systems. These experiments include extinction measurements
on split ring dimers23 that point at resonance hybridization, as
well as reports of magnetization waves24, structural and geo-
metrical chirality in arrays, as evident in e.g. massive circular
dichroism25–32, and chiral effects in split ring stereo-dimers
studied by Liuet al.33.

In order to understand the light-metamatter interaction in
systems of strongly coupled magneto-electric scatterers,it is
important to understand how individual metamaterial building
blocks are excited and how they scatter. So far, explanations
of the observed phenomena have mainly rested on two pil-

lars. On the one hand, data are compared to brute force finite-
difference time-domain (FDTD) simulations of Maxwell’s
equations, usually showing good correspondence5,6,8,17,18,25,26.
While the FDTD method is a rigorous method, such numeri-
cal experiments do not in themselves provide insight into how
split rings scatter or hybridize in coupled systems. There is
general consensus that to lowest order, metamaterial inter-
actions in lattices of scatterers like SRRs must be described
by magneto-electric point-dipole interactions. Hence, simple
LC circuit models with dipolar coupling terms are the second
main interpretative tool to predict, e.g., frequency shifts due
to electric and magnetic dipole-dipole interactions in lattices
and oligomers9,23,33,34. To rationalize this LC circuit intuition,
several authors have analyzed current distributions obtained
by FDTD simulations in order to retrieve the microscopic pa-
rameters (i.e., the polarizability) underlying such a dipolar in-
teraction model, and in order to estimate multipolar correc-
tions18–20,35–38.

While there is general consensus that to lowest order, meta-
material interactions must essentially be magneto-electric
point dipole interactions, we note that the dipolar circuitmod-
els in use so far have some significant shortcomings. Strictly
speaking, the electric circuit theories lack the velocity of light
c as a parameter. Hence, they contain no retardation or in-
terference, they violate the optical theorem, do not predict
quantitative cross sections, and fail to predict the effects of
super- and subradiant damping on resonance linewidths. A
fair comparison of intuitive point-dipole ideas with actual data
is therefore impossible, unless a fully electrodynamic theory
for magneto-electric point dipoles is derived. Such a theory
would generalize the electric point scattering theory thatis
well known as very effective means to describe random media,
extraordinary transmission and plasmon particle arrays39–41.
In this paper we derive exactly such a theory for general
magneto-electric scatterers. We show how reciprocity and en-
ergy conservation restrict the full magneto-electric response
via Onsager constraints42,43, and a new magneto-electric op-
tical theorem for the full polarizability tensor. This tensor
not only includes an electric (magnetic) response to electric
(magnetic) driving, but also off-diagonal coupling in which a
magnetic (electric) response results from electric (magnetic)
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driving. While our theory sheds no light on the microscopic
origin of the polarizability44, we show how electrodynamic
polarizability tensors can be directly constructed from LCcir-
cuit models. Furthermore we predict how extinction measure-
ments and measurements of radiation patterns (i.e., differen-
tial scattering cross section) can be used to quantify the polar-
izability tensor.

The paper is structured in the following way: Firstly, in
Section II we derive the general theory, taking into full ac-
count reciprocity, the optical theorem and radiation damping.
In Section III we apply this theory to set up the polarizability
of the archetypical metamaterial building block, a single SRR.
In Section IV we show which set of experiments can be used
to retrieve the tensor polarizabilityα. We find that magneto-
electric coupling directly implies circular dichroism in the
extinction of single split rings, evidencing the utility ofour
theory to describe structural chirality25–32. Thirdly, we show
in Section V that the theory can be simply applied to obtain
quantitative scattering spectra of coupled systems. By wayof
example we examine the case of two coupled resonators in the
stereodimer configuration reported by Liu et al.33.

II. MAGNETO-ELECTRIC POINT SCATTERER

A. Polarizability

A paradigm in scattering theory is the point dipole scat-
terer39–41,45,46to model scattering by very small, but strongly
scattering particles. Generally, incident fieldsE andH in-
duce a (complex) current distribution in an arbitrary scatterer.
It is the express point of this paper to assess what the scat-
tering properties are of subwavelength scatterers with strong
electric and magnetic dipole moments, as this represents the
physics expected of metamaterial building blocks9,23,33,34,47.
Therefore we retain only electric and magnetic dipole terms,
neglecting higher order multipoles. In such a theory, each
scatterer is approximated as an electric dipole with an electric
dipole momentp = αEEE that is proportional to the driv-
ing electric fieldE. The proportionality constant is the po-
larizability αEE . In this paper, we derive a generalized point
scattering theory for metamaterials that includes a magnetic
dipole momentm on an equal footing with the electric dipole
momentp. In the most general case, the electric dipole mo-
mentp and magnetic dipole momentsm are induced by both
the external electric and magnetic fieldsE andH according
to

(

p

m

)

= α

(

Ein

Hin

)

. (1)

Throughout this paper we suppress harmonic time depen-
dencee−iωt. We use a rationalized unit system that signif-
icantly simplifies all equations and is fully explained in Ap-
pendix A. In Eq. (1),α is a 6×6 polarizability tensor, which
consists of four 3×3 blocks, each of which describes part of
the dipole response to the electric or magnetic component of

the incident light

α =

(

αEE αEH

αHE αHH

)

. (2)

Here,αEE quantifies the electric dipole induced by an applied
electric field. The tensorial nature ofαEE is well appreci-
ated in scattering theory for anisotropic particles, such as plas-
monic ellipsoids48. By analogy with the electric response to
electric driving quantified byαEE , the tensorαHH quantifies
the magnetic dipole induced by a driving magnetic field. Fi-
nally, the off-diagonal blocks represent magneto-electric cou-
pling. The lower diagonalαHE quantifies the magnetic dipole
induced by an incident electric field, andαEH quantifies the
electric dipole induced by an incident magnetic field. Such
magneto-electric coupling is well known to occur in the con-
stitutive tensors of metamaterials7. Indeed, the first metama-
terials consisted of split ring resonators, in which there is a
magnetic response without any driving magnetic field in nor-
mal incidence experiments49. However, the relative strength
of magneto-electric coupling in the polarizability, i.e.,αEH ,
andαHE have not been experimentally quantified.

B. Electrodynamic Onsager relation

There are several constraints onα. In addition to any sym-
metry of the scatterer itself that may impose zeros in the po-
larizability tensor, these constraints are due to reciprocity and
to energy conservation. We start by examining the constraints
imposed by reciprocity. It is well known from the field of
bi-anisotropic materials43 that reciprocity imposes so-called
Onsager constraints on the most general constitutive tensors
relating (D,B) to (E,H). Already Garcı́a-Garcı́aet al.47

proposed that such Onsager constraints carry over directly
to electrostatic polarizabilities. Here we rigorously derive
Onsager relations for electrodynamic magneto-electric point
scatterers. By, definition, the electric and magnetic fieldsdue
to the inducedp andm are equal to

(

Eout

Hout

)

= G0(r, r′)

(

p

m

)

, (3)

with a dyadic Green tensorG0 that describes the field at posi-
tionr = (x, y, z) due to a dipole atr′ = (x′, y′, z′). The 6×6
Green dyadic of free space can be divided in four 3×3 blocks

G0(r, r′) =

(

G0
EE(r, r

′) G0
EH(r, r′)

G0
HE(r, r

′) G0
HH(r, r′)

)

(4)

The 3×3 diagonals correspond to the familiar known elec-
tric field Green dyadic40,41 and magnetic field Green dyadic
of free space, which in our unit system (see Appendix) both
equal

G0
EE(r, r

′) = G0
HH(r, r′) = (Ik2 +∇∇)

eik|r−r
′|

|r − r′| . (5)

The off diagonal blocks correspond to the mixed dyadics that
specify the electric field atr due to a magnetic dipole atr′,
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respectively the magnetic field atr due to an electric dipole at
r′. Explicitly:

G0
EH(r, r′) = −G0

HE(r, r
′)

= ik





0 ∂z −∂y
−∂z 0 ∂x
∂y −∂x 0





eik|r−r
′|

|r − r′| .

(6)

In this work we focus solely on scatterers made from recip-
rocal constituents, as is commonly true for the metallic scat-
terers that constitute metamaterials. Since the materialsthat
compose our scatterers (typically gold and silver) satisfyreci-
procity microscopically, the polarizability tensor must also
lead to a scattering theory that satisfies reciprocity.

To derive reciprocity constraints onα, it is sufficient to ex-
amine the Green function in the presence of just one point
scatterer at the origin. This Green function that quantifiesthe
field atr2 due to a source atr1 in presence of a single scatterer
atrs can be written as39,40,50

G(r1, r2) = G0(r1, r2) +G0(r2, rs)αG0(rs, r1), (7)

Reciprocity requires for any Green functionG (similarly split
in four blocks) that

(

GEE(r2, r1) GEH(r2, r1)
GHE(r2, r1) GHH(r2, r1)

)

=

(

GEE(r1, r2) −GEH(r1, r2)
−GHE(r1, r2) GHH(r1, r2)

)T

(8)

which is equivalent to noting that swapping source and detec-
tor leaves the detected field unchanged, up to a change in sign.
Specifically, Lorentz reciprocity requires a transpose forthe
diagonal 3×3 blocks, meaning that swapping a detector and
source of like character leaves the detected field unchanged.
An extra minus occurs for the off-diagonal terms,i.e., when
swapping a magnetic (electric) detector with an electric (mag-
netic) source. It is easy to verify that Eq. (8) is indeed satisfied
by the free space Green functionG0.

Using this fact, we evaluate Eq. (8) for the Green function
in Eq. (7) to find if reciprocity constrainsα. Since reciprocity
is clearly satisfied for the first term in Eq. (7), we now focus
on the second term

G0(r2, rs)αG0(rs, r1) = G0(r1, rs)αG0(rs, r2). (9)

Expanding the matrix products in Eq. (8) while making use
of the reciprocity of the free Green function results in the On-
sager relations for the dynamic polarizability:

αEE = αT
EE , αHH = αT

HH , and αEH = −αT
HE

(10)

These relations are identical in form to the Onsager relations
for constitutive tensors43, but are now derived on very differ-
ent grounds for the polarizability of electrodynamically con-
sistent point scatterers. This gratifying result shows that the

general point dipoles proposed in this work can be used as mi-
croscopic building blocks for an exact scattering theory that
describes the formation of bi-anisotropic media from dense
lattices of scatterers in the effective medium limit. Indeed,
since the point scattering building blocks fulfill the Onsager
constraints, they are natural building blocks to derive effec-
tive media constitutive tensors by homogenization that also
satisfy the Onsager relations.

C. Optical theorem

It is well known in point scattering theory for electric
dipoles that polarizability tensors are not solely limitedby
reciprocity and spatial symmetry, but also fundamentally by
energy conservation. Indeed, energy conservation imposes
an ’optical theorem’ that constrains the polarizability ofan
electric dipole scatterer to ensure that (in absence of mate-
rial absorption) extinction equals scattering40. We proceed to
examine these constraints imposed onα. Let us first recapitu-
late the well known case of a scalar electric scatterer39,40. An
electric scatterer will absorb and scatter part of the incom-
ing light, that together make up the extinction of a dipole.
Extinction for an electric scatterer corresponds to the work
done by the incident fieldE in order to drive the dipole
p. The work per optical cycle needed to drivep equals
W =≪ ReE · Redp

dt
≫, where≪≫ indicates cycle aver-

aging. Evaluating the work per cycle, and dividing it by the
incident intensityIin = |E|2/2Z (Z the impedance of the
host medium) leads toσext = W/Iin = 4πkImαEE . Scat-
tering corresponds to far field radiation radiated by the dipole
p. According to Larmor, the cycle-averaged scattered power
is51 P = 4πk4

3Z |p|2. Hence one obtains the well known cross
sections

σext = 4πkImαEE and σscatt =
8π

3
k4|αEE |2. (11)

Equating extinction to scattering for nonabsorbing particles to
impose energy conservation, gives rise to the optical theorem
for the polarizability

Imα =
2

3
k3|αEE |2 (12)

This equation for instance shows the well-known fact that a
real (electrostatic)α0, such as Rayleigh’s polarizabilityα =
3V (ǫ − 1)/(ǫ + 2) for a small sphere of dielectric constant
ǫ, never satisfies the optical theorem52. An electrostaticα0

can be made to satisfy the optical theorem by adding radiation
damping40,41 to obtain the dynamic polarizability

1

α
=

1

α0
− i

2

3
k3. (13)

It is easy to verify that the albedo of a scatterer with polariz-
ability given by Eq. (13) is

a =
σscat
σext

=
1

1 + 2
3k

3Imα0

,
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confirming that radiation damping indeed transforms any loss-
less electrostatic polarizability (Imα0 = 0) into a scatterer
that satisfies the optical theorem. Also material loss included
in α0 via ǫ evidently leads to a lossy scatterera < 1, as
expected. Many alternative derivations of Eq. (13) have ap-
peared, for instance by making a size parameter expansion of
dipolar Mie coefficients53.

Inspired by the case of a simple electric dipole, we now
generalize the optical theorem and the concept of radiation
damping to the full 6x6 tensorial polarizability of arbitrary
magneto-electric scatterers. In this case, the work done per
unit cycle by the incident fieldEin andHin to drivep andm
is equal to

W = ≪ ReEin ·Redp
dt

+ReHin ·Redm
dt

≫ (14)

which evaluates to

W =
2π

Z
kIm

[

(

Ein Hin

)∗
α

(

Ein

Hin

)]

, (15)

where(·)∗ indicates complex conjugate. The power per solid
angle radiated by the induced dipoles in a direction specified
by a unit vector̂r is easily found by calculating the far-field
Poynting vector from Eq. (3). The result is composed of three
terms:

dP

dΩ
=
dPp

dΩ
+
dPm

dΩ
+
k4

2Z
Re(p×m) · r̂, (16)

The first term in Eq. (16) represents the scattered radiation
of just the electric dipolep, which integrates to a total scat-
tered power given by Larmor’s formula. The second term in
Eq. (16) represents the radiation pattern of just the magnetic
dipolem, again given by Larmor’s formula. Note that both
terms simply represent the well knownsin2 θ donut shaped
radiation pattern forp andm. The third term, however, can
completely change the radiation pattern, as it contains thein-
terference between the fields ofp andm. Hence the relative
phase between the inducedp andm is important for the dif-
ferential scattering cross section. To obtain the total scattered
power, one should integrate Eq. (16) over all solid angle. The
interference term integrates to 0, as is easily seen from thefact
it is an odd function of̂r. Therefore, Larmor’s formula imme-
diately generalizes, and the scattering cross section equals:

P =
4π

3Z
k4

∥

∥

∥

∥

p

m

∥

∥

∥

∥

2

. (17)

Equating extinction to scattering results in a condition that
must be satisfied for any incident field(Ein,Hin)

Im

[

(

Ein Hin

)∗
α

(

Ein

Hin

)]

=

2

3
k3

[

(

Ein Hin

)∗
α∗Tα

(

Ein

Hin

)]

,

(18)

Due to the tensorial character ofα it is not immediately ev-
ident how to extract a useful optical theorem that constrains

just the polarizability tensorα without reference to any in-
cident field(Ein,Hin). In order to eliminate(Ein,Hin) we
make the assumption (verified below for split rings) thatα can
be diagonalized. We call the eigenvectorsvi, and denote the
eigenvalues, which we will refer to as ‘eigenpolarizabilities’,
with Ai. Expanding the incident field at the position of the
origin in the orthogonal eigenvectors

(

Ein

Hin

)

=
∑

i

civi, (19)

and withαvi = Aivi and〈vi|vj〉 = δij , Eq. (18) reduces to

2

3
k3

6
∑

i=1

|ci|2|Ai|2 ≥
6

∑

i=1

|ci|2ImAi, (20)

with strict equality for lossless scatterers. Since this equation
must be satisfied for any choice of incident wave (i.e., any
combination ofci), we find a generalized optical theorem for
6×6 polarizability tensors that can be expressed in terms of
the eigenpolarizabilities as

2

3
k3|Ai|2 ≥ ImAi ∀i = 1 . . . 6, (21)

again with strict equality for lossless scatterers. Eq. (21) im-
plies that the polarizability tensor represents an energy con-
serving scatterer, if and only if each of its 6 eigenpolarizabil-
ities are chosen to satisfy the simple scalar optical theorem
(Eq. (12)) derived for electric scatterers. This general opti-
cal theorem highlights the importance of two new quantities:
the eigenpolarizabilities, and the corresponding eigenvectors
of the point scatterer polarizability.

In Eq. (13) we reviewed the well-known addition of radi-
ation damping required to make electrostatic polarizabilities
satisfy the optical theorem. Since metamaterial scatterers are
frequently treated via electrostatic circuit models, it would be
extremely fruitful to generalize this method to general 6×6
electrostatic polarizability tensors. It is now evident, that we
can simply apply the scalar recipe to each eigenpolarizability
separately. An alternative notation for this method is:

α−1 = α−1
0 − 2

3
k3iI (22)

We note that this expression, which is identical to Eq. (13)
upon replacement of1/(·) by matrix inversion, provides a
unique relation to translate a magneto-/electrostatic polariz-
ability tensorα0 derived from RLC circuit theory, to the cor-
responding electrodynamic polarizability that satisfies the op-
tical theorem. We can hence consistently assess how intuitive
ideas based on a microscopic RLC circuit model for electro-
static dipoles lead to quantitative predictions for extinction,
scattering, as well as resonance hybridization, diffraction and
super/sub radiant damping in coupled systems, such as peri-
odic systems, or arbitrary finite clusters.
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FIG. 1. Split ring radiation patterns corresponding to the polarizability tensor eigenvectors. Panel (a): (Sketch) A single split ring resonator
can have an electric dipole momentp along thex-axis due to charging of the split. Circulating currentj in the ring gives rise to a magnetic
dipole momentm in thez-direction. Panels (b,c): Radiation patterns of the two eigenmodes of an SRR in the case of no off-diagonal magneto-
electric coupling (ηE = 0.7, ηH = 0.3, ηC = 0). The electric dipole moment oriented along thex-axis radiates most of its amplitude in the
ky, kz plane, while the magnetic dipole oriented along thez-axis radiates mostly into thekx, ky plane. Panels (d,e): radiation patterns of the
eigenvectors with magneto-electric cross coupling (ηC = 0.4). Panel (f): indication of the polarization of the light radiated by the eigenvector
with largest eigenvalue (panel (c)). Light is linearly polarized for wave vectors along the cartesian axes, but elliptically polarized in general.
The direction of strongest circular dichroism in extinction and scattering is in thexz-plane.

III. POLARIZABILITY OF SPLIT RING RESONATORS

A. Symmetry

As an example of our general theory we consider the spe-
cific example of split ring resonators. The electrostatic po-
larizability of split ring resonators was discussed for instance
by Garcı̀a-Garcı̀a et al47. We consider the LC resonance of
an infinitely thin split ring in thexy plane, with split oriented
along thex axis, as shown in Fig. 1(a). Incident electric field
polarized along thex direction gives rise to an electric dipole
p = (αxx

EEEx, 0, 0) oriented along the split of the SRR. As in
an LC circuit, the charge separation generated over the capac-
itive split relaxes as a circulating current, hence giving rise to
a magnetic dipolem = (0, 0, αzx

HEEx) in thez direction, in
response to a driving E-field alongx54. The same is valid vice
versa: an applied magnetic field alongz induces a magnetic
dipole momentm = (0, 0, αzz

HHHz) along thez direction.
The associated current accumulates at the gap, giving rise to
an electric dipole momentp = (αxz

HEHz, 0, 0) driven byHz .
If we assume that the LC resonance really only involvespx

andmz, we find that the polarizability tensor is filled with ze-
ros, except for the four contributions described above. Hence

αSRR =













αxx
EE 0 ... 0 αxz

EH

0 0
...

. . .
...

0 0
αzx
HE 0 ... 0 αzz

HH













. (23)

The symmetry constraints that set which elements ofαSRR

are zero, are valid both for the electrodynamic and electro-
static polarizability of split rings.

B. Quasi-electrostatic RLC model

We will now construct the electrodynamic polarizability by
starting from an electrostatic polarizability derived from a sin-
gle resonant RLC equation of motion. Therefore we take a
common resonant frequency dependence out of the tensor el-
ements, writing

αstatic
SRR = α(ω)













ηE 0 ... 0 iηC
0 0
...

. . .
...

0 0
−iηC 0 ... 0 ηH













, (24)

whereηE , ηC andηH are constant andα(ω) is a Lorentzian
prefactor

α(ω) =
ω2
0V

ω2
0 − ω2 − iωγ

. (25)

Here,ω0 is the SRR resonance frequencyω0 ≈ 1√
LC

, γ is the
damping rate due to the Ohmic loss of gold andV is the phys-
ical particle volume. As in the plasmonic case, this approxi-
mation is coined ‘quasi-static’, as it does contain frequencyω,
but does not contain the velocity of lightc. The polarizability
obtained from the quasi-static polarizability once the radiation
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damping term is added (section III C Eq. (22)) is called ‘dy-
namic polarizability’. In this formulation, all the frequency
dependence, and the units ofαSRR are contained inα(ω).
The parametersηE , ηH andηC are dimensionless. For a loss-
less split ringηE , ηH andηC are all real. We assume that all
losses are introduced viaγ. To determine the sign ofηE , ηH
andηC , we expect that for very slow driving the charge (cur-
rent) on the capacitor directly follows the drivingE (H)-field,
implying ηE > 0 andηH > 0. The sign ofηC follows simi-
lar reasoning, After charge build-up, charge associated with a
px = Re(α(ω)ηEe

−iωtEx) relaxes as counter-clockwise cur-
rent, giving rise to a negativemz = Re(α(ω)iηCe

−iωtEx),
implying thatsign ηC = sign ηE .

C. Limit on magneto-electric coupling

Having constructed an electrostatic polarizability in accor-
dance with RLC circuit models proposed in earlier reports,
we apply radiation damping according to Eq. (22) to obtain a
scatterer that has a correct energy balance:

α−1
SRR = (αstatic

SRR )−1 − 2

3
k3I. (26)

So far we have not explicitly discussed absorption loss, except
through the inclusion of the material damping constantγ in
the quasi-static polarizability. Starting from a quasi-static po-
larizability with quasi-static eigenpolarizabilitiesAstatic

i , the
albedo for each eigenilluminationvi can be expressed as

ai =
1

1 + 2
3k

3ImAstatic
i

. (27)

It follows that for any lossy scatterer the imaginary part of
each eigenvalueAstatic

i of the electrostatic polarizability ten-
sor must be positive to ensure0 ≤ a ≤ 1. In the case of a
tensorialα with loss included as in Eq. (24), (25), one needs
to explicitly verify that each eigenvalue has positive imaginary
part. The eigenvalues of Eq. (24) areAstatic

± = α(ω)λ± with

λ± =
ηE+ηH±

√
(ηE−ηH)2+4η2

C

2 . SinceIm(α(ω)) ≥ 0 and
λ± are real, we find that both eigenvalues have positive imag-
inary part only if bothλ+ andλ− are positive. Thus, loss sets
an additional constraint on the polarizability tensor, andlimits
the magneto-electric coupling to

|ηC | ≤
√
ηEηH . (28)

This result implies a very important limitation on magneto-
electric scatterers: it states that a magneto-electric cross cou-
pling (ηC ) can only be generated if there is a sufficiently
strong directly electric, and directly magnetic response.We
note that this constraint is very similar to the constraint on
the magneto-electric cross coupling in constitutive tensors de-
rived for homogeneous bi-anisotropic media in Ref. 43 that
recently attracted attention in the framework of proposalsfor
repulsive Casimir forces55,56. While our derivation was spe-
cific for split rings, we note that similar constraints hold for
all magneto-electric scatterers. In the presence of material

loss, the magneto-electric coupling terms are limited by the
fact that all electrostatic eigenpolarizabilities must have posi-
tive imaginary part.

IV. PREDICTED SCATTERING PROPERTIES OF SINGLE
SPLIT RINGS

In the remainder of the paper we discuss some insights that
the proposed magneto-electric point scattering theory pro-
vides in how split rings scatter. In this section we will con-
sider the eigenmodes and the radiation patterns of a single
SRR forα given by Eq. (26). Next, we predict which set
of experiments will provide full information on the elements
of the polarizability tensor. We will show how the extinction
cross sections can be translated back to retrieve SRR polariz-
abilities and magneto-electric cross polarizabilities ofa single
SRR. Although the results we present are general, we use a
specific set of parameters for all the figures presented in this
paper. These parameters are chosen to fit to the properties of
split rings that are resonant atλ = 1.5 µm (ω0/2π = 200 THz
and that consist of 200 by 200 nm gold split rings with a
thickness of 30 nm and a gap width of 90 nm. Thus we take
V = 200 × 200 × 30 nm3. We set the damping rate to be
that of goldγ = 1.25 · 1014 s−1 as fitted to optical constants
tabulated in in Ref. 57. We useηE = 0.7, ηH = 0.3 and
ηC = 0.4. These parameters were chosen because (A) they re-
produce quantitatively the extinction cross section undernor-
mal incidence along thez-axis measured by Husniket al.17,
and (B) they fit well to our transmission data on arrays of dif-
ferent densities of split rings taken at normal incidence9 and as
a function of incidence angle58. The chosen values correspond
to on-resonance polarizabilitiesαEE = 4.6V , αHH = 2.1V
andαEH = 2.5V , all well in excess of the physical SRR vol-
umeV as is typical for strong scatterers. Finally, we note that
the calculated albedo fits well to the albedoa = 0.5 to 0.75
calculated by FDTD by Husnik et al.17.

A. Radiation patterns and eigenvectors of the polarizability
tensor

In Fig. 1, we consider the eigenstates of the split ring po-
larizability tensor presented in Eq. (26). We first assume that
the cross coupling terms are absent, i.e.,ηC = 0, in which
case the polarizability tensor is diagonal, with eigenpolariz-
abilitiesα(ω)ηE andα(ω)ηH . The corresponding orthogonal
eigenmodes are(px,mz) = (1, 0) and (px,mz) = (0, 1).
Figures 1 (b) and (c) show radiation patterns of the two
eigenmodes. Figure 1(b) shows the radiation pattern of the
purely electric eigenmode(px,mz) = (1, 0) and Fig. 1(c)
shows the radiation pattern of the purely magnetic eigen-
mode (px,mz) = (0, 1). Note that bothpx and mz ra-
diate as simple dipoles with asin2 θ far field radiation pat-
tern51. The two eigenmodes can be selectively excited by im-
pinging with a plane wave incident along thez-axis withx-
polarizedE-field (electric eigenmode), or with a plane wave
incident along thex-axis withy-polarization (z-polarizedH-
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field, magnetic eigenmode). The extinction cross section of
a single split ring at these two incidence conditions is set by
σext = 4πkIm(αEE) andσext = 4πkIm(αHH).

Next, we consider extinction and eigenmodes for arbitrary
values of the cross coupling. It is easy to see that the extinc-
tion cross section at the two special illumination conditions
(incident alongz, x-polarized, respectively, incident alongx,
with y-polarization) remain equal toσext = 4πkIm(αEE)
andσext = 4πkIm(αHH). However, for nonzeroηC , these
incidence conditions and polarizabilities do not correspond
anymore to the eigenvalues and eigenvectors of the polariz-
ability tensor, which now have mixed magneto-electric char-
acter. In the extreme case of strongest magneto-electric cou-
pling (ηC =

√
ηEηH ), the eigenvectors reduce to(px,mz) =

(1, i
√

ηE/ηH) and(px,mz) = (1,−i
√

ηH/ηE). The asso-
ciated far-field radiation patterns of these eigenvectors corre-
spond to coherent superpositions of the radiation pattern of an
x-oriented electric dipole, and az-oriented magnetic dipole,
with a quarter wave phase difference. Figures 1(d,e) show the
on-resonance radiation pattern, assumingηE = 0.7, ηH = 0.3
andηC =0.4. Note that these parameters are close to the
limit of strongest possible magneto-electric coupling. Figures
1(d,e) reveal that the radiation pattern of each eigenmode is
non-dipolar. Rather than asin2 θ donut-shaped pattern, an
elongated radiation pattern occurs, with maximum extent in
they-direction. The polarization in the far field is linear for
directions along the cartesian axis, but is generally elliptical.

B. Extinction cross sections to measure polarizability

Figure 2 shows the extinction cross section predicted by
our point scattering model of a single split ring for different
incidence conditions. In Fig. 2(a), the incident wave vector
is swept from thez-direction to they-direction, while main-
taining x− polarized light. For this set of incidence con-
ditions the resulting extinction cross sections only depend
on αEE andαHH , and are entirely independent of the off-
diagonal coupling strengthαEH . The cross section increases
from σext = 4πkImαEE as the split ring is only driven
by the incidentEx field when light is incident alongz, to
σext = 4πk(ImαEE + ImαHH), as the split ring is driven
by the incidentEx field plus the incidentHz field. When the
wavevector is rotated to the thex-axis, the extinction cross
section diminishes to4πkImαHH , as the split ring is only
driven byHz. The chosen valuesηE = 0.7, ηH = 0.3
and ηC = 0.4 that we also used for Fig. 1(d,e) yield ex-
tinction cross sectionsσext = 4πkImαEE = 0.29 µm2 and
σext = 4πkImαHH = 0.13 µm2. The predictedσext =
4πkImαEE = 0.29 µm2 is consistent with the measurement
(σext = 0.3 µm2) reported by Husnik et al.17. It is impor-
tant to note that measurements along cartesian incidence di-
rections and with linear cartesian polarizations yield only the
diagonal elements of the polarizability tensor. Indeed, the pro-
posed measurements form a redundant set of measurements of
αEE , αHH , and(αEE+αHH), but do not provide any insight
into the magneto-electric cross coupling in the electrodynamic
polarizability tensor.59

In order to measure the eigenpolarizabilities, it is neces-
sary to selectively address the eigenvectors of the polariz-
ability tensor. As noted above, the eigenvectors in the case
of strong magneto-electric couplingηC ≈ √

ηEηH tend to
(px,mz) = (1, i

√

ηE/ηH) and (1,−i
√

ηH/ηE). These
eigenvectors require simultaneous driving byEx andHz, with
a quarter wave phase difference. We note that such fields
can be generated by circularly polarized light with incident
wave vector constrained to thexz-plane. Indeed, at maxi-
mally strong magneto-electric coupling andηE = ηH , cir-
cularly polarized light incident at45◦ from thez-axis would
selectively excite exactly one eigenmode. Therefore, we ex-
pect angle-resolved extinction measurements for oppositely
handed circularly polarized beams to reveal the eigenpolar-
izabilities. Figure 2(b) plots the extinction cross section for
right handed circular polarization, as a function of angle of
incidence in thez-plane, for illumination tuned to the LC reso-
nance frequency. Naturally, at normal incidence the extinction
is exactly half the extinction obtained for linear polarization,
as a consequence of the fact thatEy does not interact with
the split ring at all. Strikingly, the extinction cross section is
predicted to behave asymmetrically as a function of incidence
angle. The extinction increases when going to positive angle
and decreases when going to negative angle. Changing hand-
edness is equivalent to swapping positive and negative angles.
A detailed analysis shows that the maximum in extinction cor-
responds to the largest eigenvalue of the polarizability tensor
(σext = 2πkImα+), while the minimum in extinction corre-
sponds to the smallest eigenvalue (σext = 2πkImα−). There-
fore, circularly polarized measurements reveal the eigenvalues
of the polarizability tensor. Combining such circularly polar-
ized extinction measurements with the measurements under
cartesian incidence in Fig. 2(a), therefore allows to extract all
components of the polarizability tensor. In addition to the
contrast in extinction, the angle at which the maximum cir-
cular dichroism occurs is a second, independent measure for
the magneto-electric coupling strength. The measurementsin
Fig. 2(a) and (b) together hence provide full, even redundant,
information onηE , ηH andηC .

C. Structural chirality

The results plotted in Fig. 2(b) show that magneto-electric
coupling in the 6×6 polarizability tensor directly implies
structural chirality. It is exhilarating that this interesting phe-
nomenon first reported by26,30 for the transmission of arrays
of scatterers is naturally present in the theory. However, while
previous analysis of structural chirality focused on transmis-
sion through periodic arrays, we predict that circular dichro-
ism already appears in the extinction cross section of a sin-
gle split ring, with a strength set by how close the magneto-
electric coupling strength is to its limit

√
ηE , ηH . The circular

dichroism in extinction occurs independently of whether there
is material loss, as opposed to, e.g., asymmetric transmission
phenomena through arrays, that are claimed to require dissipa-
tion30. For maximally magneto-electrically coupled systems,
the smallest eigenvalue is identically zero, implying thatsuch
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FIG. 2. Extinction cross sectionσext as a function of the illumination angle and polarization. Blue lines representσext for linearly polarized
incident illumination, while red lines represent extinction for right handed circularly polarized illumination. Panel (a) shows extinction for
incidence wave vectors ranging fromkz to ky to kx. At normal incidence withk along thez-axis,σext is a measure for onlyαEE asEx is
the only driving field. Increasing the angle to90◦ both polarizationsEx andHz excite the dipoles in the SRR, soσext is a measure for the
sum of the terms on the diagonal of the polarizability tensor(αEE + αHH). Changing the angle to couple only theHz of the incident light to
the SRR givesσext that is a measure for purelyαHH . Panel (b)σext as a function of the incident angle in thexz-plane (wave vector ranging
from −kx to kz to kx). For right-handed circular polarization minima and maxima inσext occur as a function of angle, which are a measure
for the eigenpolarizabilitiesα− andα+, respectively. Both sets of measurements in panel (a) and (b) together provide information on all the
components of the polarizability tensor,αEE, αHH , andαEH .

a scatterer is transparent for one circular polarization, and
achieves its strongest scattering for the opposite handedness.
We expect that our 6×6 polarizability tensor can be success-
fully used to describe all structurally chiral scatterers reported
today, as well as clusters and periodic arrays thereof.

V. A COUPLED SYSTEM: SPLIT RING DIMERS

So far, this manuscript has focused purely on the scattering
properties of single magneto-electric point scatterers. In the
remainder of the paper we illustrate that our method can be
easily used to analyze multiple scattering by magneto-electric
scattering clusters. In order to calculate the response of asys-
tem of coupled magneto-electric dipoles, we generalize the
general self-consistent equation that describes scattering of
clusters of electric dipolesp as reviewed in41. Assuming a
system ofN magneto-electric point scatterers situated at po-
sitionsr1 . . . rN , the response upon illumination by an inci-
dent field(Ein(r),Hin(r)) is determined by a set ofN self
consistent equations for the induced dipole moments in each
scatterer. The dipole moment induced in scatterern with po-
larizability tensorαn is

(

pn

mn

)

= αn









(

Ein(rn)
Hin(rn)

)

+
∑

q=1...N
q 6=n

G0(rn, rq)

(

pq

mq

)









(29)

Using this equation we can attempt to reinterpret recent mea-
surements that evidence significant coupling in split ringsin
2D arrays, as well as in oligomers9,23,33,34. Here we focus
on the extinction of a dimer of split rings in socalled ‘stere-
odimer’configuration, first studied by Liu et al.33. Figure 3
shows such a ‘stereodimer’, consisting of two SRRs in vac-
uum (V = 200 × 200 × 30 nm3, resonant at a wavelength
around 1500 nm), both parallel to thexy plane, vertically
stacked with a small height difference of 150 nm. The up-
per SRR is rotated by a twist angleψ around thez-axis. On
the basis of the report by Liu et al.33, we expect two reso-
nance peaks with an angle dependent splitting, which can be
explained in an LC model as the summed effect of electric
dipole-dipole coupling and magnetic dipole-dipole coupling.

We calculate the extinction versus twist angle and wave-
length of an incident beam incident from the+z direction,
with x-polarization. This beam directly excitespx in both
rings, which also drive each other. We first analyze the experi-
ment assuming that there is no magneto-electric coupling term
(settingηC =0, although we keepηE =0.7 andηH = 0.3).
As Fig. 3(b) shows, the extinction shows a single strong res-
onance that is blueshifted relative to the single SRR reso-
nance at 200 THz. As a function of twist angle, this broad
resonance redshifts to 200 THz at a twist of 90◦, and shifts
back to 220 THz at a twist of 180◦. There is no sign of a
second resonance, which might be hidden below the strong
resonance. To bring out the second resonance more clearly,
we reduce the loss in Fig. 3(b), to a 10 times lower value
γ = 1.25 · 1013 s−1) for gold in Fig. (c) and (d). For this
almost absorption-free system, Fig. 3(c) indeed shows two
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FIG. 3. Extinction cross sectionsσext versus frequency and twist angle for an SRR stereodimer structure. Panel (a) shows the geometry (top
view and side view) in which two SRRs are vertically stacked.The upper SRR is rotated around thez-axis by the twist angleψ. We calculate
extinction for light impinging from thez-direction with polarization alongx, i.e., along the base of the lower SRR in (b,c,e,f). In (d,g) we
use45◦ incidence in thexz-plane, so that the H-field of the excitation light directly couples also to the magnetic polarizability. Panels (b), (c)
and (d) show extinction assuming no cross coupling term (ηC = 0) while (e), (f) and (g) show extinction assuming strong magneto-electric
couplingηC = 0.4). Panels (b) and (e) assume the damping rate of goldγ = 1.25 × 1014 s−1. To more clearly bring out the four mode
structure, we reduce the damping ten-fold for the calculations in (c,d,f, g). There are four modes present in the system.White lines in (b,e)
indicate the frequencies of the modes, as taken from the resonances in the low-damping case, i.e., the resonances in panels (d,g). Since

resonances in extinction. The blue shifted resonance is now
observed to cross with a narrow red shifted resonance. The
crossing is symmetric around90◦ and is consistent with the
hybridization of an electric dipole fixed alongx, with a sec-
ond one above it twisted by an amountψ. The two branches
have a very different width and strength, consistent with the
fact that a symmetric configuration of dipoles couples more
strongly to external fields (blue shifted resonance), than an
antisymmetric ‘dark’ configuration (red shifted resonance).

To verify whether the two resonances observed in Fig. 3(a)
are all resonances in the system, we change the angle of in-
cidence to 45◦ in thexz plane, so that the exciting field has
anHz component to drive the split rings, in addition to an
Ex component. Figure 3(d) shows that in this case four reso-
nances occur in extinction. In addition to the two curved bands
excited byEx, there are also two non-dispersive bands with a
twist independent splitting. Obviously, these bands are due
to the coupling of two magnetic dipoles in symmetric (broad
and intense band) and antisymmetric head-to-tail configura-
tion. The existence of four instead of two modes is a new
insight compared to LC circuit models33,36, but is logical in
view of the fact that split rings have both a magnetic and an
electric response, which are decoupled under the assumption
ηC = 0.

Next we analyze the extinction in presence of magneto-
electric coupling, settingηC = 0.4. Again, we first examine
the extinction in presence of realistic loss (γ = 1.25·1014 s−1)
for gold in Fig. 3(e). As also predicted by FDTD simulations
by Liu et al.33, there appear to be two bands. The blue-shifted
band is again very broad, but now has a frequency shift away

from the single SRR resonance that is significantly larger for
twist angle180◦ than for0◦. These effects were explained
by Liu et al. as due to an additive (subtractive) correction to
the dominant electric hybridization at twist angle180◦ (0◦)
that occurs due to magnetic dipole coupling. A surprise is that
the diagram is not symmetric anymore around90◦ twist as in
the case of zero magnetic coupling. Instead, the extinctionap-
pears to show an anticrossing at twist angle60◦ These features
were also predicted by FDTD simulations by Liu et al.33 How-
ever, the presence of an anticrossing at twist angleψ = 60◦

could not be interpreted Liu et al33 within an LC electrostatic
circuit model, except by invoking higher order multipolar cor-
rections. Here we see that a purely dipolar model may also
explain all features of the experiment provided that magneto-
electric coupling is accounted for. While we do not claim that
multipolar effects are not present in actual experiments, it is an
important insight that split ring polarizabilities with magneto-
electric coupling terms may provide much richer physics then
expected from electrostatic circuit theory. A main advantage
of point dipole theory is that the underlying mode structure
does not need to be recouped from FDTD simulations, but is
easily resolved by repeating a calculation of extinction cross
sections with low loss (as done in Fig. 3), or by analyzing the
poles of the coupling matrix in Eq. (29) that relates(p,m)
to (Ein,Hin). The computational effort forN split rings is
equivalent to diagonalizing or inverting a6N × 6N matrix.

To more clearly bring out all the resonances we artificially
reduce the dampingγ = 1.25 · 1013 s−1 to ten times less than
the damping of gold, and plot the response of the system un-
der normal incidence (f) and45◦ incidence (g) in Fig. 3 (f,g).
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The anticrossing at twist angleψ = 60◦ appears to be due to
the coupling of four modes, as opposed to the intuition from
LC circuit theory that only two resonances anticross. The ex-
istence of four, rather than two modes in a split ring dimer ap-
pears surprising and is a second indication of the rich physics
of magneto-electric scatterers. Intuition from LC circuits is
that although the subspace of driving fields is two dimensional
(Ex andHz), nonetheless only one mode per split ring exists.
The usual reasoning in LC models is that the relation between
electric and magnetic dipole moment is completely fixed and
independent of driving, since the loop current and accumu-
lated charge are directly related. Such a constraint is not gen-
eral: in electrodynamic multipole expansions, magnetic polar-
izabilties are determined independently from the electricones.
The intuition from LC theory that there is only one mode per
scatterer is only retrieved in our model right at the limit of
strongest magneto-electric couplingηC =

√
ηEηH , since in

that case one polarizability is identically zero. We note that
the valuesηE = 0.7, ηH = 0.3, ηC = 0.4 used in this work
(that we fitted to our angle-resolved transmission experiments
on 200x200 nm Au split rings on glass) are close to the limit
of strong magneto-electric coupling. Whether a general argu-
ment exists why physical scatterers are or are not exactly atthe
limit of strongest magneto-electric couplingηC =

√
ηEηH is

a question outside the scope of this paper.

VI. CONCLUSION

In conclusion, we have developed a new multiple scattering
theory by means of which we can calculate scattering and ex-
tinction for any magneto-electric scatterer with known polar-
izability tensor, as well as for arbitrary finite clusters. As op-
posed to LC circuit models, our new model obeys energy con-
servation, contains all interference effects, and allows quanti-
tative prediction of absolute cross sections, spectral linewidths
and lineshapes. While outside the scope of this paper, the the-
ory is readily extended to deal with arbitrary periodic lattices
by generalizing Ewald lattice sums41 to deal with bothE and
H . Since the electrodynamic polarizability tensor can be di-
rectly constructed from electrostatic circuit theory, we expect
that our model is readily applicable to many current experi-
ments using chiral and nonchiral metamaterial building blocks
for which electrostatic models have been proposed.

Our model does not give any insight into whether the re-
sponse of a given structure is truly dipolar or not. Also, our
model does not provide any insight or quantitative predictions
based on microscopic considerations for the magnitude of the
polarizability. For such microscopic considerations, based on,
e.g., current density distributions derived from full wavesim-
ulations, we refer to18–20,35,37,38. Rather, our model allows one
to verify if specific data or microscopic calculations are con-
sistent at all with point dipole interactions, allowing to ver-
ify or falsify common intuitive explanations in literaturethat
have sofar always been based on electrostatic considerations.
Also, our model allows one to assess if a single polarizability
tensor indeed can describe a range of different experiments

with, e.g., split ring clusters, as should be expected from a
consistent model. Finally, our model is the simplest electro-
dynamical model to consistently describe how metamaterials
and photonic crystals are formed from magneto-electric scat-
terers. A first step is to confirm the parameters used in this
work for ηE , ηH andηC by targeted experiments. While the
value forηE used in this work is consistent with the extinction
cross section measured by Husnik et al.17, we propose that
the new insight that magneto-electric coupling is far stronger
than the magnetic polarizability be confirmed by off-normal
circularly polarized extinction measurements as proposedin
section IV.

The most important property of our theory is that a polar-
izability tensor validated for a single scatterer can readily be
used to predict all quantitative scattering properties of com-
posite lattices and antennas. We hence expect that new in-
sights can be obtained in effective medium constants of meta-
material arrays. Our analytical model not only facilitatesde-
sign, but will also for the first time allow to determine rig-
orously whether, even in the ideal case (no loss, no multi-
pole corrections), metamaterial building blocks can give rise
to a desiredǫ andµ, despite the large importance of elec-
trodynamic corrections7,9,60. In addition to generating new
insights for metamaterials, our theory also opens new de-
sign routes for gratings and antennas with unprecedented po-
larization properties. As an example, in this paper we an-
alyzed the four mode anticrossing due to magneto-electric
coupling in stereo-dimers. This analysis is easily extended
to magneto-electric Yagi-Uda antennas, diffractive gratings
of chiral building blocks, and magneto-inductive waveguides
that may provide new ways to control the propagation and
emission of light46,61,62.
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Appendix A: Unit system

Throughout this paper we used units that significantly sim-
plify notation throughout, as they maximimize the inter-
changeability of electric and magnetic fields. Conversion to
SI units is summarized in Table I. For the conversion in Ta-
ble I, we useǫ for the host dielectric constant,c for the ve-
locity of light, andZ for the impedance of the background
medium. In this unit system, a plane wave has|E|/|H | = 1,
and intensityI = |E|2/(2Z), since the Poynting vector is
S = 1/(2Z)Re(E∗ ×H). In these units, the cycle-averaged
work done by an electric fieldE to drive an oscillatingp
equalsW = 2πk/ZIm(E · p). The magnetic counterpart
isW = 2πk/ZIm(H ·m)
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Quantity Symbol Relation to SI

Electric field E ESI

Magnetic field H ZHSI

Electric dipole moment p pSI/(4πǫ)

Magnetic dipole moment m mSI(Z/(4π))

Electric-electric polarizability αEE αSI
EE/(4πǫ)

Magnetic-magnetic polarizability αHH αSI
HH/(4π)

Electric-magnetic polarizability αEH αSI
EH(c/(4π))

Magnetic-electric polarizability αHE αSI
HE(Z/(4π))

Electric-electric Green tensor GEE 4πǫGSI
EE

Magnetic-magnetic Green tensorGHH 4πGSI
EE

Electric-electric Green tensor GEH 4π/ZGSI
EE

Magnetic-magnetic Green tensorGHE 4π/cGSI
EE

TABLE I. Conversion between SI units and the unit system used
throughout this paper.
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