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Introduction
1

A cell essentially consists of a lot of molecules bumping into each other. When you
realize that the behavior of the cell is formed by these randomly moving molecules,
one cannot help but wonder: How? There is no puppet-master manipulating these
molecules, making sure that everything goes alright. One can imagine, however,
that hidden processes or something like a complex computer code are at work. The
thrill of cracking this code and reaching a better understanding of life, makes fun-
damental research into the workings of living cells so exciting. Apart from under-
standing how the interaction of dead molecules form living cells, another tantaliz-
ing question is how cells came to be? How did complex structures evolve and how
do they continue to adapt? Fundamental research into the functioning and evolu-
tion of biomolecular systems aims to answer these fundamental questions of life.
This thesis is part of this endeavor.

As most fundamental research, the work described here is performed on a model
system, allowing us to stand on ‘gigantic shoulders’ consisting of the work of thou-
sands of researchers before us. This thesis has one molecular system as its study
object: the lac operon. This system consists of a set of proteins involved in the con-
sumption of lactose. When trying to understand why the lac operon functions as
it does, one can ask very different types of questions, ranging from how it physi-
cally functions, to what its use is and how it evolved. In the 1960s the Dutch No-
bel laureate Niko Tinbergen defined a framework dividing such questions into four
categories (see Box 1.1). In this chapter we will introduce different aspects of the
lac system by means of these four categories. This serves to distinguish the two
separate research questions that we address in this thesis, while at the same time
clarifying their joint goal: understanding all aspects of a single biomolecular sys-
tem. But before introducing our model system, we will briefly describe where one
finds the lac system: inside Escherichia coli bacteria.

1.1 Escherichia coli

Escherichia coli is one of the most studied model organisms, especially in genetic
and metabolic research. It is a Gram-negative bacterium that resides inside the in-
testines of mammals. Some E. coli strains are pathogenic, but most live in symbio-
sis with their host. It is highly adapted to life in the small intestines, but its habitat
also includes the colon, feces, soil and water environments [1, 2]. It has a remark-



Chapter 1

Box 1.1: Tinbergen’s four questions.

Niko Tinbergen was a biologist that studied animal behavior patterns. He formu-
lated four categories of questions that can be asked in order to explain any behavior.
What is the evolutionary use of the behavior? How can the behavior be explained
from its evolutionary history? How did the development of the organism affect the
behavior? What are the physical processes that bring about the behavior? The fig-
ure below shows a scheme where these questions are organized by the different levels
they act on: species vs individual and present vs historic. Interestingly, this scheme
is not only useful for animal behavior, but also for biological phenomenon on the
molecular level; biomolecular systems carry out a task just as animals perform a par-
ticular behavior. Molecular systems, however, do have a very different type of de-
velopment than animals. Therefore, we have generalized this category to include all
historic events that affect the functioning or behavior of a system. Typical questions
that can be asked about the functioning of the lac operon are added in the figure as
examples.
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How do cells benefit 
from expression of the 
third lac protein: LacA?

Which molecules can 
interact with lac repressor 

to induce expression 
of the other lac proteins?

Did lac repressor-operator 
binding evolve to avoid 
cross-binding with other 
Lac family regulators?

Does lac regulation 
depend on exposure 
to lactose in the past?

able ability to live in these different conditions, being able to grow both aerobically
and anaerobically, and on a wide range of nutrients. E. coli’s ability to grow rapidly
in many environments, but also to survive when conditions prevent growth, makes
it very suitable for laboratory experiments. Intriguingly, practically all laboratory
E. coli cells descend from a single ‘founder’ cell, which was obtained from a stool
sample of an anonymous diphtheria patient in Palo Alto at 1922 [3].

E. coli cells are very small. Their average length is about 3 um and their diam-
eter about 1 um. While their life takes place at a much smaller scale than that we
humans experience (see Fig. 1.1), other physical rules apply. For example, viscous
forces dominate their movement and inertia is completely irrelevant [4]. Also, the
influx of metabolites is governed by diffusion, and cell movement does not mat-
ter for the rate of nutrient uptake [4]. But arguably the most important difference
between the world of the single cell and ours, is that cells are more affected by the
random heat motion of molecules. Processes in the macroscopic world generally
consist of sufficient molecules such that their collective random action results in
statistically deterministic behavior. Cells also consist of many molecules (life re-
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Introduction

Figure 1.1: Size of E. coli compared to human and molecule scale.

Different magnifications of E. coli cells drawn to scale on top of one euro a coin. Each sub-
sequent image has a 100-fold magnification. Whereas two magnifications of a 100-fold are
required to get from the macroscopic ‘human’ scale to the scale of bacteria (third drawing),
a single subsequent 100-fold magnification brings us to the scale of molecules. Molecules
drawn in the fourth image include DNA (long shaped) and proteins. The second image
shows the southwest tip of England on the coin.

quires to be somewhat deterministic [5]), but many of its molecular systems consist
of only a few particles and behave in a stochastic nondeterministic fashion.

A typical E. coli cell consists of two thirds water and one third solid material. The
majority of the solid material (also called dry weight) consist of 4 elements: carbon
(50%), oxygen (20%), nitrogen (14%) and hydrogen (8%) [6]. These elements mainly
reside in macromolecules (96%) and only for a small fraction as metabolites and
building blocks (see Table 1.1). More than half of the dry mass of a cell consists of
protein. A fifth is present as RNA, which mainly consists of ribosomal RNA (rRNA)
and to a lesser content of transfer RNA (tRNA) and messenger RNA (mRNA). Fur-
thermore, a significant portion of mass is located in the cell wall (see Table 1.1).

Living organisms can be regarded as self-replicating entities. The evolutionary
success of unicellular organisms such as E. coli, depend upon replicating at a high
rate. As François Jacob put it: ‘The dream of every cell is to become two cells’. The E.

coli cell only needs some salts and sugar to accomplish this. Within an hour it can
convert these molecules by hundreds of enzyme-catalyzed biochemical reactions
into a faithful, living, copy of itself. The metabolic process that makes this possible,
can be divided into two parts. First, catabolic reactions degrade the imported nu-
trients to precursor metabolites and energy. These reactions are also referred to as
fueling reactions. Next, anabolic reactions convert this material and energy into the
macromolecules that the cell consists of (see Table 1.1). When only a single sugar
is offered to the cell, specific catabolic reactions become essential. In that case, not
only all energy, but also all carbon atoms used for cell material are derived from the
reactions that degrade this specific sugar. For the sugar lactose these reactions are
carried out by the lac operon.

1.2 Causation: molecular processes underlying the consumption

of lactose

An enormous amount of research has led to a detailed molecular understanding of
E. coli’s system for the consumption of lactose [7]. The lactose sugar can serve as E.

coli’s sole source of carbon and energy. To this end, the cell produces two proteins

9



Chapter 1

that are specific for the catabolism of this sugar (see Fig. 1.2). The first protein
imports lactose into the cell, which is separated from its environment by a wall
consisting of two membranes. The outer membrane contains protein complexes
(porin) through which lactose unselectively diffuses. The inner cell membrane is a
more selective boundary and here the galactoside permease protein (LacY) imports
lactose into the cell. Lactose that is imported into the cell is subsequently degraded
into glucose and galactose by the second protein, β-galactosidase (LacZ). These
monosaccharides are further catabolized by their own specific pathways.

Generally, LacY and LacZ are only present in the cell in very low amounts. But
when lactose is the only (or most suitable) carbon source in the environment, syn-
thesis is increased by as much as a 1000-fold (see Table 1.2). This is achieved by
regulation of the expression of proteins from their respective genes (see Fig. 1.2).
The genes that code for the lac proteins are clustered in a small region of E. coli’s
DNA, called the lac operon. Expression of the lac enzymes is regulated by the lac

repressor (LacI). When lactose is absent, the LacI protein binds to the lac opera-
tor, blocking expression of the lac enzymes by RNA polymerase. In the presence
of lactose, the LacI repressor does not bind the lac operator, and RNA polymerase
can express the lac genes. Together with LacY and LacZ a third protein, LacA, is ex-
pressed. This enzyme transfers acetyl groups to lactose and similar molecules, but
is not essential for lactose metabolism.

1.3 Function: benefit of lactose consumption and its regulation

Why does E. coli consume lactose, and why does it regulate the expression of the
proteins necessary for this? Convincing answers to these questions about the func-
tion of the lac operon can be formulated when one considers the environment
where E. coli lives. One of E. coli’s important habitats are the small intestines of
mammals [1, 2]. Here they may encounter lactose that has not yet been consumed
by their host. Obviously, this energy rich sugar provides opportunities for cells that
are able to consume it, hence the evolutionary advantage of having the lac operon,
and the benefit of lac expression when lactose is present.

For long periods of time, however, the environment will not contain lactose. At

Substances Fraction of dry weight Molecular subgroups

Protein 55%
RNA 20% rRNA, tRNA, mRNA
Cell wall 15% lipid, lipopolysaccharide, peptidoglycan
DNA 3%
Glycogen 3%
Others 4% building blocks, metabolites, inorganic ions

Table 1.1: Molecular composition of a typical E. coli cell.

Groups of macromolecules and their fractional contribution to the dry weight of an E. coli

cell. Note that the cell wall contains more substances than indicated, such as protein. Data
from [6].
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porin

LacY

LacZ

lactose

LacA

LacI
RNA polymerase

ribosome

inactive

LacI

Figure 1.2: Schematic overview of metabolic and genetic features of the lac operon

The lac permease (LacY) selectively imports lactose into the cell. Subsequently, lactose is
degraded by β-galactosidase (LacZ) resulting in substrates for central metabolism. Expres-
sion of the lac proteins is regulated by the lac repressor (LacI). When lactose is absent the
LacI protein binds to the lac operator, blocking expression of the lac enzymes by RNA poly-
merase. Otherwise, lactose binds to LacI, allowing RNA polymerase to transcribe the lac

genes into mRNA which is translated by ribosomes into protein.

such times, the lac proteins are useless and their production can be a large burden
to the cell, leading to decreases in fitness [8]. Regulation of the lac operon by LacI
allows cells to express lac proteins only when they are needed, such that the cost
of protein production is always outweighed by the benefit from the action of the
proteins.

However, environments are more complex than just having lactose or not hav-
ing lactose. First of all, apart from lactose other sugars may be available in the
environment. In such a case the benefit of expressing the lac proteins compared
to not expressing them, depends on whether other sugars are consumed and used
for growth. Optimally, those enzymes that provide the highest growth rate are ex-
pressed. It seems that regulation of the lac proteins are adapted to such consider-

Property Typical Value

Copies of lac DNA / cell ~1.7
Linear length DNA lac operon ~3 µm, about the circumference of E. coli

Time to transcribe lacZ ~half a minute (80 bp/sec)
Time to translate LacZ ~half a minute (40 aa/sec)

Ribosomes / cell ~10.000
RNA polymerase / cell ~3.000
LacZ / cell when repressed ~3 tetramers
LacZ / cell when fully induced ~3.000 tetramers
Relative levels of LacZ, LacY and LacA 4:2:1

Protein diffusion time across cell ~0.1 sec, at diffusion constant D = 10 µm2/sec

Metabolite diffusion time across cell ~0.001 sec, at diffusion constant D = 1.0 µm2/sec

Table 1.2: Typical parameter values for an average E. coli cell

11



Chapter 1

ations [9]. If for example the environment contains both glucose and lactose, the
lac genes are repressed, resulting in the preferred metabolism of glucose on which
it can grow faster.

Another way how the environment favors complex behavior in the regulation
of the lac proteins, lies in the continuous scale between low and high amounts of
lactose. When less lactose is present to consume, fewer lac proteins are required
to degrade it at the same rate. Hence, at different lactose concentrations other lac

expression levels are optimal with regard to the cost of protein production and ben-
efit of protein action. The natural regulation function of the lac genes by LacI with
regard to lactose concentration in the environment is very similar to the predicted
optimal function [10, 11]. Hence, the form of regulatory function of lac might be
explained from growth advantages and fitness.

1.4 Phylogeny: evolution of lac regulation

Due to the lack of historic sources, the study of evolutionary history of the lac

operon is rather restricted. Although research into the evolution of lac is difficult,
it is not impossible and at least three methods that look at present-day data can be
used. Research has mainly focused on the lac repressor, LacI, being the key biolog-
ical study subject of bacterial regulation.

One study method into evolutionary history is the comparison of current pro-
teins with shared ancestry. A large group of regulatory proteins in E. coli and other
organisms share a common ancestor with lacI [12, 13]. These proteins form the
LacI/GalR family and are homologous in their structure, function and DNA se-
quence. Interestingly, there is also homology in the operators that these proteins
bind [12, 14]. Comparisons of DNA sequence of the proteins showed that they di-
verged long ago [15], making it impossible to retrace subsequent mutations during
their divergence process [16]. A large part of the sequence divergence is likely due
to genetic drift, but early on some mutations probably caused changes in speci-
ficity. Conservation of the recognition domains in the proteins, indicate that for
LacI and some other proteins only a few non-conserved amino acid locations serve
to discriminate between different operators [12]. But the details of this divergence
process are unknown.

Another approach in evolutionary biology is experimental evolution, where the
process of evolution is studied in a controlled environment. When E. coli cells lack-
ing the lacZ gene experience intense selection for growth on lactose, mutations
in the ebgA gene consistently occur, restoring the ability to hydrolyze β-galacto-
sides [17]. More recently, this approach has been applied on regulation of the lac

operon. Cells were shown to rapidly adapt their expression levels to those that were
predicted to be optimal for their environment [10]. Experimental evolution of the
lac operon in fluctuating environments also indicated that its adaptation can be
understood in terms of the tradeoff between underlying costs and benefits [18].

A third way in which the evolutionary history of the lac operon can be stud-
ied involves the creation of laboratory mutants. By replacing amino acids by other
amino acids, the immediate mutational neighborhood of any protein can be char-

12



Introduction

acterized. Such studies showed that more than half of the possible mutations in
the lac repressor have negligible effect on function while the remaining are gener-
ally deleterious [19]. By selecting those amino acid residues that are key to protein
function (in LacI’s case DNA-binding specificity) and systematically characterizing
relevant mutations, molecular fitness landscapes can be constructed (see chapter
2 and 3). Analysis of these, until recently unknown, landscapes allows the study
of the step-by-step evolution of molecular functions. It also allows to address the
question what molecular fitness landscapes look like (see chapter 4 and 5).

1.5 Hysteresis: effect of fluctuations in protein level

A well-known example of historic events affecting the function of the lac system is
its ‘all-or-none’ behavior: when cells are exposed to a low amount of lac inducer,
their response depends on whether they have been exposed to the inducer earlier
[20]. This hysteric behavior can be explained from a negative feedback mechanism
in which the presence of sufficient LacY proteins is necessary for the induction of
the lac operon [20, 21]. As a result a population of cells may exhibit widely varying
lac expression levels, which may have an adaptive function [21, 22].

Interestingly, homogeneous populations of cells that are exposed to identical
environments also exhibit a wide variability in lac levels. Recently, this variabil-
ity has been shown to be caused by strong fluctuations in gene expression [23, 24].
These fluctuations are likely due to the inherent stochastic nature of molecular pro-
cesses in the cell. In growth conditions with low amounts of lac inducer these fluc-
tuations may lead to bistability: a subpopulation with low and one with high lac

expression [21]. Generally, lac protein production was shown to fluctuate dynami-
cally, resulting in significant variability of lac levels at any growth condition [25].

How this noise in protein level affect the fitness and growth rate of cells has
mainly been investigated theoretically. Such studies predict that noise in lac com-
ponents alters the optimal regulation function of LacI and can explain the optimal
number of LacI proteins in the cell [11, 26]. It has also been predicted that lac fluc-
tuations reduce the mean growth rate when the average lac level is close to its op-
timal level [26]. Whether fluctuations in lac level dynamically propagate to growth
rate in single cells is not known due to unknown dependencies between cellular
metabolism and protein activity (investigated in chapter 6).

1.6 Thesis outline

This thesis is concerned with two distinct fundamental research questions that are
both investigated using the E. coli lac system. In the first four chapters we inves-
tigate what the shape of biological fitness landscapes look like. Chapter 2 reviews
recent progress in measurement of empirical fitness landscapes, and introduces
the open questions in evolution that they may answer, such as why particular evo-
lutionary paths are taken. In this chapter, we also introduce the concept of epistasis
as a useful description of the local shape of fitness landscapes. In chapter 3 we de-
scribe existing in vivo measurements on lac repressor and operator mutants and

13



Chapter 1

show how these can be used to construct a fitness landscape of lac regulation. Us-
ing computer simulations we simulate mutational pathways and reveal that new
regulatory interactions can easily evolve. Chapter 4 deals with the local structure
of the lac landscape. We determine that the landscape is multi-peaked and, con-
sistent with earlier predictions, show the presence of reciprocal sign epistasis. We
conclude our analysis of the lac landscape in chapter 5 with a more global anal-
ysis of its structure, focusing on which landscape features are important for evo-
lution. This study reveals that the essential features of the lac landscape can be
sufficiently captured by modeling the presence or absence of additivity between
functional residues.

In chapter 6 we turn to another fundamental research question: how do ran-
dom molecular fluctuations in the number proteins in a single cell propagate to
its growth? Again, we use the E. coli lac system to investigate this question. But
whereas the first part of this thesis consists of theoretical simulations of lac regu-
lation, here we perform laboratory experiments on E. coli cells that require use of
their lac enzymes for growth. By means of automated and highly sensitive fluores-
cence microscopy, we measure both fluctuations in lac level and in growth rate in
individual growing cells. These experiments show that fluctuations in the growth
rate of single cells can be linked to protein fluctuations, but also reveal a intricate
dynamic interdependency between these two properties.

14



Empirical fitness landscapes

reveal accessible evolutionary

paths
2

When attempting to understand evolution, we traditionally rely on analysing evolu-

tionary outcomes, despite the fact that unseen intermediates determine its course. A

handful of recent studies has begun to explore these intermediate evolutionary forms,

which can be reconstructed in the laboratory. With this first view on empirical evo-

lutionary landscapes, we can now finally start asking why particular evolutionary

paths are taken.
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Chapter 2

Evolutionary intermediates represented a central preoccupation for Darwin in
his case for the theory of evolution. He remarked, for example: ‘...why, if species
have descended from other species by insensibly fine gradations, do we not ev-
erywhere see innumerable transitional forms?’ [27]. Although Darwin developed a
convincing rationale for their absence, he did realize that the lack of intermediates
as proof leaves room for criticism. He noted, for instance: ‘If it could be demon-
strated that any complex organ existed which could not possibly have been formed
by numerous, successive, slight modifications, my theory would absolutely break
down.’ [27]. Indeed, in their opposition to evolution, the proponents of ‘intelligent
design’ have seized on our current ignorance of intermediates.

Building on earlier ideas [16, 28–30], an approach has recently been developed
to explore the step-by-step evolution of molecular functions. The central innova-
tion is that all molecular intermediates along multiple putative pathways are ex-
plicitly reconstructed. Together with a phenotypic characterization of each inter-
mediate, one can determine whether paths towards a certain novel function are
accessible by natural selection. Although others have reconstructed and charac-
terized phylogenetically ancestral forms of proteins [29–32], here the focus is on
fitness landscapes [33] in which multiple mutational trajectories can be compared.
Fitness landscapes have been widely studied on a theoretical level (see refs [34–38]
for example), but one can now obtain a glimpse of actual biological landscapes.
This view finally allows us to ask which particular evolutionary paths are taken and
why. In particular, to what extent do biomolecular properties constrain evolution?
Does it matter in which order mutations occur? Are fitness landscapes rugged, with
many local optima acting as evolutionary dead-ends, or are they smooth? Is neutral
genetic drift essential for a new trait to emerge?

When examining the molecular underpinnings of the evolution of new traits,
we distinguish two elementary cases. First, we discuss a single mutable compo-
nent such as an enzyme. Second, we look at molecular interactions involving two
or more mutable components, which is typical for regulatory evolution. The spe-
cific features of this broad range of molecular systems will be discussed using the
notions of epistasis and fitness landscapes, which we will explain and relate to each
other (Box 2.1 and Fig. 2.1).

The tentative picture emerging from the new results is one that emphasizes the
possibilities of continuous optimization by positive selection. Although evolution
was clearly constrained, as illustrated by many inaccessible evolutionary paths, the
studies also revealed alternative accessible routes: a succession of viable interme-
diates exhibiting incremental performance increases. Although these findings do
not address whether natural evolution proceeds in the presence or absence of se-
lection, they do show that neutral genetic drift is not essential in the cases studied.
We note that the presented approach starts with naturally occurring sequences,
which are themselves the product of evolution, and may therefore yield a biased
sample of trajectories. Whether the conclusions are general or not, and whether
they break down when the evolved feature becomes more complex, can only be
determined through future studies.

16



Empirical fitness landscapes reveal accessible evolutionary paths

Box 2.1: Epistasis and the accessibility of mutational paths.

Epistasis means that the phenotypic consequences of a mutation depend on the ge-
netic background (genetic sequence) in which it occurs. In the figure below we dis-
tinguish four cases that illustrate paths composed of two mutations, from the initial
sequence ‘ab’ towards the optimum at ‘AB’. When there is no epistasis, mutation ‘a’
to ‘A’ yields the same fitness effect for different genetic backgrounds (‘b’ or ‘B’), while
for magnitude epistasis the fitness effect differs in magnitude, but not in sign. For
sign epistasis, the sign of the fitness effect changes. Finally, such a change in sign of
the fitness effect can occur for both mutations, which we here term reciprocal sign
epistasis.

These distinctions are crucial in the context of selection. Mutations exhibiting
magnitude epistasis or no epistasis are always favored (or disfavored), regardless of
the genetic background in which they appear. In contrast, mutations exhibiting sign
epistasis may be rejected by natural selection, even if they are eventually required
to increase fitness. In other words, some paths to the optimum contain fitness de-
creases, while other paths are monotonically increasing. When all paths between
two sequences contain fitness decreases, there are two or more distinct peaks. The
presence of multiple peaks indicates reciprocal sign epistasis, and may cause severe
frustration of evolution (Fig. 2.1b). Indeed, reciprocal sign epistasis is a necessary
condition for multiple peaks, although it does not guarantee it: the two optima in the
diagram may be connected by a fitness-increasing path involving mutations in a third
site.
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2.1 Enzyme evolution

When a well-adapted organism is challenged by a new environment, an existing
gene may perform suboptimally. One of the most basic questions one may then
ask is: when mutating step-by-step from the suboptimal to an optimal allele, are all
possible trajectories selectively accessible? This question depends critically on the
stepwise changes in performance, or in fitness, which are governed by unknown
physical and chemical properties at the molecular level. When all mutations along
all paths yield a fitness improvement, evolution can rapidly proceed in a straight-
forward incremental Darwinian fashion. In this case, the fitness landscape can be
portrayed by a single smooth peak (Fig. 2.1a).

Whether this picture is realistic was investigated for the adaptation of bacte-
rial β-lactamase to the novel antibiotic cefotaxime [41]. The central step was to
reconstruct and measure all likely intermediates, allowing a systematic study of all
possible trajectories. The intermediate sequences can be easily identified, because
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A B C D

Figure 2.1: Schematic representations of fitness landscape features.

Fitness is shown as a function of sequence: the dotted lines are mutational paths to higher
fitness.
(A) Single smooth peak. All direct paths to the top are increasing in fitness.
(B) Rugged landscape with multiple peaks. The light path has a fitness decrease that drasti-
cally lowers its evolutionary probability. Along the darker path selection leads in the wrong
direction to an evolutionary trap [39].
(C) Neutral landscape. When neutral mutations are essential, evolutionary probabilities are
low [37, 40].
(D) Detour landscape. The occurrence of paths where mutations are reverted [39] shows that
sequence analysis may fail to show mutations that are essential to the evolutionary history.

the (five) mutations that control the cefotaxime resistance phenotype are known,
resulting in 25 = 32 possible mutants. The order in which the mutations are fixed
can of course be different, giving rise to 5! = 120 possible direct trajectories between
the start and end sequences.

The trajectory analysis showed that the fitness landscape is not as simple as
depicted in Fig. 2.1a. A majority of the pathways towards maximum cefotaxime
resistance actually shows a dip in fitness (see light path in Fig. 2.1b), or contain se-
lectively neutral steps (as in Fig. 2.1c), resulting in much smaller chances of being
followed by natural selection [37, 40]. For 18 paths however, each step appeared to
confer a resistance increase, making these trajectories accessible to Darwinian se-
lection. The part of the fitness landscape mapped out in this manner therefore does
appear to have a single peak, but one that contains depressions and plateaus on its
slopes. We stress that such three-dimensional analogies, while useful for conveying
basic characteristics, do not rigorously represent the many direct trajectories exist-
ing between two alleles. Also note that there may be additional paths that contain
detours, involving other mutations that are eventually reverted [39] (Fig. 2.1d).

Interestingly, some mutations yielded either a resistance increase or decrease,
depending on the preceding mutations. This phenomenon, called sign epistasis
[38] (see Box 2.1), is both a necessary and sufficient condition for the fitness land-
scape to contain inaccessible paths to an optimum [38]. Some cases of sign epis-
tasis could be understood in terms of competing molecular mechanisms. For in-
stance, a first mutation in the wild-type enzyme increased the resistance by en-
hancing the catalytic rate, even though it also lowered the thermodynamic stability.
This loss of stability was repaired by a second mutation, thereby further increasing
the resistance. In contrast, when this ‘stabilizing’ mutation occurred first in the
wild-type enzyme, the resistance was reduced. Such back and forth balancing be-
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A

B

Figure 2.2: Molecular structures in different evolutionary forms.

(A) The left panel shows wild-type E. coli isocitrate dehydrogenase [44] (IDH), which is struc-
turally similar to IMDH, with NADP as cofactor. The right panel shows an engineered IDH
form with NAD as cofactor [45]. Main chains are shown in grey, cofactor in black, and hydro-
gen bonds as dashed lines.
(B) The left panel shows a wild-type E. coli lac repressor and operator [46]. The right panel
shows a lac repressor and operator variant, with mutations mimicking the gal system [47].
Binding is tight and specific (despite the absence of hydrogen bonds): these variants bind
wild-type partners poorly. DNA backbone and key bases are shown in dark grey, repressor
chains in black, key repressor residues in grey, and and hydrogen bonds as dashed lines.
Figures prepared with MOLMOL [48].

tween structural and functional benefits might well be a more general evolutionary
mechanism [42, 43].

In a second study [49], the connection between fitness landscape and under-
lying molecular properties has been explored for the evolution of isopropylmalate
dehydrogenase (IMDH, Fig. 2.2a), an enzyme that is involved in the biosynthesis
of leucine. As in the previous study, a set of mutational intermediates between
different functions were characterized. Here the mutations changed the cofactor
binding affinity of IMDH. In vitro measurements of enzyme activity did not show
epistasis: each mutation gave a fixed catalytic improvement, which was indepen-
dent of the order in which they occurred. Thus, the ‘enzyme activity’ landscape is
single-peaked.

The story becomes more complete with the following elements. First, the study
also considered evolutionary paths from the suboptimal cofactor NADP to the nor-
mal cofactor NAD [50]. Second, selection does not act directly on enzyme activity,
but rather on the fitness of an organism. As fitness is typically nonlinear in enzyme
activity, epistasis is introduced. Therefore, the IMDH mutants were also evaluated
in vivo, providing a direct measurement of the fitness effect of a mutation. The
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resulting fitness landscape was shown to contain a depression or valley, rendering
the trajectories that pass through it selectively inaccessible. There is an intuitive
rationale for a valley here: when the recognition of NADP is reduced, the fitness
first decreases, before it rises again when NAD recognition is built up. Interestingly
however, some trajectories also exist that avoid the valley by simultaneously in-
creasing NAD, and decreasing NADP recognition. In the end, the genotype-fitness
landscape has a single peak, but one that includes a depression on its slope.

2.2 Evolution of molecular interactions

The evolutionary puzzle becomes more complex at a higher level of cellular orga-
nization. In the web of regulatory interactions between ligands, proteins and DNA,
the components are strongly interdependent, which might suggest that their evo-
lution is severely constrained. The evolution of molecular recognition has recently
been explored by two studies, which also used experimentally reconstructed inter-
mediates. The first examined hormone detection by steroid receptors in the basal
vertebrates (Fig. 2.3a) [51]. The second [39] looked at the adaptation of repressor-
operator binding, in a large evolutionary landscape based on published mutation
data for the Escherichia coli lac system [14] (Figs 2.2b and 2.3b). For both studies,
the molecular interactions may be thought of as a key fitting a lock. The unifying
question is: can a new lock and matching key be formed taking just one mutational
step at a time? The adaptation of these components presents a dilemma: if the lock
is modified first, the intermediate is not viable because the old key does not fit, and
vice versa.

From the evolution of the interactions in the two systems (Fig. 2.3), some inter-
esting parallels are apparent. Both studies start with a duplication event yielding
two locks and keys, and then ask how specific interactions can be obtained dur-
ing mutational divergence. Specificity is clearly vital: two partners must recognize
each other, but not recognizing other components is just as important. A major
evolutionary challenge is therefore to decrease unwanted interactions, while main-
taining desired interactions. Without specific hormone recognition, cortisol regu-
lation of vertebrate metabolism, inflammation and immunity would be perturbed
by varying levels of aldosterone, which controls electrolyte homeostasis. Similarly,
specific recognition in the lac family of repressors allows E. coli to consume a wide
array of sugars, without the burden of producing many unused metabolic enzymes.

Surprisingly, these studies again show that new interactions can evolve in a
step-by-step Darwinian fashion, despite the mismatching intermediates problem
sketched above. In the hormone receptor case, this predicament is overcome by a
molecular version of a master key: a putative ancestral ligand, 11-deoxycorticoste-
rone, was found to activate all receptors (ancestral and present-day), allowing the
mutational intermediates to remain functional even while the receptors diverged
(Fig. 2.3a). The capability to synthesize aldosterone evolved later, finally providing
a specific hormone that is recognized by just one of the two receptors. An existing
receptor was thus recruited into a new role, as a binding partner to aldosterone,
in a process that was termed ‘molecular exploitation’. Sign epistasis was again ob-
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Figure 2.3: Evolution of molecular interactions based on reconstructed intermediates.

Arrow thickness denotes measured interaction strengths. DOC, 11-deoxycorticosterone;
COR, cortisol; MR, mineralocorticoid receptor; GR, glucocorticoid receptor; ALD, aldoste-
rone.
(A) Pathway towards independent steroid receptors after duplication, via intermediate re-
ceptors that remained sensitive to their ligands [51]. A changed mutation order produced
a non-sensitive intermediate, making that path inaccessible. The grey arrow indicates that
cortisol is absent in MR-expressing tissues.
(B) Pathway towards independent repressor-operator pairs following duplication, taking
single-mutation steps without decreases in network performance. Many paths were com-
pared in a landscape based on over 1,000 lac mutants [14], covering all substitutions on all
key base pairs. For simplicity, the repressor dimer and two operator half-sites are not drawn.

served: an initial mutation drastically lowered the response to all substrates, but
after another mutation, the same mutation improved cortisol response while de-
creasing the aldosterone response. Thus, just as in the β-lactamase and IMDH
cases, at least one selectively accessible evolutionary pathway existed.

In the evolution of the lac system, a similar mechanism using a ‘master’ repres-
sor or operator was not observed. This is illustrated by the transient loss in affinity
during the adaptation from one tight repressor-operator pair (IM-TG) to another
(IK-AC); see Fig. 2.3b. Between some alleles, all connecting paths transiently re-
duced the affinity, indicating the presence of multiple peaks in the affinity land-
scape, which contrasts with the single-peaked landscapes of β-lactamase and IMDH.
Multiple peaks indicate a severe kind of sign epistasis, which we here term recip-
rocal sign epistasis (see Box 2.1). Reciprocal sign epistasis can be intuitively un-
derstood for molecular interactions: mutating one binding partner will probably
only benefit a new interaction if the other binding partner is mutated first, and vice
versa. Interestingly, this means that although sign epistasis does introduce land-
scape ruggedness and thus perturbs the adaptive search, it can also be valuable
because it enables multiple independent lock-key combinations.

If the lac repressor-operator affinity landscape is rugged and multi-peaked, how
can new recognition evolve in a step-by-step manner? The answer lies in the fact
that selection does not act on a single interaction. Instead, multiple interactions
in a network determine the regulation, and ultimately organismal fitness. In the
lac case, deteriorations in one interaction were offset by improvements in another.
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For example, initial mutations in one repressor duplicate were bad for binding
to its designated operator, but good for relieving an undesired cross-interaction
(Fig. 2.3b). These results substantiate the suggestion that network robustness [52]
may promote evolvability [53, 54]. The observed compensations yielded a smooth-
ened fitness landscape, making the new interactions selectively accessible. In fact,
because compensation within biochemical networks is ubiquitously observed [55],
we expect that evolution by network compensation constitutes a general mode of
regulatory adaptation, molecular interdependence notwithstanding.

2.3 Outlook

The experimental reconstruction of evolutionary intermediates and putative path-
ways has provided an exciting first look at molecular adaptive landscapes. Although
numerous paths appear to be selectively inaccessible, accessible pathways are gen-
erally also available. Importantly, various alternative types of fitness landscapes
were not observed. The landscapes could have been so rugged and multi-peaked,
that accessible paths to optima would not exist, thus requiring, for instance, two
or more simultaneous mutations, larger genetic modifications through recombi-
nation, or periods of relaxed selection. We have put forward various mechanisms
that can reduce landscape ruggedness and improve evolvability. These include the
interplay between protein function and stability [41, 49], the exploitation of ex-
isting molecules into new roles [51], and compensation within biochemical net-
works [39].

That only a few paths are favored also implies that evolution might be more
reproducible than is commonly perceived, or even be predictable. It is impor-
tant to note that evolutionary speed and predictability are not determined only by
molecular constraints, but also by population dynamics. Population dynamics still
presents many open questions, in particular in the context of regulatory evolution
and varying environments. The situation in which environmental fluctuations are
fast relative to selection timescales has been explored in the repressor divergence
study [39]. Recent theoretical considerations [56, 57] may provide promising ap-
proaches to address these questions more generally.

The molecular systems interrogated so far represent only a start, but one with
great potential to spark further exploration. The analysis of intermediates is gen-
erally applicable, which makes finding new candidate systems not difficult. Mu-
tational paths could also be revealed using the directed evolution methodology
[58], in which randomly mutated pools are screened. A related approach is the
experimental evolution [59] of cells in chemostats [60] or by serial dilution [10, 61].
The advantage of these methods is that more extensive and unbiased evolution-
ary changes can be explored, although they do not directly reveal why trajectories
are chosen. Together, these developments may change the character of molecular
evolution research from one that is primarily sequence-based to one that explicitly
incorporates structure, function and fitness.
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duplicated repressor-operator

pair
3

Ample evidence has accumulated for the evolutionary importance of duplication

events. However, little is known about the ensuing step-by-step divergence process

and the selective conditions that allow it to progress. Here we present a computa-

tional study on the divergence of two repressors after duplication. A central feature

of our approach is that intermediate phenotypes can be quantified through the use

of in vivo measured repression strengths of Escherichia coli lac mutants. Evolution-

ary pathways are constructed by multiple rounds of single base pair substitutions

and selection for tight and independent binding. Our analysis indicates that when a

duplicated repressor co-diverges together with its binding site, the fitness landscape

allows funneling to a new regulatory interaction with early increases in fitness. We

find that neutral mutations do not play an essential role, which is important for sub-

stantial divergence probabilities. By varying the selective pressure we can pinpoint

the necessary ingredients for the observed divergence. Our findings underscore the

importance of coevolutionary mechanisms in regulatory networks, and should be

relevant for the evolution of protein-DNA as well as protein-protein interactions.
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Initially put forward by Stevens in 1951 [62] and later advocated by Ohno in his
seminal work [63], gene duplication followed by functional divergence is now seen
as a general mechanism for acquiring new functions [64]. Also, regulatory networks
are thought to be shaped significantly by genetic duplication [65]. For instance, se-
quence analysis of transcription factor families points to various historical duplica-
tion events [15, 66]. However, very little is known about the subsequent mutational
divergence pathways or about the corresponding stepwise phenotypical changes
that are subject to selection. While these issues have not yet been explored ex-
perimentally, related generic aspects of mutational plasticity have been addressed
theoretically [35, 67–70]. However, a central obstacle in studying mutational path-
ways through computer simulations remains the unknown relation between the
sequence and binding affinity, for which, in general, a rather abstract mapping has
to be assumed. To describe the formation of a new regulatory interaction after a
duplication event, which is our current aim, such an abstract approach would be
particularly speculative.

Here we reason that many characteristics of the adaptation of real protein-DNA
contacts are hidden in the extensive body of mutational data that has been accu-
mulated over many years (e.g., [7, 14, 19] for the Escherichia coli lac system). These
measured repression values can be used as fitness landscapes, in which pathways
can be explored by computing consecutive rounds of single base pair substitutions
and selection. Here we develop this approach to study the divergence of duplicate
repressors and their binding sites. More specifically, we focus on the creation of a
new and unique protein-DNA recognition, starting from two identical repressors
and two identical operators. We consider selective conditions that favor the evo-
lution toward independent regulation. Interestingly, such regulatory divergence is
inherently a coevolutionary process, where repressors and operators must be opti-
mized in a coordinated fashion.

The mere presence of a selective pressure is clearly not a sufficient condition to
achieve a new function. Rather, the evolutionary potential and limitations can be
seen as governed by the shape of the actual fitness landscape and the evolutionary
search within it. Studying these intrinsic limitations to divergence represents the
overall aim of this work. Many open questions arise when considering the forma-
tion of a new protein-DNA interaction, which may be viewed as the construction
of a new lock and uniquely matching key. For instance, how should the protein be
modified step-by-step to recognize a new DNA-binding site that also does not yet
exist, or vice versa? One would expect that complementary mutations need to oc-
cur in the protein and DNA-binding site. Does this mean that temporary losses in
fitness must be endured when taking single-mutation steps? And, how many muta-
tions must minimally accumulate before a noticeable new recognition is obtained
on which selection can act? The latter is an important point: mutations conferring
a selective advantage spread more readily through a population [40], resulting in
a drastic increase of the divergence probability. These questions are addressed by
exhaustively searching the landscape for optimal pathways, as well as by comple-
mentary population dynamics simulations.

Previously it has been shown that lac repressor mutants indeed exist that can
bind exclusively to mutant lac operators [14]. Our simulations reveal that a du-
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plicated repressor-operator pair can readily evolve to achieve such independence
of binding, while monotonously increasing its fitness in a step-by-step process.
Moreover, simply following the fittest mutants does predominantly guide the sys-
tem to the desired global optimum, which indicates funnel-like features in the fit-
ness landscape. A detailed analysis of the subsequent network changes indicates a
generic sequence of events, of which we study the underlying mechanisms by vary-
ing the applied selective pressure. Next, we show that the trajectories we find in the
optimal pathway simulations are not rare exceptions, since similar trajectories are
followed using a probabilistic scheme for accepting a mutation. The results further
suggest the feasibility of studying regulatory divergence in laboratory evolution ex-
periments, and finally we make a comparison to alternative models for the creation
of new regulatory interactions.

3.1 Divergence model

Selective pressure and the fitness landscape

We consider an ecological situation where natural selection would favor indepen-
dent regulation of two genes X and Y. Regulation is not independent in the initial
symmetric network with duplicated components (see Fig. 3.1): X and Y have two
identical upstream binding sites (O1 and O2), which bind two identical repressors
(R1 and R2) equally strongly. Such a situation will, for instance, arise upon duplica-
tion of a repressor that regulates two or more genes. Note that this selective pres-
sure, of course, is not a general outcome of a repressor duplication. A duplication
event may arise in the context of a different functional pressure, which could di-
rect the evolution toward a different topological motif [71]. Most often, selective
pressures for a new function will be absent, in which case silencing of one of the
duplicates is the most probable outcome [64, 72]. However, the rare cases where a
selective pressure is present are crucial to developing new functions.

We aimed to define a transparent selection pressure for the divergence of these
regulatory interactions. Attributing a fitness value to a network function is non-
trivial: unlike for an enzymatic function, network fitness cannot be captured in a
single biochemical parameter. Here we propose to assign a fitness value based on
the desired input-output relation of the network (see Fig. 3.1A and 3.1C). For sim-
plicity, only two concentration levels (high and low) of input and output protein
are considered, resulting in four possible input conditions. For each of these in-
put conditions, it follows straightforwardly which repressor-operator interactions
should be maximized and which must be minimized. The interaction strength be-
tween operator Oi and repressor homo-dimer Rj is expressed by repression values
(FOiRj ). This value represents the expression level of a downstream gene in the un-
repressed condition divided by the repressed condition and it is obtained directly
from measured data (see below and Materials and Methods, section 3.4). Taking
the fitness to scale linearly with the repression values, the fitness of the complete
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network is denoted by the product of all optimization factors:

Fitness = max
(

FO1

)

(FO1R1

FO1R2

)

max
(

FO2

)

(FO2R2

FO2R1

)

(3.1)

In this expression max(FOi ) denotes the repression value of the strongest interac-
tion with Oi, either by homodimers of R1 or R2 or the hetero-dimer composed of R1

and R2 (see Fig. 3.1 and section 3.4).
The fitness definition comes down to a minimum set of two demands for regu-

latory binding: each operator must bind a repressor tightly (max(FO1 ) and max(FO2 )
should be large) but also exclusively (FO1R1 /FO1R2 and FO2R2 /FO2R1 should be large).
Prior to divergence the first demand is already met, but the latter is not. The chal-
lenge during divergence is therefore to improve binding exclusivity, while main-
taining tight binding. Tight and exclusive binding is a core functionality of most
regulatory systems, and most pairs of existing transcription factors must there-
fore score well on the employed fitness definition. Take for instance the LacI and
RafR repressors, which regulate enzymes required for growth on lactose and raf-
finose, respectively. If operator binding would not be tight in the absence of lac-
tose and raffinose, the wasteful expression of the downstream metabolic enzymes
would lead to sub-optimal growth speeds [8, 10]. If RafR would also bind to the lac

operator (and thus bind non-exclusively), the effect on growth speed would also
be negative since the mere absence of raffinose would then lead to insufficient β-
galactosidase for high lactose concentrations.

One therefore expects a conservative selective pressure that minimally includes
binding tightness and exclusiveness, to keep the lac and raf regulation intact. Im-
portant here is that the lac and raf repressors are in fact related: their origin has
been traced to duplication events from a common ancestor [15]. If a conserva-
tive pressure keeps their function intact now, it seems a good candidate for the ini-
tial divergence pressure as well. Full divergence to the current lac and raf systems
clearly involves many additional developments after duplication. For instance, the
divergence of ligand-binding properties [73] might have occurred prior to operator-
binding divergence. While these considerations put additional constraints on the
entire divergence process, they do not alter the particular operator-binding diver-
gence studied here.

A remaining question still is how the various demands should be weighed in
the total fitness. That choice is clearly not general: it will strongly depend on the
operons in question and on the changing cell environment. For example, if active
RafR is present more than half of the time, then its cross-interaction with the lac

operator would be comparatively more harmful because it lasts longer. In order to
give a uniform presentation we weighed the factors of the four input states equally,
which would correspond to an equal contribution of these phases to the overall
fitness. However, weighing the factors unequally (e.g., by increasing the power of
the tight operator binding, or the cross- interaction factors from 1 to 2) did not alter
the main conclusions.
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Figure 3.1: Divergence process, fitness criterion, and mutational dataset of repression val-
ues.

(A) Diagram of the studied divergence process: after a duplication event, a new regulatory
interaction can be formed by mutating the two operators, O1 and O2, and two repressors, R1

and R2.
(B) Duplication and divergence yields heterodimers, which can all bind to the operator. The
(initially symmetric) operators and repressors are based on the lac sequence, as indicated.
Base pairs that are key to altering specificity (colored red and blue) can be mutated to arbi-
trary sequence.
(C) The selective pressure for independent regulation follows from four input conditions that
contribute to the total fitness. When, e.g., R1 is high and R2 low, this implies that X should
be low and Y high. Out of all interaction parameters of the network, in this case only FO1R1

and (FO2R1 )−1 are relevant and need to be optimized. When R1 and R2 are high, both X and
Y should be low, regardless of which repressor-dimer causes repression. Therefore max(FO1 )
(the strongest interaction with O1 by either homodimers of R1 or R2 or by the heterodimer
of R1 and R2) and max(FO2 ) need to be be optimized. When both R1 and R2 are low, no pa-
rameters need to be optimized.
(D) Resulting repression value landscape, showing repression values based on actual mea-
surements of mutants.

Mutation data and pathway simulations

In our simulations, the strength of a mutant repressor-operator interaction (as ex-
pressed by the repression value F ), is assigned using data from mutational anal-
ysis [14]. In these experiments, repression values have been determined in vivo

from the repressed and unrepressed expression levels of a lacZ gene, controlled by
a mutant lac operator and mutant lac repressor (see section 3.4). Obviously not
all possible lac mutants have been constructed. Therefore, a potentially signifi-
cant limitation of our simulations is the restricted number of base pairs that can
be mutated in silico and linked to experimental data. At the same time however,
while the tightness of DNA binding is the result of the integral protein architec-
ture, surprisingly few base pairs (ten in total) have been found to be important for
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altering binding specificity [14] (see Fig. 3.1B). Focusing on these key base pairs
is therefore reasonable for the minimal paths that we are interested in here. Us-
ing measurements on 1,286 mutants, repression values of all variants in these key
base pairs could convincingly be determined [7,14,74]. These variants thus include
all multiple mutants in both the repressor and the operator. Repression values of
heterodimers and asymmetric operators are calculated using an additive contribu-
tion of the repressor monomers to the dimer-DNA binding [75] (see section 3.4).
In total, about 1 · 107 possible repressor-operator combinations are obtained (see
Fig. 3.1D for the homodimer variants).

Every mutational path starts with the duplicated sequence of a tight binding
re-pressor-operator combination (repression value > 100). These possible starting
sequences obviously include wild-type lac, but also e.g., the gal and ebg systems,
which are part of the same family of repressors. Their high measured repression
values are rather remarkable because the rest of the gal, ebg, and lac sequences
have in fact diverged considerably. These observations further indicate that the
key base pairs play the central role in specific recognition.

The aim of the simulation method (see section 3.4 for details) has been to reveal
the intrinsic possibilities for the divergence of repressor-operator binding, given
the measured data and the constraints of single base pair substitutions and no fit-
ness decreases. For this purpose, we search the landscape for optimal paths and
study what their limitations and potential are. To trace these optimal paths, all mu-
tants with a single base pair substitution with respect to their parents are evaluated
based on the fitness described above, and the best performers are selected for the
next round. The number of selected mutants L is varied to assess its effect. We
also question whether these optimal paths are not just rare cases, by comparing
them with pathways generated by a different simulation method, where a random
mutation is accepted with a probability that depends on its associated fitness in-
crease [76] (see page 37 of section 3.5).

3.2 Results

The simulations show that paths to independent recognition are readily found.
Even when only the best network is carried to the next round (L = 1), which im-
plies always following the steepest ascent in fitness, some starting sequences can
evolve to the highest fitness in the sequence space. In these networks, both repres-
sors bind tightly to one operator (FO1R1 = 520 and FO2R2 = 200, respectively), while
not at all to the other (FO1R2 = 1, FO2R1 = 1). We considered paths to be success-
ful when the fitness value is within an order of magnitude of the highest fitness in
the landscape, which is a strict criterion given the fact that the fitness parameter
is a product of six factors. The diverged fraction increases for higher L (Fig. 3.2A,
solid line), which is expected since it allows alternative paths to be explored. More
surprising is that successful trajectories can eventually be found from all starting
points, but note that paths that can only be followed for higher L are increasingly
less probable because they imply more (near) neutral mutations.

Most optimal paths are rather short: 70% require just five to nine mutations for
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Figure 3.2: Divergence success ratio and path length distributions.

(A) Fraction of starting sequences (numbering 132 in total) that successfully diverge, as a
function of the number of networks carried to the next round (L). Dashed line, idem, but
with the additional requirement of continued tight binding (F ≥ 100) for both repressors.
(B) Distribution of path lengths until divergence. Red color map, optimal co-divergence
pathways. Blue color map, pathways with the additional requirement of F ≥ 100 for both
repressors. Note that a vertical summation of the color maps yields the lines in (A).

L = 20 (Fig. 3.2B). The systems almost exclusively find the nearest diverged state in
sequence space (Fig. 3.3B) and do so without taking any detours (Fig. 3.3A). No-
tably, despite the fact that the starting points lie in very different areas of the se-
quence space, a generic sequence of network changes is generally observed (see
Fig. 3.4 for an example). First of all, one repressor-operator combination remains
unchanged, except at the very end, as the other diverges away. This is an example of
asymmetric divergence due to positive selection, as has also been found in phylo-
genetic analysis of duplicate genes in eukaryotes [77]. A striking general feature of
the pathways is an early reduction in the binding strength of the diverging repres-
sor, brought about by a single base pair substitution (Fig. 3.4B, red trace). Such
a mutation would be unfavorable for a single repressor-operator pair, but here it
can be fitness neutral, partly because the unchanged duplicate repressor ensures
a continued repression. At this specific point the diverging repressor is freed from
functional constraints and therefore most vulnerable to degenerative mutations re-
sulting in silencing of the gene. The probability of silencing is reduced however, be-
cause already at the second mutation and onward, new and unique protein-DNA
recognition can be built up. At the sequence level, this phase is characterized by
transient asymmetries. The operator must go through non-palindromic sequences
because it can only receive one mutation at a time. Heterodimers are the best
binders in this phase because of their ability to mirror the non-palindromic op-
erator sequences. Eventually all successful trajectories recover palindromic oper-
ators, even as the selective pressure does not explicitly specify this. With all dimer
varieties present, a homodimer is available and now binds most tightly to the palin-
dromic operator.

In order to obtain a better insight in the essential ingredients for the observed
evolvability, various additional simulations were performed. For instance, we were
triggered by the recurrent early knockout of one of the repressors, which is one of
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Figure 3.3: Analysis of pathway detours and local environment of fitness optima.

(A) Histogram showing the number of detour mutations of the divergence pathways. The
Hamming distance dH of two sequences is defined as the number of positions at which they
have different base pairs. Paths that are longer than dH arrive at an optimum after a detour.
(B) Histogram of the Hamming distance between the optimum that is found and the closest
optimum. If this measure is zero, a path leads to the closest optimum.
(C) Median fitness value as a function of the Hamming distance from a global optimum
(solid line). Grey levels indicate the spread of the fitness values.

the most noticeable features of the mutational pathways. To test for the importance
of this step, both repressor-operator pairs were required to maintain a significant
repression (FO1R1 > 100 and FO1R2 > 100). Divergence is indeed significantly frus-
trated by these conditions (Fig. 3.2A, hatched line). The amount of selected mu-
tants needs to be two orders of magnitude larger (L > 1,000) for half of the starting
sequences to diverge. The saturation of the diverged fraction for very high L, where
prolonged neutral drift is allowed, indicates that for 22% of the starting sequences
no pathways exist. Moreover, in contrast to the optimal paths, the nearest diverged
state in the landscape is generally not found, and the paths contain significant de-
tours (Fig. 3.3). The same is seen from the increased path length: 70% of the paths
take 11-21 mutations (Fig. 3.2B). These paths lack a recurring mutation pattern as
observed for the optimal paths and instead show a large variation in the sequence
of events. Both repressors and operators are significantly mutated, and the fitness
increases slowly or is neutral over multiple rounds (see Fig. 3.5 for an example).

Another defining feature of duplicated transcription factors is the heterodimer-
ization of transcription factor monomers. It is not a priori evident whether this
constraint on the network topology either promotes or hampers divergence. To
assess its effect, simulations were performed where heterodimers are not able to
form (data not shown). The results indicated a surprisingly limited effect on the di-
vergence. The paths do initially show a slower fitness increase, but the path length
does not appear much affected, nor the success rate of divergence. The other simu-
lation variations we conducted (with unequally weighted factors in the fitness defi-
nition), did not qualitatively alter the main divergence features, such as substantial
divergence success without fitness decreases, short paths, and an early repression
dip, indicating the robustness of our results.
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Figure 3.4: Typical divergence pathway: network changes, fitness, and sequence.

(A) Evolving interaction network, where line thickness denotes binding strength between
repressor monomer and operator-half. Dotted lines denote negligible repression. Yellow
crosses indicate repressor and operator mutations, which are positioned at the top and bot-
tom of the interaction lines respectively.
(B) Fitness trajectory (black) and corresponding repression of each repressor on its operator
(red and blue). Fitness is normalized to the maximum value (∼ 1 ·1010).
(C) Sequences for each round. Mutated positions are colored white.

3.3 Discussion

Duplication and coevolutionary divergence

We obtain a first view on a fitness landscape for regulatory divergence that is based
on actual measured data. We show that the landscape allows evolutionary paths
toward independent repressor-operator interactions, exhibiting a step-by-step in-
creasing fitness, starting as early as the first or second mutation. Since the possi-
bility of following such paths critically depends on molecular properties, the use of
empirical data is essential for such claims. One could also have imagined fitness
landscapes where paths to diverged networks do not exist, or where they are very
long, involving large detours. Our results contrast with the notion that a number
of neutral or even deleterious mutations have to accumulate before a new function
can develop (see for a discussion e.g., [78]). Having beneficial mutations available
early on is important, since it greatly enhances divergence probabilities [40]. A lack
of early selection would result in much higher probabilities of silencing of one of
the duplicates by the accumulation of mutations [64, 72].

While the presented systematic search for optimal pathways is useful in reveal-
ing necessary conditions for divergence, one may wonder whether paths are not
very different in a probability-based fixation process that typifies natural evolution.
However, we found that population genetics simulations reveal the same pathway
characteristics: a significant fraction of paths are successful with monotonous fit-
ness increases, one repression dip early on, and few neutral mutations are present
(see Fig. 3.6 and page 37 of section 3.5).

The coevolutionary search for a new and independent recognition, which is
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Figure 3.5: Typical divergence pathway, with the additional requirement of continued tight
binding of both repressors (F ≥ 100.).

(A) Evolving interaction network, where line thickness denotes binding strength between
repressor monomer and operator-half. Dotted lines denote negligible repression. Yellow
crosses indicate repressor and operator mutations, which are positioned at the top and bot-
tom of the interaction lines respectively.
(B) Fitness trajectory (black) and corresponding repression of each repressor on its operator
(red and blue). Fitness is normalized to the maximum value (∼ 1 ·1010).
(C) Sequences for each round. Mutated positions are colored white.

relevant for both protein-DNA and protein-protein interactions, comprises fun-
damental differences with often-considered evolution of ligand-binding and enzy-
matic activity [79–81]. While in the latter cases the new evolutionary target is fixed,
here it is open-ended: as with locks and keys, many possible combinations are
unique matches, and each of those is equally suitable. This large degree of freedom
allows the system to choose the solution that is most accessible. Another difference
with fixed-target evolution lies in the selective pressure. Binding is already tight to
both operators at the start of the coevolutionary scenario, so the initial pressure to
change, in fact comes from benefits of not binding another operator. This pressure
for unique recognition is characteristic for regulatory interactions but plays much
less a role in developing other functions such as enzymatic activity. These charac-
teristics of a coevolutionary mechanism, together with the remarkable plasticity of
protein-DNA interactions result in a highly evolvable system.

Fitness landscape funnels

The diversity of molecular architectures is not only constrained by their inherent
physi-co-chemical limitations, but also by the existence of viable evolutionary routes
that shape them. For instance, in a population of bacteria there is only a small
probability that an advantageous function emerges if a temporary fitness decrease
is required first. Put differently, the shape of the fitness landscape is critical, and
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one can readily imagine fitness landscapes where the optima are very difficult to
reach. Upon first inspection, the measured landscape we consider indeed contains
many potential frustration sources: over 99% of all optima in the landscape are in
fact below our divergence criterion. Such local optima represent traps in which
the system gets permanently stuck once it encounters one. However, the results
show that the system is still guided in the right direction to (near) global optima,
which indicates that the fitness landscape contains funnel-like features. Moreover,
the optimal paths contain negligible detours (Fig. 3.3A) and lead to the nearest op-
timum (Fig. 3.3B), showing that the funneling is efficient and not constrained by
ruggedness. A funnel-like organization of the landscape is also supported by the
monotonous fitness increases of the probabilistic pathways (Fig. 3.6C), as well as by
the smooth fitness decrease when stepping away from a global optimum (Fig. 3.3C).

The underlying causes for funnels in the fitness landscape may be found at two
levels. The first level is that of a single repressor-operator interaction. The sur-
face smoothness that is needed for the funnels may be partly understood from the
reported additive contributions of the lac amino acids to the binding energy. In
mathematical models, additive interactions have been shown to yield smoother
fitness surfaces because they can be optimized independently [35].

At a higher level, features of the network topology shape the landscape surface
and divergence potential. We found that the tightly interconnected topology, as
present after the duplication, does not frustrate divergence but instead promotes
it. In contrast to an isolated repressor-operator pair, where a drop in the binding
strength decreases the fitness, the same mutation can be neutral in the intercon-
nected topology. Compensation for the decrease in binding strength can be at-
tributed to two features of the topology. First, there is the characteristic pressure to
not bind the rival operator: when a mutation decreases an interaction that should
be maximized, this negative effect on the fitness is partly balanced by the decrease
of an unwanted cross-interaction. A second mechanism is a coevolutionary twist
on Ohno’s original idea, in which one repressor-operator pair can search for a new
recognition, while the other repressor maintains repression on both operators in
the very early stages. As we have observed that a drop in the binding strength is
necessary for efficient divergence, the ability to compensate for its negative contri-
bution to the fitness is crucial for funneling.

The evolutionary fate of redundant genes has previously been studied primar-
ily using sequence analysis [64, 82]. By using a different dataset and approach, our
simulations strengthen recent evidence for a more rapid fixation of mutations in re-
dundant genes [82] (termed "accelerated evolution"). Our analysis enables a next
step in our understanding of this important process: It provides a mechanistic ra-
tionale for why such a rapid divergence can indeed occur, in terms of minimal se-
lective conditions bacteria must experience, in combination with independently
measured plasticity of protein-DNA interactions. Furthermore it yields a quantita-
tive prediction for the minimum number of essential mutations to achieve diver-
gence.
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Suggested experiments

Our results show divergence to be possible with monotonic increasing fitness, which
hints at the feasibility of monitoring similar processes in experiments. It has re-
cently been shown that the serial dilution assay, as pioneered by Lenski and cowork-
ers [61], can be employed to adapt bacterial strains to a new condition within weeks
[10, 83]. Similarly, one could attempt to evolve a duplicate lac repressor/operator
copy towards the independent regulation of a second operon. However, this more
complex assay does require key modifications: (1) growth and selection of the mu-
tants should occur in alternating media, in analogy to our discussion of multiple
input conditions, and (2) a starting network must be engineered that satisfies the
conditions for DNA-binding divergence: a duplicate repressor/operator and a se-
lective pressure for tight and independent binding.

In practice, one could place the lac operator upstream of the raffinose utiliza-
tion operon, and construct a LacI duplicate that is sensitive to raffinose. This initial
situation is now similar to our simulations: two lac repressors bind to the two lac

operators. The employed fitness definition is also suitable: (1) in media where the
two metabolites are both low (supplemented e.g., by another carbon source), the
metabolic enzymes should not be expressed. The resulting optimal growth is well
represented by positive contributions to the overall fitness by high values for tight
binding. (2) When just one metabolite is present, one screens for exclusive binding.
In a medium without lactose the lactose-sensitive repressor shuts both operons
down if binding is still non-exclusive. Upon mutations that allow this repressor to
bind exclusively to the operator of the lactose operon, raffinose metabolic enzymes
would be expressed. The resulting faster growth due to raffinose utilization thus
correlates well with higher values for exclusive binding. The pressure for a correct
behavior under multiple conditions prevents the fixation of trivial solutions that
would just work under one condition.

Other network growth scenarios

For biological regulatory networks to grow, not only new components are required,
but also new and independent interactions. Next to the coevolutionary duplication-
divergence scenario for network growth, alternative models for the creation of new
regulatory interactions have been proposed. In the first alternative, a new oper-
ator must emerge upstream of the regulated gene in an effectively random DNA
sequence [84]. This scenario has mainly been considered for eukaryotes with large
upstream regulatory regions and short binding sites. For longer operators in prokary-
otes, this scenario requires many neutral mutations before improvements can be
selected for (see page 39 of section 3.5), which represents a major evolutionary ob-
stacle.

Another possible source for new regulatory interactions is lateral gene transfer,
which is thought to be the source of many paralogs found in prokaryotes [85]. In
this scenario divergence would occur while two genes each reside in different or-
ganismal lineages (essentially being orthologs at that stage) and each experiencing
different selective constraints. Lateral gene transfer unites the diverged genes, re-
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sulting in immediate contributions to fitness by both homologous genes. Although
examples of this scenario have been found for enzymes [86], transcription factor-
operator interactions are a special case, as there is no obvious internal or external
selection pressure for their interaction to diverge by itself. Our results illustrate the
feasibility of coevolutionary divergence of two transcription factors within a sin-
gle organismal lineage. These findings are supported by the lack of evidence for
horizontal transfer of the lac system in E. coli [87]. However, this is not to say that
lateral gene transfer and duplication-divergence are mutually exclusive. Summa-
rizing, the coevolutionary divergence studied here differs from alternative models
of network growth by providing both a high probability of selective advantageous
point mutations and a rationale for a divergence pressure.

Finally, it is of interest to consider different selective pressures within the same
duplication scenario. While the pressure for independent regulation seems to be
a dominant one, as evidenced by the many independent transcription factors that
are paralogs, duplications also have yielded other network motifs. An interesting
example is the UxuR/ExuR pair of repressors. Like the case studied in the present
work, they have originated by duplication and share two operators. However, they
seem to have diverged under a different selective pressure, since their cross interac-
tion was not eliminated, but instead has been retained, forming a so-called bi-fan

motif [71].
This work describes how regulatory network connections can be formed and

broken after a duplication event. Our quantitative approach takes the selective
conditions and molecular adaptability explicitly into account, and opens up a new
angle on the duplication-divergence question that is complementary to existing
approaches. Evolution of network connections is treated more abstractly in nu-
merical studies of biological network growth, which have recently received much
attention [69, 88, 89]. The use of experimental data will help to perform such stud-
ies on a more realistic footing. Finally, the promising new field of experimental
network engineering [90–92] and evolution (see e.g., [93]) will also benefit from the
quantification of network adaptability.

3.4 Materials and methods

Mutational dataset

In this work we used an extensive dataset of binding affinities of lac repressor and
operator mutants, obtained by B. Müller-Hill and coworkers. In these experiments,
repression values FOiRj have been determined in vivo as the ratio of the unrepressed
and repressed expression levels of a β-galactosidase (lacZ) reporter gene, controlled
by a mutant lac operator Oi and mutant lac repressor Rj. This was done using the
standard assay by Miller [94]. Since the β-galactosidase synthesis is proportional to
the fraction of free operator (see e.g., [95]), we find for the repression value FOiRj = 1
+ [Rj]/KD, where KD is the equilibrium dissociation constant and [Rj] is the concen-
tration of active repressor Rj. The dataset contains repression values of base pair
substitutions leading to changes in amino acid residues 1 and 2 of the recognition
helix of the lac repressor (Y17 and Q18) and base pairs 4 and 5 of the symmetric lac
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operator [96]. These residues and base pairs were found to be most important for
altering repressor operator-binding affinities [14]. The dataset covers a consider-
able fraction of all possible substitutions involving a homodimeric repressor and a
symmetric operator (1,286 out of a total of 6,400). Part of this raw data is published
in Lehming et al. [14]; the full dataset is found in [74]. The contributions of the
two repressor amino acids to the repression value were found to be additive. With
this knowledge, repression values could convincingly be assigned to all mutants,
including those that were not measured [14]. In the present study we use these as-
signed repression values, all of which are given in [14]. Moreover, we extend the
dataset to include heterodimeric repressors and non-palindromic operators (see
below), to obtain the complete mapping between sequence and repression values
for all possible mutants (1 · 107) in the key repressor residues and operator base
pairs.

Repression values of heterodimers and non-palindromic operators

We consider the repressors to act as dimers. After their duplication, once the re-
pressors genes are mutated, this leads to heterodimerization of distinct monomers.
While heterodimer binding strengths (FHe) have not been directly measured, they
can be derived from the two corresponding homodimer repression values (FHo1

and FHo2 ), measured on a palindromic operator. The heterodimer binding energy
∆GHe is the sum of the monomer-monomer and the dimer-operator binding en-
ergy. Simple equilibrium considerations lead to the following expression, where [R]
in this case is the total concentration of repressor subunits:

FHe = 1+ [R]2e−∆GHe/kT
= 1+

√

(FHo1 −1)(FHo2 −1) (3.2)

With this equation, repression values involving non-palindromic operators are also
automatically taken into account: each dimer-operator interaction is built up ad-
ditively [75] from two interactions between a monomer and an operator-half. In
this derivation the dimerization free energy was assumed to be fixed, since it does
not directly affect the specificity by which the repressors recognize their operators.
The heterodimer repression value then becomes independent of the dimerization
energy.

Optimal pathway simulations

Each repressor monomer is represented by six base pairs (two amino acid residues),
and each operator by four base pairs, which are key to specific binding. The com-
plete network with duplicates is thus represented by 20 base pairs. Each simulation
run starts with the duplication of a tight binding repressor-operator pair, having a
repression value of 100 or higher. Out of all possible repressor-operator combina-
tions (homodimers and palindromic operators), there are 132 fulfilling this condi-
tion. Changing this threshold did not significantly alter the outcome of the simula-
tions. In order to avoid any bias due to codon usage of the starting repressor, sep-
arate simulations were run starting from each of its synonymous codon versions.
These simulations were averaged to produce the presented results.
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In order to determine the optimal mutational pathways in the fitness landscape,
an evolutionary algorithm was employed. Beginning with one of the starting se-
quences, each round we generated all mutants that differ by one base pair (60 in
total). Of each mutant network, the strength of all eight possible interactions was
determined (see Fig. 3.1B where four possible interactions are schematically shown
between the repressor dimers and one of the two operators). Interactions between
repressor homodimers and palindromic operators were directly assigned from the
published repression values [14]. Other interactions were calculated from the mea-
sured data as described above. Next, we selected the best L networks to the next
round based on a fitness parameter that is directly calculated from the interaction
strengths (see equation 3.1). The next round started by again generating all sin-
gle base pair mutants of the L selected networks. The effect of L was assessed by
varying it between 1 and 105. Decreasing fitness steps were not allowed, and in
case of equal fitness, parents were ranked above their offspring. These rules make
divergence harder because they constrain the space that can be explored. The evo-
lutionary cycle was repeated until the fitness could not be further improved. Path-
ways were considered to be successful when the fitness came within a factor 10 of
the highest fitness in the landscape.

3.5 Appendix

Simulation of mutational pathways incorporating probabilistic

population dynamics

Here results are presented of a second simulation method, where mutations are
fixed with a probability that is based on the associated fitness increase (see meth-
ods below). Compared to the optimal pathway simulations, this probabilistic ap-
proach does not search the landscape as systematically, but it is arguably closer to
natural evolution, in that the fixation chance of mutations with no or lower fitness
increases is more well-defined [40].

We find that the key characteristics of the probabilistic pathways are very simi-
lar to those of the optimal pathways. From every starting condition it appears pos-
sible to diverge towards independent binding while the fitness increases monoto-
nously along the way (17% of all paths). The success rate logically differs for the
different starting sequences, but all of them can yield successful trajectories. Look-
ing at the probabilistic paths in more detail (Fig. 3.6), we see that they are somewhat
longer, but half of them still diverge within 10 mutation steps. And although the se-
quential network changes are not as uniform, the paths are still characterized by
few neutral mutations (0 or 1 neutral steps for 50% of the paths) and an early re-
duction in repression of one repressor (F<5 for 50% of paths).

Our probabilistic model allows us to vary the amount of drift present in our
pathways by varying both the effective size of a population (N ) and the growth ad-
vantage that diverged networks have over undiverged networks (smax). Taking a
conservative growth advantage of 5% [10] we simulated probabilistic pathways for
population sizes ranging from 103 to 108. At high population sizes pathway char-
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Figure 3.6: Qualitative features of successfully diverging paths in the probabilistic pathway
simulations.

Simulations were performed with a 5% growth advantage of a diverged network over the ini-
tial duplicate network, and a population size of 105. Of all traced paths, 17% successfully
diverged, despite the strict requirements that promote trapping in local optima (fitness can-
not decrease). Relaxing these conditions would lead to larger divergence probabilities.
(A) Histogram showing the number of base mutations until divergence for the successful
pathways.
(B) Histogram showing the lowest repression values of each repressor on its operator during
the successful divergence pathways.
(C) Histogram showing the number of neutral mutations that occur until the pathways suc-
cessfully diverged.

acteristics remain very similar. Only at population sizes below 104 we start to see a
strong effect of genetic drift: more neutral mutations, and hence longer pathways.
However, the fraction of diverged pathways and the reduction in repression of one
of the repressors does not significantly change.

In our probabilistic model we do not allow disadvantageous mutation to be
fixed. An important finding we present in this work is that for divergence to oc-
cur, fitness drops are actually not necessary. (Note that if one would allow drops
in fitness, all pathways would reach divergence eventually, since trapping in local
optima would then not be possible.) Even if disadvantageous mutations would be
explicitly modeled, we would not expect to find other pathway characteristics for
population sizes above 104, as these mutations have very low fixation chances com-
pared to the readily available beneficial mutations present in our system.
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Probabilistic pathway simulations

To model the effect of genetic drift in the evolutionary pathways, probabilistic sim-
ulations were performed. Thousand such pathways were traced for each of the
starting sequences. In each simulation step 60 different single base pair substitu-
tions are possible (the 20 base pairs can each mutate to 3 different bases), which
were assumed to occur with equal probability. The fixation probability of each spe-
cific mutation depends on its associated fitness increase, and was calculated with
a standard and simple population genetics model [40, 76] (and see below). In each
simulation step, the fixation probabilities of all 60 possible single base pair substi-
tutions were calculated, and one substitution was randomly chosen according to
its share in the total probability. Each path was continued until a (possibly local)
optimum was reached, so that the fitness could not be further improved. The pur-
pose of this Monte Carlo-like scheme was to check whether biased random walks
show similar features as the ones generated by our optimal pathway simulations.

Mutations that decrease the network fitness were assumed not to be able to fix,
while those that keep the fitness constant have a fixation probability of 1/N , where
N is the effective population size. Mutations that do increase the fitness have a
fixation chance of 2∆s, where ∆s is the selective advantage that this fitter mutant
has over its parent. In our simulations we let an increase in the fitness parameter by
a factor of 10 correspond to a∆s of 1%. In this way, a successfully diverged network
has a selective advantage of 5% (smax) over the initial duplicated state (fitness rises
from 10−6 to 10−1, see main text), which matches typical experimentally observed
growth advantages [8, 10].

In this probabilistic scheme a mutation conferring a selective advantage∆s will
have 2N∆s times more chance to be accepted than a neutral mutation. Therefore,
both the effective population size and the defined selective advantage influence
the effectiveness of selection. By either lowering N or smax the amount of genetic
drift in the model increases. We typically simulated an effective population size N

= 105, together with a fixed smax = 5%. The population size needed to be lower than
104 before genetic drift substantially increased the number of neutral mutations in
successful paths.

Comment on neutral mutations required for the emergence of a new

operator

Here we consider an alternative mechanism for creating a new regulatory interac-
tion, where a new operator must emerge in an effectively random DNA sequence.
In a typical prokaryotic case, like e.g. the lac system, a 20 base pair operator has to
emerge somewhere in a roughly 100 base pair region in order to effectively block
RNA polymerase binding. Then there are 10 expected prior matching base pairs
for the best binding site within the promoter region. However, experimental data
suggests that at least 15 base pairs need to match before appreciable binding is
achieved [97, 98], from which point further mutations can be positively selected
for. This means that more than 5 base pairs need to be optimized without selec-
tion, while the coevolutionary pathways can be selected for almost immediately.
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Multiple peaks and reciprocal

sign epistasis in an empirically

determined genotype-

phenotype landscape
4

Insight into the ruggedness of adaptive landscapes is central to understanding the

mechanisms and constraints that shape the course of evolution. While empirical

data on adaptive landscapes remain scarce, a handful of recent investigations have

revealed genotype-phenotype and genotype-fitness landscapes that appeared smooth

and single peaked. Here, we used existing in vivo measurements on lac repressor and

operator mutants in Escherichia coli to reconstruct the genotype-phenotype map

that details the repression value of this regulatory system as a function of two key

repressor residues and four key operator base pairs. We found that this landscape

is multipeaked, harboring in total 19 distinct optima. Analysis showed that all di-

rect evolutionary pathways between peaks involve significant dips in the repression

value. Consistent with earlier predictions, we found reciprocal sign epistatic interac-

tions at the repression minimum of the most favorable paths between two peaks.

These results suggest that the occurrence of multiple peaks and reciprocal epista-

tic interactions may be a general feature in coevolving systems like the repressor-

operator pair studied here.
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It has long been recognized that the evolution of new functions is not only de-
termined by the external forces of natural selection, but also by diverse internal lim-
itations of the evolving biological system itself. Apart from the hard constraints im-
posed by physical and chemical laws, the Darwinian process of repeated selection
of heritable changes can also give rise to adaptive limitations when some of the ge-
netic changes that are required to reach a more adapted genotype are not uncondi-
tionally favorable. One of the most striking situations arises when no single genetic
change is favorable while combinations of multiple genetic changes are, as it can
lead to evolutionary stasis. This scenario can be seen as an entrapment in a local
optimum in a multipeaked adaptive landscape. While in recent years methodolo-
gies have been developed to determine such adaptive landscapes empirically, the
evidence for the existence of multiple peaks have been rather scarce and indirect.
Here we analyze published experimental data on the expression regulation of mu-
tants of the lac repressor and operator. We report the presence of multiple peaks in
repression, as the key residues and base pairs for the binding specificity are varied
in the transcription factor and its target DNA binding site. Together with our find-
ing, the existence of multiple homologous repressor-operator pairs in Escherichia

coli indicates that evolution has been able to avoid the frustration associated with
local suboptima, and exploits the wide range of solutions available in the genetic
space despite the presence of genetic barriers.

4.1 Introduction

Determining the architecture of adaptive landscapes is central to understanding
the course of evolution. The stepwise adaptation of living systems to new environ-
ments by natural selection results from the intricate relationships between geno-
type and phenotype and between phenotype and fitness [99]. Ever since Wright [33]
introduced the metaphor of an adaptive landscape, its shape has been hotly de-
bated, but nonetheless essentially remained unknown due to insufficient empirical
data [99] [38, 49, 100–107].

The architecture of adaptive landscapes is tightly related to the notion of epis-
tasis (see Fig. 4.1) [33, 108]. Epistasis provides a way to classify how elementary
genetic changes correlate in terms of their effect on phenotype and fitness. For
magnitude epistasis or in absence of epistasis, mutations give rise to either a posi-
tive or a negative fitness or phenotypic effect, regardless of the genetic background
(see Fig. 4.1A, top). This results in adaptive landscapes that are smooth and sin-
gle peaked (see Fig. 4.1B, left). In the case of sign epistasis, the sign of the fit-
ness or phenotypic effect of a mutation does depend on the genetic background
(see Fig. 4.1A, bottom left), such that only a fraction of the total paths to the opti-
mum are selectively accessible, i.e., contain only steps that confer a performance
increase. A third class of epistatic interactions is that of reciprocal sign epistasis,
in which two genetic changes are individually deleterious but jointly advantageous
(see Fig. 4.1A, bottom right). It has been suggested that reciprocal sign epistatic
interactions play a central role to generate adaptive landscapes with multiple dis-
tinct peaks (See Fig. 4.1B) [105]. The occurrence of multiple peaks can give rise
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Figure 4.1: Relationship between epistasis and landscape ruggedness.

(A) Schematic representation of different classes of epistatic interactions between mutations
at two different genetic loci: a→A and b→B. In the absence of epistasis, mutation a→A yields
the same phenotypic or fitness effect in genetic backgrounds b or B and vice versa. With
magnitude epistasis, the phenotypic or fitness effect differs in magnitude depending on the
genetic background. For sign epistasis, the sign of the fitness effect depends on the genetic
background; as a result some paths are selectively inaccessible. In the case of reciprocal sign
epistasis mutations are individually deleterious but collectively advantageous.
(B) Continuous surfaces that serve to illustrate ruggedness in fitness landscapes. As a dis-
claimer, note that several features of these surfaces do not correspond to fitness landscapes.
The left panel shows a single peaked surface where all the paths toward optimum are mo-
notonously increasing in fitness. The left panel shows a multipeaked surface. All paths from
the suboptimal peak to the optimal peak encounter a decrease in fitness.

to entrapment on local suboptima, which frustrates adaptation to the global opti-
mum.

Spurred by systematic laboratory reconstructions of the evolutionary interme-
diates for a handful of well characterized phenotypes, recent years have seen a re-
newed interest in the structure of adaptive landscapes [41, 49, 105, 106]. These ef-
forts have revealed the existence of sign epistatic interactions and single peaked
landscapes. Here we investigate the structure of the genotype-phenotype land-
scape for the repression of the lac operon by the lac repressor and its operator. Us-
ing in vivo measured data from Müller-Hill and co-workers [14], we have previously
reconstructed this landscape to investigate the divergence between two repressor-
operator pairs [39]. Here, we aim to determine whether the repression value for a
single repressor and operator exhibits more than one distinct peak as a function of
its genotype. In this effort, we developed a recursive algorithm to search for peaks
within the genotype space of the repressor-operator system. This analysis showed
that the genotype-phenotype landscape is multipeaked, encompassing in total 19
well-defined optima. Our result contrasts with previous studies that showed single
peaked adaptive landscapes [41,49], which we suggest may be understood from the

43



Chapter 4

lock-key architecture of the here studied system. This finding, together with the ob-
servation that several repressor-operator pairs homologous to the lac system exist
in Escherichia coli, suggests that evolution is able to overcome the frustration of a
multipeaked landscape to exploit a wide diversity of interactions that are available
in the genetic space.

4.2 Description of the system

Recognition of DNA by proteins plays a central role in the regulation of transcrip-
tion in all organisms. The lactose operon of Escherichia coli serves as a key bi-
ological system to study gene transcription regulation ever since Monod and Ja-
cob [109] discovered it. Transcription regulation of this operon by binding of the
lac repressor (LacI) to its operator regions in the lac promoter (see Fig. 4.2) is un-
derstood in great detail and continues to be of great value in the study of gene
regulation [14, 110–119]. LacI is a prototypic member of the large GalR-LacI fam-
ily of prokaryotic transcription factors, a group that has more than 1000 mem-
bers [12, 13]. Members of this family possess a conserved N-terminal DNA bind-
ing domain, and a central highly versatile domain that, under the same scaffold,
functions as a binding pocket for different types of small signaling molecules and
promotes oligomerization of the complex by protein-protein interaction between
the monomers. Binding of a signaling molecule to the receiving pocket allosteri-
cally regulates binding of the transcription factor to the target DNA sequence and
thereby modulates mRNA production from the promoter of the operon [13].

The lac system of E. coli is well-suited to start addressing the structure of adap-
tive landscapes for molecular interactions. Residues determining the specific bind-
ing between the lac repressor and its operator have been identified and circum-
scribed to only ten base pairs [117], reducing to a large extent the genotypic search
space: essentially, two key residues, Tyr-17 and Gln-18, from the recognition he-
lix of the lac repressor are responsible for specific recognition of key base pairs 4
and 5 (and symmetrically related base pairs) in the palindromic lac operator se-
quence [96], altogether reducing the determinant factors to six base pairs for the
codons of residues 17 and 18 of the repressor, and four base pairs in the palin-
dromic operator (see Fig. 4.2A). We note that other residues (e.g., Ser-21, Arg-22 of
the recognition helix and base pair 6 of the operator) do have an effect on affinity,
although less on specificity. Müller-Hill and co-workers have measured in vivo the
repression values of repressor-operator pair variants obtained by extensive base
pair substitutions at the aforementioned ten key positions [14]. Repression values
for repressor-operator pair variants were determined as the ratio of repressed and
unrepressed expression of a downstream β-galactosidase (lacZ) reporter gene, as
measured via a standard Miller assay [94]. The measured data set covers 1286 out of
a total of 6400 possible homodimeric repressor-palindromic operator variants (two
amino acids and two independent base pairs) [14, 74, 94]. From the measured data
it has been observed that mutations in the key residues of the repressor (residues
17 and 18) contribute additively to the repression value, but the mutations in the
key base pairs in the operator (base pairs 4 and 5) do not.
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Figure 4.2: Description of the studied system.

(A) Structures illustrating the molecular interactions between the key residues in the lac

repressor (yellow) and the key base pairs in the operator sequence (blue). The left panel
shows a wild-type E. coli repressor-operator system, where the side chain of the key residues
17 and 18 from the repressor forms hydrogen bonds (dotted gray lines) with bases 4 and 5 of
the symmetrical half operator. The left panel shows another repressor-operator pair.
(B) Cartoon representation of the above three-dimensional structure with downstream re-
porter gene lacZ whose expression level is controlled by binding of the lac repressor (red) to
the lac operator. The left panel represents the same but for another pair with mutations in
the repressor and the operator (red crosses).
(C) Representation of the data set. Genotype-phenotype map showing repression values as
a function of residues 17 and 18 and all 16 operator variants based on the in vivo measure-
ments. Low and high repression values are indicated by light and dark colors, respectively.

Based on this observed additivity between the repressor residues, the repres-
sion values for those mutants for which there were no measured data were de-
termined by interpolation [14, 74]. Additionally, to obtain the complete mapping
between genotype and phenotype (i.e., repression value), we have extended the
data set to also describe non-palindromic operators, which constitute necessary
intermediates for a step-by-step mutation process. To this aim, we have used the
observation that each monomer of the dimeric repressor contributes additively to
the binding energy with DNA [39, 75]. Briefly, extrapolated repression values are
calculated according to equation 3.2,

Fo1o2 = 1+
√

(Fo1 −1)(Fo2 −1)

For a palindromic operator, Fo1o2 = Fo1 = Fo2 , where Fo(1/2) is the product of two
factors (one for each of the key residues) taken from Table II of Ref. [14]. Fo1 and
Fo2 may also be unequal, thus yielding the repression value for a non-palindromic
operator. In total, our genotype data set consists of around 106 sequences (all com-
binations of ten independent base pairs) of repressor-operator variants, consti-
tuted of homodimeric repressors and palindromic or non-palindromic operators
(see Fig. 4.2).
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4.3 Algorithm

To find local repression optima in the genetic space of the repressor-operator pairs,
the repression value of each point in the space is compared with the repression val-
ues of its nearest (single point mutation distant) neighbors. If at least one neighbor
has a better repression value, then the point is not an optimum. If all the neighbors
have lower repression values, then the point is an optimum. However, it might be
that while none of the neighbors have a higher repression value, not all of them
have lower repression values — that is, there might exist neutral neighbors. This
does not necessarily mean that both the assessed point and the neutral neighbors
are not optima; on the contrary, they might all together constitute an optimum
plateau.

Therefore, during the assessment process of each point of the genetic space,
each time a neutral neighbor is found a recursive procedure is started to determine
(i) the extent of the associated neutral region and (ii) to test each point of the neutral
region for optimality before concluding about the optimality of the entire region —
i.e., if one of the points of the neutral region has a neighbor not in the neutral region
and with a higher repression value, then the region is not an optimum.

At the end of the procedure, each point of the genotype map is defined either
as ‘nonoptimum’ or as ‘optimum-j’, where j is an integer number that differentiates
each distinct and independent local optimum, and that is the same for all neutral
points of an optimum plateau.

4.4 Results

We have reconstructed the genotype-phenotype landscape detailing the repression
values (defined as the ratio of unrepressed and repressed expression levels of the
downstream lacZ gene) for variants of the lac repressor-operator system, and an-
alyzed the ruggedness of the landscape. The genotype space contains about 106
variants, covering all possible combinations of mutations in the repressor and the
operator, at the positions known to determine their binding specificity (i.e., base
pairs 4, 5, and symmetrically positioned base pairs 4’ and 5’ in the operator, as
well as base pairs coding for residues 17 and 18 in the recognition helix of the lac

repressor [117], see Fig. 4.2). A particular operator-repressor variant of the explored
genotype space is represented by the sequence at the four key positions in the op-
erator (respectively base pairs 5, 4, 4’, and 5’ — see Fig. 4.2), followed by symbols
of the amino acids present respectively at residues 17 and 18 of the LacI protein.
Thereby, the wild-type genotype would for instance be designated tgcaYQ.

The algorithm described above was used to search for peaks in repression val-
ues throughout the entire delineated genotype space. This analysis revealed 19 dis-
tinct peaks, i.e., areas of high repression values within the genotype space, isolated
from each other by genotypes of strictly lower repression levels. Table 4.1 lists the
genotypes and associated repression values of the 19 peaks of the landscape.

In order to quantify the distinctness of the peaks, we analyzed their relative dis-
tance and the decreases in repression values along the paths between them. On
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average two peaks are separated by a Hamming distance of six mutations, with
Hamming distances ranging between two and nine mutations. Note that a spe-
cific situation occurs in the case of serine which is encoded by two independent
groups of codons separated by two mutations. This results in the existence of dis-
tinct peaks when this amino acid is present in the repressor. For simplicity, we have
not distinguished these peaks in Table 4.1.

Next, we looked more closely at the paths between two peaks separated by the
average Hamming distance (six mutations). In particular, we considered the peaks
atgcPK and tgcaSQ (respectively, peaks 9 and 3 in Table 4.1). These two peaks have
repression values of 200 and 325, respectively. The peak tgcaSQ is the optimum
that is closest to the wild-type sequence tgcaYQ. Note that for simplicity we have
excluded the cases of reverse mutations and restricted our analysis to direct paths
between the peaks.

For a Hamming distance of h between two peaks, one can follow h! different
direct paths. Figure 4.3 presents the histogram of the smallest repression values
encountered along each of the 6! = 720 paths going from peaks acgtPK to tgcaSQ.
The vast majority of paths (>600) decreases down to repression values of 2 or less,
which represents more than a 100-fold reduction in repression. The 12 most op-
timal paths, i.e., the paths that involve the least drastic dips, still decrease down
to repression values of around 20. Thus, to evolve from one peak to the other, the

Genotype

Peak rank Operator Repressor Repression level

1 tg· · ·ca SM 520
2 tt· · ·aa HM 500
3 tg· · ·ca SQ 325
4 gt· · ·ac KS; KT; KM∗ 300
5 aa· · ·tt IS 300
6 aa· · ·tt SS 225
7 ta· · ·ta SG; IG; PG∗∗ 220
8 tg· · ·ac/gt· · ·ca KM 219
9 ac· · ·gt PK 200

10 ac· · ·gt MK 200
11 aa· · ·ac/gt· · ·tt SS 184
12 at· · ·at VM 160
13 ag· · ·ac/gt· · ·ct PS 150
14 ag· · ·ct PS 150
15 tg· · ·ac/gt· · ·ca KQ 100
16 gt· · ·ac KQ 100
17 tg· · ·ca SN 91
18 ga· · ·tc QT 90
19 gt· · ·ac VQ 50

Table 4.1: Genotypes and repression values for the 19 independent peaks in the phenotype
landscape of lac operator-repressor pair variants.

Non-palindromic operators are indicated by their two equivalent reverse-complement se-
quences. ∗: S, T, and M are connected, so 1 optimum. ∗∗: S, I, and P are connected, so 1
optimum.
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Figure 4.3: Histogram of the minimal
repression values along direct paths
between peaks acgtPK and tgcaSQ.

Dotted lines indicate the repression
levels at the beginning and at the end of
the mutational path (repression values
of 200 and 350 for genotypes acgtPK and
tgcaSQ, respectively).
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system has to overcome a loss of at least tenfold in repression.
A number of typical paths are illustrated in Figure 4.4, where the respective mu-

tations and repression values at each step are indicated. In this graph, path 1 is
one of the least likely paths, exhibiting a 200-fold drop in repression value at step
3 where the repression decreases to a value of 1. In this path, the operator is mu-
tated first, resulting in disruption of its palindromic symmetry, and decreasing the
repression value to about 80. At the second and third steps, the operator experi-
ences additional mutations that bring it closer to the final sequence, although still
maintaining the sequence asymmetry initially introduced. Ultimately, the repres-
sion shrinks to 1 at the third step. Subsequently, in steps 4 and 5 two mutations
occur in the repressor. The first of these mutations, lysine (L) to glutamine (K),
compensates for the mutations in the operator and restores the repression level to
about 100, while the second mutation in the repressor, a proline (P) to serine (S)
transition, is almost neutral. Finally, the last a to t mutation from step 6 restores the
symmetry of the operator, bringing the repression value to 350 at the tgcaSQ peak.

A close alternative to path 1 would be path 2, where all mutation steps are the
same as in path 1 except for a permutation of the mutations occurring at steps 3
and 4, affecting respectively the operator and the repressor (see Fig. 4.4B, paths 1
and 2, outlined steps). With this new mutation order, instead of a decrease at step 3
followed by a restoration of the repression level at step 4, now both mutations (K to
Q at steps 3 and g to c at step 4) increase the repression level, thus making this path
more favorable. These two alternative paths show that the g to c mutation in the
second half of the operator with the K or Q amino acid in the second key residue of
the repressor exhibit a sign epistatic interaction.

The most likely path between optima acgtPK and tgcaSQ is path 3 depicted in
Figure 4.4, which exhibits the smallest dip among all possible paths. Here, the first
mutation occurs in the repressor with the transition from P to S, which brings the
repression level to about 100. The repression level then stays almost constant dur-
ing the next two mutation steps that occur in the operator. Interestingly, in this
pathway the palindromic symmetry, initially broken by the a to t mutation in the
operator sequence at step 2, is immediately restored at step 3 with a t to a mutation
in the second half of the operator. The following mutation is the K to Q transition in
the repressor at step 4, which reduces the repression level to 20. This is the lowest
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Figure 4.4: Examples of direct evolutionary paths between peaks acgtPK and tgcaSQ.

(A) Repression values of the intermediate mutants along each path.
(B) Intermediate sequences along the mutational paths. Mutations are shown in bold red.
Steps exhibiting epistatic interactions are outlined.

repression level along this path, constituting a tenfold drop relative to the initial re-
pression value at the peak. The repression level is then progressively restored as the
two remaining symmetric g and c key bases of the operator mutate, respectively, to
c and g to give the final palindromic operator.

In fact, path 3 belongs to a group of 12 best paths that are essentially equivalent.
Indeed, due to the sequence symmetry of the operator, mutations of base pairs
5 and 5’ at steps 2 and 3 can occur indistinctively in the reverse order, as well as
mutations at base pairs 4’ and 4 at step 5. Additionally, the P to S transition at step
1 can occur at step 2 or 3 with only a negligible decrease in repression values at
some steps along the respective paths. Combining all these possible permutations
produces a group of 12 paths, all having the same shape as path 3 with their minima
in repression level at step 4.

The best alternative path to path 3, apart from the 12 aforementioned paths, is
path 4, which differs only in the order of the mutations leading to, and following,
the deepest drop in repression value at step 4. Permuting the order of these mu-
tations — that is, the K to Q transition in the repressor protein and the first c to g

mutation in the operator (see Fig. 4.4B, outlined steps) — results only in a deeper
global dip in repression value at step 4 compared to path 3. Similar to paths 1 and
2, paths 3 and 4 also show that the effect of the g to c mutation in position 4’ can
change sign, depending on residue 18 of the operator (K or Q). Additionally, how-
ever, the effect of this K to Q mutation now also changes sign depending on the
position 4’ of the operator (g or c). Thus, the two mutations exhibit a reciprocal
sign epistatic interaction (see Fig. 4.4A).

Reciprocal sign epistasis occurs when two mutations are individually deleteri-
ous but jointly result in a positive effect (see Fig. 4.1A). Such a situation captures,
at the level of individual mutation steps, the constraints created by a multipeaked
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landscape. Our analysis of paths 3 and 4 shows that the choice between alternative
best paths between two peaks reduces to a choice between two routes in a recipro-
cal sign epistasis pattern that is located where these paths encounter their deepest
drop in repression values. In other words, the lowest point in the optimal path be-
tween two peaks results from a reciprocal sign epistasis interaction. This observa-
tion illustrates that reciprocal sign epistatic interaction stands at key locations of a
multipeaked landscape, and is in line with a theoretical investigation of ours, which
indicates that reciprocal sign epistasis is an essential ingredient for the existence of
multiple peaks [120].

From Table 4.1, we can also identify several peaks that are in close proximity
to each other, being separated by a Hamming distance of only two. Three differ-
ent situations can be discerned among the 13 cases. First, two different peaks can
have the same repressor, while their operators differ by two mutations. This is for
instance the case for peaks 6 and 11 or 13 and 14. The opposite situation also exists,
where several peaks share the same operator sequence but the associated repres-
sors differ by two mutations. This holds, for instance, for peaks 1, 3, and 17. The
intermediate situation, where each of the operator and repressor variants differs by
only one mutation between two peaks, also exists. This special case is encountered
between peaks 11 and 13, both carrying a non-palindromic operator.

Examination of the direct paths between these proximal peaks reveals an inter-
esting pattern. When two peaks differ only by their operators (or by one mutation
in the repressor and one in the operator — which is the case only between peaks
11 and 13), there are only weakly separated, with the minimal dip among the dif-
ferent paths being less than a factor of 2. Notably, when two proximal peaks differ
by their operators, at least one of them is non-palindromic. Thus, we do not ob-
serve two proximal peaks that differ only by their operators with both of them be-
ing palindromic. This observation might explain why those peaks are only weakly
separated.

In contrast, when two proximal peaks differ only by their repressor sequence,
which occurs in half of the cases of proximal peaks, the minimum drop in repres-
sion is larger than a factor of 5, or even a factor of 10 or 100 in three of the cases
(between peaks 1 and 3, 3 and 17, and 8 and 15). The sole exception concerns the
paths between peaks 16 and 19, for which the minimal drop in repression is small
(i.e., less than a factor of 2). Therefore, while some peaks are close to each other
in sequence space, they can still be separated by genotypes having substantial re-
duced repression values.

Note that due to the degeneracy of the genetic code, there exist silent mutations
for most of the codons of the amino acids. Therefore, all peaks in the landscape
form in fact a small plateau of neutral variants (see, however, Kimchi-Sarfaty et al.
[121] for an example of phenotypic effect due to ‘silent’ mutations). The presence
of neutral variants at the peaks results in the existence of parallel identical groups of
paths between peaks. For instance, for the acgtPK to tgcaSQ transition depicted in
Figure 4.4, because P and S can be encoded, respectively, by the triplet ccn and ucn

(where n can be any base), and K and Q, respectively, by the triplets aar and car

(where r can be either a or g ), there are in fact six identical ‘channels’ of direct paths
to go from one peak to the other (one channel for each combination of sequences
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at n and r ). Each of these channels is therefore constituted of the same group of 720
paths described previously, differing only by the base sequence at positions n and r

in the codons. For example, in the paths of Figure 4.4, n and r have been arbitrarily
chosen to be c and a — although this choice is not apparent and could have been
different without altering the result. Since these channels are independent from
each other, the validity of our previous discussion on epistasis and constraints is
unaltered.

Interestingly, several of the peaks in the genotype-phenotype map of the lac

repressor-operator occur for non-palindromic operator sequences (see Table 4.1).
Considering the symmetry constraint imposed by the homodimeric repressor pro-
tein, this finding might seem counterintuitive as for the given repressor sequence,
one would expect to find a better optimum with a symmetrized palindromic oper-
ator. Closer inspection reveals that all the non-palindromic optima we have found
need more than just one mutation for their operator sequence to become palin-
dromic, making them just sufficiently isolated to constitute local optima (see Ta-
ble 4.1). Furthermore, these non-palindromic optima are not global optima and
their symmetrized versions always have a higher or at least equal repression value,
thereby forming higher or equivalent peaks unless they are themselves buried into
another higher peak.

4.5 Discussion

In recent years a number of adaptive landscapes have been determined empirically
through the genetic reconstruction of neighboring genotypes. These efforts have
identified sign epistatic interactions, either at the genotype-phenotype level [49]
or at the genotype-fitness level [41], thereby showing that paths can be selectively
inaccessible (see Fig. 4.1B). Nevertheless, some paths to the global optimum re-
mained selectively accessible, indicating that the landscapes were single peaked
[41, 49]. Here we report the presence of multiple peaks in the landscape detail-
ing the repression value of the lac regulation system as a function of key operator
base pairs and repressor residues. The peaks are distinct: they consist of repressor-
operator pairs capable of high repression values, which are surrounded by geno-
typic variants of lower repression levels. Our assumption of complete additivity
between mutations in the key residues of the repressor might lead to an underesti-
mate of the ruggedness of the landscape. Relaxing this assumption would only lead
to a more rugged landscape. However, despite this assumption, distinct peaks are
identified in the genotype-phenotype space.

A rationale for the existence of multiple peaks in the case of the lac regulatory
system can be found by considering the analogy between the operator-repressor
interaction and a key fitting a lock. Forming a new lock and matching key by step-
wise mutations presents a dilemma: mutating the key first is not viable because
it does not fit the old lock, and vice versa. This dilemma can arise for a recog-
nition function between two components that can change both, in contrast, for
instance, with an enzymatic reaction, where only one component changes by evo-
lution. However, it is not a necessary consequence. The dilemma can in princi-
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ple be resolved by the molecular equivalent of a master key: an intermediate tran-
scription factor that is able to bind intermediate operator sequences, thus bridging
two peaks [105]. Our study shows that such a master key does not exist for the lac

repressor-operator system.
A multipeaked landscape reflects the widespread presence of epistatic interac-

tions across the genotypic space. Indeed, among the mutations that bring the sys-
tem to an optimum, there must necessarily be some that have a decreasing effect if
introduced from another optimum. Otherwise the system would be single peaked.
In other words, some of the mutations in one binding partner will only be beneficial
when the other partner has already been modified, and vice versa. The requirement
of such a reciprocal sign-epistatic interaction for multipeaked landscapes, which
can also be theoretically addressed in a more rigorous manner [120], is supported
by our analysis: as predicted, such interactions appeared present along paths ex-
hibiting the highest minimum.

It has frequently been recognized that a multipeaked landscape can constrain
a stepwise Darwinian evolution process by trapping the evolving population in lo-
cal suboptima — i.e., peaks lower than the global optima. Given the existing di-
versity of recognition within the GalR-LacI family of transcription factors [15], the
results suggest that evolution has been able to overcome entrapment on subopti-
mal peaks. Different scenarios may be considered for escaping suboptima. First,
certain environments may free the system from a selective pressure temporarily,
allowing new recognitions to be achieved through neutral drift. Alternatively, the
participation of the system within a larger network of interacting components may
alleviate the constraints. For instance, a duplication event may allow one of the du-
plicate repressors to compensate repression-decreasing mutations in the diverging
copy [39]. One might also hypothesize the existence of hidden paths, involving
substitutions beyond the key residues. However, this implies longer paths in an
expanded genotypic space, which also occurs at the expense of reduced probabil-
ity [122].

Finally, we also would like to discuss the limitations of our approach. First, our
analysis is based on phenotypic rather than fitness data. In order to address the
evolutionary dynamics in a quantitative manner, the relation between repression
characteristics and fitness should be determined, which also involves the nature of
the environmental changes. Second, not all evolutionary intermediates have been
directly characterized, but rather have been interpolated using the assumption that
the two residues contribute additively to the repression value. While this assump-
tion does not change our main conclusion that the lac repressor-operator system
exhibits a multipeaked landscape, it will be of interest to reconstruct all intermedi-
ates between two peaks.

Specific molecular interactions are ubiquitous in biological systems and essen-
tial to their complexity and their ability to survive. One may therefore expect that
multiple peaks in phenotype and fitness, as well as the underlying reciprocal sign
epistatic interactions, be equally pervasive. It will be intriguing to explore how
these elementary interactions shape the course of evolution of more elaborate bio-
logical functions.
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Deciphering the architecture of genetic interactions is central to understanding the

constraints of evolution. Most studies have concentrated on two-way genetic interac-

tions, or epistasis, even though higher-order genetic interactions may give rise to se-

vere constraints such as sub-optimal fitness peaks. It thus remains unclear whether

evolution depends on specific and detailed information enclosed within genotype-

phenotype landscapes or rather on more generic landscape properties. Here we ad-

dressed this question for the recognition between the E. coli lac repressor and its oper-

ator, using systematic experimental data on the repression achieved by higher-order

mutants. To perturb existing genetic interactions in an unbiased manner, we ran-

domly permuted the repression values between certain genotypes, and then moni-

tored the effect on evolving a new recognition by tracking the fate of mutational tra-

jectories within the landscape. The analysis showed that the success rate of evolving

a new recognition was strongly increased by permutations between repressor geno-

types, in accordance with the known absence of genetic interactions between repres-

sor residues. However, the success rate was almost unchanged by other permutations,

such as those between operator genotypes. This observed robustness against random-

ization suggested that the evolutionary constraints may be similar to a random land-

scape that accounts for the absence of genetic interactions between repressor residues.

We indeed observed that such random landscapes displayed strikingly similar evolu-

tionary dynamics. This study suggests that genetic constraints in biological systems

are captured by generic rules for the underlying genetic interactions.
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In living systems, the properties of one component typically affect the func-
tioning of many other components and of the system as a whole. Complex interde-
pendencies between functional parts are observed throughout all levels of biologi-
cal organization, from the nucleic acid interactions that give rise to secondary and
tertiary structure within RNA molecules [123], to the specific recognition between
proteins that underlie intricate regulatory responses [124], and the functional re-
lations in the activity of different metabolic modules [125]. This integrated archi-
tecture of living systems is believed to have important evolutionary consequences,
as it can lead to higher-order interactions between multiple genetic changes (also
termed genetic interactions): when challenged with a new environment, a genetic
change in one locus may be beneficial for the system as a whole, but conditional
on corresponding genetic changes in many other loci.

The evolutionary consequences of genetic interactions at the most elementary
level, namely between two genetic changes, have since long been studied theoret-
ically [38, 108, 126], and more recently also experimentally [39, 41, 49]. An absence
of interactions means that the effect of a mutation in one element does not depend
on the occurrence of the other. Such additively contributing mutations have been
observed for IMDH catalytic activity [49]. A presence of genetic interactions has
been seen in for instance the gene β-lactamase, where a mutation in one residue
was found to lead to a large increase in resistance to a new antibiotic, but only if
another residue was substituted first [41]. Otherwise the mutation produced a de-
crease in resistance. These interactions between mutations constrain evolution, in
the sense that they limit the number of evolutionary trajectories that are selectively
accessible when taking single-mutation steps.

However, it is much less clear whether higher order genetic interactions — in-
volving more than two genetic changes — constrains the evolution of biological
systems. For instance, the presence of ‘ridges’ in the genotype-fitness landscape
may lead evolution away from or towards the global optimum, while sub-optimal
peaks can lead to entrapment and evolutionary stasis. In the latter case it is not
merely the presence of sub-optima that is determining, but rather their precise po-
sition: far away from the evolutionary path they will be irrelevant, but nearby they
can act as attractor. Both these features are properties of the larger landscape and
necessarily involve interactions between multiple mutations. For instance, while
two mutations that are jointly beneficial but separately deleterious (reciprocal sign
epistasis) may seem to offer two peaks, this will only be true if the other mutations
that are possible do not bridge these peaks in a manner that reduces them to one
peak. Indeed, we have shown theoretically that the necessary conditions for mul-
tiple peaks cannot be defined in terms of local two-way genetic interactions [120].
Thus, the outcome of evolution may be decided by landscape features that involve
more complex higher order genetic interactions. Whether this indeed the case for
actual biological systems is an urgent question given the recent advances in devel-
oping quantitative evolutionary approaches [39,41,49], as it will determine whether
evolutionary dynamics can be captured by a limited number of parameters or in-
stead critically depends on intricate details of the relationship between genotype,
phenotype, and fitness.

Here we address this issue using the Escherichia coli lac operon as a model sys-
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Figure 5.1: In vivo measured repression landscape

(A) Molecular structure of the E. coli lac repressor interacting with its operator [46]. The
molecular elements responsible for binding specificity are highlighted. Image created with
PyMOL [127].
(B) Diagram of the binding interaction, indicating the two amino acids in the lac protein and
the two nucleotides in the operator on the DNA. Each amino acid residue can take twenty
forms, and each nucleotide four.
(C) Representation of the in vivo measured repression landscape. By constructing mutant
forms with combinations of all four components, Lehming et al. obtained a complete land-
scape [14]. Note that in reality the landscape is multidimensional and this projection pro-
vides a limited representation.

tem. Repression of the E. coli lac operon by the transcription factor LacI is one of
the best studied biomolecular functions [7, 128]. In the absence of lactose, LacI
binding to the lac promoter blocks expression of the lac operon, thus alleviating
the cell from spurious and burdensome [10] production of the proteins that al-
low lactose consumption. Lac repressor-operator binding is well-suited for evo-
lutionary studies, as the effects of mutations in the system has been studied ex-
tensively [19, 117, 129, 130]. While many base pairs affect binding, only six in the
repressor and four in the palindromic operator contribute to the specificity of the
interaction (Fig. 5.1A and B). These key base pairs have been systematically mu-
tated, and their effects on repression have been quantified (Fig. 5.1C). We have pre-
viously used this data to map the repression values for all combinations of these
ten base pairs, by making use of the observed simplifying additivity between the
two residues and between the two monomers that bind as a dimer in these experi-
ments [14, 39]. This genotype-phenoype landscape exhibits reciprocal sign epista-
sis and multiple peaks [131], and has been used to describe the evolution of new
repressor-operator interactions [39].

In order to study genetic interactions within the lac repression landscape in an
unbiased manner, we follow a statistical approach. The central feature of the ap-
proach is that existing interactions are altered by shuffling the repression values
within the landscape between genotypes. Next, the consequences on the success
of evolving a new repressor-operator interaction are quantified by simulating evo-
lutionary trajectories from many different starting points within the landscape and
monitoring the rate of success. In this way, we identify these genetic interactions
that affect the potential to evolve, rather than attempt to quantify specific inter-
actions or features throughout the landscape, which may not be relevant to this
evolutionary transition. Secondly, the process of shuffling retains the repression
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values based on experimental results, and thus preserves the distribution of indi-
vidual repression values.

Using this approach, we found that additivity between the amino acids in the
lac recognition helix is critical to the success of evolving new repressor-operator
interactions. Without it, the fraction of trajectories that become trapped in sub-
optimal peaks increases significantly. Other tested interactions, such as the one
between the operator base pairs, were found to have only a marginal effect on the
success rate. This all-or-nothing outcome suggests that a set of simple rules gov-
ern the potential to evolve a new repressor operator interaction: additivity between
repressor residues, without any other specific interactions. To test this idea, we de-
fined new landscapes based on only these rules and randomly generated numbers
for the repression values. The outcome of the same evolutionary process appeared
to be the same as for the empirically determined landscapes, thus confirming that
these simple rules are sufficient and that the empirical landscape does not con-
tain other hidden specific interactions that are critical to the evolutionary outcome.
These results open the way for simulation of network evolution on a realistic foot-
ing and is a first step in bringing together the world of theoretical and experimental
landscapes.

5.1 Results and Discussion

Specificity in lac repression landscape

Evolution of new and specific regulatory interactions is an essential part of adap-
tation. In the case of the LacI protein, historic occurrences of divergence are evi-
dent from the large family of regulator proteins it belongs to, all originating from a
common ancestor [15]. Members of this protein family diverged a long time ago,
but still share DNA-sequence similarities and conserved protein domains for sens-
ing, oligomerization and binding [73]. While the general function of the binding
domain remained the same (i.e. binding to the DNA), most proteins in the LacI
family have diverged to recognize a different sequence on the DNA. E. coli con-
tains at least ten other proteins from this family, including LacI, GalR, EbgR, MalI
and CytR [12, 13]. Interestingly, when the key residues of these proteins and the
key base pairs of their operator are transplanted into the lac system, strong binding
is retained [14]. Importantly, these mutant lac repressors do not bind strongly to
the original lac operator, nor does the original lac repressor to their operator. This
suggests that regulatory proteins of the lac family diverged under an evolutionary
pressure to limit cross-talk in repressor-operator binding [14, 39]. By considering a
penalty for such cross interactions, the evolution of new and specific interactions
in the mutational repression landscape can be simulated [39].

Evolutionary trajectories in wild-type landscape

We quantified the capacity to evolve a new lac interaction by computing evolu-
tionary trajectories in the genotype-phenotype landscape based on measured re-
pression values, as described previously [39]. Briefly, the trajectories start at one of
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Figure 5.2: Evolution on wild-type and permutated landscapes

(A) Fraction of successful divergence paths in simulations for natural (bold vertical line) and
permutated landscapes (histograms). Data is shown for simulations where 50 mutant net-
works are carried to the next round (L). Permutations shown are for repression contributions
within amino acid residues (red), between amino acid residues (green) and between base
pair residues (blue).
(B) Average fraction of successful divergence paths as a function of L. Colored areas around
the average line indicate standard deviation of the data. Colors are as in panel A.

the 132 repressor-operator combinations throughout the landscape that provide a
repression value of over 100, with a population of L identical members. This pop-
ulation is expanded with all single point mutation neighbors, which have either a
base-pair substitution in the operator or in the repressor. Their performance in
developing a new interaction is scored by a measure that quantifies both their re-
pression value and a penalty for binding to the original operator or repressor. The
best L variants are taken to the next round, which completes the cycle. This proce-
dure is continued until the trajectories are trapped on a (sub)optimum. To compare
the success rate for evolving in different (shuffled) landscapes, we use an arbitrary
but consistent cutoff for their performance (a factor of 10 within the highest pos-
sible performance). As a control, we also simulated trajectories using a probability
based method [40, 76], in which a single variant is followed and the subsequent
point mutations is randomly chosen based on the increase in performance. The
two methods were found to provide similar conclusions.

The success of evolving a new lac interaction based on the measured landscape
and using the above described method, is given in Fig. 5.2. As reported previ-
ously [39], for a population of L=50, a fraction of about 0.55 of all starting points
led to a new lac interaction (Fig. 5.2A). Towards lower L (Fig. 5.2B), this success rate
decreases as expected because the reduced genetic diversity in the smaller popu-
lation means that fewer routes can be explored, leading to a higher chance to be-
come trapped on a suboptimum. At L=1, where the procedure corresponds to a
steepest-ascent hill climber [132], the fraction reduces to about 0.08. Towards large
L the successful fraction approaches unity, indicating that with unlimited diversity
in the population successful pathways always exist. These results for the original
landscape will serve as a reference for the success rates of permutated landscapes.
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Figure 5.3: The genetic code and the amino acid point mutation connectivity

(A) The amino acid codon translation table indicates which triplet codon codes for which of
the twenty amino acids. Three codons do not code for amino acids (TAA, TAG and TGA), but
these ‘stop codons’ signal a termination of translation resulting in the end of a protein. The
codons for all amino acids are intra-connected, except for serine, which has two separate
sets of intra-connected codons, indicated by S1 and S2.
(B) Due to the triplet code, single base substitutions can only alter amino acids to some a
subset of all other amino acids. The resulting point mutation connectivity is shown here as
a connectivity matrix.

Interactions at one residue position

Amino acids are encoded in the DNA by means of triplet codons (three subsequent
nucleotides). As a result, an encoded amino acid cannot mutate into all of the other
19 amino acids by means of a single base pair substitution. Amino acids thus form
a connected network, in which some pairs are directly connected while others are
not (see Fig. 5.3). On average each amino acid is connected to eight other amino
acids. The multiple redundant triplet codes of each amino acid are typically all
connected, except serine (S), which is encoded by two groups of triplet codes (S1

and S2) that are not connected by single base pair substitution.
The effect of the connectivity network on evolution depends on how each amino

acid contributes to phenotype or fitness. For example, at a certain position in a pro-
tein, valine (V) may provide a higher contribution to fitness than tyrosine (Y), and
thus be favored by selection. But these amino acids are not connected, and the Y
to V change thus requires passage through an intermediate amino acid (e.g. aspar-
tic acid (D) or phenylalanine (F)). If the contribution of these intermediates were
lower than Y, then the trajectory would not be selective accessible by single base
pair substitutions. In contrast, if their contribution were higher than Y (and lower
than V), then the path would be accessible. Thus, such possible correlations be-
tween the contributions of amino acids to repression at one residue position may
critically affect evolutionary trajectories. Note that this would not be the case if all
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Figure 5.4: Landscape permutation and random landscape construction

(A) Due to the amino acid triplet code, a single mutational step cannot change an amino
acid into all other possible amino acids. Correlations in the binding landscape due to this
limited connectivity between amino acids were randomized by permutation of their data
values. Note that such permutations would have no effect in the operator, as any nucleotide
can mutate to any other.
(B) Correlations due to additivity between the two amino acids were randomized by permu-
tation of the data values in the amino acid plane.
(C) Correlations due to additivity between the two nucleotides were randomized by permu-
tation of the data values in the nucleotide plane.
(D) Random landscapes were created with a simple statistical model. Each data value was
randomly created based on the rules described in the main text.

pairs of amino acids would be directly connected, as the optimal amino acid would
always be directly selectively accessible.

To investigate whether the evolution of lac recognition is affected by correla-
tions between amino acids in their contribution to repression, we randomly shuf-
fled the values of these contributions between amino acids (Fig. 5.4A). This is straight-
forward because for the lac repressor, the contribution of each of the two amino
acids is independent. For instance, consider the first key residue (AA1) that is a ty-
rosine for wild-type (WT) LacI. We can take the value of its contribution to binding
the WT operator, which has an alanine as the first key base pair (N1) and a guanine
as the second (N2), and attribute it instead to the repression contribution that va-
line would provide as the first key residue to the same operator. The same tyrosine
to valine attribution is then performed for the values of all operators. By permuting
all amino acid contributions randomly a different repression landscape is obtained,
which can be tested for the success rate of evolving a new interaction. Multiple per-
muted landscapes are obtained, corresponding to different random realizations of
the permutations.

The success rates of evolving a new interaction after these permutations are in-
dicated by the red data in Fig. 5.2A for a population of 50 (L=50). Some permuted
landscapes showed a higher, and some a lower success rate, with their average (0.56
± 0.10) not significantly different from the wild-type success rate (0.55). This corre-
spondence between wild-type and the average of permutated landscapes was con-
sistent over the full range of population sizes L (Fig. 5.2B). These results indicate
that correlations between the amino acids in their contribution to repression do
exist, and do affect the success rate. However, in the wild-type landscape, these
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correlations cannot be distinguished from the correlations resulting from randomly
attributed repression contributions, and are not biased to result in a higher capa-
bility to evolve a new interaction.

Interactions between two residue positions

A central conclusions from the mutant analysis of Müller-Hill and coworkers, is
that the two residues that are key to specificity interact independently with the op-
erator [14], such that their contribution to repression is additive. This indepen-
dence means that there are no genetic interactions between the two key residue
positions, which is also visualized in Fig. 5.1C by the horizontal and vertical lines
at certain amino acids that provide a high contribution to repression irrespective
of the amino acid at the other residue position. In order to address the importance
of this independence, we randomly permuted the values for the amino acid con-
tributions within the AA1- AA2 plane (Fig. 5.4B). This process of reshuffling breaks
up the horizontal lines and thus introduces genetic interactions between AA1 and
AA2.

In contrast to the previous section, here we observed significantly altered suc-
cess rates (green data in Fig. 5.2). In the simulations with a population of 50 (L=50),
on average a fraction of 0.14 of the starting sequences successfully evolve a new
interaction, compared to 0.55 for the wild-type landscape. This lower success rate
was observed over all values of L (Fig. 5.2B). Hence, the independent interaction of
the two amino acid residues with the two base pairs in the operator significantly
enhances the capability to evolve new interactions. These results are consistent
with theoretical studies, which have shown that additivity between contributions
to fitness facilitates evolution [35]. Components that do not contribute additively
to fitness produce epistasis, landscape ruggedness, and the entrapment of evolu-
tionary trajectories in local optima.

Interactions between operator base pair positions

Two adjacent base pairs in each operator half, at position 4 and 5, are responsible
for the specificity of binding one repressor monomer (Fig. 5.1A and B). In order to
investigate the role of interactions between these two key base pairs, it is insight-
ful to consider a projection of the landscape data that is different than in Fig. 5.1C,
where the repression values for a specific operator variant were displayed within
the AA1- AA2 plane. Here we took a specific repressor variant, and considered its
repression values within the N1-N2 plane. Next, we randomly permuted the re-
pression values within this N1-N2 plane (Fig. 5.4C) in a similar fashion as for the
AA1- AA2 plane in the previous section.

Analysis of the corresponding evolutionary trajectories showed that up to L=10,
the success rate for evolving a new interaction was statistically identical as in the
wild-type landscape (Fig. 5.2, blue data). Beyond L=10 the success rate started to
deviate slightly to lower values. These results indicate that the key base pairs in the
lac operator interact nearly as strongly as expected for a random landscape. The
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Figure 5.5: Fit of gamma as found in
empirical binding landscape

The distribution of gamma (amino acid
contributions to repression value) in the
natural landscape (grey histogram) is cap-
tured with a phenomenological function
(black solid line, see main text for details).

small reduction of the success rate could be explained by small degree of additivity
between the two key base pairs.

Evolution in randomly generated landscapes

The analysis so far indicates that the lack of genetic interactions between the two
residue positions is central to the success of evolving a new interaction. When in-
teractions are introduced randomly by permutations, the rate of success dramat-
ically decreases. These results are in line with the notion that additivity between
contributing components facilitates their joint evolutionary optimization [35]. Per-
haps more notable is the observation that random permutations in some cases do
not substantially affect the success rate. It suggests that while (strong) genetic inter-
actions exist, they are not specific. These observations lead us to speculate that the
natural lac repression landscape may be similar to a random landscape, in terms
of its capacity to allow the evolution of new recognitions. To test this idea, we con-
structed fully randomly generated landscapes, using only the simple rule that the
two repressor residues contribute additively to repression, and quantified the suc-
cess rate for evolving a new interaction in the same manner as before.

In practice, we assigned repression values using a random number generator
to genotypes with the same number of base pairs representing the repressor and
the operator, and following the additivity rule for residue contributions (see Exper-
imental section on page 64). For a clear comparison with the empirical landscapes,
the magnitudes of the randomly generated repression values exhibited the same
spectrum as the measured repression values (Fig. 5.5). The success rate of evolving
a new recognition was found to be 0.55 ± 0.14 (L=50, Fig. 5.6A), which is remark-
ably similar to the value observed for the measured wild-type landscape (bold ver-
tical line in Fig. 5.6A). Also the dependence of the success rate on L is remarkably
similar (Fig. 5.6B). Note that this comparison did not involve any free parameter,
or any fitting. As a control, we also investigated the effect of the previously per-
formed permutations (Fig. 5.4). Overall, these data were also similar as observed
for the empirical landscape, with a large reduction in success rate when permut-
ing between amino acids (to 0.25 on average, vs 0.14 for the empirical landscape at
L=50, Fig. 5.7B), and negligible changes when permuting within one residue posi-
tion. Only the permutations of the values for the operator base pairs showed some
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Figure 5.6: Evolution on random landscapes

(A) Fraction of successful divergence paths in simulations for natural (bold vertical line) and
random landscapes (grey histogram). Data is shown for simulations where 50 mutant net-
works are carried to the next round (L).
(B) Average fraction of successful divergence paths as a function of L for natural landscape
(bold line) and random landscapes (dotted grey line). Colored area around the average line
indicates standard deviation of the data.

difference, with the empirical landscape showing a small shift, while the random
landscape did not show a shift.

5.2 Conclusion

Recent experimental investigations of genotype-phenotype relations have provided
a novel view on the genetic constraints that limit evolutionary processes. For ex-
ample, these empirically determined adaptive landscapes have revealed the pres-
ence of sign epistasis between two genetic changes [41, 49], and that this results
in a preferred sequential order for the fixation of mutations and thus limits the
number of adaptive trajectories. Such understanding of how simple landscape fea-
tures give rise to evolutionary constraints is important given the intractable high-
dimensional structure of genotype space. However, it remains unclear whether
evolutionary constraints can only be understood by detailing the full genotype-
phenotype relation with all its higher order genetic interactions, or instead is de-
termined by more a limited level of information.

Here we sought to address this question with a statistical approach, using the E.

coli lac operon as a model system. In particular we considered how the lac repres-
sor and operator can acquire a novel and specific binding, a key transition that
underlies the current lac family of transcriptional regulator. Binding specificity be-
tween the lac repressor and operator is predominantly determined by two repres-
sor residues and four operator base pairs, which gives rise to a genotype-phenotype
relation that spans 410 ~106 sequences with corresponding binding strength. The
central finding of this study is that the success rate to achieve a new and specific
recognition is determined by just a few simple rules that contrast with the large
possible information content of the full genotype-phenotype landscape: repres-
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Figure 5.7: Evolution on permutated random landscapes

(A) Fraction of successful divergence paths in simulations for average of the random land-
scapes (bold vertical line) and permutated random landscapes (histograms). Data is shown
for simulations where 50 mutant networks are carried to the next round (L). Permutations
shown are for repression contributions within amino acid residues (red), between amino
acid residues (green) and between base pair residues (blue).
(B) Average fraction of successful divergence paths as a function of L. Colored areas around
the average line indicate standard deviation of the data. Colors are as in panel A.

sion values are drawn randomly from an exponential distribution, while assur-
ing full additivity between repressor residues in their contribution to repression.
This shows that there is no specific information beyond randomness and additivity
within the large genotype-phenotype relation that is relevant for the evolutionary
trajectories of interest here.

The sufficiency of simple rules does not mean that higher order genetic inter-
actions do not exist. Rather, it shows that the higher order genetic interactions that
exist in random landscapes are similar to natural ones, in their effect on evolving
new and specific interactions.

This work touches upon the question whether biological systems have evolved
specific genetic interactions within their architecture that reduce evolutionary con-
straints. Our analysis does not show evidence for such relations. It is intuitive to
understand that random landscapes are multi-peaked, which in fact does indicate
higher-order genetic interactions. However, random landscape do not contain spe-
cific features that would affect constraint, such as ridges or a particular ordering of
peaks with respect to each other, such as for instance sub-optima that are sepa-
rated from the global optima. Thus, the empirical landscape also does not contain
such specific features that affect the evolution of new and specific binding, except
for the additivity between repressor residues.

The empirical landscape did not indicate a level of epistasis that is stronger than
observed in random landscapes, as this would have led to an increased success
rate upon permutation. While one might not intuitively assume such high levels
of epistasis in biological systems, it remains a possibility. Here a comparison with
man-made systems is insightful, as they can exhibit highly conditional features that
can be viewed as constraint. For instance, a digital lock-key recognition is highly

63



Chapter 5

epistatic if one mismatch leads to a complete lack of recognition.
This work provides a step towards understanding the roles of higher-order ge-

netic interaction in evolutionary processes and the architecture of biological sys-
tems. It will be intriguing to discover whether other biological functions are gov-
erned by specific interactions in their evolutionary history, or whether instead they
can similarly be reduced to simple rules, and finally arrive at a more complete un-
derstanding of the generic nature of genetic constraints in biological systems. The
approach developed here is general and can be applied to analyze other landscapes
when they become available.

5.3 Experimental

Mutational dataset and simulations

In this work we use a dataset of repression values of mutant versions of the ideal
lac operator in combination with mutant LacI repressor proteins, as obtained by
Müller-Hill and coworkers [14]. Repression values were determined in vivo as the
ratio of repressed and unrepressed expression of a downstream β-galactosidase
(lacZ) reporter gene, as measured via a standard Miller assay [94]. Data values were
obtained for all possible combinations of two amino acids in the repressor protein
and two base pairs in the operator. Details of this dataset and discussion of its rel-
evance can be found elsewhere [39, 131].

For each landscape (empirical, permutated or random), simulations start with
the duplication of one of the repressor-operator pairs having a repression value
of 100 or higher. Subsequently, single base pair substitutions are applied and ac-
cepted based on their effect on fitness. The fitness of the system is based on the
strength of repression, while considering a penalty for cross-interactions (see [39]).
We let simulations proceed until they are stuck on an optimum, after which we con-
sider evolution of a new and specific interaction to be successful when the fitness
came within a factor 10 of the highest fitness in the penalty landscape. We perform
two types of simulations which differ in how mutations are selected and which have
both been described in detail previously [39].

Landscape permutations

We create permutated versions of the empirical landscape by first creating an empty
‘permutated’ landscape. Next we generate random sequences, which are used to
copy data values from the empirical landscape into a new location of the permu-
tated landscape. For the ‘connectivity’ permutation two random sequences of the
numbers one to twenty are generated (one for each of the amino acid residues).
These sequences indicate the new location of each repression value in the permu-
tated landscape, with respect to an alphabetically ordering of the twenty amino
acids. For example, when the first numbers in the two sequences are seven and
twelve, the empirical repression values of genotypes containing alanines (A) in both
amino acid residues are assigned to genotypes containing histidine (H) in the first
amino acid residue and asparagines (N) in the second amino acid residue. This
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procedure is performed for each repression value in the empirical landscape, re-
sulting in the previously empty permutated landscape to be completely filled. We
arbitrarily chose an alphabetically ordering, but any different ordering would result
in the same type of random permutation.

For the ‘amino acid’ permutation a random sequence of the numbers one to 400
is generated. This sequence indicates the new location of each repression value in
the arbitrarily numbered amino acid plane (see Fig. 5.4B). Similarly, for the ‘nu-
cleotide’ permutation a random sequence of the numbers one to sixteen is used.
Note that the landscape modifications as described above, only move data values,
hence the spectrum of repression values in the permutated landscapes stays the
same. The shape of the landscapes, however, is altered. This could result in re-
moval or addition of peaks.

Each type of permutation can produce a huge number of possible landscapes.
For the connectivity permutation more than 1036 (= 20! * 20!) different outcomes
are possible. The amino acid and nucleotide permutation can result in 400! and 16!
different landscapes, respectively. We sampled a random fraction of the possible
permutations: ten landscapes for each type of permutation.

Model for random landscapes

We create random repression landscapes by first creating an empty landscape of
the same size and structure as the empirical landscape. Next we assign a repression
value to each genotype using a random number generator. We introduce additivity
between the two amino acid residues by defining the repression value as the prod-
uct of two random numbers, where each represents the contribution of one of the
amino acids. In order to produce landscapes with a similar spectrum of repression
values as the empirical landscape, the random values for the amino acid contri-
butions were taken from a distribution mimicking the empirical data (see Fig. 5.5).
We used the following phenomenological function to randomly produce binding
contributions of each amino acid:

F = Fmin +Fmaxe−skew∗u

, where Fmin is set to 0.02 and gives a lower bound to the binding contribution,
where Fmax is set to 23.5 and gives a higher bound to the binding contribution,
skew is set to 9.5, and u is random uniform number between 0 and 1. For each
random repression landscape 640 random numbers have to be generated: each
amino acid residue requires a value for each of the possible operators, and for each
of the possible amino acids (= 2 * 16 * 20). We constructed and analyzed ten random
landscapes.

5.4 Appendix

Probability-based simulations

As a control, we simulated trajectories using a probability-based fixation process
that typifies natural evolution [40, 76]. This process assigns a probability to all sin-
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Figure 5.8: Probabilistic pathway simulations

(A) Fraction of successful divergence paths in probabilistic simulations for natural (bold ver-
tical line) and permutated landscapes (histograms). Permutations shown are for repression
contributions within amino acid residues (red), between amino acid residues (green) and
between base pair residues (blue).
(B) Fraction of successful divergence paths in probabilistic pathway simulations for natural
(bold vertical line) and random landscapes (grey histogram).
(C) Fraction of successful divergence paths in probabilistic pathway simulations for aver-
age of the random landscapes (bold vertical line) and permutated random landscapes (his-
tograms). Colors are as in panel A.

gle mutation neighbors, based on their fitness increase with respect to the current
genotype. During each step in the simulation one of the possible mutations is ran-
domly chosen based on their probability, until no fitness increases are possible.
From all starting sequences a thousand of such runs are performed, and the frac-
tion of runs that successfully evolve a new interaction, indicates the success rate
of evolution on that particular landscape. The results of these simulations (see
Fig. 5.8) were similar to those obtained with the method in the main text.

Peaks in lac repression landscape depend on amino acid connectivity

Our simulations showed that repression values can be randomly distributed over
the different amino acids without significant effect on the capacity to evolve new
interactions in the landscape. Nonetheless, the limited connectivity between amino
acids is important for evolution through its effect on the structure of evolutionary
landscapes. The effect of limited amino acid connectivity can be illustrated by the
number of distinct peaks within the lac repression landscape. These maxima can
be identified using an algorithm that determines whether points in the landscape
with higher repression are accessible without drops in repression [131]. The natural
lac repression landscape contains 15 independent peaks with palindromic opera-
tor sequences (19 including non-palindromic operators). But when all amino acids
are considered to be directly connected, the number of independent peaks reduces
to 7. This result shows that the topology of the connectivity network (Fig. 5.3B) has
a significant effect on the ruggedness of the lac repression landscape.
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networks
6

The composition of bacterial cells fluctuate dramatically due do molecular stochas-

ticity. How such fluctuations affect basic cell functions leading to growth, is largely

unknown. Here we investigate how random fluctuations in enzymes at the begin-

ning of an essential metabolic pathway, propagate to growth rate in individual cells.

By decoupling the regulation and the metabolic function of the lac proteins in E. coli,
we measure how enzyme level and growth correlate over time at different metabolic

states. The fluctuations in both protein level and growth rate are large and their

duration are linked to the cell’s division time. When lac levels are artificially low-

ered, enzyme fluctuations propagate through the metabolic network and transmit

to growth with little delay. At non-limiting conditions, lac fluctuations are buffered

or fluctuations in other components dominate. Interestingly, our dynamic measure-

ments in these conditions reveal that single cell fluctuations in growth rate do cause

the lac level to fluctuate with a delay of tens of minutes. As this effect is also observed

when the lac proteins do not support growth, it is likely a cell-wide phenomenon

acting on all genes. These results reveal a largely overlooked interdependency of fluc-

tuations in single cell growth rate and protein levels, which is important for the un-

derstanding and modeling of biological networks and complete cells.
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Biological cells are amazing factories that, despite their small size, perform all
tasks required for life. They are built from different types of molecules, many at
very low numbers, whose interactions with each other and with their environment
shape the cell. As these molecular processes are inherently stochastic, the char-
acteristics of individual cells are not deterministic, and vary randomly over time.
Only recently it has been recognized that these variations are quite large: protein
levels generally vary over 10%, and often much more than that [23, 133, 134]. Im-
portantly, these fluctuations were also shown to persist over long timescales, lasting
over a cell cycle [21]. This is much longer than for example the equilibration times
of the metabolites in a metabolic network [135]. The realization that all protein lev-
els fluctuate significantly, prompts the question what physiological consequences
this has for living cells.

The most noisy proteins in the cell are those at low expression levels, such as
regulatory proteins [136, 137]. Many studies have linked the noise in these regu-
lators to dramatically different cellular behaviors. In B. subtilis, for example, vari-
ation in the concentration of either ComK or ComS trigger some cells to become
competent for DNA uptake and others not [138]. In E. coli, the all-or-none expres-
sion of the lac operon when induced with the artificial inducers IPTG or TMG, is
due to noisy expression of the LacY protein [21]. And in the flagella system, fluc-
tuations in the level of the CheR protein are responsible for variability in rotation
direction [139]. These cases indicate that fluctuations in a single protein can gener-
ate phenotypic heterogeneity within an identical population of cells. So, although
noise reduces fidelity in regulatory networks, it can also create diversity, that can
be advantageous in variable environments [133, 134, 140].

How fluctuating protein levels affect cellular growth remains an open question.
Highly expressed metabolic proteins are responsible for catalyzing reactions that
lead to the synthesis of new cell material [6, 141]. In bacteria, the average levels of
these costly proteins are not random, and thought to be tuned for maximal growth
rate, where the level is dictated by a balance between cost of producing and benefit
of having the protein [8,10,11,26]. This view is supported by experiments where the
average expression level of the lac operon rapidly adapts to gain maximal growth
rate [10]. Additional support for the tuning of protein levels can be found in the
optimal use of the E. coli metabolic network on different carbon substrates [83].
Bacterial growth is generally assumed to be proportional to the total flux through
its metabolic network, which can be described in terms of the protein activities us-
ing metabolic control analysis [142, 143]. How metabolic flux and growth rate in a
single cell are affected by fluctuations of its metabolic proteins, present a number of
general open questions. Can fluctuations cause a reaction in the metabolic network
to become rate limiting? Are fluctuations in metabolites buffered (e.g. by storage
or outflux) or do local flux fluctuations propagate through the metabolic network
and affect growth? Does the dilution of protein due to growth help in maintaining
homeostasis of the system? Do cells have other regulatory feedbacks that counter-
act the detrimental effect of noise on growth? These questions, fundamental to all
living cells, merit experimental investigation at the single cell level.

If variation in the level of metabolic proteins has a significant effect on growth,
one would expect to observe differences in growth rate between individual cells.

68



Noise propagation in metabolic networks

GROWTHlactulose

IPTG

lacI lacZ lacY lacA

GROWTH(allo) lactose

lacI lacZ lacY lacA

A B

Figure 6.1: The lac operon of E. coli and decoupling of its regulation and metabolism

(A) In the natural lac system, allolactose (an isomer of lactose) relieves the repression of
the lac operon, after which the lac operon allows consumption of lactose and subsequent
growth of the cell.
(B) By using two synthetic sugars, the regulation of and the consumption by the lac operon
can be decoupled. Lactulose is a disaccharide of galactose and fructose, for which the lac

operon is required for degradation. However lactulose does not reduce LacI’s repression, so
E. coli cannot grow on lactulose alone, as the lac operon does not get expressed. IPTG cannot
be degraded and used for growth, but does interact with LacI to reduce expression.

This putative heterogeneity is hidden in population growth measurements (which
show an extremely constant growth rate in the exponential growth phase), due to
averaging over millions of cells. The variation in many cell cycle parameters, such
as interdivision time and initiation mass, has been studied extensively [144–146].
However, this variability may well be due to stochastic timing events, rather than
differences in the metabolic state of cells [147]. Studies that measured single cell
growth rates in terms of biomass increase, report a coefficient of variation higher
than 10% [146, 148–152]. Aging of cells might explain a small part of these differ-
ences in growth rate [149], but the major underlying source has remained elusive.
A central question therefore is: does noise in the expression of those proteins di-
rectly involved in biomass accumulation propagate to variations in cellular growth
rate?

Here, we measure how fluctuations of enzymes at the beginning of an essential
metabolic pathway correlate with the growth rate of individual cells. We focus on
the lac system in E. coli, which performs the first essential steps for growth on lac-
tose. By importing and cleaving this sugar, the lac proteins are responsible for all
energy and carbon sources entering the cell. Single cells are followed over multiple
generations using time-lapse fluorescence microscopy, allowing us to quantify the
temporal cross correlation between expression and growth rate.

6.1 Decoupling of the lac system

The lac operon

In E. coli, the lac operon is responsible for the import and catabolism of lactose.
The operon contains three genes: lacZ , lacY and lacA (see Fig. 6.1A). Only the first
two genes, lacZ and lacY , are required by E. coli for growth on lactose. LacY is a
transmembrane transporter protein that pumps lactose from the environment into
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Figure 6.2: Molecular structures and interactions of glycosides in the natural lac system

In the natural lac system, lactose is cleaved by the LacZ protein into galactose and glucose
[7]. A considerable fraction of the lactose is first converted into allolactose [153]. It is the
interaction of this isomer of lactose with LacI that induces lac expression [154]. Allolactose
itself is also cleaved by LacZ into glucose and galactose. This reaction has the same or higher
efficiency than lactose, and no lactose is formed [155].

the cell. The intracellular lactose is subsequently cleaved by the LacZ enzyme into
glucose and galactose (see Fig. 6.2). These monosaccharides can then be degraded
into energy and metabolically useful fragments by other enzymes.

The role of the third protein in the lac operon, LacA, is still obscure. It functions
as an acetyltransferase for galactosides (for example lactose), but has an extremely
low affinity for its substrates [156–158]. Generally, it has been thought to be in-
volved in detoxification [159]. More recently it has been suggested that LacA acts
as a safety valve, making sure that when too much lactose is imported into the cell,
some is exported to avoid a detrimental osmotic pressure [160]. In any case, lacA

does not seem to be necessary for lactose catabolism, as knock-outs of this gene,
have indistinguishable growth and behavior in laboratory conditions [161].

The expression of the lac operon is controlled by the LacI repressor (see Fig. 6.1A)
[109]. With no lactose present in the environment, the constitutively expressed LacI
protein represses the lac operon by binding to the DNA of the lac promoter. Once
lactose is available, it may cause LacI to unbind, resulting in increased expression
of the lac operon [7]. Interestingly, LacI repression can only be relieved, once a cell
contains a basal level of LacY and LacZ protein [20, 21]. LacY is needed because
lactose cannot diffuse passively across the cell membrane. Therefore, lactose can
only affect LacI after it is actively transported into the cell. However, lactose does
not directly affect LacI. It’s actually an isomer of lactose, allolactose that binds LacI
causing its binding reduction. This isomer is formed in an alternative reaction by
LacZ. Hence both LacY and LacZ are needed before extracellular lactose can reduce
the repression of LacI.
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Figure 6.3: Molecular structures and interactions of glycosides in the decoupled lac system

In our decoupled lac system, lactulose is cleaved by LacZ into galactose and fructose, which
can both be used for cell growth [162]. Lactulose does not interact with LacI to induce the
lac operon [162]. Another glycoside, IPTG, does interact with LacZ, but cannot be degraded
by LacZ [7].

Coupling between cue and substrate

The process of cellular catabolism can be divided into two functional tasks: sens-
ing and consumption. Sensing comprises of measuring the availability of a nutri-
ent and transferring this information to the regulation of relevant proteins. These
proteins are responsible for consumption, i.e. the conversion of the nutrient into
building materials and energy used for growth. In some catabolic systems both
sensing and consumption are performed by the same protein [163, 164]. In E. coli,
for example, degradation of proline is catalyzed by the PutA enzyme, which in ab-
sence of proline binds directly to its own promoter region on the DNA, repressing
putA expression [165, 166]. In most catabolic systems, however, the two functions
have been separated and are performed by separate dedicated proteins.

Catabolism of lactose by the lac genes is on of those systems where sensing and
consumption are separated. The transcription factor LacI is responsible for sensing
of lactose and subsequent regulatory steps. The enzyme LacZ, on the other hand,
catalyzes the breakdown of lactose, hence its consumption. But, although sensing
and consumption are performed by different proteins, the two functional tasks are
still coupled: sensing and consumption each depend on lactose, as lactose acts
both as cue and as substrate (see Fig. 6.1A).

From an evolutionary perspective coupling between sensing and consumption
is favorable, as it ensures that the costly lac proteins are only produced when there
is lactose to degrade. From an experimental perspective, however, the coupling can
be restrictive, as one cannot probe the two functional tasks independently. More
specifically, when changing the average lac expression by varying the amount of
lactose in the environment, this also affects the activity of LacZ and LacY protein,
being a function of lactose concentration following Michaelis-Menten kinetics. In
order to keep the external growth conditions constant, while varying only the in-
ternal expression levels of metabolic genes, we sought to remove the constraint of
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coupling between cue and substrate.

Decoupling

Several methods exist that allow alteration of lac expression level at constant sub-
strate level. For one, the steady state β-galactosidase activity can be altered by ge-
netic modifications. Such mutants have been obtained for the lac operon by re-
version of nonsense mutations in lacZ [162, 167–169]. In these cases, changes in
consumption level were not obtained by changing the lac expression levels, but by
alteration of the catalytic activity of the proteins instead. In order to get mutants
with different steady state expression levels, the promoter region could be targeted
by directed mutations, or by experimental evolution [10]. In any case, the choice
of expression levels might be limited, as the phenotypes of the produced mutants
are still unpredictable. Furthermore, as the new expression level is permanent, dy-
namic changes cannot be applied.

We therefore attempted an alternative approach where the expression level at
full lactose induction is reduced by an ‘inhibitory chemical’. Such an anti-inducer
can be found in ONPF (see Table 6.1 on page 97), which stabilizes the LacI repres-
sor when bound to DNA, resulting in lower lac expression [154]. Unfortunately,
the concentration needed for a significant reduction in expression, also leads to an
independent detrimental effect on growth (which we checked by growth on glu-
cose), which makes this method unsuitable for our purposes. Another approach,
involving the inhibition of RNA translation for specific genes by antisense agents
[170, 171], might give better results, but was not tested.

As sensing and consumption are coupled by lactose, the cleanest method of de-
coupling consists of replacing lactose by two substances that are only part with one
of these processes (one as cue and the other as substrate). For sensing such a chem-
ical is well known: IPTG is a thio-galactoside that can effectively induce the lac

operon, while not being degraded by LacZ, and thus not supporting growth. Con-
veniently, there also exists a synthetic sugar with the opposite properties: lactulose
is a synthetic disaccharide consisting of fructose and galactose subunits, which is
imported and degraded by the lac proteins (see Fig. 6.1B and Fig. 6.3). Wild-type E.

coli cells however, cannot grow on lactulose, as the lac operon does not get induced
by the sugar [162]. Only after induction with for example IPTG or by the appear-
ance of a constitutively expressing mutant, growth is possible. By using lactulose
with varying IPTG levels, we could force cells to use different lac protein levels for
growth, while keeping the same external growth conditions.

6.2 Single cell measurements of protein level and growth

Fluorescence time-lapse microscopy

Most microbiological techniques for measuring protein levels involve bulk mea-
surements, in which the behavior of individual cells are averaged out. The first
method for measuring the level of LacZ protein in single cells, was based on the
protein’s hydrolysis of fluorogenic substrates. The signal amplification due to each
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LacZ protein producing many fluorescent product molecules, allowed samples con-
taining only a single cell to be quantified [172]. Recently, this method was im-
proved, allowing sensitivity for single LacZ proteins [24]. As the fluorescent molecules
are not retained within the cell, this method is limited to measurement of a single
cell at a time.

Another single-cell method uses fluorescent proteins to measure protein levels.
The popularity of fluorescent proteins is largely due to the possibility to genetically
fuse them to almost any protein, resulting in both high sensitivity and high speci-
ficity. Single-cell expression measurements can be performed using flow cytome-
try (see for example [173]). This technique allows automated size and fluorescence
measurements of thousands of cells per second, providing excellent statistics. Un-
fortunately, flow cytometry only produces ‘static’ snapshots, and cannot be used
for dynamic measurements of individual cells [174]. Without such dynamic data,
single cell growth rates nor the dynamics of protein levels in individual cells can be
obtained. Therefore, we used a technique that does allow repeated measurements
of both size and fluorescence of growing cells: time-lapse fluorescence microscopy.
This technique is essentially the same as normal fluorescence microscopy, but with
constantly repeated sample measurement over a long period of time. Such time-
lapse measurements are facilitated by automation of the microscope, but also im-
pose some additional requirements on the sample.

In order to make quantitative measurements of cells, they need to be positioned
along the microscope focal plane. Additionally, the cells need to be limited in their
movement, so that they can be tracked over consecutive measurements. Therefore,
the cells should not be free floating (as in batch growth), but stuck to a surface, and
constrained to a single layer. Also, the sample should provide constant availability
of nutrients, allowing the cells to grow exponentially during the whole experiment.
This can be challenging when measuring over long periods of time or when the
density of cells in the sample is very high. In our case we need data from many cells,
as we are analyzing a non-deterministic (random) process that must be described
in terms of statistical averages. For each experiment, the sample should therefore
contain a large number of cells within the field of view of the microscope.

A recent trend in system biology is the use of microfluidic samples in order to
meet these sample requirements [175]. This technique is especially useful for dy-
namic changes in cell environment, as it is determined by a flow of fresh growth
media. Also, some designs allow the removal of cells, which is necessary in order to
avoid the clogging of the sample with cells: under exponential growth, cells quickly
grow to a number where both nutrient availability and single layer growth are com-
promised.

Here, we grew E. coli first in batch and then spread a few hundred of them
between a small gel pad and a glass coverslip. This resulted in very sparsely dis-
tributed cells, where each cell grew into a single layer of cells (i.e. a ‘microcolony’).
Depending on the local gel surface properties, E. coli cells started to stack out of
the single layer when the microcolony reaches about 500 cells, providing sufficient
data for statistical analysis. We obtained both phase contrast and fluorescence im-
ages from the growing microcolony with constant intervals (see Fig. 6.4). Prior to
image acquisition, the cells were focused by automated software focusing. Phase
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Figure 6.4: Mean growth rate and mean protein level measurement of microcolony

(A) Phase contrast images of a microcolony grown on 6 µM IPTG, corresponding to empty
square ( ) in panels C and D. Images that are shown are approximately 4 hours apart.
(B) Fluorescence images of the microcolony obtained at the same time as those in panel A.
In these cells fluorescence is a measure of lac level in each cell. Although the cells are genet-
ically identical and experiencing the same environment, there clearly exist a large variation
in expression levels between the cells.
(C) By fitting the total length of the microcolony (sum of the cell lengths in the microcolony)
versus time by an exponential, the mean elongation rate of the microcolony can be deter-
mined. Data is shown for E. coli microcolonies grown on lactulose with IPTG concentrations
ranging from 200 µM ( ) to 4 µM ( ).
(D) The mean expression level can be determined by averaging the fluorescence of those
cells after the initial decrease (fitted lines). Data is from the same microcolonies as panel C.
Note that the datasets in C and D are horizontally shifted for clarity.

contrast imaging were acquired with a high frequency in between 25 to 75 images
per cell cycle. Once a time-lapse series of microcolony images was obtained, the
images were analyzed offline. Each phase contrast image was analyzed separately
and used for cell identification and measurement of cell length (see Section 6.7).

In order to measure the expression of the lac operon, we used an E. coli mu-
tant where the chromosomal lacA gene was replaced by a fluorescent protein (see
Section 6.7). This transcriptional fusion ensures that fluorescence is an accurate
measure of lac protein level. As protein noise is predominantly transcriptional,
and not translational, noise properties of the fluorescent marker should be simi-
lar to the lac proteins. Compared to reporter systems inserted elsewhere on the
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chromosome [22], the transcriptional fusion does not suffer from errors due to in-
trinsic noise [23]. Also, with lacA far away from the lac promoter, the regulation and
expression of the lac operon should be minimally affected in this mutant. Further-
more, no additional lac promoters are added to the cell, such as in plasmid based
systems, hence LacI function is likely to be unaltered. Although the level of the flu-
orescent protein is somewhat lower than that of the lac proteins, as suggested by
the relative monomeric expression levels of approximately 4:2:1 for LacZ, LacY and
LacA [176, 177], fluorescence was high enough for quantitative measurements.

The fluorescence protein inserted as a reporter was GFPmut2, which is both
bright and stable [178, 179]. The maturation time of this fluorophore is less than
10 minutes [146, 180] and in our exposure conditions photobleaching was negli-
gible. Upon illumination a fraction of the GFP proteins may form free radicals
which, due to their toxicity, cause cells to grow slower. This limits the frequency
that fluorescence images can be obtained for growing cells. We determined expo-
sure conditions without significant toxicity, by comparing the growth rate of mi-
crocolonies with and without illumination. In our setup, toxicity increased with
average GFP level, illumination time, illumination frequency and cell cycle time
(data not shown). At full lac expression, we did not observe a significant effect on
growth rate when cells were illuminated approximately five times per cell cycle, so
we used this frequency throughout our experiments.

Each time-lapse experiment produced hundreds of digital images of cells through-
out time. Extraction of relevant data from these images required cell identification
followed by quantification of cell length and fluorescence. As this is a tedious and
subjective task when performed by hand, this analysis was automated using soft-
ware based on Matlab code kindly provided by Michael Elowitz [25]. The average
fluorescence and growth rate during an experiment could be determined by analy-
sis of only a fraction of the images. Such analysis are an alternative to ‘population’
measurements from batch and can reveal whether cells are growing under steady-
state conditions (see Fig. 6.4)

Average protein level and growth in microcolony

The average protein level during the experiment was determined by averaging the
fluorescence of all individual cells in each image. Surprisingly, we consistently ob-
served an initial decrease in average fluorescence followed by a constant steady
state level after approximately four cell generations (see Fig. 6.4D). Bleaching is
negligible in our setup. Instead, this might be due to different inducer conditions
in the sample, or maybe an adaptation of the cells to growth on the gel pad. Inter-
estingly, no significant changes in cell morphology or growth rate (see Fig. 6.4) were
observed during the decay in fluorescence. In a different study, cells were ‘equili-
brated’ by growing them on a gel pad first and transferring them next to a fresh gel
pad [181]. Generally, we discarded data containing the decay and only used data
for further analysis once average fluorescence level had reached equilibrium.

Cells grown on lactulose with varying amount of IPTG showed different pro-
tein levels. At 200 µM IPTG cells were highly fluorescent, and the average fluores-
cence gradually decreased when cells were grown on lower IPTG concentrations
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(see Fig. 6.4D). We observed no bistability in the lac system when cells were grown
on lactulose and low levels of IPTG. We did observe bistability when cells were
grown on glucose and IPTG (data not shown), as has been observed before for the
similar artificial inducer TMG (thiomethyl-β-D-galactoside) [20, 22]. Interestingly,
cells growing on lactulose and 200 µM IPTG were significantly more fluorescent
than cells grown on either glucose with 200 µM IPTG or lactose (data not shown).
This might be due to the higher growth rate supported by these sugars, resulting in
relatively less protein in the cell [6]. Also, the effective induction by lactose might
be weaker than that of IPTG, as the former is degraded whereas the latter is not.

The average cell growth rate (or the microcolony growth rate) was determined
by fitting an exponential through the sum of the length of all cells in the micro-
colony (see Fig. 6.4C). Compared to averaging the elongation rate of each separate
cell in the microcolony, as done in Fig. 6.7, this method requires relatively little data
analysis. As all data can be well fitted by an exponential, this suggests that the cells
grow exponentially throughout the experiment.

The average growth rate at induction with 200µM IPTG was about 0.8 doublings
per hour, corresponding to a generation time of about 75 minutes (see Fig. 6.4C).
This growth rate is slightly lower than that for growth on lactose, for which we mea-
sured generation times of about 65 minutes (data not shown). This lower growth
rate may be due to several causes. The lac enzymes may have lower catalytic effi-
ciency for lactulose uptake and degradation, hence their expression level may be
suboptimal. The lower growth rate with respect to lactose could also be due to lac-
tulose being a less favorable sugar for growth, as the hydrolization of lactulose re-
sults in a fructose where lactose produces glucose (see Fig. 6.2 & 6.3). E. coli did not
grow in minimal media containing lactulose without IPTG, confirming that lactu-
lose does not induce lac expression. When cells were grown on lower IPTG concen-
trations, also the growth rate gradually declined. Growth rates down to 5 hours per
generation could be obtained at induction with 4 µM IPTG. Note that mutants ex-
pressing lac constitutively arise quickly, so care was taken when growing cells with
low IPTG levels.

Removal of contamination with organic compounds

In most of our experiments, we observed constant average growth rates throughout
the growth of the microcolony (see Fig. 6.4C). This suggests that the cell environ-
ment stayed constant. However, in pilot experiments where cells were grown on
lactulose with very low levels of IPTG, the average growth rate drastically declined
during the first few cell cycles (data not shown). Following the decline, the growth
rate remained very constant again, which suggested to us that the cells might ini-
tially be growing on a contamination which was slowly depleted.

In conditions where cells can only grow slowly on the provided carbon source, it
is necessary to reduce contamination of the media with carbon sources other than
those under investigation. Contaminant free media is especially important when
growing very dilute cultures as consumption of the contaminants will take a long
time. In the case of cell growth on agarose pads, we suspected that the cells might
grow on the agarose itself, as it is a galactose-based polysaccharide. Indeed, we ob-
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served that E. coli can grow on agarose pads without a carbon source. Therefore,
we developed a new technique, where cells are grown on a polyacrylamide gel that
is composed of sugar-free compounds instead (see page 98 of Section 6.7). When
dilute stationary cells were applied on such gels without a carbon source, we were
surprised to again observe growth at a significant speed for a number of genera-
tions. Similar effect have been noted for growth in batch [182–184], and on agarose
pads (Matthias Heinemann, personal communication).

Despite thorough washing of glassware and using distilled water, the cell growth
persisted. Therefore, we resorted to a new approach in which the organic contam-
inants are consumed by E. coli cells before the actual growth experiment. To this
purpose, we grew cells with a knocked-out lac operon (NCM520) on the acryl gel.
These cells cannot use lactose nor lactulose as a carbon source, but were observed
to grow on the contaminants. When more of these lac− cells were applied, growth
halted earlier indicating faster consumption of the contaminants (see Fig. 6.5).

When the lac− cells had consumed the contaminants, we added fluorescent
AB460 cells, and start our growth experiment. We could confirm that the contam-
inants had been removed, as we observed normal growth for the fluorescent lac+

cells, and no growth for lac− cells. Also, cells grown on lactulose with very low levels
of IPTG grew with a low constant average rate from the beginning onwards.

In order to apply this contamination removal method for growth experiments
on other sugars such as glucose, it is necessary to use E. coli cells deficient for
growth on the respective sugar. Such mutants may exist (e.g. see [185] for glucose),
but it remains to be seen whether these mutants can consume the (unknown) or-
ganic contaminations found here. When the media supports a growth rate that
is significantly higher than observed for growth on the contaminants, the removal
method does not need to be applied, as the contaminants can only have negligible
effect on growth.
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Figure 6.5: Pre-experiment organic contamination consumption

Growth curves are shown for lac− E. coli microcolonies on acryl gels containing minimal
medium with lactulose. When ∼102 cells µl−1 were applied (black line), an initial growth
rate µ of ∼ 0.43h−1 was observed. This growth occurred on an unknown carbon source and
halted (µ < 0.05h−1) at a total cell concentration of ∼106 cells ml−1. When twice as many
cells were applied (grey line), the available carbon source is consumed faster, growth halts
earlier and microcolonies reach lower length.
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Analysis of single cell lineages

We have shown above how we measure the average protein level and growth rate at
varying conditions by analyzing only about a dozen of images from a microcolony.
In order to measure how protein levels and growth rate are correlated within in-
dividual cells, we aimed to determine both these properties for single cells within
the microcolony. The measurement of a cell’s protein concentration is determined
by extracting the cell’s mean fluorescence. The growth rate of an individual cell,
however, cannot be determined from a single image, as we determine it by the
cell’s length increase over time. In order to measure the length of a particular cell
within a microcolony over time, it must be ‘tracked’ over subsequent images (see
Section 6.7).

Cell tracking allows the construction of time traces of cell length. By also track-
ing cell division events, we can construct lineages, which for cell length have a typ-
ical sawtooth pattern (see Fig. 6.6 for data from a typical experiment). Considering
the lineages from a single microcolony, it is important to realize that many lineages
share data points in the earlier generations, as they descent from the same ances-
tor. When comparing the lineages extracted from a single microcolony experiment,
the division of cells are initially synchronized. This synchrony is lost after a few
generations, due to for instance variability in generation times and inaccuracy in
the equal division of cells [186, 187]. Considering the length traces of individual
cells, we observe that cell elongation is a quite constant and robust process (see
Fig. 6.6C). The occasionally observed decreases in length over time are likely due
to measurement errors. The length traces are straight when plotted logarithmi-
cally, suggesting length increase in a single cell is exponential, in accordance with
previous observations [145]. However, the accuracy of our length measurements
is limited by optical resolution, making it hard to distinguish exponential growth
from bilinear growth [188].

We use the traces of length over time to determine the cell elongation rate. We
do this by fitting the length measurements from a complete cell cycle with an expo-
nential (see Fig. 6.20 in Section 6.7). As the diameter of exponentially growing cells
is quite constant [189], we assume that length increase is good measure of growth
rate. This technique also allows us to look at differences in growth rate within a
single cell cycle by fitting the lengths from only a part of the cell cycle (see Fig. 6.20
in Section 6.7). However, for a confident measurement of a change in length, the
change in length must be significantly larger than the error in the length measure-
ment. In our experience, a length increase of about 0.4 um is required, limiting
us to a time resolution of about one third of the cell cycle. We do not observe a
correlation between growth rate and the phase of the cell cycle (data not shown).

The tracking of cells also allows to construct time traces of protein level within
cell lineages (see Fig. 6.6C). Using these traces the average protein level during the
whole cell cycle can be determined. By extracting the traces of a cell’s total fluo-
rescence (instead of mean fluorescence), the protein production rate can be de-
termined [25]. We, however, consider the mean fluorescence, which corresponds
to the protein concentration in a cell, as we are not interested in the source of the
noise, but the result of the noise in the protein level. Also these traces do not show
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Figure 6.6: Length and lac level of cell lineages within a microcolony

(A) Snapshots of a typical microcolony growth experiment using fluorescence time-lapse mi-
croscopy. Phase contrast images (grayscale) are overlayed by fluorescence images (yellow)
of GFP reporting for lac expression. Insets show magnification and hilighted cell of a single
selected trajectory through 4 divisions.
(B) Fluorescence time traces for individual cell lineages obtained from the experiment
shown in A. The selected cell lineage from A is shown as a bold black curve.
(C) Cell length time traces for individual cell lineages. The selected trajectory from A is
shown as a bold black curve. Note that length is plotted logarithmically.

a correlation between protein level and the phase of the cell cycle.

6.3 Correlations between protein level and growth

Protein and growth noise at different metabolic states

Using single cell growth and fluorescent measurements, we can determine the amount
of noise in these properties within and between cells. The cells analyzed in any par-
ticular experiment are isogenic. As we vary the amount of IPTG in the environment,
we vary the average lac protein level. The growth of cells is dependent on the flux
of nutrients converted by the lac proteins, so by varying the IPTG level we can force
the cells into different metabolic states.

A histogram of the fluorescence data at different IPTG concentrations (see Fig.
6.7A), shows that with increasing fluorescence levels the absolute variation in flu-
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Figure 6.7: Noise in single cell lac level and growth rate

(A) Histograms of single cell lac expression levels as determined from their mean fluores-
cence level. Cells were grown at steady state on acryl pads with increasing levels of IPTG,
from 4 µM (left histogram) increasing to 200 µM (right histogram)
(B) Histograms of single cell growth rates as determined from single cell elongation rates.
Data was obtained from the same experiments as in panel A, with 4 µM IPTG for the left his-
togram, increasing to 200 µM for the right histogram.
(C) The lac expression level noise (defined as the standard deviation divided by the mean)
versus the mean lac level. Data corresponds to panel A.
(D) Noise in single cell growth rate versus the mean population growth rate. Data corre-
sponds to panel B. Dashed lines in panel C and D are added as guide to the eye.

orescence increase (the width of the distributions become wider). However, when
we look at the noise, defined as the standard deviation divided by the mean, we
observe an inverse correlation with the expression level (see Fig. 6.7C). The noise
at full expression is about 10%, whereas a ten-fold lower expression level leads to a
noise of about 30%. This agrees with previous work [23] where noise also depended
on the average expression level.

When E. coli is grown exponentially in the lab, extremely constant growth rates
are generally observed. As these measurements are an average over a population
of cells, individual cells do not necessarily grow at a constant rate. Instead, sev-
eral recent studies have shown that individual cells in exponentially growing pop-
ulations vary significantly in their elongation rate [149, 150, 152]. We have quanti-
fied the elongation rates within a population of cells growing at different rates (see
Fig. 6.7B), and found very large variations. Also, a similar trend as for protein level
can be observed for growth rate: increasing growth rate leads to an increase in the
variation (see Fig. 6.7D). However, when considering the noise, again the inverse
trend is found. The noise decreases from 35% at low growth rates ( 0.25 doublings
per hour) to 20% at high growth rates (0.8 doublings per hour).
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Figure 6.8: Correlation between single cell lac expression and growth rate

In these scatter plots, each point represents single cell fluorescence and elongation rate at
one point in time. For comparison the data is normalized by its mean and standard devia-
tion.
(A) Data for microcolony growing on 4 µM IPTG having a low mean expression level. This
data set has a correlation coefficient (R) of 0.56.
(B) Data for microcolony growing on 200uM IPTG having a high mean expression level. Its
correlation coefficient is much smaller (R=0.05).

Correlation in single cells

When cells are grown at full lac induction level, there is significant variation in both
protein level and growth rate. Surprisingly, however, there is hardly any correlation
observed between these properties (see Fig. 6.8B, R ≈ 0.05). This suggest that in
these conditions the fluctuations in the lac proteins have little effect on cellular
growth. It can also mean that fluctuations are buffered out. This can be because the
lac proteins are not limiting, and one or more other processes limit growth. It can
also be the case, that there is no direct dependency between growth and expression
level, but a more complex dynamic relation, which is hidden in this analysis. At
the same time, while cells vary in growth rate, this does not directly seem to affect
protein levels in the cell.

When cells are grown on lower IPTG levels, both the noise in protein level and
the noise in growth rate increases. In this case we do observe a strong correlation
between the two properties (R ≈ 0.56), suggesting that random temporal fluctua-
tions in lac result in temporal fluctuations in growth rate (see Fig. 6.8A).

Steady state relation between protein level and growth

One putative explanation for the difference in correlation between lac level and
growth rate between high and low expression levels, could be whether lac levels
are limiting for growth. We have already concluded that lower expression levels
lead to lower growth rates, but we sought to find the exact relation between these
properties here. Therefore we analyzed the average growth rate and average protein
levels under different conditions (Fig. 6.9). The data could be well fitted by a Monod
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growth equation [191] with the addition of a term for maintenance:

µ=
(µmax +m) ·E

K +E
−m

, where µ is growth rate, µmax the maximal attainable growth rate, m the mainte-
nance rate, E the lac expression level, and K a constant corresponding to the lac

level at which the growth rate is half the maximum. Note that, although K is anal-
ogous to the Michaelis-Menten constant (KM ), it does not correspond to a single
enzyme, but should be interpreted as the affinity of the complete cell towards the
substrate [192]. The fit shown in Fig. 6.9 has µmax = 0.93 h−1, m = 0.23 h−1, and K =
5.8 in arbitrary units.

The traditional Monod growth curve describes how growth rate depends on
the nutrient concentration in the environment [191]. Interestingly, a formula with
the same form can capture the dependency of growth on internal lac level (see
Fig. 6.9). This suggests that the nutrient flux going through the lac system depends
on both external nutrient concentration and internal protein concentration in a
similar manner.

The basic idea of maintenance is that cells constantly consume some energy
for functions other than production of new cell material, analogous to overhead
in a business. Traditional maintenance derivations are based on double reciprocal
plots of yield and growth rate [193,194]. Here we determined the maintenance rate
with a different method, also allowing us to quantify the minimal amount of lac

necessary to produce the maintenance energy:

Emin =
K ·m

µmax

In our system, the threshold lac level, Emi n , for growth on minimal medium with
lactulose is about 5% of the level at full induction.
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Figure 6.9: Mean growth rate versus lac expression level at steady state follows Monod
growth

Each point represents the mean elongation rate versus the mean fluorescence of a micro-
colony grown in steady state at varying IPTG concentrations. Mean elongation rates were
determined by fitting the total length of the microcolonies over time, as shown in figure 6.4.
The fitted line is a Monod growth curve taking maintenance energy into account (see main
text for details). The data was fitted using the EzyFit toolbox [190] for Matlab.
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Figure 6.10: Autocorrelation of lac expression level in single cells

Branch-corrected composite autocorrelations were calculated with equation 6.5 (see
page 106) using data from hundreds of fluorescence time traces. Data is shown for 4 µM
( ), 6 µM ( ) and 200 µM IPTG ( ). By fitting the autocorrelation with an exponential 2−t/τ,
the typical correlation time can be determined (see Fig. 6.12).

6.4 Temporal correlations in cell lineages

Autocorrelations

The analysis performed so far has been on dynamical data from single cells, but
only instantaneous correlations were determined. As we have a large data set of
traces of dynamical data, other analysis techniques can be applied which take time
correlations into account. The most basic one is the autocorrelation, which pro-
vides a measure of the similarity between observations as a function of the time
delay between them [195]. Using this function it is possible to determine how a
property is likely to develop over time. For example, if the property at some time
point is significantly higher than average, how long does it, on average, take be-
fore the property is lower than average. For random processes the autocorrelation
resembles an exponential decay, from which the autocorrelation time can be de-
termined by an exponential fit. The autocorrelation time (or similarly the noise
frequency) is an indication of how long it takes before a property has a random
value again, and can thus be used to characterize fluctuations [25, 196].

Figure 6.10 shows the autocorrelations as determined at different metabolic
regimes for growth on lactulose (points). All autocorrelation curves are well fitted
with an exponential decay function (lines). In all cases, the autocorrelation ap-
proaches zero, which is expected because no correlations should exist at long time
delays. As has been observed before, the correlation time for protein expression
levels is quite long [25], which means that cells within a homogeneous population
differ for more than a complete cell cycle. At a growth rate of about 0.75 genera-
tions per hour (full lac expression level) it takes about 5 hours before the lac level is
completely randomized again. As has been observed before [196], at lower growth
rates this might take twice or even four times as long (see Fig. 6.10). So in different
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Figure 6.11: Autocorrelation of single cell growth rate

Branch-corrected composite autocorrelations were calculated with equation 6.5 (see
page 106) using data from hundreds of elongation rate time traces. Data is shown for 4 µM
( ), 6 µM ( ) and 200 µM IPTG ( ). The characteristic time scale of the fluctuations can be
obtained by fitting the autocorrelation with an exponential 2−t/τ (see Fig. 6.12).

metabolic regimes, the correlation time can be quite different.
How fast growth rate fluctuates within single E. coli cells has remained unclear

so far. Here we can analyze traces of growth rate within single cells. In order to
determine growth rates at the beginning and at the end of the cell cycle, we made
use of data that could be extracted using the lineage information. The elongation
rate at the end of the cell cycle, could be determined by considering the lengths
of the cell’s two daughter cells at the beginning of their cell cycle (see Section 6.7).
This method allowed extraction of growth time traces without steps around divi-
sion events. As can be seen in Figure 6.11, the autocorrelation of growth is similar
to that of the lac protein levels, except that the correlation time are about twice as
short (compare to Fig. 6.10). Again the correlations can be nicely fitted by an expo-
nential (dark lines). When E. coli cells are grown at full lac expression levels, and
thus a metabolic state supporting a high growth rate, it takes about 2 hours before
the growth rate of single cells are randomized. At lower lac levels, and thus also
lower growth rates, this takes four to eight time as long.

When we plot the autocorrelation times for growth on lactulose in different
metabolic regimes, a correlation with the average doubling time of the microcolony
is found (see Fig. 6.12). The autocorrelation time of growth is strongly correlated
with growth rate itself. Also the autocorrelation time of the lac protein levels are
correlated with growth, suggesting that the dilution rate of proteins is a dominat-
ing factor [196].

When quantifying delay times between two measured properties, it is impor-
tant that the measurements are direct. Both the determination of growth and pro-
tein level are special cases. For growth it is important to realize that it is never an
instantaneous measurement, as we are looking at the rate that length, biomass or
another property relating to cell size, increases. So a minimum of two measure-
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ments are necessary with some time delay in between them. As size measure, we
use the cell length as determined from phase contrast images. These measure-
ments are limited in their accuracy by the small size of cells, and the limit of light
wavelength diffraction. As the size also increases quite slowly, it is necessary to use
length measurements with a long time delay in between them, for the growth rate
determination. This means that the growth measurement is an average around a
time point.

The fluorescence measurement has another feature that limits its accuracy. In
principle we want to measure the concentration of active lac proteins within the
cell. The LacZ protein is active within about a minute after its creation (transla-
tion by ribosomes from mRNA) [197]. LacY protein is inserted co-translationally
into the cell membrane, and although it is still unknown how long it takes before
it becomes functional, this will probably also be in the order of minutes. However,
fluorescent proteins are not active immediately after folding, as a chemical reac-
tion within the protein has to form a fluorophore first. This process is called the
‘maturation’ of the protein. For some fluorescent proteins this process can take
up to hours [179, 198]. The fluorescent protein that we are using (GFPmut2) has a
relatively quick maturation time of less than 10 minutes [146, 180]. Within a res-
olution of ten minutes, these processes can thus be assumed to occur at similar
timescales [199].
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Figure 6.12: Correlation times of lac expression level and growth rate depend on the aver-
age cell doubling time

The characteristic autocorrelation time of single cell fluorescence is plotted against against
the average cell doubling time at varying IPTG concentrations ( ). The same is done for
the characteristic autocorrelation time of single cell elongation rate ( ). The autocorrela-
tion times (t1/2) were determined from exponential decay fits as shown in Fig. 6.10 and
Fig. 6.11. The dotted line corresponds to the situation where correlation time equals the
doubling time.
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Figure 6.13: Cross-correlation between single cell lac expression and growth rate

Branch-corrected composite cross-correlations were calculated with equation 6.5 (see
page 106) using data from hundreds of time traces. Data is shown for cells grown on lac-
tulose with 4 µM (grey solid line), 6 µM (black dotted line) and 200 µM IPTG (black solid
line).

Cross-correlation

In a cross-correlation analysis, the correlation between two properties are deter-
mined over time. In these analyses, a time delay can be found in the correlation
between the two properties. This would mean that when property A is high, it takes
some time before property B is high. This is a strong indication that it is property
A that is affecting property B. As we will see, it sometimes reveals new correlations,
hidden when no delay is considered.

When there is a causal relation between two processes and it takes a significant
amount of time for the affected process to respond, a cross-correlation will look dif-
ferent depending on the type of causality. In the most simple model of our system
there can be four different causal relations (see Fig. 6.15). In this model there are
two single cell properties, the lac protein level and the growth rate, which can affect
each other both positively and negatively. For each ‘arrow’ in the model, a process
can be imagined (see legend of Fig. 6.15), and each causal relationship would show
up in a different quadrant of a cross-correlation curve.

In Figure 6.13 the cross-correlation between growth and lac protein level are
plotted under different growth conditions. The cross-correlation for growth on lac-
tulose with low lac levels (grey solid line) resembles a pyramid with the maximal
correlation when there is no time delay. The value at t=0 is actually the same as
the R that can be determined from Fig. 6.8B. The fact that there is also a strong
cross-correlation at both positive and negative time delays, can be due to the long
autocorrelation times of both growth and protein level.

The cross-correlation between growth and lac level was also determined for
cells with somewhat higher levels of lac protein. At higher protein levels (black
dotted line in Fig. 6.13), the cross-correlation is lower than before, but effectively
keeps the same shape. Again more weight seems to lie at positive time delays.
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Figure 6.14: Time delay in cross-correlation between single cell lac expression and growth
rate

Branch-corrected composite cross-correlations were calculated with equation 6.5 (see
page 106) using data from hundreds of time traces. Data is shown for 2 independent exper-
iments where cells were grown on lactulose with 200 µM IPTG (dotted lines). Additionally,
data from two additional experiments are shown, with cells grown on lactose (black solid
line) and cells grown on glucose with 20 µM IPTG (grey solid line, average of two micro-
colonies from the same experiment).

When cells were grown on lactulose at full lac expression level, no significant
correlation without time delay was found (see Fig. 6.8A). Surprisingly, the cross-
correlation of these data reveal a significant correlation between growth and pro-
tein level at a negative time delay (black solid line in Fig. 6.13). In these growth
conditions, fluctuations in cellular growth rate result in correlated protein fluctu-
ations about 20 minutes later. These results suggest that cellular growth, or some
process related to growth, affects the expression level of the lac proteins.

The delay in correlations between growth and lac level was also observed in
other growth conditions (See Fig. 6.15). Cells grown on lactulose with about 30%
lower lac expression level (grey dotted line in Fig. 6.15) showed a somewhat weaker
correlation, but still had the same delay. Interestingly, cells grown on lactose also
resulted in the same time delay (black solid line). Growth on lactose should be very
similar to growth on lactulose with high IPTG levels, but some differences in both
sensing and consumption are to be expected. Both lactose and IPTG can fully in-
duce the lac operon [7], but whereas (allo)lactose is also consumed by the cell, the
imported IPTG is not. Also, the consumption of lactulose is expected to be less
efficient, as the lac proteins did not adapt to this artifical galactoside, and its prod-
uct contains the energetically less favorable fructose, instead of glucose (compare
Fig. 6.2 and Fig. 6.3). These differences may explain the observation that on lactose
the average growth rate was somewhat higher and the average lac level significantly
lower than on lactulose with IPTG (data not shown).

A time delay between growth and lac levels was also observed in a very differ-
ent growth condition. Cells grown on glucose with a moderate level of IPTG (20 µM
), showed a less pronounced peak in the cross-correlation, but also a significant
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Figure 6.15: Interdependencies between cell growth and protein level result in specific time
delays in cross-correlation.

(A) In a minimal model, cell growth and protein level can have both positive and negative
effect on each other (solid lines). Cell growth can be affected by the protein level with regard
to the cost of producing them (1), and the benefit of having them (2). The protein level is
affected by cell growth by protein production (3), and dilution (4). The fluctuations due to
noise sources (wiggly lines) can be either buffered or propagated with some characteristic
time delay.
(B) Resulting time dependent cross-correlation between protein level and cell growth for
each separate interaction. Dips are caused by negative effects (1 & 4), whereas peaks are due
to positive effects (2 & 3). The direction of the interaction determines the sign of the time
delay. The magnitude of the time delay depends on unknown processes such as buffering.

negative time delay (grey solid line in Fig. 6.14). In this growth condition, the lac

proteins cannot contribute to growth (effectively the arrow number two in Fig. 6.15
is absent). The observed correlation is therefore likely a general feature, where fluc-
tuations in growth affect all protein levels in the cell.

6.5 Conclusion

Only recently it has been realized that the molecular randomness to which all liv-
ing cells are subjected, results in large and long fluctuations of molecular compo-
nents in the cell [23, 25]. The magnitude of variation is remarkable, prompting the
question how cells are affected by all these fluctuations. For example, these fluc-
tuations are likely to also occur in all cellular components that are responsible for
cell growth, from any essential enzyme producing precursor metabolites up to the
assembly machinery of the cell envelope [6]. In E. coli a vast metabolic network is
responsible for the catabolism (breakdown) of nutrients and the anabolism (build
up) of useful precursor molecules. Fluctuations in the abundance of intermediate
metabolites in these networks do not propagate and can therefore only have little
effect on cell growth [135]. But, whether fluctuations in enzyme levels affect the
growth of individual cells has remained unclear so far. Whether they do, must de-
pend on the magnitude and duration of these dynamic fluctuations, but also on the
unknown way how fluctuations propagate through the complex cellular metabolic
network leading to growth. Here, we investigated how the naturally occurring fluc-
tuations in the level of essential metabolic lac proteins affect the growth of individ-

88



Noise propagation in metabolic networks

ual cells.

Steady state growth rate depends on average lac level

We used an E. coli strain in which we could measure the cellular concentration of
the lac proteins, which are responsible for the first essential steps in the catabolism
of lactose or lactulose. By decoupling the regulation and the metabolic function
of these proteins, we could vary the average lac level which led to corresponding
changes in steady state growth rate. Dean et al. already showed by means of ge-
netic mutants growing in nutrient-limited chemostats, that the relation between
lac activity and growth rate follows a concave function [168, 169]. We found a de-
pendency of steady state growth on the average enzyme expression that followed
Monod growth [191] (see Fig. 6.9). We also quantified the minimal amount of lac

proteins that are necessary before any growth is possible (indicating E. coli’s main-
tenance energy [193, 194]). Interestingly, changes in average lac level of the mag-
nitude observed for spontaneous fluctuations, would eventually (in steady state)
result in significant changes in growth rate.

Recently, there has been renewed interest in describing the expression of pro-
tein to be evolutionary tuned by a cost-benefit relation [8,10,11,26]. This theory as-
sumes that expression of a particular protein is costly, which in general reduces the
growth rate of the cell. Hence, when there is no use for the protein, there is a strong
selective pressure to reduce the expression. When there is a use for the protein,
and in some way it helps the growth of the cell, and actually increases the growth
rate, there is a selective pressure to increase its expression. These combining fac-
tors result in a cost-benefit relation, which theoretically, and indirectly have been
determined to have a concave form, with a negative second derivative [10, 11, 26].
Its concave form is due to extremely high expression levels not having benefit for
the cell, and only causing cost, hence resulting in a decrease of fitness.

The data presented in Fig. 6.9 can be regarded as benefits minus the costs of the
lac system for growth on lactulose. Although we do see a growth rate decrease when
cells are growing on glucose with high levels of IPTG, we do not see this for growth
on lactulose. This means that the benefit of additional lac proteins remains larger
than the cost of their expression [8, 10]. Artificially increasing the copy number of
the lac genes could perhaps move the system into the regime where additional ex-
pression is detrimental. Note, that this cost-benefit curve is for growth on lactulose,
and not on lactose, for which the lac system has evolved. Although the lac proteins
can consume lactulose, their expression and catalytic activity are not optimized for
it. Most probably, when grown on lactose the expression level of the lac proteins at
full induction, are closer to the peak of the cost-benefit function than for growth on
lactulose.

Protein and growth fluctuations depend on cell cycle duration

Quantification of lac fluctuations at different average expression levels showed noise
to rise from 10% at high levels, to 30% at lower levels (Fig. 6.7). Similar noise levels
were observed at these expression levels when cells were grown on glucose, where
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growth rate did not depend on expression level [23]. This suggests that the protein
noise amplitude is not affected by cell doubling time. In contrast, the protein noise
correlation time does depend on growth rate. At full induction levels, we observed
a correlation time of lac protein of about 1 hour. As has been observed before, this
is quite similar to the cell division time [25, 196]. At lower lac expression levels the
correlation time increased dramatically, but remained close to the cell division time
at those conditions (see Fig. 6.12).

Variation in growth rate between single cells had thus far been sporadically
quantified [150–152]. We quantified it in terms of elongation rates, revealing a sur-
prisingly large variation in growth rates of around 25%. To our knowledge, the dura-
tion of growth rate fluctuations have thus far never been reported. Here, we found
it also to be correlated with the average cell doubling time, but also significantly
shorter than the correlation time of protein fluctuations, especially at high growth
rates (see Fig. 6.12).

Protein fluctuations can propagate to growth

Having characterized the fluctuations in lac level and growth, we addressed the
question whether the temporal lac fluctuations propagate to growth in a similar
fashion as in steady state. Indeed, at low expression level, the regime where lac

is limiting, a strong correlation between protein level and growth was found (see
Fig. 6.8A). This suggests that the fluctuations in protein levels can propagate through
the metabolic network, transmit to growth and that there is little or no buffering
against these lac fluctuations. A cross-correlation analysis did not reveal a time
delay associated with this propagation (see grey solid and black dotted lines in
Fig. 6.13). Such a delay could be expected, because the lac proteins do not directly
affect growth: after the lac proteins have imported nutrients and converted them
into monosaccharides, a multitude of processes still need to be performed, be-
fore the nutrients can actually contribute to growth. Although the cross-correlation
does hint at a small positive delay (more weight at positive time points compared to
negative time points), the strongest correlations were always found at time delays
of exactly zero. Therefore, if a time delay is associated with the fluctuation propa-
gation, it must be below our time resolution. Taking a small delay in the maturation
of our fluorescence reporter into account, the propagation delay could still be up
to 10 minutes.

At high lac expression levels, protein variation was still of a magnitude that
would have resulted in small but significant growth changes at steady-state (com-
pare Fig. 6.7A and Fig. 6.9). But in contrast to when low lac levels are low, we did not
observe a strong correlation between protein level and growth rate at high expres-
sion levels (see Fig. 6.8B), implying that here lac fluctuations do not propagate to
growth. There could be some unknown reason why buffering does occur at high lac

levels, but it is more likely that the lack of propagation is due to a lower ‘control co-
efficient’ of lac on the flux through its metabolic path. In other words: when there
are few lac proteins, small changes in their level have a large effect on growth, as lac

is responsible for the most limiting step in the growth process. But when lac levels
are high, it is less limiting, and small changes in lac level therefore have much lower
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effect on growth Interestingly, the variation in cell growth rates were still very large
in this regime, prompting the intriguing question what noisy process is dominating
growth here.

Growth fluctuations propagate to protein level

When we analyzed the cross correlation between protein level and growth at con-
ditions where lac was fully expressed, we found a surprising result that remains
hidden in static measurements. A significant correlation with a maximum at a neg-
ative time delay was observed (see black solid line in Fig. 6.13). As the time delay
is negative, the causality of the correlation must be from growth to protein level. It
has been observed before that higher growth rates lead to higher protein levels (pre-
dominantly for the ribosomes) [6, 200]. However, so far these observations were al-
ways for steady state growth conditions. In our single cell experiments, the changes
in growth rate are natural fluctuations which last for only a short amount of time
(tens of minutes in these cases). As cells are growing in steady-state conditions,
and fluctuations are only short-lived, dramatic changes in cell composition are un-
likely. However, we observe this delayed growth effect on protein level for growth
on different sugars, suggesting it is a general feature for exponentially growing cells
(see Fig. 6.14).

Interestingly, our observations of changes in growth rate preceding changes in
protein level, contrast with measurements in yeast where changes in gene expres-
sion were observed to precede changes in growth rates [201]. The latter observa-
tions can be explained by environmental sensing that feed-forward to gene expres-
sion levels, only later followed by correlated changes in growth rate. Possibly both
feedback and feed-forward mechanisms cause correlations between growth rate
and protein level.

We did not observe the delayed growth effect in growth conditions where lac

levels are low. This could be due to the low growth rates at these conditions, at
which E. coli generally contains a surplus of ribosomes [202]. Alternatively, corre-
lations between lac level and cell growth might be dominated by propagations of
lac fluctuations to growth, masking the (delayed) effect of growth on overall protein
level in the cell.

Why does E. coli not grow faster?

Interestingly, when a population of E. coli cells is growing exponentially with a very
constant rate, many cells are actually growing faster than the population rate. The
question arises now whether cells could in any way change such that they would
all grow at this higher growth rate, resulting in a higher average population growth
rate. As E. coli experiences a strong evolutionary pressure to maximize its growth
rate, there must be some reason why it has not adapted to reduce its growth rate
fluctuations. Although our experiments do not clarify this issue, we can suggest
several reasons why growth fluctuations remain and E. coli does not grow faster.

First of all, it could be costly to reduce variations in growth rate. Assuming that
growth rate fluctuations are caused by fluctuations in gene expression and other
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cellular processes, cells could incorporate mechanisms that reduce these fluctu-
ations. However, the formation of such mechanisms would cost energy and cell
mass, resulting in a reduction of the average growth rate. So there could be a trade-
off between growth speed gained by noise reduction and growth speed lost due
to the cost associated with this noise reduction. Second, population fitness is not
only increased by maximizing the growth rate in a constant environment, but also
by effective responses to fluctuations in the environment. As heterogeneity within
a population can be beneficial in the face of environmental changes [26, 56], re-
duction in growth fluctuations may also have detrimental effects on fitness. Third,
it could be that even if cells could reduce noise, the average steady-state growth
would not increase. In that case, the higher than average growth rates due to noise,
are possible by the build-up of energy or cellular components during a period of
lower than average growth.

Fluctuations in expression capacity are not due to growth rate

fluctuations

Much effort has been put in finding the underlying source of protein variation. So
far, it has been shown that some part originates from noisy gene expression due
to stochastic molecular interactions (binding and unbinding events) at the pro-
moter of the gene (‘intrinsic noise’) [23]. Another noise source comes from the
random partitioning of molecules at cell division [203]. Both these noise sources
can be significant when the level of the protein is very low, but otherwise they are
negligible. Surprisingly, the majority of the variation in protein levels is not gene
specific, and is exhibited as a more cell-wide concerted phenomenon (‘extrinsic
noise’) [23, 204, 205]. Some of this variation is due to cell aging and progression
through the cell cycle stage [149, 204]. But the main factors responsible for this
variation in ‘expression capacity’ (‘extrinsic noise’ as experienced by different pro-
moters) have not been identified yet. However, it is likely to be related to differ-
ences in transcriptional and translational components, and possibly also to the
cell’s metabolic state [206]. Our results may aid in painting a better picture of noise
sources in the cell.

Considering that E. coli’s dry weight consists of 55% protein [6], the growth rate
of an individual cell might depend on similar factors as its expression capacity. In-
terestingly, in those experiments where lac levels were high, fluctuations in lac are
presumably caused for the greater part by extrinsic noise [23]. Assuming that in-
trinsic noise was negligible, the variation in lac level would effectively correspond
to the cell’s expression capacity. But, although we found noise in growth and noise
in protein level to correlate, this effect was quite weak for high lac levels, even when
a time delay was taken into account (see Fig. 6.14). If both growth rate and expres-
sion capacity would largely depend on the same factors, we should have observed a
very large correlation between the two. In other words: the large variation in growth
rate correlates weakly with protein noise, and therefore is likely to depend on other
factors than those responsible for variation in the extrinsic noise of lac.
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When expression matters, the lac operon is not bistable

Soon after the discovery of gratuitous inducers, such as IPTG and TMG, a surpris-
ing phenomenon of the regulation of the lac operon was observed. When a little bit
of inducer was added to cells that had not been exposed to the inducer before, an
extremely heterogeneous population of cells developed [20]. Part of the population
did not show any induction of the lac operon, while the other part showed a very
high expression. This phenomenon, called ‘all-or-nothing’ behavior or ‘bistability’,
is due to a auto-stimulation of lac induction: LacY proteins pump inducer into the
cell, resulting in lac induction, hence more LacY proteins [20,207]. When cells have
been unexposed to inducer, sporadic and stochastic expression of more than a hun-
dred LacY proteins per cell, are required in order to turn the operon ‘on’ [21]. Note
that high external inducer concentrations, result in sufficient passive diffusion over
the membrane to induce the lac operon.

Interestingly, bistability of the lac system has been demonstrated with artifi-
cial inducers, TMG and IPTG, but never with the natural inducer (allo)lactose (see
Fig. 6.2) [20, 22]. It is difficult to test for bistability on lactose, as the lactose con-
centration supplied needs to be so low, that it would rapidly be depleted due to
consumption. Some studies have argued that the all-or-none behavior does not
occur for growth on lactose [22, 208, 209]. Essentially, there are two reasons why
the lac operon may not be bistable when cells are growing on lactose. First, in con-
trast to artificial inducers, lactose is not only imported by the LacY protein but also
degraded by the LacZ protein, effectively counteracting the auto-stimulation of lac

induction. Second, lactose does not only act as inducer, but its import and degra-
dation eventually leads to cellular growth. Therefore, an increase of the LacY pro-
teins, leads to an increase in growth, leading to a decrease of LacY proteins due to
dilution, again counteracting the auto-stimulation.

In our experiments we observed all-or-none behavior for growth on glucose
with 20 /umuM IPTG within a single microcolony (data not shown). However,
when cells were grown on lactulose, all-or-none induction was absent and graded
responses were observed at all IPTG concentrations. In these experiments, the lac

operon is still induced with a gratuitous inducer that is not degraded. But growth
of the cell does depend on expression of the lac proteins. So, these results suggests
that the lac operon is not bistable, when cells need lac expression for growth. It
would be interesting to grow E. coli in a flow cell with extremely low concentrations
of lactose. Such experiments could establish once and for all, whether expression
of lac is bistable under natural conditions.

Consequences for modeling of metabolic networks

So far, most models of metabolic networks consider steady state conditions, where
the average behavior of each cell remains constant over time. Such modeling efforts
have been very successful in describing average population behavior [210–212].
However, now that single cells studies reveal large heterogeneities within popula-
tion of cells, both in protein level and in growth rate, it can be questioned whether
steady state models capture the behavior of metabolic networks correctly. Espe-

93



Chapter 6

cially when fluctuations in growth and a single protein have a significant effect on
each other, as we have shown in this study, the behavior of the metabolic network is
likely not captured in a steady state model. Therefore, use of the interdependency
between protein level and growth rate should be of great value to the modeling of
dynamic out of equilibrium metabolic networks. Furthermore, our results of how
cellular growth and protein level affect each other, can be used to describe the dy-
namical behavior of metabolic networks and growth.

An interesting example of how growth dependency on protein level can affect
molecular network studies, is presented by Tănase-Nicola and ten Wolde [26]. They
show that population quantities (which are generally measured experimentally) are
not necessarily equal to the time average as experienced by a lineage of cells (which
are generally modeled in molecular network studies). This effect is due to the fact
that in a time snapshot of the population there is an overrepresentation of cells
with levels optimal for growth, as they make more offspring due to their higher
growth rate. Data from this study can be used to quantify the discrepancy between
population and lineage quantities.

6.6 Future work

Capturing data in simple model

The experimental results presented in this chapter revealed complex interdepen-
dencies between fluctuations in cellular growth and protein levels. Although the
observations can be understood qualitatively from known cellular processes, new
insights could be obtained by capturing them quantitatively in a model. A dynam-
ical model should at least include the cost and benefit of lac expression for cell
growth, and the production and dilution of proteins due to growth (see Fig. 6.15).
It will be interesting to see whether this minimal model can capture the experi-
mentally observed noise levels, correlations and delay times, at different metabolic
states.

A model that captures our results will allow predictions to be made about how
protein levels and growth fluctuate under other conditions. But most importantly,
it could help to explain what limits the growth rate of individual cells and is causing
growth fluctuations. Other observations that might be understood from the be-
havior of the model are the significantly lower autocorrelation time of growth rate
with respect to protein levels, and the absent delayed effect of growth on protein
level when lac is limiting. Furthermore, it could test some hypotheses that are hard
to approach experimentally. For example, does a fluctuating dilution rate cause
homeostasis of proteins that are limiting for growth? By having the proteins in the
model dilute with either a constant average rate, or a fluctuating rate dependent on
cell growth, this question could be explored.

Protein production rate and regression analysis

Apart from a model to capture our experimental observations, additional analysis
of our lineage data could perhaps provide new insights. In this study, we performed
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analyses that are very powerful in finding statistical relevant correlations in noisy
data. However, these analyses also have their limitations, as they do not distinguish
between positive or negative deviations from the average, nor take dynamical in-
formation into account. If, for example, there would be a difference in how growth
and protein level correlate depending on whether a fluctuation is higher or lower
than the average level, this would remain hidden in our current correlation analy-
sis. Such a difference is very well possible in our low induction experiments, where
it is the question whether all other metabolic proteins responsible for growth on
lactose, adjust to the new metabolic state. If they have adjusted completely, a de-
crease in lac level would result in an immediate reduction in flux, while an increase
in lac level would result in a delayed flux increase, as all other components have
to adjust first. The curved correlation cloud in Figure 6.8A hints that this might be
the case, and a more sophisticated (regression) analysis might confirm this. In ad-
dition, some new insights might emerge from a frequency domain analysis on the
lineage data [196, 213].

Furthermore, it would interesting to determine the lac production rate instead
of the lac level in the cell. Whereas the growth rate of a cell should depend on the lac

concentration and not on lac production, it is to be expected that the production
rate more directly responds to the metabolic state, and perhaps the growth rate
of the cell. Therefore, the way how protein level depends on growth rate, might
better be understood by looking at the lac production rate, than at the lac level.
Note, that protein production rate is not the same as the derivative of our currently
determined protein concentration, as the latter also depends on increase of cell
size.

How does noise affect the fitness of a population of cells?

Whether and how protein fluctuations affect the fitness of an organism, depends
on how they affect a population of cells over time. Mathematical models predict
that fluctuations can be both detrimental and beneficial for the average popula-
tion growth rate [11, 26]. When the average protein level has not been tuned to its
environment and deviates sufficiently from the optimal one, noise can be favor-
able, as there is a larger benefit from the fraction of the population closer to the
optimal protein level, than the loss from the fraction that is far away from it [26].
However, when protein levels have adapted to constant conditions, the absence of
noise would lead to each individual being able to have optimal concentrations of
all its components, resulting in a higher mean fitness [11]. As our decoupled lac

system can provided both conditions, i.e. average protein expression at either op-
timal or non-optimal level, it could be very useful in experimental confirmations
of these predictions. More specifically, it would be interesting to compare the av-
erage growth rates of mutants with different levels of protein noise [214] on both
conditions.
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Origin and function of growth rate fluctuations

As we noted before, it is unknown what process or which processes are causing the
growth rate fluctuations in single cells. Being the ‘engine of the cell’, it would be in-
teresting to construct a fluorescent reporter for ribosome levels, as their level might
dictate growth rate. Another hypothesis poses that growth on minimal medium is
limited by amino acid supply, rather than by ribosome capacity [215]. Therefore, it
would be interesting to see whether single cell growth rate variations in E. coli de-
crease when the medium is supplemented with amino acids. We observed a lower
autocorrelation time of the growth fluctuations when E. coli was grown on glucose.
Therefore the systematic measurement of growth rate fluctuations on a range of
sugars and media, could perhaps clarify the origin of the fluctuations.

6.7 Materials and methods

Strains

Growth experiments were performed using derivatives of E. coli MG1655 (rph-1

ilvG- rfb-50). For pre-experiment consumption of organic contaminants (see be-
low), we used strain NCM520 (∆lacAYZ), obtained from the Coli Genetic Stock Cen-
ter (CGSC). All measurements on lac expression were performed with strain AB460
(∆lacA::gfp-cat), which was created by Alex Böhm and kindly provided by Martin
Ackermann. AB460 was constructed from MG1655 by replacing the lacA gene with
GFPmut2 [178] and chloramphenicol resistance using the protocol described by
Datsenko and Wanner [216].

MG1655 is derived from the original K-12 strain which was obtained from ‘na-
ture’: a stool sample of a diphtheria patient in Palo Alto, CA in 1922 [3].During
its historical derivation from K-12, MG1655 has been rid of the lambda bacterio-
phage and F plasmid [217], but also acquired some unwanted mutations relevant
for growth experiments: rph-1 is a 1 base pair deletion at the end of rph, result-
ing in decreased pyrE expression and a mild growth defect (about 10% in minimal
media) due to internal uracil (pyrimidine) starvation [218]. The wild-type growth
rate can be restored by supplementing the medium with uracil [218, 219]. ilvG-

is a frameshift that knocks out acetohydroxy acid synthase II, resulting in growth
inhibition by valine [220]. rfb-50 is an IS5 insertion that results in the absence of O-
antigen synthesis and sensitivity to phage P1 [221]. Potentially, the MG1655 deriva-
tive we use, also carries a large deletion around the fnr (fumarate-nitrate respira-
tion) regulatory gene, resulting in growth defects in anaerobic respirations [219].
This fnr- mutant (now named CGSC 8003) was dispatched by the Coli Genetic Stock
Center as MG1655 (CGSC 6300) until October 2003, when it was replaced with a
fnr+ MG1655. In our growth conditions only the rph-1 mutation is relevant, for
which reason we supplement our media with uracil (see below).
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Media

Cells were grown in M9 minimal medium (47.7 mM Na2HPO4, 25 mM KH2PO4, 9.3
mM NaCl, 17.1 mM NH4, 2.0 mM MgSO4, 0.1 mM CaCl2) supplemented with 0.2
mM uracil (see above). As carbon and energy source either 0.1% lactulose (=2.9
mM) or 0.1% glucose (=5.6 mM) was added. When indicated IPTG was added to
the medium (0-200 µM). Suppliers of chemicals can be found in Table 6.1.

Cell growth in batch culture

Cells were grown in 50mL flasks in a 37◦C water bath with vigorous shaking. First,
TY medium was inoculated with cells from -80◦C glycerol stock, and grown until
0.02-0.50 OD (optical density at 600 nm, 1 cm path length). Cells were then diluted
back to have OD ≈ 0.01 in TY, and subsequently diluted into M9 medium with glu-
cose or lactose at 1:200, 1:800 and 1:3200 for growth O/N. These flasks contained
approximately 5 ·102,103 and 5 ·103 cells ml−1, respectively. The following day the
O/N culture with the highest OD while still in exponential growth (OD < 0.20) was
used to inoculate medium with the designated medium (containing IPTG and ei-
ther glucose or lactulose). Cells were grown exponentially for at least another 17
hours, and if necessary diluted back again, until growth rate became stable.

This protocol allows reproducible cultivation of bacteria without cells being
washed, nor reaching stationary phase. The initial rich media is both diluted out
and eaten up by the cells. When growing E. coli on lactulose with low IPTG (and
thus low expression levels), constitutive lac mutants quickly take over the popula-
tion. Therefore care must be taken to only grow cells in this medium for as short as

chemical supplier, product number alternative description

Na2HPO4·2H2O Merck, 1.06580 disodium hydrogen phosphate dihydrate
KH2PO4 Merck, 1.04873 potassium dihydrogen phosphate
NaCl Merck, 1.16224 sodium chloride
NH4Cl Merck, 1.01145 ammonium chloride
MgSO4·7H2O Prolabo, 1.05886 magnesium sulfate heptahydrate
CaCl2·2H2O Merck, 1.02382 calcium dichloride dihydrate
uracil Sigma, 41128 2,4-pyrimidinediol
glucose·H2O Merck, 1.08342 D-(+)-glucose monohydrate
lactose·H2O Fluka, 61339 D-(+)-lactose monohydrate
lactulose Fluka, 61360 4-O-β-D-galactopyranosyl-β-D-fructofuranose
IPTG Sigma, I5502 isopropyl-β-D-1-thiogalactopyranoside
ONPF Sigma, N3253 2-nitrophenyl-β-D-1-fucopyranoside
acrylamide Bio-Rad, 161-0148 40% acrylamide / bis solution 37.5 : 1
ammonium persulfate Sigma, A-9164 (NH4)2S2O8
TEMED Bio-Rad, 161-0800 tetra-methyl-ethylene-diamine
repel silane Amersham, 17-1332-01 2% Si(CH3)2Cl2 in octa-methyl-cyclo-octasilane
agarose Roche, 11.388.991.001 multipurpose agarose
low melt agarose Sigma, A4018 low gelling temperature agarose type VII

Table 6.1: Details of chemicals used in this study. Shown are the chemical names used in
main text, together with their supplier and product number, followed by a more detailed
description of the chemical.
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possible.

Polyacrylamide gel pads

In order to force cells to grow into a single plane microcolony, they need to be con-
fined. Traditionally this is accomplished by growing them between a glass cover-
slip and a solid matrix pad of agarose or gelatin (eg. [149]). Sugar-based gels, like
agarose and gelatin, are ill-suited for growth experiments where carbon sources
or carbon intake are varied. Therefore, polyacrylamide (PA) gels were employed,
whose polymer subunits cannot be used by E. coli as a carbon source.

PA gels were made by mixing 1.25 ml 40% acrylamide, 3.7 mL water, 50 uL fresh
10% ammonium persulfate, and 5 uL TEMED together, after which 900 µL was
poured into a silanized cavity glass slide (see Fig. 6.16 and Table 6.1). The slide
was immediately covered with a 24 mm x 60 mm coverslip and left to polymerize
at room temperature for about half an hour. After removal of the coverslip, the gel
was cut in pieces of 5 mm x 10 mm, and transfered to a flask with water. To get rid
of unpolymerized chemicals, the gels were washed by transferring them repeatedly
to fresh water. During preparation and storage, all glassware and chemicals were
kept sterile, to avoid growth of cell contaminations sticking to the gel. Although the
PA gels are safe to handle, note that unpolymerized acrylamide is toxic and can be
absorbed through the skin.

The day before an experiment, a piece of gel was transferred several times to
large volumes of the designated media. For experiments with growth on lactulose,
the polyacrylamide gel was pre-grown with lac− cells to remove contaminants (see
page 76).

Apart from not being sugar-based, PA gels have several other advantages over
traditional agarose gels. First of all, PA gels are quite firm, and therefore easy to
handle. This allows disassembling sample slides without tearing the gel, and ma-
neuvering of different gels into the same sample holder. Second, after washing, the
PA gels have increased a fraction in size, which allows firm clamping in between
the glass slides in the sample holder. Furthermore, PA gels can be stored for weeks,
have good wettability, and E. coli microcolonies often grow with more separation
between cells compared to standard agarose gels.

Time-lapse microscopy

For microscopy, cells were diluted back to OD ≈ 0.005 and transferred to a micro-
scope incubation chamber (Solent), allowing precise 37◦C temperature control. 1
µL of culture was applied on a small pre-warmed PA gel inside a glass cavity slide
and sealed with a pre-warmed coverslip (see Fig. 6.16A). The sample slide, contain-
ing a large volume of oxygen, was placed in a metal clamp to ensure tight sealing
(see Fig. 6.16B).

Imaging was performed with an inverted microscope (Nikon, TE2000), equipped
with 100X oil objective (Nikon, Plan Fluor NA 1.3), cooled CCD camera camera
(Photometrix, CoolSnap HQ), xenon lamp with liquid light guide (Sutter, Lambda
LS), GFP filter set (Chroma, 41017), computer controlled shutters (Sutter, Lambda
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50 mm18 mm

A B

Figure 6.16: Sample holder for time-lapse microscopy

(A) Glass microscope slide with the center part cut out (manufactured in-house) was stuck
on top of a normal slide using a little amount of silicon grease (Dow Corning) to form a cavity
glass slide. Such slides were used to polymerize gels, or, as shown here, to hold a PA gel piece
with cells. A coverslip would close of the sample chamber.
(B) To keep the sample chamber closed, it was put upside down in a metal clamp (manufac-
tured in-house) and placed on the microscope.

10-3 with SmartShutter) and automated stage (Märzhäuser, SCAN IM 120 x 100).
An additional intermediate 1.5X magnification was used, resulting in images with
pixel size corresponding to a length of 41 nm.

Up to 9 of the very sparse cells on the gel were manually selected, and followed
for up to 30 hours using MetaMorph microscope control software. Care was taken
to have positions properly spaced, to avoid cells being affected by the illumination
of neighboring positions. Phase contrast images (200 ms exposure time with GIF
filter, 3 images -0.2 µm, 0 µm and +0.2 µm offset from focus) were recorded with
exact intervals every 1.5 - 4 min. Fluorescence images were recorded every 11.5 -
28 min, with 2x2 binning and either 500 ms or 1000 ms exposure. The low exposure
frequency ensured that photodamage and photobleaching was negligible during
the experiment. To correct for focus drift, MetaMorph’s adjust focus function was
used on the center of 2x2 binned phase contrast images, before each image was
taken.

Cell segmentation and tracking

Images were analyzed offline using custom Matlab (MathWorks) programs. The
analysis consisted of 3 parts: outlining and tracking of cells, fluorescence extrac-
tion, and length measurement.

The outline of cells was determined by first averaging the 3 phase contrast im-
ages. From this image, edges were determined using a Laplacian of Gaussian filter.
In essence, this algorithm looks for maxima and minima in the derivative of the
image. Next the background was separated from the cells, and clumps of cells were
cut based on concavity and phase contrast maxima (see Fig. 6.17).

Although these automated analysis steps functioned properly for over 90% of
the cells, some cells were not identified, or segmented incorrectly. Especially at the
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Figure 6.17: Segmentation of cells using phase contrast images

(A) Phase contrast image of bacterial cells with an overlay of its Laplacian of Gaussian filter
(white pixels).
(B) Once cells are distinguished from background, obvious separations between cells are de-
termined by finding concave points on opposite sides along the edges of cells. Cells are seg-
mented by a straight line between these points (blue pixels).
(C) Individual cells can now be distinguished (different colors), but not all cell separations
are found.
(D) Remaining cell clumps are separated by finding optima (red line) in the phase contrast
values along a line through the cell clump. The line is obtained by morphological thinning
of the segmented area, and only those optima near cell areas with concave edges, or user-
defined locations, are accepted.
(E) The resulting segmentation image, with each cell drawn in a different color.

end of experiments, with high numbers of cells and little separation between them,
considerable manual intervention was required. The outline of these problematic
cells were determined by forcefully running the same analysis procedures at user-
defined locations.

Once each frame was segmented, lineages of cells were traced by a simple track-
ing algorithm that searches for nearby cells in successive frames. Although the in-
crease in size of the microcolony was taken into account, ∼10 frames per cell gen-
eration were required for proper tracking, as cells move unpredictably within an
expanding microcolony. A complete history of each cell lineage in the microcolony
was unambiguously determined up until the microcolony expanded beyond the
field of view, or when a second layer of cells would form. Generally this meant
9 generations of lineages, consisting of ∼1000 complete cell cycles from a single
microcolony. After segmentation and tracking it was straightforward to a cell’s lo-
cation, its orientation within the microcolony, and the age of its cell poles [222].

Cell fluorescence

Before the fluorescence for a particular cell was extracted, the fluorescence image
was corrected for imaging artifacts. First a background image (Ib) was subtracted,
correcting for sensor noise and background signal. Next, the image was normalized
by a shading image (Is ), correcting for uneven illumination of the sample. Given the
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Figure 6.18: Determination of average protein levels from fluorescence images

(A) The original fluorescence image.
(B) Fluorescence image after background correction (pixel specific for camera) and shading
correction (pixel specific for complete imaging system). Note that cells at the edge of the
microcolony seem less fluorescent as they get less scatter fluorescence from adjoining cells.
(C) The fluorescence image after deconvolution, which probabilistically reassigns each im-
aged photon to its original pixel position [223].
(D) Image of part of the point spread function (PSF) used for the deconvolution. Note that
the color scale is logarithmic and values indicate 10−3 times the weight of each pixel. The
PSF was determined by imaging fluorescent microspheres of subpixel size. Multiple images
from different microspheres were aligned and averaged.
(E) Using the cell segmentation (white outlines, determined from the phase contrast images)
the total cell fluorescence can be extracted. Note that cells at the edge of the microcolony
are segmented as thicker cells, hence having more background pixels within their perimeter.
(F) In order to get an accurate mean fluorescence value for each cell, only pixels within a box
of fixed width inside the cell perimeter were averaged. In order to get the box on top of the
center of the cell, the box was allowed to move a few pixels until it found the maximum mean
fluorescence.

original image I , the calibrated output image Ic is given by:

Ic =
I − Ib

Is − Ib

Both the background and the shading image were determined by averaging tens of
images made under experimental conditions.

The fluorescence image had a small alignment offset with the phase contrast
image. This was corrected by finding the best fit of fluorescence on top of seg-
mented cells, and shifting the fluor image accordingly. The last correction of the
fluorescence image was a deconvolution step to correct the blur produced by the
imaging system. For this Matlab’s Lucy-Richardson algorithm was used with an ex-
perimentally determined point-spread function.

Once this corrected image was obtained, the total fluorescence of a cell could
be determined by extracting those pixels that were within the cell outline, as deter-
mined from the phase contrast image. In order to get the mean fluorescence of a
cell, the total fluorescence needs to be divided by the size of the cell. The size mea-
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Figure 6.19: Single cell length measurement

(A) The axis of a cell is determined by fitting a third degree line through the silhouette (seg-
mentation) of the cell.
(B) The axis between the cell poles plotted on top of the phase contrast image of the cell. The
length of a cell is the length of the cell axis between these cell poles, which are determined
in panel C.
(C) The poles along the cell axis are determined by first measuring the silhouette proxim-
ity along the axis. The silhouette proximity is defined as the total distance of the closest 25
segmentation pixels. Within the cell silhouette the total distance consistently remains 100
µm, but near the cell poles it rapidly increases. The location of the cell poles were taken at a
silhouette proximity of 110 µm.

surement, however, is also used for the determination of the elongation rate, with
which the mean fluorescence is correlated later.

In order to have an independent measurement of mean fluorescence, we re-
sorted to the following method. A box with fixed width of 0.4 µm, beginning and
ending 0.3 µm from the cell poles, was aligned on top of each cell (see Fig. 6.18).
The mean fluorescence (F ) for the complete cell was determined as the mean of
the pixels within this box (Fbox) with subtraction of the background fluorescence
(Fb, determined from pixels outside microcolony) and the cell autofluorescence
(Fa, determined from fluorescence of MG1655 cells without any GFP). The mean
fluorescence obtained in this way, was normalized such that images with different
exposure times (te in ms) and resolution (θ in µm ·pixel−1) could be compared:

F =
Fbox −Fb −Fa

teθ2

Cell length

During its cell cycle, E. coli cells increase with only ∼2 µm in length. For the deter-
mination of growth rate differences within the cell cycle, it is therefore necessary to
have a high precision length measurement. Although the pixel size in our optical
system corresponds to a length of ∼0.04 µm, it’s not straightforward to obtain such
precision in length measurements.

An important limitation lies in the optical resolution of imaging systems (short-
est distance that can still be distinguished as separate entities). In light microscopy,
this resolving power is limited to ∼0.25 µm, as it depends on the numerical aper-
ture of available objectives and the wavelength of applicable light. The diffraction
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causing this limited resolution, results in fuzzy looking cell edges in phase contrast
images (see Fig. 6.19). Fortunately, subresolution precision can still be obtained by
careful analysis of phase contrast intensity profiles along the cell edges (see Fig. 6.19
and [224]). Although this works very well for single cells, applying this technique to
cells in microcolonies presents some difficulties.

In phase contrast microscopy, differences in density and composition within a
sample can be measured as the light interacts with the sample it passes through.
Unfortunately, this means that the absolute phase contrast intensity at any point
is highly dependent on the surrounding of that point, as the light will also pass
through there. Within a microcolony this poses a problem, as the surrounding of
cells can be quite different. Some cells are positioned freely (especially at the pe-
riphery), whereas others are squeezed together.

Another difficulty arises in experiments with slow growing cells. The shape of
E. coli cells can be dramatically altered by growing them in confined spaces [225,
226]. Only very minor changes in shape are generally observed during growth in
microcolonies. However, when cells are growing very slowly, we observe many cells
growing into a curved shape.

The precision of length measurements in microcolonies depends largely on
dealing with these difficulties. In order to obtain an accurate length under these
conditions, we applied the following approach. The outline of every cell is de-
termined (during segmentation) by an edge detection that is essentially based on
finding the steepest parts in intensity profiles. Next, the cell axis is determined, by
fitting a third degree polynomial f (x) through the silhouette of the cell:

f (x) = ax3
+bx2

+cx +d

We define the length of the cell, as the length of this axis from one pole (x0) to the
other (x1). The exact pole positions along the axis are determined by taking into
account the cap of the cell (see Fig. 6.19). The cell length (L) can then be obtained
by numerical integration between pole x0 and x1 of the cell:

L =

∫x1

x0

√

1+ f ′(x)2

Judging from the smoothness of length traces (see Fig. 6.6) the automated length
measurements within microcolonies had a precision around the pixel size of ∼0.04
µm.

Single cell growth rate

As no significant changes in cell width (except those due to changing curvature of
the cell) are observed during growth experiments, we assume that cell size is pro-
portional to cell length. In that case, single cell growth rate can be determined by
obtaining the cell elongation rate. Although there have been some observations of
E. coli cells growing bilinearly [188, 227], most studies support exponential elonga-
tion of cells [228, 229]. This fits with our own observations, so we determined the
elongation rate by an exponential fit of length over time:

L(t ) = L0eµe ·ln(2)·t
= L02µe ·t
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Figure 6.20: Growth rate of a single cell

The length of a single cell, its parent and its offspring plotted over time (dark circles). The
average elongation rate of the cell can be determined by fitting an exponential through all
its length measurements over time (grey fit below circles). Elongation rates of the cell at
particular time points are determined by fitting data within a particular window around that
time point (grey fits above circles). At the beginning and end of each cell cycle, length data
of the parent or the offspring are used (grey circles, see main text). Note that the fits are
horizontally shifted for clarity.

where the elongation rate µe is effectively the same as the doubling rate (see Fig. 6.20).
Using a power with base 2, instead of the widely used natural base e, allows easy
computation of doubling time Td .

Td =
1

µe

The elongation rate can either be determined for a single cell and its complete
cell cycle, or alternatively for time points within its cell cycle. In the latter case a
window needs to be specified around the time point of interest. The definition of
this window presents some constraints. The size of the time window determines
how many datapoints used for elongation rate determination are shared between
neighboring time points. Therefore, for independent measurements of growth rate
with a high time resolution, a small window is required. However, an accurate de-
termination of the elongation rate also requires a length increase of the cell that is
significantly larger than the precision of its length measurement. In other words: in
a timespan with little cell growth, the error in the length measurement dominates
the elongation rate. Given an average birth length Lb and the minimal required
length increase Li , the required time window Tw is given by:

Tw = Td ∗ log2

(Lb +Li

Lb

)

We set the minimal length increase required for our time window to 0.5 µm. With
an average birth length of 2 µm, this corresponds to a window of approximately a
third of the cell’s doubling time. Note that the time window is determined inde-
pendently for each experiment, as the average doubling times differ up to 4 fold
between experiments.
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Retrieving length data in the window around time points at the beginning or
at the end of a cell cycle is problematic, as the window expands beyond the cell’s
life. Neglecting unavailable datapoints within the window, results in large errors in
determination of the elongation rate. An alternative, where the window is moved
until it fits the cell’s datapoints, results in constant elongation rates at 1

6 part of the

beginning and 1
6 part of the end of the cell cycle. Therefore, we applied a technique

where we extend the datapoints for a cell’s length using the length of the mother
(Lm), sister (Ls ) and daughter cells (Ld1 & Ld2) (see Fig. 6.20)

At the end of a cell’s cycle additional data points are added by summation of
the lengths of the two daughter cells. At the beginning of a cell’s cycle points are
added by using a fraction of the length of the mother cell. Although division in E.

coli is quite symmetric, there are still some length differences between sister cells.
Therefore not exactly half of the mother cell length was taken, but a ratio based on
their birth lengths. The extended length data for a cell is thus defined by:

L∗(t ) =















L0
L0+L0,sister

Lm(t ) if t < t0

L(t ) if t0 <= t <= t1

Ld1(t )+Ld2(t ) if t > t1

Cross-correlation

In order to correlate variation in expression level (F) and growth rate (µe over time,
we first extract a discrete time signal for each single cell lineage (see Fig. 6.6 and
Fig. 6.21). Each lineage has N data values which are separated by sampling interval
∆t , such that data value n originates from time point t = n ∗∆t . We define the
noise in the lineage signals as the difference between the signal and the population
mean:

ǫn = Fn −
1

M

M
∑

m=1
Fn,m µn = (

dL

d t
)n −

1

M

M
∑

m=1
(µe )n,m

where M is the total number of cells at each time point from all lineages. The cross
covariance between ǫ and µ within a single lineage at time-lag r∆t , is then defined
by [195]:

Cǫµ(r∆t ) =











1
N−r

N−r
∑

n=1

(

ǫnµn+r

)

if r >= 0

Cµǫ(−r∆t ) if r < 0

(6.1)

In order to get the cross-correlation, Rǫµ, the covariance is normalized by the stan-
dard deviation, σ, of the signals:

Rǫµ(r∆t ) =
Cǫµ(r∆t )

σǫσµ

, with

σx =

√

√

√

√

1

N

N
∑

n=1
(xn −x)2 x =

1

N

N
∑

n=1
(xn)
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As the mean of ǫ and µ are 0, their standard deviation is defined by their autoco-
variance at r = 0, giving cross-correlation:

Rǫµ(r∆t ) =
Cǫµ(r∆t )

√

Cǫǫ(0)Cµµ(0)
(6.2)

In order to get the autocorrelation of either protein level or growth rate, the au-
tocovariance is calculated, which is a special case of equation 6.1 where the records
coincide:

Cǫǫ(r∆t ) =
1

N −|r |

N−|r |
∑

n=1

(

ǫnǫn+|r |

)

Note that an alternative formula for the covariance is sometimes used (see e.g.
[196]), which does not correct for decreasing number of datapoints at higher r∆t :

Cǫµ(r∆t ) =

{

∑N−r
n=1

(

ǫnµ(n+r )

)

if r >= 0

Cµǫ(−r∆t ) if r < 0

At higher r∆t , there is less data available to calculate a reliable correlation value.
The resulting increase in the error can be masked by this formula, as it constrains
the cross-correlation to approach 0 at higher r∆t . Here, however, we use equa-
tion 6.1 instead, which is more accurate, but can give unreliable estimates at high
r∆t .

Composite cross-correlation from branched data

Equation 6.1 estimates the cross covariance of the process underlying data from a
single lineage. A better estimate can be obtained by combining data from multiple
lineages. The composite cross covariance of M lineages is defined by:

C M
ǫµ(r∆t ) =











1
M

1
N−r

M
∑

m=1

[N−r
∑

n=1

(

ǫn,mµ(n+r ),m

)]

if r >= 0

C M
µǫ(−r∆t ) if r < 0

(6.3)

As our lineages are extracted from a branched data set, many pairs of points are
used multiple times (see lineages IV and V in Fig. 6.21). In order to get a composite
cross-correlation that best estimates the real underlying process, it’s important to
only use comparisons between unique pairs of points. We can correct for multiple
contributions of the same pair of datapoints, by weighing each pair based on the
number of lineages the datapoints are used in (λ):

wn,m,r =
1

λ(n+r ),m
(6.4)

This results in the branch-corrected composite cross covariance:

C M
ǫµ(r∆t ) =











1
wtot (r )

M
∑

m=1

[N−r
∑

n=1

(

ǫn,mµ(n+r ),m wn,m,r

)]

if r >= 0

C M
µǫ(−r∆t ) if r < 0

(6.5)
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Figure 6.21: Extracting and weighing lineages from a branched data set

(A) Depiction of a growing microcolony over time, starting with 2 cells on the left and grow-
ing into 5 cells on the right.
(B) A lineage tree of the data shown in A. The tree starts with two lines (left), indicating the
two starting cells, and at each division the line splits, resulting in five cells at the end (right).
(C) Five lineages can be extracted from the data. Note that most lineages share part of their
data. When correlating data points from t0 with t1, one pair consists from completely inde-
pendent data points (lineage I). Two lineages provide exactly the same pairs of data points
(lineages IV and V), and two lineages only share a data point at t0 (lineages II and III).
(D) Different types of weighing for the correlation of data points from t0 with t1. Equation 6.3
does not apply any weighing scheme, such that weighing of each lineage is set to one. Only
comparisons between unique data pairs are obtained by weighing with equation 6.4. Lin-
eages II and III are not completely independent, which can be corrected for by weighing
with equation 6.6.

wtot (r ) =
M
∑

m=1

N−r
∑

n=1
wn,m,r

This branch correction weighs each comparison between two unique data points
only once (similar to Dunlop et. al. [181]). However, there is an additional issue in-
volving the dependency of data points in a branched data set, that is not addressed
with this weighing correction. Although each comparison between data points is
unique now, there are many occurrences where a single datapoint is used in pairs
with many other data points (see lineages II and III in Fig. 6.21). These combina-
tions are weighed equally compared to pairs of totally independent data points. A
possible way to correct for this is to weigh reused datapoints for 50% (and thus their
pairs for 75%):

w∗
n,m,r =

{

1
λ(n+r ),m

if λn,m = 1
3

4·λ(n+r ),m
if λn,m > 1

(6.6)

This latter weighing method was applied in this study.

107



108



Bibliography

[1] Schaechter M, Gorbach SL (1996) The intestinal ecology of Escherichia coli revisited. ASM News

62:304.

[2] Koch A (1987) Phosphate metabolism and cellular regulation in microorganisms., Washington,
D.C.: ASM Press. pp. 300-305.

[3] Bachmann B (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology., Washing-
ton, D.C.: ASM Press. pp. 2460-2488.

[4] Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3-11.
doi:10.1119/1.10903

[5] Schrödinger E (1944) What is life? Cambridge: Cambridge Univ. Press.

[6] Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the Bacterial Cell. Sunderland, Mas-
sachusetts: Sinauer Associates Inc.

[7] Müller-Hill B (1996) The lac Operon. Berlin: Walter de Gruyter.

[8] Koch AL (1983) The protein burden of lac operon products. J Mol Evol 19:455-462.
doi:10.1007/BF02102321

[9] Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos

Trans R Soc Lond, B, Biol Sci 297:459-480.
doi:10.1098/rstb.1982.0055

[10] Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein.
Nature 436:588-592.
doi:10.1038/nature03842

[11] Kalisky T, Dekel E, Alon U (2007) Cost-benefit theory and optimal design of gene regulation func-
tions. Phys Biol 4:229-245.
doi:10.1088/1478-3975/4/4/001

[12] Weickert MJ, Adhya S (1992) A family of bacterial regulators homologous to Gal and Lac repres-
sors. J Biol Chem 267:15869-15874.
http://www.jbc.org/content/267/22/15869.full.pdf

[13] Swint-Kruse L, Matthews KS (2009) Allostery in the LacI/GalR family: variations on a theme. Curr

Opin Microbiol 12:129-137.
doi:10.1016/j.mib.2009.01.009

[14] Lehming N, Sartorius J, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B (1990) Mutant
lac repressors with new specificities hint at rules for protein–DNA recognition. EMBO J 9:615-
621.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551714/

[15] Nguyen CC, Saier MH (1995) Phylogenetic, structural and functional analyses of the LacI-GalR
family of bacterial transcription factors. FEBS Lett 377:98-102.
doi:10.1016/0014-5793(95)01344-X

[16] Pauling L, Zuckerkandl E (1963) Chemical paleogenetics; molecular "restoration studies" of ex-
tinct forms of life. Acta Chem Scand 17:S9-S16.
doi:10.3891/acta.chem.scand.17s-0009

[17] Campbell JH, Lengyel JA, Langridge J (1973) Evolution of a second gene for beta-galactosidase in
Escherichia coli. Proc Natl Acad Sci USA 70:1841-1845.
doi:10.1073/pnas.70.6.1841

[18] Poelwijk FJ, Heijning P, de Vos MGJ, Kiviet DJ, Tans SJ (2010) Optimality and the evolution of
transcriptionally regulated gene expression. Submitted to BMC Syst. Biol.

109

http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1007/BF02102321
http://dx.doi.org/10.1098/rstb.1982.0055
http://dx.doi.org/10.1038/nature03842
http://dx.doi.org/10.1088/1478-3975/4/4/001
http://www.jbc.org/content/267/22/15869.full.pdf
http://dx.doi.org/10.1016/j.mib.2009.01.009
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551714/
http://dx.doi.org/10.1016/0014-5793(95)01344-X
http://dx.doi.org/10.3891/acta.chem.scand.17s-0009
http://dx.doi.org/10.1073/pnas.70.6.1841


Bibliography

[19] Markiewicz P, Kleina LG, Cruz C, Ehret S, Miller JH (1994) Genetic studies of the lac repressor.
XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential
residues, as well as "spacers" which do not require a specific sequence. J Mol Biol 240:421-433.
doi:10.1006/jmbi.1994.1458

[20] Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci

USA 43:553-566.
doi:10.1073/pnas.43.7.553

[21] Choi PJ, Cai L, Frieda K, Xie XS (2008) A stochastic single-molecule event triggers phenotype
switching of a bacterial cell. Science 322:442-446.
doi:10.1126/science.1161427

[22] Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A (2004) Multistability in the
lactose utilization network of Escherichia coli. Nature 427:737-740.
doi:10.1038/nature02298

[23] Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell.
Science 297:1183-1186.
doi:10.1126/science.1070919

[24] Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single
molecule level. Nature 440:358-362.
doi:10.1038/nature04599

[25] Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell
level. Science 307:1962-1965.
doi:10.1126/science.1106914

[26] Tanase-Nicola S, ten Wolde PR (2008) Regulatory control and the costs and benefits of biochem-
ical noise. PLoS Comput Biol 4:e1000125.
doi:10.1371/journal.pcbi.1000125

[27] Darwin C (1859) On the Origin of Species by Means of Natural Selection. London: Murray.

[28] Smith JM (1970) Natural selection and the concept of a protein space. Nature 225:563-564.
doi:10.1038/225563a0

[29] Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes recon-
structed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345:86-
89.
doi:10.1038/345086a0

[30] Stackhouse J, Presnell SR, McGeehan GM, Nambiar KP, Benner SA (1990) The ribonuclease from
an extinct bovid ruminant. FEBS Lett 262:104-106.
doi:10.1016/0014-5793(90)80164-E

[31] Ugalde JA, Chang BSW, Matz MV (2004) Evolution of coral pigments recreated. Science 305:1433.
doi:10.1126/science.1099597

[32] Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat

Rev Genet 5:366-375.
doi:10.1038/nrg1324

[33] Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc

6th Int Cong Genet 1:356-366.
http://www.blackwellpublishing.com/ridley/classictexts/wright.asp

[34] Gillespie JH (1991) The Causes of Molecular Evolution. Oxford: Oxford Univ. Press.

[35] Kauffman SA (1993) The Origins of Order: Self-organization and Selection in Evolution. Oxford:
Oxford Univ. Press.

[36] Gavrilets S (2004) Fitness Landscapes and the Origin of Species. Princeton: Princeton Univ. Press.

[37] van Nimwegen E, Crutchfield JP (2000) Metastable evolutionary dynamics: crossing fitness bar-
riers or escaping via neutral paths? Bull Math Biol 62:799-848.
doi:10.1006/bulm.2000.0180

110

http://dx.doi.org/10.1006/jmbi.1994.1458
http://dx.doi.org/10.1073/pnas.43.7.553
http://dx.doi.org/10.1126/science.1161427
http://dx.doi.org/10.1038/nature02298
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1038/nature04599
http://dx.doi.org/10.1126/science.1106914
http://dx.doi.org/10.1371/journal.pcbi.1000125
http://dx.doi.org/10.1038/225563a0
http://dx.doi.org/10.1038/345086a0
http://dx.doi.org/10.1016/0014-5793(90)80164-E
http://dx.doi.org/10.1126/science.1099597
http://dx.doi.org/10.1038/nrg1324
http://www.blackwellpublishing.com/ridley/classictexts/wright.asp
http://dx.doi.org/10.1006/bulm.2000.0180


Bibliography

[38] Weinreich DM, Watson RA, Chao L (2005) Perspective: Sign epistasis and genetic constraint on
evolutionary trajectories. Evolution 59:1165-1174.
doi:10.1111/j.0014-3820.2005.tb01768.x

[39] Poelwijk FJ, Kiviet DJ, Tans SJ (2006) Evolutionary potential of a duplicated repressor-operator
pair: simulating pathways using mutation data. PLoS Comput Biol 2:e58.
doi:10.1371/journal.pcbi.0020058

[40] Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713-
719.
http://www.genetics.org/cgi/reprint/47/6/713

[41] Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only
very few mutational paths to fitter proteins. Science 312:111-114.
doi:10.1126/science.1123539

[42] DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a bio-
physical view of protein evolution. Nat Rev Genet 6:678-687.
doi:10.1038/nrg1672

[43] Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc

Natl Acad Sci USA 103:5869-5874.
doi:10.1073/pnas.0510098103

[44] Hurley JH, Dean AM, Koshland DE, Stroud RM (1991) Catalytic mechanism of NADP(+)-
dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate
and NADP+ complexes. Biochemistry 30:8671-8678.
doi:10.1021/bi00099a026

[45] Hurley JH, Chen R, Dean AM (1996) Determinants of cofactor specificity in isocitrate dehydro-
genase: structure of an engineered NADP+ –> NAD+ specificity-reversal mutant. Biochemistry

35:5670-5678.
doi:10.1021/bi953001q

[46] Kalodimos CG, Bonvin AMJJ, Salinas RK, Wechselberger R, Boelens R, et al. (2002) Plasticity in
protein-DNA recognition: lac repressor interacts with its natural operator 01 through alternative
conformations of its DNA-binding domain. EMBO J 21:2866-2876.
doi:10.1093/emboj/cdf318

[47] Kopke Salinas R, Folkers GE, Bonvin AMJJ, Das D, Boelens R, et al. (2005) Altered specificity in
DNA binding by the lac repressor: a mutant lac headpiece that mimics the gal repressor. Chem-

biochem 6:1628-1637.
doi:10.1002/cbic.200500049

[48] Koradi R, Billeter M, WÃijthrich K (1996) MOLMOL: a program for display and analysis of macro-
molecular structures. J Mol Graph 14:51-5, 29-32.
doi:10.1016/0263-7855(96)00009-4

[49] Lunzer M, Miller SP, Felsheim R, Dean AM (2005) The biochemical architecture of an ancient
adaptive landscape. Science 310:499-501.
doi:10.1126/science.1115649

[50] Zhu G, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science

307:1279-1282.
doi:10.1126/science.1106974

[51] Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by
molecular exploitation. Science 312:97-101.
doi:10.1126/science.1123348

[52] Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913-917.
doi:10.1038/43199

[53] Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420-8427.
doi:10.1073/pnas.95.15.8420

[54] Kitano H (2004) Biological robustness. Nat Rev Genet 5:826-837.
doi:10.1038/nrg1471

111

http://dx.doi.org/10.1111/j.0014-3820.2005.tb01768.x
http://dx.doi.org/10.1371/journal.pcbi.0020058
http://www.genetics.org/cgi/reprint/47/6/713
http://dx.doi.org/10.1126/science.1123539
http://dx.doi.org/10.1038/nrg1672
http://dx.doi.org/10.1073/pnas.0510098103
http://dx.doi.org/10.1021/bi00099a026
http://dx.doi.org/10.1021/bi953001q
http://dx.doi.org/10.1093/emboj/cdf318
http://dx.doi.org/10.1002/cbic.200500049
http://dx.doi.org/10.1016/0263-7855(96)00009-4
http://dx.doi.org/10.1126/science.1115649
http://dx.doi.org/10.1126/science.1106974
http://dx.doi.org/10.1126/science.1123348
http://dx.doi.org/10.1038/43199
http://dx.doi.org/10.1073/pnas.95.15.8420
http://dx.doi.org/10.1038/nrg1471


Bibliography

[55] Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell

118:675-685.
doi:10.1016/j.cell.2004.09.008

[56] Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments.
Genetics 167:523-530.
doi:10.1534/genetics.167.1.523

[57] Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuat-
ing environments. Science 309:2075-2078.
doi:10.1126/science.1114383

[58] Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from
directed evolution. Trends Biochem Sci 26:100-106.
doi:10.1016/S0968-0004(00)01755-2

[59] Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and ge-
netic bases of adaptation. Nat Rev Genet 4:457-469.
doi:10.1038/nrg1088

[60] Couñago R, Chen S, Shamoo Y (2006) In vivo molecular evolution reveals biophysical origins of
organismal fitness. Mol Cell 22:441-449.
doi:10.1016/j.molcel.2006.04.012

[61] Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation
experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808-6814.
doi:10.1073/pnas.91.15.6808

[62] Stephens SG (1951) Possible significance of duplication in evolution. Adv Genet 4:247-265.
doi:10.1016/S0065-2660(08)60237-0

[63] Ohno S (1970) Evolution by Gene Duplication. New York: Springer-Verlag.

[64] Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science

290:1151-1155.
doi:10.1126/science.290.5494.1151

[65] Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet

36:492-496.
doi:10.1038/ng1340

[66] Madan Babu M, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory
network in Escherichia coli. Nucleic Acids Res 31:1234-1244.
doi:10.1093/nar/gkg210

[67] Bray D, Lay S (1994) Computer simulated evolution of a network of cell-signaling molecules. Bio-

phys J 66:972-977.
doi:10.1016/S0006-3495(94)80878-1

[68] Francois P, Hakim V (2004) Design of genetic networks with specified functions by evolution in
silico. Proc Natl Acad Sci USA 101:580-585.
doi:10.1073/pnas.0304532101

[69] Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization.
Nat Rev Genet 5:101-113.
doi:10.1038/nrg1272

[70] Sengupta AM, Djordjevic M, Shraiman BI (2002) Specificity and robustness in transcription con-
trol networks. Proc Natl Acad Sci USA 99:2072-2077.
doi:10.1073/pnas.022388499

[71] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs: simple
building blocks of complex networks. Science 298:824-827.
doi:10.1126/science.298.5594.824

[72] Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol

Sci 256:119-124.
doi:10.1098/rspb.1994.0058

112

http://dx.doi.org/10.1016/j.cell.2004.09.008
http://dx.doi.org/10.1534/genetics.167.1.523
http://dx.doi.org/10.1126/science.1114383
http://dx.doi.org/10.1016/S0968-0004(00)01755-2
http://dx.doi.org/10.1038/nrg1088
http://dx.doi.org/10.1016/j.molcel.2006.04.012
http://dx.doi.org/10.1073/pnas.91.15.6808
http://dx.doi.org/10.1016/S0065-2660(08)60237-0
http://dx.doi.org/10.1126/science.290.5494.1151
http://dx.doi.org/10.1038/ng1340
http://dx.doi.org/10.1093/nar/gkg210
http://dx.doi.org/10.1016/S0006-3495(94)80878-1
http://dx.doi.org/10.1073/pnas.0304532101
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1073/pnas.022388499
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1098/rspb.1994.0058


Bibliography

[73] Fukami-Kobayashi K, Tateno Y, Nishikawa K (2003) Parallel evolution of ligand specificity be-
tween LacI/GalR family repressors and periplasmic sugar-binding proteins. Mol Biol Evol 20:267-
277.
doi:10.1093/molbev/msg038

[74] Lehming N (1990) Regelns für Protein/DNA-Erkennung (PhD Thesis). Universität zu Köln.

[75] Hollis M, Valenzuela D, Pioli D, Wharton R, Ptashne M (1988) A repressor heterodimer binds to a
chimeric operator. Proc Natl Acad Sci USA 85:5834-5838.
doi:10.1073/pnas.85.16.5834

[76] MacArthur S, Brookfield JFY (2004) Expected rates and modes of evolution of enhancer se-
quences. Mol Biol Evol 21:1064-1073.
doi:10.1093/molbev/msh105

[77] Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res

13:2052-2058.
doi:10.1101/gr.1252603

[78] Lynch M (2005) Simple evolutionary pathways to complex proteins. Protein Sci 14:2217-2225.
doi:10.1110/ps.041171805

[79] Francino MP (2005) An adaptive radiation model for the origin of new gene functions. Nat Genet

37:573-577.
doi:10.1038/ng1579

[80] Jürgens C, Strom A, Wegener D, Hettwer S, Wilmanns M, et al. (2000) Directed evolution of a
(βα)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl

Acad Sci USA 97:9925-9930.
doi:10.1073/pnas.160255397

[81] O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activi-
ties. Chem Biol 6:R91-R105.
doi:10.1016/S1074-5521(99)80033-7

[82] Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplica-
tions. Genome Biol 3:RESEARCH0008.
doi:10.1186/gb-2002-3-2-research0008

[83] Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to
achieve in silico predicted optimal growth. Nature 420:186-189.
doi:10.1038/nature01149

[84] Berg J, Willmann S, Lässig M (2004) Adaptive evolution of transcription factor binding sites. BMC

Evol Biol 4:42.
doi:10.1186/1471-2148-4-42

[85] Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in
bacteria. PLoS Biol 3:e130.
doi:10.1371/journal.pbio.0030130

[86] Inagaki Y, Doolittle WF, Baldauf SL, Roger AJ (2002) Lateral transfer of an EF-1α gene: origin and
evolution of the large subunit of ATP sulfurylase in eubacteria. Curr Biol 12:772-776.
doi:10.1016/S0960-9822(02)00816-3

[87] Stoebel DM (2005) Lack of evidence for horizontal transfer of the lac operon into Escherichia coli.
Mol Biol Evol 22:683-690.
doi:10.1093/molbev/msi056

[88] Bhan A, Galas DJ, Dewey TG (2002) A duplication growth model of gene expression networks.
Bioinformatics 18:1486-1493.
doi:10.1093/bioinformatics/18.11.1486

[89] Wagner A (2003) How the global structure of protein interaction networks evolves. Proc Biol Sci

270:457-466.
doi:10.1098/rspb.2002.2269

113

http://dx.doi.org/10.1093/molbev/msg038
http://dx.doi.org/10.1073/pnas.85.16.5834
http://dx.doi.org/10.1093/molbev/msh105
http://dx.doi.org/10.1101/gr.1252603
http://dx.doi.org/10.1110/ps.041171805
http://dx.doi.org/10.1038/ng1579
http://dx.doi.org/10.1073/pnas.160255397
http://dx.doi.org/10.1016/S1074-5521(99)80033-7
http://dx.doi.org/10.1186/gb-2002-3-2-research0008
http://dx.doi.org/10.1038/nature01149
http://dx.doi.org/10.1186/1471-2148-4-42
http://dx.doi.org/10.1371/journal.pbio.0030130
http://dx.doi.org/10.1016/S0960-9822(02)00816-3
http://dx.doi.org/10.1093/molbev/msi056
http://dx.doi.org/10.1093/bioinformatics/18.11.1486
http://dx.doi.org/10.1098/rspb.2002.2269


Bibliography

[90] Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, et al. (2004) Programmable cells: interfac-
ing natural and engineered gene networks. Proc Natl Acad Sci USA 101:8414-8419.
doi:10.1073/pnas.0402940101

[91] Weber W, Fussenegger M (2002) Artificial mammalian gene regulation networks-novel ap-
proaches for gene therapy and bioengineering. J Biotechnol 98:161-187.
doi:10.1016/S0168-1656(02)00130-X

[92] Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering
metabolic control. Nat Biotechnol 18:533-537.
doi:10.1038/75398

[93] Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad

Sci USA 99:16587-16591.
doi:10.1073/pnas.252535999

[94] Miller JH (1972) Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory
Press.

[95] Sadler JR, Novick A (1965) The properties of repressor and the kinetics of its action. J Mol Biol

12:305-327.
doi:10.1016/S0022-2836(65)80255-8

[96] Sadler JR, Sasmor H, Betz JL (1983) A perfectly symmetric lac operator binds the lac repressor very
tightly. Proc Natl Acad Sci USA 80:6785-6789.
doi:10.1073/pnas.80.22.6785

[97] Betz JL, Sasmor HM, Buck F, Insley MY, Caruthers MH (1986) Base substitution mutants of the lac
operator: in vivo and in vitro affinities for lac repressor. Gene 50:123-132.
doi:10.1016/0378-1119(86)90317-3

[98] Dubertret B, Liu S, Ouyang Q, Libchaber A (2001) Dynamics of DNA-protein interaction deduced
from in vitro DNA evolution. Phys Rev Lett 86:6022-6025.
doi:10.1103/PhysRevLett.86.6022

[99] Korona R, Nakatsu CH, Forney LJ, Lenski RE (1994) Evidence for multiple adaptive peaks from
populations of bacteria evolving in a structured habitat. Proc Natl Acad Sci USA 91:9037-9041.
doi:10.1073/pnas.91.19.9037

[100] Fisher RA (1950) The "Sewell Wright Effect". Heredity 4:117-119.
doi:10.1038/hdy.1950.8

[101] Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J

Theor Biol 128:11-45.
doi:10.1016/S0022-5193(87)80029-2

[102] Kauffman SA, Johnsen S (1991) Coevolution to the edge of chaos: coupled fitness landscapes,
poised states, and coevolutionary avalanches. J Theor Biol 149:467-505.
doi:10.1016/S0022-5193(05)80094-3

[103] Kauffman SA, Weinberger ED (1989) The NK model of rugged fitness landscapes and its applica-
tion to maturation of the immune response. J Theor Biol 141:211-245.
doi:10.1016/S0022-5193(89)80019-0

[104] Kim Y (2007) Rate of adaptive peak shifts with partial genetic robustness. Evolution 61:1847-1856.
doi:10.1111/j.1558-5646.2007.00166.x

[105] Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible
evolutionary paths. Nature 445:383-386.
doi:10.1038/nature05451

[106] Buckling A, Wills MA, Colegrave N (2003) Adaptation limits diversification of experimental bac-
terial populations. Science 302:2107-2109.
doi:10.1126/science.1088848

[107] Wright S (1931) Evolution in Mendelian Populations. Genetics 16:97-159.
http://www.genetics.org/cgi/reprint/16/2/97

114

http://dx.doi.org/10.1073/pnas.0402940101
http://dx.doi.org/10.1016/S0168-1656(02)00130-X
http://dx.doi.org/10.1038/75398
http://dx.doi.org/10.1073/pnas.252535999
http://dx.doi.org/10.1016/S0022-2836(65)80255-8
http://dx.doi.org/10.1073/pnas.80.22.6785
http://dx.doi.org/10.1016/0378-1119(86)90317-3
http://dx.doi.org/10.1103/PhysRevLett.86.6022
http://dx.doi.org/10.1073/pnas.91.19.9037
http://dx.doi.org/10.1038/hdy.1950.8
http://dx.doi.org/10.1016/S0022-5193(87)80029-2
http://dx.doi.org/10.1016/S0022-5193(05)80094-3
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1111/j.1558-5646.2007.00166.x
http://dx.doi.org/10.1038/nature05451
http://dx.doi.org/10.1126/science.1088848
http://www.genetics.org/cgi/reprint/16/2/97


Bibliography

[108] Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ (1995) Multiple Fitness Peaks and Epistasis.
Annu Rev Ecol Syst 26:601-629.
doi:10.1146/annurev.es.26.110195.003125

[109] Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol

3:318-356.
doi:10.1016/S0022-2836(61)80072-7

[110] Adler K, Beyreuther K, Fanning E, Geisler N, Gronenborn B, et al. (1972) How lac repressor binds
to DNA. Nature 237:322-327.
doi:10.1038/237322a0

[111] Barker A, Fickert R, Oehler S, Müller-Hill B (1998) Operator search by mutant Lac repressors. J

Mol Biol 278:549-558.
doi:10.1006/jmbi.1998.1729

[112] Bell CE, Lewis M (2001) The Lac repressor: a second generation of structural and functional stud-
ies. Curr Opin Struct Biol 11:19-25.
doi:10.1016/S0959-440X(00)00180-9

[113] Calos MP, Galas D, Miller JH (1978) Genetic studies of the lac repressor. VIII. DNA sequence
change resulting from an intragenic duplication. J Mol Biol 126:865-869.
doi:10.1016/0022-2836(78)90025-6

[114] Coulondre C, Miller JH (1977) Genetic studies of the lac repressor. III. Additional correlation of
mutational sites with specific amino acid residues. J Mol Biol 117:525-567.
doi:10.1016/0022-2836(77)90056-0

[115] Eismann ER, Müller-Hill B (1990) lac repressor forms stable loops in vitro with supercoiled wild-
type lac DNA containing all three natural lac operators. J Mol Biol 213:763-775.
doi:10.1016/S0022-2836(05)80262-1

[116] Fickert R, Müller-Hill B (1992) How Lac repressor finds lac operator in vitro. J Mol Biol 226:59-68.
doi:10.1016/0022-2836(92)90124-3

[117] Lehming N, Sartorius J, Niemöller M, Genenger G, v Wilcken-Bergmann B, et al. (1987) The inter-
action of the recognition helix of lac repressor with lac operator. EMBO J 6:3145-3153.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC553756/

[118] Miller JH, Ganem D, Lu P, Schmitz A (1977) Genetic studies of the lac repressor. I. Correlation of
mutational sites with specific amino acid residues: construction of a colinear gene-protein map.
J Mol Biol 109:275-298.
doi:10.1016/S0022-2836(77)80034-X

[119] Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, et al. (1996) Genetic studies of the
Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes
on the basis of the protein structure. J Mol Biol 261:509-523.
doi:10.1006/jmbi.1996.0479

[120] Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ (2010) Reciprocal sign epistasis is a necessary
condition for multipeaked fitness landscapes. Submitted to J. Theor. Biol.

[121] Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, et al. (2007) A "silent" polymorphism
in the MDR1 gene changes substrate specificity. Science 315:525-528.
doi:10.1126/science.1135308

[122] Bridgham JT, Ortlund EA, Thornton JW (2009) An epistatic ratchet constrains the direction of
glucocorticoid receptor evolution. Nature 461:515-519.
doi:10.1038/nature08249

[123] Cowperthwaite MC, Meyers LA (2007) How Mutational Networks Shape Evolution: Lessons from
RNA Models. Annu Rev Ecol Evol Syst 38:203-230.
doi:10.1146/annurev.ecolsys.38.091206.095507

[124] Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009) Identification of direct residue contacts
in protein-protein interaction by message passing. Proc Natl Acad Sci USA 106:67-72.
doi:10.1073/pnas.0805923106

115

http://dx.doi.org/10.1146/annurev.es.26.110195.003125
http://dx.doi.org/10.1016/S0022-2836(61)80072-7
http://dx.doi.org/10.1038/237322a0
http://dx.doi.org/10.1006/jmbi.1998.1729
http://dx.doi.org/10.1016/S0959-440X(00)00180-9
http://dx.doi.org/10.1016/0022-2836(78)90025-6
http://dx.doi.org/10.1016/0022-2836(77)90056-0
http://dx.doi.org/10.1016/S0022-2836(05)80262-1
http://dx.doi.org/10.1016/0022-2836(92)90124-3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC553756/
http://dx.doi.org/10.1016/S0022-2836(77)80034-X
http://dx.doi.org/10.1006/jmbi.1996.0479
http://dx.doi.org/10.1126/science.1135308
http://dx.doi.org/10.1038/nature08249
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095507
http://dx.doi.org/10.1073/pnas.0805923106


Bibliography

[125] Segré D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat

Genet 37:77-83.
doi:10.1038/ng1489

[126] Mildvan AS (2004) Inverse thinking about double mutants of enzymes. Biochemistry 43:14517-
14520.
doi:10.1021/bi048052e

[127] DeLano WL The PyMOL Molecular Graphics System.

[128] Lewis M (2005) The lac repressor. C R Biol 328:521-548.
doi:10.1016/j.crvi.2005.04.004

[129] Miller JH, Schmeissner U (1979) Genetic studies of the lac repressor. X. Analysis of missense mu-
tations in the lacI gene. J Mol Biol 131:223-248.
doi:10.1016/0022-2836(79)90074-3

[130] Miller JH (1984) Genetic studies of the lac repressor. XII. Amino acid replacements in the DNA
binding domain of the Escherichia coli lac repressor. J Mol Biol 180:205-212.
doi:10.1016/0022-2836(84)90438-8

[131] Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ (2010) Multiple peaks and reciprocal sign
epistasis in an empirically determined genotype-phenotype landscape. Chaos 20:026105.
doi:10.1063/1.3453602

[132] Forrest S, Mitchell M (1993) Foundations of Genetic Algorithms 2, San Mateo, CA: Morgan Kauf-
mann. pp. 109-126.

[133] McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale.
Trends Genet 15:65-69.
doi:10.1016/S0168-9525(98)01659-X

[134] McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA

94:814-819.
doi:10.1073/pnas.94.3.814

[135] Levine E, Hwa T (2007) Stochastic fluctuations in metabolic pathways. Proc Natl Acad Sci USA

104:9224-9229.
doi:10.1073/pnas.0610987104

[136] Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. (2006) Single-cell pro-
teomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840-846.
doi:10.1038/nature04785

[137] Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, et al. (2006) Noise in protein expression
scales with natural protein abundance. Nat Genet 38:636-643.
doi:10.1038/ng1807

[138] Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit
induces transient cellular differentiation. Nature 440:545-550.
doi:10.1038/nature04588

[139] Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P (2004) From molecular noise to be-
havioural variability in a single bacterium. Nature 428:574-578.
doi:10.1038/nature02404

[140] Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to
phenotypes. Nat Rev Genet 6:451-464.
doi:10.1038/nrg1615

[141] Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the Bacterial Cell: A Molecular
Approach. Sunderland, Massachusetts: Sinauer Associates Inc.

[142] Dean AM (1994) Fitness, flux and phantoms in temporally variable environments. Genetics

136:1481-1495.
http://www.genetics.org/cgi/content/abstract/136/4/1481

[143] Fell D (1997) Understanding the Control of Metabolism. London: Portland Press.

116

http://dx.doi.org/10.1038/ng1489
http://dx.doi.org/10.1021/bi048052e
http://dx.doi.org/10.1016/j.crvi.2005.04.004
http://dx.doi.org/10.1016/0022-2836(79)90074-3
http://dx.doi.org/10.1016/0022-2836(84)90438-8
http://dx.doi.org/10.1063/1.3453602
http://dx.doi.org/10.1016/S0168-9525(98)01659-X
http://dx.doi.org/10.1073/pnas.94.3.814
http://dx.doi.org/10.1073/pnas.0610987104
http://dx.doi.org/10.1038/nature04785
http://dx.doi.org/10.1038/ng1807
http://dx.doi.org/10.1038/nature04588
http://dx.doi.org/10.1038/nature02404
http://dx.doi.org/10.1038/nrg1615
http://www.genetics.org/cgi/content/abstract/136/4/1481


Bibliography

[144] Koppes LH, Woldringh CL, Nanninga N (1978) Size variations and correlation of different cell
cycle events in slow-growing Escherichia coli. J Bacteriol 134:423-433.
http://jb.asm.org/cgi/content/abstract/134/2/423

[145] Cooper S (1991) Bacterial Growth and Division. San Diego: Academic Press.

[146] Adiciptaningrum AM (2009) Phase Variation of Type 1 Fimbriae: a Single Cell Investigation (PhD
Thesis). Universiteit van Amsterdam.

[147] Rahn O (1932) A chemical explanation of the variability of the growth rate. J Gen Physiol 15:257-
277.
doi:10.1085/jgp.15.3.257

[148] Schaechter M, Williamson JP, Hood JR, Koch AL (1962) Growth, cell and nuclear divisions in some
bacteria. J Gen Microbiol 29:421-434.
doi:10.1099/00221287-29-3-421

[149] Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces
by morphologically symmetric division. PLoS Biol 3:e45.
doi:10.1371/journal.pbio.0030045

[150] Strovas TJ, Sauter LM, Guo X, Lidstrom ME (2007) Cell-to-cell heterogeneity in growth rate and
gene expression in Methylobacterium extorquens AM1. J Bacteriol 189:7127-7133.
doi:10.1128/JB.00746-07

[151] Reshes G, Vanounou S, Fishov I, Feingold M (2008) Timing the start of division in E. coli: a single-
cell study. Phys Biol 5:046001.
doi:10.1088/1478-3975/5/4/046001

[152] Tsuru S, Ichinose J, Kashiwagi A, Ying BW, Kaneko K, et al. (2009) Noisy cell growth rate leads to
fluctuating protein concentration in bacteria. Phys Biol 6:036015.
doi:10.1088/1478-3975/6/3/036015

[153] Jobe A, Bourgeois S (1972) lac Repressor-operator interaction. VI. The natural inducer of the lac
operon. J Mol Biol 69:397-408.
doi:10.1016/0022-2836(72)90253-7

[154] Müller-Hill B, Rickenberg HV, Wallenfels K (1964) Specificity of the induction of the enzymes of
the lac operon in Escherichia coli. J Mol Biol 10:303-318.
doi:10.1016/S0022-2836(64)80049-8

[155] Huber RE, Wallenfels K, Kurz G (1975) The action of beta-galactosidase (Escherichia coli) on al-
lolactose. Can J Biochem 53:1035-1038.
doi:10.1139/o75-142

[156] Zabin I, Kepes A, Monod J (1962) Thiogalactoside transacetylase. J Biol Chem 237:253-257.
http://www.jbc.org/content/237/1/253

[157] Musso RE, Zabin I (1973) Substrate specificity and kinetic studies on thiogalactoside transacety-
lase. Biochemistry 12:553-557.
doi:10.1021/bi00727a031

[158] Lewendon A, Ellis J, Shaw WV (1995) Structural and mechanistic studies of galactoside acetyl-
transferase, the Escherichia coli LacA gene product. J Biol Chem 270:26326-26331.
http://www.jbc.org/content/270/44/26326

[159] Andrews KJ, Lin EC (1976) Thiogalactoside transacetylase of the lactose operon as an enzyme for
detoxification. J Bacteriol 128:510-513.
http://jb.asm.org/cgi/content/abstract/128/1/510

[160] Danchin A (2009) Cells need safety valves. Bioessays 31:769-773.
doi:10.1002/bies.200900024

[161] Wilson TH, Kashket ER (1969) Isolation and properties of thiogalactoside transacetylase-negative
mutants of Escherichia coli. Biochim Biophys Acta 173:501-508.
doi:10.1016/0005-2736(69)90014-5

[162] Dean AM (1995) A molecular investigation of genotype by environment interactions. Genetics

139:19-33.
http://www.genetics.org/cgi/content/abstract/139/1/19

117

http://jb.asm.org/cgi/content/abstract/134/2/423
http://dx.doi.org/10.1085/jgp.15.3.257
http://dx.doi.org/10.1099/00221287-29-3-421
http://dx.doi.org/10.1371/journal.pbio.0030045
http://dx.doi.org/10.1128/JB.00746-07
http://dx.doi.org/10.1088/1478-3975/5/4/046001
http://dx.doi.org/10.1088/1478-3975/6/3/036015
http://dx.doi.org/10.1016/0022-2836(72)90253-7
http://dx.doi.org/10.1016/S0022-2836(64)80049-8
http://dx.doi.org/10.1139/o75-142
http://www.jbc.org/content/237/1/253
http://dx.doi.org/10.1021/bi00727a031
http://www.jbc.org/content/270/44/26326
http://jb.asm.org/cgi/content/abstract/128/1/510
http://dx.doi.org/10.1002/bies.200900024
http://dx.doi.org/10.1016/0005-2736(69)90014-5
http://www.genetics.org/cgi/content/abstract/139/1/19


Bibliography

[163] Commichau FM, Stülke J (2008) Trigger enzymes: bifunctional proteins active in metabolism and
in controlling gene expression. Mol Microbiol 67:692-702.
doi:10.1111/j.1365-2958.2007.06071.x

[164] Wray LV, Zalieckas JM, Fisher SH (2005) Bacillus subtilis glutamine synthetase controls gene ex-
pression through a protein-protein interaction with transcription factor TnrA. Cell 107:427-435.
doi:10.1016/S0092-8674(01)00572-4

[165] Brown ED, Wood JM (1992) Redesigned purification yields a fully functional PutA protein dimer
from Escherichia coli. J Biol Chem 267:13086-13092.
http://www.jbc.org/content/267/18/13086

[166] Ostrovsky de Spicer P, Maloy S (1993) PutA protein, a membrane-associated flavin dehydroge-
nase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci USA 90:4295-4298.
doi:10.1073/pnas.90.9.4295

[167] Hartl DL, Dykhuizen DE, Dean AM (1985) Limits of adaptation: the evolution of selective neu-
trality. Genetics 111:655-674.
http://www.genetics.org/cgi/content/abstract/111/3/655

[168] Dean AM, Dykhuizen DE, Hartl DL (1986) Fitness as a function of beta-galactosidase activity in
Escherichia coli. Genet Res 48:1-8.
doi:10.1017/S0016672300024587

[169] Dykhuizen DE, Dean AM, Hartl DL (1987) Metabolic flux and fitness. Genetics 115:25-31.
http://www.genetics.org/cgi/content/abstract/115/1/25

[170] Goh S, Boberek JM, Nakashima N, Stach J, Good L (2009) Concurrent growth rate and transcript
analyses reveal essential gene stringency in Escherichia coli. PLoS ONE 4:e6061.
doi:10.1371/journal.pone.0006061

[171] Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C (2000) Antisense PNA effects in Es-
cherichia coli are limited by the outer-membrane LPS layer. Microbiology (Reading, Engl) 146 (

Pt 10):2665-2670.
http://mic.sgmjournals.org/cgi/content/abstract/146/10/2665

[172] Rotman B (1961) Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl

Acad Sci USA 47:1981-1991.
doi:10.1073/pnas.47.12.1981

[173] Becskei A, Kaufmann BB, van Oudenaarden A (2005) Contributions of low molecule number and
chromosomal positioning to stochastic gene expression. Nat Genet 37:937-944.
doi:10.1038/ng1616

[174] Longo D, Hasty J (2006) Dynamics of single-cell gene expression. Mol Syst Biol 2:64.
doi:10.1038/msb4100110

[175] Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single
cells. Nat Rev Genet 10:628-638.
doi:10.1038/nrg2625

[176] Brown JL, Brown DM, Zabin I (1967) Thiogalactoside transacetylase. Physical and chemical stud-
ies of subunit structure. J Biol Chem 242:4254-4258.
http://www.jbc.org/content/242/18/4254

[177] Jones TH, Kennedy EP (1969) Characterization of the membrane protein component of the lac-
tose transport system of Escherichia coli. J Biol Chem 244:5981-5987.
http://www.jbc.org/content/244/21/5981

[178] Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent pro-
tein (GFP). Gene 173:33-38.
doi:10.1016/0378-1119(95)00685-0

[179] Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods

2:905-909.
doi:10.1038/nmeth819

118

http://dx.doi.org/10.1111/j.1365-2958.2007.06071.x
http://dx.doi.org/10.1016/S0092-8674(01)00572-4
http://www.jbc.org/content/267/18/13086
http://dx.doi.org/10.1073/pnas.90.9.4295
http://www.genetics.org/cgi/content/abstract/111/3/655
http://dx.doi.org/10.1017/S0016672300024587
http://www.genetics.org/cgi/content/abstract/115/1/25
http://dx.doi.org/10.1371/journal.pone.0006061
http://mic.sgmjournals.org/cgi/content/abstract/146/10/2665
http://dx.doi.org/10.1073/pnas.47.12.1981
http://dx.doi.org/10.1038/ng1616
http://dx.doi.org/10.1038/msb4100110
http://dx.doi.org/10.1038/nrg2625
http://www.jbc.org/content/242/18/4254
http://www.jbc.org/content/244/21/5981
http://dx.doi.org/10.1016/0378-1119(95)00685-0
http://dx.doi.org/10.1038/nmeth819


Bibliography

[180] Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, et al. (2006) A comprehensive library of fluores-
cent transcriptional reporters for Escherichia coli. Nat Methods 3:623-628.
doi:10.1038/nmeth895

[181] Dunlop MJ, Cox RS, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed by
dynamic correlations in gene expression noise. Nat Genet 40:1493-1498.
doi:10.1038/ng.281

[182] Bigger JW, Nelson JH (1941) The growth of coliform bacilli in distilled water. J Pathol Bacteriol

53:189-206.
doi:10.1002/path.1700530204

[183] Postgate JR, Hunter JR (1962) The survival of starved bacteria. J Gen Microbiol 29:233-263.
doi:10.1099/00221287-29-2-233

[184] Shehata TE, Marr AG (1971) Effect of nutrient concentration on the growth of Escherichia coli. J

Bacteriol 107:210-216.
http://jb.asm.org/cgi/content/abstract/107/1/210

[185] Sakai T, Nakamura N, Umitsuki G, Nagai K, Wachi M (2007) Increased production of pyruvic acid
by Escherichia coli RNase G mutants in combination with cra mutations. Appl Microbiol Biotech-

nol 76:183-192.
doi:10.1007/s00253-007-1006-9

[186] Powell EO (1956) Growth rate and generation time of bacteria, with special reference to continu-
ous culture. J Gen Microbiol 15:492-511.
doi:10.1099/00221287-15-3-492

[187] Trueba FJ (1982) On the precision and accuracy achieved by Escherichia coli cells at fission about
their middle. Arch Microbiol 131:55-59.
doi:10.1007/BF00451499

[188] Reshes G, Vanounou S, Fishov I, Feingold M (2008) Cell shape dynamics in Escherichia coli. Bio-

phys J 94:251-264.
doi:10.1529/biophysj.107.104398

[189] Marr AG, Harvey RJ, Trentini WC (1966) Growth and division of Escherichia coli. J Bacteriol

91:2388-2389.
http://jb.asm.org/cgi/content/abstract/91/6/2388

[190] Moisy F (2009). "Ezyfit toolbox for Matlab Version 2.30. Http://www.fast.u-psud.fr/ezyfit/.

[191] Monod J (1949) The Growth of Bacterial Cultures. Annu Rev Microbiol 3:371-394.
doi:10.1146/annurev.mi.03.100149.002103

[192] Kovárová-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-
substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646-666.
http://mmbr.asm.org/cgi/content/abstract/62/3/646

[193] Marr AG, Nilson EH, Clark DJ (1963) The Maintenance Requirement of Escherichia Coli. Ann N Y

Acad Sci 102:536-548.
doi:10.1111/j.1749-6632.1963.tb13659.x

[194] Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond, B, Biol

Sci 163:224-231.
doi:10.1098/rspb.1965.0069

[195] Bendat JS, Piersol AG (2000) Random Data: Analysis and Measurement Procedures. New York,
NY, USA: John Wiley & Sons, Inc.

[196] Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR, et al. (2006) Gene network shaping of
inherent noise spectra. Nature 439:608-611.
doi:10.1038/nature04194

[197] Boezi JA, Cowie DB (1961) Kinetic studies of beta-galactosidase induction. Biophys J 1:639-647.
doi:10.1016/S0006-3495(61)86913-0

119

http://dx.doi.org/10.1038/nmeth895
http://dx.doi.org/10.1038/ng.281
http://dx.doi.org/10.1002/path.1700530204
http://dx.doi.org/10.1099/00221287-29-2-233
http://jb.asm.org/cgi/content/abstract/107/1/210
http://dx.doi.org/10.1007/s00253-007-1006-9
http://dx.doi.org/10.1099/00221287-15-3-492
http://dx.doi.org/10.1007/BF00451499
http://dx.doi.org/10.1529/biophysj.107.104398
http://jb.asm.org/cgi/content/abstract/91/6/2388
http://dx.doi.org/10.1146/annurev.mi.03.100149.002103
http://mmbr.asm.org/cgi/content/abstract/62/3/646
http://dx.doi.org/10.1111/j.1749-6632.1963.tb13659.x
http://dx.doi.org/10.1098/rspb.1965.0069
http://dx.doi.org/10.1038/nature04194
http://dx.doi.org/10.1016/S0006-3495(61)86913-0


Bibliography

[198] Verkhusha VV, Akovbian NA, Efremenko EN, Varfolomeyev SD, Vrzheshch PV (2001) Kinetic anal-
ysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein. Biochem-

istry Mosc 66:1342-1351.
doi:10.1023/A:1013325627378

[199] Dong GQ, McMillen DR (2008) Effects of protein maturation on the noise in gene expression. Phys

Rev E Stat Nonlin Soft Matter Phys 77:021908.
doi:10.1103/PhysRevE.77.021908

[200] Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in
bacteria. Cell 139:1366-1375.
doi:10.1016/j.cell.2009.12.001

[201] Levy S, Barkai N (2009) Coordination of gene expression with growth rate: a feedback or a feed-
forward strategy? FEBS Lett 583:3974-3978.
doi:10.1016/j.febslet.2009.10.071

[202] Maaløe O (1979) Biological Regulation and Development, New York: Plenum Press. pp. 487-542.

[203] Berg OG (1978) A model for the statistical fluctuations of protein numbers in a microbial popula-
tion. J Theor Biol 71:587-603.
doi:10.1016/0022-5193(78)90326-0

[204] Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, et al. (2005) Regulated cell-to-cell vari-
ation in a cell-fate decision system. Nature 437:699-706.
doi:10.1038/nature03998

[205] Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, et al. (2006) Origins of extrinsic variability
in eukaryotic gene expression. Nature 439:861-864.
doi:10.1038/nature04281

[206] Maheshri N, O’Shea EK (2007) Living with noisy genes: how cells function reliably with inherent
variability in gene expression. Annu Rev Biophys Biomol Struct 36:413-434.
doi:10.1146/annurev.biophys.36.040306.132705

[207] Maloney PC, Rotman B (1973) Distribution of suboptimally induces beta-D-galactosidase in Es-
cherichia coli. The enzyme content of individual cells. J Mol Biol 73:77-91.
doi:10.1016/0022-2836(73)90160-5

[208] van Hoek MJA, Hogeweg P (2006) In silico evolved lac operons exhibit bistability for artificial
inducers, but not for lactose. Biophys J 91:2833-2843.
doi:10.1529/biophysj.105.077420

[209] Ninfa AJ, Mayo AE (2004) Hysteresis vs. graded responses: the connections make all the differ-
ence. Sci STKE 2004:pe20.
doi:10.1126/ stke.2322004pe20

[210] Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance ap-
proach. Environ Microbiol 4:133-140.
doi:10.1046/j.1462-2920.2002.00282.x

[211] Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its
definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528-5533.
doi:10.1073/pnas.97.10.5528

[212] Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, et al. (2010) Tradeoff between enzyme
and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme ca-
pacity. Mol Syst Biol 6:356.
doi:10.1038/msb.2010.11

[213] Cox CD, McCollum JM, Austin DW, Allen MS, Dar RD, et al. (2006) Frequency domain analysis of
noise in simple gene circuits. Chaos 16:026102.
doi:10.1063/1.2204354

[214] Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, et al. (2006) Phenotypic consequences
of promoter-mediated transcriptional noise. Mol Cell 24:853-865.
doi:10.1016/j.molcel.2006.11.003

120

http://dx.doi.org/10.1023/A:1013325627378
http://dx.doi.org/10.1103/PhysRevE.77.021908
http://dx.doi.org/10.1016/j.cell.2009.12.001
http://dx.doi.org/10.1016/j.febslet.2009.10.071
http://dx.doi.org/10.1016/0022-5193(78)90326-0
http://dx.doi.org/10.1038/nature03998
http://dx.doi.org/10.1038/nature04281
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132705
http://dx.doi.org/10.1016/0022-2836(73)90160-5
http://dx.doi.org/10.1529/biophysj.105.077420
http://dx.doi.org/10.1126/ stke.2322004pe20
http://dx.doi.org/10.1046/j.1462-2920.2002.00282.x
http://dx.doi.org/10.1073/pnas.97.10.5528
http://dx.doi.org/10.1038/msb.2010.11
http://dx.doi.org/10.1063/1.2204354
http://dx.doi.org/10.1016/j.molcel.2006.11.003


Bibliography

[215] Elf J, Ehrenberg M (2005) Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting
supply of amino acids. Biophys J 88:132-146.
doi:10.1529/biophysj.104.051383

[216] Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli
K-12 using PCR products. Proc Natl Acad Sci USA 97:6640-6645.
doi:10.1073/pnas.120163297

[217] Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome se-
quence of Escherichia coli K-12. Science 277:1453-1462.
doi:10.1126/science.277.5331.1453

[218] Jensen KF (1993) The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph
frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bac-

teriol 175:3401-3407.
http://jb.asm.org/cgi/content/abstract/175/11/3401

[219] Soupene E, van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal D, et al. (2003) Physiological
studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene
expression. J Bacteriol 185:5611-5626.
doi:10.1128/JB.185.18.5611-5626.2003

[220] Lawther RP, Calhoun DH, Adams CW, Hauser CA, Gray J, et al. (1981) Molecular basis of valine
resistance in Escherichia coli K-12. Proc Natl Acad Sci USA 78:922-925.
doi:10.1073/pnas.78.2.922

[221] Liu D, Reeves PR (1994) Escherichia coli K12 regains its O antigen. Microbiology (Reading, Engl)

140 ( Pt 1):49-57.
doi:10.1099/13500872-140-1-49

[222] De Paepe M, Taddei F (2006) Viruses’ life history: towards a mechanistic basis of a trade-off be-
tween survival and reproduction among phages. PLoS Biol 4:e193.
doi:10.1371/journal.pbio.0040193

[223] Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light
microscopy. BioTechniques 31:1076-8, 1080, 1082 passim.

[224] Itan E, Carmon G, Rabinovitch A, Fishov I, Feingold M (2008) Shape of nonseptated Escherichia
coli is asymmetric. Phys Rev E Stat Nonlin Soft Matter Phys 77:061902.
doi:10.1103/PhysRevE.77.061902

[225] Takeuchi S, DiLuzio WR, Weibel DB, Whitesides GM (2005) Controlling the shape of filamentous
cells of Escherichia coli. Nano Lett 5:1819-1823.
doi:10.1021/nl0507360

[226] Männik J, Driessen R, Galajda P, Keymer JE, Dekker C (2009) Bacterial growth and motility in sub-
micron constrictions. Proc Natl Acad Sci USA 106:14861-14866.
doi:10.1073/pnas.0907542106

[227] Grover NB, Woldringh CL, Zaritsky A, Rosenberger RF (1977) Elongation of rod-shaped bacteria.
J Theor Biol 67:181-193.
doi:10.1016/0022-5193(77)90192-8

[228] Kubitschek HE, Woldringh CL (1983) Cell elongation and division probability during the Es-
cherichia coli growth cycle. J Bacteriol 153:1379-1387.
http://jb.asm.org/cgi/content/abstract/153/3/1379

[229] Koch AL (1993) Biomass growth rate during the prokaryote cell cycle. Crit Rev Microbiol 19:17-42.
doi:10.3109/10408419309113521

121

http://dx.doi.org/10.1529/biophysj.104.051383
http://dx.doi.org/10.1073/pnas.120163297
http://dx.doi.org/10.1126/science.277.5331.1453
http://jb.asm.org/cgi/content/abstract/175/11/3401
http://dx.doi.org/10.1128/JB.185.18.5611-5626.2003
http://dx.doi.org/10.1073/pnas.78.2.922
http://dx.doi.org/10.1099/13500872-140-1-49
http://dx.doi.org/10.1371/journal.pbio.0040193
http://dx.doi.org/10.1103/PhysRevE.77.061902
http://dx.doi.org/10.1021/nl0507360
http://dx.doi.org/10.1073/pnas.0907542106
http://dx.doi.org/10.1016/0022-5193(77)90192-8
http://jb.asm.org/cgi/content/abstract/153/3/1379
http://dx.doi.org/10.3109/10408419309113521


Summary

The lac Operon: Fluctuations, Growth and Evolution

This thesis is concerned with two distinct fundamental research questions that
are both investigated using the E. coli lac system. In the first chapters we investigate
what the shape of biological fitness landscapes look like. Chapter 2 reviews recent
progress in measurement of empirical fitness landscapes, and introduces the open
questions in evolution that they may answer, such as why particular evolutionary
paths are taken. In this chapter, we also introduce the concept of epistasis as a use-
ful description of the local shape of fitness landscapes. In chapter 3 we describe ex-
isting in vivo measurements on lac repressor and operator mutants and show how
these can be used to construct a fitness landscape of lac regulation. Using com-
puter simulations we simulate mutational pathways and reveal that new regulatory
interactions can easily evolve. Chapter 4 deals with the local structure of the lac

landscape. We determine that the landscape is multi-peaked and, consistent with
earlier predictions, show the presence of reciprocal sign epistasis. We conclude our
analysis of the lac landscape in chapter 5 with a more global analysis of its struc-
ture, focusing on which landscape features are important for evolution. This study
reveals that the essential features of the lac landscape can be sufficiently captured
by modeling the presence or absence of additivity between functional residues.

In chapter 6 we turn to another fundamental research question: how do ran-
dom molecular fluctuations in the number proteins in a single cell propagate to
its growth? Again, we use the E. coli lac system to investigate this question. But
whereas the first part of this thesis consists of theoretical simulations of lac regu-
lation, here we perform laboratory experiments on E. coli cells that require use of
their lac enzymes for growth. By means of automated and highly sensitive fluores-
cence microscopy, we measure both fluctuations in lac level and in growth rate in
individual growing cells. These experiments show that fluctuations in the growth
rate of single cells can be linked to protein fluctuations, but also reveal a intricate
dynamic interdependency between these two properties.
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Samenvatting

Het lac Operon: Fluctuaties, Groei en Evolutie

De cellen waar wij en alle andere levende wezens uit zijn opgebouwd, bestaan
uit een enorme hoeveelheid moleculen die schijnbaar willekeurig tegen elkaar aan
het botsen zijn. Het is verbazingwekkend dat de interactie van deze niet-levende
deeltjes leidt tot al het complexe leven op aarde. Met fundamenteel onderzoek
proberen wij te begrijpen hoe dit allemaal kan. Soms leidt zulk fundamenteel on-
derzoek tot grote technologische ontwikkelingen. Meestal draagt het voornamelijk
bij aan een beter begrip van de natuur, en steevast aan een set nieuwe uitdagende
open vragen.

In dit proefschrift is een enkel moleculair model systeem onderzocht: het lac

operon. Dit specifieke systeem komt voor in de E. coli bacterie, een klein eencellig
organisme. Varianten van het systeem zijn echter terug te vinden in vele organis-
men, waaronder de mens. Het lac systeem is verantwoordelijk voor slechts één taak
van de cel: het consumeren van lactose. Het bestaat daarvoor uit gespecialiseerde
eiwitten die lactose detecteren en andere die de lactose afbreken zodat de cel het
kan gebruiken om te groeien. Door decennia van onderzoek is er al ontzettend
veel over het lac operon bekend. Het is daardoor uitermate geschikt om funda-
mentele vragen te onderzoeken. Dit proefschrift maakt hier optimaal gebruik van
door meteen twee erg verschillende onderzoeksvragen te belichten.

In het eerste gedeelte van dit proefschrift wordt het lac operon gebruikt om
evolutionaire vragen te onderzoeken: Hoe zijn complexe moleculaire systemen
geëvolueerd? Kunnen we begrijpen waarom ze überhaupt kunnen evolueren? En
kunnen we voorspellen hoe ze in de toekomst zullen evolueren? Omdat evolutie
een ontzettend veelomvattend proces is, zijn zulke vragen niet simpel te beantwo-
orden. Een methode om inzicht in de evolutionaire mogelijkheden van een sys-
teem te krijgen is door het effect van veranderingen (mutaties) te meten. Met be-
hulp van zulke metingen kan een zogenaamd fitness landschap van het systeem
gemaakt worden. Dit landschap, met pieken en dalen, beschrijft wat het effect van
verschillende opvolgende mutaties zijn. Door zo’n gemeten landschap te analy-
seren kunnen we de evolutionaire mogelijkheden van het systeem kwantificeren.

In hoofdstukken 2 t/m 5 onderzoeken wij hoe fitness landschappen van natu-
urlijke systemen eruit zien. We vergelijken recent gemeten landschappen (hoofd-
stuk 2) en simuleren het proces van evolutie op het fitness landschap van het lac

operon (hoofdstuk 3). Een analyse van de structuur van het lac landschap toont aan
dat deze meerdere pieken bevat (hoofdstuk 4). Deze kunnen we relateren aan lo-
cale vormen in het landschap die met het concept van epistase beschreven kunnen
worden. We sluiten onze analyse af met een globale analyse van het lac landschap,
waarbij we op zoek gaan naar structuren in het landschap die van belang zijn voor
succesvolle evolutie (hoofdstuk 5). Tot op zekere hoogte blijken deze structuren
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met behulp van simpel model te kunnen worden beschreven.
In het laatste gedeelte van dit proefschrift (hoofdstuk 6) wordt het lac operon

gebruikt voor een heel ander soort onderzoeksvraag, namelijk gericht op de molec-
ulaire werking van het systeem. Hier kijken we hoe de moleculaire werking van het
lac systeem beïnvloed wordt door fluctuaties in de onderdelen (moleculen) waaruit
het systeem bestaat. Deze fluctuaties, inherent aan moleculaire processen, treden
op in alle cellen. Het is echter nog onduidelijkheid of de groei van cellen door deze
fluctuaties wordt beïnvloed. Daarom hebben we fluctuaties in de groeisnelheid van
enkele cellen tegelijkertijd gemeten met fluctuaties in de hoeveelheid van de lac ei-
witten. Het blijkt dat de groeisnelheid van E. coli cellen inderdaad beïnvloed wordt
door fluctuaties in het lac operon.
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DAAN KIVIET
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