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DNA-coated colloids have great potential for the design of complex self-assembling

materials. In order to predict the structures that will form, knowledge of the interac-

tions between DNA-functionalized particles is crucial. Here, we report results from

Monte Carlo simulations of the pair-interaction between particles coated with single-

stranded DNA sticky ends that are connected to the surface by relatively short and

stiff surface tethers. We complement our calculations with a study of the interaction

between two planar surfaces coated with the same DNA. Based on our simulations

we propose analytical expressions for the interaction potentials. These analytical ex-

pressions describe the DNA-mediated interactions well for particle sizes ranging from

tens of nanometers to a few micrometers and for a wide range of grafting densities.

We find that important contributions to both the repulsive and attractive parts of

the free energy come from purely entropic effects of the discrete tethered sticky ends.

Per bond, these entropic contributions have a magnitude similar to the hybridization

free energy of a free pair of sticky ends in solution and they can thus considerably

change the effective sticky-end binding strength. Based on the calculated interaction

potentials, we expect that stable gas-liquid separation only occurs for particles with

radii smaller than a few tens of nanometers, which suggests that nano-particles and

micrometer-sized colloids will follow different routes to crystallization. Finally, we

note that the natural statistical non-uniformities in the surface distribution of sticky

ends lead to large variations in the binding strength. This phenomenon may compro-

mise the reliability of tests that aim to detect specific DNA targets in diagnostics. In

addition to guiding the design of novel self-assembling materials and gene-detection

assays, the insights presented here could also shed more light on (multivalent) inter-

actions in other systems with tethered binding groups, for instance in the areas of

supramolecular chemistry or ligand-receptor mediated bio-recognition.
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I. INTRODUCTION

Over the past few years, the use of biologically-inspired specific binding groups in the

fields of colloid science and nanotechnology has increased tremendously (see for example

Refs.1–4). A particularly promising approach is to use complementary single-stranded DNA

sticky ends to direct the spontaneous self-assembly of higher-order structures of small par-

ticles and other objects. Such DNA-mediated interactions offer exquisite programmability

through their user-defined nucleotide sequence and are entirely reversible at moderate tem-

peratures. However, in spite of the impressive achievements of ‘pure’ DNA nanotechnol-

ogy (e.g. Refs.4–7), steering nano- and micro-colloidal assembly processes with DNA (e.g.

Refs.8–21) still appears to be anything but straightforward. Experiments show that the be-

havior of DNA-coated particles in suspension strongly depends on factors such as the density

of the particle’s surface coverage, the binding strength of the sticky ends, the particle size

and the length of the construct that tethers the sticky ends to the surface22–30. However, a

quantitative understanding of the interactions and the resulting phase behavior14,25,27,28,31–40

is still largely lacking. We therefore present here a numerical simulation method that al-

lows us to generate the free energy profiles for a common class of systems, namely solid

surfaces functionalized with relatively short and stiff DNA constructs, as used in for in-

stance Refs.10,14,23,24,27,29. With this numerical approach, we explore the dependence of

the (non-electrostatic part of the) DNA-mediated interactions on the grafting details, we

derive analytical expressions for the simulated pair-interaction potential (both for planar

surfaces, Eqs. 5-8, and for spherical particles with sizes in the nanometer to micrometer

range, Eqs. 11-12; see also Section IV) and we predict the form of the phase diagram for

DNA-functionalized particles by evaluating the strength and the range of their attractive

interactions. In addition, we discuss the important but under-appreciated role that entropic

effects play in the interaction between discrete tethered binding groups, as well as the impli-

cations of our results for the interpretation of some of the recent experimental observations

on DNA-functionalized particles. The method and results reported in this paper should pro-

vide direct guidelines for the design of new self-assembling materials with DNA as a “smart

glue”. Moreover, the same fundamental insights apply to any other system with interactions

mediated by tethered binding groups or multiple bonds, e.g. ligand-receptor interactions in

cellular processes and drug targeting41,42.
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FIG. 1. Sticky end confinement. (a) Unhybridized, the tethered sticky ends (in red) explore space

independently, each of them tracing the surface area of a hemi-sphere (dotted curve). Hybridized,

the sticky ends explore a much smaller configurational space (Ω), because they are forced to move

together. There thus is a configurational entropy cost for bond formation, as compared to free

sticky ends in solution. (b) If the surface-surface separation h < Ldna the DNA constructs are

confined, with their sticky endpoints tracing the surface area of a truncated hemi-sphere.

II. SIMULATION METHOD

A. Monte Carlo moves

We use Monte Carlo simulations to determine the distance-dependent interaction free

energy for two surfaces functionalized with complementary DNA sticky ends. The sticky

ends are tethered to the surface through a rigid ‘rod-like’ backbone, e.g. a short double-

stranded DNA sequence (persistence length lp ≈ 45-50 nm, Ref.43). Each tether can swivel

around its otherwise fixed attachment point to the surface, so that in the unhybridized state

the sticky endpoint traces the surface area of a hemi-sphere. When two sticky ends i and j

hybridize they are forced to move together (Fig. 1a) and in Refs.27–29 and Appendix A1 we

show how this restricted freedom of motion leads to a configurational entropy cost, ∆Sconf ,

that needs to be added to the hybridization free energy of the sticky sequences when they

are free in solution:

∆Gij,tether = ∆G0
ij,solution − T∆Sconf = ∆G0

ij,solution − kBT ln

(

Ωij

ΩiΩj

1

ρ0

)

(1)

Here, kB is the Boltzmann constant, T is the absolute temperature, ρ0 is the standard number

density (corresponding to 1 mol/liter) and Ωi,j,ij is the ‘configurational space’ of, respectively,
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the freely swiveling i and j sticky ends and the bound i−j pair. The configurational freedom

depends on the interaction geometry, e.g. the surface-surface separation, h, and the relative

positions of the surface attachment points of the DNA constructs; explicit expressions are

derived in Appendix A2-A3 for plate-plate and sphere-sphere geometries. Although we use

Ldna, the length of the DNA construct, as the unit of length in all of our calculations we

will sometimes explicitly include Ldna in our derivations for the sake of clarity.

In our simulations, the DNA attachment points are Poisson distributed over the two surfaces,

such that their average spacing, hereafter referred to as the ‘average strand spacing’ Sdna,

satisfies a predefined value; the average surface coverage then is 1/S2
dna strands per unit area.

The diameter of the DNA double helix, ddna ≈ 2 nm, sets the minimum strand spacing. We

average the simulation results over multiple, independently generated DNA distributions.

For each distribution we determine the total interaction free energy for a series of surface-

surface separations h ∈ [0, 2] Ldna, at a particular value of ∆G0
ij,solution (hereafter abbreviated

to ∆G0), which corresponds to a temperature that is unique to the sticky DNA sequence

under consideration via ∆G0
dna = ∆H0

dna−T∆S0
dna. Here, ∆H0

dna and ∆S0
dna are the standard

hybridization enthalpy and entropy, respectively, of the DNA sequence when it is free in

solution.

In each trial move, we randomly select a DNA strand, i, on one of the surfaces, which may

be unbound or bound to a strand, j1, on the opposing surface. We identify all the strands

j2, j3, ...jN on the opposing surface that are not bound to other sticky ends and that are

within reach of i and we calculate the configurational entropy cost and, using Eq. 1, the

Boltzmann weight wijn = exp [−β∆Gijn ] of each binding configuration i− jn, including i− j1

(β = 1/kBT ). The probability to form a particular bond ijn then is:

Pijn =
wijn

1 +
∑

jN
wijn

whereas the probability to form no bond at all is:

Punbound,i =
1

1 +
∑

jN
wijn

where the free energy of the unbound configuration is zero. After each move we update the

identity of the binding partners and the total number of bonds.
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B. Free energy calculation

The DNA-mediated interaction free energy can be obtained by thermodynamic integra-

tion (using a 10 point Gauss-Legendre quadrature) with 〈nbonds〉∆G0 , the average number of

bonds that is formed at a specific ∆G0, as the order parameter (see Appendix B for more

details):

Fdna−bound

kBT
(h) =

Fdna−unbound

kBT
(h) −

∫ 0

∆G0′

〈nbonds〉∆G0,h d∆G0 (2)

Here, Fdna−unbound(h) is the interaction free energy of the DNA-functionalized surfaces at

separation h if no hybridization of the sticky ends takes place and thus is simply the repulsive

free energy contribution due to confinement of the DNA constructs between the two surfaces

when h < Ldna (Fig. 1b):

Fdna−rep

kBT
(h) = −

∑

Ntotal

ln

(

Ωn,confined

Ωn,unconfined

)

(3)

Here, we take the case of fully non-interacting surfaces (h > 2 Ldna) as the unconfined

reference state and we sum over the total number of DNA strands in the system. The

expressions for Ωun/confined for a particular strand n can be found in Appendix A2-A3. In

our description, we ignore direct strand-strand interactions, be they of steric or electrostatic

origin. For typical DNA constructs and surface coverages we expect the contribution to

Fdna−rep due to the self-avoiding character of ‘real’ DNA to be fairly small, as for two

overlapping rigid rods the fraction of configurational space that is excluded is approximately

L2
dnaddna/L

3
dna ≈ 2/20 = 0.1. We further note that, for the typical ionic strengths used in

the experiments, the electrostatic repulsion between the negatively charged DNA constructs

is strongly screened and its main effect is to increase the effective ‘hard-core’ diameter of the

DNA rods. Of course, at high grafting densities, strand-strand interactions are important

and the present approach would need to be refined. Realizing that the integral on the right

hand side of Eq. 2 represents the attractive free energy contribution due to hybridization of

the sticky ends, we use the following notation in the remainder of this article to distinguish

the different contributions to the total DNA-mediated interaction free energy:

Fdna−total(h) = Fdna−rep(h) + Fdna−att(h) (4)
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III. RESULTS AND DISCUSSION

A. Planar surfaces

To determine the interactions of two DNA-functionalized flat surfaces we averaged the

results over three simulation runs with independent strand distributions, using Nplate = 2500

strands/plate, the appropriate surface area, Aplate, in order to obtain the desired average

strand spacing (Sdna), and Ldna = 20 nm because many experiments are done in the 15-25

nm range. In each run, we first equilibrated the system for 50 cycles and then calculated

average properties over 150 cycles, with 12500 trial moves per cycle.

1. Interaction potential

The total, surface separation dependent, plate-plate interaction free energy, Fplate,total(h),

is made up of several contributions. First of all, for h > 2 Ldna, the interaction free en-

ergy vanishes (neglecting possible electrostatic interactions, as these usually are strongly

screened). Then, at shorter distances, we have:







Fplate,dna−att(h), 0 6 h 6 2 Ldna

Fplate,dna−rep(h), 0 6 h < Ldna ,

and finally for h < 0, Fplate,HC = ∞ – this is the hard-core repulsion due to overlap of the

plates. Note that we do not show the hard core repulsion explicitly in any of our figures,

we only plot the DNA-mediated contributions. The repulsive (Fplate,dna−rep) and attractive

(Fplate,dna−att) contributions to the DNA-mediated interaction, as defined in Section IIB, can

be obtained separately from our simulations (Fig. 2a) and in the following we will first derive

some useful expressions for these free energies, before discussing the general properties of

the overall plate-plate interaction.

The (non-electrostatic part of the) DNA-mediated repulsion is due to confinement of the

sticky ends between the two surfaces and, using Eq. 3 and Nplate/Aplate = 1/S2
dna, we can

derive an exact analytical expression for this contribution per unit area:

Fplate,dna−rep

kBT L2
dna

(h) = − 2

S2
dna

ln h (5)

Here, Sdna and h are expressed in units of Ldna.
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FIG. 2. Simulated plate-plate interaction for Sdna = 0.75 Ldna. (a) Plot of the total DNA-mediated

interaction free energy per unit area (Fplate,dna−total, black) and the separate repulsive (Fplate,dna−rep, red)

and attractive (Fplate,dna−att, green) contributions, as a function of the surface separation h and for different

sticky-end binding strengths ∆G0. (b) The minimum plate-plate interaction free energy at h = 1.0 (main

panel) and the hybridization free energy of sticky ends in solution as a function of the temperature (inset;

∆H0
dna = -322 kJ/mol and ∆S0

dna = -936 J/molK). (c) The fraction of sticky ends that is bound, for different

plate separations.

8



TABLE I. The fit constants in Fplate,dna−att (Eqs. 7-8)

0 6 h < 1 1 6 h 6 2

c1 1.24 × 10−4 1.34 × 10−5

c2 −1.05 × 10−8 6.27 × 10−6

c3 3.49 × 10−13 −7.03 × 10−6

c4 −3.68 × 10−18 5.90 × 10−6

Unfortunately, we do not have an exact analytical form for the attractive contribution,

because of the vast number of different ways in which the sticky ends can hybridize between

the two surfaces. Instead, we determine the h dependent polynomial that captures the

difference between our simulation data and the approximate expression Fplate,dna−att,approx, a

derivation of which can be found in Appendix C. From the form of Fplate,dna−att,approx, the

polynomial corrections are expected to depend on the surface coverage and binding strength

as S−m
dna exp [−β∆G0]

n
. Using the Levenberg-Marquardt method44, we fit trial polynomials

to the data by a simultaneous unweighted least-squares minimization over all Fplate,dna−att

curves that correspond to a minimum in the total free energy Fplate,total−min ∈ [−2.00,−0.01]

kBT/L2
dna and with Sdna ∈ [0.25, 5.00] Ldna and ∆G0 ∈ [−12.0,−1.0] kBT . We find that

for a satisfactory result – a combination of exponents that fits the data well while keeping

the total number of terms in the polynomial as small as possible – we have to fit the

data for 0 6 h < Ldna and for Ldna 6 h 6 2 Ldna separately, while excluding the sharp

downturn in Fplate,dna−att for h . 0.2 Ldna (Fig. 2a). This has no big impact on the overall

fit to Fplate,dna−total though, because at these small surface separations the DNA-mediated

repulsion, as given by Eq. 5, generally dominates the interaction. Fitting 1534 data points

in total, we find the following combination of expressions for the DNA-mediated attraction,

with a residual error of ±0.004 kBT/L2
dna per point (the standard deviation of the simulation

data typically lies around 0.001 kBT/L2
dna):

Fplate,dna−att,approx

kBT L2
dna

(h) = − 1

S2
dna

ln

(

1 + exp
[

−β∆G0
] 1

2πρ0S2
dnaA

[π

3
(4 − h2)

3
2 − B

]

)

(6)

with Sdna and h in units of Ldna, the standard number density ρ0 = 4817.7 L−3
dna for Ldna =
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20 nm, and A / B as specified below:

A =







1, 1 6 h 6 2

h2, 0 6 h < 1

B =











0, 1 6 h 6 2
∫ r⊥,2

r⊥,1
4r⊥

√

1 − 1
4
(h2 + r2

⊥
) arccos

[

h
√

h2+r2
⊥

2r⊥
√

1− 1
4
(h2+r2

⊥
)

]

dr⊥, 0 6 h < 1

Here, r⊥,1,2 =
√

2 − h2 ∓ 2
√

1 − h2, where r⊥ is the length of the surface projection of the

vector rij that connects the attachment points of two binding partners i and j (see also

Appendix C). For 0 6 h < 1:

Fplate,dna−att

kBT L2
dna

(h) =
Fplate,dna−att,approx

kBT L2
dna

(h)

+
(

c1S
−4
dna exp

[

−β∆G0
]

+ c2S
−6
dna exp

[

−2β∆G0
]

+ c3S
−8
dna exp

[

−3β∆G0
]

+ c4S
−10
dna exp

[

−4β∆G0
])

(1 − h)2

(7)

For 1 6 h 6 2:

Fplate,dna−att

kBT L2
dna

(h) =
Fplate,dna−att,approx

kBT L2
dna

(h)

+ (c1S
−3
dna + c2S

−5
dna) exp

[

−β∆G0
]

(2 − h)

+ (c3S
−3
dna + c4S

−5
dna) exp

[

−β∆G0
]

(2 − h)2 (8)

The fit constants c1−4 are listed in Table I. We point out that one could derive other

functional forms for the interactions as well. However, polynomials are very user-friendly

and we find that they describe the data much better than any other functional form that

we have tried.

The example curves in Fig. 2a show the different DNA-mediated contributions to

Fplate,total for one particular surface coverage and three different ∆G0 values, which are also

relevant to experiments with spherical colloidal particles (further treated in Section IIIC).

For illustrative purposes, we indicate some typical temperatures corresponding to these

∆G0 values, where we use throughout this article ∆H0
dna = -322 kJ/mol and ∆S0

dna = -936

J/molK from Ref.27. The downturn in Fplate,dna−att for small plate separations is due to
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an increasing confinement of the DNA constructs, which makes it relatively less costly to

bind their sticky ends together (i.e. in Eq. 1 the ratio between Ωij and Ωi,j becomes more

favorable), and this strongly enhances the overall binding. If we take the DNA-mediated

repulsion into account, however, the minimum in the total free energy, Fplate,total−min, always

occurs at h = 1.0, because for smaller plate separations the number of sticky ends that

interact with each other does not change much, while the repulsion increases strongly. In

Fig. 2b we plot Fplate,total−min as a function of ∆G0(T ), where the latter quantity basically

reflects the binding strength of a ‘free’ pair of sticky ends in solution at a certain temper-

ature. Contrary to ∆G0 (see inset), the minimum plate-plate binding free energy is not a

linear function of the temperature, although it crosses over to a nearly linear regime at low

temperatures, in this case when ∆G0 . −12 kBT . Fig. 2c provides an explanation for this

behavior: when the temperature is reduced the number of bonds initially increases strongly,

but by the time ∆G0 reaches -12 kBT the fraction of sticky ends that is bound is already 85

% at the equilibrium separation h = 1.0 and the curve starts to level off. A further reduction

of the temperature then leads mostly to stronger individual bonds, instead of significantly

more bonds.

2. Entropic effects

Interestingly, in addition to the DNA-mediated entropic repulsion, entropic effects make

an important contribution to the attractive interaction of DNA-functionalized surfaces. In

Fig. 1a and Eq. 1 we already introduced the so-called configurational entropy cost which

is associated with the hybridization of tethered DNA and which results from the restricted

freedom of motion of the sticky ends upon binding. The other entropic effect is a ‘combinato-

rial’ entropy gain, which originates from the many different ways in which a certain number

of bonds can form between the two surfaces, as there are numerous sticky ends that each

have multiple possible binding partners within reach (in the simple quantitative models of

Refs.27–29 this effect was treated in an approximate fashion). The combinatorial contribution

is reminiscent of the ‘entropic cooperativity’33 and ‘bond disorder’36,40 effects that have been

identified before in simulation studies of DNA-functionalized particle systems with, respec-

tively, DNA linkers freely suspended in solution and long DNA with a radius of gyration

comparable to the size of the particles. A similar effect was also observed in the mean-field
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FIG. 3. Entropic contributions to the attractive plate-plate interaction. (a) Plot of the hybridization free

energy of sticky ends in solution (∆G0, solid line) and the surface separation dependent average binding free

energy per bond (Fbond, solid symbols) and average bond energy (Ubond, open symbols), as defined in the

text. The arrows indicate the differences between the curves that correspond to the average configurational

entropy cost (−T∆Sconf) and the average combinatorial entropy gain (−T∆Scombi), both per bond. The

simulations were done for Sdna = 0.75 Ldna and ∆G0 = −6.0 kBT . (b) The absolute values of −T∆Sconf

(red) and −T∆Scombi (green), for Sdna = 0.75 Ldna and different ∆G0. (c) The combinatorial entropy gain

per strand for ∆G0 = −6.0 kBT and different Sdna. The surface area in the simulations was chosen such

that in all cases there were 2500 strands per plate.
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in the system that is bound, as a function of the surface separation.

theory of Zilman et al. for telechelic polymers45. These entropic effects have a major impact

on the DNA-mediated interactions and phase behavior with, as the most extreme case, a

first-order gas-liquid separation solely driven by the higher degeneracy of bond formation

in the dense phase36,40. Together with the observations presented here, these results show

that for a proper interpretation of suspension behavior due to tethered DNA sticky ends

or other binding groups it is absolutely necessary to take the entropic effects of the bonds
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(see text). The surface separation was fixed at h = 1.0 and ∆G0 = −6.0 kBT . We varied Sdna and

the surface area in such a way that there were always 2500 strands per plate.

into account, but unfortunately this has hardly been done so far. Also in drug design, the

configurational entropy cost and combinatorial entropy gain (referred to as ‘conformational

entropy loss’ and ‘avidity entropy’ in Ref.46) of multivalent ligand-receptor interactions have

received surprisingly little attention, even though it has been recognized that these factors

can strongly affect a drug’s effectivity41,42,46. For instance, Kitov & Bundle46 found that the

combinatorial entropy gain due to multivalency of the receptors and/or ligands can com-

pletely overcome the configurational entropy cost associated with the binding of ligands that

are attached to long tethers.

To clearly bring out the different entropic effects for our DNA-functionalized flat plates

we compare in Fig. 3a the hybridization free energy of a pair of sticky ends when they

are free in solution (∆G0) with the average ‘binding free energy’ per bond, Fbond(h) =

Fplate,dna−att(h)/nbonds(h), and with the average ‘bond energy’ as given by:

Ubond(h) =

∑

n ∆Gijn

nbonds(h)

where the sum runs over all bonds formed and with ∆Gijn for sticky end pair i− jn from Eq.

1. The difference Ubond(h)−∆G0 then reflects the (positive) average configurational entropy

cost per bond, −T∆Sconf , and Fbond(h) − Ubond(h) is the (negative) average combinatorial

entropy gain per bond, −T∆Scombi. We point out that the same considerations apply to
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DNA-functionalized micro- and nano-particles (Section IIIC), but that we only discuss the

details of the entropic effects for the case of flat plates, where the absence of curvature

allows for a straightforward interpretation. In Fig. 3b, we have plotted the absolute value

of each of the entropy contributions per plate-plate bond, for a number of different ∆G0(T )

values. One can clearly see the reduction in the configurational entropy cost for bond

formation for small surface separations, as was discussed above, while for h ↑ 2 Ldna the

cost diverges because Ωij goes to zero (note that the last point shown is for h = 1.99 Ldna).

Another important thing to note is that, per bond formed, the absolute magnitude of each

of the entropic effects is of the same order as the hybridization free energy of the sticky

ends when they are free in solution, ∼ 5 − 10 kBT . The effective binding strength of

the sticky ends is thus significantly altered when they are tethered to a surface, but due

to the opposite signs of the combinatorial and configurational contributions it is generally

not a priori known what the net effect is. Also, the results of studies that compare the

binding strength of sticky ends freely suspended in solution and tethered to particles (e.g.

Ref.47) must depend on the grafting details, like the tether length and surface coverage,

as these affect the magnitude of the different entropic effects. From Fig. 3b it appears

that the configurational entropy cost per bond is quite insensitive to ∆G0(T ) and Sdna

(the latter is not shown), though, suggesting that the sticky ends generally exclude binding

configurations with a highly unfavorable entropy cost. This observation seems to contradict

the hypothesis of Hill et al. that mis-aligned ‘slipping’ bonds can significantly increase the

stability of DNA-functionalized nano-particle aggregates48. Although their constructs had a

more flexible single-stranded tether backbone, similar configurational entropy effects should

influence the interactions. Based on our results, it seems unlikely that less-favorable bonds,

due to a strained binding geometry and/or base pair mismatches, play a significant role

near the dissociation temperature of the aggregates. Instead of a difference in their ability

to establish ‘slipping’ interactions, it is more likely that for distinct 5′ to 3′ base sequences

(e.g. GC versus CG in Ref.48) the difference in their solution hybridization free energies49

is the dominant cause of the different nano-particle dissociation temperatures.

The trends in the combinatorial entropy gain are best understood by considering both Fig.

3b-c and Fig. 4a-b. Fig. 4a shows how an increased surface coverage and a decreased surface

separation lead to an increase in the average number of potential binding partners that is

within reach of a sticky end (i.e. the number of sticky ends on the opposing surface whose
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tether attachment points are within 2 Ldna of the attachment point of the sticky end of

interest on the other surface). More partners means more different ways to form bonds and

therefore the overall combinatorial entropy gain per strand in Fig. 3c becomes more negative

for larger surface coverages and smaller plate separations. Note that, although the number

of possible binding partners increases at smaller surface separations, there will also be more

sharing of the same partners between neighboring sticky ends. Moreover, the overall fraction

of strands that is bound increases for smaller separations (Fig. 4b) and, consequently, the

average number of free binding partners that each sticky end ‘sees’ at a certain instant of

time effectively goes through a maximum as a function of h in Fig. 4a. The change in the

total number of bound strands also explains the h and ∆G0 dependence of the combinatorial

entropy gain per bond, Fig. 3b (refer to Fig. 2c for the ∆G0 dependence of the fraction of

bound strands). The more negative ∆G0 and the smaller h, the larger the number of bonds

formed and the smaller the combinatorial entropy gain per bond, despite the fact that the

overall combinatorial entropy gain is larger (e.g. Fig. 3c). As a final illustration of the

combinatorial contribution we plot in Fig. 5 Fplate,dna−att and Ubond,total =
∑

n ∆Gijn for the

case that the surface separation, ∆G0 and the total number of strands in the system (2500

per plate) are kept fixed and only Sdna is varied, thus changing the total number of bonds

that is formed. From the inset we can see that Sdna indeed hardly affects the configurational

entropy cost for bond formation, leading to a linear relationship between Ubond,total and the

number of bonds formed. Fplate,dna−att, on the contrary, depends non-linearly on the number

of bonds, which unequivocally proves the presence of a combinatorial effect.

B. Predicting the sphere-sphere interaction: Derjaguin approximation

Using the Derjaguin (DJ) approximation50, it is possible to obtain the interaction between

two surfaces of arbitrary curvature from the known plate-plate interaction, provided that the

radius of curvature is large compared to the range of the interaction. For same-size spheres

of radius R at a distance of closest approach h – measured from pole to pole – the Derjaguin

approximation predicts the following interaction free energy, which we can factorize into

separate attractive and repulsive contributions (see Section IIIA 1):

Fsphere,total,DJ

kBT
(h) = πR

∫ 2 Ldna

h′

Fplate,total

kBT L2
dna

(h)dh (9)
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FIG. 6. Derjaguin approximation of the DNA-mediated sphere-sphere interaction. (a) Plot of

our fits (solid lines) to the simulated plate-plate interaction (symbols) for Sdna = 0.75 Ldna /

∆G0 = −6.0 kBT (red, open symbols) and for Sdna = 0.25 Ldna / ∆G0 = −3.0 kBT (green, solid

symbols). (b) Derjaguin approximation (solid lines) of the simulated sphere-sphere interaction

(symbols) for R = 25.0 Ldna / Sdna = 0.75 Ldna / ∆G0 = −6.0 kBT (red, open symbols) and for

R = 6.7 Ldna / Sdna = 0.25 Ldna / ∆G0 = −3.0 kBT (green, solid symbols). The error bars on the

simulation data are due to the different random strand distributions of separate runs.

Obviously, Fsphere,HC,DJ = ∞ when h < 0, reflecting the hard-core overlap of the particles

(we again plot only the DNA-mediated contributions in our figures, though). We obtain

the hybridization-mediated attraction, Fsphere,dna−att,DJ (0 6 h 6 2 Ldna), by numerically

integrating the expressions for Fplate,dna−att (Eqs. 7- 8), while the confinement-induced DNA-
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FIG. 7. Derjaguin approximation of the repulsive part of the DNA-mediated sphere-sphere in-

teraction for Sdna = 0.75 Ldna and different particle sizes. (a) Solid lines: Derjaguin prediction;

symbols: simulation data. (b) Close-up of the area below the dashed line in panel (a).

mediated repulsion (Eq. 5, 0 6 h < Ldna) gives rise to the following analytical form:

Fsphere,dna−rep,DJ

kBT
=

2πR

S2
dna

(h lnh − h + 1) (10)

Note, however, that while the repulsive interaction is exactly known in the case of flat

plates, there is some sphere-to-sphere variation due to their different strand distributions

or, in other words, for spheres Ωn,confined in Eq. 3 is generally different for each of the n

strands. In Fig. 6a we plot our fit to the simulated DNA-mediated plate-plate interaction

for two different {Sdna, ∆G0} combinations (using the expressions derived in Section IIIA 1)
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TABLE II. The fit constants in Fsphere,dna−rep (c1) and Fsphere,dna−att (c2,3), Eqs. 11- 12

c1 -29.15

c2 4.18 × 10−5

c3 −6.78 × 10−10

and in Fig. 6b we show the corresponding Derjaguin predictions and simulation data for

the pair-interaction of two spherical particle systems which will be treated in more detail

in the next section. From the latter graph it appears that for the larger particles with

R = 25.0 Ldna the Derjaguin approximation performs quite well, whereas for the smaller

particles with R = 6.7 Ldna there is a clear deviation. To get a better idea of the R range

in which the Derjaguin approximation gives satisfactory results we plot in Fig. 7 only the

repulsive DNA-mediated interaction, because this contribution is exactly known from Eq.

10, so that any departures from the simulation data are entirely due to the finite particle

curvature. As expected, the deviations are seen to increase when the particle radius becomes

smaller and we find that the interaction is only well-predicted, say up to at least 50 kBT ,

for sphere sizes down to R ≈ 10 Ldna.

C. Spheres

To extract the pair -interaction of same-size DNA-functionalized spheres from our com-

puter simulations we first determine the maximum ‘interaction area’ on the spheres when

their hard cores are in contact, i.e. the area at their poles inside which the surface-to-surface

distance is maximally 2 Ldna. We then distribute the appropriate number of strands over

these areas (again taking Ldna = 20 nm), so as to obtain the desired average strand spacing,

Sdna. The smaller the number of interacting strands, that is, the lower the coverage 1/S2
dna

and the smaller the sphere radius R, the more runs with independent strand distributions

are used to calculate average properties (ranging from 3 - 105 runs for our choice of param-

eters). For each run we use 50 equilibration and 150 production cycles. The number of trial

moves is set such that in each cycle every strand is picked on average at least three times

for all sphere-sphere separations.
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1. Interaction potential

Like for planar surfaces, we can split the total sphere-sphere interaction free energy into

separate hard-core repulsive (Fsphere,HC = ∞ when the distance of closest approach h < 0)

and DNA-mediated repulsive (Fsphere,dna−rep) and attractive contributions (Fsphere,dna−att),

where we again neglect possible electrostatic contributions. We derive expressions for the

DNA-mediated contributions, which are separately obtained from our simulations, by fitting

the difference between the simulation data and a couple of approximate expressions for the

free energy, in a way entirely analogously to the determination of Fplate,dna−att in Section

IIIA 1. We simultaneously fit all interaction curves that correspond to a minimum in the

total free energy Fsphere,total−min ∈ [−10.0,−1.0] kBT and with R ∈ [2.5, 100.0] Ldna, Sdna ∈
[0.25, 5.00] Ldna and ∆G0 ∈ [−12.0,−1.0] kBT . We fit the repulsive interaction up to 100

kBT , using a total of 12542 data points, which gives:

Fsphere,dna−rep

kBT
(h) =

Fsphere,dna−rep,DJ

kBT
(h) + c1R

−1S−2
dna(1 − h)4 (11)

with Fsphere,dna−rep,DJ from Eq. 10 (0 6 h < Ldna) and with a residual error of ±0.45 kBT/point.

The fitting term has the expected dependence on the surface coverage and particle size and

corrects for the deviations from the Derjaguin approximation, which are increasingly im-

portant for smaller spheres, see Fig. 7. For the attractive contribution (0 6 h 6 2 Ldna),

we find that we get the best results with the fewest fitting terms if we directly determine

the correction to the Derjaguin integral of Fplate,dna−att,approx (Eq. 6), instead of using the

more complex expressions for Fplate,dna−att. With 19213 data points the residual error is

±0.41 kBT/point and:

Fsphere,dna−att

kBT
(h) = πR

∫ 2 Ldna

h′

Fplate,dna−att,approx

kBT L2
dna

(h)dh

+
(

c2RS−4
dna exp

[

−β∆G0
]

+ c3RS−6
dna exp

[

−2β∆G0
])

(2 − h)3 (12)

All fit constants can be found in Table II. The R dependence of the correction suggests that

the deviations from the Derjaguin approximation for small spheres is fairly insignificant

compared to the deviation that is introduced by the use of an approximate expression for

the attractive plate-plate interaction free energy.

Taken together, the above expressions represent the simulated Fsphere,dna−total to within 10

% at all sphere separations for those combinations of R ∈ [3.3, 100.0] Ldna, Sdna ∈ [0.38, 5.00]
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FIG. 8. The total DNA-mediated sphere-sphere interaction free energy (Fsphere,dna−total, black) and

the separate repulsive (Fsphere,dna−rep, red) and attractive (Fsphere,dna−att, green) contributions, as

a function of the distance of closest approach h. (a) R = 6.7 Ldna and Sdna = 0.25 Ldna. (b)

R = 25.0 Ldna and Sdna = 0.75 Ldna. The different sticky-end binding strengths (∆G0) used in the

simulations are indicated in the panels.

Ldna and ∆G0 ∈ [−12.0,−1.0] kBT that have a binding minimum −10 6 Fsphere,total−min 6

0 kBT (for R 6 20.0 Ldna the Sdna range can be extended to 0.25 Ldna). We point out that,

strictly speaking, the spheres only have a purely pair-wise interaction when R & 6.5 Ldna,

if we assume that their hard cores can come into contact (otherwise the limiting radius

will be smaller). For smaller radii the DNA of more than one particle can compete for

the same binding partners on another particle. We expect such non-pair-wise interactions
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a function of the sphere separation for the same conditions as in Fig. 8a-b. (a) R = 6.7 Ldna and

Sdna = 0.25 Ldna. (b) R = 25.0 Ldna and Sdna = 0.75 Ldna.

to play a role in many DNA-functionalized nano-particle systems, which frequently have

R ≈ 0.5 Ldna or even less (e.g. in Refs.10,11,23). Instead of trying to approximate this

regime, we include in Fig. 8a a graph of the DNA-mediated free energy contributions for

the smallest particles in our simulations for which the interactions are still strictly pair-

wise additive (R = 6.7 Ldna), at a surface coverage that is comparable to that used in

some of the nano-particle experiments (Sdna ≈ 0.25 Ldna). The other graph, in Fig. 8b, is

representative of some typical experimental systems of micrometer-sized colloidal particles
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(e.g. Refs.14,16,27), where we take R = 25.0 Ldna and Sdna = 0.75 Ldna. Compared to the

total DNA-mediated plate-plate interaction in Fig. 2a, the curves for Fsphere,dna−total have

a much more pronounced attractive minimum. This is, because in the case of spheres the

effective interaction area and, thereby, the number of interacting sticky ends, increases when

the surface separation is decreased, whereas for plates these are essentially constant. For

spheres, this does not only lead to more repulsion when the surface separation drops below

h = 1, but also to significantly more bonds, even if the fraction of strands that is bound does

not increase much, Fig. 9a-b. The other point to note is that the attractive minimum has a

very strong temperature dependence: with the ∆H0
dna and ∆S0

dna values from Ref.27 a change

of only ∼ 3 ◦C (corresponding to a change in ∆G0 of about 1 kBT ) can lead to a change

in Fsphere,total−min of more than 10 kBT . This agrees with the sharp dissociation transitions

observed in experiments8,17,22,27,29, which are also seen if no ‘cooperative melting’51 of the

bonds can occur. A simple physical argument by one of the present authors (and reproduced

in Ref.21) qualitatively shows that the dissociation transition will become sharper as the

maximum number of inter-particle bonds N increases. Namely, if the free energy difference

between the bound and the unbound state of a pair of sticky ends is ∆g, then the probability

that a single pair of sticky ends is not bound is Pu(1) = 1/(1+exp [−β∆g]). If we assume that

every sticky end on a particle can bind to only one particular partner strand on the opposing

particle, and that each of these sticky-end pairs has the same binding strength ∆g, then the

probability that all the sticky ends between the particles are unbound is Pu(N) = Pu(1)N .

Hence, whereas Pu(1) follows a Langmuir-like curve, Pu(N) is much sharper and approaches

a step function when N → ∞. If the maximum possible number of inter-particle bonds is

large the particles only dissociate when the probability to form a given bond is already very

small, that is, when exp [−β∆g] ≪ 1. In this case Pu(N) = Pu(1)N ≈ exp
[

−Ne−β∆g
]

. If we

assume that ∆g varies linearly with T , then we can write ∆g ≈ −∆s∆T , with ∆T ≡ T −Tm

and Tm the temperature where ∆g = 0. At Tm there is a 50% probability that a bond that

can form, will form. But above Tm, the unbound state is more likely than the bound state.

When β∆g ≫ 1, we obtain:

Pu(N) ≈ exp
[

−Neβ∆s∆T
]

(13)

Thus, when the number of bonds N is not too small, the dissociation probability of a pair

of particles depends doubly exponentially on the temperature. It further follows that the
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FIG. 10. The minimum sphere-sphere interaction free energy in the attractive potential well, as a

function of the binding strength of the sticky ends (∆G0). (a) For particles with R = 25.0 Ldna

and different surface coverages. (b) For S = 0.75 Ldna and different particle sizes.

dissociation temperature of the particles depends logarithmically on N .

2. Phase behavior

Two major determinants for the phase behavior that results from the DNA-mediated par-

ticle interactions are the depth of the attractive minimum and the range of the interaction52,53.

To get a first impression of these interaction characteristics we plot in Fig. 10a-b the value

of Fsphere,total−min as a function of ∆G0, for a fixed particle radius and a varying coverage, as
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FIG. 11. The equilibrium sphere-sphere binding distance as a function of ∆G0, at the same

conditions as in Fig. 10a-b. (a) For particles with R = 25.0 Ldna and different surface coverages.

(b) For S = 0.75 Ldna and different particle sizes.

well as for a fixed surface coverage and several different particle radii (assuming pair-wise

interactions for all R and limiting ourselves to Fsphere,total−min ∈ [−10,−1] kBT ). In Fig. 11a-

b we do something similar for the location of the attractive minimum, or, the equilibrium

binding distance, heq. Not surprisingly, the attractive minimum at a certain ∆G0 is deeper

for higher surface coverage (smaller Sdna) and larger particle radius, because more sticky

ends are available for binding in the contact area between the two surfaces. One can also

recognize the strong temperature / ∆G0 dependence of Fsphere,total−min and the crossover

to a nearly linear regime at low temperatures when the number of bonds formed levels
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in Tables III-IV) where the range of the interaction satisfies ra > 0.13 (see text). Open circles:

reduced second virial coefficient B∗
2 > −1.5; closed circles: B∗

2 6 −1.5; triangles: ∆G0 outside the

working range of our expressions for Fsphere,dna−total (see Section IIIC 1), but likely B∗
2 6 −1.5.

For larger R values than those shown here the range of the interaction is ra < 0.13.

TABLE III. Characteristics of the particle-particle interaction for the data points in Fig. 12. For

each {R,Sdna} combination the lower and upper ∆G0 bound (in the range [-12.0, -1.0] kBT ) with

ra > 0.13 and B∗

2 > −1.5 are given.

R [Ldna] Sdna [Ldna] ∆G0 [kBT ] ra B∗

2 Fsphere,total−min [kBT ]

4.00 2.7 -10.7 / -11.5 0.13 0.62 / 0.07 -0.64 / -1.16

4.00 2.8 -10.5 / -12.0 0.13 0.74 / -0.37 -0.47 / -1.44

3.85 2.4 -10.3 / -11.3 0.13 0.59 / -0.38 -0.68 / -1.45

3.85 2.5 -10.1 / -11.8 0.13 0.73 / -1.07 -0.49 / -1.77

3.70 2.1 -10.3 / -10.7 0.13 0.20 / -0.38 -1.06 / -1.44

3.57 1.9 -10.0 / -10.6 0.13 0.08 / -1.22 -1.16 / -1.83

3.45 1.7 -10.0 / -10.1 0.13 -0.82 / -1.14 -1.67 / -1.80

off, similar to the case of planar surfaces shown in Fig. 2b-c. The number of bonds does

not become entirely constant however, because the equilibrium binding distance decreases

slightly with the temperature (Fig. 11), thereby bringing more sticky ends into contact.
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TABLE IV. Characteristics of the particle-particle interaction for the data points in Fig. 12. For

each {R,Sdna} combination the lower and upper ∆G0 bound (in the range [-12.0, -1.0] kBT ) with

ra > 0.13 and B∗

2 6 −1.5 are given.

R [Ldna] Sdna [Ldna] ∆G0 [kBT ] ra B∗

2 Fsphere,total−min [kBT ]

3.70 2.2 -11.4 0.13 -1.70 -2.00

3.70 2.3 -11.6 / -12.0 0.13 -1.67 / -4.55 -1.97 / -2.65

3.70 2.4 -11.8 / -12.0 0.13 -1.69 / -2.79 -1.96 / -2.27

3.70 2.5 -12.0 0.13 -1.76 -1.96

3.57 2.0 -11.0 / -11.2 0.13 -1.85 / -2.89 -2.03 / -2.32

3.57 2.1 -11.2 / -11.9 0.13 -1.73 / -10.06 -1.97 / -3.30

3.57 2.2 -11.4 / -12.0 0.13 -1.66 / -7.57 -1.93 / -3.02

3.57 2.3 -11.6 / -12.0 0.14 / 0.13 -1.63 / -4.39 -1.90 / -2.56

3.57 2.4 -11.8 / -12.0 0.14 -1.65 / -2.71 -1.89 / -2.19

3.57 2.5 -12.0 0.14 -1.72 -1.90

3.45 1.8 -10.5 / -10.9 0.13 -1.74 / -4.33 -1.98 / -2.61

3.45 1.9 -10.7 / -11.7 0.13 -1.57 / -19.55 -1.90 / -3.90

3.45 2.0 -11.0 / -11.9 0.14 / 0.13 -1.82 / -19.59 -1.96 / -3.88

3.45 2.1 -11.2 / -12.0 0.14 / 0.13 -1.71 / -13.81 -1.90 / -3.53

3.45 2.2 -11.4 / -12.0 0.14 -1.64 / -7.27 -1.86 / -2.93

3.45 2.3 -11.6 / -12.0 0.14 -1.61 / -4.26 -1.84 / -2.47

3.45 2.4 -11.8 / -12.0 0.15 / 0.14 -1.62 / -2.65 -1.83 / -2.12

3.45 2.5 -12.0 0.15 -1.69 -1.83

3.33 1.6 -10.0 / -10.4 0.13 -1.78 / -4.73 -2.00 / -2.67

3.33 1.7 -10.2 / -11.2 0.13 -1.52 / -16.79 -1.88 / -3.76

3.33 1.8 -10.5 / -11.7 0.14 / 0.13 -1.73 / -46.40 -1.92 / -4.72

3.33 1.9 -10.7 / -11.8 0.14 / 0.13 -1.56 / -28.06 -1.84 / -4.19

3.33 2.0 -11.0 / -11.9 0.14 / 0.13 -1.81 / -18.59 -1.90 / -3.77

3.33 2.1 -11.2 / -12.0 0.15 / 0.14 -1.70 / -13.19 -1.84 / -3.43

3.33 2.2 -11.4 / -12.0 0.15 / 0.14 -1.62 / -7.03 -1.80 / -2.84

3.33 2.3 -11.6 / -12.0 0.15 -1.59 / -4.15 -1.78 / -2.40

3.33 2.4 -11.8 / -12.0 0.15 -1.60 / -2.60 -1.77 / -2.05

3.33 2.5 -12.0 0.16 -1.66 -1.7827
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FIG. 13. Probability distribution of the number of sticky ends in the interaction area on each of

the particle surfaces. (a) For R = 6.7 Ldna, Sdna = 0.25 Ldna and h = 0.98 Ldna (corresponding to

the curve for ∆G0 = −3.0 kBT in Fig. 8a). Each bin corresponds to a 5.0 % deviation from the

mean value of ninteract. (b) For R = 25.0 Ldna, Sdna = 0.75 Ldna and h = 0.95 Ldna (corresponding

to the curve for ∆G0 = −6.0 kBT in Fig. 8b); 4.8 % deviation per bin. (c) For R = 0.5 Ldna,

Sdna = 0.2 Ldna, h = 1.0 Ldna, Ldna = 15 nm and 5.1 % deviation per bin. (d) For R = 0.7 Ldna,

Sdna = 0.4 Ldna, h = 1.0 Ldna, Ldna = 10 nm and 7.9 % deviation per bin.

From Fig. 11a-b we further see that for the same range of Fsphere,total−min ∈ [−10,−1] kBT

the equilibrium binding distance is smaller for lower coverage (larger Sdna) and for smaller

particles, as fewer strands contribute to the DNA-mediated repulsion.

In order to estimate the form of the phase diagram and, in particular, the stability re-

gion of the gas-liquid separation, we follow the procedure of Ref.53 to compute the range
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FIG. 14. Derjaguin approximation of the DNA-mediated sphere-plate interaction for R = 4.0 Ldna,

∆G0 = −7.2 kBT and several surface coverages around Sdna = 1.00 Ldna (red: higher coverage;

blue: lower coverage).

(ra) of the interaction, as given by Fsphere,total, and the reduced second virial coefficient

B∗

2 = B2/B2,HS(σeff ) (here, B2,HS(σeff ) is the second virial coefficient of hard spheres with

a diameter equivalent to the repulsive part of our interaction). The results are given

in Fig. 12 and Tables III-IV, where we have limited the calculation to R > 3.33 Ldna,

Sdna 6 3.0 Ldna and ∆G0 > −12.0 kBT (note, however, that there may be deviations from

the pair-interaction Fsphere,total for R < 6.5 Ldna due to many-body interactions, see also

Section IIIC 1). Noro & Frenkel53 found that generally the gas-liquid separation is stable

when ra & 0.13 − 0.15, while Vliegenthart & Lekkerkerker52 noted that the critical point

is usually located around B∗

2 ≈ −1.5. Using these two criteria we find that the gas-liquid

separation only becomes stable for relatively small particles with R . 3.7 − 4.0 Ldna and

that the stability region extends to higher coverages (smaller Sdna) for smaller particles,

although for our parameter range the coverage is still fairly low, Sdna & 1.6 Ldna (Fig. 12).

Clearly, in most of the experiments on colloidal particles with radii of several hundreds

of nanometers the gas-liquid separation will be metastable, because the DNA-mediated

interaction is very short-ranged. This agrees with the simulations of Scarlett et al.38, who

consistently obtained a metastable fluid phase for particle sizes and interaction strengths

that correspond to the experimental systems of Ref.37. In contrast, many nano-particle

experiments, typically with R < Ldna, are performed in a regime where there should be gas-
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liquid coexistence. In future work we will investigate in detail how this difference between

micro- and nano-particles affects their crystallization, and other self-assembly processes.

In other systems it has for instance been observed that gas-liquid separation can enhance

crystal nucleation, whereas in still other cases gelation was found to interfere54. We point

out that the possibility of a stable gas-liquid transition in nano-particle systems for suf-

ficiently long-ranged interactions qualitatively agrees with the experiments of Macfarlane

et al.55, without the need to consider additional kinetic effects. Namely, these researchers

observed the formation of dense disordered ‘aggregates’ followed by their transformation

into well-ordered crystallites when they used long linkers to tether the sticky ends to the

particle surface, while short linkers led to no observable intermediates between the unbound

particles and crystallites. In general, the interpretation of the experimentally observed sus-

pension behavior as a function of the linker length (e.g. the studies in Refs.11,23) may not be

so straightforward, however, if one does not determine the exact form of the DNA-mediated

interactions. For instance, as the linker length is varied not only the range of the interaction

changes, but also the configurational and combinatorial entropy contributions, and thereby

the overall interaction strength (Section IIIA 2). As mentioned before, in the limit of ex-

tremely long linkers (comparable to the particle size), one could even cross over to a different

regime, with phase transitions driven entirely by entropy36,40. Moreover, in experiments the

‘real’ phase diagram could be obscured by kinetic effects, such as delayed nucleation or ar-

rested phase separation54. This may be one of the reasons that crystallization is frequently

found to be more successful when the temperature is cycled, for example in Ref.11. Due to

this complexity there clearly is still a need for more theoretical and experimental studies of

DNA-mediated interactions and phase behavior.

Finally, it is important to keep in mind that the random nature of the DNA distribution

on the particle surface may lead to significant variations in the particle-particle interac-

tion, depending on their mutual orientation. To illustrate this, we construct histograms

of the probability to have a certain number of sticky ends in the interaction area between

two spheres for several different {R, Sdna} combinations (at the known heq or, otherwise,

h = 1 Ldna). Fig. 13a-b correspond to the systems with the interaction potentials of Fig.

8a-b, whereas Fig. 13c-d were drawn up for typical nano-particle parameters. Apparently,

for small particles and/or low coverages there can be a wide spread in the number of in-

teracting sticky ends; for the case of Fig. 13d the spread even is more than 50 % for the
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majority of the particle encounters. If the objective is to obtain bulk crystallization this

may not be too problematic, as only encounters with a sufficiently strong interaction will

lead to nucleation and growth, but if the particles are used as probes for the detection of

specific DNA target sequences56 it may lead to ambiguous results. One format for such a

detection assay uses DNA-functionalized nano-particles as the probes, which interact with a

flat surface functionalized with single-stranded target sequences, see for example Refs.57,58.

From the Derjaguin approximation it follows that Fsphere−plate,total,DJ = 2Fsphere,total,DJ and

using Eq. 9 we find the example curves in Fig. 14. Here, we use R = 4 Ldna as the smallest

particle size without many-body interactions in the sphere-plate geometry, and we choose

∆G0 such that Fsphere,total−min ≈ −3 kBT for Sdna = 1.0 Ldna. The steps of 0.05 Ldna then

correspond roughly to a ∼10 % variation in the surface coverage, which, according to Fig.

13, is quite feasible. It can be seen that just a 10 % variation can already lead to ∼ 1

kBT change in Fsphere,total−min, which can make the difference between a bound or a free

nano-particle probe in the detection assay.

IV. TECHNICAL SUMMARY

The pair-interaction potentials derived here apply to solid surfaces functionalized with

relatively short and stiff DNA constructs, that behave like ‘rigid rods’. We provide separate

expressions for the repulsive and attractive contributions to the DNA-mediated interaction,

where we ignore direct strand-strand interactions of steric or electrostatic nature. For typical

experimental surface coverages and ionic strengths, the repulsion due to self-avoidance is

expected to be small, while the electrostatic interactions are strongly screened. Thus, only

at high grafting densities would the present approach need to be refined. For planar surfaces

the confinement-induced DNA-mediated repulsion, Fplate,dna−rep, is given per unit area by Eq.

5, which is valid for all Ldna, all strand spacings Sdna and all plate separations 0 6 h < Ldna.

The DNA-mediated attraction, Fplate,dna−att, per unit area of the planar surfaces is given by

the combination of Eq. 6 with, respectively, Eq. 7 (0 6 h < 1) and Eq. 8 (1 6 h 6 2), plus

the fit constants from Table I. These expressions were derived for Ldna = 20 nm and describe

all Fplate,dna−att profiles that correspond to a minimum in the total free energy Fplate,total−min ∈
[−2.00,−0.01] kBT/L2

dna and with Sdna ∈ [0.25, 5.00] Ldna and ∆G0 ∈ [−12.0,−1.0] kBT .

The total DNA-mediated interaction free energy for planar surfaces, Fplate,dna−total, follows
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directly from the summation of the separate attractive and repulsive contributions. For

spherical particles the DNA-mediated repulsion, Fsphere,dna−rep, is given by the combination

of Eq. 10 and Eq. 11, for h < Ldna and repulsions up to 100 kBT . The DNA-mediated

attraction, Fsphere,dna−att, is given by the combination of Eq. 6 and Eq. 12 (0 6 h 6 2 Ldna),

while the total interaction free energy, Fsphere,dna−total, again follows from a straightforward

summation. The relevant fit constants are listed in Table II. The expressions were derived for

Ldna = 20 nm and describe the interactions well for those combinations of particle radii R ∈
[3.3, 100.0] Ldna, Sdna ∈ [0.38, 5.00] Ldna and ∆G0 ∈ [−12.0,−1.0] kBT that have a binding

minimum −10 6 Fsphere,total−min 6 0 kBT (for radii R 6 20.0 Ldna the Sdna range can be

extended to 0.25 Ldna). We point out that for small sphere separations, h <
√

L2
dna + R2−R,

some sticky ends explore a configurational space that differs from the ‘(truncated) hemi-

sphere’ geometry at larger separations (see Appendix A3) and that these deviations are

not captured by our simulations and analytical expressions. Furthermore, in a crowded

suspension non-pair-wise interactions could start to occur when R & 6.5 Ldna. Fortran

procedures that give the pair-interaction potentials for different parameter combinations

can be downloaded from http://www.amolf.nl/research/supramolecular-interactions/.

V. CONCLUSIONS

To summarize, we have derived expressions for the (non-electrostatic) repulsive and at-

tractive contributions to the total interaction free energy of planar (Eqs. 5-8) and curved

surfaces (Eqs. 11-12) with tethered DNA sticky ends, as obtained from Monte Carlo simu-

lations (see also the summary in Section IV). The simulations were performed for relatively

short (Ldna = 20 nm) and stiff DNA constructs and our expressions capture the dependence

of the resulting interactions on the DNA grafting density, the size of the particles and the

(temperature-dependent) binding strength of the sticky ends. The particle size range cov-

ered extends from several tens of nanometers to a few micrometers in radius, whereas the

surface coverage ranges from very dense to rather sparse (average strand spacing ∼ 5 - 100

nm). We further find that the Derjaguin approximation gives a reasonable prediction of

the sphere-sphere pair-interaction for particle sizes of a couple hundred nanometers and up.

Our rough assessment of the phase behavior resulting from the DNA-mediated interactions

qualitatively agrees with the experimental descriptions found in the literature. For instance,
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due to the typically large number of inter-particle bonds, small changes in the ambient tem-

perature are seen to lead to large changes in the depth of the attractive minimum, thus

giving rise to the sharp dissociation transitions observed in experiments. We further find

that gas-liquid coexistence only occurs for relatively small particles with radii of a few tens

of nanometers or less, which may explain the observed differences in crystallization behavior

between nano-particle systems and micrometer-sized colloids. Note, however, that kinetic

effects could obscure the thermodynamic phase behavior and that more detailed studies are

needed to obtain a full understanding. We have also shown that in some cases statistical

non-uniformities in the DNA distribution can play an important role too, as this can lead

to a significant variation in the particle interactions. Generally, this natural heterogeneity

will be more pronounced for smaller particles and lower grafting densities, and one should

be aware of its possible consequences in nano-particle-based DNA-detection assays. In ad-

dition, the discrete character of the tethered sticky ends has some other interesting effects,

which are entropic in nature: the restricted freedom of motion of a hybridized pair of sticky

ends imposes a configurational entropy cost for bond formation, whereas the multiplicity of

different binding configurations for the entire ensemble of sticky ends gives rise to a combina-

torial entropy gain. Both of these entropic effects depend on the grafting details, such as the

tether length and the surface coverage. For the example system studied here, we find that

per bond formed each of these contributions is of the same order of magnitude as the hy-

bridization free energy of a pair of sticky ends when they are free in solution (∼ 5−10 kBT ).

They thus have a strong effect on the effective binding strength of the tethered sticky ends,

but due to their opposite sign it is not always straightforward what their net effect will be

if one does not calculate the full interactions. We conclude by pointing out that our results

do not only further the understanding of the microscopic interactions and phase behavior

in systems of DNA-functionalized micro- and nano-particles, but that they are also relevant

in chemical or biological contexts, such as supramolecular self-assembly or ligand-receptor

mediated bio-recognition. It is actually surprising that the entropic effects highlighted above

have received very little attention so far, because tethered binding groups are increasingly

used to engineer the interactions in, for instance, biosensing and self-assembling micro- and

nanostructured materials, while multivalent interactions have been found to be a potentially

very powerful tool when it comes to targeted drug delivery or the inhibition/promotion of

certain biological interactions and cellular responses.
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Appendix A: Hybridization free energy of tethered DNA

1. Configurational entropy cost

We can derive an expression for the hybridization free energy of a complementary pair

i−j of tethered DNA sticky ends, which includes an additional configurational entropy cost,

by comparing with the hybridization equilibrium of the DNA when it is free in solution.

Assuming a negligible change in the reaction pressure and volume upon hybridization, the

hybridization free energy is given by:

∆Gij = −kBT ln

(

Zij

ZiZj

)

(A1)

where Zi,j,ij represents the partition function ZN,V,T = ΩNzN
int/ΛdNN ! of N molecules of

the unhybridized species i / j or the hybridized species ij, respectively. Here, Ω is the

‘configurational space’ of the species under consideration, d is the dimensionality of this

space, and Λi,j,ij =
√

h2
P/2πmi,j,ijkBT is the thermal De Broglie wavelength (hP is Planck’s

constant and mi,j,ij is the mass of the respective species). zint represents the contribution to

the partition function due to all internal degrees of freedom. For a single pair of sticky ends

we can write:

Zij

ZiZj
=

Ωij

ΩiΩj

zint,ij/Λ
dij

ij

zint,izint,j/Λdi

i Λ
dj

j

(A2)

From Fig. 1a it is clear that for tethered sticky ends Ωij 6= Ωi,j, while for sticky ends in

solution Ωij = Ωi,j = V . For the sticky ends in solution we know the equilibrium constant:

Keq,ij =
[ij]

[i][j]
= exp[−β∆G0

ij,solution] (A3)

Here, [x] = ρx/ρ
0, with ρ = N/V and ρ0 the standard number density. Using F =

−kBT ln (ZN,V,T), the chemical potential µ =
(

∂F
∂N

)

P,T
and the equilibrium condition µi+µj =

µij to derive an expression for ρij/ρiρj, we find by combining with Eq. A3 that:

zint,ij/Λ3
ij

zint,izint,j/Λ3
i Λ

3
j

=
Keq,ij

ρ0
(A4)

If we assume that zint does not change when the sticky ends are tethered to a surface, we

can combine Eqs. A1, A2 and A4 to obtain the following expression for the hybridization
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free energy of a pair of tethered sticky ends:

∆Gij,tether = −kBT ln

(

Ωij

ΩiΩj

Λ
3−dij

ij

Λ3−di

i Λ
3−dj

j

Keq,ij

ρ0

)

= ∆G0
ij,solution − kBT ln

(

Ωij

ΩiΩj

Λ
3−dij

ij

Λ3−di

i Λ
3−dj

j

1

ρ0

)

(A5)

= ∆G0
ij,solution − T∆Sconf

where ∆Sconf is the configurational entropy cost upon hybridization and the Ωi,j,ij now repre-

sent the configurational space of the tethered sticky ends. For our rod-like DNA constructs

di,j = 2, dij = 1 and Λ
3−dij

ij /Λ3−di

i Λ
3−dj

j = 1
2
, which effectively adds a small constant offset

that is independent of the particular pair of sticky ends under consideration, but which we

neglect in our calculations. Below, we derive expressions for Ωi,j,ij for the case of two flat

plates or two same-size spheres interacting with each other.

2. Plate-plate geometry

a. Unhybridized sticky ends (Ωi,j)

If the surface-surface separation h > Ldna the tethered DNA constructs are unconfined

and their sticky endpoints trace (independently of each other) the surface area of a full

hemi-sphere, whereas if h < Ldna the sticky ends trace a truncated hemisphere (Fig. 1b):

Ωi,j =







Ωi,j,unconfined = 2πL2
dna, h > Ldna

Ωi,j,confined = 2πhLdna, h < Ldna

b. Hybridized sticky ends (Ωij)

Depending on the surface-surface separation, h, and the relative positions of the surface

attachment points of the tethers, a pair of hybridized sticky ends traces the circumference

of either a full or a truncated circle. If rij is the vector connecting the attachment points of

DNA constructs i and j, and we define r⊥ to be the length of the projection of rij on either

surface, then:

Ωij =











Ωij,full = 2π
√

L2
dna − 1

4
(h2 + r2

⊥
)

Ωij,truncated =

(

2π − 4 arccos

[

h
√

h2+r2
⊥

2r⊥
√

L2
dna

−
1
4
(h2+r2

⊥
)

])

√

L2
dna − 1

4
(h2 + r2

⊥
)
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The circle is truncated if r⊥,1 < r⊥ < r⊥,2, with r⊥,1,2 =
√

2L2
dna − h2 ∓ 2Ldna

√

L2
dna − h2.

3. Sphere-sphere geometry

For same-size spheres of radius R at a distance of closest approach h (measured from pole

to pole) the attachment points of DNA constructs i and j have the following coordinates:

xi,j = R sin φi,j cos θi,j

yi,j = R sin φi,j sin θi,j

zi = R cos φi

zj = R cos φj + 2R + h

Here, φi,j is the angle between the vector that connects the two sphere centers (‖z) and the

vector that connects the attachment point of DNA construct i / j with the center of the

sphere on which the construct resides.

a. Unhybridized sticky ends (Ωi,j)

If h > Ldna all DNA constructs are unconfined and their sticky endpoints trace the surface

area of a full hemi-sphere:

Ωi,j = Ωi,j,unconfined = 2πL2
dna

If h < Ldna a DNA construct is only unconfined if zi 6 zbound,i or zj > zbound,j, with:

zbound,i,j =
±(R2 − (R + Ldna)

2) + (2R + h)2

2(2R + h)

If h < Ldna and zi > zbound,i or zj 6 zbound,j the DNA construct is confined and its sticky

endpoint traces the surface area of a truncated hemi-sphere:

Ωi,j = Ωi,j,confined = 2πLdna

√

L2
dna − r2

cap

with rcap the radius of the circular base of the truncated cap:

rcap = R

√

1 −
(

R2 + D2 − L2
dna

2RD

)2
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and D the length of the vector that connects the center of the opposing sphere (i.e. the

sphere other than the one that the DNA construct of interest resides on) to the center of

the truncated cap base:

D2 = (2R + h2) + R2 − 2R(2R + h) cos αi,j

where αi = φi and αj = π−φj. We point out that the geometry becomes more complex than

that of a simple (truncated) hemi-sphere when h <
√

L2
dna + R2 − R. In our simulations

this typically applies to a very limited range of small sphere separations only and therefore

we do not consider this case, but limit ourselves to sufficiently large h values.

b. Hybridized sticky ends (Ωij)

Similar to the case of flat plates, the connected endpoints of a hybridized pair of DNA

constructs i− j trace the circumference of either a full or a truncated circle. The truncated

‘interaction circles’ are generally no longer symmetric though, due to the curvature of the

surfaces and the asymmetric attachment locations of the DNA constructs. Therefore, we

divide the total interaction circle into two semi-circles, 1 and 2, each of which can again be

either full or truncated. Then:

Ωij = 2[π − (β1 + β2)]rfull

where β1,2 is the angle that is excluded from semi-circle 1 and 2 respectively, and where rfull

is the radius of the interaction circle if it would not be truncated:

rfull =

√

L2
dna −

( |rij|
2

)2

It can be derived that β1,2 = arccos(H1,2/rfull), with H1,2 = (|rij|/2) tanγ1,2 the ‘height’ of

the truncated semi-circles 1 and 2. Further:

γ1 = arccos

(

R2 + |rij|2 − x2
i − y2

i − (zi − (2R + h))2

2R|rij|

)

− π

2

γ2 = arccos

(

R2 + |rij|2 − x2
j − y2

j − z2
j

2R|rij|

)

− π

2

Note that if tan γ1,2 6 2rfull/|rij| that β1,2 = 0.
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Appendix B: Thermodynamic integration

In our systems, the total partition function for the sticky end interactions is always of

the form:

Ztotal =

M
∑

n=0

(

exp
[

−β∆G0
solution

])n
Zcombi(n)

where M is the theoretical maximum of the number of bonds and n is the actual number

of bonds formed, while Zcombi(n) essentially reflects the number of different ways in which

they can be formed between the two surfaces. Using F = −kBT ln Ztotal we get:
(

∂F

∂∆G0

)

= −kBT
1

Ztotal

∂Ztotal

∂∆G0
= −kBT 〈nbonds〉∆G0

with 〈nbonds〉∆G0 the average number of bonds that is formed at ∆G0. The thermodynamic

integration to obtain the interaction free energy at a particular ∆G0′ thus takes the following

form:
Fdna−bound

kBT
=

Fdna−unbound

kBT
−
∫ 0

∆G0′

〈nbonds〉∆G0 d∆G0

We point out that the upper integration limit technically is ∆G0 = ∞, but that we can

truncate the calculation at ∆G0 values that are too large for bond formation. Here, we

have arbitrarily set the limit to zero, because for our systems of interest we did not observe

bond formation for these or larger ∆G0 values (see for example Fig. 2c). Note, however,

that in certain other systems, for instance in bulk solutions where there is no configurational

entropy cost for bond formation, a significant fraction of the DNA can be hybridized even

at ∆G0 > 0. In fact, the numerical value of ∆G0 depends on the definition of the reference

state. Hence, ∆G0 = 0 has no special meaning.

Appendix C: Approximate DNA-mediated plate attraction (Fplate,dna−att,approx)

We obtain an approximate expression for the attractive contribution to the DNA-

mediated plate-plate interaction free energy from Fplate,dna−att,approx = −kBT ln Zplate,dna−att,approx

and the simplified partition function:

Zplate,dna−att,approx = (1 + npartner exp
[

−β∆Gij

]

)Nplate

Here, exp
[

−β∆Gij

]

is the average Boltzmann weight of a bound pair of sticky ends (the

unbound state has weight 1) and npartner = π(4L2
dna − h2)/S2

dna is the average number of
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strands j on the opposing surface that is within binding reach of a strand i. For the plate-

plate geometry under consideration it follows from Eq. 1 that:

∆Gij = ∆G0 − T∆Sconf = ∆G0 − kBT ln

(

Ωij

ΩiΩjρ0

)

with Ωi,j from Appendix A2. We approximate Ωij by taking an unweighted average over the

npartner different binding possibilities per strand:

Ωij =
1

πr2
⊥,max

∫ r⊥,max

0

2πr⊥Ωijdr⊥

=
2

r2
⊥,max

(

∫ r⊥,1

0

r⊥Ωij,fulldr⊥ +

∫ r⊥,2

r⊥,1

r⊥Ωij,truncateddr⊥ +

∫ r⊥,max

r⊥,2

r⊥Ωij,fulldr⊥

)

with the Ωij and r⊥,1,2 from Appendix A2b and with r⊥,max =
√

4L2
dna − h2.
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