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Abstract. We present an experimental study of coherent backscattering (CBS)
of photon noise from multiple scattering media. We use a pseudothermal light
source with a microsecond coherence time to produce a noise spectrum covering
a continuous transition, from wave fluctuations to shot noise over several MHz.
The angle-dependent Fano factor of backscattered light shows an enhancement
due to CBS in the wave fluctuation regime. The CBS line shape and enhancement
factor of the noise power is consistent with theory in the weak-scattering limit
and for a large number of open reflection channels. These initial experiments on
weakly scattering media demonstrate that sensitive noise measurements can be
combined with the separation of path lengths present in CBS, opening up new
experiments on noise transport in the localization regime.
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1. Introduction

Propagation of coherent light through multiple scattering media gives rise to a rich variety
of phenomena of fundamental interest: Anderson localization, coherent backscattering (CBS),
random lasing and different types of correlations are among the most well known examples
[1-10]. Considerable theoretical as well as experimental effort has been focused on the transport
of noise in chaotic and diffusive electronic systems, and the transition from classical to quantum
states has raised particular interest [11-13]. Recently, the propagation of optical noise in
strongly scattering systems has received much attention. Pioneering work has been reported
that investigates multiple light scattering in the regime of quantum optics [14—-22]. Deviations
from Poissonian statistics have been found when light in the coherent state propagates through
moving scatterers [23].

Photonic systems are crucial to the development of fast data communication protocols as
they outperform electronic systems with respect to data capacity [24]. Furthermore, several
studies have suggested how multiple scattering can be exploited to enhance information
transfer [25, 26]. The ultimate barrier to optical information transfer is photon shot noise which
is quantum in essence [27, 28], as it is due to the granular nature of light. Despite having been
known and studied for a long time, only recently classical laser noise has been reported as the
fastest physical mean to generate random numbers [29, 30], opening the way for novel methods
to yield security key codes at high speeds.

The goal of the experiments presented in this paper is to extend the study of photon
noise to a CBS configuration. CBS results from interference effects between reciprocal paths
in a random medium, and manifests itself as a twofold enhancement of the light intensity
in the backscattering direction with respect to the diffuse background. Measurements of
CBS have turned over the years from a striking evidence of weak localization of light to a
tool for investigating the scattering properties of many different media [31-33]. The strong
Anderson localization transition has received much attention since it was first proposed in
1958 [34], nevertheless it remains an elusive phenomenon for light in three-dimensional (3D)
media [8, 9, 35, 36]. Noise measurements could provide an alternative means to investigate the
critical regime near localization. In this paper we present the first experimental investigation of
weak localization of photon shot noise and pseudothermal noise from scattering media.

2. Optical setup and sample

The basic elements to induce and measure photon noise are depicted in figure 1. In order to
achieve sufficient intensity we use a Ti:Sa laser which is operated in cw mode, at a wavelength
of 780 nm with an output power of 1.6 W. The laser output was shot-noise limited at frequencies
above several hundred kHz. Pseudothermal light was generated by focusing the laser output
beam onto a rotating diffuser. The ground glass diffuser is schematized in figure 1 as a
collection of random glass defects called microareas. The laser beam is randomly scattered
by the microareas. The diffuser rotates, therefore the incoming beam illuminates different
microareas, that in turn act like independent sources. By independent it is meant that there
is no phase relationship among fields produced by different microareas. This is the key property
that makes a ground glass diffuser a pseudothermal source: the microareas mimic the behavior
of the emitting atoms of molecules in a true thermal source. By spinning the diffuser it was
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Figure 1. (top) Setup consisting of a lens and a diffuser used to generate
pseudothermal light. A laser beam of frequency @ and diameter o is focused by
a lens of focal lens f and impinges on a ground glass diffuser rotating at speed v.
With A is indicated the cross section of the beam on the diffuser. The ground
glass diffuser is modeled as a collection of random microareas. The rotation of
the microareas gives rise to pseudothermal light. (bottom) Schematic overview of
the experimental setup for measurement of noise and intensity CBS. A polarizer
(not shown) is placed before the beam splitter to select the incoming polarization.

possible to introduce excess noise up to the MHz regime. The pseudothermal light source was
integrated into a CBS set up as shown in the bottom scheme of figure 1.

CBS of both intensity and noise is measured in a beamsplitter configuration [2]. Light
scattered from the sample was collected by a lens (f = 8cm) and detected by an avalanche
photodiode (APD) module (Hamamatsu C4777) that moved along the focal plane of the lens.
An electronic spectrum analyzer (Agilent) was used to measure the noise power spectrum. The
angular resolution amounted to 1.2 mrad and was determined by a 100 um pinhole placed in

New Journal of Physics 15 (2013) 105009 (http://www.njp.org/)


http://www.njp.org/

4 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

front of the detector. The sample was slightly tilted to prevent light which was specularly
reflected from the sample to be detected. Speckle averaging was obtained by rotating the
sample around its azimuthal axis using a spinning motor. Polarization filters were used to
individually select polarization conserving and non-conserving backscattering channels. Lock-
in detection minimizes the influence of stray light. For the CBS experiments we used a strongly
scattering slab of porous GaP fabricated via an electrochemical etching technique, and showing
negligible absorption at 780 nm [37]. The slab has thickness L >~ 70 um and a photonic strength
kolg = 17.7, where g denotes the (Boltzmann) mean free path of light inside the scattering
medium and k is the free-space wavevector of the light. Noise spectra were acquired using the
spectrum analyzer with a resolution bandwidth of 30 kHz and a video bandwidth of 10 kHz over
a frequency segment that spans 8.85 MHz, from 0.15 to 10 MHz. Each point in the noise traces
presented here was obtained by computing the average of 50 consecutive points in the spectrum.
Intensity and noise CBS-cones were normalized to the intensity and noise power measured in
the polarization non-conserving channel, respectively.

Noise spectra as function of angle and frequency and cross sections at different frequencies
are shown in figure 2 (top panel). The data highlight how the CBS shape changes from the shot
noise regime at frequencies above 5 MHz to the pseudothermal noise regime at low frequencies
below 5 MHz. In addition to the CBS noise cones at different frequencies, we have plotted the
CBS intensity cone and its square in figure 2 (bottom panel) for three different frequencies. In
order to compare the shapes of the three cones, they were normalized to their value assumed
on the left most angle. The comparison to the intensity data shows how the shot noise cone,
obtained from the high-frequency data, follows closely the intensity cone whereas the intensity
CBS cone squared is an upper bound for the pseudothermal cones, which are obtained for the
low-frequency data. The enhancement of the noise produced by pseudothermal light exceeds
the ordinary maximum value of 2 obtainable for the intensity cone, this is due to the different
functional dependences that shot noise and pseudothermal noise display with respect to the
intensity, as it will be shown in section 3.

3. Model

The noise power spectrum S(£2) needs to be calculated to model the experiment and is given by

+00
S(€2) :/ (j(@)j(t+71))exp (—iQ7) dr, (1)
where 2 denotes the noise frequency, }'(t) the photocurrent operator and with () we indicate
quantum averaging. Making use of the quantum derivation used in [38] it follows that

PN A A e .o n
(JOJja+1) =P @) +1)) — (%> 1is'()(j (1)) (v), 2)
where e indicates the electron charge, §'(t) the time derivative of the Dirac delta function, 7
planck’s constant, w the light frequency and g" and g® denote the first and second order
correlation function, respectively.

Furthermore, the first and second order correlation functions are related through the Siegert
relationship

g?@ =1+[gV @ 3)
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Figure 2. (top) Noise spectrum of light scattered from a gallium phosphide
sample as function of backscattering angle and frequency. The CBS noise cones
are clearly visible over the entire frequency range. (bottom) Comparison between
CBS intensity (solid line) and CBS noise cones (symbols). At high frequency the
shot noise cones match the intensity cone. As the frequency is lowered the noise
cones exceed the intensity cone and approach the maximum value given by the
squared intensity cone data (dashed line).

All is left to be calculated is gV (t). Up to now the properties of the rotating diffuser that
generates pseudothermal light have not been used. The result provided by Estes et al [39]
calculates gV (7) for a rotating ground glass diffuser, yielding

2

(1)(‘[)__27'[0’ vs? ex —ian:—vzr2 k202+ 1 4)
§ =7y P > \ /2 Ta02) )

In equation (4), and with reference to figure 1, o2 is the cross section of the incident beam, v
is the number of independent microareas we divide the diffuser into, A is the illuminated area
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on the surface of the diffuser, v is the rotating speed of the diffuser, f is the focal length of the
focusing lens and s is a term that takes into account diffraction from the microareas.

Here and in the following, - indicates a classical ensemble average. By looking at
equation (4) we define the coherence time t. of the pseudothermal source as

1_v2 k*o? 1
2-2\ 7 Y1) )

On inserting equation (2) in equation (1), and making use of equation (4) it is found that

S(Q) = / Oo(j(r)j(t +7)) exp(—iQ27) dr

oo

2 2.2
= (J0)*5 () +(j ) (5> V2r 2 exp {—Q—T} +(j@) ("” Q) ¢ ©
e 2 8 )
with
2w o?vs? .

{=e— (7)
The first part of equation (6) contains a delta function that represents the dc component of the
spectrum. The second part of equation (6) contains a frequency-dependent Gaussian spectrum
which scales quadratically with the intensity. This term is the classical noise contribution
originating from the fluctuations introduced by the rotating ground glass. Finally the third part
of equation (6) displays a flat, frequency independent term because, given the experimental
conditions (w > ), the frequency ratio yields one. This term is the shot noise contribution.

The measured photocurrent is related to the light intensity by (j) = y (/) where () is the
intensity and y a constant proportional to the responsivity of the APD detector.

In order to further the analysis we model our scattering system as a waveguide with
disorder. This model implies that the number of modes supported by the waveguide is finite and
gives rise to a discrete mode theory [40]. These modes, often named channels, can be associated
to the direction of the light that impinges on the scattering medium and the direction of the light
that is reflected by it. By adopting a waveguide geometry we can write

m: Rab<1a>a (8)
(Ip)? = R%u(1,)?, ©)

where R, indicates the classical reflection coefficient from incoming channel a to outgoing
channel b, averaged over different realizations of the disorder (ensemble average). The
backscattering angle is thus the angle comprised between the directions identified by incoming
channel a and reflected channel 4. By inserting equations (8) and (9) in equation (6) and
performing ensemble average it is obtained for the ac noise spectrum

SOy ) ) 2 ¢ 2 T, Q%72

S a) = dRaplla) + 7 KoL)’ (;) Vo (3) exp(— - ) .0
where we have highlighted the dependence of the photocurrent spectrum on the outgoing
channel b and ¢ = y¢. As it is seen from equation (10) the noise power spectrum has a linear
dependence with respect to the intensity at high frequencies, while it is dominated by a quadratic
intensity dependence at low frequencies. These different dependences determine the higher than
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two enhancement factor shown at low frequency in figure 2, and the fact that the square of the
CBS intensity cone is an upper bound for the CBS noise cones.

The frequency-dependent noise spectrum can be used to calculate a frequency-dependent
Fano factor F defined as the ratio of the photocurrent fluctuation over the average photocurrent,

(S(£2)ap)

F(Q)yp=— .
Do = Rl

(11)

In order to analyze the effect of CBS on the Fano factor, we analyze the Fano factor as a function
of scattering angle and frequency.

The instrumental response is divided out by normalizing both the average intensity and the
noise spectra to those of the polarization non-conserving channel, in which the CBS effect is
absent. We define a Fano factor CBS enhancement n,,(£2) as the ratio of the normalized noise
spectra to the normalized intensity

~1

S(Q)¥ I

np(@) = 2wl ( Ua) ) (12)
(SN \ (15

Here the superscripts pc and pnc were introduced to define the polarization conserving and
non-conserving backscattering channels, respectively. By expanding equation (12) we obtain

——pc e\ —] .

1+ RS (RY) () %2 (5) exp (- 5F)
——pnc /—opnc\ 1

1+ RS (Ry) ()% (3)exp (- 5F)

A 3D plot of the experimental Fano factor enhancement 7,,(£2) is shown in figure 3, along
with cross cuts produced for representative noise frequencies, as function of the backscattering
angle. The Fano factor enhancement is 1 outside the CBS cone, as here the polarization
conserving and non-conserving channels yield the same noise and intensity. Furthermore,
no angular dependence is displayed in the full shot noise regime at high frequencies. The
interference effect responsible for the CBS cone, as the low-frequency regime is approached,
reflects itself on the development of an angular dependent Fano factor. A gradual transition
as function of frequency between the ‘pure’ shot-noise and pseudothermal noise cases is also
evident. Spiked values of 1,,(€2) below 1 in figure 3 are due to spurious fluctuations caused by
the operating stability of the laser and will be discarded in further analysis.

It is interesting to consider the situation on backscattering, by calculating n,,(£2) and, since
in the polarization non-conserving case the CBS effect is absent, we assume

Nap(§2) =

. (13)

———pnc —
2 2

Raa _ Rab
—pnc T -5

R Rab

aa

(14)

From now on we drop the subscripts pc and pnc, as the term R,, will always be referred to the
polarization conserving case. We proceed by first neglecting mesoscopic effects. These effects
become of importance when the photonic strength of the system is strong (kofp 2~ 1), and light
that propagates along multiple scattering paths in the system undergoes interference effects. In
our system it is kofg > 1, therefore we expect mesoscopic effects to be negligible [41]. In the

New Journal of Physics 15 (2013) 105009 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

& o 1.13 MHZ
2 o 2.44 MHz
15} % s 7.04MHz
o
& @
L% e
1.3} wPe o i
) o om0
o HF 8o &
2 o & T
(U OODDEI EDDDD QZS’427 o o
S 14k ;;o%” 2% o, 50008 ]
. 02 o<9 DDEIEI %"O o ;I@qfooo o
°g a0 n % [elce}
%@@m&%@% %@fﬁ&%wn e i
? s DDPDE
09} . 31 o

o
oo
o

07—
-100 -80 -60 -40 20 0 20 40 60 80 100
angle [mrad]

Figure 3. (top) 3D plot for the measured Fano factor CBS enhancement 7,,(£2)
as function of frequency and angle. A gallium phosphide sample with kyfg =~
17.7 has been used. The plotted data have been obtained from the raw data by
binning 50 consecutive data points along the frequency axis. 1,,(£2) varies from
1 at high frequencies in the shot noise regime to a maximum value which is
always lower than the intensity CBS enhancement. Values of 7,,(£2) below 1
are due to spurious fluctuations. (bottom) Noise CBS enhancement factor 7,
as function of the scattering angle around the backscattering direction at three
different frequencies.

absence of mesoscopic effects the reflection coefficients obey Rayleigh statistics [42], and we
have

R, =2R., (15)

On backscattering it is R,, = 2R,;. In our experiment single scattering events and stray light
contribute to making the enhancement factor for the CBS-cone lower than 2. Therefore on
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backscattering we assume R,, = (2 — 8) R4, With 0 < B < 1. By using equations (13)—(15),
the Fano factor enhancement on the backscattering direction is obtained as

20-p) (3) e (-5)
a+2(%)exp (— stﬁ)

with o = ez((la>ﬁaby§\/ﬂ)_l. The enhancement 7,, depends on the balance of quantum and
classical noise, respectively, given by o and the exponential term in equation (16), with the
frequency €2 gauging the two regimes. The behavior of n,, at low and high frequency, in the
classical and shot noise regimes, is given, respectively, by

2(1-p)3

2%+a

naa(Q) =1+

(16)

naa(Q)Q—>0 =1+ (17)

and

naa(Q)Q—wo =1 (18)

In the low-frequency limit, 1,,(€2) approaches the CBS enhancement for the intensity, 2 — 8.
The Fano factor at high frequencies, i.e. for the coherent state, is not modified by CBS. The
factor n,,(S2) is plotted in figure 4 (top panel) as function of noise frequency and is fitted by
using equation (16). A good agreement is recovered. We note that the coherence time of our
pseudothermal source 7. is of the order of microseconds while the transport time, i.e. the time
light travels one mean free path £g >~ 2.2 um, is of the order of femtoseconds.

Although the current experimental parameters are not in the range were mesoscopic
interference is to be expected, we proceed to assess the effect of mesoscopic contributions in
the CBS of noise. In order to do that we consider the first order mesoscopic contribution in the
reflectivity as obtained in [43]. By exploiting equation (15) in [43] we have

I o PO (19)
ab ab N(l—%)

% (23 (20)
aa aa N(l—%) )

where N is the number of channels.
The dimensionless conductance g, defined in transmission, is given by Akkermans and
Montambaux [42]

and

N¢
= —, 21
8= 21
In reflection, following the same procedure as the one adopted for g we define
g =) Ra. (22)
a,b
and, using the fact that R, = 1 (1 — £) it is found
14
y,=N{1——]. 23
g ( L) (23)
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Figure 4. (top) Observed noise CBS enhancement factor on backscattering 7,,
as function of frequency. The enhancement factor 7,,(£2) has been obtained
by taking the maximum of 7,,(£2) at each frequency. The solid line is a fit of
the theoretical lineshape for n,,, equation (16), to the data with «, 8 and t. as
fit parameters. (bottom) Calculations that illustrate the effect of g, on 1,,(€2).
Low g, values induce stronger variations, especially at low frequencies. As g,
increases 1,, quickly converges towards the limit function in equation (16) and
deviations caused by high g, values become difficult to be discerned. The inset
highlights the different values reached by 7,, at €2 = 0. In the shown calculation
the parameters «, S and 7. have been assigned the values obtained by fitting the
data to the lineshape for n,, when mesoscopic effects are negligible.
Formulae (19) and (20) express the fact that when g~' contributions are negligible the
reflected intensity follows a Rayleigh distribution. Deviations from Rayleigh statistics arise in
the mesoscopic regime, when interferences effect between multiple scattering paths start to play
arole.
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By using equations (13), (19) and (20), the Fano factor enhancement on the backscattering
direction is obtained as

Ra-p-g")-C-pg'](5)ew (-%F)

a+2(1-g1) (3) exr (=)

In figure 4 (bottom panel) the effect of a selection of g, values on 7,, is shown. The Fano factor
CBS enhancement 7,, is sensitive to a broad range of g, values. This is due to the quadratic
dependence of the excess noise on the intensity at low frequencies and to the constructive
interference between direct and reverse paths characteristic of backscattering that manifests
itself in the difference between equations (19) and (20). These properties of n,, offer the
possibility to investigate mesoscopic correlations and gather information about light transport
in proximity of Anderson localization.

Naa (S2) = 1+ (24)

4. Conclusion

In conclusion we have shown for the first time photon noise measurements in the weak
localization regime, and have shown that the transition from the full shot noise regime at
high frequency to the full pseudothermal domain at low frequency can be experimentally
investigated. We have experimentally demonstrated the enhancement of the Fano factor around
the backscattering direction due to the CBS effect. By calculating the first order mesoscopic
correction, we find that the enhancement of the Fano factor CBS depends on the number of open
reflection channels g~ '. The standard intensity CBS cone does not have this correction whereas

measuring photon noise gives access to R2,;, from which the magnitude of g~ ! effects could in
principle be extracted. More specifically, our approach indicates that the enhancement displayed
by the noise cone reveals information about mesoscopic correlations. These correlations give
rise to deviations from Rayleigh statistics in the strongly scattering regime [44]. The use of
the CBS technique has in addition the potential to study the first and second moment of the
probability distribution as function of the path length.

Our experiments show for the first time that sensitive photon noise experiments can
be combined with CBS, opening up new avenues for studying quantum optical aspects
of diffuse wave transport. Future experiments on photon noise in the strong scattering
regime may be performed to explore mesoscopic quantum corrections and localization. Noise
measurements could prove themselves useful also in systems that display gain, random lasing
and absorption [16, 45-47]. Furthermore, the impact of Anderson localization on non-classical
properties of light is yet an open question and is a new and exciting field [48, 49].
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