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SUMMARY

Cellular regulation is believed to evolve in response
to environmental variability. However, this has been
difficult to test directly. Here, we show that a gene
regulation system evolves to the optimal regulatory
response when challenged with variable environ-
ments. We engineered a genetic module subject to
regulation by the lac repressor (LacI) in E. coli, whose
expression is beneficial in one environmental condi-
tion and detrimental in another. Measured tradeoffs
in fitness between environments predict the compe-
tition between regulatory phenotypes. We show that
regulatory evolution in adverse environments is de-
layed at specific boundaries in the phenotype space
of the regulatory LacI protein. Once this constraint is
relieved by mutation, adaptation proceeds toward
the optimum, yielding LacI with an altered allosteric
mechanism that enables an opposite response to
its regulatory ligand IPTG. Our results indicate that
regulatory evolution can be understood in terms of
tradeoff optimization theory.
INTRODUCTION

The capability to regulate behavior and physiological state in

response to the environment is a fundamental property of all living

systems. How novel regulatory phenotypes emerge and adapt in

populations challenged by the conflicting demands of variable

environments has long fascinated biologists (Agrawal, 2001; Pi-

gliucci, 2001; DeWitt and Scheiner, 2004). The general prediction

from theory is that regulatory responses are favored to evolve

when the selective environment fluctuates more slowly than the

typical timescale of responses (Scheiner, 1993; Pigliucci, 2001).

However, the outcome of evolution in variable environments

may depend on various unknown factors, such as constraints of

physical, biochemical, and genetic origin (Maynard Smith et al.,

1985); the competition between different regulatory phenotypes

(van Tienderen, 1997); and the precise strength and direction of

selection on regulation (Scheiner, 1993; Via et al., 1995; Pigliucci,

2001). Therefore, even though experiments have shown that

regulation can be beneficial (Pigliucci, 2001) and can be altered

by phenotypic screening (Scheiner, 1993), most experimental
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work on the evolution of regulation by mutation and natural

selection has remained indecisive and difficult to explain in terms

of the causal selective forces and constraint (Scheiner, 2002).

Conceptually, addressing this issue is straightforward. Selec-

tion at the phenotypic level can be revealed by quantifying the

dependence of fitness on the relevant phenotypic parameters

(Lunzer et al., 2005; Weinreich et al., 2006; Poelwijk et al.,

2007). Constraints may be identified by experimental evolution:

an evolutionary response according to selection indicates adap-

tation, whereas conversely, a lack of such a response points to

aconstraint (Miller et al., 2006). Inpractice, however, it is nontrivial

to determine the relation between regulation and fitness. The

overall growth rates of two known Escherichia coli regulatory

mutants have been measured in a variable environment (Suiter

et al., 2003), but our limited insight into the genetic basis of reg-

ulatory changes hampers extending this approach to system-

atically assay the full range of possible regulatory responses.

To overcome these obstacles, we have developed a synthetic

approach. Synthetic systems (Benner and Sismour, 2005) can

be engineered to contain the two core elements of regulatory

evolution: a cellular phenotype that confers a benefit in one envi-

ronment and a burden in another and a regulation system that

senses the environment and modulates the phenotype. By de-

signing a sensed environmental cue that can be varied sepa-

rately from the environmental factor that confers the burden or

benefit, one can quantify the relation between expression regu-

lation and fitness, prior to adaptation and without the need for

a comprehensive library of regulatory mutants. Using this

approach, we present a case study of optimality in evolution in

variable environments throughout the various levels of biological

organization, from the environment down to molecular mecha-

nisms and genotype.
RESULTS

Experimental System and Fitness in Constant
Environments
To quantify the selective forces and evolutionary change of regu-

lation in variable environments, we constructed an experimental

system in Escherichia coli consisting of two genetic modules

(Figures 1A and 1B). The first module comprises an operon

that harbors the sacB and cmR genes, which affect the growth

rate, as well as the lacZa gene, which is used to quantify the

operon expression level E. E is controlled by the lac repressor,

LacI, which constitutes the regulatory module. The system as
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Figure 1. Phenotype and Fitness Character-

ization

(A) Schematic of the synthetic operon and regu-

lation system.

(B) Functional system representation. F(E,S) des-

cribes the dependence of fitness (growth rate) on

operon expression and concentration of selective

agent (sucrose or Cm). E(I) is the dependence of

expression on the concentration of the environ-

mental cue IPTG.

(C) Measured F(E,S) relations for sucrose media.

Sucrose concentrations (w/v): 0.15% (red), 0.25%

(black), and 0.40% (blue). Error bars are standard

errors (n = 3). (Closed symbols) Expression and

fitness values as achieved by IPTG induction.

(Open symbols) Data obtained by competition

assays (Extended Experimental Procedures). Ex-

pression standard error is smaller than the sym-

bol size.

(D) Measured F(E,S) relations for Cm media. Cm

concentrations: 25 mg/ml (red), 40 mg/ml (black),

and 80 mg/ml (blue). Curves in (C) and (D) are

fits to a growth model (Extended Experimental

Procedures).

See also Figure S1.
constructed (termed WT hereafter) responds to increasing

concentrations of the environmental cue isopropyl-b-D-thioga-

lactopyranoside (IPTG) by increasing E.

In media containing sucrose, expression of the operon by

induction with IPTG leads to a reduced growth rate (Figure 1C

and Figure S1 available online), as determined by monitoring

the optical density of growing populations. Before inoculation in

the sucrose media, the cells were grown without sucrose but

with the IPTG concentration of interest in order to achieve the

steady-state expression levels. The observed negative effect

on growth rate is due to the sucrose-polymerizing activity of

levansucrase encoded by sacB, which leads to the accumulation

of large polysaccharide chains that interfere with cell wall forma-

tion (Gay et al., 1985). At the highest levels of operon expression,

weobservednegative growth rates. Thecorrespondingdecrease

in thenumber of viable cellswasquantifiedusingcompetition and

plating assays (Extended Experimental Procedures). We note

that the cells lack the genes to metabolize sucrose and use it

as a carbon and energy source. Thus, sucrose-containing media

confer a selective pressure to decrease operon expression.

For media that contain the antibiotic chloramphenicol (Cm),

the growth rate is suppressed at low operon expression levels

(Figure 1D and Figure S1). When operon expression is increased

by induction, the growth rate is progressively restored. This

beneficial effect of operon expression is due to the inactivation

of the antibiotic by the CmRgene product. Cmmedia thus confer

a selective pressure to increase expression.

Increasing the Cm or sucrose concentrations predominantly

shifts the point of half-maximum growth along the expression

axis and does not significantly affect the maximum growth

rate. We find that the growth expression data in sucrose and in

Cm media are well-described by the functions Fsucrose(E) and

FCm(E), which are based on a simple model of the underlying

reaction kinetics (Extended Experimental Procedures).
Tradeoffs for Fixed Expression Phenotypes in Variable
Environments
Environments that vary in time between sucrose and Cm result

in fluctuating demands on operon expression. The simplest

phenotype is one that exhibits a single fixed expression level

in both the sucrose and the Cm environment (Figure 2A). Vari-

able environments confront such unregulated phenotypes with

a tradeoff: high fitness in sucrose media—resulting from low

operon expression levels—will be at the expense of low fitness

in Cm media. Conversely, high fitness in Cm media—due to

high expression levels—will entail low fitness in sucrose

media.

To gain insight into the optimization of the total fitness of

fixed expression phenotypes in sucrose-Cm variable environ-

ments, we plotted Fsucrose(E) versus FCm(E) for a range of E

(Figure 2B). We find that, for the lower Cm and sucrose concen-

trations, this so-called tradeoff curve (Figure 2B, red line) is

concave and bulges outward toward optimal growth in both

environments (Figure 2B, cross), whereas for the high concen-

trations, it is convex and bulges inward away from optimal

growth (Figure 2B, blue line). Shapes of tradeoff curves and

their consequences for selection have been extensively ana-

lyzed on a theoretical level. As pointed out by Levins, who orig-

inally introduced the idea in the 1960s (Levins, 1968), concave

tradeoff curves favor intermediate expression phenotypes that

do averagely well in both environments, whereas convex trade-

off curves favor extreme expression phenotypes that perform

well just in one environment (Figure 2C). In our study, these

contrasting cases depend on the Cm and sucrose concentra-

tions that may be viewed as the amplitude of the environmental

variations. The observed change in convexity is a direct conse-

quence of the nonlinear biochemical processes that underlie

growth and may well be a general feature of fitness tradeoffs

in biological systems.
Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc. 463
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Figure 2. Tradeoffs for Fixed Expression Phenotypes in Variable Environments

(A) Variation of environmental and system parameters. Here, sucrose alternates with Cm, and the operon expression level E is constant across both environ-

ments, whereas the growth rate F may vary.

(B) Tradeoff curves in sucrose-Cm variable environments for different sucrose and Cm concentrations. For any E, the resulting growth rate in Cm FCm(E) (Fig-

ure 1D) is plotted against the growth rate in sucrose Fsucrose(E) (Figure 1C). (Red line) 0.15% sucrose, 25 mg/ml Cm. (Black line) 0.25% sucrose and 40 mg/ml Cm.

(Blue line) 0.40% sucrose and 80 mg/ml Cm. The cross indicates the optimal growth in both environments at low sucrose and Cm concentrations (red line). The

diagonal isoclines indicate equal overall growth rate Ftot = (Fsucrose(E)+FCm(E))/2 when alternating between sucrose and Cm for equal periods of time. Error bars

are standard errors (n=3).

(C) Schematic diagram illustrating the origin of the switch from concave to convex tradeoff curves, as observed in (B). The lines represent the expression growth

relations F(E) for sucrose (solid lines) and for Cm (dashed lines). Red indicates lower concentrations of sucrose and Cm, and blue indicates higher concentrations.

At fixed medium expression E, the red curves show a near optimal growth in both environments resulting in a tradeoff curve that bulges outward (B). For the blue

growth conditions, such a condition does not exist. Here, the highest fitness is attained by phenotypes with a fixed high or low expression.
Fitness of Regulated Phenotypes in Variable
Environments
Regulated phenotypes, which can sense changes in the environ-

ment and respond by adjusting their expression, can escape

from tradeoff curves for unregulated phenotypes (Figure 2B)

and acquire higher fitness. When Cm is supplemented with the

cue IPTG (1 mM; see Figure 3A), the WT phenotype in fact

exhibits a nearly optimal response: with IPTG, the high expres-

sion level E1 is favorable in Cm,whereaswithout IPTG, the result-

ing low expression level E0 is favorable in sucrose. As observed

in the previous section, however, the best unregulated pheno-

types perform almost as well for the lower Cm and sucrose

concentrations due to the concave tradeoff curve (Figure 2B,

red line). The resulting limited advantage of regulation is not

caused by weak selection in each medium separately, as evi-

denced by the large growth rate differences (Figures 1C and

1D, red curves) but, rather, by the precise shape of the growth

expression curves Fsucrose(E) and FCm(E). For higher sucrose

and Cm concentrations though, the tradeoff curve becomes

convex (Figure 2B, blue curve), thus lowering the maximally

attainable fitness for unregulated phenotypes and consequently

increasing the selective advantage of regulated phenotypes.

To compare the performance of different phenotypes system-

atically, we consider their overall growth rate in variable environ-

ments as a function of E0, the expression level in the environment

without IPTG (and with sucrose), and P = E1/E0, the fold change

in expression when switching to the environment with 1 mM

IPTG (and with Cm). The separate growth rates in the sucrose

and Cm media are then found by substituting the value for E0 in

the function Fsucrose(E) and E1 in FCm(E) (Figures 1C and 1D). We

determine the overall growth rate, Ftot, as the arithmetic mean of

the separate growth rates weighted by the fraction of time spent

in each environment. We use the arithmetic mean (as opposed

to the geometric mean) of the local growth rates because growth

rates—unlike the number of offspring—are Malthusian fitness
464 Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc.
parameters (Roff, 2001). In Figure 3B, we plot Ftot as a function

of E0 and P for the high sucrose and Cm concentrations. This

fitness function contains a single optimum near WT (low E0 and

high P). The peak is well separated from P = 1, consistent with

the strong selection for regulated over nonregulated phenotypes.

Competition in Variable Environments
Having determined the relation between expression phenotype

and fitness (Figure 3B), the question is whether it accurately

captures the competition between different regulatory mutants

in variable environments. We tested this in two ways. First, we

competed lacI mutants one to one. We employed lacI mutants

that were generated using error-prone polymerase chain reac-

tion (PCR) and displayed contrasting expression phenotypes

(Figure 3B, crosses). The different alleles were cloned into our

plasmid, and pairs of them were grown in sucrose and Cm envi-

ronments, either with or without IPTG, whereas their relative

abundance was followed by plating. Again, cells were grown

nonselectively before and after selection, and care was taken

that growth was not limited by other growth factors such as

carbon or oxygen. These competition results were compared

to fitness differences predicted by the fitness function Ftot(E0,P),

based on the uninduced (E0) and induced (E1) expression levels

of each mutant, which showed a good agreement (Figure 3C).

Second, we investigated the competition within a large popula-

tion of cells with randomly mutated regulatory systems. For this

purpose, we again mutated the lacI coding sequence with error-

prone PCR. Sequencing indicated an averagemutation rate of�3

310�3 per basepair. Themutated lacIcoding regionswereplaced

back into the original plasmid, resulting in a diverse population of

�106variants.Note thatonly the regulatorysystemwasgenetically

diversified. The rest of the plasmid, including the selection genes,

as well as the chromosomal background, remained identical.

To characterize the phenotypic diversity prior to selection, 35

clones were randomly picked from the population and mapped
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Figure 3. Fitness and Evolution in a Variable Environment with Stabilizing Selection

(A) Variation of environmental and system parameters. Here, sucrose alternates with Cmplus IPTG. In this environment, the operon expression level of the system

as constructed (WT) will vary between a low E0 in sucrose and a high E1 in Cmplus IPTG, resulting in high growth rates in both environments. P is the fold change in

operon expression (P = E1 / E0). Note that the selection experiments (dots, B) involve one sucrose/Cm cycle.

(B) Selective landscape and mapped regulatory variants. Color indicates the overall growth rate in the variable environment defined in (A), determined with the

data from Figures 1C and 1D (Ftot = (Fsucrose(E0)+FCm(E1))/2), as a function of system parameters E0 and P. Sucrose, Cm, and IPTG concentrations are 0.40%,

80 mg/ml Cm, and 1mM, respectively. Different lacI regulatory variants are mapped on the landscape based on their measured E0 and P values. (Crosses) WT and

three previously isolated lacImutants. (Green spheres) 35 randomly chosen isolates from a diverse population obtained by lacImutagenesis. (Blue spheres) After

selection in the corresponding variable environment. Growth time is 6 hr in each medium. Prior to inoculation in new medium, the cells are grown nonselectively

(neither sucrose nor Cm) to adjust to the new IPTG level.

(C) Fitness differences from competition experiments between genetic lacI variants against fitness differences predicted by the fitness landscape (Extended

Experimental Procedures).
in phenotype space based on their measured E0 and P values.

The phenotypes did not appear distributed equally throughout

the E0-P plane but were, rather, located toward higher E0 and

lower P down to P = 1 (Figure 3B), consistent with the expecta-

tion that most random mutations in the repressor will deteriorate

the ability to repress. The originalWT phenotype was not present

in this sample of 35 variants.

We then exposed the population of�106 random variants to a

variable-purifying selection. In short, the cells were first grown

in the sucrose medium (0.4% w/v) for 6 hr. From the end

population, 1/500th was taken and then grown nonselectively

at 1 mM IPTG for 3 hr to induce the cells. Next, Cm was added

(at 80 mg/ml), and the population continued to grow for another

6 hr. Experiments indicated that the 3 hr of nonselective growth

was sufficient to reach steady-state expression and did not

significantly influence the overall fitness (Figure S1C). From the

final population, we again took isolates randomly, assayed their

E0 and E1 values, and mapped them onto the E0-P plane. The

group of isolates was clustered at theWT phenotype (Figure 3B).

These results indicate that the simple fitness function Ftot(E0,P)

captures the competition between diverse regulatory variants,

which involves the integration of the different fitness gains and

losses experienced by the competing variants as they experi-

ence the environmental changes, into an overall total fitness.

They also confirm that that the expression E is the key pheno-

typic parameter in determining fitness in our system.

Evolution under Directional Selection in Variable
Environments
In order to study adaptation to a novel regulatory function, we

defined a variable environment in which the WT phenotype is

maladapted and can improve by changing the regulatory

response. We exploit the decoupling in the system, which allows

one to impose a controlled mismatch between cue and selective
agent. Here, a medium with sucrose plus IPTG (1 mM) alternates

with a medium with Cm (Figure 4A). In the presence of sucrose

and IPTG, the high induced operon expression is burdensome,

whereas in Cm media without IPTG, a high operon expression

would be beneficial but is repressed. Mirroring the case of the

unregulated phenotypes, changing expression overall (in both

E0 and E1) gives rise to a tradeoff: an increase in expression leads

to gains in Cm but losses in sucrose, whereas conversely,

a decrease in expression yields gains in sucrose but losses in

Cm. Improvements in both environments may be realized by

changes in the regulatory response, namely when IPTG would

lead to repression, and an absence of IPTG to expression.

Such an inverse regulatory response is, in fact, observed for

the LacI homolog PurR, which represses in the presence of the

corepressor guanine (Choi and Zalkin, 1992), suggesting that

such inversions have occurred in evolutionary history.

The fitness function corresponding to this variable environ-

ment is displayed in Figures 4B and 4C. E1 and E0 here, respec-

tively, denote the expression level in the medium with sucrose

plus IPTG and the medium with Cm. The WT phenotype here

maps onto a fitness valley at P > 1, indicating its poor perfor-

mance in both environments. The peak is located at P < 1, which

reflects the inverse nature of the corresponding phenotype

(E1 < E0).

Next, we monitored evolution of the WT system using the

same directed evolution approach. In brief, we prepared

randomly mutated lacI variants and then grew a starting popula-

tion of �106 cells in a sucrose medium (0.4% w/v) with IPTG

(1 mM) for 6 hr. From the end population, 1/500th was taken

and grown nonselectively without IPTG for 3 hr. Then Cm was

added (to reach 80 mg/ml), and the population was grown for

an additional 6 hr.

After selection, a random sample of 35 isolates was mapped

within the E0-P plane, which showed that the population mean
Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc. 465
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Figure 4. Fitness and Evolution in a Variable Environment with Directional Selection
(A) Variation of environmental and system parameters. Here, sucrose plus IPTG alternates with Cm. In this environment, the operon expression level of the system

as constructed (WT) will vary between a high E1 in sucrose plus IPTG and a low E0 in Cm, resulting in low growth rates in both environments. P is the fold change in

operon expression (P = E1 / E0). Note that the selection experiments (dots, B and C) involve one sucrose/Cm cycle.

(B) Selective landscape and mapped regulatory variants. Color indicates the overall growth rate in the variable environment defined in (A), determined with the

data from Figures 1C and 1D (Ftot = (Fsucrose(E0)+FCm(E1))/2), as a function of system parameters E0 and P. Sucrose, Cm, and IPTG concentrations are 0.40%,

80 mg/ml Cm, and 1 mM, respectively. Different lacI regulatory variants are mapped on the landscape based on their measured E0 and P values. (Green spheres)

35 randomly chosen isolates from a diverse population obtained by lacI mutagenesis. (Blue spheres) After selection in the corresponding variable environment.

(Gray spheres) After a second cycle of lacImutagenesis and selection in bothmedia. (Red spheres) After a third cycle. Growth time is 6 hr in eachmedium. Prior to

inoculation in new medium, the cells are grown nonselectively (neither sucrose nor Cm) to adjust to the new IPTG level.

(C) Idem, in three-dimensional representation, rotated for visibility.
had shifted toward higher fitness as expected (Figures 4B

and 4C, blue spheres). However, no isolates were found below

P = 1, suggesting that there exists an adaptive constraint that

renders crossing of theP=1boundary a rare or impossible event.

Note that P < 1 phenotypes might be present in the population at

low numbers and absent in the isolates due to insufficient

sampling. However, the fitness function does indicate strong

selection for P < 1 phenotypes: the growth rate of the optimal

phenotypes is more than 1.4 dbl/hr higher than the best isolates

atP = 1,making their initial presence very unlikely (p < 0.02, given

the relative enrichment factor of 2(1.4$12) �1.1 3 105).

Selection also affected the shape of the phenotypic distri-

bution, which was now spread out broadly along the E0 axis

(P = 1) and had become narrow along the P axis (Figures 4B

and 4C). The expansion along E0 can be understood from the

constraint: with paths to P < 1 poorly accessible, the paths

offering higher fitness lead along the E0 axis toward high or low

expression values (Figure 4B, black line). These fixed expression

phenotypes may represent evolutionary dead ends, as they can

be achieved by simply abolishing repressor-operator binding or

IPTG binding capabilities.

To test whether P < 1 phenotypes could still emerge before the

population was taken over by evolutionary dead ends, we per-

formed a new cycle: 1/500th of the previous culture was taken,

and the plasmid DNA was extracted; lacIwas randomly mutated

as before and placed back into fresh plasmids and hosts, which

were subsequently grown in the same sucrose-Cm variable envi-

ronment. The resulting isolates indicated that, whereas about

half of the population remained at P = 1, the other half emerged

below (Figures 4B and 4C, gray spheres), showing that P = 1

constituted not a global but a local (breakable) constraint. These

results indicate a capacity of the system to evolve a fundamen-

tally altered response to inducer before getting trapped in

specialization. The evolved inverse phenotypes were distributed
466 Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc.
along a downward diagonal, indicating that they all had similar

E1 and differed mainly in E0.

After a third cycle of the same lacI mutagenesis and variable

selection, the mean fitness of the population had further

increased, first of all through decreased frequencies of fixed

expression (P = 1) phenotypes, which were no longer observed

among the isolates (Figures 4B and 4C, red spheres). In addition,

the subpopulation of inverse phenotypes showed further fine-

tuned improvements of the response toward smaller E0 and

smaller P. Figures 5A and 5B show induction profiles of evolved

inverse phenotypes. The isolates were now distributed near the

effective fitness optimum, which is taken as the average of the

maximum observed growth rates in the two environments (1.85

db/hr). Some evolved phenotypes (4 out of 35) had a fitness

within 10%of the optimum,which is comparable to the variability

that we observed between the predicted fitness and results from

competition experiments (Figure 3C). Also note that small fitness

increases near an optimum entail long fixation times, given the

limited number of isolates that can be assayed. For example,

a single mutant with a 10% fitness improvement over the rest

of the population (of 106 cells) would require more than 80 hr of

growth to be detected in the sampled isolates, as the required

enrichment factor is about 104 (which is equal to 2(0.1$1.85$80)).

In conclusion, we find no evidence for global constraint in E0 or

P, nor a rigid correlation between the two, that prevents access

to the landscape optimum.

Genetic Basis of Local Constraint
Tracking evolution within phenotype fitness landscapes can

identify local adaptive constraints but does not reveal the genetic

architecture from which they originate. We sequenced several

inverse lacI alleles to provide some insight into the genetic

causes of the observed constraint at P = 1 (Table S1). S97P

appeared to be a key substitution: it occurred in the majority of
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Figure 5. Induction Curves

(A) Measured induction curves for wild-type LacI (black) and an evolved inverse LacI phenotype M-inv-1 (gray).

(B) Induction profiles of a number of evolved inverse regulation mutants (at 1 mM from low to high expression: M-inv-1, M-inv-2, M-inv-3, M-inv-4; sequences

given in Table S1). Standard errors (n = 3) are smaller than the symbol size.

(C) Fluorescence polarization profiles of wild-type (gray) and the inverse regulation mutant M-inv-1 of Figure 5A (black). Fluorescence polarization (see Extended

Experimental Procedures) here is ameasure for the binding of purified repressor protein to TAMRA-labeled 18 base pair symmetric lac operator DNA. Polarization

is recorded as a function of IPTG concentration, and higher polarization indicates a higher fraction of operator DNA bound by repressor. The data is fitted with

a Hill curve with KD = 6.0 mM and Hill coefficient 1.4 for wild-type and KD = 20 mM and Hill coefficient 1.15 for M-inv-1.

Error bars are standard errors over three or four measurements and smaller than the symbol size. See also Table S1.
genotypes and was essential for achieving the optimal inverse

response. In a WT background, however, S97P yielded a P = 1

phenotype, as was determined by constructing thismutant using

site-directed mutagenesis, and as was also corroborated by

previous studies (Suckow et al., 1996; Flynn et al., 2003). It has

been suggested that this serine residue, which is located at the

dimer interface of the repressor, is central to the IPTG-induced

allosteric transition in LacI (Flynn et al., 2003; Zhan et al.,

2010). This may explain the observed interference with induction

by the S97P mutation.

Unlike the recurring S97P substitution, other genetic changes

found in the inverse lacI alleles were diverse. For instance, one

inverse phenotype harbored the mutations S69Y, Q131P,

M242I, and a stop at L346 in addition to S97P, whereas another

contained K108N, E235D, and Q352E together with S97P (Table

S1). Though we could not identify a specific pattern or known

functional effect for these additional mutations, their diversity

indicated the presence of different possible mutational routes

from S97P and P = 1 to the optimum inverse phenotype.

In order to study the functional relevance of the observed

mutations and their interactions, we engineered lacI variants

containing subsets of the mutations found in one evolved

inverse phenotype (M-inv-5; see Table S1). We found that, out

of the six nonsynonymous mutations, three (S97P, R207L,

and T258A) were sufficient in a WT background to confer an

inverse phenotype (P �0.02). Next, we engineered the double

mutants S97P-R207L and S97P-T258A, which both gave a

value for P of order 1, as did the single mutant S97P. Thus, in

the S97P background, R207L and T258A individually were

nearly neutral but together conferred inversion, which indicates

epistasis between R207L and T258A. R207L also exhibited

epistasis with S97P; in the T258A background that displayed

a WT phenotype (P of order 10), R207L was again neutral, but

in the S97P-T258A background, R207L transformed a P = 1

phenotype into the inverted phenotype. Overall, the results

suggest that S97P is a rare and unique gateway at P = 1 from

WT at P > 1 to the optimum at P < 1 and support the notion

that the phenotypic clustering at P = 1 was due to genetic

constraint.
Molecular Mechanism of Evolved Phenotypes
Next, we questioned what molecular mechanism could underlie

the regulatory change. One might imagine that the transcription

factor now activates rather than represses by binding elsewhere

in the regulatory region. However, no mutations were found in

the DNA recognition domain of LacI, which would be required

for this scenario. The inversion could also be explained by a

mechanism in which the nonspecific affinity to DNA is increased,

as has been shown previously for LacI inversion (Pfahl, 1976;

Miller and Schmeissner, 1979). An increased overall affinity

then leads to binding to other cellular DNA, titrating transcription

factor away from the operator and thus producing expression

without IPTG. In this scenario, the allosteric effect of IPTG on

LacI actually remains the same as for WT, namely a decreased

affinity for DNA. With IPTG, the mutant LacI would thus be liber-

ated to start the operator search, which can result in repression if

binding affinity to the operator is significant. However, given the

recurrence of mutation S97P and its supposed role in the allo-

steric mechanism, we surmised that the inversion might be

based on a modification of the allosteric transition. In this

scenario, the evolved LacI would bind the operator with IPTG

and have a low affinity for the operator in the absence of IPTG.

To discriminate these two scenarios, we first measured the

expression response to the compound ONPF. ONPF is an anti-

inducer for WT LacI that leads to increased DNA affinity, as

seen by a lower expression level than achieved by WT repres-

sion. For inverted phenotypes with unchanged allostery but

increased nonspecific DNA affinity, addition of ONPF can be ex-

pected to further increase nonspecific affinity and hence should

not reduce expression, as has indeed been shown previously

(Chamness and Willson, 1970). In contrast, we find that our

evolved inverted phenotypes do show reduced expression in

response to ONPF, with values for P ranging between 0.25 and

0.59 for the five isolates indicated in Table S1. This result is in

agreement with the allosteric scenario. In order to provide

a direct test of changes in operator affinity, we performed oper-

ator binding assays with purifiedWT and an evolved inverse LacI

protein (as assayed in Figure 5) in the absence of nonspecific

DNA (Figure 5C). These data support the allosteric model: the
Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc. 467



evolved LacI is able to bind the operator but only in the presence

of IPTG.

DISCUSSION

Recent decades have brought important advances to our

understanding of how cellular regulation evolves, for instance

by rewiring of regulatory networks (Isalan et al., 2008), cooption

of existing transcription factors to new regulatory regions (True

and Carroll, 2002) and ligands (Bridgham et al., 2006), evolving

transcription factor protein functions (Hoekstra and Coyne,

2007), recombination of regulatory protein domains (Chothia

et al., 2003), and by the convergent evolution toward generic

network motifs (Milo et al., 2002). These efforts at the genetic,

structural, and functional levels are complemented by studies

of fitness consequences of regulatory changes in constant envi-

ronments (Cooper et al., 2003, 2008; Woods et al., 2006) and

some in variable environments (Suiter et al., 2003; Mitchell

et al., 2009). Fitness in variable environments has been exten-

sively studied within evolutionary ecology, wherein the ability

to alter the expressed phenotype in response to environmental

changes is typically referred to as phenotypic plasticity

(Pigliucci, 2001; DeWitt and Scheiner, 2004). However, direct

experimental study of the adaptive evolution of phenotypic

plasticity by mutation and natural selection (Vasi et al., 1994)

is a challenge because of limited insight into the genetic basis

of the studied regulatory phenotypes and the selective forces

in variable environments (Scheiner, 2002).

Here, we find that that the evolutionary trajectory in variable

environments is altered by internal constraint of the regulatory

system, but the evolutionary outcome is the optimal solution of

a fitness tradeoff problem and hence determined by selection.

The measured expression fitness relations of a founding geno-

type in constant environments predicted the optimal regulatory

response to a challenging variable environment, whereby ex-

pression changes that are beneficial in one environment are

detrimental in another. Cells were subsequently shown to evolve

to the optimum response, in which the sensed cue (originally an

inducer) acts as a corepressor. These findings indicate that regu-

latory evolution by selection in variable environments may be

understood within the framework of multiobjective optimization

theory (Sawaragi et al., 1985), which addresses themaximization

of overall performance in the presence of tradeoffs between con-

flicting objectives. It will be intriguing to test the limits of predic-

tion by optimization principles, for instance by studying more

elaborate regulatory phenotypes and environments, and by

determining the fundamental conflicts between objectives that

are imposed by physico-chemical constraints.

The observed absence of global constraints in the synthetic

system studied here raises the question of whether transcrip-

tional regulation phenotypes found in microorganisms similarly

are near-optimal biological functions. Insight into how transcrip-

tional regulation systems achieve optimality would help to

explain the adaptive origins of the highly specialized repertoire

of signal detection and transmission capabilities found in tran-

scription factor families (Madan Babu and Teichmann, 2003),

as well as the observed convergence toward generic regulatory

network motifs (Milo et al., 2002).
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Local constraints within the lac regulatory system that could

be broken by selection affected the evolutionary trajectory.

Whereas the population predominantly followed the direction

of strongest selection within phenotype space, genetic con-

straint caused delay and deviation at a distinct boundary defined

by a single parameter (at P = 1). Upon the fixation of mutations

that provide the functional innovation—in which IPTG acts as

a corepressor rather than an inducer—a diverse set of genetic

changes offered a fine-grained variation in both P and E0 that

is essential to developing optimality in a novel function. The

picture emerging from these observations is a genotype space

consisting of multiple regions that confer different regulatory

functions, which are distinct and connected by just a few muta-

tions. The data highlight the potential of regulatory evolution by

changes in protein coding regions, which complement other

mechanisms such as the co-option of existing regulatory pro-

teins to new regulatory regions.

Central to our strategy was the engineering of a model system

that allowed us to independently measure the cross-environ-

mental tradeoffs, which in turn informed us of the selective forces

and constraint in regulation. This genetic engineering approach

may offer a starting point for quantitative models describing

the adaptive evolution of biological complexity, relating environ-

mental conditions, regulatory architecture, adaptive constraint,

and competition dynamics.

EXPERIMENTAL PROCEDURES

Strains

In all selection experiments, Escherichia coli K12 strain MC1061 (Casadaban

and Cohen, 1980) was used, which carries a deletion of the complete lac

operon. Genotype of MC1061: FˉDlacX74 mcrB1 e14ˉ (mcrA0) rpsL150

(StrR) galE15 galK16 D(ara,leu)7697 araD139 lˉ hsdR2(rkˉ,mkˉ) spoT1. This
strain was obtained from Avidity LLC, Denver CO, USA, as electrocompetent

strain EVB100 (containing an additional chromosomal birA). All growth and

expression measurements, as well as the selection and competition experi-

ments, were performed in Defined Rich medium (Teknova, Hollister, CA,

USA), with 0.2%glucose as carbon source, and supplementedwith 1mM thia-

mine HCl. For protein expression, we used the BLIM/pTara system (Wycuff

and Matthews, 2000) with an arabinose-inducible T7 polymerase and lacking

a native lac repressor. After transformation of the pRSET-B (Invitrogen) plas-

mid expressing lacI into BLIM/pTara cells, all growth was performed in M9T

medium (Wycuff and Matthews, 2000) containing 0.5% glucose and the

appropriate antibiotics.

Plasmids

Two plasmids were constructed based on the pZ vector system (Lutz and

Bujard, 1997) in which the expression of the selection module is regulated

by lacI (pRD007). The selection module consists of the coexpressed genes

lacZa, cmR, and sacB under control of the Ptrc promoter frompTrc99A (Amann

et al., 1988) (which is amplified until base pair�300 before start). Reporter gene

lacZa consists of the first 364 base pairs of lacZ, amplified from the chromo-

some of strain MG1655 (CGSC stock center). Chloramphenicol resistance

gene cmR originates from the pZ vector system. The levan sucrase coding

sequence sacB was amplified from plasmid pKNG101, obtained from the

BCCM/LMBP Plasmid and DNA Library Collection (Belgium), accession

number LMBP 5246. Two reporter plasmids (pRepLacZu and pReplacZ)

were created for measuring expression either in cis or in trans, respectively,

by deleting pTrc99A for lacI and Ptrc and inserting a constitutive PlacIq-lacZu

fragment or by deleting pTrc99A for lacI and Ptrc and inserting the MG1655

Plac-lacZ fragment. Between cis and trans expression levels, an empirical

relationwasobservedEcis=2.33104$Etrans
0.32. For theproduction ofwild-type

and mutant lac repressor protein, the lacI coding sequence was inserted



directly downstream of the enterokinase cleavage site of expression plasmid

pRSET-B (Invitrogen). Plasmids and sequences are available upon request.

Mutagenesis

Mutants were created using the Stratagene Genemorph II Random Mutagen-

esis kit. Mutagenized product was restricted and ligated into the (nonmutated)

selection vector and subsequently transformed into E. coli strain MC1061 by

electroporation. Pool sizes were routinely between 5 3 105 and 1 3 107.

Throughout this experiment, mutagenesis conditions were constant. In order

to determine the mutation rate, a random sample of mutants was sequenced

after one mutagenesis round, yielding an average mutation rate of 0.003/bp

(n = 9).

In Vitro Binding Assay

Fluorescence polarization was measured using purified repressor and 30-car-
boxytetramethylrhodamine (TAMRA)-labeled 18 base pair symmetric operator

DNA. Polarization values were recorded in a 384-well plate in a Victor 3V plate

reader (Perkin Elmer) at 531 nm excitation and 595 nm emission. Further

details are given in Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, one

figure and one table and can be found with this article online at doi:10.1016/

j.cell.2011.06.035.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Growth Conditions
Growth Conditions during Selection

Growthwas performed at 37�C in 100ml erlenmeyer flasks, under vigorous shaking. Culturemediumwas 20 or 40ml EZ Rich Defined

medium + glucose (Teknova, Hollister, CA, USA, cat. nr. M2105), supplemented with 1 mM thiamine HCl, the appropriate antibiotic,

and IPTG when needed. Selective compounds (chloramphenicol, sucrose) were added after 3 hr of pre-selection, after which the

cultures were grown for 6 hr. The duration of selective growth was chosen to obtain significant enrichment factors (of up to 104), while

still maintaining diversity in the population (which starts off at about 106). The pre-selection time of 3 hr (� 6 generations for unselec-

tive growth) was chosen in order to be long enough to reach steady state enzyme expression, either due to protein production (in the

order of 3 generations (1)), or due to dilution (in which case 6 generations amounts to a dilution factor of 64). Optical density was

monitored at 550 nm and whenever an OD550 of 0.1 is reached, a dilution was made into fresh prewarmed selective medium. After

selection, cultures were washed, and flash frozen. When transferred to the next environment (without mutagenesis), a threshold dilu-

tion of 5 102 is applied, which determines the minimum growth rate for mutants to effectively increase in number in the previous

environment.

Growth Conditions during Measurement of the Fitness Landscapes

In order to measure growth rates for determination of the fitness landscape, wells of a 96-well plate containing 200 ml of Defined Rich

glucose medium with the appropriate amount of IPTG were inoculated with a 2$104 x dilution of an O/N (LB) culture, and grown for

three hours (pre-selection) at 37�C in a Perkin & Elmer Victor3 plate reader until an optical density at 550 nm of around 0.0005 was

reached (in the plate reader, which corresponds to anOD550 of 0.002). As this OD is too low to be determined, the same plate contains

6 wells that were inoculated with a mere 5$102 x dilution, which reached a measurable OD of around 0.02 at the same time. At that

moment sucrose or chloramphenicol was added.

Optical density at 550 nm was recorded every 4 min, and every 29 min 9 ml sterile water was added to each well to counteract

evaporation. When not measuring, the plate reader was shaking the plate at double orbit with a diameter of 2 mm.

From the measured growth curves (see examples in Figure S1) the growth rate was obtained by determining for each well the

increase in cell density at t = 6 hr. From this the effective exponential growth rate (or Malthusian parameter, see e.g., (2)) was obtained

according to F = ðlogðODt= 6=ODt= 0Þ=log 2Þ=6, in doublings per hour. In case the growth rate was high and stationary phase was

reachedwithin 6 hr, the initial slope of the growth curve was taken, since in the selection experiments the cultureswere always diluted

long before reaching stationary phase.

In the main text the fitness F is identified with the Malthusian parameter (2). This is the appropriate measure of the fitness for clonal

organisms with variable generation times and overlapping generations, such as bacteria. The average growth rate over multiple envi-

ronmental conditions is F =
P

i piFi, where the pi’s denote the time fraction spent in environmental condition i, and Fi is the fitness for

that condition. For the two conditions used in the main text at equal dwelling times, the fitness therefore can be expressed as Ftot =

(Fsucrose + FCm)/2 (see caption Figure 2 in the main text).

Growth Conditions during Competition Assays

Twomutants weremixed in a known ratio and subjected to selective environments (see above). After 6 hr of growth for a certain envi-

ronment (in which the initial inoculation was such that an OD550 of just under 0.1 was reached), cultures were washed, and allowed to

grow to stationary phase in LB medium. A DNA extraction was performed on the whole population for each culture, of which subse-

quently around 0.1 ng was electroporated into BioRad EP-Max10B Electro-Competent Cells (cat. no. 170-3330), and directly plated

on agar containing Xgal with or without IPTG. As our selection module contains a lacZa gene, complementation with the chromoso-

mally expressed lacZu allowed for discrimination between the mutants and determination of their ratio, on the basis of their differ-

ential expression of lacZa. For example, WT and mutant N1 (Figure 3B) can be distinguished on plates containing Xgal and IPTG,

where WT forms blue colonies and N1 remains white. We can then calculate their fitness difference DF = logðA1
2Þ=ð6 log2Þ, where

A1
2 is the factor by which mutant 1 out-grows mutant 2 during 6 hr of growth. The graph in Figure 3C contains 15 data points for 3

competitions: WT versus N1, N1 versus R1, WT versus N2, each in 5 different environments: 0.4% sucrose, 0.25% sucrose,

0.15% sucrose, 80 mg/ml cm + 1 mM IPTG, 25 mg /ml cm + 1 mM IPTG.

Growth Conditions during the Induction/De-induction Assays

To measure the rates of induction and de-induction after a switch in IPTG concentration, exponentially growing cultures expressing

WT lacIwere grown for four hours in the presence or absence of 1 mM IPTG. Subsequently a time series for 3.5 hr was performed. At

each time point 1 mM IPTG was added to a culture that had grown previously without IPTG. For cultures that had previously grown

with IPTG, the medium was exchanged for medium without IPTG at each time point (after washing the cells). Growth was monitored

such that the OD at 600 nm never exceeded 0.05. After 3.5 hr the expression level for each culture experiencing induction or de-

induction for a different period of time was measured by an FDG assay (Figure S1C, left).

Assay of Growth Recovery after Selective Periods

Growth during the periods of non-selective growth was assayed by plating cultures over time and counting the number of colony

forming units (CFU). Cultures grown selectively for 6 hr (see above) were washed and grown in Defined Rich medium + glucose

Cell 146, 462–470, August 5, 2011 ª2011 Elsevier Inc. S1



for 3.5 hr. At specific time points a part of the growing culture was taken, appropriately diluted, and spread on an LB plates. Plates

were grown overnight at 37�C, after which colonies were counted (Figure S1C center and S1C right).

b-Galactosidase Assay
Assay Conditions

A reporter plasmid expressing either lacZ or lacZuwas cotransformed into the mutant population or clone that is to be assayed. Cell

cultures were grown at 37�C in a Perkin & Elmer Victor3 plate reader, at 200 ml per well in a black clear-bottom 96 well microtiter plate

(NUNC 165305). Medium was EZ Rich Defined medium + glucose (Teknova, Hollister, CA, USA, cat. nr. M2105), supplemented with

1 mM thiamine HCl and the appropriate antibiotics. Optical density at 600 nm was recorded every 4 min, and every 29 min 9 sterile

water is added to each well to counteract evaporation. When not measuring, the plate reader was shaking the plate at double orbit

with a diameter of 2 mm. Cells were fixed after the cultures had reached an optical density of at least 0.015 and at most 0.07 (in the

plate reader, which corresponds to an OD600 of 0.05 to 0.23), by adding 20 ml FDG-fixation solution (109 mM fluorescein di-b-D-gal-

actopyranoside (FDG, MarkerGene Technologies Inc, Eugene, OR, USA, cat. nr M0250), 0.15% formaldehyde, and 0.04% DMSO in

ddH2O). Fluorescence development was measured every 8 min (exc. 480 nm, em. 535 nm), as well as the optical density at 600 nm.

Shaking and dispensing conditions as above. When cells are induced with IPTG, directly before or after fixation, an appropriate

amount of inhibitive IPTG was added. Analysis of fluorescence trace is described below.

Analysis of the FDG b-Galactosidase Assay

Using the fluorogenic substrate fluorescein di-b-D-galactopyranoside (FDG) allows for an accurate determination of the b-galacto-

sidase activity over at least 4.5 orders of magnitude. FDG contains two galactose groups that both have to be cleaved in order to

release fluorescein.

FDG �!LacZ FMG+galactose

FMG �!LacZ fluorescein+galactose

In ref. (3) a model for the FDG-FMG hydrolysis is proposed. In the concentration range of LacZ and FDG used in our experiments, the

increase in fluorescence F is given by (Equation 7 in ref. (3)):

d

dt
F = k2E

S0

Km +S0

�
ap + ðaM � apÞe�Rt

�
(S.1)

where R is the relaxation constant (timescale to reach maximum fluorescence rate), E is the (total) concentration of enzyme, k2 is the

catalysis rate constant of FDG to FMG, and the a’s are proportionality factors between the products and their fluorescence,

F =aPP+aMM (P is product (fluorescein) and M is FMG). Km is the Michaelis-Menten constant for FDG and S0 is the initial FDG

concentration. We can see that at time t = 0 as well as at large t’s the rate is proportional to E, though with different proportionality

constants (first aM, then aP).

Ref. (3) gives measured values for aM = 5.3 mM-1 and aP = 150 mM-1. Although assigning arbitrary units to the fluorescence counts,

they are relevant as relative quantities between FMG and fluorescein. Thus at t = 0, equation (S.1) reduces to

d

dt
F =aM k2E

S0

Km +S0

(S.2)

In order to determine the enzyme concentration per cell, fitted slopes at t = 0 are divided by the cell density.We use here 3f E=OD600,

where 3is the LacZ concentration per cell.

FDG expression measurements were compared to the standard Miller assay for b-galactosidase activity (4). We measured an

induction curve of wild-type LacI (as expressed from plasmid pRD007), both by using the Miller assay and the FDG assay described

above (Figure S1B).

Growth Models and Interpolation of Expression-Growth Curves
In order to interpolate the measured points on the expression-growth relations in Figure 1C and 1D, we use models for the selective

action of chloramphenicol and sucrose.

Chloramphenicol Growth

In the presence of a certain concentration of chloramphenicol acetyl transferase (CmR), the internal concentration of chloramphen-

icol (cm) is reduced and determined by the equilibrium between influx through the cell membrane and acetylation (‘inactivation’) by

CmR. As such, we model the action of cm by comparing the situation with growth under sublethal concentrations of cm. The most

basic equation relating growth to the concentration of an inhibitive substance is derived from the Monod form for nutrient limited
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growth (5), m � KX=X +K, where m is the growth rate, X is the concentration of nutrient and K is a constant determining the nutrient

concentration that allows half-maximum growth rate. Interestingly, this is the same functional form as the fraction of substrate bound

enzyme under Michaelis-Menten kinetics. Now, for sublethal concentrations of cm, whose action is to block protein synthesis upon

binding to the ribosomes, it would not be unreasonable to expect the the growth of the cell (as a first-order approximation) to be

proportional to the unbound fraction of ribosomes, which is given by K=X +K. Therefore we adopt the following simple functional

form for growth in the presence of chloramphenicol

m
�½cm�ext

�
=

m0

c1½cm�int + 1
(S.4)

where c1 is a constant, m0 the growth rate in absence of cm, and [cm]ext and [cm]int respectively the cm concentrations outside and

inside the cell.

To obtain a relation between the internal and external cm concentration, we express the equilibrium between influx and acetylation

of cm by

Cbar;cm

�½cm�ext�½cm�int
�
= racet;cm (S.5)

Here the influx of cm is either diffusion limited or limited by the permeability of themembrane, which does notmatter for the functional

form of the equation, and can be expressed as a constantCbar,cm times the concentration difference between inside and outside. The

acetylation rate racet,cm is given by

racet;cm = kcat;cm½E � cm�= kcat;cm
Etot

1+
KmEcm

½cm�int

(S.6)

where kcat,cm is the catalysis rate constant for the acetylation reaction, and KmEcm is theMichaelis-Menten constant for CmR. Solving

for [cm]int in

Cbar;cm

�½cm�ext�½cm�int
�
= kcat;cm

Etot

1+
KmEcm

½cm�int

(S.7)

now yields the expression for the growth rate as a function of the external chloramphenicol concentration (here abbreviated as [cm]),

being

mð½cm�Þ =
m0

1+
c1

2

�
½cm� � KmEcm � Etotkcat;cm +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½cm�KmEcm + ð½cm� � KmEcm � Etotkcat;cmÞ2

q � (S.8)

Expression-growth data for media containing cm in Figure 1C were fitted with this equation, using the following parameter set:

[cm] 80 mg/ml 40 mg/ml 25 mg/ml

m0 1.7 1.8 1.8

c1 0.17 0.17 0.17

n 1 1 1

105 , kcat 10.8 6.8 4.5

KmEcm 0.44 0.44 0.44

Sucrose Growth

Sucrose selection is based on the formation of sugar chains (levan) in the periplasmic domain of gram-negative bacteria (6). The

enzyme catalyzing this polymerization reaction is levansucrase (SacB) from Bacillus subtilis. In the gram-positive B. subtilis the

enzyme is exported through the inner membrane, where it constitutes a protective poly-sugar layer outside the cell wall. In gram-

negative bacteria, which have a second cellular membrane, the enzyme is not exported through the secondmembrane and therefore

accumulates levans in between the cellular membranes, which decreases the cellular growth rate. High expression of the protein in

the presence of sucrose is lethal and leads to lysis of the cells. Thus, the rate of levan formation is the factor influencing cell growth. In

contrast to chloramphenicol, which is a bacteriostatic, high levan production leads to lysis of cells, and in a population average this
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can give rise to a negative growth rate. Therefore the growth as a function of levan formation rate cannot directly be described by the

Monod form. However, expecting that the relevant parameter for the toxic effect is the levan formation rate (rlevan) relative to the

instantaneous growth rate, we can write a modified Monod form

mð½sucrose�Þ =
m0

c0

rlevan
mð½sucrose�Þ+ 1

(S.9)

where m0 is the growth rate in absence of sucrose and c0 is a constant. (A stronger effect of sucrose was indeed observed when the

basal growth rate is lowered [e.g., growth with glycerol as a carbon source instead of glucose]). This can be solved to yield

mð½sucrose�Þ=m0 � c0 rlevan (S.10)

Analogous to the chloramphenicol selection, we write for the rate of levan formation and the equilibrium governing the transport of

sucrose through the outer membrane

rlevan = kcat;sucr½E � sucrose�= kcat;sucr
Etot

1+
KmEsucr

½sucrose�int

(S.11)

and

Cbar;sucr

�½sucrose�ext�½sucrose�int
�
= kcat;sucr

Etot

1+
KmEsucr

½sucrose�int

(S.12)

We can solve equation (S.12) for [sucrose]int, substitute this into equation (S.11), which in its turn can be substituted into equation

(S.10) to obtain the growth rate as a function of the external sucrose concentration and the expression of sacB.

However, all measured expression-growth characteristics for sucrose show a steeper dependency on enzyme concentration than

can be obtained by this form. Indeed, SacBmediated formation of levan is a process that needs a levan seed in order to proceed (7,8).

Most probably seed formation is also dependent on the enzyme and sucrose concentration. Therefore we phenomenologically alter

the equation for the growth rate as a function of levan formation rate into

mð½sucrose�Þ=m0 � c0 r
n
levan (S.13)

The obtained function provides good fits for the low-enzyme regime of the expression-growth data, with the following parameter set:

[sucrose] 0.4% 0.25% 0.15%

m0 2.18 2.14 2.18

c0 86 86 86

n 4 4 4

107 , kcat 4.8 6.4 4.9

KmEsucr 0.35 0.35 0.23

However, at the high [E] end, we observe a saturation at higher growth rates than equation (S.13) can account for. There are at least

three saturation effects (see also (7,8)) coming into play at high rates of levan synthesis (apart from potential feedback on protein

production in ‘struggling’ cells):

(1) Since the levans are (possibly branching) chains, the autocatalytic seed-effect (see above) of the reaction decreases: attach-

ing a fructosyl-group to an existing long chain does not increase the number of fructosyl-acceptors.

(2) At high levan production rates, there is a high concomitant production of glucose, that has an inhibitory effect on levan forma-

tion in two ways:

(2a) The fructosylation reaction by the E * S (levansucrase-sucrose) complex branches between levan elongation and fructo-

sylation of glucose (which re-forms sucrose).

(2b) The competitive inhibition of E to S binding by glucose. Due to levan formation, the internal sucrose concentration

decreases, and the glucose concentration increases.

(3) The formed levans themselves act as an inhibitor at higher concentrations.
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Since it is at this stage impossible and will not yield further insight to adapt the model to account for the saturation at high enzyme

concentration, we opt for amore phenomenological description. For fits over the complete concentration range of SacB enzyme (Fig-

ure 1D), we used

mð½sucrose�Þ =
m0 +msat

c0 r n
levan + 1

� msat (S.14)

which approaches growth rate msat for high expression levels.

Repressor Protein Expression Conditions and Fluorescence Polarization
Repressor Protein Expression Conditions

For the production of wild-type and mutant lac repressor protein, the lacI coding sequence was inserted into expression plasmid

pRSET-B (Invitrogen), in which a T7 promoter drives expression of the His-tagged repressor. The BLIM/pTara system (9) with an

arabinose inducible T7 polymerase, and lacking a native lac repressor, was used for all protein expression. After transformation of

the pRSET-B plasmid into BLIM cells containing pTara, all growth was performed in M9T medium (9) containing 0.5% glucose.

100 mg/l ampicillin and 40 mg/l chloramphenicol was used to retain pRSET-B and pTara respectively, except when 1l cultures

were grown for expression, in which case the chloramphenicol concentration was lowered to 15 mg/l. Protein expression was

induced at absorbance between 0.9 and 1.1 at 600 nm, by addition of 0.25% arabinose, after lowering the temperature to 17�C. Cells
were harvested by centrifugation after 16 hr of induction.

Subsequently the cell pellet was resupended in a 50mMsodium phosphate buffer at pH 8.0 containing 500mMNaCl, 20mM imid-

azole, 2.5% glycerol, 1 mM DTT, 10 mM MgCl2, 0.1% tween 20, 20 mg lysozyme, and one tablet of protease inhibitor cocktail

(Roche). Cells were lysed by sonication, �2000U of DNase was added and allowed to incubate for 10 min at 4�C. The suspension

was cleared by centrifugation at 4�C for one hour at 4.8$104g in a Sorvall SS-34 rotor. 0.5 ml of Ni-NTA agarose (QIAGEN) was added

and incubated for 30 min at 4�C. The agarose was batch washed 5x in a 50 mM sodium phosphate buffer at pH 8.0 containing

500 mM NaCl, 20 mM imidazole, 2.5% glycerol, 1 mM DTT, and the protein was eluted with 250 mM imidazole. The protein solution

was dialyzed overnight into a 50mMHEPES buffer at pH 8.0 containing 200mMNaCl, 20mM imidazole, 1% glycerol and 1mMDTT.

Fluorescence Polarization

Fluorescence polarization measurements were performed in the dialysis buffer with addition of BSA to 0.05%. Oligonucleotides con-

taining the 18 base pair symmetric lac operator (ATTGTGAGCGCTCACAAT) and containing a 30-carboxytetramethylrhodamine

(TAMRA) fluorophore (Integrated DNA Technologies) were hybridized in a 10 mM Tris-Cl buffer at pH 8.5, by cooling down overnight

in a water bath from 95�C to room temperature. The polarization assay was performed in a 384 well plate in a Victor 3V plate reader

(Perkin Elmer) at 531 nm excitation and 595 nm emission. Each well contained 50 ml dialysis buffer and 10 nM of lac operator. IPTG

was added at appropriate concentrations. The amount of repressor protein was such that saturating binding could be observed

(without IPTG for wild-type and with IPTG for M-inv-1). Each measurement was performed with 3 or 4 replicates.
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Figure S1. Growth Rate and Expression Measurements, Related to Figure 1
(A) Examples of measured growth curves of cells harboring the selection module, with 25 mg/ml chloramphenicol (left) or 0.15% sucrose (right). Optical density of

the culture is recorded as a function of time in a 96-well plate reader. Different concentrations of the inducer IPTG are indicated.

(B) Comparison ofMiller assay and fluorescein di-b-D-galactopyranoside (FDG) assay. Shown is the expression in response to the inducer IPTG as determined by

the Miller assay (left) and the FDG assay (center), and the FDG expression values against the Miller expression values (right). For details see Supplemental

Experimental Procedures B.

(C) left: induction and de-induction ofWT lacI as a function of time. At t = 0 either 1mM IPTG is added to a culture growingwithout IPTG (open symbols) or a culture

previously growing at 1 mM IPTG is grown further in the absence of IPTG (solid symbols). See Supplemental Experimental Procedures A4 for details. The curves

are theoretical expectations based on a growth rate of 2.15 doubl./hour. Center and right: Recovery after selective periods, as a function of time after transfer to

non-selective medium (see Supplemental Experimental Procedures A5). CFU is shown after 80 mg/ml chloramphenicol (center) with 1 mM (solid symbols) and

25 mM IPTG (open symbols), and 0.4% sucrose (right) with 1 mM IPTG (open symbols) and without IPTG (solid symbols). Straight lines indicate 2.15 doubl./hour.
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